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Supplemental Figure 1. 
A. For model validation purposes, IKK (top) and NF-!B (bottom) activities were measured in response to 

1ng/ml TNF in wild type cells, by in vitro kinase assay and electrophoretic mobility shift assay (EMSA), 

respectively.  

B. I!B" and A20 protein levels were simulated in response to 1ng/ml TNF stimulation.  Model outputs were 

validated by experimental measurements of both proteins via immunoblotting, where I!B" levels were 

measured in MEFs and A20 levels in HeLa cells.  Antibodies for I!B" (1:5000) and A20 (1:100) were 

from Santa Cruz Biotechnology and Imgenex, respectively. 

C. To estimate A20 protein halflife, HeLa cells were pretreated for 3hr with 1ng/ml TNF; this stimulation 

regimen was chosen because A20 mRNA is back to a basal expression level by this timepoint.  The 

indicated timepoints were assayed for A20 and Actin protein expression via immunoblotting following 

stimulus removal.  Basal A20 expression is denoted in the (-) lane.  These data suggest that the halflife for 

A20 protein is approximately 8hr. 

D. The model was simulated with pulses of increasing TNF duration (x-axis) and the resulting durations of 

IKK and NF-!B activities over a threshold of 20nM were calculated and plotted. 
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Supplemental Figure 2. 
A. p65 nuclear localization was measured in nuclear extracts derived from wild type and a20

-/- cells in 

response to 1ng/ml TNF.  mSin3A was used as a nuclear localization control.  p65 and mSin3A antibodies 

were from Santa Cruz Biotechnology, and used at a dilution of 1:1000 each. 

B. IKK activation was simulated in wild type, i!b"-/- and a20
-/- cells in response to TNF, as represented by line 

plots.  IKK activation is normal in both knockouts; however, attenuation of late IKK activity is abrogated in 

the a20
-/-.  The amplitude of late IKK activity has previously shown to be important for dictating the 

duration of NF-!B activity (Werner et al., 2005). 

C. IKK activation in response to chronic TNF stimulation was modeled in wild type cells (left), which possess 

both constitutive and inducible I!B"/A20 transcription parameters.  We then set either inducible I!B" 

(middle panel) or A20 (right panel) transcription rates to zero, while modulating the rate of constitutive 

transcription by 2x (where –10 ! x ! 10), and plotted IKK activity over time as represented in a color 

heatmap, ranging from blue (0 nM) to red (50 nM). 

D. Basal I!B" protein expression was measured via immunoblotting in cytoplasmic extracts in wild type and 

i!b"-/- MEFs retrovirally transduced with constitutively expressing human full-length I!B" or empty 

vector (EV).  I!B" antibody was purchased from Santa Cruz Biotechnology and used at a dilution of 

1:10,000.  (*) denotes a non-specific band. 

E. A20 protein expression was measured in whole cell RIPA lysates in cells retrovirally transduced with either 

constitutively (pBABE) or inducibly (fIL8) expressing A20 in response to 1ng/ml TNF.  
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Supplemental Figure 3. 
A. I!B" and A20 mRNA levels were measured in wild type cells treated with either 1ng/ml TNF or IL-1 via 

RNase Protection Assay (RPA).  

B. NF-!B activation in a20
-/-

 cells was computationally simulated over time with a range of TNF doses  

(10-3
!x!103).  For each dose, maximal NF-!B activation (in nM) was plotted.  The black line indicates 

TNF treatment alone, whereas the blue line represents a condition where cells were first pretreated with 

1ng/ml IL-1, then allowed to “rest” (without stimulus) for 1hr prior to TNF stimulation. This result 

suggests that the IL-1 pretreatment condition has little to no effect on TNF-induced NF-!B activation in 

a20
-/- cells. 

C. NF-!B activation was measured in wild type and a20
-/-

 cells via EMSA in response to either 0.1 or 1ng/ml 

TNF alone (black), or to a 1hr IL-1 pretreatment, followed by 1hr (yellow) or 24hr (blue) “rest” (no 

stimulation) and then subsequent TNF challenge, as shown in Figure 3D.  The data was quantitated and 

graphed using ImageQuant software. 

D. IKK activation was simulated in wild type and a20
-/-

 cells in response to either 0.1 or 1ng/ml TNF alone 

(black), or to a 1hr IL-1 pretreatment, followed by 1hr “rest” (no stimulation) and then subsequent TNF 

challenge (blue). 

E. NF-!B activation was simulated as in (D). 

F. Computational simulations predict IKK (left) and nuclear NF-!B (right) activity in wild type and a20
-/- 

cells that are pretreated with 1ng/ml IL-1 for 1hr, followed by 24hr “rest” (no stimulation), and then 

subsequent challenge with TNF (0.1ng/ml). 

D. E. F. 
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Supplemental Figure 4. 
A. IKK was simulated as a function of time while varying the length of TNF pulse stimulation in wild 

type, i!b"-/-
 and a20

-/-
 cells.  Here we define a “temporal dose” as the duration of IKK activity in 

response to a specific TNF pulse length.  The amplitude of IKK activity is represented on a color scale 

from 0 nM (blue) to 50 nM (red). 

B. Computational simulations predict IKK activities (top) in response to 5, 15, or 45 min TNF pulses in 

wild type and a20
-/- cells.  IKK activity was then measured under the same stimulation conditions via 

IP-kinase assay (bottom). 
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Computational Modeling 
 
A. Description of the Mathematical Model  

The first version of this model (v1.0) was constructed to recapitulate TNF signaling to NF-!B via IKK 

activation (Hoffmann et al., 2002), but did not account for any reactions upstream of the NF-!B signaling 

module and contained only one negative feedback regulator, I!B".  Subsequent measurements of the in 

vivo degradation rates of free and NF-!B-bound I!B proteins led to model v1.1 (O'Dea et al., 2007), and 

inclusion of inducible I!B# negative feedback is described in model version 1.2 (Kearns et al., 2006).  

Subsequent models have examined NF-!B activation by multiple stimuli (v2.0) (Werner et al., 2005) and 

(v.3.0) (Basak et al., 2007).   

 

A new model version (v4.0) was constructed for this study.  The model is comprised of two connected 

modules (Supplemental Figure 5A).  The first receives a dose of TNF ligand as an input and computes the 

activation of IKK as an output. The second module is based on a previous model (Werner et al., 2005) 

and uses the active IKK as an input and computes the activation of free nuclear NF-!B as an output.  The 

complete new model contains 33 species (components) and 98 reactions governed by 110 parameters and 

describes the biochemical reactions involved in signal processing between TNF engagement of the TNF 

Receptors and nuclear NF-!B localization. The components of the model are depicted graphically in 

Supplemental Figure 5B and listed in Supplemental Table 1. The reactions and parameters are listed in 

Supplemental Table 2.  

 

B. Computational Simulations 

The ODEs were solved numerically using MATLAB version R2008a (The MathWorks, Inc.) with 

subroutine ode15s, a variable order, multi-step solver.  Prior to stimulation, the system was allowed to 

equilibrate from starting conditions to a steady state, defined as showing no concentration changes greater 

than 1% over a period of 4000 minutes. Stimulus-induced perturbation from the equilibrium state was 

accomplished by introducing an extracellular concentration of TNF ligand or by direct modulation of IKK 

activity via a numerical input curve representing IL-1$ stimulation (as in Werner et al., 2005).   

 

The model was simulated with multiple doses of TNF.  We calculated that a 1ng/mL dose of TNF used in 

cell culture experiments was equivalent to 1.96e-4 µM in the model (the molecular weight of the TNF 

trimer is 45 kDa). Other concentrations were simulated in the model via multipliers of this number: ie: 

0.1ng/mL is equivalent to 1.96e-5 µM.  

 

The IL-1$ numerical input curve was generated based upon IKK Kinase Assay measurements of IKK 

activity at time points following a 15 min pulse of IL-1$ stimulation. A full curve was generated from 

these measurements in MATLAB using the built-in interpolation libraries with the Piecewise Cubic 

Hermite Interpolating Polynomial (PCHIP) method.  

 

fraction IKK active .01 .6 1 .65 .5 .36 .21 .16 .1 .01 .01 

time (min) 0 5 10 15 20 25 30 45 50 60 120 
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 Supplemental Figure 5A: Schematic Diagram of the Model Reaction Network 

The model used in this study is comprised of two connected signaling modules that 

govern IKK activation and NF-!B activation, respectively. The input to the model is a 

concentration of TNF ligand.  Numbers adjacent to reaction arrows denote individual 

model parameters and are listed in Supplemental Table 2.  
 



-8-       Werner et. al 

 

  

 

 

Supplemental Figure 5B: Legend for the Schematic Network Diagram  

There are 33 species (components) included in the model. Each is listed here with 

the molecular name first and the model nomenclature in parenthesis. For simplicity, 

there are only two components listed for I!B and the I!B:NF-!B complex. In the 

model there are separate components for each of the three I!B isoforms (I!B", 
I!B$, I!B#) in the cytoplasm and the nucleus. 
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 Model Species Nomenclature Initial µM Location 
1 I!B" IkBa 0 Cytoplasm 

2 I!B" IkBan 0 Nucleus 

3 I!B"-NF-!B IkBaNFkB 0 Cytoplasm 

4 I!B"-NF-!B IkBaNFkBn 0 Nucleus  

5 I!B" mRNA IkBat 0 Cytoplasm 

6 I!B$ IkBb 0 Cytoplasm 

7 I!B$ IkBbn 0 Nucleus 

8 I!B$-NF-!B IkBbNFkB 0 Cytoplasm 

9 I!B$-NF-!B IkBbNFkBn 0 Nucleus  

10 I!B$ mRNA IkBbt 0 Cytoplasm 

11 I!B# IkBe 0 Cytoplasm 

12 I!B# IkBen 0 Nucleus 

13 I!B#-NF-!B IkBeNFkB 0 Cytoplasm 

14 I!B#-NF-!B IkBeNFkBn 0 Nucleus  

15 I!B# mRNA IkBet 0 Cytoplasm 

16 A20 A20 0 Cytoplasm 

17 A20 mRNA A20t 0 Cytoplasm 

18 NF-!B NFkB 0 Cytoplasm 

19 NF-!B NFkBn 0.125 Nucleus 

20 TNF tnf 0 Extracellular 

21 TNF Receptor Monomer tnfrm 0 Cell Surface 

22 TNF Receptor Trimer  TNFR 0 Cell Surface 

23 TNF-Bound TNF Receptor Trimer  TNFRtnf 0 Cell Surface 

24 TNFR Complex I (active)  C1 0 Cell Surface 

25 TNFR Complex I (inactive) C1_off 0 Cell Surface 

26 TNF-Bound TNFR Complex I (active)  C1tnf 0 Cell Surface 

27 TNF-Bound TNFR Complex I (inactive) C1_tnf_off 0 Cell Surface 

28 TRAF-TRADD-RIP  TTR 8.3e-4 Cytoplasm 

29 TAK1 (active) IKKK 0 Cytoplasm 

30 TAK1 (inactive) IKKK_off 0.1 Cytoplasm 

31 IKK (active) IKK 0 Cytoplasm 

32 IKK (inactive) IKK_off 0.1 Cytoplasm 

33 IKK (auto-inactivated) IKK_i 0 Cytoplasm 

Supplementa1 Table 1 

There are 33 species included in the model. Each is represented in the model with a 

unique name (nomenclature) and is given an initial concentration and cellular 

localization. The total amounts of NF-!B, TRAF-TRADD-RIP, TAK1 (IKKK) and 

IKK are conserved during the simulation (the sums of free, bound, active, and 
inactive forms in the cytoplasm and nucleus do not change). 
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Supplemental Table 2 

NF-!B Activation Module 

I!B mRNA and Protein Synthesis Reactions 
# Reaction Parameter Value Category Location Source of Parameter Value 

1 => IkBat    (constitutive) 7 E-5 min-1 RNA Synth. - Parameter value chosen to fit mRNA and protein expression 

profiles as measured by RNase Protection (RPA) and Western 

Blot assays. 

2 => IkBbt    (constitutive) 1 E-5 min-1 RNA Synth. - Refer to #1.  

3 => IkBet    (constitutive) 1 E-6 min-1 RNA Synth. - Refer to #1. 

4 

7 

10 

=> IkBat    (induced by NFkBn) 8 µM-2 min-1    

Hill Coefficient: 3.0 

Delay: 0 min 

RNA Synth. - (Werner et al., 2005)  

(Werner et al., 2005) 

(Kearns et al., 2006) and unpublished results 

5 

8 

11 

=> IkBbt    (induced by NFkBn) 0.02 µM-2 min-1 

Hill Coefficient: 3.0 

Delay: 37 min 

RNA Synth. - (Kearns et al., 2006) 

(Werner et al., 2005) 

(Kearns et al., 2006) and unpublished results 

6 

9 

12 

=> IkBet    (induced by NFkBn) 0.3 µM-2 min-1 

Hill Coefficient: 3.0 

Delay: 37 min 

RNA Synth. - (Kearns et al., 2006) 

(Werner et al., 2005) 

(Kearns et al., 2006) and unpublished results 

13 IkBat => 0.035 min-1 RNA Deg. Cytoplasm mRNA half-life measurements using actinomycin-D 

treatment of cells and RPA. (unpublished results) 

14 IkBbt => 3 E-3 min-1 RNA Deg. Cytoplasm Refer to #7. 

15 IkBet => 4 E-3 min-1 RNA Deg. Cytoplasm Refer to #7. 

16 => IkBa 0.25 min-1 Prot. Synth. Cytoplasm (Hoffmann et al., 2002) 

17 => IkBb 0.25 min-1 Prot. Synth. Cytoplasm (Hoffmann et al., 2002) 

18 => IkBe 0.25 min-1 Prot. Synth. Cytoplasm (Hoffmann et al., 2002) 

I!B and NF!B Cellular Localization Reactions 
19 IkBa      => IkBan 0.09    min-1 Import - (Werner et al., 2005) 

20 IkBb      => IkBbn 0.009   min-1 Import - (Werner et al., 2005) 

21 IkBe      => IkBen 0.045   min-1 Import - (Werner et al., 2005) 

22 NFkB     => NFkBn 5.4       min-1 Import - (Werner et al., 2005) 

23 IkBan     => IkBa 0.012   min-1 Export - (Werner et al., 2005) 

24 IkBbn     => IkBb 0.012   min-1 Export - (Werner et al., 2005) 

25 IkBen     => IkBe 0.012   min-1 Export - (Werner et al., 2005) 

26 NFkBn     => NFkB 0.0048 min-1 Export - (Werner et al., 2005) 

27 IkBaNFkB => IkBaNFkBn 0.276   min-1 Import - (Werner et al., 2005) 

28 IkBbNFkB => IkBbNFkBn 0.0276  min-1 Import - (Werner et al., 2005) 

29 IkBeNFkB => IkBeNFkBn 0.138   min-1 Import - (Werner et al., 2005) 

30 IkBaNFkBn => IkBaNFkB 0.828   min-1 Export - (Werner et al., 2005) 

31 IkBbNFkBn => IkBbNFkB 0.414   min-1 Export - (Werner et al., 2005) 

32 IkBeNFkBn => IkBeNFkB 0.414   min-1 Export - (Werner et al., 2005) 

 



 -11- Werner et. al 

I!B Protein Degradation Reactions 
33 IkBa        => 0.12 min-1 Prot. Deg. Cytoplasm (O'Dea et al., 2007) 

34 IkBb        => 0.18 min-1 Prot. Deg. Cytoplasm (O'Dea et al., 2007) 

35 IkBe        => 0.18 min-1 Prot. Deg. Cytoplasm (O'Dea et al., 2007) 

36 IkBan       => 0.12 min-1 Prot. Deg. Nucleus (O'Dea et al., 2007) 

37 IkBbn       => 0.18 min-1 Prot. Deg. Nucleus (O'Dea et al., 2007) 

38 IkBen       =>  0.18 min-1 Prot. Deg. Nucleus (O'Dea et al., 2007) 

39 IkBaNFkB    => NFkB 6E-5 min-1 Prot. Deg. Cytoplasm (O'Dea et al., 2007) 

40 IkBbNFkB    => NFkB 6E-5 min-1 Prot. Deg. Cytoplasm (O'Dea et al., 2007) 

41 IkBeNFkB    => NFkB 6E-5 min-1 Prot. Deg. Cytoplasm (O'Dea et al., 2007) 

42 IkBaNFkBn   => NFkBn 6E-5 min-1 Prot. Deg. Nucleus (O'Dea et al., 2007) 

43 IkBbNFkBn   => NFkBn 6E-5 min-1 Prot. Deg. Nucleus (O'Dea et al., 2007) 

44 IkBeNFkBn   => NFkBn 6E-5 min-1 Prot. Deg. Nucleus (O'Dea et al., 2007) 

I!B:NF!B Association and Dissociation Reactions 
45 IkBa     + NFkB   => IkBaNFkB 30 µM-1 min-1 Association Cytoplasm (Hoffmann et al., 2002) 

46 IkBb     + NFkB   => IkBbNFkB 30 µM-1 min-1 Association Cytoplasm (Hoffmann et al., 2002) 

47 IkBe     + NFkB   => IkBeNFkB 30 µM-1 min-1 Association Cytoplasm (Hoffmann et al., 2002) 

48 IkBan    + NFkBn  => IkBaNFkBn 30 µM-1 min-1 Association Nucleus (Hoffmann et al., 2002) 

49 IkBbn    + NFkBn  => IkBbNFkBn 30 µM-1 min-1 Association Nucleus (Hoffmann et al., 2002) 

50 IkBen    + NFkBn  => IkBeNFkBn 30 µM-1 min-1 Association Nucleus (Hoffmann et al., 2002) 

51 IkBaNFkB    => IkBa + NFkB 6E-5 min-1 Dissociation Cytoplasm (Hoffmann et al., 2002) 

52 IkBbNFkB    => IkBb + NFkB 6E-5 min-1 Dissociation Cytoplasm (Hoffmann et al., 2002) 

53 IkBeNFkB    => IkBe + NFkB 6E-5 min-1 Dissociation Cytoplasm (Hoffmann et al., 2002) 

54 IkBaNFkBn   => IkBan    + NFkBn 6E-5 min-1 Dissociation Nucleus (Hoffmann et al., 2002) 

55 IkBbNFkBn   => IkBbn    + NFkBn 6E-5 min-1 Dissociation Nucleus (Hoffmann et al., 2002) 

56 IkBeNFkBn   => IkBen    + NFkBn 6E-5 min-1 Dissociation Nucleus (Hoffmann et al., 2002) 

IKK-mediated I!B Degradation Reactions 
57 IkBa        => 0.36 min-1 Prot. Deg. Cytoplasm (Mathes et al, 2008) 

58 IkBb        => 0.12 min-1 Prot. Deg. Cytoplasm (Mathes et al, 2008) 

59 IkBe        => 0.18 min-1 Prot. Deg. Cytoplasm (Mathes et al, 2008) 

60 IkBaNFkB    => NFkB 0.36 min-1 Prot. Deg. Cytoplasm (Hoffmann et al., 2002) 

61 IkBbNFkB    => NFkB 0.12 min-1 Prot. Deg. Cytoplasm (Hoffmann et al., 2002) 

62 IkBeNFkB    => NFkB 0.18 min-1 Prot. Deg. Cytoplasm (Hoffmann et al., 2002) 

A20 mRNA and Protein Synthesis and Degradation Reactions 

63 => A20t    (constitutive) 2 E-6 min-1 RNA Synth. - Refer to #1. 

64 

65 

66 

71 

=> A20t    (induced by NFkBn) 0.4 µM-2 min-1    

Hill Coefficient: 3.0 

Delay: 0 min 

Shutdown: 120 min 

RNA Synth. - - Refer to #1. 

- Refer to #1. 

- Refer to #1. 

- A20 inducible transcription, as measured by RPA, appears 

to halt abruptly 2hrs into TNF stimulation. 

67 A20t => 0.035 min-1 RNA Deg. Cytoplasm Refer to #1. 
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68 

69 

=> A20 0.25 min-1 

Delay Time: 30 min 

Prot. Synth. Cytoplasm - Assumed to be equal to I!B translation rates. 

- Delay was added to account for time between A20 mRNA 

expression as measured by RPA and A20 protein expression 

as measured by Western Blot.  

70 A20        => 0.0029 min-1 Prot. Deg. Cytoplasm Supplemental Figure 1  

IKK Activation Module 

TNF-Independent Complex I Activity Reactions 
2 => tnfrm 2 E-7 min-1 Prot. Synth. Cell Surface Parameter value fit to recapitulate the measured steady-state 

amount of TNF receptor (Watanabe et al. 1988) 

3 tnfrm => 0.0058 min-1 Prot. Deg. Cell Surface Measured in (Watanabe et al. 1988) 

4 3 tnfrm   => TNFR 1 E-5 µM-1 min-1 Association Cell Surface Parameter value fit to account for minimal TNF receptor 

aggregation in the absence of ligand as observed in numerous 

published studies. 

5 TNFR    => 3 tnfrm 0.1 min-1 Dissociation Cell Surface Refer to #4. 

6 TNFR    =>        (internalization) 0.0017 min-1 Prot. Deg. Cell Surface Based upon results published in (Watanabe et al., 1988) 

showing that the temporal profile of TNF receptor following 

TNF stimulation. 

7 TNFR + TTR => C1_off 100 µM-1 min-1 Association Cell Surface Recruitment of TRAF2, TRADD, and RIP adaptors (TTR) to 

TNFR is required (but not sufficient) for signaling by the 

TNFR-containing signaling complex (C1).  Little biophysical 

data is available for this reaction; recruitment appears to be 

simultaneous (Schneider-Brachert et al., 2004).  The 

parameter value represents a compound mechanistic rate 

constant.  It was fit to enable quick activation of downstream 

IKK activity within the first minutes of stimulation and 

repression upon removal of TNF ligand in pulse stimulations. 

8 C1_off   =>  TNFR + TTR 0.75 min-1 Dissociation Cell Surface Refer to #7. 

9 C1_off   => C1 30 min-1 Activation Cell Surface The molecular complex containing TNFR, TRAF2, TRADD 

and RIP undergoes an activation step that involves K63-

ubiqutination of RIP. Little biophysical data is available for 

this step, but parameter fitting was constrained by the fast 

activation profile of IKK. 

10 C1         => C1_off 2.0 min-1 Deactivation Cell Surface Refer to #9. 

11 C1         => C1_off  (A20 mediated) 1000 µM-1 min-1 Deactivation Cell Surface A20 is known to repress the activity of Complex I.  It is a 

protease of K63-linked ubiquitin chains that deubiquitinates 

RIP (Wertz et al., 2004).  Little biophysical data is available 

for this step, but parameter fitting was constrained by the IKK 

activity profiles measured in wild type and a20
-/-

 cells. 

12 C1         => TNFR + TTR 0.75 min-1 Dissociation Cell Surface Assumed to be equal to #8. 

13 C1_off  =>        (internalization) 0.0017 min-1 Prot. Deg. Cell Surface Assumed to be equal to #6. 
14 C1         =>        (internalization) 0.0017 min-1 Prot. deg.  Cell Surface Assumed to be equal to #6.  
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TNF-Dependent Complex I Activity Reactions 

1 tnf                 =>  0.0154 min-1 Prot. deg. Extracellular The half-life of recombinant TNF ligand in cell culture 

medium was measured by its manufacturer, Roche 

Diagnostics, to be 45-minutes. 

15 tnf + 3 tnfrm => TNFRtnf 1100 µM-1 min-1 Association Cell Surface Measured in (Grell et al., 1998). 
16 tnf + TNFR  => TNFRtnf 1100 µM-1 min-1 Association Cell Surface Assumed to be equal to #15. 

17 TNFRtnf      => TNFR + tnf  0.021 min-1 Dissociation Cell Surface Measured in (Grell et al., 1998). 

18 TNFRtnf      =>        (internalization    Assumed to be equal to #6. 

19 TNFRtnf + TTR => C1tnf_off 100 µM-1 min-1 Association Cell Surface Assumed to be equal to #7. 

TNF binding to the extra-cellular domain of TNFR monomers 

speeds up trimerization and stabilizes the trimer, but 

recruitment of the TTR complex to trimerized TNF receptor 

are assumed to proceed with the same kinetics regardless of 

the presence of TNF ligand. 

20 C1tnf_off     =>  TNFRtnf + TTR 0.75 min-1 Dissociation Cell Surface Refer to #19. Assumed to be equal to #8. 

21 C1tnf_off     => C1tnf 30 min-1 Activation Cell Surface Refer to #19. Assumed to be equal to #9. 

22 C1tnf           => C1tnf_off 2.0 min-1 Deactivation Cell Surface Refer to #19. Assumed to be equal to #10. 

23 C1tnf      => C1tnf_off  (A20 mediated) 1000 µM-1 min-1 Deactivation Cell Surface Refer to #19. Assumed to be equal to #11. 

24 C1tnf           => TNFRtnf + TTR 0.75 min-1 Dissociation Cell Surface Refer to #19. Assumed to be equal to #8. 

25 C1tnf_off     =>           (internalization) 0.0017 min-1 Prot. deg. Cell Surface Refer to #19. Assumed to be equal to #6. 

26 C1tnf           =>           (internalization) 0.0017 min-1 Prot. deg.  Cell Surface Refer to #19. Assumed to be equal to #6. 

27 C1tnf_off    => C1_off + tnf 0.021 min-1 Dissociation Cell Surface Assumed to be equal to #17. 

28 C1_off + tnf=> C1tnf_off 1100 µM-1 min-1 Association Cell Surface Assumed to be equal to #15. 

29 C1tnf           => C1 + tnf 0.021 min-1 Dissociation Cell Surface Assumed to be equal to #17. 

30 C1 + tnf       => C1tnf 1100 µM-1 min-1 Association Cell Surface Assumed to be equal to #15. 

 

IKKK (TAB1/2-TAK1 complex) Activity Reactions 

31 IKKK_off => IKKK (constitutive) 5 E-7 min-1 Activation Cytoplasm Parameter value fit to account for low IKK activity in the 

absence of ligand as measured by IKK Kinase Assay (O'Dea 

et al., 2007). 

32 IKKK_off => IKKK (C1 mediated) 500 µM-1 min-1 Activation Cytoplasm Refer to #7. 

33 IKKK_off => IKKK (C1tnf mediated) 500 µM-1 min-1 Activation Cytoplasm Refer to #19. Assumed to be equal to #32. 

34 IKKK       => IKKK_off (constitutive) 0.25 min-1 Deactivation Cytoplasm The constitutive inactivation rate of this complex was fit to 

ensure low basal activity and efficient repression following 

TNF pulse stimulation. 

 

IKK Activity Reactions 

35 IKK_off => IKK 5 E-5 min-1 Activation Cytoplasm Refer to #31 

36 IKK_off => IKK (IKKK mediated) 520 µM-1 min-1 Activation Cytoplasm Refer to #7. 

37 IKK       => IKK_off 0.02 min-1 Deactivation Cytoplasm Refer to #34. 
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38 IKK       => IKK_i (self-inactivation) 0.15 min-1 Deactivation Cytoplasm IKK is thought to down-regulate its own activity via auto-

phosphorylation of C-terminal serine residues (Delhase et al., 

1999).  This mechanism was not shown to cause IKK protein 

degradation and is distinct from inactivating IKK via 

constitutive phosphatase activity (Refer to #94).  The 

parameter value was fit to temporal profiles of IKK activity in 

response to TNF stimulation (Werner et al., 2005). 

39 IKK_i    => IKK_off 0.02 min-1 Deactivation Cytoplasm C-terminally phosphorylated IKK is assumed to be subject to 

constitutive phosphatase activity.  Refer to #38. 

x IL1_IKK Activity Numerical Input 

Curve 

- - Stimulation by IL1 is enabled through a numerical input curve 

(as first used in (Werner et al., 2005)) that specifies time-

dependent activation kinetics of a pool of IL1-responsive 

IKK.     
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C. Parameter Fitting and Sensitivity Analysis  

Most model parameter values were derived from the literature or measured / tightly constrained by 

biochemical or biophysical techniques.  The values of remaining model parameters were selected such 

that the output of the model recapitulated observed results. This process is commonly referred to as 

parameter fitting and is essential when constructing a model representing a large reaction network. 

 

Experiments yielded steady state and stimulation time course data that function to constrain the parameter 

fitting. The constraints were defined with broad ranges so as to minimize the possibility of arbitrarily 

biasing the results and were expected to be met in response to pulse or chronic stimulation with 1ng/mL 

TNF (Supplemental Table 3, Supplemental Fig 6).  

 

Supplemental Table 3: Model Constraints 

 Description Source 

C1 Basal NF-!B activity is less than 5% of the total NF-!B EMSA 

C2 Basal free I!B protein is less than 25% of total I!B (O'Dea et al., 2007) 

C3 Basal total cellular protein of I!B" > I!B$ > I!B# (O'Dea et al., 2007) 

C4 15’ TNF Pulse: NF-!B activity is > 50nM within 45 min (Cheong et al., 2006) 

C5 15’ TNF Pulse: NF-!B activity is < 10nM by 90 min (Cheong et al., 2006) 

C6 TNF Chronic: NF-!B activity is > 50nM within 45 min (Cheong et al., 2006) 

C7 TNF Chronic: NF-!B activity is > 20nM at 240 min (Cheong et al., 2006) 

C8 TNF Chronic: I!B" mRNA induction fold is 5 to 100 fold This study and 

(Kearns et al., 2006) 

C9 TNF Chronic: I!B$ mRNA induction is 1 to 10 fold (Kearns et al., 2006) 

C10 TNF Chronic: I!B# mRNA induction is 5 to 100 fold (Kearns et al., 2006) 

C11 TNF Chronic: A20 mRNA induction is 5 to 100 fold This study 

C12 TNF Chronic: IKK activity peaks between 5 and 15 min (Werner et al., 2005) 

C13 TNF Chronic: peak IKK activity is above 33% of the total IKK (Werner et al., 2005) 

C14 Basal IKK activity is below 2% of the total IKK pool (Werner et al., 2005) 

C15 TNF Chronic: IKK activity (>75min) is < 1/3 of the peak value (Werner et al., 2005) 

 

Examining the values listed in Supplemental Table 2, we identified 15 parameters or groups of related 

parameters in each of the two signaling modules that were fit (Supplemental Figure 7A and 7B). We then 

determined for each of these parameters what ranges of their values would satisfy the established list of 

constraints.  To do this, the model was simulated repeatedly with rate multipliers between 1/100 and 100x 

for each parameter. We calculated the highest and lowest multiplier values that when run in the model still 

satisfy all constraints (Supplemental Figure 7C and 7D).   

 

We found that the majority of these parameters can be given values within a 2-5 fold range. This finding 

shows that the network allows for some degree of flexibility in parameter values while maintaining its 

function.   

 

Four parameters can be given values over several orders of magnitude. These include the rates of 

inducible I!B$ expression, TNF-independent TNFR trimerization, constitutive IKKK activation, and 

constitutive IKK activation. These findings are not surprising as all four of these processes are kinetically 

‘slow’ and the latter three are counteracted by fast reverse reactions.  
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Supplemental Figure 6: Diagrams of constraints used to constrain the model 

(A) Maximum basal concentrations of specific model species 

(B): Characteristics of NF-!Bn curves in response to 15 min 1ng/mL TNF pulse or 

TNF chronic stimulation 

(C): Allowable ranges for I!B and A20 mRNA induction folds in response to 

1ng/mL TNF chronic stimulation 

(D): Characteristics of the IKK activity curve in response to 1ng/mL TNF chronic 
stimulation. 
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Supplemental Figure 7: Determining the range of parameter values that satisfy the 

constraints  

(A and B) There are 15 parameters or sets of related parameters in each signaling module that 

required parameter fitting to select their values.  

(C and D) For each of these, the model was simulated repeatedly with that rate value(s) 

multiplied by 0.01, 0.02, 0.025, 0.1, 0.2, 0.5, 1, 2, 5, 10, 25, 50, and 100x.  Following each 

simulation, the model was compared against the list of 13 established constraints. Plotted are 

the maximum and minimum multipliers for each rate constant group that still satisfies all 

constraints. The absence of a bar, such as with Groups 2 and 14 in the IKK module, means 

that this group only meets all constraints with the 1x value. 
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D. Testing the Robustness of Conclusions  

 

To determine whether the predictions of the model hold true over these ranges of parameter values that 

were defined by the experimental constraints, all model simulations relevant for the conclusions were 

repeated with the ranges of allowable values (Supplemental Figure 8).  We identified 4 primary 

conclusions in our study (as described in the Abstract and Results/Discussion section). 

 

(1) I!B" controls the duration of the first phase of NF-!B activity in response to a pulse of TNF 

stimulation. NF-!B activity should last ~1hr in wild-type cells and be prolonged to ~3hr in I!B"-deficient 

cells (Supplemental Figure 8A). 

 

(2) A20 controls the amplitude of the second phase of NF-!B activity in response to chronic TNF 

stimulation (Supplemental Figure 8B compare top and middle row). 

 

(3) Constitutive transcription of A20 is sufficient for A20’s function in controlling late phase of NF-!B 

activity. NF-!B-mediated inducible synthesis is not required for this behavior and can be replaced with 

elevated constitutive transcription (~4x) (Supplemental Figure 8B bottom row). 

 

(4) Pretreatment with IL-1# followed by treatment with TNF will result in lowered NF-!B activity in wild-

type but not in A20-deficient cells, and this effect is relived by 24 hrs (Supplemental Figure 8C) 

 

We found that the model retains these conclusions when simulated with the parameter value ranges, with 

only small fluctuations observed.  The exception is the rate constant governing constitutive Complex I 

deactivation (IKK Module Parameter Group #6), the same function performed by A20.  This confirms 

that A20 represents a tunable Complex I deactivation mechanism. Together, this analysis leads us to 

believe that the model predictions are not impacted by the choice of parameter values. 
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 Supplemental Figure 8: The model predictions are robust to the parameter range 

The plots show how a metric that encapsulates each conclusion is affected by simulating the 

model with the calculated maximum and minimum values for each of the 15 parameters fit in 

the NF-!B and IKK activation modules.  The horizontal line denotes a model with all 

parameters at 1x values.  Error bars denote the deviation from 1x when using the range for 

each parameter.  

(A) Wild-type and A20-/- model systems were stimulated with a 15 min TNF pulse and the 

duration of the NF-!B activity over a 20nM threshold was calculated.  

(B) Wild-type, A20-/-, and A20 4x constitutive expressing (no inducible expression) systems 

were chronically stimulated with TNF and the value of NF-!B activity at 6hrs was calculated.  

(C) Naïve and IL-1 pretreated wild-type and A20-/- systems were chronically stimulated with 
TNF and the maximum (peak) value of NF-!B activity in the first hour was calculated. 
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E.   Supplemental Table 4-Summary of Simulations 

Figure Condition Modeling Notes 

1B Wild type 
 

Chronic TNF Stimulation 

Parameter values were set to those shown in the 

Supplemental parameter table.   

Following an equilibrium phase, TNF was added to the 

system (1.96e-4 µM, ~1ng/mL TNF) and the simulation 

was continued. 

 

1C 

 

Wild type 

 

1, 2, 5, 15 minute TNF pulses 

Simulations were run with four TNF pulses (1ng/ml). 

TNF was removed from the system at the indicated pulse 

length times. 

 

Nuclear NF-!B and active IKK were plotted for each 

pulse. 

 

2A 1. Wild type vs. i!b"-/- 

2. Wild type vs. a20-/- 
 

Chronic TNF Stimulation (1ng/ml) 

The i!b"-/- system was simulated after setting the initial 

values of I!B"-containing species and I!B" synthesis 

parameters to zero. 

 

The a20-/- system was simulated after setting the A20 

synthesis parameters to zero. 

 

2B 

S2C 

Constitutive transcription 

multipliers for I!B" and A20. 

 
Chronic TNF Stimulation (1ng/ml) 

For both I!B" and A20, simulations were run with 21 

multipliers to constitutive transcription  

(2-10 ... 20 ... 210; with 20 (1x) being wild type). 

 

Results were plotted on a 3-dimensional plot—Time vs. 

Multiplier value using a color heat map to show nuclear 

NF-!B activity.  (Similar plots are shown in 

Supplemental Figure 2C for IKK activity.) 

2C Wild type vs. I!B" 

constitutive transcription vs. 

I!B" inducible transcription. 

 
15 minute TNF pulse (1ng/ml) 

The model was run three times with the following 

conditions: 

1. Wild type 

2. I!B" inducible synthesis parameter set to zero. 

3. I!B" constitutive synthesis parameter set to zero. 

2D Wild type vs. A20 

constitutive transcription vs. 

%20 inducible transcription. 

 
Chronic TNF Stimulation (1ng/ml) 

The model was run three times with the following 

conditions: 

1. Wild type 

2. A20 inducible synthesis parameter set to zero, and the 

constitutive rate was set to 4x higher than wild type cells, 

as measured experimentally via qPCR 

3. A20 constitutive synthesis parameter set to zero. 

3C 

S3D 

S3E 

S3F 

IL-1 pretreatment in wild type 

vs. a20-/-. 

 
IL-1 Pretreatment  

Chronic TNF Stimulation 

Wild type and a20-/- systems without IL-1 pretreatment 

were simulated as described in Figure 2A. 

 

IL-1 pretreatment was accomplished by incorporating a 

numerical IKK activity curve, as described previously 

(Werner 2005), that describes a 60-minute pulse of IL-1 

stimulation. During the pretreatment phase the 



-21-       Werner et. al 

parameters governing the conversion amongst IKK forms 

(IKK, IKK_off and IKKi) were set to zero and the 

amount of active IKK was determined by the numerical 

curve.  Following pretreatment, these parameters were 

restored and a range of TNF doses (10-3&x&103 ng/ml) 

were added.  Maximal NF-!B activity (nM) was plotted 

as a function of TNF dose in both naïve and IL-1 

pretreated cells. 

 

Specific TNF doses (0.1 and 1ng/ml) were modeled in 

naïve and IL-1 pretreated cells, and the results for IKK 

and NF-!B activities are shown in Supplemental Figures 

3D and 3E, respectively.  IKK and NF-!B activities were 

also simulated in a condition where 24hr rest was 

allowed (rather than 1hr) after IL-1 pretreatment; the 

resulting output is presented in Supplemental Figure 3F. 

 

Experimental results for NF-!B activity are shown in 

Figure 3D and are quantitated in Supplemental Figure 

3C. 

4A 

S4A 

Varied TNF pulses in wild 

type vs. i!b"-/- vs. a20-/- 

 
TNF Pulse Stimulation (1ng/ml) 

For each system (wild type, i!b"-/-, a20-/-) the model was 

run 180 times with TNF pulse lengths between 1 and 180 

minutes.  

 

NF-!B activity is plotted on 3D color plots as described 

in Figure 2B.  (Similar color plots are shown in 

Supplemental Figure 4A for IKK activity.) 

4B 

S4B 

 

Varied TNF pulses in wild 

type vs. a20-/-. 

 
5, 15, 45 minute TNF pulses (1ng/ml) 

The model was run with three TNF pulses for each 

system (wild type and a20-/-).  

 

IKK (Supplemental Figure 4B) and NF-!B (Figure 4B) 

activities are plotted on 2 line plots. 
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