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WILEY-VCH

Experimental Procedures

General Information

Unless stated otherwise, all reactions were performed using flame or oven-dried glassware and
under an atmosphere of nitrogen. DCM, THF, diethyl ether, benzene, and toluene were dried using a
solvent purification system manufactured by SG Water U.S.A., LLC. Acetonitrile, ethyl acetate,
pentanes, hexanes, DMF, DMSO, and DCE were supplied by either Fisher Scientific or Sigma-Aldrich
and were used as received. Triethylamine, diisopropylamine, and methanol were stirred over calcium
hydride and distilled before use. All other commercially available reagents were used as received. a-
Bromoketone 16 was synthesized according to the reported procedure.!

Unless stated otherwise, reactions were monitored by thin-layer chromatography using Millipore-
Sigma® Glass TLC plates, 60 A (F-254s indicator, 250 um thickness). All purifications were performed
using Silicyle SiliaFlash® P60 silica (40-63 ym, 230-400 mesh), Millipore Silica Gel 60 (0.040-0.063
mm, 230-400 mesh ASTM), or sigma Aldrich C18-reversed phase silica gel (40-63 um, 230-400 mesh,
fully endcappeed) as the stationary phase as a stationary phase. All melting points were obtained on a
Chemglass Life Sciences melting point device (Model: DMP100) and are uncorrected. Infrared spectra
were obtained using a Bruker Alpha ATR-IR. High-resolution mass spectroscopy was performed by the
central instrument facility at Colorado State University or on a Thermo Orbitrap ESI mass spectrometer
at Baylor University. Single-crystal X-ray crystallography was performed by Brian Newell at Colorado
State University or Prof. Caleb Martin at Baylor University. *H and *C-NMR spectra, were taken on
Varian VNMRS 500, Varian Inova 400, Bruker Ascend 400, and Bruker Ascend 600 cryoprobe
spectrometers. Infrared spectra were taken on a Nicolet Avatar 320 FTIR or Bruker Alpha Platinum
ATR. Chemical Shifts (8) are reported in parts per million (ppm) and coupling constants (J) are
reported in Hertz (Hz) and are rounded to the nearest 0.1 Hz. The reported chemical shifts are relative
to the residual solvent peaks of the indicated deuterated solvents. Multiplicities are defined as s =
singlet, br.s = broad singlet, d = doublet, br. d = broad doublet, t = triplet, g = quartet, m = multiplet, dd
= doublet of doublets, dt = doublet of triplets, dq = doublet of quartets, ddd = doublet of doublet of
doublets, dddd = doublet of doublet of doublet of doublets, br = broad, app = apparent, par = partial.

High-Performance Liquid Chromatography (HPLC): All HPLC purifications were carried out on
a Waters HPLC system (consisting of a Waters 1525 binary HPLC pump with direct injection port and
monitored at 254 nm unless otherwise specified with a Waters 2489 UV-Visible detector). All
purifications utilized a normal-phase Sunfire, Silica Prep 10 pm, 10 x 250 mm column. Ultra
Performance Liquid Chromatography (UPLC)-Mass Spectrometry (MS): All UPLC-MS experiments
were carried out on a Waters Acquity H UPLC Class system using the indicated solvent systems as
eluents. All separations were performed on a reverse phase Acquity UPLC BEH C18 1.7 um, 2.1 x 50
mm column.
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Experimental Section

Synthesis of Phenol 18

1) NsCl, K,COg, allyl bromide

HO. OH Acetone Nso\©:0\/\
\@40 2) mCPBA, DCM, 0 °C to rt OH
then K,CO3, MeOH
10 18

Benzaldehyde Functionlization. To a round bottom flask equipped with a magnetic stir bar was
added 2,4-dihydroxybenzaldehyde 10 (40.0 g, 290 mmol), 2-nitrobenzenesulfonyl chloride (NsCl) (64.2
g, 290 mmol), potassium carbonate (K.COs3) (96.2 g, 608 mmol), and acetone (965 mL). The flask was
capped with a rubber septum containing an 16 gauge needle open to air and stirred vigorously at room
temperature. After 24 hours, allyl bromide (36.5 mL, 434 mmol) was added rapidly via syringe and TLC
was used to monitor the reaction progress. The TLC plates were developed using a 25% EtOAc/Hex
solution and visualized by KMnO4. The reaction was worked up after 48 hours by light concentration
and transferring to a separatory funnel containing EtOAc (600 mL). The organic layer was washed with
1 M HCI (750 mL) and brine (250 mL) before drying over MgSO4. Concentration delivered a mixture of
regioisomers as a tan solid that was washed with MeOH (~ 500 mL) and filtered by vacuum filtration
through a fritted funnel until the filtrate appeared colorless. The resultant white solid contained the
functionalized benzaldehyde as a 5:1 (desired:undesired) mixture of regioisomers (56.9 g) which was
moved onto the next step without further purification.

Dakin Oxidation. To a round bottom flask equipped with a magnetic stir bar was added the
benzaldehyde (56.9 g, 157 mmol) and dichloromethane (DCM) (500 mL). The solution was cooled in
an ice/water bath and mCPBA (35.1 g, 77%, 157 mmol) was added. The flask was capped with a
rubber septum fitted with a 1 gauge needle open to air and the reaction was allowed to slowly warm to
room temperature within the bath. After 18 hours, K>CO3 (32.5 g, 235 mmol) and MeOH (660 mL)
were added all at once. After an additional 48 hours, the reaction was concentrated and dissolved
again in H,O:EtOAc (1:2). The layers were separated and the aqueous layer was extracted with EtOAc
(2x) and the combined organics were washed with brine and dried over MgSO4. Concentration and
purification via silica gel flash column chromatography (10% gradient, 0%—50% EtOAc/Hex) afforded
phenol 18 (53.1 g, 56% vyield) as a tan solid.

R;=0.49 (50% EtOAc/Hex)

m.p.=81-83 °C

IH-NMR (600 MHz; CDCls): & 7.94-7.92 (m, 1H), 7.84-7.79 (m, 2H), 7.67 (ddd, J = 7.9, 5.9, 2.9 Hz, 1H),
6.81 (dd, J = 5.7 Hz, 2H), 6.65 (dd, J = 8.7, 2.6 Hz, 1H), 5.99 (ddt, J = 17.2, 10.5, 5.6 Hz, 1H), 5.60 (s,

1H), 5.40-5.30 (m, 2H), 4.55 (d, J = 12.0 Hz, 2H)

13C-NMR (150 MHz; CDCls): d 145.6, 145.1, 141.6, 135.2, 132.3, 131.8, 131.8, 128.2, 124.7, 119.1,
114.8, 114.4, 107.1, 70.1.

FTIR (thin film/NaCl): 3498, 3098, 2923, 1545, 1504, 1381,11273, 1228, 192, 1120, 854, 832, 589 cm™.

HRMS (ESI) m/z Calc’d for C1sH13NO7SNa [M+Na]*: 374.0305, found: 374.0305.
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Synthesis of a-Phenoxy Ketone SI-1

Br

N = X NsO. o
16 O
NSO\CEO\/\ Cs,CO; (o)
OH A Z

Acetone, reflux o

Y
4

18 SI-1

To a pressure vessel equipped with a magnetic stir bar was added phenol 18 (13.0 g, 37 mmol), a-
bromo ketone 16 (8.40 g, 25 mmol), cesium carbonate (Cs,CO3) (12.0 g, 37 mmol), and acetone (62.0
mL). The reaction vessel was sealed and placed in an oil bath, it was then heated to 56 °C. The
reaction was removed from the heating bath after 2.5 hours. Upon cooling to room temperature, the
solution was filtered through a fritted funnel and the solid was washed with EtOAc. Concentration and
purification via silica gel flash column chromatography (5% gradient, 0%—50% EtOAc/Hex) afforded a-
phenoxy ketone Sl-1 (9.90 g, 66% yield) as a brown oil.

Rr = 0.24 (25% EtOAc/Hex)

IH-NMR (500 MHz, CDCls): & 7.96-7.94 (m, 1H), 7.84-7.80 (m, 2H), 7.67 (ddd, J = 7.9, 5.8, 3.0 Hz, 1H),
6.81 (d, J = 2.6 Hz, 1H), 6.70-6.65 (m, 2H), 5.96 (ddt, J = 17.3, 10.5, 5.3 Hz, 1H), 5.55-5.50 (m, 1H),
5.45-5.33 (M, 5H), 5.27 (dg, J = 10.5, 1.4 Hz, 1H), 4.49 (dt, J = 5.3, 1.5 Hz, 2H), 4.42 (t, J = 4.0 Hz, 1H),
2.66-2.48 (M, 4H), 2.23-2.15 (m, 2H), 1.98-1.92 (m, 4H), 1.64-1.60 (m, 6H), 1.34-1.22 (m, 7H).
13C-NMR (125 MHz, CDCls): & 210.3, 149.7, 148.7, 147.0, 135.3, 135.0, 132.3, 132.2, 131.9, 131.5,
129.5, 128.3, 125.9, 124.8, 124.7, 123.3, 118.3, 117.0, 108.9, 85.4, 69.9, 38.0, 35.6, 32.5, 32.5, 29.4,
29.1, 28.7, 25.8, 17.9, 17.9.

FTIR (neat): 2924, 2854, 1717, 1604, 1545, 1502, 1421, 1385, 1264, 1193, 1125, 963, 853, 829, 780,
589 cm™.

HRMS (ESI) m/z Calc’d. for CasHa1NOgSNa [M+Na]*: 634.2451, found: 634.2442.
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Synthesis of Ketal 20

HO/\/OH
19

NsO o NsO O.
\@[ ~X TMSCI, TMSOTS \©: ~
o > o)

DCE, 0 °C to reflux

Sli-1 20

To a sealed tube under N, atmosphere was added a-phenoxy ketone SI-1 (9.10 g, 15.0 mmaol),
ethylene glycol 19 (11.0 mL, 194 mmol) and 1,2-dichloroethane (DCE) (149 mL). The reaction vessel
was then cooled in an ice water bath and TMSCI (24.6 mL, 194 mmol) and TMSOTf (0.400 mL, 2.20
mmol) were added. After 10 minutes, the cooling bath was removed and the reaction was allowed to
warm to room temperature over 10 minutes, then the N inlet was replaced and the reaction vessel was
sealed. The reaction was then placed in an 86 °C oil bath and was heated for 6.5 hours, after which the
heating bath was removed and the reaction was allowed to cool to room temperature. Upon cooling,
the reaction was further cooled in an ice water bath and EtsN (26.0 mL) was added slowly (vigorous
reaction resulting in gas evolution). The solution was transferred to a separatory funnel and washed
with H,O (200 mL). The agueous was extracted with DCM (3x) and the combined organics were
washed with brine, then dried over MgSOa. Concentration and purification via silica gel flash column
chromatography (5% gradient, 0%—30% EtOAc/Hex) afforded glycol acetal 20 (9.00 g, 92% vyield) as
a brown oil.

Rr = 0.66 (50% EtOAc/Hex)

IH-NMR (500 MHz, CDCls): & 7.96-7.92 (m, 1H), 7.83-7.78 (m, 2H), 7.69-7.63 (m, 1H), 6.85-6.81 (m,
1H), 6.73-6.66 (m, 2H), 6.00-5.91 (m, 1H), 5.51-5.33 (m, 7H), 5.24-5.21 (m, 1H), 4.50-4.42 (m, 2H),
4.14-4.10 (m, 1H), 4.03-3.88 (m, 3H), 2.42-2.40 (m, 1H), 2.06-1.88 (m, 7H), 1.75-1.68 (m, 1H), 1.64-
1.61 (m, 5H), 1.32-1.20 (m, 7H).

13C-NMR (125 MHz, CDCls): & 149.4, 148.8, 142.4, 135.2, 133.2, 132.6, 132.3, 131.8, 131.5, 130.8,
126.0, 124.8, 124.7, 124.6, 117.8, 116.0, 114.0, 111.3, 108.4, 83.7, 70.0, 66.1, 65.8, 60.4, 34.0, 33.9,
32.5,29.4, 29.2, 28.7, 25.8, 17.9, 17.9.

FTIR (neat): 2923, 2854, 1720, 1595, 1501, 1384, 1365 cm.

HRMS (ESI) m/z Calc’d. for CasHasNOgSNa [M+Na]*: 678.2707, found: 678.2704.
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Synthesis of Phenol SI-2

NsO o NsO. OH
Pd(PPh;),, NaBH,
(o] o

—
X z EtOH, rt X =z

20 Si-2

To a flask equipped with a magnetic stir bar was added ketal 20 (4.30 g, 6.56 mmol), Pd(PPhs).
(0.379 g, 0.328 mmol), NaBH4 (0.124 g, 3.28 mmol), and the flask was evacuated and backfilled with
N2 three times. EtOH (65.6 mL, degassed by freeze-pump-thaw) was cannulated and the reaction was
allowed to stir at room temperature. TLC was used to monitor the reaction progress. The TLC plates
were developed using a 50% EtOAc/Hex solution and visualized by KMnO,. After 3 hours, the reaction
looked complete, so the reaction was quenched with a saturated aqueous solution of NH4CI (20.0 mL).
The reaction was diluted with EtOAc (100 mL) and transferred to a separatory funnel, where the
organic was washed with H,O (90.0 mL) and brine. Drying over Na,SO4, concentration, and purification
via silica gel flash column chromatography (10% gradient, 0% — 60% EtOAc/Hex) afforded phenol SI-
2 (3.15 g, 78% vyield) as an orange oil.

Rr = 0.19 (25% EtOAc/Hex)

IH-NMR (600 MHz, CDCls): & 7.97 (dd, J = 7.9, 1.3 Hz, 1H), 7.83-7.80 (m, 2H), 7.68-7.65 (m, 1H), 7.58
(s, 1H), 6.96 (d, J = 8.9 Hz, 1H), 6.74 (d, J = 2.9 Hz, 1H), 6.62 (dd, J = 8.8, 2.9 Hz, 1H), 5.55-5.51 (m,
1H), 5.47-5.32 (m, 5H), 4.05-3.98 (m, 4H), 3.80 (dd, J = 7.6, 4.6 Hz, 1H), 2.48-2.44 (m, 2H), 2.13-2.03
(m, 2H), 1.96-1.92 (m, 3H), 1.91-1.86 (m, 1H), 1.761.71 (m, 1H), 1.64-1.59 (m, 6H), 1.33-1.22 (m, 6H).
13C-NMR (150 MHz, CDCls): & 149.2, 148.8, 145.8, 144.7, 135.2, 134.1, 132.2, 131.8, 131.5, 130.3,
128.6, 125.5, 125.4, 124.8, 124.7, 120.7, 113.1, 111.5, 110.2, 86.1, 66.1, 66.0, 34.7, 33.9, 32.5, 32.5,
29.4,29.1, 28.7, 25.7, 17.9, 17.9.

FTIR (neat): 3495, 3257, 3017, 2925, 2854, 1601, 1547, 1495, 1386, 1366, 1193, 1118, 962, 830, 588
cm™.

HRMS (ESI) m/z Calc’d. for Cs2HaNOeSNa [M+Na]*: 638.2400, found: 638.2392.
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Synthesis of a-Hydroxy Ketone 8

ONs ONs
NSO\©:OH
1) Pb(OAc), (o] o
0, \ \
(o] DCE, 90 °C OH . OH
_ —_— 7 7
B < 2) sio, Eg g
\ / DCM, rt WJ N \7
(o] (o]
Sl-2 8a 8b

To a pressure vessel equipped with a magnetic stir bar was added the phenol SI-2 (4.43 g, 7.01
mmol), Pb(OAc)4 (3.13 g, 8.41 mmol), and 1,2-dichloroethane (DCE) (70.1 mL). The reaction vessel
was stirred at room temperature for 25 minutes after which it was placed into a 90 °C oil bath. After 18
hours, the reaction was removed from the heating bath and after an additional hour, it was filtered
through a fritted funnel using DCM to rinse the flask. After concentration, the crude oil was dissolved in
DCM (70.1 mL) and silica gel (19 g) was added. The reaction was stirred at room temperature and the
reaction progress was followed by TLC. The TLC plates were developed using a 50% EtOAc/Hexanes
solution and visualized by KMnOas. After 24 hours, the silica gel was removed by vacuum filtration and
solid was washed with EtOAc (250 mL). Concentration and purification via silica gel flash column
chromatography (10% gradient, 0%—70% EtOAc/Hex) afforded a-hydroxy ketone 8 (3.19 g, 72% vyield,
1:3 dr a:3, 8a and 8b respectively) as a brown sticky foam. (Note: diastereomeric ratio was determined
using the crude 'H-NMR)

Rr = 0.28 (50% EtOAc/Hex)

IH-NMR (500 MHz, CDCls): & 8.00-7.98 (m, 1H), 7.5 -7.82 (m, 2H), 7.72-7.66 (m, 1H), 6.13 (dd, J = 7.6,
2.3 Hz, 0.26H), 6.05 (dd, J = 7.6, 2.5 Hz, 0.73H), 5.44-5.34 (m, 4H), 4.01-3.90 (m, 4H), 3.51-3.44 (m,
1H), 3.29-3.19 (m, 2H), 2.89 (dd, J = 7.6, 2.6 Hz, 0.21H), 2.65 (dd, J = 7.5, 3.4 Hz, 0.82H), 2.05-1.89
(m, 6H), 1.82-1.72 (m, 2H), 1.721.70 (m, 1H), 1.65-1.59 (m, 5H), 1.48-1.44 (m, 1H), 1.34-1.26 (m, 7H).

13C-NMR (125 MHz, CDCls): & 206.2, 198.1, 148.5, 144.7, 144.2, 135.7, 133.2, 132.9, 132.1, 132.0,
131.3, 131.2, 130.7, 130.6, 127.6, 125.1, 125.0, 124.9, 124.9, 124.9, 124.8, 119.4, 119.3, 110.2, 110.0,
110.0, 90.7, 90.2, 73.8, 72.8, 66.5, 66.2, 65.9, 65.4, 55.5, 55.1, 43.5, 42.5, 40.6, 38.3, 36.0, 35.7, 35.3,
34.6, 34.0, 32.4, 30.4, 29.3, 29.3, 29.0, 28.9, 28.8, 26.9, 26.7, 25.9, 25.7, 17.9, 17.9, 12.8, 12.7.

FTIR (neat): 3410, 2926, 2855, 2360, 1746, 1545, 1388, 1192, 1110, 966, 851, 737 cm™.

HRMS (ESI) m/z Calc’d. for C32H41NO10SNa [M+Na]": 654.2349, found: 654.2355.

Mechanistic Considerations:

Although the mechanistic details of this Diels-Alder reaction have not been fully delineated, as
illustrated in the Scheme below, the diastereoselective outcome can likely be attributed to a
combination of two extremes; either diastereoselective attack of acetate during acetal formation (i.e. D
forms in preference to C) is followed by rapid Diels-Alder cycloaddition or the initially formed acetals (C
and D) rapidly equilibrate relative to the differential rates of their diastereomeric Diels-Alder reactions
(C to ent-8a and D to 8b). As illustrated,the former scenario would require that C and D be produced in
a 1:3 ratio, respectively, followed by conversion to ent-8(] and 8[] prior to any equilibration. The
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second extreme would involve rapid interconversion of C and D relative the differential rates of

formation of ent-801 (slow) and 80 (fast).

OAc
NsO OH \
I ey
Pb(OAc
o (OAC)4 o OAc
= DCE, reflux =
_ O O S P O O .
(¥)-20 A
ONs NsO
B
Conformational Isomers O
A O@ derived from one AcO
c enantiomer of 20
ONs NsO
=
N\
(0]
AcOO <
c OW\
Cd
— Silica gelj ; Silica gel J —
NsO ONs
o) Z o)
HO OH
o) AN e

ent-8a
Minor diasteromer,
Phomoidride A/B Sterochemistry

Products
derived from one
enantiomer of 20

@)
0
b

8b
Major diasteromer,
Phomoidride C/D Sterochemistry

exerimental,

the diastereomeric products.

Note: In this Scheme we depict
products derived from a single enantiomer
of the racemic starting material (20). The
products 8a and 8b, as drawn in Scheme
3 of the manuscript and the above
derive from different
enantiomers of 20. We chose to illustrate
8a rather than ent-8a in the manunscript
to allow for easier visual comparison of

the ONs
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Synthesis of Silyl Ether SI-3

ONs ONs
X 0 TMSCI, Et;N SN (o]
OH —_— OTMS
fo) DCE,0°Ctort fo)
O, O,
N1 N1
[o} (o]
8 SI-3

To a round bottom flask equipped with a magnetic stir bar was added a-hydroxy ketone 8 (1.80 g,
2.85 mmol, 1:3 a:B mixture), and DCM (28.5 mL). The solution was cooled in an ice water bath, at
which point chlorotrimethylsilane (TMSCI) (0.550 mL, 4.27 mmol) and triethylamine (EtsN) (0.600 mL,
4.27 mmol) were added. TLC was used to follow the reaction progress and the TLC plates were
developed using a 50% EtOAc/Hexanes solution and visualized with CAM. After stirring at 0 °C for 4
hours, TMSCI (0.550 mL, 4.27 mmol) and EtsN (0.600 mL, 4.27 mmol) were added and the reaction
was allowed to slowly warm to room temperature, with the bath, overnight. In the morning, the reaction
was cooled to 0 °C, TMSCI (0.550 mL, 4.27 mmol) and EtsN (0.600 mL, 4.27 mmol) were again added.
After four additional hours of slowly warming to room temperature with the bath, the reaction was
guenched with the addition of NaHCO3 (14.0 mL). The solution was transferred to a separatory funnel,
and the aqueous layer was extracted with DCM (2x). The combined organics were dried over Na;SOa.
Concentration and purification via silica gel flash column chromatography (10% gradient, 0%—30%
EtOAc/Hex) afforded silyl ether SI-3 (1.73 g, 86% yield, 1:3 a: mixture) as a yellow oil.

R; = 0.42 (20% EtOAc/Hex)

IH-NMR (500 MHz, CDCls): & 8.01-7.99 (m, 0.24H), 7.98-7.96 (m, 0.75H), 7.86-7.81 (m, 2H), 7.75-7.71
(m, 0.24H), 7.69-7.65 (m, 0.79H), 6.07 (dd, J =10.0, 5.0 Hz, 0.25H), 6.04 (dd, J = 10.0, 5.0 Hz, 0.75H),
5.45-5.32 (m, 4H), 4.03-3.82 (m, 5H), 3.49-3.43 (m, 1H), 3.15-3.14 (m, 0.24H), 3.08-3.05 (m, 0.80H),
2.73(dd, J = 7.6, 2.7 Hz, 0.25H), 2.55 (dd, J = 7.6, 2.7 Hz, 0.80H), 2.07-1.99 (m, 1H), 1.961.89 m, 3H),
1.87-1.80 (m, 2H), 1.76-1.66 (m, 2H), 1.661.61 (m, 6H), 1.58-1.52 m, 2H), 1.44-1.41 (m, 1H), 1.34-1.24
(m, 8H), 0.17 (s, 7H), 0.15 (s, 2H).

13C-NMR (125 MHz, CDCls): & 204.2, 197.6, 148.5, 144.7, 144.3, 135.5, 135.5, 132.7, 132.6, 132.4,
132.3, 132.2, 131.4, 131.3, 130.6, 130.6, 130.5, 129.8, 128.2, 125.1, 125.0, 124.9, 124.9, 124.8, 124.8,
124.0, 123.9, 119.3, 119.2, 110.5, 110.3, 110.3, 92.7, 92.2, 73.1, 73.1, 72.5, 66.3, 66.0, 659., 64.9,
56.0, 55.9, 45.6, 43.5, 41.9, 41.2, 36.8, 36.7, 36.3, 34.8, 34.5, 34.3, 32.5, 32.4, 30.8, 29.3, 29.1, 29.0,
27.0,26.7, 26.2, 25.7,17.9, 1.8, 1.5.

ETIR (neat): 2926, 2855, 1752, 1651, 1546, 1390, 149, 1194, 1088, 1045, 843, 755, 736 cm™.

HRMS (ESI) m/z Calc'd. for CasHaoNO10SSiNa [M+Na]*: 726.2739, found: 726.2734.
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Synthesis of Amine 22

ONs MezN/\/COZMe
21
S o LDA

OTMS EE——

o Et,0, -78 °C to -40 °C

(o]

eV
o
SI-3

Synthesis of Lithium Enolate solution 0.5M in Et,O. To an oven-dried round bottom flask equipped
with a magnetic stir bar was added diisopropylamine (iProNH) (1.35 mL, 9.49 mmol) and Et,O (17.3
mL). The solution was cooled to 78 °C in a dry ice/acetone bath and n-butyllithium (nBuLi) (3.62 mL,
2.5 M in hexanes, 9.06 mmol) was added. The reaction was stirred at —78 °C for 1 hour before the
addition of methyl 3-(dimethylamino)propionate 21 (1.24 mL, 8.63 mmol). The resultant mixture was
stirred for 30 minutes at —78 °C before being placed into and ice/salt water bath for 15 minutes and
then warmed to room temperature for additional 20 minutes. The enolate solution was cooled again to
—78 °C before use.

Aldol Reaction. To an oven-dried round bottom flask equipped with a magnetic stir bar was added
silyl ether SI-3 (1.21 g, 1.73 mmol) (azeotroped with toluene 3x prior to use) and Et,O (17.3 mL). The
solution was cooled in a dry ice/acetone bath and the enolate solution was added dropwise via cannula
over 45-60 minutes. The reaction was stirred at this temperature for an additional 1.5 hours before
being placed into a dry ice/acetonitrile bath. TLC was used to follow the reaction progress and the TLC
plates were developed using a 25% EtOAc/Hexanes solution (10% MeOH/DCM for product) and
visualized with CAM. After 3 hours, the solution was cooled again to —78 °C and after 20 minutes, the
reaction was quenched with the addition of sat. aq. NH4+Cl (10.0 mL). After warming to room
temperature, the solution was transferred to a separatory funnel and diluted with EtOAc. The organic
layer was dried over Na>SO4. Concentration and purification via silica gel flash column chromatography
(10% gradient, 0%—100% EtOAc/Hex) afforded amine 22 (0.773 g, 54% yield, 1:2 dr, a:B mixture) as
an off-white solid.

R = 0.50 (10% MeOH/DCM)

m.p.=104-107 °C

IH-NMR (500 MHz, CDCls): & 8.19-8.17 (m, 1H), 7.84-7.79 (m, 2H), 7.76-7.72 (m, 1H), 5.67 (dd, J =
7.4, 2.8 Hz, 1H), 5.46-5.34 (m, 4H), 4.80 (dd, J = 10.3, 5.6 Hz, 1H), 3.99-3.88 (m, 5H), 3.67 (s, 3H),
3.19 (dd, J = 12.8, 8.9 Hz, 1H), 2.92 (dd, J = 8.9, 3.1 Hz, 1H), 2.74 (dd, J = 12.8, 3.3 Hz), 2.45-2.44 (m,
1H), 2.28-2.22 (m, 8H), 2.10-1.87 (m, 7H), 1.67-1.59 (m, 7H), 1.57-1.55 (m, 2H), 1.40-1.39 (m, 1H),
1.27-1.21 (m, 3H), 1.17-1.06 (m, 5H), 0.17 (s, 9H).

13C-NMR (125 MHz, CDCls): & 176.3, 148.7, 148.5, 134.9, 132.0, 131.5, 131.4, 131.2, 130.1, 124.9,
124.6, 124.4, 111.3, 111.3, 100.3, 81.1, 73.5, 66.8, 64.7, 59.7, 52.1, 51.5, 48.9, 17.5, 46.3, 37.4, 36.9,
34.7,34.6, 32.5, 29.4, 29.3, 28.8, 27.1, 26.4, 17.9, 17.9, 2.1.

FTIR (neat): 3419, 2927, 2856, 1704, 1652, 1547, 1391, 1194, 1109, 1051, 907, 842, 720, 583 cm-,

HRMS (ESI) m/z Calc’d. for C41HesN2012SSi [M+H]*:835.3865, found: 835.3866.
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Synthesis of Methyl Ester 23

1) PhSH, Cs,CO;
MeCN, rt

2) mCPBA, A0,
DCM, -78 °C

Nosyl Deprotection. To a round bottom flask equipped with a magnetic stir bar was added amine
22 (0.330 g, 0.400 mmol) and acetonitrile (MeCN) (4.00 mL). Thiophenol (0.061 mL, 0.590 mmol) and
cesium carbnonate (Cs>CO3) (0.190 g, 0.590 mmol) were then added and the reaction was stirred at
room temperature. TLC was used to follow the reaction progress and the TLC plates were developed
using a 20% EtOAc/Hexanes solution and visualized with CAM. After 3.5 hours, the reaction was
guenched with sat. aq. NH4ClI (2.00 mL) and diluted with EtOAc. The organic layer was separated and
dried over Na;SO.. Concentration and purification via silica gel flash column chromatography (5%
gradient, 5%—20%; then 100% EtOAc/Hex) afforded the ketone.

Cope Elimination. To a round bottom flask equipped with a magnetic stir bar was added the ketone
and DCM (3.10 mL). The solution was cooled in a dry ice/acetone bath and stirred at this temperature
for 10 minutes before the addition of 3-chloroperbenzoic acid (mCPBA) (0.210 g, 0.32 mmol) as a
solution in DCM, which was added slowly dropwise (~ 1 drop/second) to keep the solution temperature
consistent. Upon completion of addition, basic alumina (Al.Os) (0.210 g) was added to the solution and
was stirred 20 seconds at this temperature before the solution quickly passed through a plug of basic
alumina (12.0 g) (presaturated with DCM) and vacuum filtered using a 10% MeOH/DCM solution (25.0
mL) to wash. Concentration and purification of the filtrate via silica gel flash column chromatography
(0%—5% EtOAc/Hex) afforded methyl ester 23 (0.110 g, 36% yield from TMS ether SI-3) as a clear oil
and as a single diastereomer.

R = 0.82 (50% EtOAc/Hex)

IH-NMR (500 MHz, CDCls): & 5.84 (s, 1H), 5.75 (s, 1H), 5.70 (s, 1H), 5.53-5.35 (m, 4H), 4.89 (dd, J =
11.3, 4.2 Hz, 1H), 4.03-3.90 (m, 4H), 3.79 (s, 3H), 2.68 (d, J = 2.4 Hz, 1H), 2.45 (dd, J = 19.3, 2.3 Hz,
1H), 2.39-2.34 (m, 1H), 2.21-2.06 (m, 2H), 2.02-1.94 (m, 4H), 1.82-1.76 (m, 2H), 1.66-1.60 (m, 9H),
1.34-1.24 (m, 8H), 0.13 (s, 9H).

13C-NMR (125 MHz, CDCls): & 213.6, 170.0, 143.5, 131.4, 131.1, 124.7, 124.7, 121.5, 111.2, 100.1,
80.2, 74.5, 66.1, 65.1, 59.1, 51.9, 43.7, 39.3, 36.7, 35.8, 34.8, 33.2, 32.5, 29.9, 29.4, 29.2, 26.9, 26.6,
18.0, 17.9, 2.0.

FTIR (neat): 3437, 2926, 2855, 1724, 1705, 1441, 1322, 1250, 1177, 1100, 951, 916, 732 cm'..

HRMS (ESI) m/z Calc’d. for CasHs2.0sSiNa [M+Na]*: 627.3324, found: 627.3329.
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Synthesis of Lactone 24

0 0
TBAF, AcOH
CO,Me _ oA A X o
SQrms THF, 0 °C to rt O
) O OH
o o
N N
) o
23 24

To a round bottom flask equipped with a magnetic stir bar was added methyl ester 22 (0.852 g,
1.41 mmol) and THF (14.0 mL). The solution was then cooled in an ice/water bath and acetic acid
(AcOH) (0.400 mL, 7.05 mmol) was added, followed by the addition of tetrabutylammonium fluoride
(TBAF) (2.82 mL, 1.0 M in THF, 2.82 mmol). TLC was used to follow the reaction progress and the
TLC plates were developed using a 50% EtOAc/Hexanes solution and visualized with CAM. After
stirring for 30 min in an ice/water bath, the reaction was warmed to room temperature and continued to
stir for an additional 2.5 hours. Then TBAF (1.41 mL, 1.0 M in THF, 1.41 mmol) was again added
followed by another TBAF (1.41 mL, 1.0 M in THF, 1.41 mmol) addition after an additional 45 minutes.
After a total of 24 hours, the reaction was worked up by pouring into H>.O (50.0 mL), the organic layer
was washed with brine, and dried over Na,SO,4. Concentration and purification via silica gel flash
column chromatography (5% gradient, 0%—40% EtOAc/Hex) afforded lactone 24 (0.620 g, 89% yield)
as a white foam.

R = 0.21 (25% EtOAc/Hex)

IH-NMR (500 MHz, CDCls): & 6.48 (s, 1H), 5.98 (s, 1H), 5.48-5.38 (m, 4H), 4.56 (dd, J = 12.2, 4.0 Hz,
1H), 4.34 (s, 1H), 4.18-3.88 (m, 4H), 2.72 (d, J = 2.5 Hz, 1H), 2.18-2.11 (m, 4H), 2.08-2.01 (m, 2H),
1.95-1.87 (m, 3H), 1.85-1.75 (m, 2H), 1.67-1.57 (m, 7H), 1.36-1.15 (m, 8H).

13C-NMR (125 MHz, CDCls): & 208.5, 165.8, 139.7, 131.2, 130.6, 130.1, 125.2, 124.9, 110.7, 105.4,
76.6, 75.2, 66.3, 66.1, 59.6, 39.8, 38.5, 37.0, 36.1, 34.1, 33.7, 32.4, 30.9, 29.3, 29.0, 26.9, 25.7, 17.9.
FTIR (neat): 3373, 2927, 2855, 1777, 1735, 1439, 1406, 1190, 1161, 1098, 1046, 1022, 1046, 967 cm"
1

HRMS (ESI) m/z Calc’d.for CasHa0O7Na [M+Na]*: 523.2666, found: 523.26609.
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Synthesis of Bromoacetal 7

[o] Br. Br
OEt 25
X N,N-dimethylaniline
o0 >
o c'>H DCM, rt

To a round bottom flask equipped with a magnetic stir bar was added lactone 24 (azeotroped with
toluene x3 prior to use) (0.381 g, 0.761 mmol) and DCM (3.81 mL). N,N-dimethylaniline (freshly
distilled, 150 torr, 155 °C) (0.482 mL, 3.81 mmol) and bromoacetal 25 (freshly distilled, ~ 0.2 mmHg,
52 °C) (0.882 g, 3.81 mmol) were then added. TLC was used to follow the reaction progress and the
TLC plates were developed using a 50% EtOAc/Hexanes solution and visualized with KMnO,. After 24
hours, the reaction was quenched with the addition of sat. ag. NaHCO3 (4.00 mL) and diluted with
DCM. The organic layer was washed with brine and dried over MgSO,. Concentration and purification
via silica gel flash column chromatography (5% gradient, 5%—20% EtOAc/Hex) afforded the ethyl
acetal 7 (0.449 g, 91% vyield, 1:1 dr) as a green oil.

Rr = 0.42 (30% EtOAc/Hex)

IH-NMR (400 MHz, CDCls): & 6.69 (s, 1H), 6.60 (s, 1H), 6.02 (s, 1H), 5.83 (s, 1H), 5.49-5.34 (m, 8H),
4.87-4.85 (m, 1H), 4.76-4.74 (m, 1H), 4.65-4.62 (m, 1H), 4.52-4.49 (m, 1H), 4.16-4.08 (m, 1H), 4.01-
3.95 (m, 1H), 3.72-3.68 (m, 1H), 3.64-3.60 (M, 1H), 3.60-3.52 (m, 1H), 3.49-3.32 (M, 5H), 2.94 (s, 1H),
2.85 (s, 1H), 2.31-2.24 (m, 2H), 2.15-2.01 (m, 11H), 1.95-1.92 (m, 4H), 1.87-1.84 (m, 4H), 1.79-1.68 (m,
2H), 1.69-1.58 (m, 16H), 1.32-1.26 (m, 16 H), 1.18 (m, 3H), 1.09 (t, J = 6.9 Hz, 3H)

13C-NMR (100 MHz, CDCls): & 208.5, 208.3, 165.9, 165.9, 135.4, 135.1, 132.5, 131.3, 131.2, 130.8,
130.6, 130.0, 125.2, 125.0, 124.8, 124.8, 110.7, 110.6, 106.5, 105.9, 97.2, 96.7, 79.7, 79.2, 77.1 , 66.7,
66.5, 66.5, 66.3, 61.0, 60.3, 60.2, 59.0, 40.5, 40.4, 38.3, 38.3, 37.4, 37.1, 36.0, 36.0, 34.7, 34.4, 33.5,
33.4, 32.5, 31.9, 31.4, 31.0, 30.6, 29.3, 29.3, 28.9, 26.8, 26.7, 26.7, 25.9, 25.8, 17.9, 14.9, 14.9, 12.8.

FTIR (neat): 2926, 2854, 1778, 1733, 1442, 1405, 1374, 1281, 1191, 1161, 1112, 1072, 1046, 966,
812 cm™.

HRMS (ESI) m/z Calc’d. for CasHa70sBrNa [M+Na]*: 673.2347, found: 673.2340.
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Synthesis of Isotwistane 6

Sml, Formation. To a schlenk tube equipped with a magnetic stir bar and fitted with a water cooled
condenser was added newly filed samarium powder (0.744 g, 4.95 mmol) and THF (25.0 mL). A
separate solution of 1,2-diiodoethane? (0.775 g, 2.75 mmol) in THF (2.50 mL) was added and the
reaction stirred at room temperature until it had turned dark blue in color (25 minutes). The reaction
was then placed into a 55 °C bath and heated for 4 hours. The Sml, solution (0.10 M in THF) was
cooled to room temperature prior to use.

Cascade Cyclization. To a round bottom flask equipped with a magnetic stir bar was added Sml,
(26.4 mL, 0.10 M in THF, 5.00 mmol). A solution of the bromoacetal 7 (0.506 mg, 0.777 mmol) in THF
(5.50 mL) was then added. TLC was used to follow the reaction progress and the TLC plates were
developed using a 50% EtOAc/Hexanes solution and visualized with p-anisaldehyde stain. The
reaction was quenched after 15 minutes with the addition of sat. aq. NH4Cl (8.00 mL), and 1.0 M HCI
(4.00 mL). The solution was then diluted with EtOAc and washed with brine before drying over MgSOa..
Concentration and purification via silica gel flash column chromatography (10% gradient, 0%—40%
EtOAc/Hex) afforded isotwistane 6 (0.304 g, 68% vyield, 1:1 dr) as a green sticky foam. (Isotwistane 6
was carried onto the next step as a 1:1 diastereomeric mixture)

Diastereomer One
R: = 0.19 (25% EtOAc/Hex)

IH-NMR (500 MHz, CDCls): & 5.37 (m, 4H), 4.19 (dd, J = 12.3, 2.8 Hz, 1H), 4.01-3.95 (m, 2H), 3.74 (dg,
J=9.7, 7.1 Hz, 1H), 3.48 (dg, J = 9.7, 7.1 Hz, 1H), 2.75 (dd, J = 14.2, 5.7 Hz, 1H), 2.37 (d, J = 2.7 Hz,
1H), 2.29-2.27 (m, 1H), 2.21-2.16 (m, 2H), 2.10-1.88 (m, 7H), 1.86-1.79 (m, 3H), 1.77-1.71 (m, 1H),
1.69-1.58 (m, 10H), 1.53-1.49 (m, 1H), 1.35-1.30 (m, 6H), 1.20 (t, J = 7.1 Hz, 3H).

13C-NMR (125 MHz, CDCls): 6 177.6, 131.4, 131.1, 124.7, 124.7, 110.5, 109.3, 107.2, 95.5, 77.7, 74.3,
66.1, 65.3, 63.8, 56.8, 51.8, 51.5, 44.0, 39.1, 37.4, 37.3, 36.6, 33.8, 33.8, 33.7, 32.5, 30.9, 29.5, 29.3,
27.9,25.9, 17.9, 15.1.

FTIR (neat): 3476, 2925, 2855, 1780, 1149, 1299, 1110, 1071, 1044, 967, 920 cm™.

HRMS (ESI) m/z Calc'd. for CasHasOsNa [M+Na]*: 595.3241, found: 595.3240.

Diastereomer Two
R: = 0.46 (50% EtOAc/Hex)

11,2-diiodoethane was taken up in ether, washed with a 1:1 mixture of sat. aq. Na,S,Og, brine, dried over Na,SO,, concentrated, and
dried under vacuum. All were taken care of in the dark to exclude light.
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IH-NMR (500 MHz, CDCls): & 5.46-5.37 (m, 4H), 5.30 (d, J = 4.1 Hz, 1H), 4.18-4.10 (m, 2H), 4.07-4.03
(m, 2H), 3.95-3.91 (m, 1H), 3.88-3.85 (m, 1H), 3.35 (dg, J = 9.0, 6.9 Hz, 1H), 2.65 (d, J = 12.8 Hz, 1H),
2.17 (d, J = 13.0 Hz, 1H), 2.08-2.02 (m, 2H), 1.98-1.69 (m, 12H), 1.67-1.55 (m, 10H), 1.51-1.47 (m, 1H),
1.36-1.28 (m, 6H), 1.13 (t, J = 7.0 Hz, 3H).

13C-NMR (125 MHz, CDCls): 5 177.1, 131.4, 130.9, 124.9, 124.7, 110.5, 107.9, 107.3, 96.1, 79.0, 75.5,
66.4, 66.0, 62.4, 56.4, 52.5, 50.8, 43.8, 39.3, 38.4, 37.4, 35.8, 34.4, 33.6, 32.5, 32.4, 29.5, 29.3, 27.9,
25.8,17.9, 14.8.

FTIR (neat): 3460, 2923, 2855, 1763, 1443, 1269, 1168, 1130, 1066, 988, 966, 872, 732 cm™.

HRMS (ESI) m/z Calc’d. for Cs3HasOgNa [M+Na]*: 595.3241, found: 595.3240.
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Synthesis of Acetate SI-4

AcO

Ac,0, Mg(ClO,);

_—
DCM, rt

To a round bottom flask equipped with a magnetic stir bar was added isotwistane 6 (0.283 g,
0.494 mmol) (azeotroped with toluene x3 prior to use), Mg(ClOg4). (0.011 g, 0.049 mmol), DCM (2.60
mL), and acetic anhydride (Ac2O) (0.140 mL, 1.48 mmol). The reaction was stirred at room
temperature for 24 hours. TLC was used to follow the reaction progress and the TLC plates were
developed using a 25% EtOAc/Hexanes solution and visualized with CAM. Concentration and
purification via silica gel flash column chromatography (5% gradient, 0%—15% EtOAc/Hex) afforded
the acetate Sl-4 (0.238 g, 78% yield, 1:3.3 dr) as a white foam.

Rr = 0.33 (30% EtOAc/Hex)

IH-NMR (400 MHz, CDCls): & 5.47-5.36 (m, 5 H), 5.33-5.30 (m, 1H), 4.22-4.11 (m, 2H), 4.08-4.03 (m,
2H), 4.00-3.90 (m, 2H), 3.89-3.83 (m, 1H), 3.77-3.71 (m ,0.31H), 3.54-3.46 (m, 0.29H), 3.36 (dq, J =
9.1, 7.0 Hz, 1H), 2.99 (d, J = 13.1 Hz, 0.30H), 2.82 (d, J = 13.1 Hz, 1H), 2.79-7.75 (m, 0.25H), 2.68 (d,
J = 12.8 Hz, 1H), 2.41-2.33 (m, 2H), 2.20-2.12 (m, 1H), 2.09-2.02 (m, 3H), 1.98-1.97 (m, 5.3H), 1.95-
1.90 (m, 1.30H), 1.85-1.69 (m, 7H), 1.65-1.59 (m, 8 H), 1.56-1.42 (m, 5H), 1.37-1.25 (m, 7.6H), 1.22 (t,
J=7.1Hz, 1H), 1.14 (t, J = 7.0 Hz, 3H).

13C-NMR (100 MHz, CDCls): d 177.2, 176.6, 169.4, 169.4, 131.3, 131.1, 130.9, 130.5, 125.0, 124.8,
124.8, 124.7, 123.9, 110.5, 110.5, 109.7, 107.8, 107.7, 107.1, 94.5, 94.0, 84.4, 83.0, 77.2, 75.6, 74.4,
66.4, 66.2, 66.1, 65.4, 63.9, 62.5, 57.5, 57.2, 50.2, 49.5, 47.2, 46.3, 43.9, 43.7, 38.9, 38.8, 37.5, 37.5,
36.9, 36.2, 35.7, 35.7, 34.5, 33.8, 33.5, 33.3, 32.5, 32.5, 32.2, 30.7, 29.6, 29.5, 29.4, 29.4, 27.6, 26.8,
26.0, 25.8, 21.6, 21.5, 17.9, 15.1, 14.8.

FTIR (neat): 2928, 2854, 2019, 1787, 1738, 1440, 1368, 1262, 1236, 1209, 1160, 1090, 1042, 992,
968 cm™.

HRMS (ESI) m/z Calc’d. for CssHs00O9Na [M+Na]*: 637.3347, found: 637.3342.
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Synthesis of Bis-dithiane SI-5

S
AcO ] AcO . _< :>

1,3-propanedithiol
BF3‘OEt2

L
v

DCM, 0 °C

To a round bottom flask equipped with a magnetic stir bar was added the acetate Sl-4 (0.382 g,
0.588 mmol) and DCM (5.88 mL). The solution was cooled in and ice/salt/water bath and 1,3-
propanedithiol (0.297 mL, 2.94 mmol). After 5 minutes, BF3'OEt; (0.373 mL, 2.94 mmol) was added
dropwise. TLC was used to follow the reaction progress and the TLC plates were developed using a
25% EtOAc/Hexanes solution and visualized with CAM. After 40 minutes at 0 °C, acetone (3.00 mL)
was added and the reaction was stirred for an additional 10 minutes before it was quenched with the
addition of sat. ag. NaHCOs (6.00 mL). The organic layer was washed with sat. aq. NH4Cl, H»O, and
brine before drying over MgSO.. Concentration and purification via silica gel flash column
chromatography (5% gradient, 0%—30% EtOAc/Hex) afforded the bis-dithiane SI-5 (0.296 g, 70%
yield) as a white foam.

Rr = 0.44 (30% EtOAc/Hex)

IH-NMR (400 MHz, CDCls): & 5.48-5.30 (m, 4H), 4.77 (dd, J = 12.1, 3.4 Hz, 1H), 4.50 (dd, J = 7.8, 6.6
Hz, 1H), 3.50 (s, 1H), 3.36-3.23 (m, 2H), 2.90-2.80 (m, 5H), 2.60 (dt, J = 13.5, 4.2 Hz, 1H), 2.54-2.49
(m, 1H), 2.48-2.29 (m, 4H), 2.27-2.21 (m, 2H), 2.10-2.04 (m, 4H), 1.99-1.89 (m, 6H), 1.86-1.75 (m, 6H),
1.65-1.59 (m, 7H), 1.56-1.46 (m, 2H), 1.39-1.25 (m, 7H).

13C-NMR (100 MHz, CDCls): & 176.5, 169.6, 131.3, 130.1, 125.8, 124.8, 106.6, 83.6, 79.8, 53.8, 51.9,
49.9, 49.3, 42.1, 38.9, 38.1, 37.4, 36.9, 35.8, 32.8, 32.5, 32.0, 29.5, 29.5, 29.2, 28.4, 27.6, 27.3, 25.2,
24.8,21.6, 17.9.

FTIR (neat): 3441, 3103, 2922, 2853, 1772, 1737, 1437, 1366, 1260, 1234, 1164, 1014, 965, 927, 869,
811 cm™.

HRMS (ESI) m/z Calc’d. for Ca7HssOsSsNa [M+Na]*: 745.2695, found: 745.2704.
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Synthesis of Mesylate 26

AcO . _<S:> AcO “\\_<S:>

MsCl, DMAP, Et;N

’ o

DCM, 0 °C to rt

To a round bottom flask equipped with a magnetic stir bar was added the bis-dithiane SI-5 (0.14 g,
0.12 mmol), 4-(dimethylamino)pyridine (DMAP) (0.074 g, 0.602 mmol), EtsN (0.061 mL, 0.602 mmol),
and DCM (2.01 mL). The solution was cooled in an ice/salt/water bath and methanesulfonyl chloride
(0.047 mL, 0.602 mmol) was added dropwise. The reaction was then allowed to slowly warm to room
temperature with the bath. TLC was used to follow the reaction progress and the TLC plates were
developed using a 25% EtOAc/Hexanes solution and visualized with CAM. After 5.5 hours, the reaction
was again cooled to 0 °C and quenched with 1 M HCI (1.00 mL). After warming to room temperature,
the solution was diluted to DCM and the organic layer was washed with brine before drying over
MgSO,. Concentration and purification via silica gel flash column chromatography (5% gradient,
0%—55% EtOAc/Hex) afforded mesylate 26 (0.153 g, 95% yield) as a white solid.

R = 0.35 (25% EtOAc/Hex)

m.p.=78-80 °C

IH-NMR (500 MHz, CDCls): & 5.47-5.33 (m, 4H), 4.81 (dd, J = 12.0, 3.2 Hz, 1H), 4.77-4.74 (m, 1H),
3.49-3.44 (m, 1H), 3.36 (s, 3H), 3.30 (d, J = 2.4 Hz, 1H), 3.02-2.91 (m, 3H), 2.83-2.78 (m, 2H), 2.62-
2.56 (m, 2H), 2.51-2.45 (m, 2H), 2.42-2.39 (m, 2H), 2.35-2.29 (m, 3H), 2.11-1.95 (m, 9H), 1.88-1.76 (m,
6H), 1.63-1.60 (m, 6H), 1.56-1.44 (m, 3H), 1.41-1.25 (m, 7H).

13C-NMR (125 MHz, CDCls): & 174.8, 169.3, 131.4, 130.1, 125.7, 124.7, 105.9, 95.8, 83.9, 79.6, 53.2,
52.4, 47.8, 47.7, 42.5, 40.6, 39.6, 38.4, 38.3, 36.9, 35.8, 35.8, 32.7, 32.5, 32.2, 31.0, 30.5, 29.5, 29.1,
28.1,27.7,27.2, 26.8, 25.4, 24.8, 21.5, 17.9, 17.9.

FTIR (neat): 2923, 2854, 1777, 1738, 1438, 1340, 1261, 1234, 1160, 1683, 965, 878, 736 cm'..

HRMS (ESI) m/z Calc’d. for CssHs60sSsNa [M+Na]*: 823.2471, found: 823.2465.
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Synthesis of Diol 27

AcO . _<S:>

KOH (1.0 M)
_—

THF/MeOH

To a round bottom flask equipped with a magnetic stir bar was added mesylate 26 (0.244 g, 0.304
mmol), THF (1.52 mL), and MeOH (1.52 mL). To the stirred solution was added an aqueous solution of
KOH (1.52 mL, 1.0 M, 1. 52 mmol) over 30 seconds and the flask was sealed with a glass stopper.
After 10 minutes, the reaction was placed into a 40 °C oil bath. TLC was used to follow the reaction
progress and the TLC plates were developed using a 50% EtOAc/Hexanes solution and visualized with
CAM. After 5 hours, the reaction was removed from the hot bath and was cooled to room temperature.
The reaction was then quenched with the addition of 1 M HCI (1.60 mL) until the solution reached a pH
~ 2 and then diluted with EtOAc. The organic layer was washed with 1 M HCI, H2O, and brine before
being dried over Na,SO,4. Concentration and purification via silica gel flash column chromatography
(10% gradient, 0%—60% EtOAc/Hex) afforded diol 27 (0.184 g, 89% yield) as a white foam.

R; = 0.52 (50% EtOAc/Hex)

m.p.=62-64 'C

IH-NMR (500 MHz, CDCls): & 5.66 (d, J = 3.5 Hz, 1H), 5.47-5.34 (m, 4H), 5.08 (s, 1H), 4.17-4.10 (m,
2H), 3.18 (s, 1H), 2.94-2.86 (m, 4H), 2.82-2.59 (m, 8H), 2.56 (d, J = 15.5 Hz, 1H), 2.40-2.36 (M, 1H),
2.28-2.15 (m, 5H), 2.07-2.03 (m, 2H), 1.97-1.79 (m, 5H), 1.73-1.57 (m, 10H), 1.50-1.42 (m, 1H), 1.37-
1.11 (m, 7H).

13C-NMR (125 MHz, CDCls): & 205.8, 177.3, 142.1, 132.2, 131.3, 130.3, 125.6, 124.7, 107.3, 68.6,
58.7, 58.6, 48.2, 48.1, 47.0, 40.6, 38.7, 38.3, 34.3, 33.6, 32.7, 32.5, 29.5, 29.3, 27.7, 26.1, 25.3, 24.9,
24.1,17.9.

FTIR (neat): 3478, 2923, 2853, 1769, 1693, 1438, 1274, 1108, 966, 908, 729, 647 cm™.

HRMS (ESI) m/z Calc’d. for CzsHs305S4 [M+H]*: 703.2590, found: 703.2585.
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Synthesis of ketone 5

NsCI, Et;N

DCM, rt

To a vial equipped with a magnetic stir bar was added diol 27 (0.024 g, 0.035 mmoal), 4-
nitrobenzenesulfonyl chloride (NsCI) (0.016 g, 0.070 mmol), EtsN (0.015 mL, 0.11 mmol), and DCM
(0.400 mL). The vial was capped and the reaction was stirred at room temperature. TLC was used to
follow the reaction progress and the TLC plates were developed using a 50% EtOAc/Hexanes solution
and visualized with CAM. After 6 hours, the reaction was quenched with the addition of 1M HCI (0.130
mL) and diluted with DCM. The organic layer was washed with 1M HCI, H»O, and brine before being
dried over MgSO4. Concentration and purification via silica gel flash column chromatography (100%
DCM until excess NsCl was eluted, then 5% gradient, 0%—30% EtOAc/Hex) afforded ketone 5 (0.016
g, 67% yield) as a white foam.

Rr = 0.43 (25% EtOAc/Hex)

m.p.=67-68 'C

IH-NMR (400 MHz, CDCls): & 5.81 (s, 1H), 5.47-5.30 (m, 4H), 4.19-4.12 (m, 2H), 3.50-3.37 (m, 2H),
2.88-2.82 (m, 2H), 2.75-2.64 (m, 5H), 2.55 (d, J = 14.4 Hz, 1H), 2.50-2.46 (m, 3H), 2.35-2.17 (m, 4H),
2.15-1.90 (m, 8H), 1.83-1.72 (m, 2H), 1.65-1.58 (m, 8H), 1.43-1.25 (m, 9H).

13C-NMR (100 MHz, CDCls): & 204.7, 175.8, 138.4, 132.0, 131.2, 130.1, 125.7, 124.9, 105.8, 83.6,
60.8, 52.7, 49.4, 45.1, 43.0, 42.6, 41.7, 38.4, 38.2, 36.9, 36.5, 35.4, 32.5, 29.4, 28.9, 28.9, 28.6, 28.3,
28.2,27.8,27.2,25.5,24.9, 17.9, 17.9.

FTIR (neat): 3016, 2923, 2853, 1761, 1697, 1437, 1371, 1269, 1152, 966 cmt,

HRMS (ESI) m/z Calc’d. for CasHseO4SaNa [M+Na]*: 685.2484, found: 685.2480.
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Synthesis of Enol 29

(0}

PN

NC”~ “OMe
28

) s:j>
W < .
s LiHMDS

HMPA

[
Et,0, -40 °C to rt

To an oven-dried vial equipped with a stir bar was added ketone 5 (19.3 mg, 0.029 mmol)
(azeotroped with toluene x3 prior to use) in Et,O (0.291 mL). The solution was cooled to -40 °C in a dry
ice/MeCN bath and lithium bis(trimethylsilylyamide (LIHMDS) (27.7 pL, 0.028 mmol) was added
dropwise. The reaction mixture was stirred in dry ice/MeCN bath for 15 minutes and then it was stirred
in an ice bath for 1 hour, at which point additional LIHMDS (43.7 pL, 0.044 mmol) was added dropwise.
After 20 minutes, the reaction was cooled to -40 °C in a dry ice/MeCN bath, at which point
hexamethylphophramide (HMPA) (7.60 pL, 0.044 mmol) and methyl cyanoformate (3.46 uL, 0.044
mmol) were added sequentially. After 10 minutes, dry ice/MeCN bath was removed and the reaction
was warmed to room temperature, at which point the reaction mixture turned deep orange in color.
TLC was used to follow the reaction progress and the TLC plates were developed using a 25%
EtOAc/Hexanes solution and visualized with CAM. After an hour, the reaction was cooled to 0 °C and
was quenched with sat. ag. NH4Cl (0.200 mL) and was allowed to warm to room temperature. The
solution was then diluted with EtOAc and the organic layer was washed with H.O and brine. After
drying over MgSO. and concentration, purification via HPLC (0%—18% EtOAc/Hex, A = 259 nm, flow
rate = 10 mL/min) afforded enol 29 (0.0126 g, 60% vyield) as a white foam. (Note: Occassionally, trace
amount of keto tautomer (SI-6) was observed under the reaction conditions.)

Enol Tautomer
R = 0.53 (25% EtOAc/Hex)

IH-NMR (600 MHz, CDCls): & 13.82 (s, 1H), 5.75 (s, 1H), 5.46-5.33 (m, 4H), 4.18-4.15 (m, 2H), 3.82 (s,
1H), 3.46 (dddd, J = 33.0, 14.4, 12.2, 2.8 Hz, 2H), 3.22 (s, 1H), 2.84 (ddd, J = 14.2, 7.2, 2.9 Hz, 2H),
2.80 (d, J = 17.4 Hz, 1H), 7.74-7.69 (m, 3H), 2.59 (dd, J = 17.5, 1.3 Hz, 1H), 2.48 (ddt, J = 21.7, 13.4,
4.0 Hz, 2H), 2.43 (d, J = 3.2 Hz, 1H), 2.34-2.28 (m, 1H), 2.21 (dd, J = 14.4, 8.2 Hz, 1H), 2.16 (td, J =
12.4, 3.2 Hz, 1H), 2.11-2.00 (m, 4H), 1.96-1.89 (m, 3H), 1.82-1.75 (m, 2H), 1.65-1.57 (m, 7H), 1.33-
1.12 (m, 9H).

13C-NMR (150 MHz, CDCls): d 175.6, 174.5, 171.6, 136.4, 131.2, 130.3, 125.7, 125.0, 104.2, 100.0,
83.2, 55.0, 527, 52.6, 49.1, 44.6, 42.6, 42.0, 38.4, 36.6, 36.5, 35.8, 35.3, 32.4, 29.3, 28.9, 28.9, 28.6,
28.3,27.9, 27.8, 27.2, 25.5, 24.9, 17.9.

FTIR (neat): 2923, 2853, 1786, 1639, 1573, 1438 cm™.
HRMS (ESI) m/z Calc’d. for Cs7Hs206SaNa [M+Na]*: 743.2539, found: 743.2534.

Keto Tautomer
R = 0.32 (25% EtOAc/Hex)
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IH-NMR (600 MHz, CDCls): & 5.91 (s, 1H), 5.45-5.31 (m, 4H), 4.16 (t, J = 8.5 Hz, 1H), 4.12 (dd, J =
11.7 Hz, 1H), 3.74 (s, 3H), 3.46-3.40 (m, 2H), 3.21 (d, J = 4.6 Hz, 1H), 3.09-3.08 (m, 1H), 2.92 (d, J =
13.2 Hz, 1H), 2.87-2.82 (m, 2H), 2.77-2.69 (m, 3H), 2.59 (d, J = 13.2 Hz, 1H), 2.48-2.43 (m, 2H), 2.35-
2.14 (m, 6H), 2.10-1.89 (m, 8H), 1.78-1.71 (m, 2H), 1.65-1.58 (m, 6H), 1.53-1.50 (m, 1H), 1.38-1.28 (m,
6H).

13C-NMR (150 MHz, CDCls): 5 200.6, 174.5, 169.0, 138.6, 131.7, 131.1, 130.1, 125.8, 125.0, 104.4,
84.0, 61.3, 61.2, 52.9, 52.4, 49.9, 45.6, 41.7, 39.0, 38.5, 37.4, 35.6, 35.1, 32.5, 29.9, 29.4, 28.9, 28.7,
28.4,28.2,27.9, 27.1, 25.4, 24.8, 18.0, 17.9.

FTIR (neat): 2919, 2852, 1792, 1747, 1706, 1435, 1260, 1012, 965, 801, 734 cm™.

HRMS (ESI) m/z Calc’d. for Cs7Hs206SaNa [M+Na]*: 743.2539, found: 743.2534.
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Synthesis of Enol Triflate 31

L

s

N~ ONTH,
30

NaH
THF,0°C tort

To an oven-dried vial equipped with a magnetic stir bar was added NaH (2.430 mg, 0.061 mmol)
under N2. The vial was capped and was cooled to 0 °C in an ice/water bath, at which point a solutoin of
enol 29 (21.9 mg, 0.030 mmol) in THF (0.608 mL) was added. The resulting suspension was allowed
to slowly warm to at room temperature and stir for an hour, then the suspension was recooled to 0 °C,
at which point a solution of N-(5-Chloro-2-pyridyl)bis(trifluoromethanesulfonimide) (Comins’ reagent) 30
(0.179 g, 0.046 mmol) in THF (0.608 mL) was added dropwise. Resulting reaction mixture continued to
stir at 0 °C, slowly warm to room temperature with the bath. After an hour, the reaction was recooled to
0 °C and was quenched with the addition of H,O (0.120 mL) and diluted with EtOAc. The layer was
separated and the organic layer was washed with EtOAc three times. Combined organics were
washed with brine, then dried over MgSO4. Concentration and purification via silica gel flash column
chromatography (5% gradient, 0%—10% EtOAc/Hex) afforded enol triflate 31 (0.019 g, 73% vyield) as a
white foam. (Note: Purification can also be performed using HPLC (0%—15% EtOAc/Hex, A = 259 nm,
flow rate = 10 mL/min))

R; = 0.52 (25% EtOAc/Hex)

IH-NMR (400 MHz, CDCls): & 5.89 (s, 1H) 5.48-5.30 (m, 4H), 4.18-4.11 (m, 2H), 3.82 (s, 3H), 3.47-
3.33 (m, 2H), 3.05 (s, 1H), 2.87-2.81 (m, 2H), 2.76-2.68 (m, 5H), 2.50-2.44 (m, 3H), 2.29 (dd, J = 14.3,
8.3 Hz, 2H), 2.16-1.92 (m, 8H), 1.81-1.71 (m, 2H), 1.64-1.61 (m, 7H), 1.57-1.54 (m, 1H), 1.52-1.44 (m,
2H), 1.40-1.25 (m, 8H).

13C-NMR (100 MHz, CDCls): & 174.6, 165.7 ,145.0 ,134.4 ,132.2, 131.3, 130.0, 129.0, 125.8, 124.8,
103.4, 83.3, 53.1, 52.5, 50.6, 49.9, 47.6, 42.3, 42.1, 38.4, 36.0, 35.4, 35.0, 34.8, 32.4, 29.3, 28.8, 28.7,
28.4,28.3,27.9, 27.9, 27.8, 27.2, 25.4, 24.8, 17.9.

FTIR (neat): 2926, 2856, 1789, 1736, 1420, 1263, 1212, 1135, 1022, 967, 907, 868, 733 cm-.

HRMS (ESI) m/z Calc’d. for CasHs1F30sSsNa [M+Na]™: 875.2032, found: 875.2027.
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Synthesis of Maleic Anhydride 32

Pd(OAc),, P(2-furyl);

iPr,NEt, H,0 o

_— Me” X o
CO, DMF, 90 °C o

To a vial equipped with a stir bar was added enol triflate 31 (8.80 mg, 10.3 pmol), palladium(ll)
acetate (2.32 mg, 10.3 umol), tri(2-furyl)phosphine (11.97 mg, 0.052 mmol), DMF (737 pL), iPr:EtN
(13.5 pL, 0.077 mmol) and H20 (13.9 pL, 0.774 mmol) sequentially. Then the reaction mixture was
vigorously stirred and was purged with CO for 15 minutes. The reaction was then replaced with a
balloon of CO and was heated to 90 °C in an oil bath. The reaction continued to stir at 90 °C for 2
hours and then it was cooled to room temperature in the bath over 30 min, at which point it was
guenched with 1 M HCI (1.47 mL). The resulting solution mixture was continued to stir for 10 minutes,
and then it was diluted with EtOAc. Aqueous layer was extracted with EtOAc three times. Combined
organics were washed with brine and then dried over MgSO.. Concentration and purification via HPLC
(0%—10% EtOAc/Hex, A = 280 nm, flow rate = 10 mL/min) afforded maleic anhydride 32 (0.052 g,
73% vyield) as a pale yellow oil.

Rr = 0.44 (25% EtOAc/Hex)

IH-NMR (600 MHz, CDCls): & 5.82 (s, 1H), 5.47-5.33 (m, 4H), 4.21 (dd, J = 11.8, 2.4 Hz, 1H), 4.15 (t, J
= 8.3 Hz, 1H), 3.41 (ddd, J = 14.1, 11.9, 2.9 Hz, 1H), 3.34-3.28 (m, 2H), 3.08 (dd, J = 19.2, 1.4 Hz, 1H),
2.88-2.83 (m, 3H), 2.75-2.71 (m, 2H), 2.64 (d, J = 3.4 Hz, 1H), 2.56-2.49 (m, 3H), 3.36-2.29 (m , 3H),
2.20-2.17 (m, 1H), 2.08-2.01 (m, 3H), 1.96-1.92 (m, 3H), 1.84-1.77 (m, 2H), 1.72 (ddd, J = 13.2, 4.0,
2.5 Hz, 1H), 1.65-1.61 (m, 6H), 1.60-1.57 (m, 1H), 1.32-1.20 (m, 8H), 1.10 (dq, J = 14.7, 7.4 Hz, 1H),
1.02 (ddt, J = 9.8, 7.3, 4.2 Hz, 1H).

13C-NMR (150 MHz, CDCls): d 174.8, 164.6, 164.3, 142.0, 140.3, 136.2, 132.0, 131.0, 130.0, 125.9,
125.1, 103.6, 83.3, 52.6, 51.3, 45.4, 44.4, 42.3, 41.8, 38.3, 36.7, 36.5, 36.3, 34.4, 32.3, 32.3, 29.2,29.2,
28.8, 28.4, 28.2,27.7,27.2, 27.2, 25.4, 24.7, 19.7.

FTIR (neat): 2924, 2853, 1790, 1767, 1440, 1262, 1133, 1025, 967, 917 cm™.

HRMS (ESI) m/z Calc’d. for Ca7H4sOsSsNa [M+Na]™: 739.2226, found: 739.2224.
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Synthesis of Aldehyde SI-7

Mel
CaCoO;

80% MeCN aq.

SI-7

To a vial equipped with a stir bar was added a solution of maleic anhydride 32 (11.1 mg, 0.015

mmol) in 80% MeCN ag. solution (0.010 M) at room temperature. To the stirring mixture was added the
iodomethane (77.0 uL, 1.24 mmol) and calcium carbonate (6.97 mg, 0.070 mmol) sequentially at room
temperature. The reaction was capped and was stirred for 60 hours. TLC was used to follow the
reaction progress and the TLC plates were developed using a 25% EtOAc/Hexanes solution and
visualized with CAM. Upon reaction completion, the reaction was quenched with 1 M HCI. Aquesous
layer was extracted with EtOAc twice. Combined organic layer were washed with Na,S;0; sat. aq
solution, dried over MgSO.. Concentration and purification via silica gel flash column chromatography
(10% gradient, 0%—30% EA/Hex+1% AcOH) afforded aldehyde SI-7 (5.60 mg, 67% yield) as a white
foam.
(Note: Occasionally, crude *H-NMR spectrum indicated the presence of aldehyde with the spiroacetal
opened resulting in a diol. The diol can be cyclized upon exposure to 3 quiv of methanesulfonic acid
(MSA) in CDCI3z? Cyclization conversion could be monitored by *H-NMR. Upon cnversion completion,
the mixture was diluted with H,O. Aqueous layer was extracted with DCM. Combined organics were
dried over MgSOs, and then concentrated in vacuo.)

R: = 0.67 (50% EtOAc/Hex+1% AcOH)

'H-NMR (600 MHz, CDCls): & 9.72 (s, 1H), 5.75 (t, J = 1.4 Hz, 1H), 5.51-5.34 (m, 4H), 4.19 (dd, J =
12.3, 3.2 Hz, 1H), 3.40 (d, J = 19.0 Hz, 1H), 3.29 (d, J = 2.1 Hz, 1H), 3.18 (d, J = 19.0 Hz, 1H), 3.04
(dd, J =19.2, 1.3 Hz, 1H), 2.86-2.76 (m, 2H), 2.68-2.61 (m, 2H), 2.31-2.27 (m, 2H), 2.23-2.20 (m, 1H),
2.05-1.99 (m, 1H), 1.95-1.86 (m, 3H), 1.64-1.63 (m, 6H), 1.59-1.57 (m, 1H), 1.31-1.19 (m, 8H,
overlapped with grease), 1.14-1.08 (m, 1H), 1.05-0.98 (m, 1H).

13C-NMR (150 MHz, CDCls): d 208.8, 195.7, 174.3, 164.5, 164.1, 142.1, 140.2, 136.3, 131.6, 130.9,
129.4, 126.1, 125.2, 103.3, 76.7, 47.2, 45.7, 44.3, 42.9, 40.8, 38.2, 36.5, 36.3, 34.8, 32.3, 29.2, 28.6,
27.6,25.9,17.9, 17.9.

FTIR (neat): 2923, 2854, 2018, 1800, 1769, 1718, 1454, 1263, 1118, 970, 928 cm™.

HRMS (ESI) m/z Calc’d. for Ca1HzsOsNa [M+Na]": 559.2302, found: 559.2303.
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Synthesis of Phomoidride D (4)

o

NaClo,
NaH,PO4°H,0 o
2-Me-2-butene

\\\\

L

. o
tBuOH/THF/H,0

SI-7 Phomoidride D (4)

To a vial equipped with a stir bar was added aldehyde SI-7 (2.60 mg, 4.85 pumol) tBuOH (0.291
mL) and THF (97 pL) was added. Then to the stirring mixture was added 2-methylbut-2-ene (25.7 pL,
0.242 mmol), followed by the addition of a solution of sodium chlorite (NaClO2) (1.32 mg, 0.015 mmol)
and sodium dihydrogenphosphate monohydrate (NaH2PO4 'H-0) (3.49 mg, 0.029 mmol) in H>O (97 pL).
The resulting reaction mixture was stirred for 1.5 hours and reaction progress was monitored by UPLC.
Upon consumption of aldehyde, the reaction was quenched with 1 M HCI and was diluted with EtOAc.
Aqueous layer was extracted with EtOAc twice. Combined organics were washed with sat. aqg.
Na;S;03 solution, dried over MgSO., and then concentrated in vacuo. The crude mixture was purified
by reversed phase flash column chromatography using reversed phase C18 silica (80/20 0.1% HCOH
aq./MeCN—35/65 0.1% HCO:H aq./MeCN) to afford 2.60 mg (97% vyield) of phomoidride D (4).

!H-NMR (600 MHz, acetone-dg): 5 6.22, (s, 1H), 5.49-5.41 (m, 2H), 5.40-5.37 (m, 2H), 4.30 (dd, J =
12.1, 3.3 Hz, 1H), 3.29-3.20 (m, 3H), 3.03-2.91 (m, 2H), 2.76-2.65 (m, 3H), 2.39 (t, J = 7.2 Hz, 1H),
2.24-2.20 (m, 2H), 2.04-2.02 (m, 1H), 1.98-1.96 (m, 1H), 1.94-1.90 (m, 2H), 1.60 (m, 3H), 1.60-1.59 (m,
3H), 1.42-1.33 (m, 2H), 1.32-1.18 (m, 8H, overlapped with grease).

13C-NMR (150 MHz, acetone-ds): & 208.2, 175.9, 171.2, 166.0, 165.9, 142.3, 142.0, 137.3, 132.9,
132.1, 130.9, 126.2, 125.4, 104.2, 77.4, 49.8, 45.2, 43.4, 41.7, 38.7, 37.6, 36.9, 35.3, 33.1, 30.1, 29.5,
28.2, 26.8, 18.0.

FTIR (neat): 3447, 2925, 2855, 1796, 1766, 1716, 1437, 1404, 1262, 1154, 1126, 1038, 967, 927, 722
cm™.

HRMS (ESI) m/z Calc’d. for Cs1HssOgNa [M+Na]*™: 575.2257, found: 575.2285; m/z Calc’d. for C31H3509
[M-H]*: 551.2287, found: 551.2276.
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Table S1 'H and 3C NMR Data for Phomoidride D in acetone-ds
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C (position) 1;C(pl\‘|)'r\:|1§z %H(ypl\r/lnl:; (LR) C-H Correlation H-H Correlation
1 18.0 1.60 - H4
2 126.2 5.44 H4 H4
3 130.9 5.44 H4, H5 H4
4 26.8 2.21 H5 H5
5 38.7 2.71 - H4
6 208.2 - - -
7 77.4 4.30 - H8
8 35.3 2.03/1.97 - H9
9 37.6 2.66 - H8, H10
10 45.2 3.29 H8 H9
11 142/142.3 - H10, H13 -
12 142/142.3 - H10, H13 -
13 43.4 3.02/2.93 H28 H28
14 49.8 - H13, H16, H28 -
15 137.3 - H13, H16, H28 -
16 132.9 6.22 H17 H17
17 41.7 2.38 H16, H28 H18/19
18 36.9 1.24 - -
19 28.2 1.36 - -
20 29.5 1.25 - -
21 30.1 1.25 H18, H22 -
22 33.1 1.92 - -
23 132.1 5.38 H22 H22
24 125.4 5.38 H22 H22
25 18.0 1.59 - -
26 104.2 - H16, H28 -
27 175.9 - H13, H28 -
28 36.4 3.28/3.22 H13 H13
29 171.2 - H28 -
30 165.9 - H13 -
31 166.0 - H13 -
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