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In the multi-messenger astronomy era, accurate sky localization and low latency time of gravitational-wave
(GW) searches are keys in triggering successful follow-up observations on the electromagnetic counterpart of
GW signals. We, in this work, focus on the latency time and study the feasibility of adopting supervised ma-
chine learning (ML) method for ranking candidate GW events. We consider two popular ML methods, random
forest and neural networks. We observe that the evaluation time of both methods takes tens of milliseconds for
∼ 45,000 evaluation samples. We compare the classification efficiency between the two ML methods and a
conventional low-latency search method with respect to the true positive rate at given false positive rate. The
comparison shows that about 10% improved efficiency can be achieved at lower false positive rate ∼ 2× 10−5

with both ML methods. We also present that the search sensitivity can be enhanced by about 18% at∼ 10−11Hz
false alarm rate. We conclude that adopting ML methods for ranking candidate GW events is a prospective ap-
proach to yield low latency and high efficiency in searches for GW signals from compact binary mergers.

PACS numbers: 95.85.Sz, 98.70.Rz, 07.05.Mh

I. INTRODUCTION

Recently, ground-based gravitational-wave (GW) observa-
tories, LIGO [1] and Virgo [2] detected GW170817 [3] in
about 1.7 seconds advance the observation of a short GRB,
GRB170817A [4] which was identified by the Fermi Gamma-
ray Burst Monitor (GBM) [5]. These coincident observations
of both GW and short GRB became a monumental event for
opening the era of multi-messenger astronomy [6]. From the
joint observation, one of the most plausible scenarios for the
central engine which powers a short GRB is confirmed too.

With the opening of multi-messenger astronomy era, it
is natural to believe that we will observe other kinds of
joint GW-electromagnetic (EM) events too as summarized in
Ref. [7] with future GW detectors and optical telescopes such
as Large Synoptic Survey Telescope [8]. For a joint GW-EM
observation, we may use a GW event as a precursor for trig-
gering follow-up observations on its EM counterpart. The suc-
cess of this kind of joint observation will strongly depend not
only on reducing the error of sky localization in GW detection
but also on curtailing the latency of GW search; precise sky
localization is related to how many GW detectors in various
geographical locations are online simultaneously while the la-
tency of search is associated with the quality of GW data and
analysis efficiency. Here, the efficiency implies the accuracy
of analysis. However, increasing the number of GW detec-
tors is not trivial despite KAGRA [9] and LIGO-India [10]
will come online in the near future in addition to currently op-
erating LIGO and Virgo detectors. Improving the quality of
GW data faces another difficulty because the current instru-
mental specifications are adopting state-of-the-art technology
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already. On the other hand, enhancing the efficiency of data
analysis is relatively capable since studying the capability of
a new method is much easier than others. Therefore, we focus
on the analysis efficiency in this work.

Up to date, several pipelines [11–16] for the low-latency
GW search have been developed and conducted to search GW
signals by analyzing the time series GW data in real-time.
The common goal of these pipelines is identifying a candi-
date GW event as soon as possible. Currently, the latency be-
tween the actual event time and the identification of a candi-
date event with those search pipelines takes about a few min-
utes as reported in Ref. [6] for the detection of GW170817.
When a low-latency search pipeline successes in the identi-
fication of a candidate event based on the significance of a
ranking method of each pipeline and obtains the information,
e.g., event time, sky location (right ascension and declination),
and signal-to-noise ratio of the candidate event, it forwards
those information to a database system, GraceDB [17]. Then
GraceDB delivers those information to EM partner observa-
tories/telescopes through an alert system such as Gamma-ray
Coordinates Network [18] alert to trigger follow-up observa-
tions for seeking correlated EM events.

Meanwhile, a candidate GW event is a survived one from
multiple stages of sanity tests of a search pipeline and the
event contains the result of each sanity test too in addition to
the observational information forwarded to GraceDB. Thus,
we can regard identifying the origin of a candidate event as
a multivariate classification problem and the information de-
scribing candidate GW events seamlessly leads the considera-
tion of machine learning (ML). Indeed ML has been gradually
implemented and accepted in various GW data analyses [19–
26] to achieve efficient, that is, accurate analysis not only for
the identification of GW signals but also for the characteriza-
tion of non-Gaussian transient noises. From these studies it
has been shown that we can consider ML as an alternative and
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complementary method to the conventional ranking method
of each analysis based on their classification performances.
Hence, in this work, we study the feasibility of curtailing the
latency of the low-latency search by adopting ML for ranking
candidate events with maintaining high-efficiency.

This paper is organized as follows: we present brief de-
scriptions on used tools, data preparation, and procedure of
applying MLs in Sec. II. The result of classification perfor-
mance of ML for the given data is summarized in Sec. III. In
Sec. IV, we present the detection sensitivity obtained with the
application of ML and compare it to the conventional ranking
method, log-likelihood ratio, of the GstLAL inspiral search
pipeline [11]. Finally, in Sec. V, we discuss the results of this
work.

II. METHOD

We start with briefly introducing the tools used in this
work.1 Then we describe the procedures from preparing data
to obtaining the output of machine learning (ML).

A. Tools

1. GstLAL Inspiral Search Pipeline

GstLAL inspiral search pipeline [11] (hereafter Gst-
LAL pipeline) is designed for the low-latency search for
gravitational-waves (GWs) radiated from compact binary
mergers. It is built based on the GstLAL library [27] which
was derived from the GStreamer [28] and the LIGO Algo-
rithm Library [29]. The pipeline produces candidate events
from data of each GW detector by performing matched filter-
ing [30] with template waveforms. In turn, if two or more
detectors are online, the pipeline searches coincident events
from detectors in network; given an event in one detector, the
pipeline checks for corresponding events in the other detector
within an relevant time window, which takes into account the
maximum GW travel time between detectors and statistical
uncertainty in the measured event time due to detector noise
at the moment [11].

We can use the pipeline in two different modes, online
which makes low-latency identification of a candidate event
and offline which archives GW data with other information
such as background statistics and data quality for further in-
vestigation on the candidate event identified from the online
mode. With the offline mode, in specific, it is possible to
perform the software injection – injecting a bunch of simu-
lated GW signals for compact binary systems into the cali-
brated GW data in order to test the search performance of the
pipeline by comparing the physical parameters for the simu-
lated signals and the recovered parameters by the pipeline.

1 Since describing details of used tools are out of the scope of this work, we
recommend reader to refer references.

Both modes of the GstLAL pipeline use log-likelihood ratio
[31] defined as

lnL(λ) = ln
P (λ|s)
P (λ|n) (1)

as a ranking method to judge the significance of candidate
events. In Eq. (1), P (λ|s) and P (λ|n) are the probability of
observing parameters of λ of candidate events of all detectors
given a GW signal, s, and background noise, n, respectively.
The parameter vector λ consists of characteristic parameters
of the candidate event such as signal-to-ratio, χ2, physical pa-
rameters of template waveforms used in identifying candidate
events, detector sensitivities at the time of the event, mean
trigger rates at the time of the event, the trigger phases, and
inter-detector time differences (for details, see Refs. [31, 32]).

2. Machine Learning

We consider supervised machine learning algorithms in this
work since we will use prelabeled2 data for training as de-
scribed in the following subsection. Amongst many super-
vised learning algorithms, we adopt random forest (RF) [33]
and neural network (NN) [34].

RF was suggested to remedy the biased overestimation
problem of the classical decision tree algorithm. RF is ba-
sically a collection of decision trees. However, it can reduce
any biased effect in data classification by imposing (i) ran-
dom selection in configuring input data for each tree and (ii)
random choice on criteria at each binary split. Also, as an ad-
ditional method for reducing biased overestimation problem,
RF scores ranks on samples in the input data by averaging
those ranks obtained from all decision trees in the forest.

NN operates as an artificial intelligence network similar
with the biological neuron system: activation of a node is de-
termined by an activation function which judges whether the
strength – sum of the value of each node times the value of
connection from one node to another node in the next adja-
cent layer – exceeds a certain criteria or not. Nowadays, NN
can be divided into two categories, shallow NN (SNN) and
deep NN (DNN), by the complexity of the structure of a net-
work, more precisely, by the number of hidden layers: if there
is one hidden layer, it is called as SNN and if there are two or
more hidden layers, it is called as DNN. But it is known that
if one can solve the issue on the computing time due to the
complex structure of DNN, the performance of DNN is better
than that of SNN in general.

In the implementation of these two MLs, we use two differ-
ent open source packages: for RF, we use Scikit-Learn [35]
which supports various purposes of implementing machine
learning algorithms such as supervised/unsupervised learn-
ings or classification/regression problems. On the other hand,

2 If one has unlabeled data and wants to train a machine learning algorithm
for either classification or regression, this kind of training is called unsu-
pervised learning.
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for NN, we use TensorFlow [36] because it allows construct-
ing DNN efficiently by reducing computing time with sophis-
ticated computational algorithms and/or multiple computing
processors.

B. Data Preparation

We use data obtained from LIGO Hanford, WA, U.S.A.
(H1) and LIGO Livingston, LA, U.S.A. (L1). For the pur-
pose of conducting classification with supervised MLs, we
consider two classes of data, simulated signal data and back-
ground noise data. Hereafter we call the simulated signal data
and background noise data as simply signal data and noise
data for convenience. In particular, for the signal data, we con-
sider binaries of black hole-black hole (BBH) because GWs
from BBHs are the most common type of signal detectable
by ground-based detectors.3 Hence, we use mock data4 of
GW150914 generated by the software injection with the of-
fline mode of GstLAL pipeline. Meanwhile, for the noise
data, we use the data obtained by running time-slide with Gst-
LAL pipeline around the time of software injection. The soft-
ware injection and time-slide were conducted with a chosen
data segment taken between October 21, 2015 UTC and De-
cember 3, 2015 UTC, where no GW signal was found during
the O1 operation of LIGO and Virgo.

From the coincident events of H1 and L1 data, we extract
six feature parameters; signal-to-noise ratio (SNR) and chi-
square statistic of each trigger as statistical feature parameters
and, as physical feature parameters, masses and spin magni-
tudes of two component compact objects. We use the same
feature parameters for the configuration of both signal and
background data consistently.

We first shuffle the samples of the input data to reduce any
biased effect in the composition of samples. Then, we divide
the shuffled input data into two categories, train and test data,
such as 75% of the whole data for the train data and the rest
25% for the test data. We use the train data and test data to
train ML and to evaluate the performance of trained ML, re-
spectively. The number of signal and noise samples for train
and test data is tabulated in Table I. One can recognize that

3 In general, expecting electromagnetic (EM) counterparts for BBH events
is mainly discussed in theoretical studies [37–41]. However a possible
association of a gamma-ray burst to the first GW detection, GW150914
was discussed in the literature [42]. Thus considering BBH signal in this
work is viable about discussing latency with keeping in mind GW-EM joint
observations.

4 To avoid overfitting that could be occurred in the training of MLs, we need
sufficient number of signal samples, at least > O(103). For this reason,
simulated mock data is favorable than a single real signal of GW150914.

TABLE I. Number of signal and noise samples for training and test
data.

Signal Noise

H1 Train 3,641 129,405
Test 1,220 43,129

L1 Train 3,623 129,423
Test 1,238 43,111

the number of signal and noise samples are imbalanced which
may lead biased training. However, the imbalance may mimic
the real situation since, in real detections, identifying a GW
signal from noise dominant GW data is common. Thus we
admit the imbalance and aim that successfully classifying de-
sired signal samples from much larger number of noise sam-
ples as a challenge of this work.

C. Training and Evaluation

We train each ML in different manner not only because of
the different characteristics of tested MLs, RF and NN, but
because of the different properties and usages of implemented
packages, Scikit-Learn and TensorFlow. For given data, opti-
mal choice on the hyperparameters of MLs in the training pro-
cedure is critically related to the performance of each ML. We
determine the hyperparameters of RF and NN with the strate-
gies described in Appendix A and B, respectively, and use
them to train each ML. Once the training is done, the trained
ML is recalled for the evaluation of test data.

We evaluate the test data by using the trained MLs. At this
stage, each ML scores a rank, r on each sample of the test
data based on the probabilistic prediction. Thus, the value of
r is given within a range of 0 ≤ r ≤ 1. We observe that the
evaluation time for scoring ranks on about 45,000 samples in
the test data takes about tens of milliseconds.

III. CLASSIFICATION PERFORMANCE

We discuss the classification performance of trained MLs in
this section by comparing it to the performance of the ranking
method of GstLAL pipeline.

As described in the previous section, MLs return only prob-
abilistic values between 0 and 1 while GstLAL returns unnor-
malized values of the log-likelihood ratio with Eq. (1). To
address this issue, we compute log-likelihood ratio with the
resulted ranks obtained from the evaluation such as

lnL(r) = ln
P (r|s)
P (r|n) (2)

by following the same analogy of Eq. (1) because (i) we can
separate samples of the test data into either s or n based on the
prelabeled class and (ii) we can estimate the probability den-
sity function of the given ranks of signal and noise samples
too. Thus, by these two reasons, this approach is applicable to
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(a) H1 data
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(b) L1 data

FIG. 1. (Color online) Combined ROC curves and values of area under curve. The left and right panels show the ROC curves of the result of
H1 or L1 data, respectively. The red and navy solid lines indicate the results of lnLs of MLs and the green solid line indicates the result of
lnL of GstLAL pipeline. One can see that both MLs show higher TPR than GstLAL pipeline over given FPR ranges and it results in that the
area under curves of MLs are larger than the AUCs of lnL. The performance of RF and NN are more or less similar to each other.

the evaluated result too and this prescription makes the com-
parison to be fair.

The estimation of probability densities of the numerator and
denominator of Eq. (2) is done by using the Kernel Density
Estimation method of Scikit-Learn with Gaussian kernel and
an empirically determined optimal bandwidth of 0.03. One
can find the result of probability density estimation from Ap-
pendix C.

A. ROC Curve

In order to discuss the performance, we draw the receiver
operating characteristic (ROC) curve as a figure-of-merit. To
draw the ROC curve, we define true positive rate (TPR) and
false positive rate (FPR) as follows

TPR ≡ N (s)(lnL(s)(lnL ≥ lnLth))

N
(s)
T

≡ P (lnL(s)(lnL ≥ lnLth)), (3)

FPR ≡ N (n)(lnL(n)(lnL ≥ lnLth))

N
(n)
T

≡ P (lnL(n)(lnL ≥ lnLth)), (4)

where N (s) and N (n) respectively denote the number of
signal and noise samples satisfying their values of lnL
are larger than or equal to a given threshold value, lnLth

within the group of signal samples, lnL(s) = {lnLi; i =

1, 2, ..., N
(s)
T } and the group of noise samples, lnL(n) =

{lnLj ; j = 1, 2, ..., N
(n)
T }. Therefore, lnL(s)(lnL ≥ lnLth)

or lnL(n)(lnL ≥ lnLth) represent subgroups of lnL(s) or
lnL(n), respectively, satisfying lnL ≥ lnLth. N (s)

T andN (n)
T

are respectively the total number of signal and noise samples
of test data presented in Table I. Note that TPR and FPR repre-
sents how likely identifying signal sample as signal correctly

and noise sample as signal incorrectly respectively. Hence,
we desire to obtain higher value of TPR than FPR as lnLth

increases. Subsequently, we can interpret a ranking method
resulting higher TPR at lower FPR as better discriminator in
distinguishing signal from noise adequately.

We present ROC curves in Fig. 1 by computing TPRs and
FPRs with Eqs. (3) and (4) respectively. To depict the ten-
dency of TPR with respect to FPR, we limit the the range of
lnLth as lnL

(n)
min ≤ lnLth ≤ lnL

(n)
max, i.e., to make the mini-

mum FPR to be 1/N
(n)
T . In the legend box of Fig. 1, we also

present the area under curve (AUC) for each result because
it represents the probability that a ranking method will score
higher value on an arbitrary signal instance than the value of
an arbitrary noise instance. For the computation of AUC, we
use the trapezoidal method.

From this figure, we can see that all cases are drawn in the
upper region of the gray-dashed line which indicates random
guess5. We can understand this result as the ratio of sig-
nal samples having larger lnL is bigger than that of noise
samples. In other word, we can say lnL

(s)
max is bigger than

lnL
(n)
max. From this result we know that lnLworks as a proper

ranking method in discriminating signal samples from noise
samples as desired.

Also, one can see that two MLs show higher TPRs than
GstLAL pipeline over given FPR ranges and it results in the
AUCs of MLs are about 4–5% larger than the AUCs of Gst-
LAL pipeline. When we focus on the TPR at lower FPR re-
gion, in specific, at the lowest FPR where lnLth = lnL

(n)
max,

MLs show 0.103–0.125 higher TPR than the TPR of GstLAL.
This result shows that we could obtain highly probable signal

5 The random guess is the case when a discriminator cannot distinguish a
sample neither signal nor noise, i.e., the discriminator returns 0.5 for the
probability of all signal and noise samples.
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FIG. 2. (Color online) Scatter plots of signal and noise samples of H1 data with respect to two selected feature parameters: SNR and the chirp
mass,M. The left and right columns show scatter plots of signal samples and noise samples, respectively. The color bar indicates the value
of the normalized (left-side) and unnormalized (right-side) of lnLs. One can see that MLs computed relatively higher lnL even for signal
samples of lower SNR.

samples 10.3%–12.5% more with MLs than GstLAL pipeline.
In the consideration of practical application of MLs to the low-
latency search for GWs from binary mergers, the performance
at lower FPR is important since FPR can be interpreted as the
same analogy to the false alarm probability, which will be dis-
cussed in Sec. IV, and, eventually, identifying a GW signal
candidate with sufficiently low false alarm probability will be
connected to the declaration of the detection of a GW signal.

In the comparison between RF and NN, one can notice that
the performance of each ML is similar to each other, despite
RF shows about 0.73–0.76% larger AUC and about 1.1–1.7%
higher TPR at the minimum FPR than NN depend on data.
From this result, one can recognize that the classification per-
formance of RF on the overall test data is the best.

B. Scatter Plot

We need to examine how individual samples contribute to
the resulted ROC curve. Thus, we investigate the contribu-
tion by looking the correlation between the value of lnLs of
considered ranking methods and the feature parameters. We
present example scatter plots in Figs. 2 and 3 with color-bar
showing normalized and unnormalized values of lnL. Note
that we use the chirp mass defined as

M =
(m1m2)

3/5

(m1 +m2)1/5
(5)

instead of individual component masses, m1 and m2, for the
horizontal axis because the chirp mass is one of important pa-
rameters in describing characteristics of the evolution of GW
waveform generated from compact binary systems [43]. Also,

since SNR is one of fundamental statistical quantities in judg-
ing the significance of a GW signal buried in noisy GW data,
we especially select these two parameters for this example.

From Figs. 2 and 3, we see that signal samples of higher
SNR and of higher chirp mass obtained higher lnLs as ex-
pected from the ROC curve. In particular, for the distribution
with respect to the chirp mass, we also see that signal sam-
ples in the range of [4.5, 45]M�, which is believed as the de-
tectable chirp mass range for BBH system by LIGO/Virgo.
However, from the comparison of signal samples between
GstLAL pipeline and MLs, GstLAL returns relatively lower
lnLs on samples having SNR <∼ 10 which is a criterion for
SNR of GW candidate signal. On the contrary, MLs return
higher lnLs even for those signal samples. This result means
MLs can distinguish even less significant signal samples cor-
rectly which may be disregarded as a candidate with GstLAL
pipeline.

On the other hand, for noise samples, all ranking methods
returns relatively lower lnLs than signal samples. However,
in particular for H1 data, NN shows the best distinguishability
than other two methods in terms of normalized lnL. Mean-
while, for L1 data, RF and NN shows similar distinguishabil-
ity. Therefore we conclude that the distinguishability on indi-
vidual sample is less effective in the computation of TPR and
FPR of ROC curve. We also see similar results from other
scatter plots drawn with other feature parameters. One can
find them from Appendix D.
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FIG. 3. (Color online) Scatter plots of signal and noise samples of L1 data with respect to two selected feature parameters: SNR and the chirp
mass, M as drawn in Fig. 2. One can see that L1 data case shows similar with H1 data case but better discriminability on RF result than
H1-RF result in Fig. 2.

IV. SEARCH SENSITIVITY

In this section, we discuss the search sensitivity through the
relation between the sensitivity range and the false alarm rate
(FAR) [31] in order to suggest a practical application of MLs
for searching GWs from compact binary systems. For this
calculation, we refer the Sec. IV. C of Ref. [11].

In general, FAR is defined as

FAR ≡ 1

T

∫ ∞
lnLth

P (lnL|n)d lnL, (6)

where T is the length of data segment. We can use FAR for the
determination of a threshold value for a ranking method and,
eventually, can use the value to judge a detection of a GW
signal. If we assume that the chance of background noises
gaining higher lnL is very rare, we can write the FAR for the
given lnL of a noise in an approximated form:

FAR ≈ P (lnL ≥ lnLth|n)
T

. (7)

This approximation is valid for the consideration of this work
too since it is shown that most of noise samples obtain lower
lnL than signal samples.

The numerator of Eq. (7) means the probability that noise
data, n, get a high value of a ranking method. Thus it is called
as false alarm probability (FAP) [31]. In this work, as dis-
cussed in Sec. III A, FPR can be interpreted in the same anal-
ogy of FAP when we compare Eq. (4) and the numerator of
Eq. (7). However, at this moment, we change the lnLth in the
expression of FAP to be lnL

(s)
min ≤ lnLth ≤ lnL

(s)
max instead

of using lnL
(n)
min ≤ lnLth ≤ lnL

(n)
max since our interest is es-

timating the FAR of signal samples. Additionally, we follow

the procedure for calculating Eq. (31) of Ref. [11] with the
value of FPR in order to take account the corrections which
have been using in the conventional GstLAL pipeline for the
computation of FAP.

For the calculation of the sensitivity range, we use the dis-
tance parameter which were used for the generation of the sig-
nal samples. We also adopt the definition of efficiency, ε, with
found sample given in Ref. [11]: when the estimated FARs of
some signal samples are lower than a given fiducial FAR we
call the signal samples as found samples and the ratio of found
samples to total number of signal samples as efficiency. Then
we compute the search volume such that

V = 4π

∫ ∞
0

ε(r)l2dl (8)

where l is the distance to the source of GW and ε(l) is the
efficiency at the distance l and the sensitivity range, R:

R =

(
3V

4π

)1/3

. (9)

For the computation of the search volume, Eq. (8), we in-
tegrate the integrand with trapzoidal method by varying the
fiducial FAR. We refer the sensitivity range, R, as the search
sensitivity in this work and plot it with respect to the combined
FAR in Fig. 4. The combined FAR is obtained by collecting
individual FAR computed with the data of each detector. In
order to take account the uncertainty in binary discrimination
into signal or noise, we compute the lower and upper bounds,
(ω−, ω+), of Wilson confidence interval [44] with continuity
correction [45]:
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ω− = max

0,
2yp̂+ z2 −

[
z
√
z2 − 1/y + 4yp̂(1− p̂) + (4p̂− 2) + 1

]
2(y + z2)

 , (10)

ω+ = min

1,
2yp̂+ z2 +

[
z
√
z2 − 1/y + 4yp̂(1− p̂) + (4p̂− 2) + 1

]
2(y + z2)

 , (11)
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FIG. 4. (Color online) Comparisons of the sensitivity in terms of
detectable range in distance versus the combined false alarm rate
(FAR). The red line indicates the result of RF, the navy line indicates
the result of NN, and the lime line indicates the result of GstLAL
pipeline. The shaded regions around each line show 3σ of the bi-
nomial confidence interval computed based on Wilson method [44]
with continuity correction [45]. One can see that the detectable range
of MLs is relatively farther than that of GstLAL pipeline at lower
FAR region and it means we can identify an event occurred at more
farther distance with MLs.

where p̂ = p/y is the fraction of found signal samples to the
number, y, of total samples and z is the probit function. For
Eqs. (10) and (11), if p̂ = 0, ω− is taken as 0. On the other
hand, if p̂ = 1, ω+ is taken as 1.

From Fig. 4, we can see that we can detect more farther
events with MLs for given range of FAR than with GstLAL
pipeline, in particular, at the lowest FAR, the central value of
detectable range is ∼ 1.7 Gpc for both RF and NN while ∼
1.4 Gpc for GstLAL pipeline. We see that the range of RF is
slightly farther than that of NN. But, they are placed within 3σ
uncertainty bounds of the Wilson confidence interval of each
other. Therefore, we conclude their sensitivities are compara-
ble and this result is consistent with the ROC curves discussed
in Section III A.

V. SUMMARY AND DISCUSSION

Machine learning (ML) is known by its fast and accu-
rate performance on identifying/classifying nonlinear multi-
dimensional data of various fields. From several stud-
ies related to GW data analysis, applications of MLs have
shown improved and/or comparable classification perfor-
mances compared to conventional statistical approaches.

Thus, in this work, we study the feasibility whether we can
use the output of ML for ranking candidate events for low-
latency GW searches.

For this study, we consider two supervised MLs, random
forest (RF) and neural network (NN). The mock data for
GW150914 obtained by running the GstLAL pipeline in of-
fline mode is used as the signal sample. From the output of
GstLAL pipeline, we extract six physical and statistical fea-
ture parameters for the configuration of input data for ML.
With given data, we train considered MLs and test the classi-
fication performance of the rank of MLs to compare it to the
conventional ranking method, the log-likelihood ratio, lnL
of GstLAL pipeline. However, MLs return only probabilistic
rank values in between 0 and 1 while lnL of GstLAL pipeline
is unnormalized. Thus, to make a fair comparison, we first
estimate the probability density function (PDF) for ranks of
signal and noise samples separately and then compute lnL
with the PDF.

It is known that ML should be trained with sufficiently large
and non-biased data for a successful application [46]. In gen-
eral, training a ML with a large data need long computational
time from about hours to days to determine the most optimal
combination for the hyperparameters of a ML. The training
time depends on the size of train data such as the number of
samples and the number of feature parameters. In this work,
we find that training a ML with a set of train data of about
165,000 (number of samples) × 6 (number of features) takes
a few hours. Meanwhile, evaluating an test data or a new data
requires much shorter time than time for training: from our
study, the evaluation with a set of test data of roughly 45,000
(number of samples)× 6 (number of features) dimensions can
be done in the order of tens of milliseconds. Thus, we can see
the positive prospect of applying ML for the low-latency GW
search in terms of the analysis speed.

We investigate the classification performance of MLs
through a couple of figure-of-merits. In this work, we choose
the receiver operating characteristic (ROC) curve to see over-
all performance for all tested samples and the scatter plot to
see the contribution to individual sample. From the ROC
curve and the area under curve, we can observe that MLs show
better performance on classifying more signal samples from
noise samples than GstLAL pipeline. The result on individ-
ual samples is also studied through the scatter plot to try to
see the correlation between the output value of a given rank-
ing method and selected feature parameters, e.g., signal-to-
noise ratio (SNR) and chirp mass. We find that signal samples
of relatively higher lnLs have higher SNR and chirp masses
within expected chirp mass range for binary black hole merg-
ers. Thus we are convinced that the resulted higher lnL values
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of given ranking methods are correlated to the tested feature
parameters and could see similar correlation from other scat-
ter plots in Appendix D.

For the difference in performance between RF and NN, one
may suspect that the hyperparameters of NN might be less
optimized than RF since we empirically selected the hyperpa-
rameters of NN without automated determination as discussed
in Appendix B. However the most optimal choice on the hy-
perparameter depends on the input data for training: if we
train MLs with different training data, the choice on the set of
optimal hyperparameters will be also changed. On top of that,
it is hard to think the data used in this work can represent the
general property of all possible BBH systems. Thus, conduct-
ing more fine-tuning on the optimal hyperparameters for NN
with the data used in this work is out of scope of this kind of
feasibility study and we admit the difference between RF and
NN is placed in acceptable range.

We compare the sensitivity in terms of the detectable range
with respect to the approximated false alarm rate (FAR) too.
In specific, since the false positive rate (FPR) of ROC curve
can be translated to the false alarm probability, the FPR of
ROC curve is also used in computing the approximated FAR.
From the sensitivity plot, we can see that MLs are more sen-
sitive than the GstLAL pipeline, that is, it would be possi-
ble to detect farther events with MLs beyond the upper limit
of the detectable range of the GstLAL pipeline. Therefore
we conclude that using output of ML can be an alternative
ranking method to the conventional ranking method of Gst-
LAL pipeline and it is worth to consider ML as a new ranking
method for future low-latency searches for GWs from binary
mergers.

In this work, we constrained the origin of feature param-
eters of input data for ML only to the information obtained
from the GstLAL pipeline for simplicity. However, it is also
possible to consider to collect transient noise informations,
which are used for the GW data quality measurement, along
with the current methodology. In the future work, therefore,
we will discuss about the practical implementations such as
training MLs with combining the current feature parameters
and transient noise information into the input data. Next, we
will build up the strategy and the framework for an online GW
inspiral search pipeline which implementing ML as its rank-
ing method.

However we admit that this approach is rather weak in inter-
pretability: it is not easy to clearly understand how the model
results in the better result with less information than the con-
ventional method. This point is one of differences from the
conventional approach because it is built on statistically re-
liable considerations and, eventually, has strong interpretabil-
ity. The interpretability is another critical point for judging the
confidence of a detection. Therefore, for the practical imple-
mentation, we may also need to design an additional method
to make the classification model to be interpretable.
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Appendix A: Hyperparameters of RF

For RF, we run a module, GridSearchCV embedded in
Scikit-Learn for searching optimal hyperparameters. The core
of this module is the k-fold cross validation method: conduct-
ing k-times validation tests on k different validation subsets,
which are prepared by shuffling all train data and then dividing
evenly into k subsets, with a given combination of hyperpa-
rameters. Each validation test is done by evaluating one of
k subsets as a test subset based on the trained ML which is
trained with remaining subsets. This module computes the
averaged accuracy:

avg. accuracy ≡ number of samples(ytrue = ypred)

total number of samples in a subset
(A1)

as the final output of each test for RF. In Eq. (A1), ytrue and
ypred denote, respectively, the original class and the predicted
class of a sample. At last, a combination of hyperparameters
which gives the highest averaged accuracy is selected as the
most optimal set of hyperparameters. Used entries of selected
hyperparameters for running this module are tabulated in Ta-
ble II. One can find the description of each hyperparameter
from Ref. [47].

TABLE II. Tested entries for hyperparameters of RF in running
GridSearchCV.

Hyperparameter Entry
n estimators 50, 100, 200
criterion gini, entropy
max features 2, 4, 6
min samples split 2, 3, 4, 5
max depth None, 10, 30, 50

In this work, we conduct the run of GridSearchCV with
k = 3 and the determined optimal hyperparameters for given
data are summarized in Table III. From this table, one can see
that some hyperparameters are the same for different data. It
means those values are the most optimal value amongst tested
entries for the type of data of this work. Therefore, if we do
not change the selected six feature parameters for similar type
of data, we can fix the values of those hyperparameters and al-
ter remains for the determination of optimal hyperparameters.
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TABLE III. Empirically determined optimal hyperparameters of RF
by running GridSearchCV. One can see that some hyperparame-
ters are the same for different data.

Hyperparameter Data Optimal

n estimators
H1 50
L1 50

criterion
H1 entropy
L1 entropy

max features
H1 4
L1 4

min samples split
H1 3
L1 4

max depth
H1 30
L1 10

TABLE IV. Hyperparameters for NN.

Hyperparameter Value

layers (nodes)
1 input (6 nodes)
4 hidden (32 nodes for each)
1 output (1 node)

learning rate 0.01 %
regularization L2 with 0.01 %
dropout 10 %
activation function ReLU
cost function Cross entropy with Softmax
batch size 1024

Appendix B: Hyperparameters of NN

Unlike RF, we set the hyperparameters of NN empirically
because there is no available module for grid search in Tensor-
Flow.6 We set them to be the same for all considered data for
convenience. In addition to the hyperparameters for the topol-
ogy of a NN, in order to avoid overestimation (or overfitting
equivalently), we adopt L2 regularization to constrain a NN’s
connection weights and dropout [49] to remove potential de-
pendency on certain nodes of given network. The rectified
linear units (ReLU) function [50] is used for the activation
function between nodes in two adjacent layers. For the cost
function, which measures the error between the target value,
1 for signal and 0 for background, and the output value in be-
tween 0 and 1 of the output node, Cross Entropy function is
implemented by taking the output probability computed from
Softmax function as the input probability of the Cross Entropy
function. Finally, we also consider Batch Normalization [51]

6 It is also known that it is hard to consider such grid search model for DNN
because of there are too many hyperparameters to be tuned [46]. However,
it is not impossible at all if we use an automated method such as DeepHy-
per [48]. Despite of the availability of automated hyperparameter search
method, we do not implement it in this work because we could get satis-
factory performance with the empirically determined hyperparameters.

to properly minimize the cost function in the backpropagation
[52] process. All of these hyperparameters are summarized in
Table IV as well.

Appendix C: Probability Density Estimation

In order to compute log-likelihood ratio, we estimate the
probability density functions (PDFs) of signal and noise sam-
ples for numerator and denominator respectively of Eq. (2).
The estimation of PDFs of resulted ranks of evaluation sam-
ples is done by using the Kernel Density Estimation (KDE)
method of Scikit-Learn with Gaussian kernel and an empir-
ically determined optimal bandwidth of 0.03. For this esti-
mation, we compute normalized density distribution for the
ranks of evaluation samples first and apply KDE with given
bandwidth. The resulted PDFs for signal and noise samples of
each test data using ranks from each ML are shown in Fig. 5.
From these plots and Eq. (2), we can expect that we can ob-
tain smaller lnL with lower ranks and bigger lnL with higher
ranks.
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(a) H1 data with RF
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(b) H1 data with NN
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(c) L1 data with RF
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FIG. 5. (Color online) Estimated probability density functions
(PDFs) for each data with studied MLs. For the PDF estimation, we
use Kernel Density Estimation method of Scikit-Learn with Guas-
sian kernel and bandwidth of 0.03. The blue- and red-solid line are
the estimated PDFs for signal samples and for noise samples, respec-
tively. The blue- and red-dashed boxes show the normalized density
distribution of signal and noise samples, respectively, used for the
estimation of PDFs.

Appendix D: Scatter Plots

In this section, we present other scatter plots (Figs. 6, 7,
and 8) of signal samples and noise samples drawn with re-
spect to several feature parameters, SNR, χ2, and component
masses, m1 and m2 except those plots presented in Sec. III B.
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FIG. 6. (Color online) Scatter plots of two selected feature parameters, SNR and χ2.

In addition to these parameters, we also present scatter plots
of the symmetric mass ratio, η ≡ µ/M , and the chirp mass,
M, where µ is the reduced mass and M is the total mass, that
is, M = m1 +m2. From all figures, we can see MLs returns
relatively higher lnLs on more signal samples as GstLAL pip-
ieline does for signal-like samples, i.e., higher SNR, lower χ2,
and adequate mass range for BBH merger. But, we can see
that MLs can score higher lnL even for less significant signal
samples, e.g., samples of SNR <∼ 10. Also, MLs show bet-
ter distinguishability between signal and noise samples than
GstLAL. These results are consistent with the result of ROC
curve. Thus we advocate using output of MLs to compute lnL

for ranking GW candidate events is promising approach.
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FIG. 7. (Color online) Scatter plots of two selected feature parameters, mass 1 and mass 2.
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