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ABSTRACT
We study approximate quantum low-density parity-check (QLDPC)

codes, which are approximate quantum error-correcting codes spec-

ified as the ground space of a frustration-free local Hamiltonian,

whose terms do not necessarily commute.

Such codes generalize stabilizer QLDPC codes, which are exact

quantum error-correcting codes with sparse, low-weight stabilizer

generators (i.e. each stabilizer generator acts on a few qubits, and

each qubit participates in a few stabilizer generators). Our inves-

tigation is motivated by an important question in Hamiltonian

complexity and quantum coding theory: do stabilizer QLDPC codes

with constant rate, linear distance, and constant-weight stabilizers

exist?

We show that obtaining such optimal scaling of parameters

(modulo polylogarithmic corrections) is possible if we go beyond

stabilizer codes: we prove the existence of a family of [[N ,k,d, ε]]

approximate QLDPC codes that encode k = Ω̃(N ) logical qubits

into N physical qubits with distance d = Ω̃(N ) and approximation

infidelity ε = 1/polylog(N ). The code space is stabilized by a set of

10-local noncommuting projectors, with each physical qubit only

participating in polylogN projectors. We prove the existence of an

efficient encoding map and show that the spectral gap of the code

Hamiltonian scales as Ω̃(N−3.09). We also show that arbitrary Pauli

errors can be locally detected by circuits of polylogarithmic depth.

Our family of approximate QLDPC codes is based on applying a

recent connection between circuit Hamiltonians and approximate

quantum codes (Nirkhe, et al., ICALP 2018) to a result showing that

random Clifford circuits of polylogarithmic depth yield asymptoti-

cally good quantum codes (Brown and Fawzi, ISIT 2013). Then, in

order to obtain a code with sparse checks and strong detection of

local errors, we use a spacetime circuit-to-Hamiltonian construction

in order to take advantage of the parallelism of the Brown-Fawzi

circuits. Because of this, we call our codes spacetime codes.
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The analysis of the spectral gap of the code Hamiltonian is

the main technical contribution of this work. We show that for

any depth D quantum circuit on n qubits there is an associated

spacetime circuit-to-Hamiltonian construction with spectral gap

Ω(n−3.09D−2 log−6(n)). To lower bound this gap we use a Markov

chain decomposition method to divide the state space of partially

completed circuit configurations into overlapping subsets corre-

sponding to uniform circuit segments of depth logn, which are

based on bitonic sorting circuits. We use the combinatorial proper-

ties of these circuit configurations to show rapid mixing between

the subsets, and within the subsets we develop a novel isomorphism

between the local update Markov chain on bitonic circuit configu-

rations and the edge-flip Markov chain on equal-area dyadic tilings,

whose mixing time was recently shown to be polynomial (Cannon,

Levin, and Stauffer, RANDOM 2017). Previous lower bounds on

the spectral gap of spacetime circuit Hamiltonians have all been

based on a connection to exactly solvable quantum spin chains and

applied only to 1+1 dimensional nearest-neighbor quantum circuits

with at least linear depth.
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1 INTRODUCTION
A central result in the theory of classical error correcting codes is

that there exist families of good linear [N ,k,d] codes, which have

linear dimension k = Ω(N ), linear distance d = Ω(N ), constant
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sparsity parity checks, and linear time encoding and decoding al-

gorithms. These low-density parity check (LDPC) codes [22] have

many theoretical as well as practical applications.

A grand challenge in quantum information theory is to construct

a quantum counterpart to classical LDPC codes with similarly opti-

mal parameters. Traditionally this effort has focused on CSS stabi-

lizer codes
1
, where the notion of sparse parity checks corresponds

to stabilizer generators that each act on O(1) physical qubits, with

each qubit participating in only O(1) of such checks. The existence

of QLDPC codes with good parameters and fast encoding/decoding

algorithms would have significant practical impact; for example,

Gottesman has shown these would imply schemes for fault tolerant

quantum computation with constant overhead [26].

Despite many years of investigation, we do not yet know of

QLDPC codes that simultaneously achieve constant rate and rela-

tive distance while maintaining constant locality and sparsity. The

QLDPC codes of [35, 41] have a constant rate, but the minimum

distance does not exceed O(
√
N )where N is the number of physical

qubits. So far the QLDPC code with the best distance scaling is the

construction of Freedman, Meyers and Luo [21] which achieves

minimum distance distanceΘ(
√
N log

1/4 N ), but only encodes a sin-
gle qubit. Bravyi and Hastings gave a probabilistic construction of

a code with constant rate and linear distance, but the stabilizer gen-

erators each act on

√
N physical qubits [11]. Hastings proved that,

assuming a conjecture about high dimensional geometry, there exist

QLDPC codes encoding a constant number of qubits (i.e. have van-

ishing rate) with distance scaling as Ω(N 1−ξ ) for any ξ > 0 [28, 29].

The question of whether good QLDPC codes exist also has im-

portance for Hamiltonian complexity and the construction of exotic

models in physics. This connection arises because any QECC code

space that can be enforced by a set of constant-weight check opera-

tors can also be identified as the ground space of a local Hamiltonian.

A central goal in these areas is to identify classes of local Hamil-

tonians with robust entanglement properties, and QLDPC codes

provide a fruitful source of candidates. However, if the local terms

are stabilizers then H is always a commuting Hamiltonian, and

despite the richness of these systems they only capture a subset of

local Hamiltonians and the properties they can exhibit.

Here we explore the QLDPC Conjecture (which posits that there

exist asymptotically good QLDPC codes) through the correspon-

dence between QLDPC codes and local Hamiltonians. This leads

us to relax the requirement of being a CSS stabilizer code in two

ways:

(1) The code satisfies an approximate error-correction property:

after an error channel is applied the decoding procedure

recovers encoded states up to some 1 − ε fidelity, where

ε = o(1).
(2) The codespace is specified as the groundspace of a frustration-

free local Hamiltonian H = Π1 + · · · + Πm , where the local

projectors Πi don’t necessarily commute.

Codes satisfying the approximate reovery condition are known as

approximate quantum error correcting codes (AQECC), and codes

with noncommuting frustration-free local check terms have been

1
The CSS construction [16, 40] combines two classical codes, C1 = [N , k1, d1] and
C2 = [N , k2, d2] to form an [[N , k1 +k2 −N , min(d1, d2)]] QECC with commuting

check terms that generate a stabilizer subgroup of the Pauli group.

considered as a generalization of QLDPC in Hamiltonian complex-

ity, therefore we call codes satisfying satisfying these conditions

approximate QLDPC codes.

1.1 Our Results
Our main result is a construction of approximate QLDPC codes

with nearly-optimal parameters.

Theorem 1.1. For infinitely many N there exists N -qubit sub-
spaces {CN } with the following properties:

(1) CN is an AQECC that encodes k = Ω̃(N ) logical qubits in N
physical qubits, has distance d = Ω̃(N ), approximation error
ε = O(1/polylogN ), and a poly(N ) time encoding algorithm.

(2) CN is the ground space of a frustration-free local Hamiltonian
H (N ) =

∑
H
(N )
i such that each termH

(N )
i acts onO(1) qubits,

and each physical qubit participates in at most polylogN
terms.

(3) The Hamiltonian H (N ) has spectral gap Ω̃(N−3.09) and it is
spatially local in polylog(N ) dimensions (i.e. it can be embed-
ded in RpolylogN with finite qubit density and geometrically
local interactions).

Here, the notation Ω̃(·) suppresses factors of polylogN .

The fact that the local check terms do not commute means that

it is impossible to measure them all simultaneously. However, in

Section 4 we show that any Pauli error will increase the energy of

at least one local check term by at least 1/polylog(N ), and we use

this to show that this family of codes is capable of locally detecting

arbitrary Pauli errors with polylog(N ) depth circuits.

Theorem 1.2. For each code CN , there exists a collection DN of
polylog(N )-local projectors satisfying the following properties:

(1) Each projector Π ∈ DN acts on 10 physical qubits in the code
and s = polylog(N ) ancilla qubits initialized in the |0⟩ state,
and Π |ψ ⟩ |0s ⟩ = 0 for all Π ∈ D if and only if |ψ ⟩ ∈ CN .

(2) For all Pauli channels E acting on N qubits, for all codewords
|ψ ⟩ ∈ CN , there exists a projector Π ∈ DN such that

Tr

(
Π

(
E(ψ ) ⊗

��
0
s 〉〈

0
s ��) ) ≥ (1 − α)(1 − 2− polylog(N ))

where ψ = |ψ ⟩⟨ψ | and α is the total weight of the channel E
on the set of Pauli operators that stabilize C.

Furthermore, there exists a measurement M , implementable by a
circuit of polylog(N ) depth acting on O(N polylog(N )) qubits, such
that for all Pauli channels E and for all codewords |ψ ⟩ ∈ CN

Tr

(
M

(
E(ψ ) ⊗

���0Ns
〉〈
0
Ns

���) ) ≥ (1 − α)(1 − 2− polylog(N )).
Our construction of this family of codes is based on a recently

discovered connection between AQECC and Feynman-Kitaev (FK)

Hamiltonians [39]. FK Hamiltonians have ground states of the form

1√
T+1

∑T
t=0 |t⟩|ψt ⟩, where |ψt ⟩ = Ut ...U1 |0

n⟩2 is the state of a quan-

tum circuit at time t , and are used to prove the quantum version

of the Cook-Levin theorem. The connection to AQECC is based

on mapping the encoding circuit of a QECC to the ground space

2
We use n for the number of input qubits in a circuit Hamiltonian, and N for the num-

ber of physical qubits in our code construction. N = n polylog(n) in our construction

because of the overhead used to represent the clock.
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of a local Hamiltonian. To construct the family of codes in Theo-

rem 1.1 we apply the connection formed in [39] to a randomized

construction of good quantum codes with polylogarithmic depth

encoding circuits [14]. The polylogarithmic factors in our construc-

tion arise from the additional “clock” qubits that are used in this

mapping from circuits to ground states. However, the standard FK

construction uses a single global clock variable and does not allow

for gates to be applied in parallel; to take full advantage of these

parallel encoding circuits we present a substantial new technical

analysis of the many-clock “spacetime” [13, 38] version of the FK

construction that assigns an independent clock variable ti to each

qubit i in the circuit
3
.

The spacetime circuit Hamiltonian enforces a ground state that

is a uniform superposition over all valid configurations of these

clocks (where validity is determined by the pattern of gates in

the circuit), and it is unitarily equivalent to the normalized Lapla-

cian of a random walk on the high-dimensional space of partially

completed circuit configurations. Spacetime circuit Hamiltonians

have been used previously for universal adiabatic computation

and QMA-completeness constructions that are spatially local on a

square lattice and do not require perturbative gadgets [13, 25, 36].

The analysis of the spectral gap in these previous works has always

relied on the exact solutions to certain 1 + 1 dimensional quantum

spin chains [32]. Here we develop a nearly tight lower bound on

the spectral gap of the spacetime circuit Hamiltonian for a partic-

ular uniform class of circuits based on bitonic sorting networks.

These sorting networks are used to transform a depthD circuit with

arbitrary connectivity and n qubits into a depth D log(n)2 circuit
with spatially local connectivity in log(n) dimensions. By analyzing

these sorting networks we prove the following general theorem.

Theorem 1.3. For any depth D quantum circuit of 2-local gates
on n qubits, where n is a power of 2, there is an associated space-
time circuit-to-Hamiltonian construction which is spatially local in
polylog(n) dimensions and has a spectral gap that is

Ω(n−3.09D−2 log−6(n)).4

The spectral gap of a code Hamiltonian lower bounds the sound-

ness of the code, since it determines the minimum energy of states

outside of the code space. In our code construction we take D =
polylog(n), and since the circuit Hamiltonian acts on a total of

N = n polylog(n) qubits this accounts for the bound on the spec-

tral gap in Theorem 1.1. Since our proof holds for any circuit with

arbitrary connectivity we state the general result here for future

potential applications to QMA and universal adiabatic computation.

Because the code Hamiltonians of Theorem 1.1 are based on a

spacetime circuit-to-Hamiltonian construction, we call our QECCs

spacetime codes.

1.2 Discussion
We believe that our approximate QLDPC codes, beyond being an at-

tempt to address the QLDPC Conjecture via a different perspective,

also illustrate a compelling synthesis of various intriguing concepts

3
The term “spacetime” comes from relativistic physics, in which time is necessarily

measured by local clocks.

4
The full proof has been ommitted and can be found in the full version [9]. A sketch is

found in Section 1.4.

in quantum information theory, and furthermore, highlight several

connections that deserve closer investigation.

Approximate quantum error correction. AQECCs generalize QECCs
by only requiring that the quantum information stored in the code,

after the action of an error channel, be recoverable with fidelity

at least 1 − ε . AQECCs have long been known to be capable of

achieving better parameters than standard QECCs [17, 34], though

the necessary and sufficient conditions for approximate recovery

were only established within the last decade [8]. AQECCs have

found applications to fault-tolerant quantum computation [12, 33]

through the analysis of realistic perturbations to exact QECCs, and

have recently experienced a resurgence in popularity in physics

due to connections made with the holographic correspondence in

quantum gravity [4]. Recently [20] have considered a version of

local AQECCs which also include the possibility of locally approxi-

mate correction of errors in order to investigate the ultimate limits

of the storage of quantum information in space. One can interpret

our approximate QLDPC codes as providing another demonstra-

tion that the AQECC condition is a useful relaxation that facilitates

the construction of codes with superior parameters than what is

(known to be) achievable in the standard QECC framework.

Codes from local Hamiltonians. As previouslymentioned, QLDPC

codes have been a fruitful source of local Hamiltonians with ro-

bust entanglement properties, which are central objects of study

in quantum Hamiltonian complexity and condensed matter theory.

The first example of a QLDPC code was Kitaev’s toric code, which

is also a canonical example of a topologically ordered phase of

matter [31]. Most research on QECC has been focused on stabilizer

codes, like the toric code, for which the associated code Hamiltoni-

ans are commuting and frustration-free. In this paper we proceed

in the opposite direction by asking: what kinds of quantum codes

can we construct from local Hamiltonians whose terms don’t nec-

essarily commute? With this perspective, the extensive toolbox of

techniques for constructing and analyzing Hamiltonians in quan-

tum computing and quantum physics becomes immediately useful.

This approach is inspired by several recent papers:

(1) In [19], Eldar, et al. defined general QLDPC codes to be sub-

spaces S that are stabilized by a collection of local projectors

{Πi }; in other words,Πi |ψ ⟩ = 0 for all i if and only if |ψ ⟩ ∈ S .
They call the Πi projectors “parity checks” in analogy to the

parity check terms of CSS codes; however, the projectors

{Πi } need not be parity checks in the traditional sense.

(2) In [20], Flammia, et al. formalized a notion of local AQECCs

that includes an additional condition of approximate local

correctability. This notion was applied to derive bounds on

the ultimate limits of the storage of quantum information in

spatially local codes.

(3) In [10], Brandao et al. show that qutrit systems on a line

with nearest-neighbor interactions can form approximate

QLDPC that encode log(N ) qubits with distance log(N ), and
also show that AQECC can appear generically in energy

subspaces of local Hamiltonians.

(4) In [39], Nirkhe, et al. shows that by using the Feynman-

Kitaev circuit-to-Hamiltonian construction and a non-local
CSS code, one can obtain a local approximate QECC where
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the corresponding Hamiltonian’s ground space is approxi-

mately the original CSS code.

Although there are still many hurdles to overcome before codes

with noncommuting checks can be realistically applied to fault-

tolerance protocols, these recent developments form an exciting

frontier in the study of local Hamiltonians. Another example of this

connection is that the approximate codes developed in [39] and

extended here can be seen as an instance of the recently formalized

notion of Hamiltonian sparsification [3].

Comparison with the sparse subsystem codes of [5]. In [5] Bacon

et al. construct subsystem codes with distance Ω(N 1−ξ ) for ξ =

O(1/
√
logN ) and constant weight gauge generators, and these were

termed “sparse subsystem codes.” These are the best parameters

achieved to date for any exact QECC in the ground space of a

local Hamiltonian. Even more remarkable, in relation to the present

work, is the fact that the codes of Bacon et al. have local checks

that arise in a completely different way from quantum circuits.

The difference is that [5] considers fault-tolerant circuit gadgets

(instead of encoding circuits as in [39] and this work) and enforces

the correct operation of these Clifford circuits according to the

Gottesman-Knill theorem (rather than FK circuit Hamiltonians).

Another difference between these code constructions is that the

code Hamiltonians of Bacon et al. are necessarily frustrated due

to the fact that the noncommuting gauge generators are all Pauli

operators, which therefore anticommute and share no simultaneous

eigenstates. Although frustration does not always preclude the

possibility of local error correction [20], there is no lower bound

established on the spectral gap of the codes in [5] (and so there may

be states outside the codespace with exponentially small energy),

and detecting an error on a single qubit requires measuring poly(N )
gauge generators in order to ascertain the syndromes of nonlocal

stabilizers. With this understanding we summarize past results on

QECC with strong parameters in Table 1.

Connections with QPCP. One of the most significant open prob-

lems in Hamiltonian complexity is to resolve the quantum PCP

(QPCP) conjecture [1], which posits that quantum proofs can be

made probabilistically checkable. Since local Hamiltonians and the

complexity class QMA are the respective quantum generalizations

of constraint satisfaction problems and NP, the QPCP conjecture

is equivalent to the statement that it is QMA-complete to decide

whether the ground state energy of a Hamiltonian H =
∑m
i=1 Hi is

less than a or greater than b (under the promise that one of these

is the case), where b − a > c
(m ·maxi ∥Hi ∥)

for some c = Ω(1) cor-

responds to constant relative precision. One reason this question

is difficult is any trivial state which is output by a constant-depth

quantum circuit acting on a product state can be given as an NP

witness, and many of the commonly studied classes of local Hamil-

tonians necessarily have low-energy trivial states. Therefore in

order for the QPCP conjecture to hold there must be some Hamil-

tonian with no low-energy trivial states, and even this weaker NLTS

conjecture [27] remains an open problem.

One approach to resolving the NLTS and QPCP conjectures is

to develop the quantum analogue of locally testable codes, which

are defined in [2] as codes with frustration-free but not necessarily

commuting local checks, good parameters, and a soundness property

which states that the energy of a state with respect to the constraints

grows linearly with its distance from the code space. Therefore

constructing good QLDPC is necessary for constructing QLTC, but

it is not sufficient since in general QLDPC may have low energy

states outside the code space. This collection of open challenges that

are stimulating innovations in Hamiltonian complexity is known as

the robust entanglement zoo [18], since they all involve generalizing

known properties of quantum ground states to states with constant

relative distance above the code space.

Just as the classical PCP Theorem indirectly transforms a Cook-

Levin computational tableau into a probabilistically checkable CSP,

a QPCP construction could be seen as transforming the FK circuit-

to-Hamiltonian construction into a local Hamiltonian with robust

entanglement.While known limitations on generalized FK construc-

tions make such a direct approach unlikey [7, 23, 24], our Theorem

4.1 on local error detection in polylog(N ) depth is the first result to

quantitatively substantiate the belief that the spacetime Hamilton-

ian construction is more robust than the standard global-clock FK

Hamiltonian. Specifically, we show that the energy of a state after

the application of a Pauli error channel is inversely proportional

to the depth of the circuit in the spacetime construction, whereas

it is proportional to the size of the circuit in the standard FK con-

struction. In the full version [9] we describe an alternate version of

our approximate QLDPC construction that is based on global-clock

FK and a modified distribution over time steps of the quantum cir-

cuit, and this version can achieve any scaling of the approximation

error ε(N ) > 0 at the expense of decreasing the spectral gap to

Ω̃(εN−3), but this substantially weakens the corresponding version
of Theorem 4.1 and forces the local error detection circuits to have

superlinear depth. This results suggest that continued investigation

into alternative circuit-to-Hamiltonian constructions might be a

fruitful direction of research, and might possibly make headway

towards the mystery of the QPCP conjecture.

1.3 Description of the Code Hamiltonian
In [39] it was recognized that the FK Hamiltonian which maps

circuits to ground states could be used to develop a set of local

checks for AQECCs for which only an efficient encoding circuit

had previously been found. For a circuit with local gates U1, ...,UT
the FK Hamiltonian’s ground states are

|Ψ⟩ =
1

√
T + 1

T∑
t=0
|t⟩C ⊗ (UtUt−1 · · ·U1) |ψ , 0 . . . 0⟩S .

Such states are called history states. The register C, called the clock
register, indicates how many gates have been applied to the all

zeroes state, which is stored in register S (called the state register)
containing an initial state |ψ ⟩ and ancillas.

Although this state has only a 1/(T + 1) fidelity with the output

of the circuit, the standard technique for increasing the overlap to

be inverse polynomially close to 1 is to pad the end of the circuit

with identity gates (for recent work on more efficient methods for

biasing the history state towards its endpoints, see [7, 15]). This

technique allows history states to capture approximate versions

of QECC that have efficient encoding circuits. The approximation

error of the code is directly related to history state overlap with

the output of the encoding circuit.
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Table 1: Past results on QECC with strong parameters

Reference # of logical qubits Distance Locality Notes

[41] Θ(N ) Θ(
√
N ) O(1) CSS Stabilizer code

[21] O(1) O(
√
N logN ) O(1) CSS Stabilizer code

[11] Θ(N ) Θ(N ) Ω(
√
N ) CSS Stabilizer code

[28, 29] O(1) Ω(N 1−ξ ) for all ξ > 0 O(logN ) CSS code, assumes conjecture in high dimensional geometry

[5] O(N ) Ω(N 1−ξ ) for all ξ > 0 O(1) Subsystem Stabilizer code, frustrated Hamiltonian

This paper Ω(N /polylogN ) Ω(N /polylogN ) O(1) approximate QLDPC code

Figure 1: The approximate nature of the codes introduced in [39] arises from the fact that part of the history state superposition
corresponding to early time steps,which donotmatch the output of the encoding circuit and are treated as noise in our analysis.
Once a sufficient depth to form a codeword is reached, the computation can be padded with identity gates in order to increase
the overlap of this approximate codeword with the original codeword it is approximating.

The Hamiltonian which enforces the ground space spanned by

states of the form (1.3) is formed by projectors that check the input

state of the computation, as well as propagation terms that check
that the branch of the superposition corresponding to time t and
the branch corresponding to time t + 1 differ by the application

of the gate Ut+1 to the state register. The linear ordering of the

computation U1, . . . ,UT is enforced via the sum of these propaga-

tion terms. The propagation Hamiltonian is unitarily equivalent to

a normalized Laplacian on the path graph with vertices {0, ...,T }
and therefore has a spectral gap that is Θ(T−2). For the purpose
of lower bounding the energy of excitations that leave the code

space, it is important to check the spectral gap of the full Hamil-

tonian including the input check terms, see Section 1.4 for further

discussion.

In this work we use the spacetime version of the FK circuit Hamil-

tonian [13], which assigns a clock register to each computational

qubit, and has a ground space spanned by uniform superpositions

over all valid time configurations τ = (t1, ..., tn ) of the state of the
computation after the gates prior to τ have been performed,

|ψ ⟩ =
1

|T |1/2

∑
τ ∈T

|τ ⟩C ⊗ U (τ ← 0) |0 · · · 0⟩S .

Here T is the set of all valid time configurations τ , which is any

vector (t1, . . . , tn ) that the clock registers could hold if a subset

of gates that respected causal dependencewere applied. To avoid

boundary effects at the beginning and end of the computation we

use circular (periodic) time, which involves reversing the gates in

the second half of the circuit so that the computation returns to

its initial state. In Section 2.3 we implement these periodic clocks

using qubits.

The necessity of including these causal constraints is one of the

complications introduced by the use of spacetime circuit Hamilto-

nians, but a far more significant challenge is lower bounding the

spectral gap of the spacetime propagation Hamiltonian. In contrast

with single-clock circuit Hamiltonians, the geometric arrangement

of the gates in the circuit now has a significant effect on the spec-

trum of the spacetime circuit Hamiltonian due to the causal con-

straints. All lower bounds in previous works apply to spacetime

Hamiltonians in 2 spatial dimensions, which represent 1 (space) +

1 (time) dimensional quantum circuits. This is not only due to the

importance of planar connectivity for practical applications, but it

is also a symptom of the general fact that exactly solvable models in

mathematical physics are hardly known beyond 1 + 1 dimensions.

The 1 + 1 dimensional circuit propagation Hamiltonian is unitarily

equivalent to a stochastic model describing the evolution of a string

in the plane. For higher dimensional circuits it corresponds to the

dynamics of membranes or crystal surface growth, where no known

solutions are available. To overcome this in the present work we

use sorting networks to turn arbitrary random circuits into circuits

with uniform connectivity, and then we apply powerful techniques

and past results from the theory of Markov chains to analyze the

resulting high-dimensional spacetime circuit Hamiltonians.

1.4 Proof Sketch for the Spectral Gap Analysis
Our analysis of the spectral gap ∆prop of the spacetime circuit prop-

agation Hamiltonian begins with the standard mapping from Hprop

to a a Markov chain transition matrix P . 5 To analyze the latter,

5
The re-scaled Hamiltonian Hprop/∥Hprop ∥ is unitarily equivalent to a normalized

graph Laplacian L for the graph with vertices corresponding to valid time configura-

tions and edges corresponding to local gate updates on those time configurations. P
is the transition matrix for the random walk on this graph, which is obtained from

I − L by a similarity transformation. The point is that these mappings provide an

algebraic relation between ∆prop and ∆P .
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we apply a Markov chain decomposition method due to Madras

and Randall [37], which is used to split the Markov chain and its

state space into pieces that are easier to analyze individually. For

our decomposition of choice these pieces come in several closely

related variants, which all essentially correspond to the set of time

configurations contained within the final phase of a bitonic sorting

circuit (as shown in Figure 3 for 8 inputs) which we call a bitonic

block. An arbitrary circuit consisting of 2-local gates can be trans-

formed into a sequence of consecutive bitonic blocks, with at most

a polylogarithmic factor of blow up in the depth
6
.

Figure 2: A bitonic sorting architecture on n = 8 bits. We re-
fer to the final phase of the architecture, corresponding to
the last log(n) = 3 layers enclosed in a gray box, as a bitonic
block. Note that the gates in each layer are executed simulta-
neously, but are drawn as non-overlapping for visual clarity.
An arbitrary circuit consisting of 2-local gates can be trans-
formed to have the architecture of consecutive repetitions
of bitonic blocks at the cost of increasing the depth by a fac-
tor of log(N )2.

After dividing the set of valid time configurations Ω (the state

space of the Markov chain) into subsets Ωi of configurations con-

fined to bitonic blocks of the form illustrated in Figure 3, the subsets

will form a quasi-linear chain in the sense that Ωi and Ωj have

nonempty intersections when |i − j | ≤ logn. To apply the decom-

position method we need to analyze (1) the spectral gap of the

restricted Markov chains Pi that are confined to stay within each

of the subsets Ωi , and (2) the spectral gap of an aggregate Markov

chain P that moves between the blocks based on transition proba-

bilities related to the size of the inetrsections of the blocks.

As suggested by its quasi-linear connectivity, the spectral gap of

the aggregate chain can be lower bounded using Cheeger’s inequal-

ity in amanner similar to how it is done for the path graph Laplacian.

The main technical challenge is to accurately compute the tran-

sition probabilities P(i, j) = π (Ωi ∩ Ωj )/(Θπ (Ωi )), which involve

the ratio of the number of configurations within each of the blocks

to the number within the pairwise intersections, |Ωi ∩ Ωj |/|Ωi |,

as well as the maximum number of blocks Θ that can contain any

particular time configuration. In the full version [9], we develop

a recurrence relation to exactly count these configurations and

show that the former is constant for consecutive blocks (and decays

doubly exponentially with |i − j | for longer distance transitions),
and the latter is logarithmic in n. Using asymptotic properties of

6
See full version [9] for proof.

the recurrence relation we show that the transition probabilities

between i, i + 1 are equal to (ϕ logn)−1, where ϕ = (1 +
√
5)/2 is

the golden ratio. If there arem blocks in total so that the length

of the path ism, we can use Cheeger’s inequality to show that the

spectral gap ∆P of the aggregate chain satisfies

∆P ≥ (ϕm logn)−2 . (1)

Turning to the analysis of the restricted chains Pi , we present the
discovery of a surprising and beautiful connection between valid

time configurations of architectures of the form shown in Figure 2

with combinatorial structures known as dyadic tilings [30]. Dyadic

tilings are tilings of the unit square by equal-area dyadic rectangles,

which are rectangles of the form [a2−s , (a+1)2−s ]×[b2−t , (b+1)2−t ],
where a,b, s, t are nonnegative integers. These tilings have a natural
recursive characterization: beginning from the unit square, draw

a line that is either a horizontal or vertical bisector. This divides

the square into two rectangles, and in each of these one chooses

a horizontal or vertical bisector, and so on. After ℓ = log(n) such
recursive steps one obtains a dyadic tiling of rank ℓ with a total of

n dyadic rectangles, each with area 1/n. Some examples are given

in Figure 5.

For a spacetime circuit with n qubits, we choose the blocks Ωi in

the decomposition so that for each block there is an exact bijection

between the time configurations within the block and the set of

equal-area dyadic tilings of rank ℓ = logn. Moreover, it turns out

that the natural Markov chain on time configurations can also be

mapped onto a previously known Markov chain for dyadic tilings

called the edge-flip chain. This Markov chain selects a rectangle

of area 1/n in the current dyadic tiling and one of its four edges at

random, and flips this edge if the result would be another dyadic

tiling. The correspondence is described in Figure 6.

The mixing time of this edge flip chain was an open problem

for over a decade, but has recently been the subject of a tour de

force analysis that establishes an upper bound on the mixing time

that is polynomial in n. Adapting these results using our bijection

between these Markov chains yields

∆Pi = Ω
(
n−4.09

)
, for all i = 1, ...,m, (2)

where the value of the exponent can be taken to be log(17) =

4.087 . . .. Once (1) and (2) are established, we combine them accord-

ing to the decomposition result,

∆P ≥
1

2

∆P min

i=1, ...,m
∆Pi = Ω

(
n−4.09m−2polylog(n)−1

)
,

which is an inverse polynomial lower bound on the gap. The circuit

propagation Hamiltonian is equivalent to theMarkov chain P scaled

by a factor of n, and so we obtain ∆prop = Ω̃(n−3.09). Finally, using
the version of the spacetime Hamiltonian with circular time we

show that every state in the code space has overlap 1/polylog(n)
with the input terms and so the geometrical lemma yields a gap of

Ω̃(n−3.09) for the full code Hamiltonian.

2 PRELIMINARIES
2.1 Approximate QLDPC Codes

Definition 2.1 (Approximate QLDPC code). A 2
k
-dimensional sub-

space C of (C2)⊗N is a [[N ,k,d, ε, ℓ, s]] approximate QLDPC code
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Figure 3: (Color Figure) The Markov chain block decomposition for a sequence of padded bitonic sorting architectures on 8
bits. The set of valid time configurations contained entirely within the i-th colored rectangle constitutes the block Ωi . The
set of time configurations in two rectangles of different colors are related by a permutation of the qubit wires. The aggregate
chain P has a nonzero transition probability P(i, j) iff the rectangles corresponding to the blocks Ωi and Ωj are overlapping.
Each block Ωi has a nonzero transition probability to logN other blocks Ωj . Every valid time configuration is contained in at
least one of the blocks, and no time configuration is contained in more than logN blocks.

Figure 4: (Color Figure) An illustration of the states and transitions in the aggregate chain corresponding to the subsets of
time configurations contained with the blocks in Figure 3.

Figure 5: Examples of dyadic tilings of rank 4.

iff there exists a (not necessarily commuting) set of projectors

{H1, . . . ,Hm } acting on N qubits such that

(1) Each term Hi acts on at most ℓ qubits (i.e. locality) and each

qubit participates in at most s terms (i.e. sparsity).
(2) For all |ψ ⟩, we have that |ψ ⟩ ∈ C if and only if ⟨ψ |H |ψ ⟩ = 0,

where H = H1 + · · · + Hm .

(3) There exist encoding and recovery maps Enc,Rec such that

for all |ϕ⟩ ∈ (C2)⊗k ⊗ R where R is some purifying register,

for all completely positive trace preserving maps E acting

on at most (d − 1)/2 qubits, we have that the image of Enc

is exactly the code C and

F (Rec ◦ E ◦ Enc(|ϕ⟩⟨ϕ |), |ϕ⟩⟨ϕ |) ≥ 1 − ε

where F (·, ·) denotes the fidelity function. Here, the maps

Enc, E, and Rec do not act on register R.

2.2 Parallel Quantum Circuits
Our model for random depth D Clifford circuits is to choose, for

each layer Lt , a random partition {(p,q)} of the n qubits, and then

for each pair (p,q) letUt [p,q] be a uniformly chosen gate from the

two-qubit Clifford group (i.e., the set of all unitaries that preserve

the Pauli group under conjugation).

Brown and Fawzi showed that for D = O(log3 n), the circuit C
is an encoding circuit for a good error-correcting code with high

probability [14]:

Theorem 2.2 ([14]). For all δ > 0, for all integers n,k,d > 0

satisfying

k

n
≤ 1 − h(d/n) − log(3)d/n − 4δ ,

with h(·) as the binary entropy function, the circuitC described in the
paragraph above is an encoding circuit for a [[n,k,d]] stabilizer code
with probability at least 1 − Ω(n−8). In other words, with high proba-
bility the subspace C = {C |ψ ⟩ |0⟩⊗(n−k ) : |ψ ⟩ is a k-qubit state} is
a [[n,k,d]] stabilizer code.

Since the circuits are Clifford circuits, the resulting code is a

stabilizer code.
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Figure 6: (Color Figure) A color-coding of the correspondence between dyadic tilings and valid time configurations of a bitonic
sorting circuit. The colored line segments in (a) correspond to sub-edges which when rotated by π/2 about their midpoint will
be sub-edges of a vertical edge in some dyadic tiling. These edges are placed in correspondence with the gates of the bitonic
sorting circuit in (b), with the convention that colored line segments in (a) are ordered from left to right and from top to
bottom, and the gates in a given commuting layer in (b) are enumerated from top to bottom. Given an arbitrary dyadic tiling,
one checks which of the colored line segments in (a) correspond to vertical sub-edges in the tiling, and these correspond to
gates that are in the past causal cone of the bitonic time configuration associated with that tiling.

2.3 The Spacetime Circuit Hamiltonian
Construction

As mentioned in the introduction, we use a small variant of the

spacetime circuit Hamiltonian of Breuckmann and Terhal [13] to

create our code Hamiltonian. A description of the construction can

be found in the full version [9].

2.4 Bitonic Sorting Networks
In this section, we describe a class of circuits called bitonic sorting
networks. These are parallel circuits, devised by Batcher [6], that are
used to efficiently sort data arrays. Specifically, these are circuits

acting on n elements with depth O(log2 n). In each layer of the

circuit, pairs of elements are compared and swapped. Equivalently,

for every permutation π on n elements, there is a bitonic sorting

network consisting of SWAP and identity gates that implements π .
Bitonic sorting networks will be a crucial component of our

code construction, as we use them to “uniformize” the random

Brown-Fawzi encoding circuits before applying the spacetime cir-

cuit Hamiltonian construction. The uniformity of the resulting

circuits will be the key ingredient that allows us to analyze the

spectral gap of the Hamiltonian.

Definition 2.3 (Bitonic block [6]). For a positive integer ℓ, the

bitonic block of rank ℓ, Bℓ , is a circuit architecture acting on 2
ℓ

qubits. Bℓ is recurisvely defined with the architecture B1 being an

architecture consisting of a single layer, L1, with a gate between

qubits 1 and 2 (see part (a) of Figure 7).

For ℓ > 1, the bitonic block Bℓ is a depth ℓ architecture with

the first layer, L1 being 2
ℓ−1

gates connecting qubit i to i + 2ℓ−1

for i = 1, 2, . . . , 2ℓ−1. The following ℓ − 1 layers, Lℓ ,Lℓ−1, . . . ,L2

are defined recursively as B⊗2
ℓ−1

where one of the two blocks acts

on the qubits {1, 2, . . . , 2ℓ−1} and the other on the qubits {2ℓ−1 +

1, 2ℓ−1 + 2, . . . , 2ℓ}.

See Figure 7 for illustrations of blocks B2, and B3.

Figure 7: (a) Bitonic blockB1. (b) Bitonic blockB2. (c) Bitonic
block B3.

2.5 Uniformizing Circuits for Spacetime
Hamiltonians

We now present a general method for encoding depth D circuits

C into a spacetime circuit Hamiltonian, in a way that allows us to

give a good lower bound on the spectral gap. LetC denote a circuit

of depth D consisting of layers L1, . . . ,LD , where each Lt is a set of
n/2 two-qubit gates. We preprocess the circuit C in multiple steps

to obtain a slightly larger-depth circuit C ′. We “uniformize” the

circuit using the bitonic sorting networks described in the previous

section. The circuit C will not, in general, correspond to nearest-

neighbor interactions in small dimension. We add bitonic sorting

networks in between each layer Lt ofC to ensure that all the Clifford
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gates act on adjacent qubits. Because of the regular structure of

the sorting networks, the resulting circuit will consist of nearest-

neighbor interactions on a hypercube of dimension ℓ = logn. A
more formal description can be found in the full version [9].

3 CONSTRUCTION OF THE CODE
HAMILTONIAN

Here we describe our code construction in detail. Let ε > 0 be the

desired target approximation error. Let n,k,d be integers satisfying

Theorem 2.2 where k,d = Ω(n). Let C0 denote a Clifford circuit of

depth D0 = O(log
3 n) that is an encoding circuit of an [[n,k,d]]

code CBF , as promised by Theorem 2.2. Let L1, . . . ,LD0
be the D0

layers of C0, where each Lt is a set of n/2 two-qubit Clifford gates.

The first preprocessing step is to replace all the Clifford gates

by gates from the set {I ,H , S,CNOT }. This is possible because the
gate set generates the Clifford group; thus every two-qubit Clifford

gate can be written as a O(1)-length product of I , H , S , and CNOT
gates. The depth of this circuit is D1 = O(D0). Let C1 denote this

circuit.

Next, we pad the circuit to have depth 3D1/ε where the last

1−(ε/3) fraction of the layers are simply applications of the identity

gate on consecutive pairs of qubits. Call this padded circuit C ′
1
; its

depth is D ′
1
= 3D1/ε .

Now, let C2 be the circuit obtained by preprocessing C ′
1
as de-

scribed in Section 2.5. This has depth D = O(log5 n). Let H de-

note the corresponding spacetime circuit Hamiltonian,acting on

N = O(nD) qubits. Let C denote the ground space of H . This will

be our code.

Theorem 3.1. For all ε > 0, the subspace C is a [[N ,k,d, ε, ℓ, s]]
approximate QLDPC code, for k = Ω(N /log5 N ), d = Ω(N /log5 N ),
ℓ = 9, and s = polylog(N ).7

Additionally, we demonstrate that there is an efficient circuit

generating a ground-state of the Hamiltonian.

Theorem 3.2. There exists an encoding circuit of polynomial size
in n which on input |ψ ⟩ generates the state Enc(ψ ). In particular, the
polynomial size circuit generating the state is log(n) + 2 spatially
local.8

4 LOCAL DETECTION OF PAULI ERRORS
The described code is capable of local detection of errors on space-

time codewords with probability 1 − 2− polylog(N ) with polylog(N )-
depth circuits. The class of errors that we handle is the set of tensor

products of Pauli operators on the physical qubits (which includes

data and time qubits). Interestingly, we can detect Pauli errors even

if the weight of the error (the number of qubits affected) exceeds

the distance of the spacetime code!

Theorem 4.1. With probability9 1 − 2
−Ω(log2 n), there exists a

collection D of polylog(N )-local projectors satisfying the following
properties:

7
The proof has been ommitted and can be found in the full version [9].

8
The proof has been ommitted and can be found in the full version [9].

9
Here the probability is taken over the randomized construction of the code.

(1) Each projector Π ∈ D acts on 10 physical qubits of the code-
word, and acts on s = polylog(N ) ancilla qubits initialized in
the |0⟩ state.

(2) For all n-qubit states |ψ ⟩, we have that Π |ψ ⟩ |0s ⟩ = 0 for all
Π ∈ D if and only if |ψ ⟩ is a codeword in the spacetime code
C.

(3) For all Pauli channels E, for all codewords |ψ ⟩ ∈ C, there exists
a projector Π ∈ D such that

Tr

(
Π

(
E(ψ ) ⊗ |0s ⟩⟨0s |

) )
≥ (1 − α)(1 − 2− polylog(N ))

where ψ = |ψ ⟩⟨ψ | and α =
∑
P ∈S cP is the weights of the

channel E on the Pauli stabilizers in S.

Furthermore, there exists a measurement M , implementable by a
circuit of polylog(N ) depth acting on O(N polylog(N )) qubits, such
that for all Pauli channels E and for all codewords |ψ ⟩ ∈ C

Tr

(
M

(
E(ψ ) ⊗ |0Ns ⟩⟨0Ns |

))
≥ (1 − α)(1 − 2− polylog(N )).10
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