

Supporting Information

Total Synthesis of (\pm) -Phomoidride D

Joyce C. Leung, Aaron A. Bedermann, Jón T. Njardarson, David A. Spiegel, Graham K. Murphy, Naoto Hama, Barry M. Twenter, Ping Dong, Tatsuya Shirahata, Ivar M. McDonald, Munenori Inoue, Nobuaki Taniguchi, Travis C. McMahon, Christopher M. Schneider, Nancy Tao, Brian M. Stoltz, and John L. Wood*

anie_201712369_sm_miscellaneous_information.pdf

Table of Contents

EXPERIMENTAL PROCEDURES	S5
General Information	S5
Experimental Section	S6
Synthesis of Phenol 18	S6
Synthesis of α-Phenoxy Ketone SI-1	S7
Synthesis of Ketal 20	S8
Synthesis of Phenol SI-2	S9
Synthesis of α-Hydroxy Ketone 8	S10
Synthesis of Silyl Ether SI-3	S12
Synthesis of Amine 22	S13
Synthesis of Methyl Ester 23	S14
Synthesis of Lactone 24	S15
Synthesis of Bromoacetal 7	S16
Synthesis of Isotwistane 6	S17
Synthesis of Acetate SI-4	S19
Synthesis of Bis-dithiane SI-5	S20
Synthesis of Mesylate 26	S21
Synthesis of Diol 27	S22
Synthesis of ketone 5	S23
Synthesis of Enol 29	S24
Synthesis of Enol Triflate 31	
Synthesis of Maleic Anhydride 32	
Synthesis of Aldenyde SI-7	
Syntnesis of Phomolariae D (4)	
Table S1 'H and 'C NMR Data for Phomoldride D in acetone-d6	530
REFERENCES	S31
AUTHOR CONTRIBUTIONS	S31
NMR SPECTRA	S32
Figure 1 ¹ H-NMR (600 MHz, CDCl ₃) for phenol 18	
Figure 2 ¹ H-NMR (600 MHz, CDCl ₃) for phenol 18 (inset)	
Figure 3 ¹³ C-NMR (150 MHz, CDCl ₂) for phenol 18	S33
Figure 4 1 H-NMP (600 MHz, CDCIs) for g-phonoxy kotono SI-1	
Figure 4 THINK (000 MHz, CDCh) for a phonoxy ketone SI 4 (ineqt)	
Figure 6 H-NMR (600 MHz, CDCI3) for α -phenoxy ketone SI-1 (inset)	
Figure / ¹³ C-NMR (150 MHz, CDCl ₃) for α-phenoxy ketone SI-1	
Figure 8 'H-NMR (500 MHz, CDCl ₃) for ketal 20	S33
Figure 9 ¹ H-NMR (500 MHz, CDCI ₃) for ketal 20 (inset)	S33

Figure 10 ¹ H-NMR (500 MHz, CDCl ₃) for ketal 20 (inset)	.S33
Figure 11 ¹³ C-NMR (125 MHz, CDCI ₃) for ketal 20	.S33
Figure 12 ¹ H-NMR (600 MHz, CDCI ₃) for phenol SI-2	.S33
Figure 13 ¹ H-NMR (600 MHz, CDCI ₃) for phenol SI-2 (inset)	.S33
Figure 14 ¹ H-NMR (600 MHz, CDCI ₃) for phenol SI-2 (inset)	.S33
Figure 15 ¹³ C-NMR (150 MHz, CDCI ₃) for phenol SI-2	.S33
Figure 16 ¹ H-NMR (500 MHz, CDCl ₃) for α-hydroxy ketone 8	.S33
Figure 17 ¹ H-NMR (500 MHz, CDCl ₃) for α-hydroxy ketone 8 (inset)	.S33
Figure 18 ¹ H-NMR (500 MHz, CDCl ₃) for α-hydroxy ketone 8 (inset)	.S33
Figure 19 ¹³ C-NMR (125 MHz, CDCI ₃) for α-hydroxy ketone 8	.S33
Figure 20 ¹ H-NMR (500 MHz, CDCl ₃) for silyl ether SI-3	.S33
Figure 21 ¹ H-NMR (500 MHz, CDCl ₃) for silyl ether SI-3 (inset)	.S33
Figure 22 ¹ H-NMR (500 MHz, CDCl ₃) for silyl ether SI-3 (inset)	.S33
Figure 23 ¹³ C-NMR (125 MHz, CDCI ₃) for silyl ether SI-3	.S33
Figure 24 ¹ H-NMR (500 MHz, CDCI ₃) for amine 22	.S33
Figure 25 ¹ H-NMR (500 MHz, CDCI ₃) for amine 22 (inset)	.S33
Figure 26 ¹ H-NMR (500 MHz, CDCI ₃) for amine 22 (inset)	.S33
Figure 27 ¹³ C-NMR (125 MHz, CDCI ₃) for amine 22	.S33
Figure 28 ¹ H-NMR (500 MHz, CDCI ₃) for methyl ester 23	.S33
Figure 29 ¹ H-NMR (500 MHz, CDCI ₃) for methyl ester 23 (inset)	.S33
Figure 30 ¹ H-NMR (500 MHz, CDCI ₃) for methyl ester 23 (inset)	.S33
Figure 31 ¹³ C-NMR (125 MHz, CDCI ₃) for methyl ester 23	.S33
Figure 32 ¹ H-NMR (500 MHz, CDCI ₃) for lactone 24	.S33
Figure 33 ¹ H-NMR (500 MHz, CDCI ₃) for lactone 24 (inset)	.S33
Figure 34 ¹ H-NMR (500 MHz, CDCI ₃) for lactone 24 (inset)	.S33
Figure 35 ¹³ C-NMR (125 MHz, CDCI ₃) for lactone 24	.S33
Figure 36 ¹ H-NMR (400 MHz, CDCl ₃) for bromoacetal 7	.S33
Figure 37 ¹ H-NMR (400 MHz, CDCl ₃) for bromoacetal 7 (inset)	.S33
Figure 38 ¹ H-NMR (400 MHz, CDCI ₃) for bromoacetal 7 (inset)	.S33
Figure 39 ¹³ C-NMR (100 MHz, CDCI ₃) for bromoacetal 7	.S33
Figure 40 ¹ H-NMR (500 MHz, CDCl ₃) for isotwistane 6 (diastereomer one)	.S33
Figure 41 ¹ H-NMR (500 MHz, CDCl ₃) for isotwistane 6 (diastereomer one) (inset)	.S33
Figure 42 ¹ H-NMR (500 MHz, CDCl ₃) for isotwistane 6 (diastereomer one) (inset)	.S33
Figure 43 ¹³ C-NMR (125 MHz, CDCI ₃) for isotwistane 6 (diastereomer one)	.S33
Figure 44 ¹ H-NMR (500 MHz, CDCI ₃) for isotwistane 6 (diastereomer two)	.S33
Figure 45 ¹ H-NMR (500 MHz, CDCl ₃) for isotwistane 6 (diastereomer two) (inset)	.S33
Figure 46 ¹ H-NMR (500 MHz, CDCl ₃) for isotwistane 6 (diastereomer two) (inset)	.S33
Figure 47 ¹³ C-NMR (125 MHz, CDCI ₃) for isotwistane 6 (diastereomer two)	.S33
Figure 48 ¹ H-NMR (400 MHz, CDCI ₃) for acetate SI-4	.S33
Figure 49 ¹ H-NMR (400 MHz, CDCI ₃) for acetate SI-4 (inset)	.S33
Figure 50 ¹ H-NMR (400 MHz, CDCl ₃) for acetate SI-4 (inset)	.S33
Figure 51 ¹³ C-NMR (100 MHz, CDCl ₃) for acetate SI-4	.S33

Figure 52 ¹ H-NMR (400 MHz, CDCI ₃) for bis-dithiane SI-5	.S33
Figure 53 ¹ H-NMR (400 MHz, CDCI ₃) for bis-dithiane SI-5 (inset)	.S33
Figure 54 ¹ H-NMR (400 MHz, CDCI ₃) for bis-dithiane SI-5 (inset)	.S33
Figure 55 ¹³ C-NMR (100 MHz, CDCI ₃) for bis-dithiane SI-5	.S33
Figure 56 ¹ H-NMR (500 MHz, CDCI ₃) for mesylate 26	.S33
Figure 57 ¹ H-NMR (500 MHz, CDCI ₃) for mesylate 26 (inset)	.S33
Figure 58 ¹ H-NMR (500 MHz, CDCI ₃) for mesylate 26 (inset)	.S33
Figure 59 ¹³ C-NMR (125 MHz, CDCI ₃) for mesylate 26	.S33
Figure 60 ¹ H-NMR (500 MHz, CDCI ₃) for diol 27	.S33
Figure 61 ¹ H-NMR (500 MHz, CDCI ₃) for diol 27 (inset)	.S33
Figure 62 ¹ H-NMR (500 MHz, CDCI ₃) for diol 27 (inset)	.S33
Figure 63 ¹³ C-NMR (125 MHz, CDCl ₃) for diol 27	.S33
Figure 64 ¹ H-NMR (400 MHz, CDCI ₃) for ketone 5	.S33
Figure 65 ¹ H-NMR (400 MHz, CDCI ₃) for ketone 5 (inset)	.S33
Figure 66 ¹ H-NMR (400 MHz, CDCI ₃) for ketone 5 (inset)	.S33
Figure 67 ¹³ C-NMR (100 MHz, CDCI ₃) for ketone 5	.S33
Figure 68 ¹ H-NMR (600 MHz, CDCI ₃) for enol 29	.S33
Figure 69 ¹ H-NMR (600 MHz, CDCI ₃) for enol 29 (inset)	.S33
Figure 70 ¹ H-NMR (600 MHz, CDCI ₃) for enol 29 (inset)	.S33
Figure 71 ¹³ C-NMR (150 MHz, CDCI ₃) for enol 29	.S33
Figure 72 ¹ H-NMR (600 MHz, CDCl ₃) for β-keto ester SI-6	.S33
Figure 73 ¹ H-NMR (600 MHz, CDCI ₃) for β-keto ester SI-6 (inset)	.S33
Figure 74 ¹ H-NMR (600 MHz, CDCI ₃) for β-keto ester SI-6 (inset)	.S33
Figure 75 ¹³ C-NMR (150 MHz, CDCl ₃) for β-keto ester SI-6	.S33
Figure 76 ¹ H-NMR (400 MHz, CDCI ₃) for enol triflate 31	.S33
Figure 77 ¹ H-NMR (400 MHz, CDCI ₃) for enol triflate 31 (inset)	.S33
Figure 78 ¹ H-NMR (400 MHz, CDCl ₃) for enol triflate 31 (inset)	.S33
Figure 79 ¹³ C-NMR (100 MHz, CDCl ₃) for enol triflate 31	.S33
Figure 80 ¹ H-NMR (600 MHz, CDCI ₃) for maleic anhydride 32	.S33
Figure 81 ¹ H-NMR (600 MHz, CDCI ₃) for maleic anhydride 32 (inset)	.S33
Figure 82 ¹ H-NMR (600 MHz, CDCI ₃) for maleic anhydride 32 (inset)	.S33
Figure 83 ¹³ C-NMR (150 MHz, CDCI ₃) for maleic anhydride 32	.S33
Figure 84 ¹ H-NMR (600 MHz, CDCI ₃) for aldehyde SI-7	.S33
Figure 85 ¹ H-NMR (600 MHz, CDCI ₃) for aldehyde SI-7 (inset)	.S33
Figure 86 ¹ H-NMR (600 MHz, CDCI ₃) for aldehyde SI-7 (inset)	.S33
Figure 87 ¹³ C-NMR (150 MHz, CDCI ₃) for aldehyde SI-7	.S33
Figure 88 ¹ H-NMR (600 MHz, acetone-d ₆) for phomoidride D (4)	.S33
Figure 89 ¹ H-NMR (600 MHz, acetone-d ₆) for phomoidride D (4) (inset)	.S33
Figure 90 ¹ H-NMR (600 MHz, acetone-d ₆) for phomoidride D (4) (inset)	.S33
Figure 91 ¹ H-NMR (acetone-d ₆) comparison for phomoidride D (top, Sulikowski (5	00
MHz); bottom, Wood (600 MHz))	.S33
Figure 92 ¹³ C-NMR (150 MHz, acetone-d ₆) for phomoidride D (4)	.S33

Figure 93 ¹³ C-NMR (acetone-d ₆) comparison for phomoidride D (top, Sulikowski	(125
MHz); bottom, Wood (150 MHz))	S33
Figure 94 DEPT-135 (150 MHz, acetone-d ₆) for phomoidride D (4)	S33
Figure 95 HSQC (acetone-d ₆) for phomoidride D (4)	S33
Figure 96 HMBC (acetone-d ₆) for phomoidride D (4)	S33
Figure 97 COSY (acetone-d ₆) for phomoidride D (4)	S33
Figure 98 NOESY (acetone-d ₆) for phomoidride D (4)	S33

Experimental Procedures

General Information

Unless stated otherwise, all reactions were performed using flame or oven-dried glassware and under an atmosphere of nitrogen. DCM, THF, diethyl ether, benzene, and toluene were dried using a solvent purification system manufactured by SG Water U.S.A., LLC. Acetonitrile, ethyl acetate, pentanes, hexanes, DMF, DMSO, and DCE were supplied by either Fisher Scientific or Sigma-Aldrich and were used as received. Triethylamine, diisopropylamine, and methanol were stirred over calcium hydride and distilled before use. All other commercially available reagents were used as received. α -Bromoketone **16** was synthesized according to the reported procedure.¹

Unless stated otherwise, reactions were monitored by thin-layer chromatography using Millipore-Sigma[®] Glass TLC plates, 60 Å (F-254s indicator, 250 µm thickness). All purifications were performed using Silicyle SiliaFlash® P60 silica (40-63 µm, 230-400 mesh), Millipore Silica Gel 60 (0.040-0.063 mm, 230-400 mesh ASTM), or sigma Aldrich C18-reversed phase silica gel (40-63 µm, 230-400 mesh, fully endcappeed) as the stationary phase as a stationary phase. All melting points were obtained on a Chemglass Life Sciences melting point device (Model: DMP100) and are uncorrected. Infrared spectra were obtained using a Bruker Alpha ATR-IR. High-resolution mass spectroscopy was performed by the central instrument facility at Colorado State University or on a Thermo Orbitrap ESI mass spectrometer at Baylor University. Single-crystal X-ray crystallography was performed by Brian Newell at Colorado State University or Prof. Caleb Martin at Baylor University. ¹H and ¹³C-NMR spectra, were taken on Varian VNMRS 500, Varian Inova 400, Bruker Ascend 400, and Bruker Ascend 600 cryoprobe spectrometers. Infrared spectra were taken on a Nicolet Avatar 320 FTIR or Bruker Alpha Platinum ATR. Chemical Shifts (δ) are reported in parts per million (ppm) and coupling constants (J) are reported in Hertz (Hz) and are rounded to the nearest 0.1 Hz. The reported chemical shifts are relative to the residual solvent peaks of the indicated deuterated solvents. Multiplicities are defined as s = singlet, br.s = broad singlet, d = doublet, br. d = broad doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, ddd = doublet of doublet of doublets, dddd = doublet of doublet of doublet of doublets, br = broad, app = apparent, par = partial.

High-Performance Liquid Chromatography (HPLC): All HPLC purifications were carried out on a Waters HPLC system (consisting of a Waters 1525 binary HPLC pump with direct injection port and monitored at 254 nm unless otherwise specified with a Waters 2489 UV-Visible detector). All purifications utilized a normal-phase Sunfire, Silica Prep 10 μ m, 10 x 250 mm column. Ultra Performance Liquid Chromatography (UPLC)-Mass Spectrometry (MS): All UPLC-MS experiments were carried out on a Waters Acquity H UPLC Class system using the indicated solvent systems as eluents. All separations were performed on a reverse phase Acquity UPLC BEH C18 1.7 μ m, 2.1 x 50 mm column.

Experimental Section

Synthesis of Phenol 18

Benzaldehyde Functionlization. To a round bottom flask equipped with a magnetic stir bar was added 2,4-dihydroxybenzaldehyde **10** (40.0 g, 290 mmol), 2-nitrobenzenesulfonyl chloride (NsCl) (64.2 g, 290 mmol), potassium carbonate (K₂CO₃) (96.2 g, 608 mmol), and acetone (965 mL). The flask was capped with a rubber septum containing an 16 gauge needle open to air and stirred vigorously at room temperature. After 24 hours, allyl bromide (36.5 mL, 434 mmol) was added rapidly via syringe and TLC was used to monitor the reaction progress. The TLC plates were developed using a 25% EtOAc/Hex solution and visualized by KMnO₄. The reaction was worked up after 48 hours by light concentration and transferring to a separatory funnel containing EtOAc (600 mL). The organic layer was washed with 1 M HCl (750 mL) and brine (250 mL) before drying over MgSO₄. Concentration delivered a mixture of regioisomers as a tan solid that was washed with MeOH (~ 500 mL) and filtered by vacuum filtration through a fritted funnel until the filtrate appeared colorless. The resultant white solid contained the functionalized benzaldehyde as a 5:1 (desired:undesired) mixture of regioisomers (56.9 g) which was moved onto the next step without further purification.

Dakin Oxidation. To a round bottom flask equipped with a magnetic stir bar was added the benzaldehyde (56.9 g, 157 mmol) and dichloromethane (DCM) (500 mL). The solution was cooled in an ice/water bath and *m*CPBA (35.1 g, 77%, 157 mmol) was added. The flask was capped with a rubber septum fitted with a 1 gauge needle open to air and the reaction was allowed to slowly warm to room temperature within the bath. After 18 hours, K_2CO_3 (32.5 g, 235 mmol) and MeOH (660 mL) were added all at once. After an additional 48 hours, the reaction was concentrated and dissolved again in H₂O:EtOAc (1:2). The layers were separated and the aqueous layer was extracted with EtOAc (2x) and the combined organics were washed with brine and dried over MgSO₄. Concentration and purification via silica gel flash column chromatography (10% gradient, 0% \rightarrow 50% EtOAc/Hex) afforded phenol **18** (53.1 g, 56% yield) as a tan solid.

<u>R</u>_f=0.49 (50% EtOAc/Hex)

<u>m.p.</u>=81-83 °C

<u>**1H-NMR**</u> (600 MHz; CDCl₃): δ 7.94-7.92 (m, 1H), 7.84-7.79 (m, 2H), 7.67 (ddd, J = 7.9, 5.9, 2.9 Hz, 1H), 6.81 (dd, J = 5.7 Hz, 2H), 6.65 (dd, J = 8.7, 2.6 Hz, 1H), 5.99 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 5.60 (s, 1H), 5.40-5.30 (m, 2H), 4.55 (d, J = 12.0 Hz, 2H)

<u>¹³C-NMR</u> (150 MHz; CDCl₃): δ 145.6, 145.1, 141.6, 135.2, 132.3, 131.8, 131.8, 128.2, 124.7, 119.1, 114.8, 114.4, 107.1, 70.1.

FTIR (thin film/NaCl): 3498, 3098, 2923, 1545, 1504, 1381,11273, 1228, 192, 1120, 854, 832, 589 cm⁻¹.

HRMS (ESI) m/z Calc'd for C₁₅H₁₃NO₇SNa [M+Na]⁺: 374.0305, found: 374.0305.

Synthesis of α-Phenoxy Ketone SI-1

To a pressure vessel equipped with a magnetic stir bar was added phenol **18** (13.0 g, 37 mmol), α bromo ketone **16** (8.40 g, 25 mmol), cesium carbonate (Cs₂CO₃) (12.0 g, 37 mmol), and acetone (62.0 mL). The reaction vessel was sealed and placed in an oil bath, it was then heated to 56 °C. The reaction was removed from the heating bath after 2.5 hours. Upon cooling to room temperature, the solution was filtered through a fritted funnel and the solid was washed with EtOAc. Concentration and purification via silica gel flash column chromatography (5% gradient, 0% \rightarrow 50% EtOAc/Hex) afforded α -phenoxy ketone **SI-1** (9.90 g, 66% yield) as a brown oil.

<u>**R**</u>_f = 0.24 (25% EtOAc/Hex)

¹**H-NMR** (500 MHz, CDCl₃): δ 7.96-7.94 (m, 1H), 7.84-7.80 (m, 2H), 7.67 (ddd, J = 7.9, 5.8, 3.0 Hz, 1H), 6.81 (d, J = 2.6 Hz, 1H), 6.70-6.65 (m, 2H), 5.96 (ddt, J = 17.3, 10.5, 5.3 Hz, 1H), 5.55-5.50 (m, 1H), 5.45-5.33 (m, 5H), 5.27 (dq, J = 10.5, 1.4 Hz, 1H), 4.49 (dt, J = 5.3, 1.5 Hz, 2H), 4.42 (t, J = 4.0 Hz, 1H), 2.66-2.48 (m, 4H), 2.23-2.15 (m, 2H), 1.98-1.92 (m, 4H), 1.64-1.60 (m, 6H), 1.34-1.22 (m, 7H).

¹³C-NMR (125 MHz, CDCl₃): δ 210.3, 149.7, 148.7, 147.0, 135.3, 135.0, 132.3, 132.2, 131.9, 131.5, 129.5, 128.3, 125.9, 124.8, 124.7, 123.3, 118.3, 117.0, 108.9, 85.4, 69.9, 38.0, 35.6, 32.5, 32.5, 29.4, 29.1, 28.7, 25.8, 17.9, 17.9.

FTIR (neat): 2924, 2854, 1717, 1604, 1545, 1502, 1421, 1385, 1264, 1193, 1125, 963, 853, 829, 780, 589 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₃H₄₁NO₈SNa [M+Na]⁺: 634.2451, found: 634.2442.

Synthesis of Ketal 20

To a sealed tube under N₂ atmosphere was added α -phenoxy ketone **SI-1** (9.10 g, 15.0 mmol), ethylene glycol **19** (11.0 mL, 194 mmol) and 1,2-dichloroethane (DCE) (149 mL). The reaction vessel was then cooled in an ice water bath and TMSCI (24.6 mL, 194 mmol) and TMSOTf (0.400 mL, 2.20 mmol) were added. After 10 minutes, the cooling bath was removed and the reaction was allowed to warm to room temperature over 10 minutes, then the N₂ inlet was replaced and the reaction vessel was sealed. The reaction was then placed in an 86 °C oil bath and was heated for 6.5 hours, after which the heating bath was removed and the reaction was allowed to cool to room temperature. Upon cooling, the reaction was further cooled in an ice water bath and Et₃N (26.0 mL) was added slowly (vigorous reaction resulting in gas evolution). The solution was transferred to a separatory funnel and washed with H₂O (200 mL). The aqueous was extracted with DCM (3x) and the combined organics were washed with brine, then dried over MgSO₄. Concentration and purification via silica gel flash column chromatography (5% gradient, 0%→30% EtOAc/Hex) afforded glycol acetal **20** (9.00 g, 92% yield) as a brown oil.

<u>**R**</u>_f = 0.66 (50% EtOAc/Hex)

 1 **H-NMR** (500 MHz, CDCl₃): δ 7.96-7.92 (m, 1H), 7.83-7.78 (m, 2H), 7.69-7.63 (m, 1H), 6.85-6.81 (m, 1H), 6.73-6.66 (m, 2H), 6.00-5.91 (m, 1H), 5.51-5.33 (m, 7H), 5.24-5.21 (m, 1H), 4.50-4.42 (m, 2H), 4.14-4.10 (m, 1H), 4.03-3.88 (m, 3H), 2.42-2.40 (m, 1H), 2.06-1.88 (m, 7H), 1.75-1.68 (m, 1H), 1.64-1.61 (m, 5H), 1.32-1.20 (m, 7H).

<u>1³C-NMR</u> (125 MHz, CDCl₃): δ 149.4, 148.8, 142.4, 135.2, 133.2, 132.6, 132.3, 131.8, 131.5, 130.8, 126.0, 124.8, 124.7, 124.6, 117.8, 116.0, 114.0, 111.3, 108.4, 83.7, 70.0, 66.1, 65.8, 60.4, 34.0, 33.9, 32.5, 29.4, 29.2, 28.7, 25.8, 17.9, 17.9.

FTIR (neat): 2923, 2854, 1720, 1595, 1501, 1384, 1365 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₅H₄₅NO₉SNa [M+Na]⁺: 678.2707, found: 678.2704.

Synthesis of Phenol SI-2

To a flask equipped with a magnetic stir bar was added ketal **20** (4.30 g, 6.56 mmol), Pd(PPh₃)₄ (0.379 g, 0.328 mmol), NaBH₄ (0.124 g, 3.28 mmol), and the flask was evacuated and backfilled with N₂ three times. EtOH (65.6 mL, degassed by freeze-pump-thaw) was cannulated and the reaction was allowed to stir at room temperature. TLC was used to monitor the reaction progress. The TLC plates were developed using a 50% EtOAc/Hex solution and visualized by KMnO₄. After 3 hours, the reaction looked complete, so the reaction was quenched with a saturated aqueous solution of NH₄Cl (20.0 mL). The reaction was diluted with EtOAc (100 mL) and transferred to a separatory funnel, where the organic was washed with H₂O (90.0 mL) and brine. Drying over Na₂SO₄, concentration, and purification via silica gel flash column chromatography (10% gradient, 0% \rightarrow 60% EtOAc/Hex) afforded phenol **SI**-**2** (3.15 g, 78% yield) as an orange oil.

<u>**R**</u>_f = 0.19 (25% EtOAc/Hex)

¹**H-NMR** (600 MHz, CDCl₃): δ 7.97 (dd, J = 7.9, 1.3 Hz, 1H), 7.83-7.80 (m, 2H), 7.68-7.65 (m, 1H), 7.58 (s, 1H), 6.96 (d, J = 8.9 Hz, 1H), 6.74 (d, J = 2.9 Hz, 1H), 6.62 (dd, J = 8.8, 2.9 Hz, 1H), 5.55-5.51 (m, 1H), 5.47-5.32 (m, 5H), 4.05-3.98 (m, 4H), 3.80 (dd, J = 7.6, 4.6 Hz, 1H), 2.48-2.44 (m, 2H), 2.13-2.03 (m, 2H), 1.96-1.92 (m, 3H), 1.91-1.86 (m, 1H), 1.761.71 (m, 1H), 1.64-1.59 (m, 6H), 1.33-1.22 (m, 6H).

¹³C-NMR (150 MHz, CDCl₃): δ 149.2, 148.8, 145.8, 144.7, 135.2, 134.1, 132.2, 131.8, 131.5, 130.3, 128.6, 125.5, 125.4, 124.8, 124.7, 120.7, 113.1, 111.5, 110.2, 86.1, 66.1, 66.0, 34.7, 33.9, 32.5, 32.5, 29.4, 29.1, 28.7, 25.7, 17.9, 17.9.

FTIR (neat): 3495, 3257, 3017, 2925, 2854, 1601, 1547, 1495, 1386, 1366, 1193, 1118, 962, 830, 588 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₂H₄₁NO₉SNa [M+Na]⁺: 638.2400, found: 638.2392.

Synthesis of α-Hydroxy Ketone 8

To a pressure vessel equipped with a magnetic stir bar was added the phenol **SI-2** (4.43 g, 7.01 mmol), Pb(OAc)₄ (3.13 g, 8.41 mmol), and 1,2-dichloroethane (DCE) (70.1 mL). The reaction vessel was stirred at room temperature for 25 minutes after which it was placed into a 90 °C oil bath. After 18 hours, the reaction was removed from the heating bath and after an additional hour, it was filtered through a fritted funnel using DCM to rinse the flask. After concentration, the crude oil was dissolved in DCM (70.1 mL) and silica gel (19 g) was added. The reaction was stirred at room temperature and the reaction progress was followed by TLC. The TLC plates were developed using a 50% EtOAc/Hexanes solution and visualized by KMnO₄. After 24 hours, the silica gel was removed by vacuum filtration and solid was washed with EtOAc (250 mL). Concentration and purification via silica gel flash column chromatography (10% gradient, 0% \rightarrow 70% EtOAc/Hex) afforded α -hydroxy ketone **8** (3.19 g, 72% yield, 1:3 dr α : β , **8a** and **8b** respectively) as a brown sticky foam. (Note: diastereomeric ratio was determined using the crude ¹H-NMR)

<u>**R**</u>_f = 0.28 (50% EtOAc/Hex)

¹**H-NMR** (500 MHz, CDCl₃): δ 8.00-7.98 (m, 1H), 7.5 -7.82 (m, 2H), 7.72-7.66 (m, 1H), 6.13 (dd, J = 7.6, 2.3 Hz, 0.26H), 6.05 (dd, J = 7.6, 2.5 Hz, 0.73H), 5.44-5.34 (m, 4H), 4.01-3.90 (m, 4H), 3.51-3.44 (m, 1H), 3.29-3.19 (m, 2H), 2.89 (dd, J = 7.6, 2.6 Hz, 0.21H), 2.65 (dd, J = 7.5, 3.4 Hz, 0.82H), 2.05-1.89 (m, 6H), 1.82-1.72 (m, 2H), 1.721.70 (m, 1H), 1.65-1.59 (m, 5H), 1.48-1.44 (m, 1H), 1.34-1.26 (m, 7H).

 $\frac{{}^{13}\text{C-NMR}}{131.3}, 131.2, 130.7, 130.6, 127.6, 125.1, 125.0, 124.9, 124.9, 124.9, 124.8, 119.4, 119.3, 110.2, 110.0, 90.7, 90.2, 73.8, 72.8, 66.5, 66.2, 65.9, 65.4, 55.5, 55.1, 43.5, 42.5, 40.6, 38.3, 36.0, 35.7, 35.3, 34.6, 34.0, 32.4, 30.4, 29.3, 29.3, 29.0, 28.9, 28.8, 26.9, 26.7, 25.9, 25.7, 17.9, 17.9, 12.8, 12.7.$

FTIR (neat): 3410, 2926, 2855, 2360, 1746, 1545, 1388, 1192, 1110, 966, 851, 737 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₂H₄₁NO₁₀SNa [M+Na]⁺: 654.2349, found: 654.2355.

Mechanistic Considerations:

Although the mechanistic details of this Diels-Alder reaction have not been fully delineated, as illustrated in the Scheme below, the diastereoselective outcome can likely be attributed to a combination of two extremes; either diastereoselective attack of acetate during acetal formation (i.e. **D** forms in preference to **C**) is followed by rapid Diels-Alder cycloaddition or the initially formed acetals (**C** and **D**) rapidly equilibrate relative to the differential rates of their diastereomeric Diels-Alder reactions (**C** to *ent*-**8a** and **D** to **8b**). As illustrated, the former scenario would require that **C** and **D** be produced in a 1:3 ratio, respectively, followed by conversion to *ent*-**8** and **8** prior to any equilibration. The

second extreme would involve rapid interconversion of **C** and **D** relative the differential rates of formation of *ent*-8 (slow) and 8 (fast).

Note: In this Scheme we depict the products derived from a single enantiomer of the racemic starting material (**20**). The products **8a** and **8b**, as drawn in Scheme 3 of the manuscript and the above exerimental, derive from different enantiomers of **20**. We chose to illustrate **8a** rather than **ent-8a** in the manuscript to allow for easier visual comparison of the diastereomeric products.

Synthesis of Silyl Ether SI-3

To a round bottom flask equipped with a magnetic stir bar was added α -hydroxy ketone **8** (1.80 g, 2.85 mmol, 1:3 α : β mixture), and DCM (28.5 mL). The solution was cooled in an ice water bath, at which point chlorotrimethylsilane (TMSCI) (0.550 mL, 4.27 mmol) and triethylamine (Et₃N) (0.600 mL, 4.27 mmol) were added. TLC was used to follow the reaction progress and the TLC plates were developed using a 50% EtOAc/Hexanes solution and visualized with CAM. After stirring at 0 °C for 4 hours, TMSCI (0.550 mL, 4.27 mmol) and Et₃N (0.600 mL, 4.27 mmol) were added and the reaction was allowed to slowly warm to room temperature, with the bath, overnight. In the morning, the reaction was cooled to 0 °C, TMSCI (0.550 mL, 4.27 mmol) and Et₃N (0.600 mL, 4.27 mmol) were again added. After four additional hours of slowly warming to room temperature with the bath, the reaction was quenched with the addition of NaHCO₃ (14.0 mL). The solution was transferred to a separatory funnel, and the aqueous layer was extracted with DCM (2x). The combined organics were dried over Na₂SO₄. Concentration and purification via silica gel flash column chromatography (10% gradient, 0% \rightarrow 30% EtOAc/Hex) afforded silyl ether **SI-3** (1.73 g, 86% yield, 1:3 α : β mixture) as a yellow oil.

<u>**R**</u>_{*f*} = 0.42 (20% EtOAc/Hex)

¹**H-NMR** (500 MHz, CDCl₃): δ 8.01-7.99 (m, 0.24H), 7.98-7.96 (m, 0.75H), 7.86-7.81 (m, 2H), 7.75-7.71 (m, 0.24H), 7.69-7.65 (m, 0.79H), 6.07 (dd, *J* =10.0, 5.0 Hz, 0.25H), 6.04 (dd, *J* = 10.0, 5.0 Hz, 0.75H), 5.45-5.32 (m, 4H), 4.03-3.82 (m, 5H), 3.49-3.43 (m, 1H), 3.15-3.14 (m, 0.24H), 3.08-3.05 (m, 0.80H), 2.73 (dd, *J* = 7.6, 2.7 Hz, 0.25H), 2.55 (dd, *J* = 7.6, 2.7 Hz, 0.80H), 2.07-1.99 (m, 1H), 1.961.89 m, 3H), 1.87-1.80 (m, 2H), 1.76-1.66 (m, 2H), 1.661.61 (m, 6H), 1.58-1.52 m, 2H), 1.44-1.41 (m, 1H), 1.34-1.24 (m, 8H), 0.17 (s, 7H), 0.15 (s, 2H).

<u>1³C-NMR</u> (125 MHz, CDCl₃): δ 204.2, 197.6, 148.5, 144.7, 144.3, 135.5, 135.5, 132.7, 132.6, 132.4, 132.3, 132.2, 131.4, 131.3, 130.6, 130.6, 130.5, 129.8, 128.2, 125.1, 125.0, 124.9, 124.9, 124.8, 124.8, 124.0, 123.9, 119.3, 119.2, 110.5, 110.3, 110.3, 92.7, 92.2, 73.1, 73.1, 72.5, 66.3, 66.0, 659., 64.9, 56.0, 55.9, 45.6, 43.5, 41.9, 41.2, 36.8, 36.7, 36.3, 34.8, 34.5, 34.3, 32.5, 32.4, 30.8, 29.3, 29.1, 29.0, 27.0, 26.7, 26.2, 25.7, 17.9, 1.8, 1.5.

FTIR (neat): 2926, 2855, 1752, 1651, 1546, 1390, 149, 1194, 1088, 1045, 843, 755, 736 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₅H₄₉NO₁₀SSiNa [M+Na]⁺: 726.2739, found: 726.2734.

Synthesis of Amine 22

Synthesis of Lithium Enolate solution 0.5M in Et_2O . To an oven-dried round bottom flask equipped with a magnetic stir bar was added diisopropylamine (iPr_2NH) (1.35 mL, 9.49 mmol) and Et_2O (17.3 mL). The solution was cooled to 78 °C in a dry ice/acetone bath and *n*-butyllithium (*n*BuLi) (3.62 mL, 2.5 M in hexanes, 9.06 mmol) was added. The reaction was stirred at -78 °C for 1 hour before the addition of methyl 3-(dimethylamino)propionate **21** (1.24 mL, 8.63 mmol). The resultant mixture was stirred for 30 minutes at -78 °C before being placed into and ice/salt water bath for 15 minutes and then warmed to room temperature for additional 20 minutes. The enolate solution was cooled again to -78 °C before use.

Aldol Reaction. To an oven-dried round bottom flask equipped with a magnetic stir bar was added silyl ether **SI-3** (1.21 g, 1.73 mmol) (azeotroped with toluene 3x prior to use) and Et₂O (17.3 mL). The solution was cooled in a dry ice/acetone bath and the enolate solution was added dropwise via cannula over 45-60 minutes. The reaction was stirred at this temperature for an additional 1.5 hours before being placed into a dry ice/acetonitrile bath. TLC was used to follow the reaction progress and the TLC plates were developed using a 25% EtOAc/Hexanes solution (10% MeOH/DCM for product) and visualized with CAM. After 3 hours, the solution was cooled again to -78 °C and after 20 minutes, the reaction was quenched with the addition of sat. aq. NH₄Cl (10.0 mL). After warming to room temperature, the solution was transferred to a separatory funnel and diluted with EtOAc. The organic layer was dried over Na₂SO₄. Concentration and purification via silica gel flash column chromatography (10% gradient, 0% \rightarrow 100% EtOAc/Hex) afforded amine **22** (0.773 g, 54% yield, 1:2 dr, α : β mixture) as an off-white solid.

<u>**R**</u>_f = 0.50 (10% MeOH/DCM)

<u>m.p.</u>=104-107 °C

¹**H-NMR** (500 MHz, CDCl₃): δ 8.19-8.17 (m, 1H), 7.84-7.79 (m, 2H), 7.76-7.72 (m, 1H), 5.67 (dd, J = 7.4, 2.8 Hz, 1H), 5.46-5.34 (m, 4H), 4.80 (dd, J = 10.3, 5.6 Hz, 1H), 3.99-3.88 (m, 5H), 3.67 (s, 3H), 3.19 (dd, J = 12.8, 8.9 Hz, 1H), 2.92 (dd, J = 8.9, 3.1 Hz, 1H), 2.74 (dd, J = 12.8, 3.3 Hz), 2.45-2.44 (m, 1H), 2.28-2.22 (m, 8H), 2.10-1.87 (m, 7H), 1.67-1.59 (m, 7H), 1.57-1.55 (m, 2H), 1.40-1.39 (m, 1H), 1.27-1.21 (m, 3H), 1.17-1.06 (m, 5H), 0.17 (s, 9H).

¹³C-NMR (125 MHz, CDCl₃): δ 176.3, 148.7, 148.5, 134.9, 132.0, 131.5, 131.4, 131.2, 130.1, 124.9, 124.6, 124.4, 111.3, 111.3, 100.3, 81.1, 73.5, 66.8, 64.7, 59.7, 52.1, 51.5, 48.9, 17.5, 46.3, 37.4, 36.9, 34.7, 34.6, 32.5, 29.4, 29.3, 28.8, 27.1, 26.4, 17.9, 17.9, 2.1.

FTIR (neat): 3419, 2927, 2856, 1704, 1652, 1547, 1391, 1194, 1109, 1051, 907, 842, 720, 583 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₄₁H₆₃N₂O₁₂SSi [M+H]⁺:835.3865, found: 835.3866.

Synthesis of Methyl Ester 23

Nosyl Deprotection. To a round bottom flask equipped with a magnetic stir bar was added amine **22** (0.330 g, 0.400 mmol) and acetonitrile (MeCN) (4.00 mL). Thiophenol (0.061 mL, 0.590 mmol) and cesium carbnonate (Cs_2CO_3) (0.190 g, 0.590 mmol) were then added and the reaction was stirred at room temperature. TLC was used to follow the reaction progress and the TLC plates were developed using a 20% EtOAc/Hexanes solution and visualized with CAM. After 3.5 hours, the reaction was quenched with sat. aq. NH₄Cl (2.00 mL) and diluted with EtOAc. The organic layer was separated and dried over Na₂SO₄. Concentration and purification via silica gel flash column chromatography (5% gradient, 5% \rightarrow 20%; then 100% EtOAc/Hex) afforded the ketone.

Cope Elimination. To a round bottom flask equipped with a magnetic stir bar was added the ketone and DCM (3.10 mL). The solution was cooled in a dry ice/acetone bath and stirred at this temperature for 10 minutes before the addition of 3-chloroperbenzoic acid (*m*CPBA) (0.210 g, 0.32 mmol) as a solution in DCM, which was added slowly dropwise (~ 1 drop/second) to keep the solution temperature consistent. Upon completion of addition, basic alumina (Al₂O₃) (0.210 g) was added to the solution and was stirred 20 seconds at this temperature before the solution quickly passed through a plug of basic alumina (12.0 g) (presaturated with DCM) and vacuum filtered using a 10% MeOH/DCM solution (25.0 mL) to wash. Concentration and purification of the filtrate via silica gel flash column chromatography (0%→5% EtOAc/Hex) afforded methyl ester **23** (0.110 g, 36% yield from TMS ether **SI-3**) as a clear oil and as a single diastereomer.

<u>**R**</u>_f = 0.82 (50% EtOAc/Hex)

<u>**1H-NMR**</u> (500 MHz, CDCl₃): δ 5.84 (s, 1H), 5.75 (s, 1H), 5.70 (s, 1H), 5.53-5.35 (m, 4H), 4.89 (dd, J = 11.3, 4.2 Hz, 1H), 4.03-3.90 (m, 4H), 3.79 (s, 3H), 2.68 (d, J = 2.4 Hz, 1H), 2.45 (dd, J = 19.3, 2.3 Hz, 1H), 2.39-2.34 (m, 1H), 2.21-2.06 (m, 2H), 2.02-1.94 (m, 4H), 1.82-1.76 (m, 2H), 1.66-1.60 (m, 9H), 1.34-1.24 (m, 8H), 0.13 (s, 9H).

¹³C-NMR (125 MHz, CDCl₃): δ 213.6, 170.0, 143.5, 131.4, 131.1, 124.7, 124.7, 121.5, 111.2, 100.1, 80.2, 74.5, 66.1, 65.1, 59.1, 51.9, 43.7, 39.3, 36.7, 35.8, 34.8, 33.2, 32.5, 29.9, 29.4, 29.2, 26.9, 26.6, 18.0, 17.9, 2.0.

FTIR (neat): 3437, 2926, 2855, 1724, 1705, 1441, 1322, 1250, 1177, 1100, 951, 916, 732 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₃H₅₂O₈SiNa [M+Na]⁺: 627.3324, found: 627.3329.

Synthesis of Lactone 24

To a round bottom flask equipped with a magnetic stir bar was added methyl ester **22** (0.852 g, 1.41 mmol) and THF (14.0 mL). The solution was then cooled in an ice/water bath and acetic acid (AcOH) (0.400 mL, 7.05 mmol) was added, followed by the addition of tetrabutylammonium fluoride (TBAF) (2.82 mL, 1.0 M in THF, 2.82 mmol). TLC was used to follow the reaction progress and the TLC plates were developed using a 50% EtOAc/Hexanes solution and visualized with CAM. After stirring for 30 min in an ice/water bath, the reaction was warmed to room temperature and continued to stir for an additional 2.5 hours. Then TBAF (1.41 mL, 1.0 M in THF, 1.41 mmol) was again added followed by another TBAF (1.41 mL, 1.0 M in THF, 1.41 mmol) addition after an additional 45 minutes. After a total of 24 hours, the reaction was worked up by pouring into H₂O (50.0 mL), the organic layer was washed with brine, and dried over Na₂SO₄. Concentration and purification via silica gel flash column chromatography (5% gradient, 0% \rightarrow 40% EtOAc/Hex) afforded lactone **24** (0.620 g, 89% yield) as a white foam.

 $\underline{R}_{f} = 0.21 (25\% \text{ EtOAc/Hex})$

¹**H-NMR** (500 MHz, CDCl₃): δ 6.48 (s, 1H), 5.98 (s, 1H), 5.48-5.38 (m, 4H), 4.56 (dd, J = 12.2, 4.0 Hz, 1H), 4.34 (s, 1H), 4.18-3.88 (m, 4H), 2.72 (d, J = 2.5 Hz, 1H), 2.18-2.11 (m, 4H), 2.08-2.01 (m, 2H), 1.95-1.87 (m, 3H), 1.85-1.75 (m, 2H), 1.67-1.57 (m, 7H), 1.36-1.15 (m, 8H).

¹³**C-NMR** (125 MHz, CDCl₃): δ 208.5, 165.8, 139.7, 131.2, 130.6, 130.1, 125.2, 124.9, 110.7, 105.4, 76.6, 75.2, 66.3, 66.1, 59.6, 39.8, 38.5, 37.0, 36.1, 34.1, 33.7, 32.4, 30.9, 29.3, 29.0, 26.9, 25.7, 17.9.

<u>FTIR</u> (neat): 3373, 2927, 2855, 1777, 1735, 1439, 1406, 1190, 1161, 1098, 1046, 1022, 1046, 967 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd.for C₂₉H₄₀O₇Na [M+Na]⁺: 523.2666, found: 523.2669.

Synthesis of Bromoacetal 7

To a round bottom flask equipped with a magnetic stir bar was added lactone **24** (azeotroped with toluene x3 prior to use) (0.381 g, 0.761 mmol) and DCM (3.81 mL). *N*,*N*-dimethylaniline (freshly distilled, 150 torr, 155 °C) (0.482 mL, 3.81 mmol) and bromoacetal **25** (freshly distilled, ~ 0.2 mmHg, 52 °C) (0.882 g, 3.81 mmol) were then added. TLC was used to follow the reaction progress and the TLC plates were developed using a 50% EtOAc/Hexanes solution and visualized with KMnO₄. After 24 hours, the reaction was quenched with the addition of sat. aq. NaHCO₃ (4.00 mL) and diluted with DCM. The organic layer was washed with brine and dried over MgSO₄. Concentration and purification via silica gel flash column chromatography (5% gradient, 5% \rightarrow 20% EtOAc/Hex) afforded the ethyl acetal **7** (0.449 g, 91% yield, 1:1 dr) as a green oil.

<u>**R**</u>_f = 0.42 (30% EtOAc/Hex)

<u>'H-NMR</u></u> (400 MHz, CDCl₃): δ 6.69 (s, 1H), 6.60 (s, 1H), 6.02 (s, 1H), 5.83 (s, 1H), 5.49-5.34 (m, 8H), 4.87-4.85 (m, 1H), 4.76-4.74 (m, 1H), 4.65-4.62 (m, 1H), 4.52-4.49 (m, 1H), 4.16-4.08 (m, 1H), 4.01-3.95 (m, 1H), 3.72-3.68 (m, 1H), 3.64-3.60 (m, 1H), 3.60-3.52 (m, 1H), 3.49-3.32 (m, 5H), 2.94 (s, 1H), 2.85 (s, 1H), 2.31-2.24 (m, 2H), 2.15-2.01 (m, 11H), 1.95-1.92 (m, 4H), 1.87-1.84 (m, 4H), 1.79-1.68 (m, 2H), 1.69-1.58 (m, 16H), 1.32-1.26 (m, 16 H), 1.18 (m, 3H), 1.09 (t, J = 6.9 Hz, 3H)

 $\frac{{}^{13}\text{C-NMR}}{130.6, 130.0, 125.2, 125.0, 124.8, 124.8, 110.7, 110.6, 106.5, 105.9, 97.2, 96.7, 79.7, 79.2, 77.1, 66.7, 66.5, 66.5, 66.3, 61.0, 60.3, 60.2, 59.0, 40.5, 40.4, 38.3, 38.3, 37.4, 37.1, 36.0, 36.0, 34.7, 34.4, 33.5, 33.4, 32.5, 31.9, 31.4, 31.0, 30.6, 29.3, 29.3, 28.9, 26.8, 26.7, 26.7, 25.9, 25.8, 17.9, 14.9, 14.9, 12.8.$

<u>FTIR</u> (neat): 2926, 2854, 1778, 1733, 1442, 1405, 1374, 1281, 1191, 1161, 1112, 1072, 1046, 966, 812 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₃H₄₇O₈BrNa [M+Na]⁺: 673.2347, found: 673.2340.

Synthesis of Isotwistane 6

*Sml*₂ *Formation*. To a schlenk tube equipped with a magnetic stir bar and fitted with a water cooled condenser was added newly filed samarium powder (0.744 g, 4.95 mmol) and THF (25.0 mL). A separate solution of 1,2-diiodoethane¹ (0.775 g, 2.75 mmol) in THF (2.50 mL) was added and the reaction stirred at room temperature until it had turned dark blue in color (25 minutes). The reaction was then placed into a 55 °C bath and heated for 4 hours. The Sml₂ solution (0.10 M in THF) was cooled to room temperature prior to use.

Cascade Cyclization. To a round bottom flask equipped with a magnetic stir bar was added Sml₂ (26.4 mL, 0.10 M in THF, 5.00 mmol). A solution of the bromoacetal **7** (0.506 mg, 0.777 mmol) in THF (5.50 mL) was then added. TLC was used to follow the reaction progress and the TLC plates were developed using a 50% EtOAc/Hexanes solution and visualized with *p*-anisaldehyde stain. The reaction was quenched after 15 minutes with the addition of sat. aq. NH₄Cl (8.00 mL), and 1.0 M HCl (4.00 mL). The solution was then diluted with EtOAc and washed with brine before drying over MgSO₄. Concentration and purification via silica gel flash column chromatography (10% gradient, 0% \rightarrow 40% EtOAc/Hex) afforded isotwistane **6** (0.304 g, 68% yield, 1:1 dr) as a green sticky foam. (Isotwistane **6** was carried onto the next step as a 1:1 diastereomeric mixture)

Diastereomer One $\mathbf{R}_f = 0.19$ (25% EtOAc/Hex)

¹**H-NMR** (500 MHz, CDCl₃): δ 5.37 (m, 4H), 4.19 (dd, J = 12.3, 2.8 Hz, 1H), 4.01-3.95 (m, 2H), 3.74 (dq, J = 9.7, 7.1 Hz, 1H), 3.48 (dq, J = 9.7, 7.1 Hz, 1H), 2.75 (dd, J = 14.2, 5.7 Hz, 1H), 2.37 (d, J = 2.7 Hz, 1H), 2.29-2.27 (m, 1H), 2.21-2.16 (m, 2H), 2.10-1.88 (m, 7H), 1.86-1.79 (m, 3H), 1.77-1.71 (m, 1H), 1.69-1.58 (m, 10H), 1.53-1.49 (m, 1H), 1.35-1.30 (m, 6H), 1.20 (t, J = 7.1 Hz, 3H).

¹³C-NMR (125 MHz, CDCl₃): δ 177.6, 131.4, 131.1, 124.7, 124.7, 110.5, 109.3, 107.2, 95.5, 77.7, 74.3, 66.1, 65.3, 63.8, 56.8, 51.8, 51.5, 44.0, 39.1, 37.4, 37.3, 36.6, 33.8, 33.8, 33.7, 32.5, 30.9, 29.5, 29.3, 27.9, 25.9, 17.9, 15.1.

FTIR (neat): 3476, 2925, 2855, 1780, 1149, 1299, 1110, 1071, 1044, 967, 920 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₃H₄₈O₈Na [M+Na]⁺: 595.3241, found: 595.3240.

Diastereomer Two $\underline{\mathbf{R}_{f}} = 0.46 (50\% \text{ EtOAc/Hex})$

¹ 1,2-diiodoethane was taken up in ether, washed with a 1:1 mixture of sat. aq. $Na_2S_2O_3$, brine, dried over Na_2SO_4 , concentrated, and dried under vacuum. All were taken care of in the dark to exclude light.

¹**H-NMR** (500 MHz, CDCl₃): δ 5.46-5.37 (m, 4H), 5.30 (d, *J* = 4.1 Hz, 1H), 4.18-4.10 (m, 2H), 4.07-4.03 (m, 2H), 3.95-3.91 (m, 1H), 3.88-3.85 (m, 1H), 3.35 (dq, *J* = 9.0, 6.9 Hz, 1H), 2.65 (d, *J* = 12.8 Hz, 1H), 2.17 (d, *J* = 13.0 Hz, 1H), 2.08-2.02 (m, 2H), 1.98-1.69 (m, 12H), 1.67-1.55 (m, 10H), 1.51-1.47 (m, 1H), 1.36-1.28 (m, 6H), 1.13 (t, *J* = 7.0 Hz, 3H).

1³C-NMR (125 MHz, CDCl₃): δ 177.1, 131.4, 130.9, 124.9, 124.7, 110.5, 107.9, 107.3, 96.1, 79.0, 75.5, 66.4, 66.0, 62.4, 56.4, 52.5, 50.8, 43.8, 39.3, 38.4, 37.4, 35.8, 34.4, 33.6, 32.5, 32.4, 29.5, 29.3, 27.9, 25.8, 17.9, 14.8.

FTIR (neat): 3460, 2923, 2855, 1763, 1443, 1269, 1168, 1130, 1066, 988, 966, 872, 732 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₃H₄₈O₈Na [M+Na]⁺: 595.3241, found: 595.3240.

Synthesis of Acetate SI-4

To a round bottom flask equipped with a magnetic stir bar was added isotwistane **6** (0.283 g, 0.494 mmol) (azeotroped with toluene x3 prior to use), Mg(ClO₄)₂ (0.011 g, 0.049 mmol), DCM (2.60 mL), and acetic anhydride (Ac₂O) (0.140 mL, 1.48 mmol). The reaction was stirred at room temperature for 24 hours. TLC was used to follow the reaction progress and the TLC plates were developed using a 25% EtOAc/Hexanes solution and visualized with CAM. Concentration and purification via silica gel flash column chromatography (5% gradient, 0% \rightarrow 15% EtOAc/Hex) afforded the acetate **SI-4** (0.238 g, 78% yield, 1:3.3 dr) as a white foam.

<u>**R**</u>_f = 0.33 (30% EtOAc/Hex)

<u>'H-NMR</u></u> (400 MHz, CDCl₃): δ 5.47-5.36 (m, 5 H), 5.33-5.30 (m, 1H), 4.22-4.11 (m, 2H), 4.08-4.03 (m, 2H), 4.00-3.90 (m, 2H), 3.89-3.83 (m, 1H), 3.77-3.71 (m, 0.31H), 3.54-3.46 (m, 0.29H), 3.36 (dq, J = 9.1, 7.0 Hz, 1H), 2.99 (d, J = 13.1 Hz, 0.30H), 2.82 (d, J = 13.1 Hz, 1H), 2.79-7.75 (m, 0.25H), 2.68 (d, J = 12.8 Hz, 1H), 2.41-2.33 (m, 2H), 2.20-2.12 (m, 1H), 2.09-2.02 (m, 3H), 1.98-1.97 (m, 5.3H), 1.95-1.90 (m, 1.30H), 1.85-1.69 (m, 7H), 1.65-1.59 (m, 8 H), 1.56-1.42 (m, 5H), 1.37-1.25 (m, 7.6H), 1.22 (t, J = 7.1 Hz, 1H), 1.14 (t, J = 7.0 Hz, 3H).

¹³C-NMR (100 MHz, CDCl₃): δ 177.2, 176.6, 169.4, 169.4, 131.3, 131.1, 130.9, 130.5, 125.0, 124.8, 124.8, 124.7, 123.9, 110.5, 110.5, 109.7, 107.8, 107.7, 107.1, 94.5, 94.0, 84.4, 83.0, 77.2, 75.6, 74.4, 66.4, 66.2, 66.1, 65.4, 63.9, 62.5, 57.5, 57.2, 50.2, 49.5, 47.2, 46.3, 43.9, 43.7, 38.9, 38.8, 37.5, 37.5, 36.9, 36.2, 35.7, 35.7, 34.5, 33.8, 33.5, 33.3, 32.5, 32.5, 32.2, 30.7, 29.6, 29.5, 29.4, 29.4, 27.6, 26.8, 26.0, 25.8, 21.6, 21.5, 17.9, 15.1, 14.8.

<u>FTIR</u> (neat): 2928, 2854, 2019, 1787, 1738, 1440, 1368, 1262, 1236, 1209, 1160, 1090, 1042, 992, 968 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₅H₅₀O₉Na [M+Na]⁺: 637.3347, found: 637.3342.

Synthesis of Bis-dithiane SI-5

To a round bottom flask equipped with a magnetic stir bar was added the acetate **SI-4** (0.382 g, 0.588 mmol) and DCM (5.88 mL). The solution was cooled in and ice/salt/water bath and 1,3-propanedithiol (0.297 mL, 2.94 mmol). After 5 minutes, $BF_3 \cdot OEt_2$ (0.373 mL, 2.94 mmol) was added dropwise. TLC was used to follow the reaction progress and the TLC plates were developed using a 25% EtOAc/Hexanes solution and visualized with CAM. After 40 minutes at 0 °C, acetone (3.00 mL) was added and the reaction was stirred for an additional 10 minutes before it was quenched with the addition of sat. aq. NaHCO₃ (6.00 mL). The organic layer was washed with sat. aq. NH₄Cl, H₂O, and brine before drying over MgSO₄. Concentration and purification via silica gel flash column chromatography (5% gradient, 0% \rightarrow 30% EtOAc/Hex) afforded the bis-dithiane **SI-5** (0.296 g, 70% yield) as a white foam.

<u>**R** $</u>_f = 0.44$ (30% EtOAc/Hex)

<u>**'H-NMR</u></u> (400 MHz, CDCl₃): δ 5.48-5.30 (m, 4H), 4.77 (dd, J = 12.1, 3.4 Hz, 1H), 4.50 (dd, J = 7.8, 6.6 Hz, 1H), 3.50 (s, 1H), 3.36-3.23 (m, 2H), 2.90-2.80 (m, 5H), 2.60 (dt, J = 13.5, 4.2 Hz, 1H), 2.54-2.49 (m, 1H), 2.48-2.29 (m, 4H), 2.27-2.21 (m, 2H), 2.10-2.04 (m, 4H), 1.99-1.89 (m, 6H), 1.86-1.75 (m, 6H), 1.65-1.59 (m, 7H), 1.56-1.46 (m, 2H), 1.39-1.25 (m, 7H).</u>**

¹³C-NMR (100 MHz, CDCl₃): δ 176.5, 169.6, 131.3, 130.1, 125.8, 124.8, 106.6, 83.6, 79.8, 53.8, 51.9, 49.9, 49.3, 42.1, 38.9, 38.1, 37.4, 36.9, 35.8, 32.8, 32.5, 32.0, 29.5, 29.5, 29.2, 28.4, 27.6, 27.3, 25.2, 24.8, 21.6, 17.9.

<u>FTIR</u> (neat): 3441, 3103, 2922, 2853, 1772, 1737, 1437, 1366, 1260, 1234, 1164, 1014, 965, 927, 869, 811 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₇H₅₄O₆S₄Na [M+Na]⁺: 745.2695, found: 745.2704.

Synthesis of Mesylate 26

To a round bottom flask equipped with a magnetic stir bar was added the bis-dithiane **SI-5** (0.14 g, 0.12 mmol), 4-(dimethylamino)pyridine (DMAP) (0.074 g, 0.602 mmol), Et₃N (0.061 mL, 0.602 mmol), and DCM (2.01 mL). The solution was cooled in an ice/salt/water bath and methanesulfonyl chloride (0.047 mL, 0.602 mmol) was added dropwise. The reaction was then allowed to slowly warm to room temperature with the bath. TLC was used to follow the reaction progress and the TLC plates were developed using a 25% EtOAc/Hexanes solution and visualized with CAM. After 5.5 hours, the reaction was again cooled to 0 °C and quenched with 1 M HCl (1.00 mL). After warming to room temperature, the solution was diluted to DCM and the organic layer was washed with brine before drying over MgSO₄. Concentration and purification via silica gel flash column chromatography (5% gradient, $0\% \rightarrow 55\%$ EtOAc/Hex) afforded mesylate **26** (0.153 g, 95% yield) as a white solid.

<u>**R**</u>_f = 0.35 (25% EtOAc/Hex)

<u>m.p.</u>=78-80 °C

<u>**1H-NMR**</u> (500 MHz, CDCl₃): δ 5.47-5.33 (m, 4H), 4.81 (dd, J = 12.0, 3.2 Hz, 1H), 4.77-4.74 (m, 1H), 3.49-3.44 (m, 1H), 3.36 (s, 3H), 3.30 (d, J = 2.4 Hz, 1H), 3.02-2.91 (m, 3H), 2.83-2.78 (m, 2H), 2.62-2.56 (m, 2H), 2.51-2.45 (m, 2H), 2.42-2.39 (m, 2H), 2.35-2.29 (m, 3H), 2.11-1.95 (m, 9H), 1.88-1.76 (m, 6H), 1.63-1.60 (m, 6H), 1.56-1.44 (m, 3H), 1.41-1.25 (m, 7H).

1³C-NMR (125 MHz, CDCl₃): δ 174.8, 169.3, 131.4, 130.1, 125.7, 124.7, 105.9, 95.8, 83.9, 79.6, 53.2, 52.4, 47.8, 47.7, 42.5, 40.6, 39.6, 38.4, 38.3, 36.9, 35.8, 35.8, 32.7, 32.5, 32.2, 31.0, 30.5, 29.5, 29.1, 28.1, 27.7, 27.2, 26.8, 25.4, 24.8, 21.5, 17.9, 17.9.

FTIR (neat): 2923, 2854, 1777, 1738, 1438, 1340, 1261, 1234, 1160, 1683, 965, 878, 736 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₈H₅₆O₈S₅Na [M+Na]⁺: 823.2471, found: 823.2465.

Synthesis of Diol 27

To a round bottom flask equipped with a magnetic stir bar was added mesylate **26** (0.244 g, 0.304 mmol), THF (1.52 mL), and MeOH (1.52 mL). To the stirred solution was added an aqueous solution of KOH (1.52 mL, 1.0 M, 1. 52 mmol) over 30 seconds and the flask was sealed with a glass stopper. After 10 minutes, the reaction was placed into a 40 °C oil bath. TLC was used to follow the reaction progress and the TLC plates were developed using a 50% EtOAc/Hexanes solution and visualized with CAM. After 5 hours, the reaction was removed from the hot bath and was cooled to room temperature. The reaction was then quenched with the addition of 1 M HCl (1.60 mL) until the solution reached a pH ~ 2 and then diluted with EtOAc. The organic layer was washed with 1 M HCl, H₂O, and brine before being dried over Na₂SO₄. Concentration and purification via silica gel flash column chromatography (10% gradient, 0% \rightarrow 60% EtOAc/Hex) afforded diol **27** (0.184 g, 89% yield) as a white foam.

<u>**R**</u>_f = 0.52 (50% EtOAc/Hex)

<u>m.p</u>.=62-64 °C

<u>**'H-NMR**</u> (500 MHz, CDCl₃): δ 5.66 (d, J = 3.5 Hz, 1H), 5.47-5.34 (m, 4H), 5.08 (s, 1H), 4.17-4.10 (m, 2H), 3.18 (s, 1H), 2.94-2.86 (m, 4H), 2.82-2.59 (m, 8H), 2.56 (d, J = 15.5 Hz, 1H), 2.40-2.36 (m, 1H), 2.28-2.15 (m, 5H), 2.07-2.03 (m, 2H), 1.97-1.79 (m, 5H), 1.73-1.57 (m, 10H), 1.50-1.42 (m, 1H), 1.37-1.11 (m, 7H).

1³C-NMR (125 MHz, CDCl₃): δ 205.8, 177.3, 142.1, 132.2, 131.3, 130.3, 125.6, 124.7, 107.3, 68.6, 58.7, 58.6, 48.2, 48.1, 47.0, 40.6, 38.7, 38.3, 34.3, 33.6, 32.7, 32.5, 29.5, 29.3, 27.7, 26.1, 25.3, 24.9, 24.1, 17.9.

FTIR (neat): 3478, 2923, 2853, 1769, 1693, 1438, 1274, 1108, 966, 908, 729, 647 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₅H₅₃O₅S₄ [M+H]⁺: 703.2590, found: 703.2585.

Synthesis of ketone 5

To a vial equipped with a magnetic stir bar was added diol **27** (0.024 g, 0.035 mmol), 4nitrobenzenesulfonyl chloride (NsCl) (0.016 g, 0.070 mmol), Et₃N (0.015 mL, 0.11 mmol), and DCM (0.400 mL). The vial was capped and the reaction was stirred at room temperature. TLC was used to follow the reaction progress and the TLC plates were developed using a 50% EtOAc/Hexanes solution and visualized with CAM. After 6 hours, the reaction was quenched with the addition of 1M HCl (0.130 mL) and diluted with DCM. The organic layer was washed with 1M HCl, H₂O, and brine before being dried over MgSO₄. Concentration and purification via silica gel flash column chromatography (100% DCM until excess NsCl was eluted, then 5% gradient, 0% \rightarrow 30% EtOAc/Hex) afforded ketone **5** (0.016 g, 67% yield) as a white foam.

<u>**R**</u>_f = 0.43 (25% EtOAc/Hex)

<u>m.p.</u>=67-68 °C

<u>**'H-NMR**</u> (400 MHz, CDCl₃): δ 5.81 (s, 1H), 5.47-5.30 (m, 4H), 4.19-4.12 (m, 2H), 3.50-3.37 (m, 2H), 2.88-2.82 (m, 2H), 2.75-2.64 (m, 5H), 2.55 (d, J = 14.4 Hz, 1H), 2.50-2.46 (m, 3H), 2.35-2.17 (m, 4H), 2.15-1.90 (m, 8H), 1.83-1.72 (m, 2H), 1.65-1.58 (m, 8H), 1.43-1.25 (m, 9H).

<u>1³C-NMR</u> (100 MHz, CDCl₃): δ 204.7, 175.8, 138.4, 132.0, 131.2, 130.1, 125.7, 124.9, 105.8, 83.6, 60.8, 52.7, 49.4, 45.1, 43.0, 42.6, 41.7, 38.4, 38.2, 36.9, 36.5, 35.4, 32.5, 29.4, 28.9, 28.9, 28.6, 28.3, 28.2, 27.8, 27.2, 25.5, 24.9, 17.9, 17.9.

FTIR (neat): 3016, 2923, 2853, 1761, 1697, 1437, 1371, 1269, 1152, 966 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₅H₅₀O₄S₄Na [M+Na]⁺: 685.2484, found: 685.2480.

Synthesis of Enol 29

To an oven-dried vial equipped with a stir bar was added ketone 5 (19.3 mg, 0.029 mmol) (azeotroped with toluene x3 prior to use) in Et₂O (0.291 mL). The solution was cooled to -40 °C in a dry ice/MeCN bath and lithium bis(trimethylsilyl)amide (LiHMDS) (27.7 µL, 0.028 mmol) was added dropwise. The reaction mixture was stirred in dry ice/MeCN bath for 15 minutes and then it was stirred in an ice bath for 1 hour, at which point additional LiHMDS (43.7 µL, 0.044 mmol) was added dropwise. After 20 minutes, the reaction was cooled to -40 °C in a dry ice/MeCN bath, at which point hexamethylphophramide (HMPA) (7.60 µL, 0.044 mmol) and methyl cyanoformate (3.46 µL, 0.044 mmol) were added sequentially. After 10 minutes, dry ice/MeCN bath was removed and the reaction was warmed to room temperature, at which point the reaction mixture turned deep orange in color. TLC was used to follow the reaction progress and the TLC plates were developed using a 25% EtOAc/Hexanes solution and visualized with CAM. After an hour, the reaction was cooled to 0 °C and was guenched with sat. ag. NH₄Cl (0.200 mL) and was allowed to warm to room temperature. The solution was then diluted with EtOAc and the organic layer was washed with H₂O and brine. After drying over MgSO₄ and concentration, purification via HPLC (0% \rightarrow 18% EtOAc/Hex, λ = 259 nm, flow rate = 10 mL/min) afforded enol 29 (0.0126 g, 60% yield) as a white foam. (Note: Occassionally, trace amount of keto tautomer (SI-6) was observed under the reaction conditions.)

Enol Tautomer

<u>**R**</u>_{*f*} = 0.53 (25% EtOAc/Hex)

¹**H-NMR** (600 MHz, CDCl₃): δ 13.82 (s, 1H), 5.75 (s, 1H), 5.46-5.33 (m, 4H), 4.18-4.15 (m, 2H), 3.82 (s, 1H), 3.46 (dddd, J = 33.0, 14.4, 12.2, 2.8 Hz, 2H), 3.22 (s, 1H), 2.84 (ddd, J = 14.2, 7.2, 2.9 Hz, 2H), 2.80 (d, J = 17.4 Hz, 1H), 7.74-7.69 (m, 3H), 2.59 (dd, J = 17.5, 1.3 Hz, 1H), 2.48 (ddt, J = 21.7, 13.4, 4.0 Hz, 2H), 2.43 (d, J = 3.2 Hz, 1H), 2.34-2.28 (m, 1H), 2.21 (dd, J = 14.4, 8.2 Hz, 1H), 2.16 (td, J = 12.4, 3.2 Hz, 1H), 2.11-2.00 (m, 4H), 1.96-1.89 (m, 3H), 1.82-1.75 (m, 2H), 1.65-1.57 (m, 7H), 1.33-1.12 (m, 9H).

1³C-NMR (150 MHz, CDCl₃): δ 175.6, 174.5, 171.6, 136.4, 131.2, 130.3, 125.7, 125.0, 104.2, 100.0, 83.2, 55.0, 527, 52.6, 49.1, 44.6, 42.6, 42.0, 38.4, 36.6, 36.5, 35.8, 35.3, 32.4, 29.3, 28.9, 28.9, 28.6, 28.3, 27.9, 27.8, 27.2, 25.5, 24.9, 17.9.

<u>FTIR</u> (neat): 2923, 2853, 1786, 1639, 1573, 1438 cm⁻¹. <u>HRMS (ESI)</u> *m*/*z* Calc'd. for C₃₇H₅₂O₆S₄Na [M+Na]⁺: 743.2539, found: 743.2534.

Keto Tautomer $\underline{\mathbf{R}_{f}} = 0.32 (25\% \text{ EtOAc/Hex})$

<u>**'H-NMR**</u> (600 MHz, CDCl₃): δ 5.91 (s, 1H), 5.45-5.31 (m, 4H), 4.16 (t, J = 8.5 Hz, 1H), 4.12 (dd, J = 11.7 Hz, 1H), 3.74 (s, 3H), 3.46-3.40 (m, 2H), 3.21 (d, J = 4.6 Hz, 1H), 3.09-3.08 (m, 1H), 2.92 (d, J = 13.2 Hz, 1H), 2.87-2.82 (m, 2H), 2.77-2.69 (m, 3H), 2.59 (d, J = 13.2 Hz, 1H), 2.48-2.43 (m, 2H), 2.35-2.14 (m, 6H), 2.10-1.89 (m, 8H), 1.78-1.71 (m, 2H), 1.65-1.58 (m, 6H), 1.53-1.50 (m, 1H), 1.38-1.28 (m, 6H).

1³C-NMR (150 MHz, CDCl₃): δ 200.6, 174.5, 169.0, 138.6, 131.7, 131.1, 130.1, 125.8, 125.0, 104.4, 84.0, 61.3, 61.2, 52.9, 52.4, 49.9, 45.6, 41.7, 39.0, 38.5, 37.4, 35.6, 35.1, 32.5, 29.9, 29.4, 28.9, 28.7, 28.4, 28.2, 27.9, 27.1, 25.4, 24.8, 18.0, 17.9.

FTIR (neat): 2919, 2852, 1792, 1747, 1706, 1435, 1260, 1012, 965, 801, 734 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₇H₅₂O₆S₄Na [M+Na]⁺: 743.2539, found: 743.2534.

Synthesis of Enol Triflate 31

To an oven-dried vial equipped with a magnetic stir bar was added NaH (2.430 mg, 0.061 mmol) under N₂. The vial was capped and was cooled to 0 °C in an ice/water bath, at which point a solution of enol **29** (21.9 mg, 0.030 mmol) in THF (0.608 mL) was added. The resulting suspension was allowed to slowly warm to at room temperature and stir for an hour, then the suspension was recooled to 0 °C, at which point a solution of *N*-(5-Chloro-2-pyridyl)bis(trifluoromethanesulfonimide) (Comins' reagent) **30** (0.179 g, 0.046 mmol) in THF (0.608 mL) was added dropwise. Resulting reaction mixture continued to stir at 0 °C, slowly warm to room temperature with the bath. After an hour, the reaction was recooled to 0 °C and was quenched with the addition of H₂O (0.120 mL) and diluted with EtOAc. The layer was separated and the organic layer was washed with EtOAc three times. Combined organics were washed with brine, then dried over MgSO₄. Concentration and purification via silica gel flash column chromatography (5% gradient, 0% \rightarrow 10% EtOAc/Hex) afforded enol triflate **31** (0.019 g, 73% yield) as a white foam. (Note: Purification can also be performed using HPLC (0% \rightarrow 15% EtOAc/Hex, λ = 259 nm, flow rate = 10 mL/min))

<u>**R**</u>_{*f*} = 0.52 (25% EtOAc/Hex)

<u>**'H-NMR**</u> (400 MHz, CDCl₃): δ 5.89 (s, 1H) 5.48-5.30 (m, 4H), 4.18-4.11 (m, 2H), 3.82 (s, 3H), 3.47-3.33 (m, 2H), 3.05 (s, 1H), 2.87-2.81 (m, 2H), 2.76-2.68 (m, 5H), 2.50-2.44 (m, 3H), 2.29 (dd, *J* = 14.3, 8.3 Hz, 2H), 2.16-1.92 (m, 8H), 1.81-1.71 (m, 2H), 1.64-1.61 (m, 7H), 1.57-1.54 (m, 1H), 1.52-1.44 (m, 2H), 1.40-1.25 (m, 8H).

1³C-NMR (100 MHz, CDCl₃): δ 174.6, 165.7 ,145.0 ,134.4 ,132.2, 131.3, 130.0, 129.0, 125.8, 124.8, 103.4, 83.3, 53.1, 52.5, 50.6, 49.9, 47.6, 42.3, 42.1, 38.4, 36.0, 35.4, 35.0, 34.8, 32.4, 29.3, 28.8, 28.7, 28.4, 28.3, 27.9, 27.9, 27.8, 27.2, 25.4, 24.8, 17.9.

FTIR (neat): 2926, 2856, 1789, 1736, 1420, 1263, 1212, 1135, 1022, 967, 907, 868, 733 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₅H₅₁F₃O₈S₅Na [M+Na]⁺: 875.2032, found: 875.2027.

Synthesis of Maleic Anhydride 32

To a vial equipped with a stir bar was added enol triflate **31** (8.80 mg, 10.3 µmol), palladium(II) acetate (2.32 mg, 10.3 µmol), tri(2-furyl)phosphine (11.97 mg, 0.052 mmol), DMF (737 µL), *i*Pr₂EtN (13.5 µL, 0.077 mmol) and H₂O (13.9 µL, 0.774 mmol) sequentially. Then the reaction mixture was vigorously stirred and was purged with CO for 15 minutes. The reaction was then replaced with a balloon of CO and was heated to 90 °C in an oil bath. The reaction continued to stir at 90 °C for 2 hours and then it was cooled to room temperature in the bath over 30 min, at which point it was quenched with 1 M HCI (1.47 mL). The resulting solution mixture was continued to stir for 10 minutes, and then it was diluted with EtOAc. Aqueous layer was extracted with EtOAc three times. Combined organics were washed with brine and then dried over MgSO₄. Concentration and purification via HPLC (0% \rightarrow 10% EtOAc/Hex, λ = 280 nm, flow rate = 10 mL/min) afforded maleic anhydride **32** (0.052 g, 73% yield) as a pale yellow oil.

<u>**R**</u>_f = 0.44 (25% EtOAc/Hex)

¹**H-NMR** (600 MHz, CDCl₃): δ 5.82 (s, 1H), 5.47-5.33 (m, 4H), 4.21 (dd, J = 11.8, 2.4 Hz, 1H), 4.15 (t, J = 8.3 Hz, 1H), 3.41 (ddd, J = 14.1, 11.9, 2.9 Hz, 1H), 3.34-3.28 (m, 2H), 3.08 (dd, J = 19.2, 1.4 Hz, 1H), 2.88-2.83 (m, 3H), 2.75-2.71 (m, 2H), 2.64 (d, J = 3.4 Hz, 1H), 2.56-2.49 (m, 3H), 3.36-2.29 (m, 3H), 2.20-2.17 (m, 1H), 2.08-2.01 (m, 3H), 1.96-1.92 (m, 3H), 1.84-1.77 (m, 2H), 1.72 (ddd, J = 13.2, 4.0, 2.5 Hz, 1H), 1.65-1.61 (m, 6H), 1.60-1.57 (m, 1H), 1.32-1.20 (m, 8H), 1.10 (dq, J = 14.7, 7.4 Hz, 1H), 1.02 (ddt, J = 9.8, 7.3, 4.2 Hz, 1H).

¹³C-NMR (150 MHz, CDCl₃): δ 174.8, 164.6, 164.3, 142.0, 140.3, 136.2, 132.0, 131.0, 130.0, 125.9, 125.1, 103.6, 83.3, 52.6, 51.3, 45.4, 44.4, 42.3, 41.8, 38.3, 36.7, 36.5, 36.3, 34.4, 32.3, 32.3, 29.2,29.2, 28.8, 28.4, 28.2, 27.7, 27.2, 27.2, 25.4, 24.7, 19.7.

FTIR (neat): 2924, 2853, 1790, 1767, 1440, 1262, 1133, 1025, 967, 917 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₇H₄₈O₆S₄Na [M+Na]⁺: 739.2226, found: 739.2224.

Synthesis of Aldehyde SI-7

To a vial equipped with a stir bar was added a solution of maleic anhydride **32** (11.1 mg, 0.015 mmol) in 80% MeCN aq. solution (0.010 M) at room temperature. To the stirring mixture was added the iodomethane (77.0 μ L, 1.24 mmol) and calcium carbonate (6.97 mg, 0.070 mmol) sequentially at room temperature. The reaction was capped and was stirred for 60 hours. TLC was used to follow the reaction progress and the TLC plates were developed using a 25% EtOAc/Hexanes solution and visualized with CAM. Upon reaction completion, the reaction was quenched with 1 M HCI. Aquesous layer was extracted with EtOAc twice. Combined organic layer were washed with Na₂S₂O₃ sat. aq solution, dried over MgSO₄. Concentration and purification via silica gel flash column chromatography (10% gradient, 0% \rightarrow 30% EA/Hex+1% AcOH) afforded aldehyde **SI-7** (5.60 mg, 67% yield) as a white foam.

(Note: Occasionally, crude ¹H-NMR spectrum indicated the presence of aldehyde with the spiroacetal opened resulting in a diol. The diol can be cyclized upon exposure to 3 quiv of methanesulfonic acid (MSA) in $CDCl_{3.}^{2}$ Cyclization conversion could be monitored by ¹H-NMR. Upon cnversion completion, the mixture was diluted with H₂O. Aqueous layer was extracted with DCM. Combined organics were dried over MgSO₄, and then concentrated in vacuo.)

 $\underline{R}_{f} = 0.67 (50\% \text{ EtOAc/Hex+1\% AcOH})$

<u>**'H-NMR**</u> (600 MHz, CDCl₃): δ 9.72 (s, 1H), 5.75 (t, J = 1.4 Hz, 1H), 5.51-5.34 (m, 4H), 4.19 (dd, J = 12.3, 3.2 Hz, 1H), 3.40 (d, J = 19.0 Hz, 1H), 3.29 (d, J = 2.1 Hz, 1H), 3.18 (d, J = 19.0 Hz, 1H), 3.04 (dd, J = 19.2, 1.3 Hz, 1H), 2.86-2.76 (m, 2H), 2.68-2.61 (m, 2H), 2.31-2.27 (m, 2H), 2.23-2.20 (m, 1H), 2.05-1.99 (m, 1H), 1.95-1.86 (m, 3H), 1.64-1.63 (m, 6H), 1.59-1.57 (m, 1H), 1.31-1.19 (m, 8H, overlapped with grease), 1.14-1.08 (m, 1H), 1.05-0.98 (m, 1H).

¹³C-NMR (150 MHz, CDCl₃): δ 208.8, 195.7, 174.3, 164.5, 164.1, 142.1, 140.2, 136.3, 131.6, 130.9, 129.4, 126.1, 125.2, 103.3, 76.7, 47.2, 45.7, 44.3, 42.9, 40.8, 38.2, 36.5, 36.3, 34.8, 32.3, 29.2, 28.6, 27.6, 25.9, 17.9, 17.9.

FTIR (neat): 2923, 2854, 2018, 1800, 1769, 1718, 1454, 1263, 1118, 970, 928 cm⁻¹.

HRMS (ESI) *m*/*z* Calc'd. for C₃₁H₃₆O₈Na [M+Na]⁺: 559.2302, found: 559.2303.

Synthesis of Phomoidride D (4)

To a vial equipped with a stir bar was added aldehyde **SI-7** (2.60 mg, 4.85 µmol) *t*BuOH (0.291 mL) and THF (97 µL) was added. Then to the stirring mixture was added 2-methylbut-2-ene (25.7 µL, 0.242 mmol), followed by the addition of a solution of sodium chlorite (NaClO₂) (1.32 mg, 0.015 mmol) and sodium dihydrogenphosphate monohydrate (NaH₂PO₄·H₂O) (3.49 mg, 0.029 mmol) in H₂O (97 µL). The resulting reaction mixture was stirred for 1.5 hours and reaction progress was monitored by UPLC. Upon consumption of aldehyde, the reaction was quenched with 1 M HCl and was diluted with EtOAc. Aqueous layer was extracted with EtOAc twice. Combined organics were washed with sat. aq. Na₂S₂O₃ solution, dried over MgSO₄, and then concentrated in vacuo. The crude mixture was purified by reversed phase flash column chromatography using reversed phase C18 silica (80/20 0.1% HCO₂H aq./MeCN) to afford 2.60 mg (97% yield) of phomoidride D (**4**).

¹<u>H-NMR</u> (600 MHz, acetone-*d*₆): δ 6.22, (s, 1H), 5.49-5.41 (m, 2H), 5.40-5.37 (m, 2H), 4.30 (dd, J = 12.1, 3.3 Hz, 1H), 3.29-3.20 (m, 3H), 3.03-2.91 (m, 2H), 2.76-2.65 (m, 3H), 2.39 (t, J = 7.2 Hz, 1H), 2.24-2.20 (m, 2H), 2.04-2.02 (m, 1H), 1.98-1.96 (m, 1H), 1.94-1.90 (m, 2H), 1.60 (m, 3H), 1.60-1.59 (m, 3H), 1.42-1.33 (m, 2H), 1.32-1.18 (m, 8H, overlapped with grease).

¹³C-NMR (150 MHz, acetone-*d*₆): δ 208.2, 175.9, 171.2, 166.0, 165.9, 142.3, 142.0, 137.3, 132.9, 132.1, 130.9, 126.2, 125.4, 104.2, 77.4, 49.8, 45.2, 43.4, 41.7, 38.7, 37.6, 36.9, 35.3, 33.1, 30.1, 29.5, 28.2, 26.8, 18.0.

<u>FTIR</u> (neat): 3447, 2925, 2855, 1796, 1766, 1716, 1437, 1404, 1262, 1154, 1126, 1038, 967, 927, 722 cm⁻¹.

<u>HRMS</u> (ESI) *m*/*z* Calc'd. for C₃₁H₃₆O₉Na [M+Na]⁺: 575.2257, found: 575.2285; *m*/*z* Calc'd. for C₃₁H₃₅O₉ [M-H]⁺: 551.2287, found: 551.2276.

Table S1 ¹H and ¹³C NMR Data for Phomoidride D in acetone-*d*₆

C (position)	¹³ C-NMR δ (ppm)	¹ H-NMR δ (ppm)	(LR) C-H Correlation	H-H Correlation
1	18.0	1.60	-	H4
2	126.2	5.44	H4	H4
3	130.9	5.44	H4, H5	H4
4	26.8	2.21	H5	H5
5	38.7	2.71	-	H4
6	208.2	-	-	-
7	77.4	4.30	-	H8
8	35.3	2.03/1.97	-	H9
9	37.6	2.66	-	H8, H10
10	45.2	3.29	H8	H9
11	142/142.3	-	H10, H13	-
12	142/142.3	-	H10, H13	-
13	43.4	3.02/2.93	H28	H28
14	49.8	-	H13, H16, H28	-
15	137.3	-	H13, H16, H28	-
16	132.9	6.22	H17	H17
17	41.7	2.38	H16, H28	H18/19
18	36.9	1.24	-	-
19	28.2	1.36	-	-
20	29.5	1.25	-	-
21	30.1	1.25	H18, H22	-
22	33.1	1.92	-	-
23	132.1	5.38	H22	H22
24	125.4	5.38	H22	H22
25	18.0	1.59	-	-
26	104.2	-	H16, H28	-
27	175.9	-	H13, H28	-
28	36.4	3.28/3.22	H13	H13
29	171.2	-	H28	-
30	165.9	-	H13	-
31	166.0	-	H13	-

References

- [1] G. K. Murphy, T. Shirahta, N. Hama, N., A. Bedermann, P. Dong, T. C. McMahon, B. M. Twenter, D. A. Spiegel, I. M. McDonald, N. Taniguchi, M. Inoue, J. L. Wood, *J. Org. Chem.* **2013**, *78*, 477.
- [2] D. Meng, Q. Tan, S. J. Danishefsky, Angew. Chem. 1999, 111, 1582; Angew. Chem. Int. Ed. 1999, 38, 3197.

Author Contributions

Contributions are listed employing the following Format: Author: Nature of Contribution(s), Degree of Contribution

Leung, J. C.: Synthesis Design, Execution, and author of the Original Draft, Equal Bedermann, A. A.: Synthesis Design and Execution, Equal Njardarson, J.T.: Synthesis Design and Execution, Lead Spiegel, D. A.;: Synthesis Design and Execution, Equal Murphy, G. K.: Synthesis Design and Execution, Equal Hama, N.: Synthesis Design and Execution, Equal Twenter, B. M.; Synthesis Design and Execution, Equal Dong, Ping: Synthesis Design and Execution, Equal Shirahata, T.: Synthesis Design and Execution, Equal McDonald, I. M.: Synthesis Design and Execution, Equal Inoue, M.: Synthesis Design and Execution, Equal Taniguchi, N.: Synthesis Execution, Supporting McMahon, T. C.: Synthesis Execution, Supporting Schneider, C. M.: Synthesis Execution, Supporting Tao, N.: Synthesis Execution, Supporting Stoltz, B.: Synthesis Design, Supporting Wood, J. L.; Synthesis Design, Lead

Figure 1 ¹H-NMR (600 MHz, CDCl₃) for phenol 18

Figure 2 ¹H-NMR (600 MHz, CDCl₃) for phenol 18 (inset)

S33

Figure 3 ¹³C-NMR (150 MHz, CDCl₃) for phenol 18

S34

Figure 4 ¹H-NMR (600 MHz, CDCl₃) for α -phenoxy ketone SI-1

Figure 5 ¹H-NMR (600 MHz, CDCl₃) for α -phenoxy ketone **SI-1** (inset)

Figure 6 ¹H-NMR (600 MHz, CDCl₃) for α -phenoxy ketone SI-1 (inset)

Figure 7 $^{13}\text{C-NMR}$ (150 MHz, CDCl3) for $\alpha\text{-phenoxy}$ ketone SI-1

Figure 8 ¹H-NMR (500 MHz, CDCl₃) for ketal 20

n

Figure 12 ¹H-NMR (600 MHz, CDCl₃) for phenol SI-2

Figure 13 ¹H-NMR (600 MHz, CDCl₃) for phenol SI-2 (inset)

Figure 14 ¹H-NMR (600 MHz, CDCl₃) for phenol SI-2 (inset)

Figure 16 $^1\text{H-NMR}$ (500 MHz, CDCl3) for $\alpha\text{-hydroxy}$ ketone 8

Figure 17 ¹H-NMR (500 MHz, CDCl₃) for α-hydroxy ketone **8** (inset)

Figure 18 ¹H-NMR (500 MHz, CDCl₃) for α -hydroxy ketone 8 (inset)

Figure 19 ¹³C-NMR (125 MHz, CDCl₃) for α -hydroxy ketone 8

Figure 20 ¹H-NMR (500 MHz, CDCl₃) for silyl ether SI-3

Figure 21 ¹H-NMR (500 MHz, CDCl₃) for silyl ether **SI-3** (inset)

Figure 22 ¹H-NMR (500 MHz, CDCl₃) for silyl ether SI-3 (inset)

Figure 25 ¹H-NMR (500 MHz, CDCl₃) for amine 22 (inset)

Figure 26 ¹H-NMR (500 MHz, CDCl₃) for amine 22 (inset)

Figure 27 ¹³C-NMR (125 MHz, CDCl₃) for amine 22

Figure 28 ¹H-NMR (500 MHz, CDCl₃) for methyl ester 23

Figure 29 ¹H-NMR (500 MHz, CDCl₃) for methyl ester 23 (inset)

Figure 30 ¹H-NMR (500 MHz, CDCl₃) for methyl ester 23 (inset)

Figure 31 ¹³C-NMR (125 MHz, CDCl₃) for methyl ester 23

Figure 32 ¹H-NMR (500 MHz, CDCl₃) for lactone 24

Figure 33 ¹H-NMR (500 MHz, CDCl₃) for lactone 24 (inset)

Figure 35¹³C-NMR (125 MHz, CDCl₃) for lactone 24

Figure 36 ¹H-NMR (400 MHz, CDCl₃) for bromoacetal 7

Figure 37 ¹H-NMR (400 MHz, CDCl₃) for bromoacetal 7 (inset)

Figure 40¹H-NMR (500 MHz, CDCl₃) for isotwistane 6 (diastereomer one)

Figure 42 ¹H-NMR (500 MHz, CDCl₃) for isotwistane 6 (diastereomer one) (inset)

Figure 43¹³C-NMR (125 MHz, CDCl₃) for isotwistane 6 (diastereomer one)

Figure 44 ¹H-NMR (500 MHz, CDCl₃) for isotwistane 6 (diastereomer two)

Figure 45 ¹H-NMR (500 MHz, CDCl₃) for isotwistane 6 (diastereomer two) (inset)

Figure 46 ¹H-NMR (500 MHz, CDCl₃) for isotwistane 6 (diastereomer two) (inset)

Figure 47¹³C-NMR (125 MHz, CDCl₃) for isotwistane 6 (diastereomer two)

Figure 48 ¹H-NMR (400 MHz, CDCl₃) for acetate SI-4

Figure 49 ¹H-NMR (400 MHz, CDCl₃) for acetate SI-4 (inset)

Figure 50 ¹H-NMR (400 MHz, CDCl₃) for acetate SI-4 (inset)

Figure 51 ¹³C-NMR (100 MHz, CDCl₃) for acetate SI-4

Figure 52 1 H-NMR (400 MHz, CDCl₃) for bis-dithiane SI-5

Figure 53 ¹H-NMR (400 MHz, CDCl₃) for bis-dithiane SI-5 (inset)

Figure 54 ¹H-NMR (400 MHz, CDCl₃) for bis-dithiane SI-5 (inset)

Figure 55 ¹³C-NMR (100 MHz, CDCl₃) for bis-dithiane SI-5

Figure 56 ¹H-NMR (500 MHz, CDCl₃) for mesylate 26

Figure 57 ¹H-NMR (500 MHz, CDCl₃) for mesylate 26 (inset)

Figure 58 ¹H-NMR (500 MHz, CDCl₃) for mesylate 26 (inset)

Figure 59 ¹³C-NMR (125 MHz, CDCl₃) for mesylate 26

Figure 60 ¹H-NMR (500 MHz, CDCl₃) for diol 27

Figure 61 ¹H-NMR (500 MHz, CDCl₃) for diol 27 (inset)

396

Figure 62 ¹H-NMR (500 MHz, CDCl₃) for diol 27 (inset)

Figure 63 ¹³C-NMR (125 MHz, CDCl₃) for diol 27

Figure 64 ¹H-NMR (400 MHz, CDCl₃) for ketone 5

Figure 66 ¹H-NMR (400 MHz, CDCl₃) for ketone 5 (inset)

Figure 68 ¹H-NMR (600 MHz, CDCl₃) for enol 29

Figure 70 ¹H-NMR (600 MHz, CDCl₃) for enol 29 (inset)

Figure 72 ¹H-NMR (600 MHz, CDCl₃) for β -keto ester SI-6

Figure 73 ¹H-NMR (600 MHz, CDCl₃) for β -keto ester **SI-6** (inset)

Figure 74 ¹H-NMR (600 MHz, CDCl₃) for β -keto ester SI-6 (inset)

Figure 75 ¹³C-NMR (150 MHz, CDCl₃) for β -keto ester **SI-6**

Figure 76¹H-NMR (400 MHz, CDCl₃) for enol triflate 31

Figure 79¹³C-NMR (100 MHz, CDCl₃) for enol triflate 31

Figure 80 ¹H-NMR (600 MHz, CDCl₃) for maleic anhydride 32

Figure 81 ¹H-NMR (600 MHz, CDCl₃) for maleic anhydride 32 (inset)

Figure 82 ¹H-NMR (600 MHz, CDCl₃) for maleic anhydride 32 (inset)

0

- 7.26 CDCl3

Figure 84 ¹H-NMR (600 MHz, CDCl₃) for aldehyde SI-7

Figure 85¹H-NMR (600 MHz, CDCl₃) for aldehyde SI-7 (inset)

Figure 86 ¹H-NMR (600 MHz, CDCl₃) for aldehyde **SI-7** (inset)

Figure 89 ¹H-NMR (600 MHz, acetone- d_6) for phomoidride D (4) (inset)

Figure 90 ¹H-NMR (600 MHz, acetone- d_6) for phomoidride D (4) (inset)

(500 MHz); bottom, Wood (600 MHz))

Figure 92 ¹³C-NMR (150 MHz, acetone- d_6) for phomoidride D (4)

(125 MHz); bottom, Wood (150 MHz))

Figure 94 DEPT-135 (150 MHz, acetone- d_6) for phomoidride D (4)

Figure 95 HSQC (acetone- d_6) for phomoidride D (4)

Figure 96 HMBC (acetone-*d*₆) for phomoidride D (4)

Figure 98 NOESY (acetone- d_6) for phomoidride D (4)