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Abstract

We performed whole-genome sequencing on an individual from a family with variable psychiatric 

phenotypes that had a sensory processing disorder, apraxia, and autism. The proband harbored a 

maternally inherited balanced translocation (46,XY,t(11;14)(p12;p12)mat) that disrupted 

LRRC4C, a member of the highly specialized netrin G family of axon guidance molecules. The 

proband also inherited a paternally derived chromosomal inversion that disrupted DPP6, a 

potassium channel interacting protein. Copy Number (CN) analysis in 14,077 cases with 

neurodevelopmental disorders and 8,960 control subjects revealed that 60% of cases with exonic 

deletions in LRRC4C had a second clinically recognizable syndrome associated with variable 

clinical phenotypes, including 16p11.2, 1q44, and 2q33.1 CN syndromes, suggesting LRRC4C 
deletion variants may be modifiers of neurodevelopmental disorders. In vitro, functional 

assessments modeling patient deletions in LRRC4C suggest a negative regulatory role of these 

exons found in the untranslated region of LRRC4C, which has a single, terminal coding exon. 

These data suggest that the proband’s autism may be due to the inheritance of disruptions in both 

DPP6 and LRRC4C, and may highlight the importance of the netrin G family and potassium 

channel interacting molecules in neurodevelopmental disorders.
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INTRODUCTION

While much progress has been made on the genetics of neurodevelopmental disorders 

(NDDs), over 50% of cases assessed clinically on any genetic platform are considered 

idiopathic [Krumm et al., 2014; Sanders et al., 2015]. While more NDD cases would likely 

be associated with genetic variation if all cases were assessed using the full extent of state-

of-the-art technology, different strategies need to be employed to further unravel the genetics 

of NDDs. We have previously shown that balanced chromosomal rearrangement (BCR) 

sequencing is a powerful strategy to discover new genes for NDDs [Talkowski et al., 2011; 

Talkowski et al., 2012c], and here we report on a child who inherited two BCRs, one from 

each parent, each of which disrupted only a single gene: leucine rich repeat containing 4C 

(LRRC4C [MIM 608817]) and dipeptidyl-peptidase 6 (DPP6 [MIM 126141]). Analysis of 

rare copy gains and losses in these genes in thousands of NDD cases suggest that that exon-

disrupting CNVs in DPP6 may be a contributor to NDDs and deletions in LRRC4C may be 

a modifier of genetic lesions associated with variable NDD phenotypes.

METHODS

Family recruitment and assessment

We obtained blood from all carriers of a BCR identified by karyotyping in a 

multigenerational family (46,XY,t(11;14)(p12;p12)mat), from which the proband, and the 

proband’s mother, and grandmother were available for clinical and genetic testing. 

Participants or their guardians gave informed consent, using consent forms approved by the 

Douglas Institute Ethics Board. The proband was assessed with both the ADOS and ADI as 

part of a full clinical work-up done at the Montreal Children’s Hospital. The mother of the 

proband confirmed that he met criteria for autism on both measures. The mother and the 

grandmother of the proband were assessed with the SCID-I for Axis-I mental disorders and 

SCID-II for personality disorders according to DSM-IV criteria. Current level of depression 

was assessed by the Beck Depression Inventory and the Hamilton Depression Rating Scale 

(HDRS-24). Cognitive functioning for these two individuals was investigated with the 

Stroop Color Test and the Hayling Sentence Completion test for cognitive inhibition, the 

Trail Making Test (TMT) A and B for flexibility/shifting, a categorical and semantic verbal 

fluency test, the National Adult Reading Test (NART) for a raw estimate of verbal IQ, the 

working memory subscale of the WAIS-III and the Iowa Gambling Task (IGT) for decision-

making. Individual cognitive performance was then compared to performance from 81 

healthy female controls from the GREFEX control group and 72 healthy female controls 

from our own database.

Next generation sequencing of BCRs

Translocation mapping experiments were performed using customized large-insert, or 

“jumping library”, whole genome sequencing [Brand et al., 2014] [Brand et al., 2015] 

[Talkowski et al., 2012b]. Reads were aligned with BWA and analyzed using Samtools. 

After data filtering, BAM files were processed using BamStat, a program developed to 

tabulate mapping statistics and output lists of anomalous read pairs (defined as having ends 

that map to two different chromosomes, having an abnormal insert size, or unexpected 
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strand orientations). Anomalous pairs were clustered by their mapped location with 

readPairCluster, a C++ program which performs a single-linkage clustering of paired-end 

reads if corresponding ends map within a specified distance (e.g., less than 10 kb) of each 

other.

Human gene expression analysis

Post-mortem prefrontal cortex brain tissue from Brodmann Area 46 (BA46) was obtained 

from the Douglas Brain Bank as described elsewhere [Klempan et al., 2009]. Tissue came 

from three control individuals, and RNA was extracted using the Qiagen RNAeasy kit 

(Qiagen, Hilden, Germany). Commercially available RNA from seven additional tissues was 

obtained from Clontech Laboratories (Mountain View, CA), as follows: Frontal Lobe 

(Cat#636563), Spinal cord (Cat#636554), Hippocampus (Cat# 636593), Liver (Cat# 

636531), Lung (Cat# 636524), Kidney (Cat# 636529) and Fetal brain (Cat# 636526). 

Reverse transcription was performed using the M-MLV reverse transcriptase enzyme and 

poly-dT primers to obtain complementary DNA (cDNA). Real-time PCR reactions were 

performed on an Applied Biosystems (Foster City, CA) 7900 HT system, using 2X iTaq 

Universal SybrGreen Supermix (BioRad, Saint Laurent, Canada). We used exon boundary-

spanning primers, as follows: isoforms 1 and 2 of LRRC4C (leucine rich repeat containing 

4C) were quantified together (NM_020929.2 and NM_001258419.1; F: 

TAAGTGGGTTCCAGTTTTGC / R: CCAACAGGTATTGATCTTCCTGAG). For DPP6 
(dipeptidyl-peptidase 6), we quantified the expression of isoform 3 (NM_001039350; 

primers F: AACGTGATGGAGCTGGTG / R: CCGCTGGTGTCAGAAGTATG).

Magnetic Resonance Imaging (MRI)

Two members of the family, II-6 and III-2, underwent a structural magnetic resonance 

imaging (sMRI) session. Scanning sessions were conducted at the Douglas Institute Brain 

Imaging Centre, on a 3T Siemens Magnetom MRI scanner. Structural scans consisted of a 

high resolution, whole brain T1 acquisition. T1 weighted data were acquired using a flow-

compensated 3D RF-spoiled GRE sequence with TR/TE/flip angle = 18 ms/10 ms/30°, Nex 

1, and a 256×256×180 matrix with 1 mm3 isotropic voxels. To avoid reading bias, scans 

from six females, including those from II-6 and III-2, were read by an experienced 

radiologist (NM) blinded to the genetic status of the subjects but aware of their age. A 

systematic assessment was run, which included: movement artifacts, atrophy (pons, vermian, 

cortical, corpus callosum), white matter hyperintensities (infratentorial, cerebellar, pons, 

dentate nuclei, cerebellar peduncles, mesencephalon, periventricular, deep, juxtacortical, 

basal ganglia, semi ovale centrum, corticospinal tract, corpus callosum), Scheltens and 

Koedam scores, enlargement (ventricular, olfactive sulcus), infarct (territorial, lacunar, 

junctional), perivascular spaces dilatation, fluid cavities, and basal ganglia signal 

abnormalities.

Cloning and luciferase assays

We cloned wildtype (long fragment, 776bp) and CNV deletion model (short fragment, 137 

bp) constructs of the 5′UTR of LRRC4C into a luciferase vector (Invivogen), using the 

TOPO cloning kit, following manufacturer’s instructions (Invitrogren, Carlsbad, CA). cDNA 

was amplified using the following primers.
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LRRC4C-F8-BsrG1-sense: actgag TGTACA agtgagaaagaaggga

LRRC4C-R1-Nco1-sense: ctagct CCATGG ctccactgggggtctcta

LRRC4C-F8-Nco1-antisense: actgag CCATGG agtgagaaagaaggga

LRRC4C-R1-BsrG1-antisense: ctagct TGTACA ctccactgggggtctcta

LRRC4C-F1-BsrG1-sense: agtttt TGTACA tggcttactttttggcgg

LRRC4C-F1-Nco1-antisense: agtttt CCATGG tggcttactttttggcgg

All fragments were cloned in the TOPO IV vector and Sanger sequenced to confirm 

orientation and to determine that fragments were mutation-free. To transfer inserts from the 

TOPO IV vector to the luciferase-containing vector, both vectors were digested with BsrG1 

and Nco1 enzymes. Inserts were gel purified and ligated at 4°C overnight, where the ligation 

product was transformed into GT115 competent cells. Positive transformants were identified 

by Sanger sequencing. To measure luciferase activity, 250 ng of construct was transfected in 

HEK 293 cells using the Jetprime reagent with an equivalent amount of pGL3 control vector 

used for signal normalization. Luciferase activities were quantified using the dual luciferase 

reporter (Promega, Madison, WI) kit 24 h after transfection in the cell medium and cellular 

extracts.

Clinical CNV cohort

From Signature Genomic Laboratories (SG), we analyzed a total of 14,077 non-prenatal 

NDD samples submitted for clinical genetic testing using oligonucleotide-based whole-

genome array comparative genomic hybridization (aCGH), either a 105K-feature platform 

(SignatureChip OS version 1 or 4; custom-designed by SG, manufactured by Agilent 

Technologies, Santa Clara, CA) or a 135K-feature platform (SignatureChip OS version 2 or 

3; custom-designed by SG, manufactured by Roche NimbleGen, Laval, Canada). This cohort 

has been fully defined and characterized in our previous work [Talkowski et al., 2012c]. The 

ethnic distribution in the samples from SG was estimated from a sampling cross-section 

where 75% were white individuals, 7% African American individuals, and 18% individuals 

of other race/ethnicity. The sex distribution was 59% male and 41% female.

Control cohorts

Controls used were a combination of several datasets, for a total of 8,960 individuals. We 

used control datasets from SickKids Toronto (OHI n=1,234, POPGEN n=1,123[Krawczak et 

al., 2006], and the Ontario Population Genomics Platform (OPGP), n=416 (http://

www.tcag.ca/facilities/cyto_population_control_DNA.html), all of whom (n=2,773) had 

CNVs called from Affymetrix 6.0 SNP arrays, and all of which were carefully screened for 

false positives. The POPGEN cohort is a sample of control individuals from Northern 

Germany, while the OHI cohort is a set of control individuals from the Ottawa Heart 

Institute. The OPGP cohort are control individuals from Ontario consented for use as 

controls in genomic studies. From a Swedish control cohort [Bergen et al., 2012; 

Szatkiewicz et al., 2014], all subjects were born in Sweden and identified via the Swedish 

Hospital Discharge Register containing all individuals hospitalized in Sweden since 1973. 

There were 5,917 psychiatrically screened controls that were hospitalized only for non-
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psychiatric reasons. DNA was extracted from blood from the Swedish control cohort using 

standard methods at the Karolinska Institutet. All genotyping was conducted at the Broad 

Institute of Harvard and MIT, and genotypes and CNVs were called using the Birdsuite 

algorithm using the Affymetrix (Santa Clara, CA) 6.0 platform, as previously described. 

CNVs present in > 0.5% of controls were removed from analyses, and only CNVs >50Kb 

were included. All (n=8,960) controls are Caucasian.

RESULTS

Two independent BCR in a subject with autism, a sensory processing disorder, and 
apraxia

Individual II-6, who was recruited at the Douglas Hospital for an unrelated study, reported 

that her daughter, III-2, had a 46,XX,t(11;14)(p12;p12) translocation (Fig. 1), identified after 

four miscarriages, and a son with autism and other developmental problems (described 

below). To understand better the transmission and precise breakpoints of this reported 

chromosomal rearrangement, we collected DNA from II-6, III-2, and IV-1. After performing 

an aCGH (OMNI 2.5 array) on III-2 and IV-1, which revealed no other genetic anomalies, 

we performed jumping library sequencing [Talkowski et al., 2011] in all three subjects. We 

defined the translocation breakpoint, identical in all three subjects, at (GRCh37/hg19) 

Chr11:40614960 and ChrUn_gl000220:140245 (Fig. 1A; Supplemental Table I). gl000220.1 

is a 161.8 kb unplaced genomic contig, which has still not been placed into the newest 

primary reference genome assembly (hg38); however, our results show gl000220.1 localizes 

at least to 14p12. Acrocentric short arms contain highly repetitive sequences, with most 

shared with other acrocentric short arms and which contain rDNA genes [Bandyopadhyay et 

al., 2001a; Bandyopadhyay et al., 2001b]. Additional characterization, outside the scope of 

this work, would be necessary to establish whether this sequence is unique to 14p or shared 

among more acrocentric short arms. The Chr11 breakpoint results in the direct disruption of 

LRRC4C, which encodes the netrin G1 ligand important in cortical and thalamic axon 

guidance [Lin et al., 2003]. The disruption occurs in intron three of this seven-exon gene. In 

the male with autism, IV-1, we also detected a paternally inherited Chr7 inversion [inv(7)

(q34q36.2)]. We localized the breakpoints (hg19) to Chr7:140416412 and Chr7:153725012 

(Fig. 1B, Supplemental Table SII). The Chr7:140416412 breakpoint localizes to an 

intergenic region, 9,965 bp from the 3′UTR of NDUFB2 and 17,952 bp from the 3′UTR of 

BRAF. The Chr7:153725012 breakpoint localizes to a highly polymorphic region of intron 1 

of the longest and lowest expressed isoform of DPP6 (Dipeptidyl peptidase-like protein 6), a 

component of Kv4 channel complexes that may be important in the neuronal A-type 

potassium current [Maffie et al., 2013]. Our previous work suggested revised terminology 

for these findings [Ordulu et al., 2014], so the next-generation cytogenetic nomenclature for 

this case is:

46,XY,inv(7)(q34q36.2)pat,t(11;14)(p12;p12)mat.seq[GRCh37/hg19] inv(7)(pter- 

>q34(140,416,412)::GGATACTGTATCTGGATCCT::q36.2q34(153,725,012- 

140,416,421)::ATGTACATAGT::q36.2(153,725,220)- >qter),t(11;Un_gl000220)

(Un_gl000220(+)(140,236)::TGTCTTTTGTGATA::11p12(40,614,960)- >11qter;

11pter->11p12(40,614,957)::TATATAG::Un_gl000220(+)(140,245))
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Clinical and neurological information for members with chromosomal rearrangements

Individual IV-1 (born in: 2009) is the only son of III-2 (Fig. 1C). Pregnancy and delivery 

were without issue, though the family noticed lack of eye contact at an early age and delayed 

milestones including complete lack of speech until age 3 and walking after age 2. The 

proband was evaluated at a specialty clinic at the Montreal Children’s Hospital and 

diagnosed with autism using the ADOS and ADI. He also experiences some intellectual 

disability in that by age 5 he could only read some words, say the alphabet, and count as 

high as 30. He is able to socialize with family members on his own terms but does not like to 

be touched and rarely makes eye contact when speaking. He is energetic, has no concept of 

danger, struggles with transitions from one activity to the next, and has some trouble 

balancing and jumping. Physiotherapy and speech and language training after age 3 led to 

significant improvements in speech, implying a lack of regression.

Besides meeting criteria for autism, the mother reports other particular features specific to 

the proband. Specifically, that he never chews food or moves his tongue despite the ability to 

do so. Because of this, he was assessed for an oral sensory processing disorder which 

revealed extreme hypersensitivity to most textured foods in his mouth, unrelated to taste or 

desire for food. He also has a severe case of apraxia, two examples of which are his lack of 

response to painful stimuli (despite being able to sense pain), and not going to the bathroom 

despite acknowledging the need to do so. He has a fixation with trains that interferes with 

daily activities.

II-6 (born in 1950) is a 64-year-old woman and has five siblings. Her mother, I-1, suffered 

from major depression and committed suicide at age 54. No DNA is available for individual 

I-1, and the family was unsure of any history of miscarriages she may have had. II-6 

reported a history of panic disorder associated with depressive symptoms for which she 

received successful treatment with psychological therapy and later recurrence was 

successfully treated with an antidepressant throughout a 9-month period. She had two 

miscarriages. She has completed high school and has a 2-year college diploma. The 

cognitive battery showed that II-6 is within the 33% lowest performance for TMT-B, 

categorical verbal fluency and IGT, and the 10% lowest performance for TMT-A and Stroop 

Interference score and errors.

Individual III-2 (born in 1980) suffered from anorexia nervosa at age 8 during a 1-year 

period and again at age 14, when she was followed in a specialty clinic. III-2 presented with 

two major depressive episodes at 16 and 20 years of age and was treated with several 

antidepressants. She has had four miscarriages and has a current diagnosis of ADHD. III-2 

was within normal range for all psychiatric assessment and her highest level of education 

completed is a Bachelor’s degree. Neuropsychological profiling showed that III-2 is within 

the 33% lowest performance for IGT, category verbal fluency, Stroop interference score and 

error, and TMT-A. We conclude that the translocation does not associate with strong effect 

cognitive or structural deficits.

There was limited information available on III-1, the father of IV-1 who carries the inv(7)

(q34q36.2), whom we did not consent to a clinical evaluation. Spousal report suggests he is 

a healthy individual, who is shy and works in computing.
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Because the translocation disrupts a gene encoding an axon guidance-related molecule 

[DeNardo et al., 2012; Kim et al., 2006], which could affect brain structure, we tested II-6 

and III-2 using structural MRI and cognitive performance evaluations. II-6’s MRI scan 

revealed moderate cortical and vermian hypoplasia, a moderate ventricular enlargement, and 

a moderate olfactive sulcus enlargement compared to six control individuals (Supplemental 

Fig. S1). There were no anomalies in III-2’s MRI scan.

Translocation and inversion breakpoints are located in genomic regions that are 
transcribed in human brain

To assess whether the chromosomal rearrangements, that is, inv(7) and t(11;14), were in 

transcriptional products, we undertook RNA analysis in healthy tissues. There are only two 

protein-coding transcript variants of LRRC4C. Two other transcripts produced from the 3’ 

end of this locus are out of frame and non-coding. Both of the gene’s protein-coding 

isoforms, NM_020929.2 and NM_001258419.1 [Rajasekharan and Kennedy 2009], are 

predicted to be disrupted by the translocation (Fig. 2A). Primers targeting both isoforms 

show expression in adult human brain regions as well as in fetal brain, while only mild 

expression was detected in spinal cord with extremely low or absent expression in the 

kidney, liver, or lung (Fig. 2A).

There are three predicted isoforms of DPP6, all of which have distinct transcription start 

sites. The inversion identified in family member IV-1 disrupts the promoter and exon 1 of 

isoform 3 (NM_001039350). The 5’UTR for DPP6 isoforms 1 and 2, which were the first to 

be identified [Wada et al., 1992], start ~171 kb and 423 kb downstream from exon 1 of 

isoform 3, respectively, and ~25 kb from the inversion breakpoint. Still, we observed 

expression of DPP6 isoform 3 in adult human brain regions as well as in fetal brain, while 

only mild expression was detected in spinal cord and low or absent expression in the kidney, 

liver, or lung (Fig. 2B).

Examination of CNVs in LRRC4C

To determine if LRRC4C variation are associated with NDDs, we took advantage of cases 

referred to Signature Genomics for clinical microarrays (N=14,077 NDD cases, no prenatal 

samples). To assess significance of LRRC4C-specific disruptions, we calculated a two-tailed 

Chi-square value using seven NDD cases (Fig. 3A and Table I) from a pool of 14,077 cases, 

and compared these with the 8,690 control cases where there was one control with an exon 

disrupting CNV (Χ2 = 2.23, p=0.14). We conclude that CNVs in LRRC4C have a non-

significant association with NDDs.

Examination of CNVs in DPP6

There is high CNV variation in isoform 3 exon 1 of DPP6 (hg19; Chr7: 153485627- 

153682815, occurring in 26 control subjects) in the database of genomic variation, and this 

CNV is also within the site of the inversion breakpoint, >25kb distant from the transcription 

start sites and promoter of isoforms 1 and 2. This CNV was excluded from all analyses in 

DPP6. We identified six rare CNVs in DPP6 in NDD cases in isoforms 1 and 2 and no 

controls (Fig. 3B and Table I). Two-tailed Χ2-square test revealed a marginally non-
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significant value (Χ2 = 3.7, p=0.05). Similar to LRRC4C, we suggest that variation in DPP6 
has a suggestive but non-significant association with NDDs.

DPP6 mutations leading to increased mRNA have been previously associated with familial 

ventricular fibrillation [Alders et al., 2009]. There was no cardiac phenotype reported in any 

of the NDD cases with CNVs over this locus; however, to further assess the potential 

association between DPP6 variation and heart anomalies, we analyzed DPP6 CNVs derived 

from 7,006 prenatal Signature samples (Supplemental Table SIII). Nine cases had CNV 

duplications, six of whom had a heart anomaly noted on the ultrasound. Two of three cases 

with CNV deletions affecting DPP6 had heart anomaly. There are two important caveats for 

this observation: (i) heart anomalies are unlikely to be rare from a population of prenatal 

cases sent for genomic analysis: (ii) These are structural heart deficits observed by 

ultrasound and so are very different the ventricular fibrillation phenotype identified by 

Anders et al.

In vitro functional analysis of LRRC4C 5’UTR length

The identified translocation in LRRC4C generates a predicted loss of the 5’ portion of 

LRRC4C, affecting the first three exons; however, only the terminal exon of LRRC4C is 

coding, meaning that this gene has a long, spliced 5’UTR. While this suggests a 

haploinsufficiency model for the proband since the promoter is also translocated, we wanted 

to explore this unusually long 5’UTR since several NDD cases from the Signature cohort 

had intragenic deletions in this region. To assess the affect of the length of the LRRC4C 
5’UTR on gene expression, we cloned both a long 5’UTR and a short 5’UTR into a vector 

with a minimal promoter and the Luciferase gene (Fig. 4A–D). We found that a shorter 

length of 5’UTR led to a strong increase in activity of Luc compared to a longer form, 

suggesting that the 5’UTR of LRRC4C might be an important regulatory mechanism to 

dampen expression.

LRRC4C as a potential genetic modifier of NDDs

In the Signature cohort, we found that 3/5 subjects with deletions only in LRRC4C also have 

a second genomic abnormality (Table I), while a single subject with a deletion in DPP6 had 

a CNV associated with a genomic syndrome CNV (1/6). The pathogenic CNVs associated 

with LRRC4C mutations are all known to be associated with syndromes of variable 

expressivity, including 1q44 [Thierry et al., 2012] (deletion), 2q33.1 [Docker et al., 2014] 

(duplication), and 16p11.2 [Hanson et al., 2010] (deletion). No LRRC4C duplication cases 

had co-incident secondary pathogenic CNVs, implying that if a genetic modifier effect exists 

it may be specific to deletions. We identified another subject from the non-NDD Signature 

cohort, who was too young (1-month old) to diagnose with an NDD (Table I; subject 

56338), and who had a secondary anomaly consistent with variable expressivity (2q11.2 

deletion [Riley et al., 2015]). Finally, we also accessed all cases from DECIPHER that have 

CNVs affecting LRRC4C (Supplemental Table SIV). Four of eight cases with intragenic 

deletions in LRRC4C had secondary lesions, three of which were on chromosome 16, with 

one on chromosome 8. No lesions were in genomic regions unambiguously associated with 

disease.
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Assessment of other Netrin G family members in neurodevelopmental disorders

LRRC4C is also known as the netrin G ligand 1 (NGL-1), which is one member of a highly 

specialized family of neuronal guidance molecules. The netrin G family includes LRRC4 
(NGL-2) and LRRC4B (NGL-3) [Woo et al., 2009b]. Receptors for netrin G ligands include 

NTNG1 (which binds LRRC4C), NTNG2 (which binds LRRC4), and PTPRF (aka LAR) 

[Takahashi and Craig 2013], which binds LRRC4B [Nishimura-Akiyoshi et al., 2007]. 

Netrin G ligands and receptors are expressed in non-overlapping patterns in mouse brain, 

specifically with differences between the thalamus and cortical regions, which are suggested 

to guide thalmocortical and corticothalamic projections [Nakashiba et al., 2002; Yin et al., 

2002]. We confirmed this relationship in human brain using microarray gene expression data 

from the six available adult brains from the Allen Brain Atlas and extracted all microarray 

probes for netrin G ligands and receptors (Supplemental Fig. S2)

Netrin G members regulate excitatory synapse formation [Kim et al., 2006; Kwon et al., 

2010; Linhoff et al., 2009; Matsukawa et al., 2014; Takahashi and Craig 2013; Woo et al., 

2009a], and NTNG1 has been previously implicated in neurodevelopment and sensory 

processing in different investigations [Aoki-Suzuki et al., 2005; Nectoux et al., 2007; 

O’Roak et al., 2012]. Similarly, absent startle responses have been identified in mice with 

deletions in NTNG2 or LRRC4, despite normal hearing [Zhang et al., 2008], supporting a 

potential role for netrin G ligands and receptors in sensory processing. These data together 

with the particular sensory phenotype of the probands in this study, led us to reason that the 

netrin G family of ligands and receptors may be important for sensory processing disorders 

in human. In the case and control datasets used here, we examined clinically reported CNV 

data for LRRC4, LRRC4B, NTNG1, NTNG2, and PTPRF (Supplemental Table SV). These 

data suggest that LRRC4B (Two NDD duplications and one NDD deletion; zero controls) 

and NTNG2 (three NDD duplications and zero controls) may be important in 

neurodevelopmental disorders and warrant further investigation in larger cohorts. Larger 

datasets should provide a more complete assessment of the potential role of CNVs affecting 

the Netrin G family and NDDs.

DISCUSSION

We identified a boy with autism, apraxia, and a sensory processing disorder who had a 

maternally inherited translocation (46,XY,t(11;14)(p12;p12)mat) and a paternally inherited 

inversion of chromosome 7. Similar to our previous studies [Talkowski et al., 2012a], this 

study highlights the strength of BCR sequencing to discover new genes important in NDD, 

complemented by follow-up in many thousands of affected subjects.

The relationship between the phenotype and the translocation genotype within the family 

was ambiguous, though we could identify clinically relevant psychiatric features in all 

generations. There are some possible explanations as to why the affected son with autism, 

apraxia, and a sensory processing disorder had such a profound but dissimilar phenotype 

compared to his parents or grandparents (i) The combination of inv(7) and t(11;14) produced 

a novel phenotype not previously observed in the family (Fig. 5). (ii) The translocation 

breakpoint in LRRC4C shows a more deleterious phenotype in males, consistent with the 

female protective effect in some inherited ASD loci [Jacquemont et al., 2014]. Finally, (iii) 
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While there were no clinically relevant CNVs in this case as assessed by clinical aCGH, the 

subject may harbor an unidentified mutation not detected in our assays.

We found suggestive but non-significant evidence for the involvement of LRRC4C and 

DPP6 mutations in NDDs. We used a cohort of 14,077 non-prenatal samples with an NDD 

indication and found non-significant P-values for independent association of each gene; one 

caveat for even a suggestive association here is that the control cohort is called with lower 

resolution arrays, so it is possible that the frequency of these CNVs in controls is higher than 

we observed.

We investigated the functionality of intragenic deletion CNVs in LRRC4C. Our 

investigations into this suggested that the 5’UTR of LRRC4C functions as a negative 

regulatory element. We do not suggest these mutations are pathological, but rather that they 

may be a predisposing factor to disease, dependent upon genomic background for actual 

disease expression. Notably, the translocation case was missing not only three exons (so had 

a truncated 5’UTR), but also had no promoter, meaning that the mechanism of action in the 

translocation case may be different than in LRRC4C CNV deletion cases. The lack of 

conclusive evidence for a direct effect of LRRC4C disruption on any clinical phenotype is 

consistent with it not being a strong-effect contributor to NDDs, yet the presence of this 

chromosomal rearrangement in a child with autism suggests that a contribution of the 

LRRC4C disruption may act to modify the penetrance or expression of NDD lesions. This 

modifier effect is supported by the finding that 3/5 cases with LRRC4C deletions had 

secondary clinically significant genetic lesions associated with reduced penetrance. Together 

these data argue that exonic deletions of LRRC4C may modify other genetic lesions.

The data reported here represent information from a family that carried a translocation in 

three generations, where the proband also inherited an inversion from his father. We 

sequenced the breakpoints from these karyotypic anomalies and found that they disrupted 

two different genes, LRRC4C and DPP6. We suggest that the co-incident inheritance of both 

BCRs may explain the autism and sensory deficits in the probands.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
A subject with a sensory processing disorder, apraxia, and autism carries both a maternally 

inherited translocation affecting LRRC4C and a paternally inherited inversion on 

chromosome 7 affecting DPP6.

(A) Balanced translocation of chromosomes 11 and 14 that disrupts a highly repetitive 

region with no known genes on Chr14 and on Chr11 at Chr11:40614960, within the gene 

LRRC4C that encodes a netrin G1 ligand important in cortical and thalamic axon guidance. 

This disruption occurs in intron 3 of this seven exon gene. (B) Inversion with breakpoints 

mapped to Chr7:140416412, which falls in an intergenic region, and Chr7:153725012, 

which is in intron 1 of isoform 3 of DPP6 (dipeptidyl peptidase-like protein 6), a component 

of Kv4 channel complexes and thought to be important in the neuronal A-type potassium 

current and dendritic stability during neurodevelopment. (C) The family pedigree: I-1 died 

by suicide at age 54 and had multiple episodes of major depressive disorder (MDD) but is of 

unknown carrier status. II-6 had two serious episodes of panic disorder at age 27 and 40 

years, both of which were successfully treated. III-2 had anorexia at 8 and 14 years and two 

episodes of MDD at 16 and 20 years. IV-1 was diagnosed with autism spectrum disorder, an 

oral hypersensory disorder, and apraxia, at age 3.5 years. No other members of this pedigree 

were assessed for translocation status or clinical phenotype.
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FIG. 2. 
Translocation breakpoints are in genomic regions encoding for mRNAs in control human 

brain.

(A) mRNA expression of LRRC4C was quantified for both isoforms disrupted by the 

balanced translocation, NM_020929.2 and NM_001258419.1, in adult human brain regions 

(frontal cortex, BA46, and hippocampus) and fetal brain, as well as spinal cord, kidney, liver, 

and lung tissues. (B) mRNA expression of DPP6 was quantified for isoform 3 

(NM_001039350) in adult human brain regions (frontal cortex, BA46, and hippocampus) 

and fetal brain, as well as spinal cord, kidney, liver, and lung tissues, as this isoform was the 

only one affected by the Chr7 inversion.
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FIG. 3. 
Copy number analysis of LRRC4C and DPP6 in subjects referred for genetic diagnostic 

screening.

A total of 14,077 non-prenatal NDD subjects referred to Signature Genomics for clinical 

genetic testing were screened for intragenic exon-disrupting copy number variants (CNVs). 

Deletion cases (Red bars), duplication cases (Blue bars).
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FIG. 4. 
Functional impact of LRRC4C 5’UTR length on expression.

(A) Genomic locus of LRRC4C, with exons numbered. Non-coding exons are colored blue, 

while the orange exon represents the single protein coding exon. (B) mRNA of LRRC4C 
with approximate positions of long and short cloning targets shown with red-dotted line. 

Numbers represent the cloning product length, in basepairs. (C) Sanger sequencing of 

vector-amplicon junction demonstrating successful cloning of LRRC4C long fragment. 

Cartoon fragment shows vector with promoter (green), restriction enzyme sites, cloned 

amplicon (blue), and luciferase gene (green). (D) Sanger sequencing of vector-amplicon 

junction demonstrating successful cloning of LRRC4C short fragment. Cartoon fragment 

shows vector with promoter (green), restriction enzyme sites, cloned amplicon (blue), and 

luciferase gene (green). (E) Luciferase assay: No signal in untransfected or mock cells, no 

significant difference between the short 5’UTR and promoter-only constructs (p=0.237), but 

a very significant decrease in Luc activity with the long LRRC4C 5’UTR compared to the 

short LRRC4C 5′UTR (p=1.2×10−9).
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FIG. 5. 
Potential model for the influence of genetic variation in DPP6 and LRRC4C on behavior and 

disease.
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