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Traditional epidemiologic approaches allow us to compare counterfactual outcomes under 2 exposure distribu-

tions, usually 100%exposed and 100%unexposed. However, to estimate the population health effect of a proposed

intervention, onemay wish to compare factual outcomes under the observed exposure distribution to counterfactual

outcomes under the exposure distribution produced by an intervention. Here, we used inverse probability weights to

compare the 5-year mortality risk under observed antiretroviral therapy treatment plans to the 5-year mortality risk

that would had been observed under an intervention in which all patients initiated therapy immediately upon entry

into care among patients positive for human immunodeficiency virus in the US Centers for AIDS Research Network

of Integrated Clinical Systems multisite cohort study between 1998 and 2013. Therapy-naïve patients (n = 14,700)

were followed from entry into care until death, loss to follow-up, or censoring at 5 years or on December 31, 2013.

The 5-year cumulative incidence of mortality was 11.65% under observed treatment plans and 10.10% under the

intervention, yielding a risk difference of −1.57% (95% confidence interval: −3.08, −0.06). Comparing outcomes

under the intervention with outcomes under observed treatment plans provides meaningful information about the

potential consequences of new US guidelines to treat all patients with human immunodeficiency virus regardless of

CD4 cell count under actual clinical conditions.

antiretroviral therapy; causal inference; epidemiologic methods; HIV; intervention studies; policy; treatment

guidelines

Abbreviations: AIDS, acquired immune deficiency syndrome; CI, confidence interval; CNICS, Centers for AIDS Research Network

of Integrated Clinical Systems; HIV, human immunodeficiency virus.

Epidemiologists are called upon to estimate the population
health effects of interventions for public health practitioners,
policymakers, and economists. For example, cost-effectiveness
studies require estimates of the effect of an intervention on pop-
ulation health as one of many inputs in decision analyses (1).
Because randomized trials of such interventions are frequently
infeasible or unethical, epidemiologists must often use observa-
tional data to estimate the health effects of these interventions.
Traditional epidemiologic approaches are used to estimate

the effects of exposures that may be targeted by interventions
to improve health outcomes in a target population. For exam-
ple, to examine the effect of an intervention to prevent a
harmful exposure on mortality, a traditional analysis may
be used to compare the risk of mortality between those who

are exposed and those who are unexposed. However, even
with no confounding, this contrast does not estimate the effect
of the intervention under consideration because the intervention
would produce only 1 of these counterfactual scenarios (i.e., re-
moval of exposure); a more useful approach might be to com-
pare the risk of mortality in the population of interest under the
observed exposure distribution with the risk of mortality in the
population of interest under the counterfactual exposure distri-
bution produced by the intervention.
Methods for such approaches are well established. When

the contrast of interest is between the risk of the outcome in
the observed population and the risk of the outcome under
complete removal of exposure, it is sometimes known as a
population attributable contrast (2); the population attributable
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fraction is a special case of this contrast (3). Recent work has
extended methods for estimating the population attributable
fraction to situations with time-varying confounding and selec-
tion bias (4–6).

An emerging set of epidemiologic questions centers on the
effects of policies under consideration that would regulate
harmful exposures (e.g., pollutants) or foster beneficial expo-
sures (e.g., treatments or healthy behaviors). With these ques-
tions comes demand for methods to estimate the effects of
population interventions, including simple removal of exposure
and beyond (2, 7). In recent studies, investigators have used the
parametric g-formula to compare the risk of an outcome in
the observed data with the risk under an intervention on 1 or
more exposures (2, 8–14). Although flexible, the parametric
g-formula requires fitting parametric models for all time-
varying covariates and outcomes, each of which is typically
subject to parametric modeling assumptions. Semiparametric
methods exist to estimate both the population attributable frac-
tion and other population intervention effects (4, 5, 7, 15).
However, with a few notable exceptions (16–20), these semi-
parametric methods have not been broadly applied to estimate
population intervention effects in the epidemiologic literature.

Here, we illustrate a semiparametric approach using in-
verse probability weights first described by Hubbard and
Van Der Laan (7) to estimate the effect of an intervention
to change the distribution of an exposure in a target popula-
tion. As an example of this approach, we estimate the effect of
a change in human immunodeficiency virus (HIV) treatment
guidelines in the United States.

SAMPLE AVERAGE EFFECTS VERSUS POPULATION

INTERVENTIONS

In many epidemiologic studies, investigators are focused
on estimating the sample average causal effect of an expo-
sure. Briefly, estimating the sample average causal effect in-
volves comparing the potential outcomes (or the outcomes
that would have been observed) had all study participants im-
mediately become exposed with the potential outcomes that
would have been observed had no study participants become
exposed throughout follow-up. The sample average causal effect
for n subjects can be thought of as the average of n subject-
specific causal effects or the contrast between an intervention
in which all participants are exposed and an intervention in
which all participants are prevented from becoming exposed.
Estimating the sample average causal effect requires estimating
incidence of the outcome under 2 counterfactual exposure sce-
narios (all patients becoming exposed at study entry and all pa-
tients abstaining from exposure throughout follow-up), neither
of which is observed.

The fields of epidemiology and causal inference have de-
veloped a suite of methods to use when estimating the sample
average causal effect from complex longitudinal data in the
presence of threats to validity from confounding (21–24),
selection (25), and measurement error (26–29). However,
we can rarely imagine implementing both an intervention
to expose the entire population and an intervention to prevent
exposure among everyone in the population.

The approach outlined here differs from traditional ap-
proaches to estimate the sample average causal effect of expo-

sure in that we compare outcomes under a counterfactual ex-
posure distribution (all participants follow exposure plan �a)
with outcomes under the observed factual distribution of ex-
posure (participants follow their observed exposure plans).
This contrast is analogous to the contrast estimated in an ac-
tive comparator trial, in which the treatment under investiga-
tion is compared with the current standard of care.

To fix ideas, assumewe are interested in comparing the risks
ofmortality in 2 different scenarios: one inwhich exposureA is
set to plan �a according to some intervention (the intervention
exposure plan) and one in which exposure is unchanged from
the value it assumes in the real world (the factual exposure
plan). The risk under the factual exposure plan is sometimes
known as the natural course in analyses using the g-formula.
We define risk for the factual scenario as the cumulative distri-
bution function for the time to death, R(t) = P(T ≤ t) (30). We
define the risk for the counterfactual intervention scenario as
the cumulative distribution function for the potential time to
death under exposure plan �a; or R�aðtÞ ¼ PðT�a � tÞ: The pa-
rameters of interest then include risk differences at time t (i.e.,
R�aðtÞ � RðtÞ) and risk ratios at time t (i.e., R�aðtÞ=RðtÞ).
ESTIMATION OF INTERVENTION EFFECTS USING

INVERSE PROBABILITY WEIGHTS

In this section, we describe one technique for estimating
the desired contrast between R�aðtÞ and R(t) using inverse
probability weights. Other estimation procedures are possi-
ble, including algorithms using the parametric g-formula
(31) or doubly robust estimators, such as targeted minimum
loss estimators (7, 18).

Suppose we observe follow-up to time Yi in i = 1, . . ., n in-
dividuals, where Yi is the minimum of Ti, the time from study
entry until the outcome of interest, andCi is the time from study
entry until censoring due to loss to follow-up or administrative
reasons. Let δi represent an indicator of experiencing the out-
come during the study: δi = 1(Ti < Ci). The unique event times
are indexed by j. Capital letters will typically represent random
variables and lower case variables will typically represent re-
alizations of random variables or constants. We will suppress
participant-specific indices where possible below.

Estimating risk under the factual exposure plans

The risk of mortality under the factual exposure plan, R(t),
is simply the cumulative distribution function of the time to
death, P(T ≤ t). Under the assumptions of no outcome mea-
surement error, no informative censoring, and no competing
risks, we can estimate R(t) using the complement of the Kaplan-
Meier estimator of the survival function. This estimator can be
written as

R̂ðtÞ ¼ 1�
Y
tj<t

1�
PN

i¼1 1ðYi ¼ tjÞδiPN
m¼1 1ðtj � YmÞ

( )
;

where tj indexes the unique ordered event times,PN
i¼1 1ðYi ¼ tjÞδi is the number of events at time tj, andPN
m¼1 1ðtj � YmÞ is the number at risk at time tj.
We can relax the assumption of no informative censoring

using inverse probability weights under the assumption that
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censoring is independent of the outcome, given measured co-
variates. When censoring is affected by measured predictors
of the outcome, the complement of the weighted Kaplan-
Meier estimator of the survival function is a consistent esti-
mator of R(t) (32):

R̂ðtÞ ¼ 1�
Y
tj<t

1�
PN

i¼1 1ðYi ¼ tjÞδiπCi ðtjÞPN
m¼1 1ðtj � YmÞπCmðtjÞ

( )
;

where
PN

i¼1 1ðYi ¼ tjÞδiπCi ðtjÞ is the weighted number of
events and

PN
m¼1 1ðtj � YmÞπCmðtjÞ is the weighted number

at risk at time tj (33, 34). Weights are the inverse probability
of remaining uncensored through time t and are estimated as

π̂cðtÞ ¼
Y⌊t⌋
k¼0

PfCðkÞ ¼ 0j�Cðk � 1Þ ¼ 0g
PfCðkÞ ¼ 0j�Cðk � 1Þ ¼ 0; L; �ZðkÞg ;

where k indexes months after study entry,C(t) = I(Ci≤ t), L is
a vector of covariate history (possibly including the variable to
be intervened upon) through time k (32). Further-refined ap-
proaches exist to estimate risk of an outcome in the presence
of competing risks (35) and outcome measurement error (36).

Estimating counterfactual risks under interventions

Next, we estimate the risk of the outcome under the inter-
vention exposure plan �a; R�aðtÞ. If exposure history were ran-
domized in our data, we could estimate R�aðtÞ ¼ PðT�a � tÞ as
PðT � tj�A ¼ �aÞ under the assumption of unconditional ex-
changeability (i.e., the assumption that the observed outcomes
among exposed patients can accurately reflect the outcomes that
would have been observed for unexposed patients had they been
treated). Under the assumption of unconditional exchangeabil-
ity between exposed and unexposed participants, R�aðtÞ is the
complement of the survival function estimated among partici-
pants with A(t) = a.
However, when exposure is not randomly assigned, it is

rare that participants who did not follow exposure plan �a
would have the same potential outcome under the interven-
tion to impose exposure plan �a as participants who naturally
followed exposure plan �a. Using the inverse probability of ex-
posure weights allows us to make the weakened assumption of
conditional exchangeability. That is, we assume exposure as-
signment was independent of potential outcomes, given a set
of measured covariates; conditional exchangeability requires
positivity, or a probability of receiving exposure a between 0
and 1 for every strata of this set of covariates. As in standard
inverse probability–weighted marginal structural models (22),
the exposure weights are given by

πEðtÞ ¼
Y⌊t⌋
k¼0

f fAðkÞj�Aðk � 1Þg
f ðAðkÞj �Aðk � 1Þ; L; �ZðkÞÞ ;

where f{·j·} is the conditional density function evaluated at the
observed covariate values. The counterfactual risk function
under intervention a can be estimated as

R̂�aðtÞ ¼ 1�
Y
tj<t

1�
PN

i¼1 1½Yi ¼ tj; AðtjÞ ¼ a�δiπiðtjÞPN
m¼1 1½tj � Ym; AðtjÞ ¼ a�πmðtjÞ

( )
;

where the weights π̂ðtÞ are the product of these exposure
weights and the censoring weights, π̂ðtÞ ¼ π̂EðtÞ × π̂CðtÞ,PN

i¼1 1½Yi ¼ tj; AðtjÞ ¼ a�δi is the number of events with ex-
posure a at time tj, and

PN
m¼1 1½tj � Ym; AðtjÞ ¼ a� is the num-

ber at risk with exposure a at time tj. The numerators and
denominators of the censoring and exposureweights can be es-
timated using pooled logistic regression (37, 38) or ensemble
learning approaches (39, 40).

EXAMPLE

To illustrate the use of inverse probability weights to esti-
mate the effects of population interventions, we use an example
fromHIV epidemiology. The parameter of interest is the differ-
ence between the estimated 5-year cumulative incidence of
mortality under immediate initiation of antiretroviral therapy
upon entry into HIV care for all patients (the “intervention”)
and the 5-year cumulative incidence of mortality under the ob-
served treatment patterns (the “factual exposure plan”).
Antiretroviral therapy is known to be effective in extending

life expectancy for people living with HIV (23, 41–43), and
previous guidelines recommended therapy initiation for patients
with CD4 cell counts below some threshold and for patients
with acquired immune deficiency syndrome (AIDS)-defining
illnesses. With increasing evidence that early therapy initiation
reduces morbidity and prevents the transmission of HIV (44),
recent guidelines have recommended that patients with HIV re-
ceive therapy immediately upon entry into HIV-related medical
care. We compare estimated mortality under these recent guide-
lines to mortality under the observed treatment plans in place
between 1998 and 2013 in the Centers for AIDS Research Net-
work of Integrated Clinical Systems (CNICS) cohort.
Using the method described here, rather than a traditional

marginal structural model in which we compare potential
outcomes between universal treatment and no treatment, is
appealing in this example. An intervention to treat all patients
immediately upon study entry is reasonable, but there has
been no point since 1998 when we would consider an inter-
vention that would deny life-saving treatment to the entire
study population throughout follow-up.

Study sample

The CNICS cohort (45) includes HIV-positive adults en-
gaged in clinical care from January 1, 1995, to the present at 8
Centers for AIDS Research sites (Case Western Reserve Uni-
versity, Cleveland, Ohio; Fenway Community Health Center
of Harvard University, Cambridge, Massachusetts; Johns
Hopkins University, Baltimore, Maryland; University of
Alabama at Birmingham, Birmingham, Alabama; University
of California, San Diego, La Jolla, California; University of
California, San Francisco, San Francisco, California; Univer-
sity of North Carolina at Chapel Hill, Chapel Hill, North Ca-
rolina; and University of Washington, Seattle, Washington).
Patients who attended 2 primary HIV medical care visits at 1
of the 8 study sites were enrolled in CNICS. Data on clinical
events, laboratory measurements, and antiretroviral medica-
tions were collected as part of routine clinical care. Institu-
tional review boards at each site approved study protocols.
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The study sample for the present analysis included 14,700
patients who enrolled in CNICS before initiation of antiretrovi-
ral therapy and had an unsuppressed viral load (>500 copies/
mL) at cohort entry between January 1, 1998, and December
30, 2013. Therapy initiation was defined as the date on which
a patient was first prescribed 3 or more antiretroviral agents (for
at least 30 days), and patients were considered to be unexposed
to therapy until the date of therapy initiation. Unexposed pa-
tients may have received monotherapy or dual therapy.

The outcome of interest was all-cause mortality. Deaths
were obtained through clinic sources, death certificates, and
the Social Security Death index, which is regularly queried
by investigators at the CNICS sites.

Statistical methods

Patients were followed from entry into care at a CNICS site
until death, loss to follow-up, or administrative censoring 5
years after study entry or on December 31, 2012. Because of
missing information on treatment and time-varying covariates,

patients were considered to be lost to follow-up after the first 12
months without a documented clinic visit to a CNICS site.

We compared the 5-year risk that would have occurred had
all patients initiated treatment immediately upon entry into
care with the 5-year cumulative incidence of mortality under
the factual treatment plans (i.e., no intervention on treatment).
As described above, we estimated the risk of mortality under
the factual treatment plans, R(t) =P(T ≤ t), as the complement
of the inverse probability of censoring–weighted Kaplan-Meier
estimator of the survival function, in which the denominator of
the censoring weights included time-fixed covariates (race, sex,
and HIV transmission factor, as well as age, year, and CD4 cell
count at study entry) and time-varying covariates (treatment his-
tory, AIDS diagnosis, monotherapy or dual therapy use, CD4
cell count, and an indicator of detectable viral load (>500
copies/mL)). The numerator and denominator of the censor-
ing weights were estimated using pooled logistic regression,
and all continuous variables were modeled flexibly using re-
stricted quadratic splines (46).

We estimated the risk of mortality under the intervention to
treat all patients immediately, R�a¼1ðtÞ ¼ PðTa¼1 � tÞ as the
complement of the Kaplan-Meier estimator of the survival
function, estimated among treated patients and weighted
to represent the total study sample. Weights π̂ðtÞ were the
product of the exposure and censoring weights, π̂ðtÞ ¼ π̂EðtÞ ×
π̂CðtÞ: The denominator of the exposure weights included the
same sets of time-fixed and time-varying covariates that were
included in the censoring weights. Again, all continuous vari-
ables were modeled flexibly using restricted quadratic splines
(46). To summarize treatment history, we follow convention
and let �Aðk � 1Þ ¼ 1 if the patient had initiated treatment
through time k− 1 and �Aðk � 1Þ ¼ 0 otherwise. By definition,
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Figure 1. Cumulative incidence of antiretroviral therapy initiation
under observed treatment plans (also known as the “natural course”)
among 14,700 patients at 8 sites in the United States, Centers for
AIDS Research Network of Integrated Clinical Systems cohort,
1998–2013.

Table 1. Demographic and Clinical Characteristics of 14,700

Patients at Study Entrya, Centers for AIDS Research Network of

Integrated Clinical Systems Cohort, 1998–2013

Characteristic

Patients at
Study Entry
(n = 14,700)

Person-Years
of Follow-Up
(n = 47,832), %

No. %

Male sex 11,951 81 81

Black race 5,831 40 39

Hispanic ethnicity 1,604 11 11

Injection drug user 2,413 16 16

MSM 8,801 60 60

AIDS 3,103 21 27

Year at study entry

1998–2002 4,854 33 35

2003–2007 5,003 34 38

2008–2013 4,843 33 27

CD4 cell count, copies/mL

<200 5,148 35 19

200–350 3,165 22 22

351–500 2,872 20 24

501–750 2,472 17 16

>750 1,043 7 7

Suppressed viral loadb 0 0 45

On therapy 0 0 66

Abbreviations: AIDS, acquired immune deficiency syndrome; MSM,

man who has sex with men.
a Patients were linked to care at a Centers for AIDS Research

Network of Integrated Clinical Systems site between January 1,

1998, and December 31, 2013, at 8 US clinical sites and followed

for death for up to 5 years.
b Fewer than 500 copies/mL; only patients with unsuppressed viral

load at cohort entry were included in the study.
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PfAðkÞ ¼ 1j�Aðk � 1Þ ¼ 1g ¼ 1 under an observational ana-
log of the intent to treat assumption (47).
To calculate the numerator and denominator of the inter-

vention weights, we fit pooled logistic regression models to
estimate the probability of initiating treatment at each time
point. The logistic regression model for the denominator, fit
only for records in which �Aðk � 1Þ ¼ 0 had the form

PðAðkÞ ¼ 1j�Aðk � 1Þ; L; �ZðkÞÞ
¼ expitfβ0 þ β1gðtÞ þ β2Lþ β3ZðkÞg;

where expit (·) = exp(·)/{1 + exp(·)}.
We compared the cumulative incidence of mortality under

the intervention to immediately treat all patients with the cu-
mulative incidence of mortality under no intervention on treat-
ment plan using risk ratios and risk differences at 5 years. The
5-year risk differences were estimated as R�a¼1ð5Þ � Rð5Þ, and
5-year risk ratios were estimated as R�a¼1ð5Þ=Rð5Þ. Ninety-five
percent confidence intervals for risk differences and risk ratios
were calculated using standard errors estimated by the standard
deviation of the effect measures in 200 nonparametric bootstrap
samples with replacement from the original study sample size
with equal probability (11). Statistical analyses were performed
using SAS, version 9.4 (SAS Institute, Inc., Cary, North Caro-
lina). We could alternatively compare the time to death between
the intervention scenario and the natural course using hazard
ratios. Details on implementation of this approach in a Cox pro-
portional hazards model are provided in the Appendix. We
compared results from this analysis to results from a traditional
marginal structural model in which we compared interventions
to treat all patients immediately and to withhold treatment from
all patients throughout follow-up (22, 37, 38).

Example results

Between 1998 and 2013, a total of 14,700 antiretroviral
therapy–naïve patients with a detectable viral load enrolled

in HIV care at a CNICS site. Table 1 describes the character-
istics of the study sample at study entry and over 47,852
person-years of follow-up. Of the 14,700 patients included
in the study, 81% were male, 40% were black, and 60% were
men who have sex with men. The median CD4 cell count at
study entry was 343 cells/mm3 (interquartile range, 154–552).
A very small proportion of patients entered care with a CD4
cell count higher than 750 cells/mm3 (7%).
Over the 5-year study period, 10,035 patients initiated

therapy, and the cumulative incidence of therapy initiation

Table 2. Weighted Number of Deaths, Number of Person-Years, and 5-Year Cumulative Incidence of Mortality

Under the Observed Treatment Plans and 2 Interventionsa Among 14,700 Patientsb, Centers for AIDS Research

Network of Integrated Clinical Systems Cohort, 1998–2013

Interventionc
No. of
Deaths

No. of
Person-Years

5-Year
Mortality

RR 95% CI RD 95% CI

No intervention 1,185 47,852 11.65 1.00 Referent 0.00 Referent

Initiate treatment at
entry into care

530 28,026 10.10 0.87 0.75, 1.00 −1.57 −3.08, −0.06

Never treat 1,162 16,494 30.20 1.00 Referent 0.00 Referent

Initiate treatment at
entry into care

530 28,026 10.10 0.33 0.22, 0.50 −20.12 −31.44, −8.80

Abbreviations: CI, confidence interval; RD, risk difference; RR, risk ratio.
a An intervention to initiate treatment immediately upon entry into care and an intervention to prohibit treatment

throughout follow-up.
b Patients received care at a Centers for AIDS Research Network of Integrated Clinical Systems site between January

1, 1998, and December 31, 2013, at 8 US clinical sites and were followed for death for up to 5 years.
c In the “no intervention” arm, deaths, person years and cumulative incidence estimates were weighted to account

for informative censoring. In the “immediate treatment” and “never treatment” arms, quantities were weighted to

account for informative censoring and confounding. The means of the censoring weights and exposure weights

were 1.00.

C
um

ul
at

iv
e 

In
ci

de
nc

e 
of

 M
or

ta
lit

y,
 %

0

5

10

15

20

25

30

Time After Study Entry, years

0 1 2 3 4 5

Observed Treatment Plans

Always on Therapy

Figure 2. Weighted cumulative incidence of mortality under ob-
served treatment plans and under an intervention to initiate treatment
for all patients at entry into care among 14,700 patients at 8 sites in the
United States, Centers for AIDS Research Network of Integrated Clin-
ical Systems cohort, 1998–2013.
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was 82% (Figure 1). One-fourth of all patients initiated ther-
apy immediately upon entry into care, and half of the patients
initiated therapy within 6 months of entry into care. Web Fig-
ure 1 (available at http://aje.oxfordjournals.org/) depicts the
cumulative incidence of therapy initiation by baseline CD4
cell count. Under the observed treatment plans, 1,185 deaths
occurred over the 5-year study period, and the 5-year cumu-
lative risk of mortality was 11.65%. Web Figure 2 shows the
risk of death over time by baseline CD4 cell count.

Table 2 shows a comparison mortality under the observed
treatment plans with mortality under the intervention plans.
Under the intervention of immediate therapy initiation, the es-
timated 5-year cumulative incidence of mortality was 10.10%,
yielding a risk difference of ‒1.57% (95% confidence interval
(CI): ‒3.08, ‒0.06) and a risk ratio of 0.87 (95% CI: 0.75,
1.00). The estimates of 5-year mortality under the natural course
and the intervention scenario are presented in Figure 2.

Table 2 also shows a comparison of the mortality under
the intervention in which therapy is initiated immediately
upon entry into care with an unrealistic intervention in which
treatment is prohibited for all patients throughout follow-up.
Under this second intervention, the estimated 5-year cumulative
incidence of mortality was 30.20%. This comparison yielded a
risk difference of ‒20.12% (95% CI: ‒31.44, ‒8.80) and a risk
ratio of 0.33 (95% CI: 0.22, 0.50). Figure 3 presents the esti-
mated cumulative incidence of mortality under each of these
interventions.

DISCUSSION

Recent US guidelines recommend treating all patients en-
rolled in HIV clinical care with antiretroviral therapy. In the

example, we estimated that 5-year mortality among patients
in care for HIV between 1998 and 2013 would have been
10.1% under such an intervention, compared with 11.7%
under the observed treatment plans during this time period.

Although treatment with antiretroviral therapy is known to
be effective in reducing the mortality risk among people with
HIV (41, 42, 47, 48), the effect of changing a treatment guide-
line or policy is often unknown. In recent years, large observa-
tional cohort studies have been used to study the optimal CD4
cell count at which to begin therapy (49–52) by comparing
mortality risks under various hypothetical thresholds for CD4
cell counts. Here, we estimated mortality risk under the most
recent treatment guideline (i.e., treat at entry into care) and com-
pared this estimated mortality with the observed mortality
under the guidelines in place between 1998 and 2013.

To identify the risk under the factual treatment plans, we
assumed no error in outcome ascertainment, conditional ex-
changeability between patients lost to follow-up and patients
who remained in the study (25), and correct specification of
the models used to create the censoring weights. To identify
risk under the intervention, we additionally assumed no interfer-
ence (53), treatment version irrelevance (54), no measurement
error in exposure or covariates (28), conditional exchangeability
between treated and nontreated patients, positivity (55), and cor-
rect specification of the logistic models used to build the expo-
sure weights. These assumptions have been described in more
depth previously (30).

The example used to illustrate this approach to estimating
policy effects had several limitations that should be noted.
First, treatment policies and regimens changed dramatically
over the study period, leading to ambiguity regarding the in-
tervention. For example, patients were considered to have fol-
lowed the intervention if they were on any type of combined
antiretroviral therapy regimen, without regard to whether that
regimen would be prescribed in the future. In addition, this
example did not account for changes in HIV testing, care-
seeking behavior, and retention in care that may be seen under
the guideline recommending immediate treatment for all people
living with HIV.

To estimate the effect of the new treatment guidelines, we
were required to censor patients at loss to follow-up because
of missing treatment data after loss to follow-up. In doing so
(and applying the inverse probability of censoring weights),
we estimated the risks under the intervention and the natural
course that would have been seen had all patients remained in
care at a CNICS site, which of course was not the case. From
a public health perspective, we may actually be interested in
the total effect of having all patients initiate antiretroviral treat-
ment immediately upon entry into care, which might include
improvements in life expectancy due to the indirect effects of
therapy, such as improved retention in care. Unfortunately, this
total effect is not directly estimable using these data. In the
CNICS cohort, however, mortality was similar (5-year risk
ratio = 1.2, 95% CI: 0.9, 1.5) before and after loss to follow-up
at a CNICS site (56), suggesting that the total effect of a pro-
posed intervention to provide immediate treatment was likely
similar to the effect we estimated that was conditional on reten-
tion in care at a CNICS site.

Although the cumulative incidence of loss to follow-up was
high (46% at 5 years), prior work showing similar mortality
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Figure 3. Weighted cumulative incidence of mortality under an inter-
vention to prevent treatment throughout follow-up and under an inter-
vention to initiate treatment for all patients at entry into care among
14,700 patients at 8 sites in the United States, Centers for AIDS Re-
search Network of Integrated Clinical Systems cohort, 1998–2013.
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risks before and after loss to follow-up (56) after accounting for
the variables used in the censoring weights suggests that any se-
lection bias induced by the high incidence of drop out is likely
to be modest. Results were similar with and without application
of the censoring weights. Web Figure 3 depicts the cumulative
incidence of loss to follow-up by CD4 cell count at baseline,
which was a variable included in the denominator of the censor-
ing weights.
Because the indicators for treatment with antiretroviral

therapy have been well described, we have likely captured
many of the important covariates for the intervention weights.
However, if an unmeasured predictor of mortality, such as in-
come or an unrecorded comorbid condition, were associated
with therapy initiation, our results could include bias due to un-
measured confounding.
In the example, we assumed that a policy that recom-

mended immediate treatment for patients presenting to care
with HIV would result in treatment initiation by the patient’s
second clinic visit. This assumption could be relaxed by allow-
ing a grace period for patients to be initiated on therapy under
the intervention. Use of a grace period in inverse probability–
weighted marginal structural models has been illustrated by
Cain et al. (57).
Because patients who come to CNICS before initiating ther-

apy routinely present to care with CD4 cell counts below 500
copies/mL, many patients were treated soon after enrollment in
the cohort under their observed treatment plans. For this rea-
son, the intervention to treat all patients immediately upon
entry into care did not produce a drastic change in the distribu-
tion of treatment. Therefore, although therapy is known to re-
duce mortality, the incremental effect of transitioning from the
existing treatment policies from 1998 to 2013 to a policy to
treat all patients in CNICS at entry into care is modest. How-
ever, in a hypothetical cohort in which patients were enrolled at
HIV seroconversion, we would expect the effect of a policy to
provide universal immediate treatment to be much larger.
As outlined above, an inverse probability–weighted esti-

mator can be used to estimate the risk of an outcome under
counterfactual distributions of exposure(s) produced by pub-
lic health or treatment interventions under a set of identifica-
tion assumptions (30, 38). We could have alternatively used
the parametric g-formula to estimate the risk under various
interventions on exposure (23, 58). Both inverse probability
weighting and parametric g-formula approaches are suscepti-
ble to model misspecification, though the models one is re-
quired to specify correctly differ between the approaches.
A doubly robust estimator for population intervention effects
that offers some protection against model misspecification
(i.e., the estimator is consistent if models for treatment assign-
ment or outcome are correct) has been described (7), and theory
suggests it would improve efficiency over the estimator inwhich
inverse probabilityweighting is used alone, although the present
approach provides a consistent estimator when the identification
assumptions hold.
Here, rather than compare potential outcomes under 2

counterfactual exposure distributions, we compared the po-
tential outcomes under the intervention to the potential out-
comes under the observed exposure distribution—a factual,
rather than counterfactual, exposure distribution. The factual
exposure distribution is an appealing and informative referent

because it is a clear and realistic alternative to the interven-
tion; it is simply the descriptive epidemiology for the out-
come of interest. By comparing outcomes of feasible (or
proposed) interventions with outcomes under the status quo,
we can produce results from epidemiologic studies that are
more directly relevant to public health practice.
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APPENDIX

Estimation of Hazard Ratios

To estimate hazard ratios comparing mortality under an in-
tervention to treat all patients immediately upon entry into
care with the observed mortality, weights were created as de-
scribed above. Briefly, the reference group simply comprises
the observed data. All records in the reference group receive a
weight of 1. A second copy of the data is weighted as de-
scribed in the body of the paper to represent the experience
of the study population under the intervention. These 2
data sets are concatenated, and an indicator is assigned denot-
ing whether each record is from the reference group (here,
INT = 0) or the intervention group (INT = 1).
Next, a Cox proportional hazards model is used to maxi-

mize the weighted partial likelihood

LðθÞ¼
YN
i¼1

expfθ× INTgPN
j¼1 Iðyj� yiÞ×expfθ× INTg×wjðyiÞ

( )δi×wjðyiÞ
;

where w is the weight as described above, Yi is the time from
study entry to death or censoring, δi is an event indicator, and
I(yj ≥ yi) is an indicator of whether individual j is in the risk
set at time yi. The hazard ratio may be estimated as exp(θ).
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