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Abstract 

The Mueilha rare-metal granite, exposed in the central Eastern Desert of Egypt, is a post-

collisional intrusion that formed in the final magmatic stage of the evolution of the 

Arabian-Nubian Shield. The Mueilha intrusion was emplaced as a high-level magmatic 

cupola into metamorphic country rocks. It consists of two cogenetic intrusive bodies: an 

early phase emplaced at shallow depth and now penetratively altered to white albite 

granite and a later phase of red granites emplaced at greater depth that better preserve 

magmatic features. The albite granite is less common and represents the upper margin of 

the Mueilha intrusion, the apex of the magmatic cupola. The red granites are 

volumetrically dominant and appears to have crystallized from the margins inward, 

forming a composite pluton zoned from muscovite granite to alkali feldspar granite. All 

parts of the Mueilha pluton appear to have been emplaced within a short time interval, 

before complete crystallization of the earliest phase. The geochemistry of the Mueilha 

granites is typical of rare-metal granites, characterized by high SiO2, Na2O+K2O, Nb, Rb, 

Ta, Y, U, Th, Sn, and W with depletion in P, Mg, Ti, Sr and Ba. They are weakly 

peraluminous and highly fractionated with A-type character. The chondrite-normalized 

REE patterns have strongly negative Eu anomalies, typical of highly differentiated 

granites that evolved through a transitional magmatic–hydrothermal stage. The primary 

magma feeding the Mueilha intrusion was generated by partial melting of the juvenile 

crust of the Arabian-Nubian Shield; it subsequently underwent extensive fractional 

crystallization and metasomatism by late- to post-magmatic fluids. Separation of fluids 

from the oversaturated melt promoted both diffuse greisenization and focused segregation 

of pegmatite and fluorite and quartz veins. Alkalis liberated from feldspars consumed by 
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greisenization were redeposited during albitization in the uppermost part of the magma 

chamber. Despite penetration of the intrusion boundary by discrete dikes, veins, and 

aphophyses, diffuse alteration of the metamorphic country rocks is not apparent. Primary 

columbite-series minerals crystallized from the melt and were later partly replaced by 

secondary Nb and Ta minerals (fluorcalciomicrolite and wodginite) during hydrothermal 

alteration. 

 

Keywords: Arabian-Nubian Shield, highly fractionated granite, Nb–Ta oxide minerals, 

Magmatic–hydrothermal evolution 

 

1. Introduction 

The Precambrian basement rocks of the Nubian Shield are exposed in the Eastern 

Desert of Egypt, NE Sudan, Somalia, and Ethiopia. Until the opening of the Red Sea less 

than 30 Ma ago, the Nubian and Arabian Shields were contiguous parts of the Arabian-

Nubian Shield (ANS). The ANS represents the most juvenile continental crust on the 

Earth (Stoeser and Frost, 2006). It developed in Neoproterozoic time (850-590 Ma) 

during the Pan-African orogeny (Stern, 1994). There were a series of major orogenic 

events through which continental, island arc, and oceanic terranes collided and 

amalgamated between East and West Gondwana, which then collided to form the 

crystalline basement of the Gondwana supercontinent. Later, widespread post-collisional 

granitoid intrusions and their volcanic equivalents were emplaced into the juvenile upper 

crust of the Shield. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



The Eastern Desert of Egypt is intruded by voluminous granitoids of various 

ages, geochemical characteristics and tectonic regimes (e.g. El-Sayed et al., 2002; Farahat 

et al., 2007; Azer et al., 2019). One of the most striking features of these granitoids is the 

abundance of post-collisional granitic intrusions, many of them enriched in rare metals 

(e.g. Helba et al., 1997; Abu El-Rus et al., 2017; Sami et al. 2017, 2018; Azer et al., 2019; 

Heikal et al., 2019, Abuamarah et al., 2019). The rare-metal granites of the Eastern 

Desert have received much attention from economic geologists due to their substantial 

potential as sources of Nb, Ta, rare earth elements (REE), U, Zr and Th (e.g. Helba et al., 

1997; Abou El Maaty and Ali Bik, 2000; Abuamarah et al., 2019; Azer et al., 2019; 

Heikal et al., 2019). Despite numerous studies and widespread outcrops in the Eastern 

Desert, however, considerable controversy about their origin and geotectonic evolution 

still remains. 

The Mueilha intrusion (Fig. 1c), the target of the present work, is one of the 

most outstanding examples of rare-metal (Ta-Sn-Nb) granite in the Eastern Desert. The 

published literature concerning the Mueilha intrusion is sparse and contradictory (e.g. 

Salem et al., 1985; Morsy and Mohamed, 1992; Hassanen et al., 1995; Abou El Maaty 

and Ali Bik, 2000; Mohamed, 2013; El-Galy et al., 2016; Abu El-Rus et al., 2017). 

Various authors have adopted models of the origin of the intrusion ranging from entirely 

metasomatic to entirely magmatic, as well as hybrids of these, but no unique petrogenetic 

model has been proposed that satisfactorily explains the features of the intrusion. This 

work integrates field observations, petrography, mineral chemistry and whole-rock 

chemical analyses to examine the petrological characteristics of the Mueilha rare-metal 

granites in order to distinguish between magmatic and metasomatic stages in the 
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evolution of the pluton. Both stages are required. We also aim to better document and 

understand the alteration zones within the intrusion and the formation of potential 

associated ore deposits. This study offers a good opportunity to understand the 

petrogenetic processes leading to the formation of mineralized post-collisional granites 

throughout the ANS and elsewhere. 

 

2. Field work 

The distribution of rare-metal bearing granite intrusions in the Eastern Desert of 

Egypt is shown in Fig. 1a. The Mueilha area (#9) is located in the southern part of the 

central Eastern Desert between latitudes 24o 52\03\\& 24o 53\42\\N and longitudes 

34o00\00\\& 34o 02\ 10\\E, on the southern side of the Idfu-Mersa Alam road. The 

intrusion appears in satellite imagery as a light-colored area (Fig. 1b). Apart from the 

Mueilha intrusion itself, the study area is mainly covered by an island-arc assemblage 

(Fig. 1c) of highly foliated metasedimentary biotite and hornblende schists. The field 

relationships between the different rock types of the Mueilha intrusion and their country 

rocks are shown in a schematic cross-section in (Fig. 1d). 

The Mueilha intrusion is easily distinguished in the field and forms an ellipsoidal 

stock covering ~7.5 km2, elongated in a NE–SW direction. Contacts between the Mueilha 

intrusion and its metamorphic country rocks are knife-sharp (Fig. 2a, b). There are many 

dyke swarms that cut the country rocks but are truncated by the boundaries of the 

Mueilha intrusion. Apophyses of the Mueilha intrusion extend into the adjacent 

metasediments for several tens of meters (Fig. 2c). Also, small diapirs are observed 

piercing the country rocks (Fig. 2d). A set of vertical to near-vertical fractures and faults 
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crosscut the Mueilha intrusion and extend into the surrounding metasediments. The 

Mueilha intrusion consists entirely of fine- to medium-grained, holocrystalline, 

leucocratic granite. Xenoliths, enclaves, or mafic dikes are absent, except for a few rare 

metasedimentary blocks along the southern periphery of the intrusion.  

In the field the Mueilha intrusion consists of two main rock types: the red and 

white granites. Contacts between the types are irregular and may be either sharp or 

gradational, indicating syn-contemporaneous emplacement (Fig. 2e). A few roof pendants 

of the white granite are observed near the upper border of the red granite (Fig. 2f), which 

indicates that, even though the two types are syn-contemporaneous, the white granite is 

older than the red granite. The difference in field-exposure color is also apparent in hand 

specimens (Fig. 3a-d). The red granites, which constitute the main mass of the intrusion, 

include alkali feldspar granite and muscovite granite varieties (Fig. 3 a, b). Both are 

medium-grained, with equigranular to inequigranular textures characteristic of 

hypabyssal emplacement. A less common pinkish-white garnet-bearing granite (Fig. 3c) 

is exposed near the contact between the red granite and metasedimentary country rocks; 

in Fig. 1c and in the following discussion the garnet-bearing variety is grouped with the 

red granites. The white phase consists of albite granite (Fig. 3d), partly porphyritic in 

texture. In a few outcrops, the alkali feldspar granite intrudes both muscovite granite and 

albite granite and contains very small xenoliths (1-5 cm) of albite granite. 

Pegmatite dikes and pockets are concentrated near the margins of the intrusion. 

Contacts between the pegmatite dikes and host granites are typically sharp, whereas 

pegmatite pockets (from a few to tens of centimeters in diameter) display gradational 

contacts with the host granite. Rarely, pegmatite dikes extend into the surrounding 
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metamorphic rocks proximal to the intrusion. Pegmatitic dikes display clear zoning from 

fine grained albite-rich aplitic margins to cores of coarse K-feldspars. There are many 

nests and veins of fluorite around the outer margins of the intrusion. Also, thin veins of 

greisen occur along the southern margin. Despite clear evidence of fluid activity within 

the intrusion and of dikes and apophyses extending beyond the sharp intrusion boundaries 

into the country rock, there is no field evidence of fluid alteration of the country rocks 

themselves. In contrast to the well-developed alteration haloes around many other 

magmatic cupolas in the ANS, fluid infiltration of the metamorphic country rocks around 

the Mueilha intrusion appears to have been limited, suggesting a regime dominated by 

brittle fracture and discrete fluid conduits rather than pervasive infiltration. As such, 

alteration of the country rocks was not a focus of this study. 

 

3. Petrography 

The petrographic descriptions of the rocks of the Mueilha intrusion are divided 

below by rock type. 

 

3.1. Alkali feldspar granite 

The alkali feldspar granite is essentially composed of alkali feldspars and quartz 

with a lesser amount of plagioclase and rare biotite. Fe-Ti oxides, Nb-Ta oxides, 

muscovite and zircon are accessory minerals. Secondary minerals include epidote, 

chlorite and sericite. The rock exhibits holocrystalline hypidiomorphic texture. Alkali 

feldspars occur as anhedral to subhedral crystals of orthoclase and perthite with fewer 

crystals of microcline. The perthite crystals show various textures, including patchy, vein, 
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flame and zebra types. Orthoclase shows simple twinning, while microcline exhibits 

cross-hatch tartan twinning. Plagioclase occurs as euhedral to subhedral crystals 

characterized by albite twinning; many of them are partially altered to sericite and 

kaolinite. Rare plagioclase inclusions are observed within the perthite crystals (Fig. 4a). 

Quartz occurs as rounded to subhedral crystals that contain small inclusions of zircon 

(Fig. 4b) as well as muscovite filling the cracks (Fig. 4b). Some small quartz aggregates 

are also found filling fractures in crystals and in the interstices between the grains. Biotite 

is the only mafic phase among the main minerals in the alkali feldspar granite. It occurs 

as brown to greenish-brown fine subhedral crystals with strong pleochroism, slightly 

altered to chlorite and opaques. Rarely, biotite occurs as fine inclusions within large K-

feldspar and quartz crystals. 

Nb-Ta oxides occur as anhedral, subhedral, or euhedral prismatic crystals and 

show variation in color from black to deep brown. The zoned crystals may exhibit 

concentric zoning with columbite cores surrounded by a mottled or patchy zones of 

fluorcalciomicrolite and wodginite (Fig. 4c). The mineral names in Fig. 4c and other 

backscatter images are based on microprobe and SEM analyses (see section 5. Mineral 

chemistry). 

 

3.2. Muscovite granite 

Muscovite-bearing granite is essentially composed of K-feldspars and quartz, with 

lesser amounts of plagioclase and muscovite. The accessory minerals include Fe-Ti 

oxides, Nb-Ta oxides, zircon, apatite and fluorite. K-feldspars occur as subhedral to 

anhedral crystals showing perthitic texture and appear to be turbid due to staining by fine 
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red iron oxides. K-feldspars enclose plagioclase crystals as well as small muscovite and 

quartz crystals. 

Quartz occurs as anhedral crystals with rare small inclusions of muscovite and 

plagioclase and scarce fractures filled with muscovite. Plagioclase occurs as euhedral to 

subhedral small plates characterized by lamellar albite twinning. A few crystals are 

mildly altered to sericite and muscovite. Both primary and secondary muscovites are 

recognized in the muscovite granite. The first occurs as subhedral to euhedral crystals 

with perfect cleavage and high interference colors (Fig. 4d), while the latter occurs 

mainly as fine anhedral crystals replacing feldspars. Nb-Ta oxides occur as very fine 

anhedral crystals (Fig. 4e). 

 

3.3. Garnet-bearing granite 

Toward the lateral margins of the Mueilha intrusion, the color gradually changes 

from red to pinkish-white in the garnet-bearing granite. The garnet-bearing granite has 

holocrystalline texture composed mainly of K-feldspars, quartz and plagioclase with a 

few garnets. Fluorite, apatite, zircon, Fe-Ti oxides and Nb-Ta oxides are accessory 

minerals.  

K-feldspars (perthite, orthoclase and microcline) occur as subhedral to anhedral 

crystals that are slightly to moderately altered. Large K-feldspar crystals enclose small 

inclusions of quartz and plagioclase. Myrmekitic texture appears in this rock type, 

especially on the margins of K-feldspar crystals (Fig. 4f). Perthite is the dominant K-

feldspar and shows a variety of textures including veined, flame and patchy. Orthoclase 

occurs as large crystals showing simple twinning. Microcline shows its characteristic 
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tartan twinning. Quartz occurs as anhedral large crystals or as small aggregates in the 

interstices between the other constituents. Wavy extinction is apparent in some samples, 

suggesting minor deformation. Some discrete crystals of quartz display micrographic 

intergrowths with K-feldspars. Plagioclase occurs as subhedral to anhedral crystals 

including albite and oligoclase. Some plagioclase crystals are sericitized and kaolinitized, 

specially in the cores. Some albite crystals are secondary, replacing K-feldspars and 

preserving some perthitic and microcline textures. Also, rare albite crystals are enclosed 

by large crystals of K-feldspars. 

Garnet occurs as euhedral to subhedral crystals, crossed by cracks, with 

chloritized rims (Fig. 4g). A few inclusions of quartz, zircon and opaques are observed in 

the large garnet crystals. The cracks in some large crystals of garnet are filled with 

secondary minerals including quartz and muscovite. Fluorite is the most abundant 

accessory mineral, occurring mainly in interstices between other minerals or as 

idiomorphic discrete crystals. Locally, veinlets of fluorite are observed cutting the other 

minerals. These features indicate that the fluorite crystallized at a late stage, after the bulk 

of the rock-forming minerals. Rare muscovite occurs as anhedral flakes among the other 

constituents and as fine inclusions in the quartz. Rare small subhedral to anhedral 

corroded crystals of Nb-Ta oxides are observed in the garnet-bearing granite (Fig. 4h). 

 

3.4. Albite granite  

The albite granite is mostly massive and white in color, spotted with small dark 

crystals of Nb-Ta oxides. It shows fine- to medium-grained, hypidiomorphic and 

sometimes porphyritic texture. Some samples of the albite granite are sheared; these 
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differ from massive phase due to enrichment of secondary muscovite. The albite granite 

shows evidence for various degrees of alteration and brittle deformation. 

Mineralogically, the massive albite granite consists of quartz and albite with 

lesser amounts of K-feldspar. The accessory phases include Fe-Ti oxides, biotite, zircon, 

garnet, Nb-Ta oxides, fluorite and apatite. Albite is the most abundant mineral, occurring 

as subhedral to euhedral crystals or as small interstitial laths. It also occurs as small 

euhedral laths included in quartz and K-feldspars. Some albite crystals, especially the 

cores, are slightly altered. A few earlier albite crystals are rimmed by second-generation 

albite. Quartz occurs as large anhedral crystals or as fine interstitial aggregates. A few 

quartz crystals have fine inclusions of albite or muscovite. Rarely, large quartz crystals 

display snowball texture, formed by concentrically-grown albite laths within quartz (Fig. 

4i). K-feldspars — appearing as highly fractured, subhedral to anhedral perthite and 

microcline crystals — are modally rare in the albite granite. The perthite crystals show 

flame type and simple twinning. Microcline shows tartan twinning and is partly replaced 

by secondary albite with preservation of original crystal habit. Myrmekitic texture occurs 

on the boundaries of many K-feldspar crystals. Some K-feldspars are partially replaced 

by albite and/or muscovite. 

The albite granite sporadically contains subhedral to euhedral, optically 

homogeneous garnets with variable grain size (0.1-0.5 mm). The garnet shows no 

reaction rims or evidence of intergrowth with any adjacent minerals. Some garnet crystals 

are highly fractured. Muscovite is colorless to pale green and forms fine anhedral flakes 

within K-feldspars (Fig. 4j) or replacing biotite. Fluorite occurs as small anhedral crystals 

interstitial to the feldspars or, rarely, as veins along through-going fractures that suggest a 
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deuteric origin (Tollo et al., 2004). Columbite is the most common Ta-Nb oxide and 

occurs in various forms associated with biotite (Fig. 4k) or interstitial to feldspar crystals. 

It occurs commonly as prismatic and tabular crystals with well developed crystal faces 

and exhibits color variation suggestive of zoning (Fig. 4l). More Ta-rich grains occur as 

very small disseminated anhedral specks or as thin rims around columbite; these are too 

small to analyze and so cannot be confidently identified as either Ta-bearing columbite or 

as tantalite. 

 

3.5. Pegmatites  

The pegmatite veins that cut the Mueilha granites show variable colors, grain 

sizes, textures and mineral compositions. Based on their mineral composition, vein cores 

are K-feldspar-rich pegmatite and vein margins are albite-rich pegmatite. The K-feldspar-

rich pegmatite, pink in color and medium- to very coarse-grained, consists mainly of K-

feldspars with lesser amounts of quartz, albite and muscovite. The accessory minerals 

include Fe-Ti oxides, biotite, zircon, fluorite and apatite. K-feldspars occur as very coarse 

subhedral and anhedral crystals that include perthite, microcline-perthite and orthoclase. 

Some large crystals of K-feldspars enclose small crystals of albite, iron oxides and 

zircon. Quartz shows undulose extinction and a few crystals have very fine inclusions of 

K-feldspars and albite. 

The albite-rich pegmatite consists of albite, quartz, K-feldspar, biotite and 

muscovite. The accessory minerals include opaques, fluorite, and zircon. Albite is the 

most common mineral and occurs as euhedral to anhedral prismatic crystals characterized 

by lamellar twinning. Some albite crystals show bent and broken twin planes due to later 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



deformation. Other albite crystals are highly altered to sericite and muscovite, especially 

in their cores. K-feldspar crystals show perthitic texture and microcline cross-hatching, 

and rarely include small inclusions of quartz and muscovite. A few quartz crystals are 

graphically intergrown with albite or contain small inclusions of rounded to euhedral 

albite. Muscovite is found as small flakes among the other constituents or enclosed in K-

feldspar. 

 

3.6. Quartz veins 

Quartz veins consist of quartz with minor amounts of fluorite and chlorite. The 

quartz crystals are medium- to coarse-grained and subhedral. Along contacts with the 

country rocks, quartz occurs as sub-parallel needle-shaped aggregates of fine grains. 

Quartz veins contain many inclusions of the mineral assemblage of the country rocks 

such as pyrite and feldspars. Many quartz crystals show wavy extinction and fractures 

that indicate a history of deformation. 

 

4. Analytical techniques 

Optical mineral identifications were refined where necessary with back-scattered 

electron imaging, energy-dispersive X-ray analysis, and X-ray mapping on a scanning 

electron microscope. The microprobe analyses were carried out the CAMECA SX100 

electron probe at the Department of Geosciences, University of Oslo. The run conditions 

were 15 kV accelerating voltage, 15 nA beam current, 2 μm beam diameter and 10 

seconds count time on peak and 5 seconds for both low and high backgrounds. A ZAF 
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matrix correction routine was used. Calculations of the mineral structural formulae used 

appropriate software including custom spreadsheets and Minpet (Richard, 1995).  

Fifteen rock samples of the Mueilha intrusion were selected, based on the 

petrographic studies, for major, trace and rare earth element analysis at Activation 

Laboratories Ltd. (Actlabs, Canada). The bulk chemistry of the representative samples 

was determined by a combination of ICP-AES and ICP-MS. The major oxides were 

measured by lithium metaborate/tetraborate fusion ICP-AES (package code 4B). Trace 

and rare earth elements were measured using ICP-MS (package code 4B2) following 

lithium borate fusion and acid digestion. The detection limits for the major oxides are 

between 0.01 wt. % and 0.04 wt. %, for trace elements between 0.1 and 0.5 ppm, and for 

the rare earth elements between 0.01 and 0.05 ppm. Loss on ignition (LOI) was 

determined by weight difference after firing in air at 1000 ºC. Precision and accuracy 

were monitored by analysis of international reference materials and replicate analyses 

and are 1% for major elements and 2 to 5% for trace elements.  

 

5. Mineral chemistry 

Feldspars, micas, Nb-Ta oxides, garnet, and zircon were analyzed by electron 

microprobe, allowing assignment of systematic mineral names and offering constraints 

on the origin and evolution of the granites under investigation. All electron microprobe 

data are given in the supplementary tables (1S-10S). 
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5.1. Feldspars 

Feldspars were analyzed in all the rock types of the Mueilha intrusion. The 

chemical analyses and structural formulae (on the basis of 8 oxygen atoms) of the 

analyzed feldspars are given in supplementary tables 1S, 2S and 3S. The analyzed 

feldspars include K-feldspars, albite and plagioclase. K-feldspars and albite were found 

in all rock varieties; plagioclase only in the alkali feldspar granite and muscovite granite.  

All the analyzed K-feldspar crystals are homogenous near end-member KAlSi3O8, 

with low Na2O (<0.43 wt. %) and CaO contents (<0.1 wt. %). The analyzed albites are 

near end-member NaAlSi3O8 with low K2O (<0.89 wt. %) and CaO (<0.1 wt. %.) 

contents. No attempt is made here to reconstruct original compositions of perthite crystals 

or other exsolved features. The analyzed plagioclase is exclusively oligoclase (An12-17). 

 

5.2. Micas  

Both muscovite and biotite were analyzed. Muscovite was found in all rock types, 

whereas biotite only in alkali feldspar granite and muscovite granite. The chemical 

analyses of muscovite and their structural formulae (on the basis of 22 oxygen atoms) are 

given in supplementary table 4S. Primary muscovite is considerably higher in TiO2, 

Al2O3 and Na2O, but lower in MgO, than secondary muscovite. The primary muscovite 

has TiO2 > 0.33 wt. %, comparable to muscovite of magmatic origin (e.g. Zen, 1988). 

The analyzed muscovites plot in the primary and secondary muscovite fields (Fig. 5a), on 

the discrimination diagram of Miller et al. (1981), concordant with expectations from 

texture. 
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The chemical analyses of biotite and their structural formulae (on the basis of 22 

oxygen atoms) are given in supplementary table 5S. The analyzed biotite has Al2O3 

contents between 21.0 and 24.1 wt.% with an average of 22.1 wt.%, FeO between 13.6 

and 19.2 wt.% with an average of 17.1 wt.%, MgO between 2.0 and 3.4 wt.% with an 

average of 2.5 wt.%, and K2O between 9.1 and 10.0 wt.% with an average of 9.8 wt.%. 

On the discrimination diagram of Nachit et al. (2005), all specimens are classified as 

annite. The analyzed biotite crystals have chemical characteristics of primary igneous 

biotite (Fig. 5b). 

Using the biotite discrimination diagram of Abdel-Rahman (1994), the analyzed 

biotite plots in the peraluminous field (Fig. 5c). Nachit et al. (1985) used the chemical 

composition of biotite to discriminate among peraluminous (P), calc-alkaline (C), 

subalkaline (SA) and alkaline-peralkaline (A-PA) granites. On the Mg vs. Al plot, the 

analyzed biotite crystals plot in the peraluminous field (Fig. 5d). 

 

5.3. Nb-Ta oxides 

The analyzed Nb-Ta oxides include columbite, fluorcalciomicrolite and 

wodginite. Columbite is the main primary Nb-Ta bearing phase in the Mueilha granite. 

None of the analyzed spots are tantalite, though some high-backscatter spots too small for 

quantitative analysis are observed. Fluorcalciomicrolite and wodginite are secondary 

phases. The chemical analyses of Nb-Ta oxides and their structural formulae are given in 

supplementary tables (6S, 7S, 8S).  

Nb2O5 (42.3-70.9 wt. %) and Ta2O5 (8.9-39.6 wt. %) are the major oxides in 

columbite (supplementary table 6S) with subordinate MnO (6.0-10.4 wt. %) and FeO 
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(6.8-10.4 wt. %). The concentrations of other oxides such as SiO2 (0.6-4.9 wt. %), TiO2 

(<0.2 wt. %), and SO3 (<0.11 wt. %) are low. Analytical points with significant SiO2 are 

considered to be altered. Columbite has Ta/(Nb+Ta) ratios between 0.07 and 0.36 and 

Mn/(Mn+Fe) ratios between 0.43 and 0.58; hence various points are classified as either 

columbite-(Mn) or columbite-(Fe). Compositions within and among grain cores form a 

coherent trend when plotted on a Mn/(Fe+Mn) vs. Ta/(Nb+Ta) diagram (Fig. 5e), 

whereas high-backscatter points near rims (Fig. 4c, k) define a separate population 

enriched in Ta/(Nb+Ta) at constant Mn/(Mn+Fe). 

Fluorcalciomicrolite is observed only in the garnet-bearing granite and alkali 

feldspar granite. It forms well-defined overgrowth or replacement mantles around 

primary columbite, separated by sharp boundaries. The major oxides of the 

fluorcalciomicrolite are Ta2O5 (40.8-47.3 wt.%), Nb2O5 (24.2-27.9 wt.%) and CaO (11.0-

13.0 wt.%) with lesser amounts of Na2O (2.8-4.0 wt.%) and SiO2 (5.2-6.4 wt.%). Again, 

significant Si is considered evidence of late alteration. The concentrations of other oxides 

such as TiO2 (0.4-0.5 wt.%), FeO (<0.03 wt.%) and SO3 (<0.04 wt.%) are low 

(supplementary table 7S). Fluorine was not quantitatively analyzed on the electron 

microprobe, but it is evident in energy-dispersive X-ray spectra and X-ray maps taken by 

scanning electron microscope, with semi-quantitative concentration estimates sufficient 

to confidently assign the name fluorcalciomicrolite to this material. 

Wodginite is commonly encountered in the garnet-bearing granite and alkali 

feldspar granite as part of the alteration mantle around grains of columbite and 

fluorcalciomicrolite (Fig. 4c). Nb2O5, Ta2O5 and MnO are the major oxides, while 

concentrations of other oxides (SiO2, TiO2 and SO3) are low (supplementary table 8S). 
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5.4. Garnet 

Garnet compositions were determined in the albite granite and garnet-bearing 

granite. The chemical analyses, structural formulae, and end-member fractions of garnet 

(on the basis of 12 oxygen atoms) are listed in supplementary table 9S. All the analyzed 

garnets are spessartine-rich solid-solutions with subordinate amounts of almandine. 

Spessartine and almandine together constitute more than 96% for all analyzed garnet 

crystals; amounts of other garnet components are all very low. The end-member mole 

fraction range is: spessartine (65.31-72.30 mol. %), almandine (26.29-33.3 mol. %), 

pyrope (0.71-2.83 mol. %), grossular (< 1.0 mol. %) and andradite (<0.02 mol. %). The 

chemical homogeneity and subhedral to euhedral form suggest that the analyzed garnets 

are magmatic in origin. On a Mn-Mg-Fe ternary diagram of Miller and Stoddard (1981), 

the chemical analyses of the analyzed garnet plot in the field of magmatic garnet (Fig. 

5f). The garnet compositions in the Mueilha granite (i.e., low MgO and high MnO) are 

similar to those commonly crystallized from silicic magma at low pressure (Patiño Douce 

1999; Abuamarah et al., 2019; Azer et al., 2019). 

 

5.5. Zircon 

Selected zircon compositions were determined in muscovite granite and alkali 

feldspar granite. Chemical compositions and calculated structural formulas of zircon 

crystals from both varieties are given in supplementary table 10S. The analyzed zircons 

have somewhat low totals (96.62-98.38 wt. %). Energy-dispersive X-ray analysis shows 

that no elements present at levels above a few tenths of a weight percent were left out of 
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the electron probe protocol. Hence the low totals likely reflect either metamict zircons or 

poor polish. The analyzed zircon crystals show very limited variations in their chemical 

compositions with 31.0 to 31.3 wt.% SiO2, 63.0 to 64.4 wt.% ZrO2, and 1.8 to 2.0 wt.% 

HfO2. Other oxides occur at or below detection limits.  

 

6. Whole rock geochemistry 

6.1. Geochemical characteristics 

The concentrations of major oxides, some trace elements, and REE were analyzed 

in 15 samples of Mueilha granite. The whole-rock chemical analyses, CIPW norms, and 

REE concentrations are given in Tables 1, 2 and 3, respectively. The granites are all 

highly evolved, with silica contents 71.9-78.4 wt. %. The lowest silica contents were 

found in the garnet-bearing granite (≤73.3 wt. % SiO2) and albite granite (73.1-74.4 wt. 

% SiO2). Total alkalis (Na2O+K2O = 8.4-11.3 wt. %) and differentiation index (D.I. = 91-

98) are high. K2O/Na2O decreases and Al2O3 increases as SiO2 decreases from red to 

white granites, reflecting the exchange of modal K-feldspars for albite. Most of the 

analyzed samples have normative corundum (0.2-2.0 wt. %), while a few samples have 

normative acmite (0.2-0.9 wt. %) and Na-metasilicate (0.6-1.5 wt. %). The presence of 

normative acmite and Na-metasilicate in a few samples can be attributed to the high 

contents of total alkalis (10.42-11.28 wt. %) in these samples. 

Classification of the studied granites using whole-rock geochemistry supports our 

field and petrographic studies. On the R1-R2 discrimination diagram of De la Roche et al. 

(1980), the Mueilha granites plot in the alkali granite field, except for one sample of 

garnet-bearing granite (MH14) that plots in the quartz-syenite field (Fig. 6a). This 
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classification is supported by the normative Q /(F/)-ANOR (Fig. 6b) classification diagram 

of Streckeisen and le Maitre (1979), on which the analyzed samples fall mainly in the 

alkali feldspar granite field, except one albite granite sample and one garnet-bearing 

granite sample that straddle the boundary of the alkali feldspar granite and quartz syenite 

fields. 

Selected major oxides of the Mueilha granites are plotted against in SiO2 variation 

diagrams in Fig. 7. The entire suite defines continuous trends in all oxides without any 

compositional gaps. TiO2, Al2O3, CaO, Na2O contents increase while SiO2 and K2O 

decrease in the sequence alkali feldspar granite, muscovite granite, albite granite, garnet-

bearing granite. Fe2O3 shows no trend among the red granite varieties, but is offset to 

lower values in the albite granite. The other major oxides are all at low concentrations 

and are weakly correlated with SiO2 and with one another. 

Trace element contents of the measured samples vary over roughly a factor of two 

within the entire Mueilha suite for most elements, but the rare earth elements and Y vary 

by an order of magnitude. The concentrations are well-correlated with SiO2 for most 

elements. Similar variability has been described in other rare-metal bearing granites in 

the Eastern Desert of Egypt (Abuamarah et al., 2019; Azer et al., 2019; Heikal et al., 

2019). Selected trace elements are plotted against SiO2 in Fig. 8. Rb, Nb, Y, Th, U and Zn 

decrease systematically from red to white granites (Fig. 8a), whereas Sr, Ba, V, Ga, Ni, 

Cu, Sc and Cr all increase with decreasing SiO2 content (Fig. 8b). 

 

6.2. Spider diagrams and REE characteristics  
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Mid-ocean ridge basalt (MORB) normalized multi-element trace element patterns 

of the Mueilha granites, using normalization values of Pearce (1983), are shown in Fig. 

9a. The studied granites show overall similarity in the trace element patterns for all the 

samples, with enrichments of certain elements up to three orders of magnitude relative to 

MORB. They are characterized by clear depletions in Sr, Ba, P and Ti, reflecting a much 

larger role for either residual or fractionated feldspars, apatite and Fe-Ti oxides compared 

to MORB petrogenesis (Wu et al., 2002). The difference in Y concentrations between, on 

the one hand, garnet-bearing and albite granites and, on the other hand, alkali feldspar 

and muscovite granites is large enough to be seen even at the scale of Fig. 9a. 

REE concentrations of the Mueilha granites are given in Table 3. They show 

subparallel chondrite-normalized patterns (Fig. 9b; normalization of Evensen et al., 

1978); enrichment of HREE relative to LREE is reflected in (La/Lu)n values from 0.09 to 

0.31. The albite granite and garnet-bearing granite samples have relatively lower REE 

abundances (especially the moderately heavy REE from Gd to Er) than the red granite 

samples. The lower abundance of REE-bearing accessory minerals noted petrographically 

in the white granite correlates with the smaller whole-rock REE concentrations seen in 

Fig. 9b. The REE patterns show strongly negative Eu anomalies, with (Eu/Eu*) = 0.01-

0.08. Together with the large negative anomalies in Ba and Sr, this also suggests 

sequestration of feldspar, either during formation of the crustal source, during melting of 

that source, or during differentiation of the magma.  

 

6.3. Magma type and tectonic setting  
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The Mueilha granites are highly fractionated with slightly peraluminous to 

slightly peralkaline character. The discrimination diagram of Sylvester (1989), intended 

for discriminating among rocks with SiO2 > 68 wt.%, places the Mueilha granites in the 

highly fractionated calc-alkaline field (Fig. 10a). The alkali feldspar granite and 

muscovite granite have peraluminous character (Fig. 10b), with alumina saturation index 

[ASI = molar ratio Al2O3/(CaO+Na2O+K2O)] greater than unity (Table 1). This is 

consistent with their normative corundum contents (0.24-2.01 wt. %, Table 2), the 

presence of primary muscovite in most samples, and the mineral composition of biotite as 

noted above (Fig. 5c, d). Only the garnet-bearing and albite granites extend below ASI = 

1 into the metaluminous and peralkaline fields. Most samples have agpaitic index values 

[AI = molar (Na+K)/Al] greater than 0.87 (0.83-1.09, av. 0.94; Table 1), indicating some 

degree of alkaline character (Liégeois et al., 1998).  

The Mueilha granites have many characteristics similar to A-type granites, such 

as high Ga/Al, Nb, Zr, Y, Ta and Th and significant depletion in MgO, CaO and P2O5 

(e.g. Bonin, 2007; Eby, 1992; Whalen et al., 1987). On the Ga/Al vs. FeO/MgO 

discrimination diagrams of Whalen et al. (1987), the Mueilha granites display clear A-

type character (Figs. 11c). Extensive fractional crystallization of I-type calc-alkaline 

granites can produce A-type residual liquids (e.g., Clemens et al., 1986; Whalen et al., 

1987). In the present case, the discrimination diagram of Frost et al. (2001) indicates a 

typical A-type signature (Fig. 10d). On the FeO-10*MgO-MnO ternary discrimination 

diagram of Zhang et al. (2012) for garnet, the analyzed garnets plot close to the boundary 

of the A-type granite field (Fig. 10e), with some unusual additional Mn enrichment. On 

the Y/Nb vs. Rb/Nb diagram of Eby (1992), the alkali feldspar and muscovite granite 
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samples plot in the A2-type granite field (Fig. 10f), while the garnet-bearing and albite 

granites are shifted from this field due to their depletion in Y. 

Using the Y vs. Nb and Rb vs. Y+Nb tectonic discrimination diagrams of Pearce 

et al. (1984), the Mueilha granite samples plot clearly in the within-plate granite field 

(Fig. 11a). On the multicationic diagram of Batchelor and Bowden (1985), the red 

granites plot in the post-orogenic granite field (Fig. 11b) while the white granites extend 

towards the anorogenic field. On the Rb-Hf-Ta ternary diagram of Harris et al. (1986), 

the samples form a trend from the late- to post-collision field into the within-plate field 

(Fig. 11c). In summary, numerous discriminants, based on whole-rock and mineral major 

and trace element chemistry, consistently indicate a within-plate, peraluminous, post-

collisional, A-type character for the red granites. The white granites are anomalous in 

some ways, perhaps due to post-magmatic alteration of their bulk chemistry. 

 

7. Petrogenesis 

7.1. Source rocks 

The Mueilha intrusion consists of highly fractionated A-type granites. A number 

of potential sources and models of formation have been proposed for the A-type rocks of 

the Eastern Desert of Egypt (e.g. Sami et al. 2017, 2018; Heikal et al, 2019; Abuamarah 

et al., 2019, Azer et al., 2019). The large differences in major and trace element 

concentrations and isotope ratios among various A-type granitic rocks in the Eastern 

Desert of Egypt strongly suggest that a variety of processes and sources were involved in 

their genesis (Farahat et al., 2007; Ali et al., 2012). In the particular case of the Mueilha 

intrusion, it been assigned to either magmatic (e.g. Salem et al., 1985; Morsy and 
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Mohamed, 1992; Abou El Maaty and Ali Bik, 2000) or metasomatic origins (e.g. El-Galy 

et al., 2016; Abu El-Rus et al., 2017). In fact, the distinction between magmatic and 

metasomatic processes may not be as absolute as once thought (Lundstrom, 2016; Azer et 

al., 2019), and transitional models may provide a path to reconciling the available 

evidence. 

Salem et al. (1985) concluded that the primary magmatic phase of the Mueilha 

intrusion was a late- to post-orogenic muscovite granite derived from crustal sources that 

evolved by fractional crystallization and some part of the intrusion was albitized by 

sodium metasomatism (see also Hassanen et al., 1995). Morsy and Mohamed (1992) 

argued that fluorine was an important complexing anion in the Mueilha magma and that 

this helps to explain their fractional crystallization pathway. Abu El-Rus et al. (2017) 

proposed that all the exposed Mueilha granites developed through metasomatic reactions 

involving hydrothermal fluids in the already-consolidated medium grained cupola of a 

tonalitic/granodioritic magma chamber. Curiously, they suggested that the albite granite 

(in their terminology, the milky white granite) was the least-altered exposed material, 

which changed gradationally into more altered red granites as a result of metasomatic 

enrichment in potassium. The field, petrographic, and geochemical evidence summarized 

below in section 7.3 rejects the model proposed by Abu El-Rus et al. (2017), showing 

that the red granite preserves numerous magmatic signatures that are overprinted in the 

white granite. 

The treatment of the entire Mueilha intrusion and all its subtypes of granite as 

cogenetic is consistent with the gradational petrologic boundaries within the intrusion, the 

similarity of the normalized trace element and REE patterns of all analyzed samples (Fig. 
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9) and the coherent trends without any clear compositional gaps in major and trace 

elements variation diagrams for both compatible and incompatible elements. 

The absence of intermediate or mafic igneous rocks in the Mueilha intrusion, even 

as enclaves or xenocrysts, argues against derivation by extensive fractionation 

crystallization of a mantle-derived mafic magma. Indeed, generation of highly evolved 

A-type granites by continuous fractional crystallization from parent mafic magma is 

inefficient and would require at least nine times the volume of the final product in initial 

mafic magma (Turner et al., 1992). Rather, the geochemistry, especially of the red 

granites, points to a felsic primary magma generated by partial melting of a juvenile 

crustal source. On the Y/Nb vs. Rb/Nb plot (Fig. 10f), the Mueilha red granites plot in the 

A2-type granite field, which Eby (1992) attributed to magmatic sources in continental 

crust or underplated mafic material after a cycle of continent-continent collision or 

island-arc magmatism. Although Nb and Ta are geochemically similar in many ways, 

crustal sources have elevated Nb/Ta compared to mantle sources (Smirnov et al., 1983), 

consistent with the higher contents of Nb (31-74 ppm) than of Ta (15-25 ppm) in the 

Mueilha granites and the dominance of columbite over tantalite. Among potential crustal 

sources for the parental melt of the Mueilha granites, the Neoproterozoic upper crustal 

basement rocks include schists and gneisses, metagabbro-diorite and I-type calc-alkaline 

granitoids. The Mueilha red granites are mildly peraluminous in character. Experimental 

results show that melting of schists and gneisses, whether their protoliths were pelitic 

sediments or quartz-rich aluminous greywackes, yields peraluminous compositions 

(Montel and Vielzeuf, 1997), leading us to favor the metasedimentary schists and 
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gneisses of the basement complex as a likely source for the primary magma of the 

Mueilha granites. 

Melting of the crustal rocks requires an elevated geotherm, which can occur along 

large-scale intra-continental fault systems and shear zones (Black et al., 1985) without 

development of mature rifts. The importance of such a mechanism in the post-collisional 

phase of the ANS is supported by the distribution of post-collisional A-type rocks, 

including rare-metal granites in the Eastern Desert of Egypt; they are associated with 

major faults, shear zones, and deep-seated fractures (e.g., Morsy and Mohamed, 1992; 

Mohamed, 1993). At deeper levels, anomalously elevated temperatures that result in 

partial melting of relatively thin continental crust are often assigned to ascent and 

underplating of mantle-derived mafic magma that, in turn, were generated by post-

orogenic lithospheric delamination. The lithospheric delamination model is commonly 

invoked to explain magmatism in the post-collisional stage (950-610 Ma) of the ANS 

(e.g. Avigad and Gvirtzman, 2009; Be’eri-Shlevin et al. 2011). The dyke swarms that cut 

the country rocks of the Mueilha intrusion support an extensional tectonic regime during 

its emplacement. Also, the common occurrence of core complexes, strike–slip faults, 

shear zones, and dike swarms in the basement rocks of Egypt (Blasband et al., 2000; 

Avigad and Gvirtzman, 2009) support the presence of an extensional regime during the 

post-collisional stage in the north ANS. Faults and shear zones help transmit anomalous 

heat flow to the middle crust more rapidly than simple conduction allows, enhancing 

partial melting of supracrustal sequences and formation of peraluminous A-type granites. 

The proposed model for the tectonomagmatic evolution of the Mueilha intrusion 

through partial melting of the juvenile crust of the ANS during the post-collisional phase 
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is shown in Figure 13. In this model, crustal and lithospheric thickening during the 

collisional phase of assembly of the ANS is followed by slab break-off and lithospheric 

delamination. The delamination forces upwelling and partial melting of hot 

asthenosphere, resulting in uplift and extensional doming of overlying crust. The mantle-

derived mafic magma underplate the crust, providing a source for elevated heat flow and 

evolved magma products that ascend into the lower crust and, along shear zones, 

ultimately into the upper crust. Partial melting results in formation and emplacement of 

coeval post-collisional calc-alkaline (from mafic underplate or crustal components) and 

alkaline (from metasedimentary components) magmas. In the ANS, the earlier stages of 

post-collisional alkaline magmatism overlap with the timing of the later stages of calc-

alkaline magmatism (Be’eri-Shlevin et al., 2011; Eyal et al., 2010). Storage and 

hybridization of the primary magma then promotes evolution to highly fractionated A-

type granites. The abundance of strike-slip faults and shear zones during the post-

collisional stage helps provides conduits for passage of these magmas to the shallow 

crust, explaining their common alignment along such structural trends.  

 

7.2. Geodynamic emplacement of Mueilha granites 

The Mueilha intrusion probably represents a magmatic cupola above highly 

fractionated A-type magma. The present study indicates that the southern portion of the 

Mueilha intrusion (albite granite) represents the preserved remnants of the apex of the 

magma, exposing a shallower level of emplacement, while the main portion of the 

Mueilha intrusion represents a deeper level. The intrusion of Mueilha granite appears to 

have reached subvolcanic levels based on the porphyritic texture of the white albite 
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granite along the upper contact. Subsequently, the granite magma crystallized, 

presumably from all its margins (although the lower contact is not exposed), forming the 

different types of red granite. The residual melt became enriched in water, alkalis, and 

fluorine, which led to escape of segregated fluids upwards, causing hydrofracturing of the 

overlying granite. The fluids caused greisenization and created pegmatites and quartz–

fluorite veins that cut the outer parts of the Mueilha intrusion and its surrounding country 

rocks (e.g., Schmitz and Burt, 1990). Alkalis liberated from feldspars destroyed during 

the greisenization caused local albitization in the outer and uppermost part of the magma 

chamber, generating the transitional pink garnet-bearing granite and the fully albitized 

white granite. Also, porphyritic snowball quartz crystals were produced in the apical and 

outer parts of the chamber, possibly a signature of “compositional quenching” whereby 

the solidus was shifted upwards in temperature as volatile activity rapidly declined 

(volatiles may have been either lost or incorporated into solid phases). The fine-grained 

varieties of albite granite with porphyritic texture might be a result of pressure quenching 

related to opening of fractures and vigorous escape of volatiles, perhaps associated with 

volcanic activity above the magma chamber. 

The mode of emplacement of the Mueilha intrusion is very similar to the Abu 

Dabbab and Nuweibi intrusions in the Eastern Desert of Egypt (Azer et al., 2019; 

Abuamarah et al., 2019). Each of these intrusions is divided into hypabyssal and 

porphyritic varieties suggesting that a gradient in emplacement depth extending to very 

shallow crustal levels is preserved and exposed in each case. The boundaries between the 

magmatic phases in all three of these intrusions are gradational and the near-simultaneous 

formation of the phases can be established with confidence. Notably, the marginal zones 
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around the Mueilha, Abu Dabbab and Nuweibi intrusions are quite similar, featuring 

pegmatite stocks, quartz and fluorite veins and greisen. 

 

7.3. Evidence for magmatic vs. metasomatic effects 

Rare-metal bearing granites in the Eastern Desert of Egypt have been attributed to 

various magmatic processes (Morsy and Mohamed, 1992; Mohamed, 1993; Jahn, 1996; 

Helba et al., 1997; Abou El Maaty and Ali Bik, 2000), to post-magmatic high-

temperature metasomatism (El-Galy et al., 2016; Abu El-Rus et al., 2017), or to a 

combination of magmatic and post-magmatic processes (Abuamarah et al., 2019; Azer et 

al., 2019; Heikal et al., 2019). 

Numerous observations support the magmatic origin of the Mueilha intrusion and 

document important magmatic signatures that were preserved despite the action of later 

metasomatic processes. These observations include: (1) the sharp intrusive contacts of the 

Mueilha granites with the country rocks; (2) coexistence of euhedral to subhedral crystals 

of primary feldspars, muscovite and biotite; (3) “snowball'' quartz, which is generally 

considered to be a magmatic texture (Vance, 1969; Müller and Seltmann, 1999) in the 

Mueilha granites, although similar textures have also been interpreted as metasomatic 

(Beus, 1982; Müller and Seltmann, 1999); (4) enrichment of the entire intrusion in fluid-

immobile rare metals, especially Nb and Ta; and (5) gradual increase in REE 

concentrations from the early phase (albite granite) to late phase (alkali feldspar granite) 

due to magmatic fractional crystallization.  

Although this evidence leads us to conclude that the Mueilha granites are 

primarily magmatic, effects of hydrothermal fluids and extensive replacement by 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



secondary minerals are observed in a marginal zone occupying the originally apical part 

of the intrusion. The effects of hydrothermal fluids are mainly manifested in the albite 

granite and to a lesser extent in the garnet-bearing granite by (1) development of greisen, 

pegmatites, quartz veins, and fluorite veins along fracture systems; (2) partial 

replacement of microcline crystals by secondary albite with preservation of the original 

crystal habit of microcline; (3) overgrowth of secondary albite around primary feldspars 

and quartz; (4) partial alteration of albite crystals to sericite and muscovite; and (5) 

presence of biotite relics within secondary muscovite. Abu El-Rus et al. (2017) concluded 

that the albite granite (milky white granite) of the Mueilha intrusion was unaltered 

magmatic material that changed gradationally into altered red granites as a result of 

metasomatic enrichment in K-Si fluids. We concur with Abu El-Rus et al. (2017) that the 

intrusion is partly magmatic and partly metasomatic product, however, we disagree 

strongly as to which zone of the intrusion is the primary product and which is the altered 

product. We present clear textural, mineralogical, and geochemical evidence that the 

alkali feldspar and muscovite granites are rather fresh magmatic products, while the 

overlying white granite is highly metasomatized. As metasomatic fluids are buoyant and 

mostly escape upwards, the placement of the altered phase at the top of the intrusion is 

physically more plausible. 

The presence of pegmatite indicates that the granite melts were vapor saturated 

during their final evolutionary stage (London, 2015). Volatile concentrations are 

therefore the key to constraining the fractionation behavior of the Mueilha granites. 

Pegmatite pockets display gradational contacts with the host granite, indicating that they 

represent products of in situ fractionation of granitic magma. 
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The occurrence of F-bearing minerals such as fluorite and the alteration of 

primary Nb-Ta oxides to fluorcalciomicrolite indicate the presence of fluids containing 

appreciable fluorine (F). The Qz–Ab–Or plots of normative compositions (Fig. 13a) show 

that the Mueilha granites lie close to the minimum melt composition at 1 kbar with 

excess H2O fluid containing 1% to 4% F (Manning, 1981). Increasing water pressure 

shifts the location of the granite minimum towards the albite vertex, supporting a larger 

role for fluids in forming the albite granite than the alkali feldspar granite. The source of 

F-rich fluids in granitic systems has been attributed variously to magmatic (e.g., Cuney et 

al., 1992) and metasomatic sources (e.g., Nurmi and Haapala, 1986). Although sub-

solidus re-equilibration texture and formation of secondary minerals at the expense of K-

feldspar and mica occur in the upper zone of the Mueilha intrusion, a magmatic origin for 

the hydrothermal solutions that affected these granites is favored by the following 

observations. The transition from red granite to altered white granite is gradational and is 

associated with pegmatites with gradational boundaries, suggesting that crystallization of 

the red granites was the source of fluids that ascended and altered the white granites. The 

crystallization of the Mueilha granite eventually produced a saturated, late-magmatic, F-

bearing fluid. The fluids migrated toward the apex of the magmatic cupola, where they 

reacted with still hot but subsolidus albite granite. It seems unlikely that externally 

sourced fluids would generate the relations observed. 

The chemical composition and texture of garnet can be used to indicate the 

pressure-temperature-fluid activity conditions of garnet growth and hence at least one 

stage in the petrogenesis of its host rock (e.g. Whitworth, 1992; Zhang et al., 2012). The 

very spessartine-rich, subhedral to euhedral garnets in the garnet-bearing phase of the 
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Mueilha intrusion are consistent with growth from highly evolved, silica-rich magma 

(Whitworth, 1992). Although the Mn–Mg–Fe ternary composition of the garnets falls 

within the very broad and permissive magmatic field on the plot of Miller and Stoddard 

(1981) (Fig. 5f), their high Mn contents place them outside the S-type magmatic field of 

Dahlquist et al. (2007) and outside any of the granite-type garnet fields in the compilation 

of Zhang et al. (2012). Yet the compositions of the garnets from the present study are 

similar to garnet compositions reported from several post-collisional granites in the 

Eastern Desert of Egypt (Azer et al., 2019; Abuamarah et al., 2019). The most likely 

resolution of the observation that the garnet compositions in the Mueilha garnet-bearing 

phase are broadly magmatic and yet anomalous compared to all the standard tectonically-

interpreted granite types is that they represent a transitional stage, somewhere on the 

spectrum from late-magmatic to hydrothermal, having grown from a very H2O- and F-

rich silica-rich peralkaline magma at a temperature below the F-free granite minimum. 

This is consistent with exposure of garnet-bearing granite as a pinkish-white marginal 

unit, exposed near contacts between red granite and metasediments. 

 

7.4. Formation of Mueilha granites via crystal fractionation 

Field studies, textural and compositional variations of the pluton are consistent 

with evolution through magmatic fractionation without significant assimilation, leading 

eventually to fluid saturation and hydrothermal alteration of the upper parts of the pluton. 

Chemically, assimilation might be difficult to recognize since the country rocks are 

similar to the likely source rocks, but the near-total absence of stoped blocks, xenoliths, 

or enclaves supports a negligible role for upper-level assimilation. The geochemical 
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characteristics of the Mueilha granites indicate their evolution as a single magmatic suite 

from a common parental magma by extensive fractional crystallization. The good 

correlations between SiO2 and most major and trace element concentrations (Figs. 8, 9) 

and the single trend in Rb/Sr vs. Sr (Fig. 13b) are consistent with a cogenetic magmatic 

suite. The consistent shape of the REE patterns with generally increasing concentrations 

from the early phase (albite granite) to the late phase (alkali feldspar granite) are likewise 

consistent with progressive fractional crystallization through the rock types; this is a 

signature that is relatively insensitive to late alteration. In addition to the albite granite 

being the earliest phase, a concentric progression of the main red granite phase is 

apparent, from the marginal garnet-bearing granite inwards to the more evolved 

muscovite granite and finally the most evolved alkali feldspar granite. The negative P and 

Ti anomalies of the whole suite indicate that there was a major role for early fractionation 

of apatite and Fe-Ti oxides. Very pronounced negative Eu anomalies and strong depletion 

in Ba and Sr imply extensive fractionation of feldspar, beginning at a stage more 

primitive than any exposed rocks and continuing through the observable outcrop suite.  

Zr/Hf and Nb/Ta ratios are generally invariant during common magmatic 

processes, but undergo significant variation during extreme magmatic fractionation, 

especially during interactions between magma and water (Ballouard et al., 2016). The 

Mueilha granites show wide variations in their Zr/Hf (5.9-10.9) and Nb/Ta (1.3-4.4) 

ratios, indicating extreme magmatic fractionation and fluid interaction. Several rare-metal 

bearing minerals are present in the Mueilha granites, including columbite, 

fluorcalciomicrolite and wodginite. These minerals are indicators of high degrees of 

crystal fractionation (Wang et al., 2017). 
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7.5. Origin of Nb-Ta oxides 

Niobium and tantalum are strategic metals in limited global supply and are 

generally derived from a small set of important ore minerals. Tantalum and niobium 

oxides concentrate in a few families of related mineral species including the columbite-

tantalite [(Mn,Fe)Nb2O6] to (Mn,Fe)Ta2O6] series, the microlite-pyrochlore 

[[(Na,Ca)2Ta2O6(O,OH,F)]  to (Na,Ca)2Nb2O6(O,OH,F)] series, and the wodginite 

[Mn(Sn,Ta, Ti)Ta2O8] group. All of these are known from post-collisional granites in the 

Eastern Desert of Egypt (e.g. Helba et al., 1997; Abuamarah et al., 2019; Heikal et al., 

2019; Azer et al., 2019). Columbite-(Mn), columbite-(Fe), fluorcalciomicrolite and 

wodginite are found in the Mueilha intrusion. The identification of Ta-Nb mineralization 

in the Mueilha granites suggests significant potential of the pluton as an exploration site 

for rare-metals. 

The positive correlations of whole-rock Nb and Ta with increasing SiO2 in the 

Mueilha suite indicate that the enrichment of Ta and Nb is largely controlled by 

magmatic processes; they were not significantly transported or concentrated by the 

metasomatic fluids that affected the albite granite, although their mineralogical hosts may 

have been modified locally. Rather, the accumulation of volatiles and low-degree melting 

components towards the later magmatic stages of the intrusion likely played a role in the 

enrichment of the red granite phase in rare metals. The solubility of rare metal complexes 

in magmas decreases with decreasing temperature (Chevychelov et al., 2005), an effect 

that probably drove crystallization of rare metal minerals in the later phases of the 

intrusion, especially in the alkali feldspar granite. The inner part of the Mueilha pluton, 
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where the most highly fractionated alkali feldspar granite is exposed, contains notably 

higher modal abundance of Nb-Ta oxide phases and higher whole-rock Nb-Ta grades 

than the periphery of the intrusion.  

Petrographic examination shows that the Nb-Ta oxides are mainly associated with 

muscovite and biotite. The magmatic nature of the biotite and muscovite is indicated by 

their euhedral to subhedral crystal habit (Fig. 4d, k), their presence as inclusions in 

feldspars and quartz, and their chemical compositions (Fig. 4b). Thus, the association of 

Nb-Ta oxides with magmatic micas implies that primary Nb-Ta mineralization was also a 

magmatic process (Van Lichtervelde et al., 2018). 

The mineralization of the Nb-Ta oxides began with primary magmatic 

crystallization of homogeneous euhedral to subhedral columbite, zoned both within and 

among crystals from very Nb-rich columbite-(Mn) towards Ta-bearing columbite-(Fe). 

Later these were overgrown and partly replaced by more Ta-rich columbite-(Mn) as well 

as hydrothermally-grown fluorcalciomicrolite and wodginite. Experimental data prove 

that columbite can crystallize from a melt that has MnO + FeO contents >0.05 wt.% and 

Nb concentrations of ~70–100 ppm at relatively low temperatures, ~600 oC (Linnen and 

Keppler, 1997). Experiments also show that fluxes and melt compositions have strong 

effects on the solubility of tantalum and niobium oxides (e.g., Linnen and Keppler, 1997; 

Chevychelov et al., 2010; Fiege et al., 2018; Van Lichtervelde et al., 2018; McNeil et al., 

2020).  

Some columbite crystal cores show normal zoning (Fig. 4k), with smooth and 

continuously correlated variations in Mn/(Mn+Fe) and Ta/(Ta+Nb), surrounded by a 

discrete mantle with modestly elevated Ta. Such zoning could conceivably reflect either 
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disequilibrium growth (with delivery of Nb and Ta to the growing crystal limited by 

sluggish diffusion in the melt) or equilibrium growth (with partitioning controlled by 

changes in equilibrium conditions and residual melt composition during magmatic 

fractionation) (Sami et al., 2017). In either case, the trend of correlated increasing 

Nb/(Nb+Ta) and Mn/(Mn+Fe) seen in the core of the Mueilha columbite is commonly 

interpreted as a primary magmatic fractionation trend (e.g. Černý et al., 1986) (Fig. 4c). 

The regularly zoned core is surrounded by a Ta-enriched columbite zone, with some 

evidence of embayment and resorption of the core that may indicate effects of a late- to 

post-magmatic, corrosive, supercritical vapour phase.  

Finally, most columbite grains are overgrown or partly replaced by very Ta-rich 

phases, fluorcalciomicrolite and wodginite. These phases always surround remnants of 

corroded, rounded, or resorbed columbite and are not found as independent crystals. 

Hydrothermal overprints can cause replacement textures in Nb-Ta oxides (Van 

Lichtervelde et al., 2007) similar to those observed in backscatter images of the present 

samples (Fig. 4c). The fluorcalciomicrolite is calcium-dominant but also contains notable 

levels of sodium and represents the product of interaction between primary Mn and Fe-

rich oxides of Nb and post-magmatic hydrothermal fluids with high activity of alkalis and 

calcium (Atencio et al., 2010). 

 

8. Conclusions 

 The post-collisional Mueilha granite intrusion was emplaced into metamorphic 

country rocks with sharp intrusive contacts. The Mueilha intrusion forms an 

ellipsoidal intrusive stock covering ~ 7.5 km2. 
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 The Mueilha intrusion likely represents a magmatic cupola above highly fractionated 

A-type magma. The intrusion crystallized under subvolcanic conditions and emplaced 

a porphyritic phase along the upper contact. Subsequently, the granite magma 

crystallized inwards from its margins, forming a differentiation series from pinkish-

white garnet-bearing granite through red muscovite granite to red alkali feldspar 

granite. 

 The main emplacement mechanism and evolutionary sequence of the Mueilha 

granites was magmatic, although the effects of hydrothermal fluids and extensive 

replacement by secondary minerals are observed in an upper marginal zone at the 

apex of the granitic intrusion. Early stages of hydrous metasomatism are marked by 

the crystallization of anomalously Mn-rich garnet in the pinkish-white garnet-bearing 

granite, while extensive alteration and extensive K leaching left a zone of white albite 

granite. 

 The Mueilha granites are highly fractionated with slightly peraluminous character 

preserved in the fresh red granite. They have many characteristics similar to A-type 

granites, such as high Ga/Al, Nb, Zr, Y, Ta and Th and significant depletion in MgO, 

CaO and P2O5. 

 The Mueilha granites show subparallel chondrite-normalized REE patterns, with 

enrichment of HREE relative to LREE [(La/Lu)n = 0.09 to 0.31] and strongly 

negative Eu anomalies, [(Eu/Eu*)=0.01-0.08]. 

 Nb-Ta oxides mineralization began with crystallization of normally zoned magmatic 

euhedral to subhedral columbite, overgrown later by hydrothermal 

fluorcalciomicrolite and wodginite. 
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 The whole intrusion appears to have formed in a single magmatic pulse. Magmatic 

evolution is consistent with simple fractional crystallization, followed by a probably 

endogenous stage of hydrothermal alteration that produced pegmatite, greisen, quartz 

and fluorite veins, and the white albite granite cap. The partial melting of juvenile 

ANS crust to produce the parent magma of Mueilha granites was likely caused by 

underplating of mantle-derived magma generated during a post-collisional 

lithospheric delamination process, in the presence of extensional stresses that 

promoted ascent and emplacement of highly fractionated upper crustal plutons along 

regional strike-slip faults and shear zones. 
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Figure 1. (a) General geologic map of the central and southern sectors (dividing line after 

Stern and Hedge, 1985) of the Eastern Desert of Egypt showing the locations of 

the most important rare-metal bearing granite intrusions: (1) Umm Naggat, (2) 

Umm Samra, (3) Abu Dabbab, (4) Nuweibi, (5) Ineiga, (6) Homrit Waggat, (7) 

Igla, (8) Zabara, (9) Mueilha, (10) Nugrus, (11) El-Gharabiya, (12) Nikeiba, (13) 

Homrit Akarem, and (14) Um Ara. (b) Satellite image (Google Earth) of the 

Mueilha area showing the topographic expression of the Mueilha granite intrusion 

(light color) into dark metasedimentary rocks. (c) Geologic map of the Mueilha 

area (after Abu El-Rus et al., 2017). (d) Schematic cross-section (no vertical 

exaggeration) showing the field relationships between the different rock types of 

the Mueilha intrusion and their country rocks. Note line of section marked on 

Figure 1c. 

 

Figure 2. Field photographs of the Mueilha intrusion. (a) and (b) Sharp intrusive contacts 

between the Mueilha intrusion and its metamorphic country rocks. (c) Apophysis 

of the Mueilha granite into the adjacent metasediments. (d) Small diapir of 

Mueilha granite piercing the country rock. (e) Sharp intrusive contact between the 

red and white granites. (f) Roof pendant of the white granite above the red granite. 

 

Figure 3. Hand specimens of the rock types in the Mueilha intrusion: (a) alkali feldspar 

granite, (b) muscovite granite, (c) garnet-bearing granite, and (d) albite granite. 
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Figure 4. Key petrographic features (a, b, d, f, i and j in cross-polarized transmitted light; 

g in plane-polarized transmitted light; c, e, h, k and l in back-scattered electron 

images). (a) Plagioclase inclusion within perthite crystal. (b) Inclusion of zircon 

and secondary muscovite veinlet within quartz. (c) Overgrowth and partial 

replacement of zoned columbite by late Ta-rich oxide phases. (d) Tabular crystal 

of primary muscovite with high interference color. (e) Fine anhedral crystals of 

Nb-Ta oxides included in feldspars. (f) Myrmekitic intergrowth between quartz 

and K-feldspar. (g) Fractured garnet crystals surrounded by reaction rims of 

altered chlorite. (h) Corroded crystal of Nb-Ta oxide. (i) Snowball texture of 

albite laths within quartz. (j) Corroded muscovite within K-feldspar. (k) Tabular 

columbite crystal with spotted Ta-enriched margins, associated with biotite. (l) 

Homogeneous tabular columbite crystal with normal zoning, interstitial among 

feldspar crystals. 

 

Figure 5. Mineral chemistry of Mueilha intrusion samples. (a) Compositional fields for 

primary and secondary muscovite in the ternary diagram of Miller et al. (1981). 

(b) TiO2-(FeO(t)+MnO)-MgO ternary diagram for classification of biotite (after 

Nachit et al. 2005). (c) FeO(t) vs. Al2O3 discrimination diagram for biotite (Abdel-

Rahman, 1994).(d) Mg vs. Al discrimination diagram for biotite (Nachit et al., 

1985).(e) Chemical composition and nomenclature of the columbite-tantalite 

group minerals based on Ta/(Ta+Nb) vs. Mn/(Mn+Fe) ratios. (f) Mn-Mg-Fe 

ternary discrimination diagram for garnet (Miller and Stoddard, 1981). 
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Figure 6. Whole-rock major element chemistry. (a) Nomenclature of the plutonic rocks using the 

R1-R2 diagram (De la Roche et al., 1980).(b) Q/(F/)-ANOR diagram for normative 

classification of granitoids (Streckeisen and Le Maitre, 1979); Q/=100*Q/(Q+Or+Ab+An); 

F/ = (Ne+Lc+Kp)/(Ne+Lc+Kp+Or+Ab+An); ANOR=100*An/(Or+An).  

 

Figure 7. Variation diagrams of some major oxides against SiO2. Symbols as shown in the legend 

of Fig. 5. 

 

Figure 8. Variation diagrams of some whole-rock trace elements against SiO2. (a) Six panels 

showing trace elements that positively correlate with SiO2. (b) Eight panels showing 

trace elements that negatively correlate with SiO2. Symbols as shown in the legend of 

Fig. 5. 

 

Figure 9. Normalized multi-trace element diagrams for whole-rock chemistry. (a) Mid-ocean 

ridge basalt (MORB)-normalized extended trace element diagram; MORB normalization 

values from Sun and McDonough (1989). (b) Chondrite-normalized REE patterns; 

chondrite values from Evensen et al. (1978). Symbols as shown in the legend of Fig. 5. 

 

Figure 10. Classification diagrams based on whole-rock chemistry. (a) 

(Al2O3+CaO)/(FeO(t)+Na2O+K2O) versus 100*(MgO+FeO(t)+TiO2)/SiO2 for distinguishing 

between calc-alkaline, highly fractionated calc-alkaline, and alkaline granite (Sylvester, 
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1989). (b) Al2O3/(Na2O+K2O) versus Al2O3/(CaO+Na2O+K2O3) for granitoid rocks (after 

Maniar and Piccoli, 1989). (c) Ga/Al against FeO(t)/MgO for distinguishing between I, S, 

M and A-type granites (Whalen et al., 1987). (d) Chemical classification diagram using 

SiO2 versus Na2O+K2O−CaO (Frost et al., 2001). (e) FeO-10*MgO-MnO ternary 

discrimination diagram for garnet; the fields of different granites are from Zhang et al. 

(2012). (f) Rb/Nb versus Y/Nb diagram (Eby, 1992) to distinguish between A1 and A2 

granitoids; A1 are anorogenic A-type granites with mantle signatures whereas A2 are 

post-collisional A-type granites with crustal sources. Symbols as shown in the legend of 

Fig. 5. 

 

Figure 11. Further tectonic discrimination diagrams based on whole-rock trace-element 

chemistry. (a) Nb vs. Y diagram (Pearce et al., 1984).. (b) R1-R2 multicationic diagram 

(Batchelor and Bowden,1985). (c) Hf-Rb/30-3*Ta ternary diagram (after Harris et al., 

1986). Abbrevations: R1=4Si-11(Na+K)-2(Fe+Ti); R2=6Ca+2Mg+Al; VAG: volcanic-arc 

granites; syn-COLG: syn-collisional granites; WPG: within-pate granites; ORG: ocean-

ridge granites. Symbols as shown in the legend of Fig. 5. 

 

Figure 12. Simplified model for the geodynamic evolution of the post-collisional Mueilha 

intrusion showing lithospheric delamination, upwelling of asthenospheric mantle, 

generation of underplated basic magma, partial melting of lower and middle crust, 

generation of A-type granitic magma, emplacement of highly-fractionated magma 

extending to subvolcanic levels, and finally erosional removed of cover to explore the 

top of the pluton. Processes not shown in this two-dimensional section include 
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cessation of collision and slab breakoff at the beginning of the cycle or tilting of the 

pluton to expose a depth section at the end. 

 

Figure 13. (a) Normative composition of the Mueilha granites plotted in Qz–Ab–Or 

projection. Dashed lines show quartz-alkali feldspar cotectics and the trace of the 

water-saturated minimum melt compositions in the haplogranite system at total 

pressure ranging from 0.5 to 10 kbar (Holtz et al., 1992; Winkler et al., 1975). 

Solid line shows the trace of the minimum melt composition at 1 kbar with excess 

H2O and increasing fluorine (F) content up to 4 wt.% F (Manning, 1981). (b) 

Rb/Sr versus Sr diagram. Symbols as shown in the legend of Fig. 5. 

Table 1. Major oxide and trace element contents of the Mueilha granites, Eastern Desert, Egypt.  
Rock 
type  

Alkali feldspar granite Muscovit granite 
Garnet bearing 

granite 
Albite  granite 

Sample 
No 

MH0 
MH
1a 

MH
1b 

MH
2 

MH
3 

MH
4a 

MH
4b 

MH
5 

MH10 MH14 MH6 
MH

7 
MH

8 
MH

9 
MH
11 

Major oxides 
(wt.%)              

  

SiO2 78.35 
76.6
3 

76.0
4 

76.
5 

74.
19 

75.1
3 

75.1
8 

74.
7 

73.29 71.89 
73.6
3 

74.
43 

73.
89 

74.
29 

73.1
4 

TiO2 0.01 0.02 0.01 
0.0
2 

0.0
2 

0.01 0.02 
0.0
2 

0.02 0.04 0.04 
0.0
3 

0.0
3 

0.0
2 

0.03 

Al2O3 12.1 
13.2
3 

13.1
9 

13.
11 

14.
77 

14.2
9 

14.1
4 

14.
4 

15.13 15.08 
14.7
4 

14.
38 

14.
57 

14.
8 

15.1
1 

Fe2O3 0.44 0.46 0.48 
0.4
5 

0.4
7 

0.45 0.47 
0.4
5 

0.45 0.46 0.43 
0.4
4 

0.4
2 

0.4
3 

0.46 

MnO 0.04 0.03 0.04 
0.0
2 

0.0
4 

0.04 0.04 
0.0
3 

0.03 0.05 0.02 
0.0
3 

0.0
3 

0.0
2 

0.04 

MgO 0.02 0.01 0.01 
0.0
2 

0.0
1 

<dl 0.02 
0.0
1 

0.03 0.04 <dl <dl 
0.0
1 

0.0
2 

0.02 

CaO 0.26 0.31 0.28 
0.2
7 

0.3 0.28 0.26 
0.3
4 

0.35 0.44 0.33 
0.3
4 

0.3
6 

0.3
2 

0.38 

Na2O 4.12 4.78 4.85 4.9 
4.9
2 

4.81 4.68 
4.5
9 

6.76 7.41 6.64 
6.5
4 

5.9
5 

5.5
2 

7.16 

K2O 4.28 3.72 3.91 
3.8
7 

3.8
5 

4.02 4 
4.0
5 

3.42 3.87 3.99 
3.2
1 

3.8
4 

3.7
8 

3.26 

P2O5 0.01 0.01 0.02 
0.0
1 

0.0
1 

0.01 0.03 
0.0
1 

0.01 0.01 <dl <dl <dl <dl 0.01 

LOI 0.47 0.26 0.25 
0.2
8 

0.3
4 

0.35 0.3 
0.4
2 

0.25 0.28 0.27 
0.2
1 

0.3 
0.3
4 

0.33 

Total 100.21 
99.4
2 

99.1
3 

99.
47 

98.
91 

99.3
9 

99.1
2 

99.
03 

99.7 99.57 
100.
19 

99.
75 

99.
43 

99.
42 

99.9
9 

Trace elements 
(ppm)              

  

Rb 543.1 
498.
2 

452.
5 

494
.6 

455
.8 

465.
3 

476.
3 

455
.7 

436.2 401.3 
390.
3 

405
.6 

428
.1 

431
.6 

409.
5 
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Ba 15.8 14.4 17.5 
11.
5 

19.
6 

8.3 12.3 
11.
2 

20.5 29.7 17.5 
19.
1 

24.
5 

26.
3 

24.2 

Sr 11.3 12.5 10.5 13 
15.
6 

12.4 13.5 
14.
7 

15.4 21.5 13.5 
19.
4 

16.
9 

17.
6 

16.2 

Nb 69.8 68.5 74.4 
71.
3 

66.
4 

54.7 61.8 
59.
3 

64.4 54.6 56.7 
52.
4 

30.
5 

67.
2 

61.5 

Zr 59.1 70.3 78.8 
66.
3 

72.
4 

71.8 77.7 
85.
4 

43.5 43.4 58.9 
64.
1 

58.
2 

58.
6 

49.7 

Hf 8.3 7.5 8.6 6.1 7.8 8.1 8.5 8.8 6.5 7.4 6.2 7 6 6.7 7.6 

Y 87.6 77.6 89.5 73 
83.
4 

78.2 76.5 
81.
3 

29.4 17.6 36.3 
35.
9 

54.
4 

40.
9 

15.4 

Zn 98.4 86.9 
107.
1 

82.
5 

91.
7 

75.6 
101.
5 

80.
9 

27.3 26.4 15.3 
37.
7 

42.
3 

70.
5 

24.5 

Cu 2.5 3.3 2.2 2.8 2.8 3.6 2.5 3.2 4.7 5.2 3.2 3.1 3.7 4.2 5.5 

Ni 3.3 3.5 3.1 2.9 4.3 5.6 5 4.3 5.9 8.1 7.2 6.4 5.1 6.4 6.3 

Cr 10.6 14.3 13.5 
12.
1 

16.
5 

9.8 14.2 
13.
1 

18.6 20.7 16.8 
17.
3 

17.
6 

18 19.2 

V 1.4 <dl 2.2 <dl 1.7 <dl 2.7 1.8 2.4 3.9 2.2 1.9 2.1 2.1 2.7 

Pb 24.3 21 17.5 
23.

5 

18.

6 
27.6 22.5 

21.

7 
25.7 20.5 27.9 

31.

2 

30.

3 
21 22.6 

Sc 0.5 0.6 0.5 0.7 0.8 0.7 0.6 0.7 1.1 1.2 0.7 0.9 1.1 1 0.9 

Ta 24.8 23.3 18.8 
16.
3 

15.
4 

18.1 21.8 
19.
3 

21.4 19.2 17.9 
23.
1 

23.
48 

22.
7 

24.3 

W 0.5 0.7 0.5 0.4 0.3 0.6 0.4 0.3 0.3 0.3 0.5 0.2 0.7 0.4 0.4 

Th 21.2 23.5 24.5 
18.
5 

19.
6 

22.7 20.4 
21.
5 

17.6 15.7 18.4 
17.
1 

17.
1 

19.
1 

16.4 

U 12.2 11.8 10.1 
13.
5 

9.4 6.8 8.1 9.7 5.6 4.5 4.4 5.4 4.9 6.1 6.2 

Ga 29.5 32.7 31.8 
33.
6 

37.
5 

36.9 39.4 
42.
1 

48.7 52.8 47.3 
46.
3 

50.
6 

46.
8 

54.4 

Sn 202.1 
139.
4 

191.
8 

117
.5 

200
.4 

126.
3 

87.9 
90.
4 

126.4 137.2 76.7 
91.
1 

125
.8 

133
.2 

110.
9 

Geochemical parameters 
            

  

AI 0.94 0.90 0.93 
0.9
4 

0.8
3 

0.86 0.85 
0.8
3 

0.98 1.09 1.03 
0.9
9 

0.9
6 

0.8
9 

1.01 

ASI 1.02 1.06 1.04 
1.0
3 

1.1
5 

1.12 1.13 
1.1
5 

0.98 0.88 0.93 
0.9
7 

1.0
0 

1.0
8 

0.94 

CIA 50.43 
51.4
9 

50.8
8 

50.
69 

53.
54 

52.7
8 

53.0
5 

53.
40 

49.44 46.73 
48.1
8 

49.
18 

49.
93 

51.
81 

48.5
6 

AI = molar 
(Na+K)/Al               
ASI= molar Al/(Ca+Na+K) 

          
CIA = molecular 
[Al/(Al+Ca+Na+K)]*100             

 

Table 2.  CIPW norm compostions of the Mueilha granites, Eastern Desert, Egypt. 

Rock type  
Alkali feldspar 

granite 
Muscovite granite 

Garnet bearing 
granite 

Albite  granite 

Sample No.  
MH
0            

MH
1a           

MH
1b           

MH
2            

MH
3            

MH
4a           

MH
4b           

MH
5            

MH10           MH14           
MH
6            

MH
7            

MH
8            

MH
9            

MH
11           

Quartz 
37.
32 

33.9
5 

32.4 
32.
63 

30.
37 

31.2
2 

32.2
5 

31.
98 

20.14 17.04 
20.
58 

23.
55 

23.
8 

26.
98 

15.3
3 

Corundum 
0.2
4 

0.8 0.52 
0.3
9 

2.0
1 

1.55 1.73 
1.8
9 

- - - - - 
1.0
5 

- 

Orthoclase 
25.
39 

22.1
7 

23.3
9 

23.
07 

23.
09 

23.9
9 

23.9
2 

24.
28 

20.32 23.04 
23.
63 

19.
09 

22.
91 

22.
52 

18.6 

Albite 35 
40.7
9 

41.5
4 

41.
82 

42.
25 

41.1
1 

40.0
8 

39.
4 

57.51 56.41 
53.
69 

55.
69 

50.
82 

47.
1 

57.4
7 

Anorthite 
1.2

3 
1.49 1.27 

1.2

9 

1.4

4 
1.34 1.11 

1.6

5 
0.83 0 0 

0.3

9 

1.7

1 
1.6 0 

Acmite - - - - - - - - - 0.24 
0.2
1 

- - - 0.89 

Na-

Metasilicat
- - - - - - - - - 1.51 

0.5

5 
- - - - 
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e 

Diopside - - - - - - - - 0.75 1.86 
1.4
6 

1.1
7 

0.0
8 

- 1.56 

Hypersthen
e 

0.6
5 

0.62 0.68 
0.6
2 

0.6
5 

0.62 0.68 
0.6
1 

0.27 - - - 
0.5
1 

0.5
9 

5.47 

Magnetite 
0.1
1 

0.11 0.12 
0.1
1 

0.1
2 

0.11 0.12 
0.1
1 

0.11 - - 
0.1
1 

0.1
1 

0.1 0.59 

Ilmenite 
0.0
2 

0.04 0.02 
0.0
4 

0.0
4 

0.02 0.04 
0.0
4 

0.04 0.08 
0.0
8 

0.0
6 

0.0
6 

0.0
4 

0.06 

Apatite 
0.0
2 

0.02 0.04 
0.0
2 

0.0
2 

0.02 0.07 
0.0
2 

0.02 0.02 - - - - 0.02 

  
              

  

Colour 
Index 

0.7
8 

0.77 0.82 
0.7
7 

0.8
1 

0.75 0.83 
0.7
6 

1.16 1.72 
1.3
2 

1.2
6 

0.7
5 

0.7
4 

7.68 

Diff. Index 
97.
72 

96.9 
97.3
3 

97.
52 

95.
7 

96.3
3 

96.2
5 

95.
66 

97.97 96.49 
97.
9 

98.
33 

97.
53 

96.
6 

91.4 

  
              

  

ANOR 
4.6
2 

6.30 5.15 
5.3
0 

5.8
7 

5.29 4.43 
6.3
6 

3.92 0.00 
0.0
0 

2.0
0 

6.9
5 

6.6
3 

0.00 

Q 
37.

72 

34.5

0 

32.8

6 

33.

02 

31.

26 

31.9

7 

33.1

2 

32.

86 
20.38 17.66 

21.

02 

23.

86 

23.

98 

27.

47 

16.7

7 

 

Table 3. Rare earth element contents of the Mueilha granites, Eastern Desert, 

Egypt. 
Rock 

type  

Alkali feldspar 

granite 
Muscovite granite 

Garnet bearing 

granite 
Albite granite 

Sample 
No 

M
H0 

MH
1a 

MH
1b 

M
H2 

M
H3 

MH
4a 

MH
4b 

M
H5 

MH10 MH14 
M
H6 

M
H7 

M
H8 

M
H9 

MH
11 

La 
10.

73 
9.18 12.8 

5.8

9 

5.4

3 
6.77 4.46 

6.2

6 
4.18 3.76 
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Graphical abstract: 
 
Highlights: 

 The Mueilha intrusion was emplaced as a high-level magmatic cupola  

 The geochemistry of the Mueilha granites is typical of rare-metal granites 

 They are weakly peraluminous and highly fractionated with A-type character  

 The Mueilha granites are evolved through a transitional magmatic–hydrothermal stage The 

primary magma was generated by partial melting of the juvenile continental crust  
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