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Abstract

We study the problem of adaptive control in partially observable linear quadratic Gaussian
control systems, where the model dynamics are unknown a priori. We propose LqgOpt, a novel
reinforcement learning algorithm based on the principle of optimism in the face of uncertainty, to
effectively minimize the overall control cost. We employ the predictor state evolution represen-
tation of the system dynamics and propose a new approach for closed-loop system identification,
estimation, and confidence bound construction. LqgOpt efficiently explores the system dynam-
ics, estimates the model parameters up to their confidence interval, and deploys the controller
of the most optimistic model for further exploration and exploitation. We provide stability
guarantees for LqgOpt, and prove the regret upper bound of Õ(

√
T ) for adaptive control of

linear quadratic Gaussian (LQG) systems, where T is the time horizon of the problem.

1 Introduction

One of the core challenges in the field of control theory and reinforcement learning is adaptive
control. It is the problem of controlling dynamical systems when the dynamics of the systems are
unknown to the decision-making agents. In adaptive control, agents interact with given systems in
order to explore and control them while the long-term objective is to minimize the overall average
associated costs. The agent has to balance between exploration and exploitation, learn the dynam-
ics, strategize for further exploration, and exploit the estimation to minimize the overall costs. The
sequential nature of agent-system interaction results in challenges in the system identifying, esti-
mation, and control under uncertainty, and these challenges are magnified when the systems are
partially observable, i.e. contain hidden underlying dynamics.

In the linear systems, when the underlying dynamics are fully observable, the asymptotic op-
timality of estimation methods has been the topic of study in the last decades [Lai et al., 1982,
Lai and Wei, 1987]. Recently, novel techniques and learning algorithms have been developed to
study the finite-time behavior of adaptive control algorithms and shed light on the design of opti-
mal methods [Peña et al., 2009, Fiechter, 1997, Abbasi-Yadkori and Szepesvári, 2011]. In particular,
Abbasi-Yadkori and Szepesvári [2011] proposes to use the principle of optimism in the face of un-
certainty (OFU) to balance exploration and exploitation in LQR, where the state of the system
is observable. OFU principle suggests to estimate the model parameters up to their confidence
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interval, and then act according to the policy advised by the model in confidence set with the lowest
optimal cost, known as the optimistic model.

When the underlying dynamics of linear systems are partially observable, estimating the systems’
dynamics requires considering and analyzing unobservable events, resulting in a series of significant
challenges in learning and controlling the partially observable systems. A line of prior works are ded-
icated to the problem of open-loop model estimation Oymak and Ozay [2018], Sarkar et al. [2019],
Tsiamis and Pappas [2019] where the proposed methods highly rely on random excitation, uncorre-
lated Gaussian noise, and do not allow feedback control. Additionally, in general, computing the
optimal controller requires inferring the latent state of the system, given the history of observations.
When the model dynamics are not known precisely, the uncertainties in the system estimation result
in inaccurate latent state estimation and inaccurate linear controller. The possibility of accumula-
tion of these errors creates a challenging problem in adaptive control of partially observable linear
systems. Therefore, we need to consider these challenges in designing an algorithm that performs
desirably. In this work, we employ regret, a metric in quantifying the performance of learning algo-
rithms that measures the difference between the cost encountered by an adaptive control agent and
that of an optimal controller, knowing the underlying system [Lai and Robbins, 1985].

Contributions: In this work, we study the adaptive control of partially observable linear sys-
tems from both model estimation/system identification and the controller synthesis perspective. We
introduce a novel estimation method for the general cases of both closed- and open-loop identifica-
tion of linear dynamical systems with unobserved hidden states, even in the presence of feedback
loop and correlated Gaussian noise. We provide the detailed finite time estimation analysis and
construction of confidence sets.

We propose LqgOpt, an adaptive control algorithm for learning and controlling unknown par-
tially observable linear systems with quadratic cost and Gaussian disturbances, i.e., linear quadratic
Gaussian (LQG), for which optimal control exists and has a closed form [Bertsekas, 1995]. LqgOpt

interacts with the system, collects samples, estimates the model parameters, and adapts accord-
ingly. LqgOpt deploys OFU principle to balance the exploration vs. exploitation trade-off. Using
the predictor form of the state-space equations of the partially observable linear systems, we define
a least-squares estimation problem and obtain confidence sets on the system parameters. LqgOpt

then uses these confidence sets to find the optimistic model and use the optimal controller for the
chosen model for further exploration-exploitation. To analyze the finite-time regret of LqgOpt, we
first provide a stability analysis for the sequence of optimistic controllers. Finally, we prove that
LqgOpt achieves a regret upper bound of Õ(

√
T ), an improvement to the Õ(T 2/3) regret upper

bound in the prior work Lale et al. [2020], where T is the number of total interactions.
Independently and simultaneously to our paper, a new arxiv paper Simchowitz et al. [2020]

propose an algorithm which also achieves Õ(
√
T ) regret bound in partially observable linear systems,

under different problem setup and semi-adversarial disturbances. Simchowitz et al. [2020] employ
the theory of online learning, and propose to start with an initial phase of pure exploration, long
enough for accurate predictive-model estimation. Then this phase is followed by committing to
the learned predictive-model and deploying online learning for the policy updates. Under a set of
different assumptions, e.g., on noise model, access to a set of stabilizing controllers, computation,
the convexity of loss functions, the authors show that their method attains a similar order regret
bound. These two works develop a principally different set of theoretical tools and analyses that
require further investigation.
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2 Preliminaries

We denote the Euclidean norm of a vector x as ‖x‖2. We denote ρ(A) as the spectral radius of a
matrix A, ‖A‖F as its Frobenius norm and ‖A‖2 as its spectral norm. Tr(A) is its trace, A⊤ is
the transpose, A† is the Moore-Penrose inverse. The j-th singular value of a rank-n matrix A is
denoted by σj(A), where σmax(A) := σ1(A) ≥ σ2(A) ≥ . . . ≥ σmin(A) := σn(A) > 0. I represents
the identity matrix with the appropriate dimensions.

Consider the following discrete time linear time-invariant system Θ = (A,B,C) and with dy-
namics as:

xt+1 = Axt +But + wt

yt = Cxt + zt. (1)

At each time step t, the system is at (hidden) state xt ∈ R
n, the agent receives observation yt ∈ R

m

under a measurement noise zt ∼ N
(
0, σ2

zI
)
. Then the agent applies a control input ut ∈ R

p, and
receives a cost of ct = y⊤t Qyt+u⊤t Rut where Q and R are positive semidefinite and positive definite
matrices, respectively. After taking ut, the state of the system evolves to xt+1 for the time step
t+ 1 under a process noise wt ∼ N

(
0, σ2

wI
)
. Here the noises are i.i.d. random vectors and N (µ,Σ)

denotes a multivariate normal distribution with mean vector µ and covariance matrix Σ.

Definition 2.1. A linear system Θ = (A,B,C) is (A,B) controllable if the controllability matrix,

C(A,B, n) = [B AB A2B . . . An−1B]

has full row rank. For all H ≥ n, C(A,B,H) defines the extended (A,B) controllability matrix.
Similarly, a linear system Θ = (A,B,C) is A,C observable if the observability matrix,

O(A,C, n) = [C⊤ (CA)⊤ (CA2)⊤ . . . (CAn−1)⊤]⊤

has full column rank. For all H ≥ n, O(A,C,H) defines the extended (A,C) observability matrix.

Suppose the underlying system is controllable and observable. Then, the agent chooses control
inputs as a function of past observations and aims to minimize the expected cost,

J⋆(Θ)= lim
T→∞

min
u=[u1,...,uT ]

1

T
E

[
T∑

t=1

y⊤t Qyt + u⊤t Rut

]

.

This problem is known as LQG control. The optimal solution to LQG control problem is a linear
feedback control policy given as ut = −Kx̂t|t,Θ. Here K is the optimal feedback gain matrix,

K =
(

R+B⊤PB
)−1

B⊤PA,

where P is the unique positive semidefinite solution to the following discrete-time algebraic Riccati
equation (DARE):

P = A⊤PA+C⊤QC −A⊤PB
(

R+B⊤PB
)−1

B⊤PA, (2)
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and x̂t|t,Θ is the minimum mean square error (MMSE) estimate of the underlying state using system
parameters Θ and past observations, where x̂0|−1,Θ = 0. At steady-state, this estimate is efficiently
obtained by using the Kalman filter:

x̂t|t,Θ = (I − LC) x̂t|t−1,Θ + Lyt, (3)

x̂t|t−1,Θ = (Ax̂t−1|t−1,Θ +But−1), (4)

L = ΣC⊤
(

CΣC⊤ + σ2
zI
)−1

, (5)

where Σ is the unique positive semidefinite solution to the following DARE:

Σ = AΣA⊤ −AΣC⊤
(

CΣC⊤ + σ2
zI
)−1

CΣA⊤ + σ2
wI.

In the adaptive control, the underlying system parameters Θ are unknown, and the agent needs to
learn them through interaction with the system with the aim of minimizing the cumulative costs
∑T

t=1 ct after T time steps. We measure the performance of the agent using regret, i.e., the difference
between the agent’s cost and the optimal expected cost:

REGRET(T ) =
T∑

t=0

(ct − J∗(Θ)).

The system characterization depicted in (1) is called state-space form of the system Θ. The
same discrete time linear time-invariant system can be represented in several ways which has
been considered in various works in control theory and reinforcement learning [Kailath et al., 2000,
Tsiamis et al., 2019]. Note that these representations all have the same second order statistics. One
of the most common form is the innovations form1 of the system characterized as

xt+1 = Axt +But + Fet

yt = Cxt + et. (6)

where F = AL is the Kalman gain in the observer form and et is the zero mean white innovation
process. In this equivalent representation of system, the state xt can be seen as the estimate of
the state in the state space representation, which is the expression stated in (4). In the steady
state, e(t) ∼ N

(
0, CΣC⊤ + σ2

zI
)
. Using the relationship between et and yt, we obtain the following

characterization of the system Θ, known as the predictor form of the system,

xt+1 = Āxt +But + Fyt

yt = Cxt + et (7)

where Ā = A−FC and F = AL. Notice that at steady state, the predictor form allows the current
output yt to be described by the history of inputs and outputs with an i.i.d. Gaussian disturbance
et ∼ N

(
0, CΣC⊤ + σ2

zI
)
. In this paper, we exploit these fundamental properties to estimate the

underlying system, even with feedback control. We consider the set of stable systems.

1For simplicity, all of the system representations are presented for the steady-state of the system.
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Assumption 2.1. The system is order n and minimal in the sense that the system cannot be
described by a state-space model of order less than n. The system is stable, i.e. ρ(A) < 1 and

Φ(A) := supτ≥0
‖Aτ‖
ρ(A)τ < ∞.

Note that the assumption regarding Φ(A) is required for quantifying the finite time evolution
of the system and it is a mild condition, e.g. if A is diagonalizable, Φ(A) is finite. Additionally for
stable A, Φ(A) can be upper bounded by the H∞-norm of the system xt+1 = Axt+wt [Mania et al.,
2019].

We assume that the underlying system lives in the following set.

Assumption 2.2. The unknown system Θ = (A,B,C) is a member of a set S, such that,

S ⊆







Θ′ = (A′, B′, C ′, F ′)

ρ(A′) < 1,
(A′, B′) is controllable,
(A′, C ′) is observable,
(A′, F ′) is controllable.







The above assumptions are standard in system identification settings in order to ensure the
possibility of accurate estimation of the system parameters [Knudsen, 2001, Oymak and Ozay, 2018,
Tsiamis and Pappas, 2019, Sarkar et al., 2019, Tsiamis et al., 2019, Lale et al., 2020].

Assumption 2.3. The set S consists of systems that are contractible, i.e.,

ρ := sup
Θ′=(A′,B′,C′)∈S

∥
∥A′ −B′K(Θ′)

∥
∥ < 1,

where K(Θ′) is the optimal feedback gain matrix of Θ′, and

υ := sup
Θ′=(A′,B′,C′)∈S

∥
∥A′ −A′L(Θ′)C ′∥∥ < 1.

where L(Θ′) is the optimal Kalman gain matrix of Θ′. There exists finite numbers D, Γ, ζ such
that D = supΘ′∈S ‖P (Θ′)‖, Γ = supΘ′∈S ‖K(Θ′)‖ and ζ = supΘ′∈S ‖L(Θ′)‖.

This assumption allows us to develop stability guarantees in the presence of sub-optimal closed-
loop controllers.

3 Adaptive Control via LqgOpt

In this section, we present LqgOpt, an adaptive control algorithm for LQG control problems, and
describe its compounding components. The outline of LqgOpt is given in Algorithm 1. The early
stage of deploying LqgOpt involves a fixed warm-up period dedicated for pure exploration using
Gaussian excitation. LqgOpt requires this exploration period to estimate the model parameters
reliably enough that the controller designed based on the parameter estimation and their confidence
set results in a stabilizing controller on the real system. The duration of this period depends on
how stabilizable the true parameters are and how accurate the model estimations should be. We
formally quantify these statements and the length of the warm-up period.

After the warm-up period, LqgOpt utilizes the model parameter estimations and their confidence
sets to design a controller corresponding to an optimistic model in the confidence sets, obtained
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by following the OFU principle. Due to the reliable estimation from the warm-up period, this
controller and all the future designed controller stabilize the underlying true unknown model. The
agent deploys the prescribed controller on the real system for exploration and exploitation. The
agent collects samples throughout its interaction with the environment, and use these samples for
further model estimation, confidence interval construction, and design of the controller regarding to
an optimistic model. The agent repeats this process.

Since the Kalman filter converges exponentially fast to the steady-state gain in observer form,
without loss of generality, we assume that x0 ∼ N (0,Σ), i.e., the system starts at the steady-state.
This consideration eases the presentation of the algorithm. We provide the overview of the analysis
for any arbitrary and almost surely finite initialization in the Appendix G.

In the warm-up period LqgOpt excites the system with ut ∼ N (0, σ2
uI) for 1 ≤ t ≤ Tw.

Considering the predictor form representation of the system given in (7), we can roll back the
state evolution H time steps back as follows,

xt =

H−1∑

k=0

Āk (Fyt−k−1+But−k−1) + ĀHxt−H

From Assumption 2.2, we have that Ā is stable, thus the state can be estimated in principle for
large enough H. Using the generated input-output sequence D = {yt, ut}Tw

t=1, LqgOpt constructs
N subsequences of H input-output pairs, φt for H ≤ t ≤ Tw, where Tw = H +N − 1,

φt =
[

y⊤t−1 . . . y
⊤
t−H u⊤t−1 . . . u⊤t−H

]⊤
∈ R

(m+p)H .

Using this definition, we can write the following truncated autoregressive exogenous (ARX)
model for the given system Θ,

yt = Mφt + et + CĀHxt−H (8)

where M ∈ R
m×(m+p)H defined as

M=
[
CF, CĀF, . . . , CĀH−1F, CB, CĀB, . . . , CĀH−1B

]
. (9)

Thus, any input-output trajectory {yi, ut}Tt=1 can be represented as

YT = ΦTM
⊤ + ET +NT (10)

where

YT = [yH , yH+1, . . . , yT ]
⊤ ∈ R

N×m

ΦT = [φH , φH+1, . . . , φT ]
⊤ ∈ R

N×(m+p)H

ET = [eH , eH+1, . . . , eT ]
⊤ ∈ R

N×m

NT =
[
CĀHx0, CĀHx1, . . . , CĀHxT−H

]⊤∈R
N×m

for N = T −H + 1.
Note that, during the warm-up period the noise terms are zero-mean including the effect of

initial state since we assume that x0 ∼ N (0,Σ). After the warm-up period, LqgOpt obtains the
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Algorithm 1 LqgOpt

1: Input: Tw, H, σo, σc, S > 0, δ > 0, n, m, p, Q, R
—— Warm-Up ————————————————

2: for t = 0, 1, . . . , Tw do

3: Deploy ut∼N (0, σ2
uI) and store D0={yt, ut}Tw

t=1

4: end for

—— Adaptive Control ———————————–
5: for i = 0, 1, . . . do

6: Calculate M̂i using Di = {yt, ut}2
iTw

t=1

7: Deploy SysId (H,M̂i, n) for Âi, B̂i, Ĉi, L̂i

8: Construct the confidence sets CA(i), CB(i), CC(i), CL(i) s.t. w.h.p. (A,B,C,L)∈Ci, where
Ci:=(CA(i)× CB(i)× CC(i)× CL(i))

9: Find a Θ̃i = (Ãi, B̃i, C̃i, L̃i) ∈ Ci ∩ S s.t.
J(Θ̃i) ≤ infΘ′∈Ci∩S J(Θ′) + T−1

10: for t = 2iTw, . . . 2
i+1Tw − 1 do

11: Execute the optimal controller for Θ̃i

12: end for

13: end for

first estimate of the unknown truncated ARX model M by solving the following regularized least
square problem,

M̂0 = argmin
X

‖YTw −ΦTwX
⊤‖2F + λ‖X‖2F (11)

where the solution

M̂
⊤
0 = (Φ⊤

Tw
ΦTw + λI)−1Φ⊤

Tw
YTw .

Using this solution, LqgOpt deploys a system-identification algorithm and obtains the estimates of
the system parameters Â0, B̂0, Ĉ0, L̂0, with corresponding confidence sets CA(0), CB(0), CC (0), CL(0)
in which the underlying system parameters live with high probability. With the initial confidence
sets, LqgOpt starts adaptive control period using the OFU principle. It selects the optimistic
model i.e., the model that has the minimum average expected cost, among the plausible models
and executes the optimal controller for the chosen model. As the confidence sets shrink, i.e., the
estimates of system parameters are significantly refined, LqgOpt adapts and updates its policy by
deploying OFU principle on the new confidence sets.

For a linear system Θ = (A,B,C), we define truncated open-loop and closed-loop noise evolution
parameters, respectively Gol and Gcl. When the controller is set to be i.i.d. Gaussian excitements,
Gol ∈ R

H(m+p)×2H(n+m+p) encodes the open-loop evolution of the disturbances in the system, and
represents the responses to these disturbances on the batch of observations and actions history. Note
that the historical data is correlated even in the open-loop setting with i.i.d. Gaussian excitements.
The exact definition of Gol is provided in equation (20) of Appendix A.1. In Appendix A.1, we also
show that Gol is full row-rank, i.e., σmin(Gol) > σo > 0, where σo is known to LqgOpt.

When the controller is set to be the optimal policy for the underlying system, i.e. closed-loop
system, Gcl ∈ R

H(m+p)×2H(n+m) represents the translation of the truncated history of process and
measurement noises on the inputs, φ’s. The exact construction of Gcl is provided in detail in equation
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(24) of Appendix A.2. Briefly, it is formed by shifting a block matrix Ḡ ∈ R
(m+p)×2H(n+m) by m+n

in each block row where Ḡ is constructed by H (m + p) × (n +m) matrices. We assume that H
used in LqgOpt is large enough that Ḡ is full row rank for the given system. In Appendix A.2, we
show that, if Ḡ is full row-rank, Gcl would be full row-rank, too. Thus, we have that for the choice
of H in LqgOpt, σmin(Gcl) is lower bounded by some positive value, i.e., σmin(Gcl) > σc > 0, where
LqgOpt only knows σc and searches for an optimistic system whose closed-loop noise evolution
parameter satisfies this lower bound.

The following theorem states the main result of the paper, an end-to-end regret upper bound of
the adaptive control in LQG systems.

Theorem 3.1 (Regret Upper Bound). Given a LQG Θ = (A,B,C), and regulating parame-
ters Q and R, with high probability, the regret of LqgOpt with a warm-up duration of Tw =
poly(H, log(T ), σo, σc, υ, ζ,Γ,m, n, p, ρ,Φ(A)) is

REGRET(T ) = Õ
(√

T
)

(12)

The exact expressions that define Tw are given in Appendix with the detailed definitions.

3.1 Learning the Truncated ARX Model

First consider the effect of truncation bias term, Nt. From Assumption 2.3, we have that ‖Ā‖ ≤ υ <
1. Thus, each term in Nt is order of υH . In order to get consistent estimation, for some problem

dependent constant cH , LqgOpt sets H ≥ log(cHT 2√m/
√
λ)

log(1/υ) , resulting in a negligible bias term of

order 1/T 2. The following gives the self-normalized finite sample estimation error of (11).

Theorem 3.2 (Closed-Loop Identification). Let M̂t be the solution to (11) at time t. For the given
choice of H, define

Vt = V +

t∑

i=H

φiφ
⊤
i

where V = λI. Let ‖M‖F ≤ S. For δ ∈ (0, 1), with probability at least 1 − δ, for all t, M lies in
the set CM(t), where

CM(t) = {M′ : Tr((M̂t −M
′)Vt(M̂t −M

′)⊤) ≤ βt},

for βt defined as follows,

βt =





√
√
√
√m‖CΣC⊤ + σ2

zI‖ log
(

det (Vt)
1/2

δ det(V )1/2

)

+ S
√
λ+

t
√
H

T 2





2

.

The proof is given in Appendix B. It uses self-normalized tail inequalities to get the first two
terms in the definition of βt , and with the given choice of H, we obtain the final term in the
bound. This bound can be translated to ‖M̂t − M‖ in order to be utilized for the confidence
set construction of the system parameters. First, we need the following lemmas that guarantee
persistence of excitation during the warm-up period and adaptive control period.
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Lemma 3.1 (Persistence of Excitation in Warm-Up Period). After sufficient time steps in warm-up
period of LqgOpt, with probability at least 1− δ, we have

σmin

(
t∑

i=1

φiφ
⊤
i

)

≥ t
σ2
o min{σ2

w, σ
2
z , σ

2
u}

2
. (13)

Lemma 3.2 (Persistence of Excitation in Adaptive Control Period). After sufficient time steps in
adaptive control period of LqgOpt, with probability 1− 3δ, we have

σmin

(
t∑

i=1

φiφ
⊤
i

)

≥ t
σ2
c min{σ2

w, σ
2
z}

16
. (14)

For two problem dependent parameters Υw and Υc, that uniformly bound the components of
φ’s during the warm-up and adaptive control period respectively, we have the following theorem
which combines Theorem 3.2 with Lemma 3.1 and 3.2 to obtain the bound over ‖M̂t −M‖.
Theorem 3.3. During the warm-up period, ‖φt‖ ≤ Υw

√
H with high probability. After the warm-up

period of Tw, the initial estimation of the truncated ARX model, M̂0, obeys

‖M̂0 −M‖ ≤ poly(m,H, p)

min{σw, σz, σu}σo
√
Tw

.

During the adaptive control, with high probability ‖Φt‖ ≤ Υc

√
H. For the adaptive control period

at any time t ≥ 2Tw, the least squares estimate of the truncated ARX model M̂t follows

‖M̂t −M‖ ≤ poly(m,H, p)
√

tmin{σ2
oσ

2
w, σ

2
oσ

2
z , σ

2
oσ

2
u,

σ2
cσ

2
w

8 , σ
2
cσ

2
z

8 }
.

Note that the choice of H depends on the horizon, which is needed to be known apriori. Since
the dependency of H in the horizon T is log(T ), one can deploy the standard doubling trick to relax
this requirement.2

3.2 System Identification

After estimating M̂t, LqgOpt constructs confidence sets for the unknown system parameters and
uses these confidence sets to come up with the optimistic controller to exploit the information gath-
ered. LqgOpt uses a subspace identification algorithm SysId, given in Algorithm 2 in Appendix C.
SysId is similar to Ho-Kalman method [Ho and Kálmán, 1966] and estimates the system parameters
from M̂t. First of all, notice that M = [F,G] where

F =
[
CF, CĀF, . . . , CĀH−1F

]
∈ R

m×mH ,

G =
[
CB, CĀB, . . . , CĀH−1B

]
∈ R

m×pH .

Given the estimate for the truncated ARX model

M̂t = [F̂t,1, . . . , F̂t,H, Ĝt,1, . . . , Ĝt,H],

2Doubling trick suggests to set the horizon to a time step, and in a repeated fashion, whenever that time step is

reached, double that time step, and continue.

9



where F̂t,i is the i’th m×m block of F̂t, and Ĝt,i is the i’th m× p block of Ĝt for all 1 ≤ i ≤ H,
SysId constructs two d1 × (d2+1) Hankel matrices H

F̂t
and H

Ĝt
such that (i, j)th block of Hankel

matrix is F̂t,i and Ĝt,i respectively. Then, it forms the following matrix Ĥt.

Ĥt =
[

H
F̂t
, H

Ĝt

]

.

Recall that the dimension of latent state, n, is the order of the system for the observable and

controllable system. For H ≥ max
{

2n+ 1, log(cHT 2
√
m/

√
λ)

log(1/υ)

}

, we can pick d1 ≥ n and d2 ≥ n such
d1 + d2 +1 = H. This guarantees that the system identification problem is well-conditioned. Using
Definition 2.1, if the input to the SysId was M = [F,G] then constructed Hankel matrix, H would
be rank n,

H = [C⊤, . . . , (CĀd1−1)⊤]⊤[F, . . . , Ād2F, B, . . . , Ād2B]

= O(Ā, C, d1) [C(Ā, F, d2 + 1), Ād2F, C(Ā, B, d2 + 1), Ād2B]

= O(Ā, C, d1) [F, ĀC(Ā, F, d2 + 1), B, ĀC(Ā, B, d2 + 1)].

Notice that M and H are uniquely identifiable for a given system Θ, whereas for any invertible
T ∈ R

n×n, the system resulting from

A′ = T
−1AT, B′ = T

−1B, C ′ = CT, L′ = T
−1L

gives the same M and H. Similar to Ho-Kalman algorithm, SysId computes the SVD of M̂t and
estimates the extended observability and controllability matrices and eventually system parameters
up to similarity transformation. To this end, SysId constructs Ĥ−

t by discarding (d2 + 1)th and
(2d2 + 2)th block columns of Ĥt, i.e. if it was H then we have,

H− = O(Ā, C, d1) [C(Ā, F, d2 + 1), C(Ā, B, d2 + 1)].

The algorithm then calculates N̂t, the best rank-n approximation of Ĥ−
t , obtained by setting its all

but top n singular values to zero. The estimates of O(Ā, C, d1), C(Ā, F, d2+1) and C(Ā, B, d2 +1)
are given as

N̂t = UtΣt
1/2

Σt
1/2

Vt
⊤ = Ôt(Ā, C, d1) [Ĉt(Ā, F, d2 + 1), Ĉt(Ā, B, d2 + 1)].

From these estimates SysId recovers Ĉt as the first m× n block of Ôt(Ā, C, d1), B̂t as the first
n× p block of Ĉt(Ā, B, d2 + 1) and F̂t as the first n×m block of Ĉt(Ā, F, d2 + 1). Let Ĥ+

t be the
matrix obtained by discarding 1st and (d2 + 2)th block columns of Ĥt, i.e. if it was H then

H+ = O(Ā, C, d1) Ā [Ĉt(Ā, F, d2 + 1), Ĉt(Ā, B, d2 + 1)].

Therefore, SysId recovers

ˆ̄At = Ô
†
t(Ā, C, d1) Ĥ+

t [Ĉt(Ā, F, d2 + 1), Ĉt(Ā, B, d2 + 1)]†.

Using the definition of Ā = A − FC, the algorithm obtains Ât =
ˆ̄At + F̂tĈt. Recall that F = AL.

Using the Assumption 2.2, SysId finally recovers L̂t as the first n×m block of Â†
tÔ

†
t(Ā, C, d1)Ĥ−

t .
The following theorem essentially translates the bound in Theorem 3.2 to individual bounds of
system parameter estimates. It provides the high probability confidence sets required for deploying
OFU principle for the adaptive control.
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Theorem 3.4 (Confidence Set Construction). Let H be the concatenation of two Hankel matrices
obtained from M. Let Ā, B̄, C̄, L̄ be the system parameters that SysId provides for M. At time step
t, let Ât, B̂t, Ĉt, L̂t denote the system parameters obtained by SysId using the least squares estimate
of the truncated ARX model, M̂t. Suppose Assumptions 2.1 and 2.2 hold, thus H is rank-n. After
the warm-up period of Tw, for the given choice of H, there exists a unitary matrix T ∈ R

n×n such
that, with high probability, Θ̄ = (Ā, B̄, C̄, L̄) ∈ (CA × CB × CC × CL) where

CA(t) =
{

A′ ∈ R
n×n : ‖Ât −T

⊤A′
T‖ ≤ βA(t)

}

,

CB(t) =
{

B′ ∈ R
n×p : ‖B̂t −T

⊤B′‖ ≤ βB(t)
}

,

CC(t) =
{

C ′ ∈ R
m×n : ‖Ĉt − C ′

T‖ ≤ βC(t)
}

,

CL(t) =
{

L′ ∈ R
p×m : ‖L̂t −T

⊤L′‖ ≤ βL(t)
}

,

for

βA(t) = c1

(√
nH(‖H‖+ σn(H))

σ2
n(H)

)

‖M̂t −M‖, βB(t) = βC =

√

20nH

σn(H)
‖M̂t −M‖, (15)

βL(t) =
c2‖H‖
√

σn(H)
βA+c3

√
nH(‖H‖ + σn(H))

σ
3/2
n (H)

‖M̂t−M‖,

for some problem dependent constants c1, c2 and c3.

The proof is given in the Appendix C. It combines Lemma B.1 of Oymak and Ozay [2018] with
careful perturbation analysis on the system parameter estimates provided by SysId.

3.3 Adaptive Control

Using the confidence sets, LqgOpt implements OFU principle. At time t, the algorithm chooses a
system Θ̃t = (Ãt, B̃t, C̃t, L̃t) from Ct ∩ S where Ct := (CA(t)× CB(t)× CC(t)× CL(t)) such that

J(Θ̃t) ≤ inf
Θ′∈Ct∩S

J(Θ′) + 1/T. (16)

The algorithm designs the optimal feedback policy (P̃t, K̃t, L̃t) for the chosen system Θ̃t. It uses
this optimistic controller to control the underlying system Θ for twice as long as the duration of
the previous control policy. This technique known as “doubling trick” in reinforcement learning and
online learning prevents frequent policy updates and balances the policy changes so that the overall
regret of the algorithm is affected by a constant factor only.

4 Regret Analysis of LqgOpt

Now that the confidence set constructions and the adaptive control procedure of LqgOpt are ex-
plained, it only remains to analyze the regret of LqgOpt. Lemma 4.1 of Lale et al. [2020] shows
that the random exploration in the warm-up period acquires linear regret, i.e. O(Tw).

In order to analyze the regret obtained during the adaptive control period, we first need to
show that system will be well-controlled during the adaptive control period. The following lemma
achieves that.
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Lemma 4.1. Suppose Assumptions 2.1-2.3 hold. After the warm-up period of Tw, LqgOpt satisfies
the following with high probability for all T ≥ t ≥ Tw,

1. Θ ∈ (CA(t)× CB(t)× CC(t)× CL(t))

2. ‖x̂t|t,Θ̂‖ ≤ X̃

3. ‖yt‖ ≤ Ỹ

where X̃ , Ỹ = O(
√

log(T )). Here, O hides the problem dependent constants.

The proof of the lemma with the precise expressions is given in Appendix D. This lemma is
critical for the regret analysis due to the nature of the adaptive control problem in partially ob-
servable environments. The inaccuracies in the system parameter estimates affect both the optimal
feedback gain synthesis and the estimation of the underlying state. If these inaccuracies are not
tolerable in the adaptive control of the system, they will accumulate fast and cause explosion and
unboundedness in the input and the output of the system. This would result in linear, and po-
tentially super linear regret. The main technical challenge in the proof is to show that with Tw

length warm-up period, the error between the optimistic controller’s state estimation x̂t|t,Θ̂ and the
true state estimation x̂t|t,Θ does not blow up. Lemma 4.1 shows that while the system parameter
estimates are refining, the input to the system and the system’s output stays bounded during the
adaptive control period.

Given the verification of stability in the adaptive control period, we bound the regret of adaptive
control. The regret analysis is based on the Bellman optimality equation for LQG control problem
provided in Lemma 4.3 of Lale et al. [2020]. The following theorem gives the regret upper bound of
the adaptive control period of LqgOpt.

Theorem 4.1 (The regret of adaptive control). Suppose Assumptions 2.1-2.3 hold. After the warm-
up period of Tw, with high probability, for any time T in adaptive control period, the regret of LqgOpt

is bounded as follows:

REGRET(T ) = Õ
(√

T
)

. (17)

where Õ(·) hides the logarithmic factors and problem dependent constants.

The proof is given in the Appendices E and F. Here we provide the main proof ideas. Since
we know that the optimistic controller can attain smaller average expected cost than the optimal
controller of the given system, we decompose the regret using the Bellman optimality equation for
the optimistic system. For each time step t, (x̂t|t−1, yt) is treated as the given state of the system and
the differences between the system evolutions of the true system and optimistic system are analyzed
in the regret decomposition. The regret decomposition is given in Appendix E. In Appendix F,
we bound each term individually. The main pieces are the facts that the confidence sets shrink
with Õ(1/

√
t) (Theorem 3.4), LqgOpt avoids frequent policy changes and the control inputs and

system outputs are well-controlled (Lemma 4.1). Combining Theorem 4.1 with O(Tw) regret from
the warm-up period gives the overall regret upper bound of LqgOpt, stated in Theorem 3.1.
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5 Related Works

The problem of sequential decision making under uncertainty is one the core studies in the field
of control theory and reinforcement learning. Decision making in dynamical systems, when the
environment is known and regulating costs are considered, results in a reduction to the study
of optimal control. Optimal controls in the general setting of partially observable linear quadratic
Gaussian systems, when highly crafted sensory observations of the system are available, and a fidelity
approximation of the physics of dynamical systems is provided, has a long history of applications
and successes. [Åström, 2012, Bertsekas, 1995, Hassibi et al., 1999].

When there is a high uncertainty in the modeling of the system, learning algorithms are re-
quired to learn the system behavior. In such situations, the learning agent estimates the system
behaviour and adapt accordingly [Ljung, 1999, Kailath et al., 2000]. For the class of fully observ-
able systems, Lai et al. [1982], Chen and Guo [1987] study this problem in asymptotic optimal-
ity sense, mainly developed on pure exploration approaches. Along with the regret analysis, the
principle of pure exploration and betting on the best, or OFU has been studied for fully observ-
able environments [Lai and Robbins, 1985, Campi and Kumar, 1998, Bittanti et al., 2006]. Recent
works, deploy the OFU principle, and study tabular fully and partially observable Markov deci-
sion processes [Jaksch et al., 2010, Azizzadenesheli et al., 2016]. In Abbasi-Yadkori and Szepesvári
[2011], the authors extend the OFU principle and employ recent advances in the estimation the-
ory [Peña et al., 2009, Abbasi-Yadkori et al., 2011] and provide the first regret upper bound of
Õ(

√
T ) for the fully observable case. In the setting of fully observable environments, an extensive

advances and development have been proposed to provide generalized methods [Faradonbeh et al.,
2017, Abeille and Lazaric, 2017, 2018, Ouyang et al., 2017, Dean et al., 2018]. Simultaneously,
pure exploration methods along with uncertainty equivalence methods shed lights into the design
of efficient algorithms [Abbasi-Yadkori et al., 2019, Mania et al., 2019, Faradonbeh et al., 2018,
Cohen et al., 2019].

The system identification in partial observable linear systems in the presence of Gaussian noise,
LQGs, has recently sparked a flurry of research interests [Chen et al., 1992, Juang et al., 1993,
Phan et al., 1994, Lee and Zhang, 2019, Oymak and Ozay, 2018, Sarkar et al., 2019, Simchowitz et al.,
2019, Lee and Lamperski, 2019, Tsiamis and Pappas, 2019, Tsiamis et al., 2019, Umenberger et al.,
2019]. Most of the proposed methods in prior works utilize open-loop system identification methods
(without a history dependent controller), using independent Gaussian excitation, which makes it easy
to show the persistence of excitation and deal with the biases in the estimation using Markov param-
eters. However, in Lee and Lamperski [2019], the authors use the innovations form of the state-space
model to deal with the biases in closed-loop system identification whereas in Tsiamis and Pappas
[2019], it is shown that process and measurement noises are sufficient for persistence of excitation in
the absence of a control input. Another line of novel approaches is proposed to extend the problem of
estimation and prediction to online convex optimization where a set of strong theoretical guarantees
on cumulative prediction errors are provided [Hazan et al., 2017, Arora et al., 2018, Hazan et al.,
2018].

In this work, we propose the first learning algorithm to estimate the model parameters using
any arbitrary bounded sequence of samples, even with feedback controls where the future events
are correlated with historical data. Along with the estimation, we provide statistically tight high
probability confidence intervals over the model parameters where the true model parameters live in.
A recent work by Lale et al. [2020] provides a regret bound of Õ(T 2/3) for such problem. The current
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work, through deploying this novel estimation procedure improves the Õ(T 2/3) bound to Õ(
√
T ).

Another recent work by Simchowitz et al. [2020] study a general setting in partially observable with
the presence of adversarial disturbances, and given access to stabilizing controller, provide a regret
bound of Õ(

√
T ). These two mentioned works and the current paper, are amongst the first to

provide sublinear regret bounds for partially observable linear systems.

6 Conclusion

In this work, we study the problem of adaptive control in partially observable linear systems, also
known as linear systems with imperfect observation. While the prior work relies on open-loop system
identification, we propose a novel method to estimate the system parameters even in the presence
of feedback loop and correlation induced by feedback controllers. We deploy the principles of the
Ho-Kalman method to estimate the model parameters and construct their corresponding confidence
bound. We deploy the principle of optimism in the face of uncertainty and propose LqgOpt, a
reinforcement algorithm for LQGs. LqgOpt sequentially interacts with the environment for a few
time steps, collect samples, and exploit the samples to estimate the model parameters up to their
confidence sets. LqgOpt computes the optimal controller associated with the most optimistic model
in the set of plausible models, and then deploy this controller on the systems, but this time for a bit
longer. LqgOpt repeats this process. We show that following LqgOpt results in a sublinear regret
of Õ(

√
T ) which is the first Õ(

√
T ) regret bound on LQG along with Simchowitz et al. [2020].

In future work, we plan to consider the setting where the cost function is strongly convex as in
Simchowitz et al. [2020] and see if one can obtain poly log(T ) regret in adaptive control of partially
observable linear systems. We also aim to utilize the estimation method developed in this work
and study the safety in adaptive control. Along with safety, we plan to extend this work to the
problem of constraint control. While the Gaussian assumption on the noise has been long considered
for partially observable linear dynamical systems, this assumption introduces limitation and model
mismatch. Due to the generality of estimation analysis proposed methods in this work, in the future
work, we aim to extend the current results to the case of sub-Gaussian with unknown but bounded
parameters.
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Appendix

In the following, we first provide the definitions of truncated noise evolution parameters for
both warm-up period and adaptive control period in Appendix A. Appendix A also contains lower
bounds on the smallest singular value for ‖ΦtΦ

⊤
t ‖ for warm-up period and adaptive control period

which are used in showing persistence of excitation and thus proving Theorem 3.3. In Appendix B,
we show how the self-normalized bound is obtained for M̂t and provide the proof of Theorem 3.2.

Appendix C gives the SysId algorithm and describes the construction of confidence sets using
the outputs of SysId and provides the theoretical guarantees for them. In Appendix D, we give the
proof of Lemma 4.1 and show that with the given warm-up period, the inputs and the outputs of
the system stay bounded with high probability.

Appendix E provides regret decomposition for LqgOpt and states the differences arise from the
policy updates in adaptive control period compared to explore and commit algorithm proposed in
Lale et al. [2020]. In the Appendix F, we provide the proof of regret upper bound for the adaptive
control period of LqgOpt. Finally, in Appendix G, we give the overview of the case when the initial
state for the system is not coming from the steady state distribution.

Note that the warm-up period is chosen to be the following,

Tw ≥ max{TA, TB , Tc, To, Tu, TM, TN , Tα, Tβ, Tγ , TG}

where each term satisfies different condition in order to obtain Õ(
√
T ) regret upper bound. The

meanings of the terms are explained in detail throughout the Appendix.

A H−length Truncated Noise Evolution Parameters

In this section, we provide definitions of truncated open-loop and closed-loop noise evolution param-
eters, Gol and Gcl respectively. They will play significant role in the confidence set for M in showing
the persistence of excitation. They represent the effect of noises in the system on the outputs and
the inputs. We will define Gol and Gcl for 2H time steps back in time and show that last 2H process
and measurement noises provide sufficient persistent excitation for the covariates in the estimation
problem. In the following, φ̄t = Pφt for a permutation matrix P that gives

φ̄t =
[

y⊤t−1 u⊤t−1 . . . y
⊤
t−H u⊤t−H

]⊤
∈ R

(m+p)H .

A.1 Truncated Open-Loop Noise Evolution Parameter

Recall the state-space form of the system,

xt+1 = Axt +But + wt

yt = Cxt + zt. (18)

During the warm-up period, t ≤ Tw, the input to the system is ut ∼ N (0, σ2
uI). Let ft = [y⊤t u

⊤
t ]

⊤.
From the evolution of the system with given input we have the following:

ft = G
o
[
w⊤
t−1 z⊤t u⊤t . . . w⊤

t−H z⊤t−H+1 u⊤t−H+1

]⊤
+ r

o
t
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where

G
o:=

[
0m×n Im×m 0m×p C 0m×m CB CA 0m×m CAB . . . CAH−2 0m×m CAH−2B
0p×n 0p×m Ip×p 0p×n 0p×m 0p×p 0p×n 0p×m 0p×p . . . 0p×n 0p×m 0p×p

]

(19)

and r
o
t is the residual vector that represents the effect of [wi−1 zi ui] for 0 ≤ i < t−H, which are

independent. Notice that G
o is full row rank even for H = 1, due to first (m + p) × (m + n + p)

block. Using this, we can represent φ̄t as follows

φ̄t =






ft−1
...

ft−H






︸ ︷︷ ︸

R(m+p)H

+






r
o
t−1
...

r
o
t−H




 = Gol














wt−2

zt−1

ut−1
...

wt−2H−1

zt−2H

ut−2H














︸ ︷︷ ︸

R2(n+m+p)H

+






r
o
t−1
...

r
o
t−H




 where

Gol :=










[ G
o ] 0(m+p)×(m+n+p) 0(m+p)×(m+n+p) 0(m+p)×(m+n+p) . . .

0(m+p)×(m+n+p) [ G
o ] 0(m+p)×(m+n+p) 0(m+p)×(m+n+p) . . .

. . .
0(m+p)×(m+n+p) 0(m+p)×(m+n+p) . . . [ G

o ] 0(m+p)×(m+n+p)

0(m+p)×(m+n+p) 0(m+p)×(m+n+p) 0(m+p)×(m+n+p) . . . [ G
o ]










. (20)

Define

To =
32Υ4

w log2
(
2H(m+p)

δ

)

σ4
min(Gol)min{σ4

w, σ
4
z , σ

4
u}

.

We now prove Lemma 3.1, which shows that the inputs are persistently exciting uniformly during
the warm-up period for t ≥ To.

Lemma A.1 (Precise Statement of Lemma 3.1). If the warm-up duration Tw ≥ To, then for
To ≤ t ≤ Tw, with probability at least 1− δ we have

σmin

(
t∑

i=1

φiφ
⊤
i

)

≥ t
σ2
o min{σ2

w, σ
2
z , σ

2
u}

2
. (21)

Proof. Let 0̄ = 0(m+p)×(m+n+p). Since each block row is full row-rank, we get the following decom-
position using QR decomposition for each block row:

Gol =










Qo 0m+p 0m+p 0m+p . . .
0m+p Qo 0m+p 0m+p . . .

. . .
0m+p 0m+p . . . Qo 0m+p

0m+p 0m+p 0m+p . . . Qo










︸ ︷︷ ︸

R(m+p)H×(m+p)H










Ro
0̄ 0̄ 0̄ . . .

0̄ Ro
0̄ 0̄ . . .
. . .

0̄ 0̄ . . . Ro
0̄

0̄ 0̄ 0̄ . . . Ro










︸ ︷︷ ︸

R(m+p)H×2(m+n+p)H
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where Ro =








× × × × × × . . .
0 × × × × × . . .

. . .
0 0 0 × × × . . .







∈ R

(m+p)×H(m+n+p) where the elements in the diagonal

are positive numbers. Notice that the first matrix with Q0 is full rank. Also, all the rows of second
matrix are in row echelon form and second matrix is full row-rank. Thus, we can deduce that Gol

is full row-rank. Since Gol is full row rank, we have that

E[φ̄tφ̄
⊤
t ] � GolΣw,z,uGol⊤

where Σw,z,u ∈ R
2(n+m+p)H×2(n+m+p)H = diag(σ2

w, σ
2
z , σ

2
u, . . . , σ

2
w, σ

2
z , σ

2
u). This gives us

σmin(E[φ̄tφ̄
⊤
t ]) ≥ σ2

min(Gol)min{σ2
w, σ

2
z , σ

2
u}

for t ≤ Tw. As given in (33)-(36), we have that ‖φt‖ ≤ Υw

√
H with probability at least 1 − δ/2.

Given this holds, one can use Theorem H.1, to obtain the following which holds with probability
1− δ/2:

λmax

(
t∑

i=1

φiφ
⊤
i − E[φiφ

⊤
i ]

)

≤ 2
√
2tΥ2

wH

√

log

(
2H(m+ p)

δ

)

.

Using Weyl’s inequality, during the warm-up period with probability 1− δ, we have

σmin

(
t∑

i=1

φiφ
⊤
i

)

≥ tσ2
o min{σ2

w, σ
2
z , σ

2
u} − 2

√
2tΥ2

wH

√

log

(
2H(m+ p)

δ

)

.

For all t ≥ To :=
32Υ4

wH2 log
(

2H(m+p)
δ

)

σ4
o min{σ4

w ,σ4
z ,σ

4
u} , we have the stated lower bound.

A.2 Truncated Closed-Loop Noise Evolution Parameter

After the warm-up period, for t ≥ Tw, the input to the system is ut = −K̃tx̂t|t,Θ̃. Recall the
following relation for state estimation updates using the optimistic parameters:

x̂t|t−1,Θ̃ = Ãt−1x̂t−1|t−1,Θ̃ − B̃t−1K̃t−1x̂t−1|t−1,Θ̃

x̂t|t,Θ̃ = x̂t|t−1,Θ̃ + L̃t(yt − C̃tx̂t|t−1,Θ̃)

= (Ãt−1 − B̃t−1K̃t−1)x̂t−1|t−1,Θ̃ + L̃t(Cxt + zt − C̃t(Ãt−1 − B̃t−1K̃t−1)x̂t−1|t−1,Θ̃)

= (I − L̃tC̃t)(Ãt−1 − B̃t−1K̃t−1)x̂t−1|t−1,Θ̃ + L̃t(C(Axt−1 −BK̃t−1x̂t−1|t−1,Θ̃ + wt−1) + zt).

(22)

Again, let ft = [y⊤t u
⊤
t ]

⊤. Using (18) and (22), the following can be written for ft

[
xt

x̂t|t,Θ̃

]

=

[
A −BK̃t−1

L̃tCA (I−L̃tC̃t)(Ãt−1−B̃t−1K̃t−1)−L̃tCBK̃t−1

]

︸ ︷︷ ︸

G̃
(t)
2

[
xt−1

x̂t−1|t−1,Θ̃

]

+

[
I 0

L̃tC L̃t

]

︸ ︷︷ ︸

G̃
(t)
3

[
wt−1

zt

]
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ft =

[
CA −CBK̃t−1

−K̃tL̃tCA −K̃t(I−L̃tC̃t)(Ãt−1−B̃t−1K̃t−1)+K̃tL̃tCBK̃t−1

] [
xt−1

x̂t−1|t−1,Θ̃

]

+

[
Cwt−1 + zt

−K̃tL̃t(zt+Cwt−1)

]

ft =

[
C 0

0 −K̃t

]

︸ ︷︷ ︸

Γ̃t

G̃
(t)
2

[
xt−1

x̂t−1|t−1,Θ̃

]

+

[
C 0

0 −K̃t

]

︸ ︷︷ ︸

Γ̃t

[
I 0

L̃tC L̃t

]

︸ ︷︷ ︸

G
(t)
3

[
wt−1

zt

]

+

[
zt
0

]

.

Rolling back in time for H time steps we get the following,

ft = Γ̃t





t∑

i=t−H+1





t∏

j=i

G̃
(j)
2



 G̃
(i−1)
3

[
wi−2

zi−1

]


+

[
C I

−K̃tL̃tC −K̃tL̃t

]

︸ ︷︷ ︸

G̃
(t)
1

[
wt−1

zt

]

+ r
c
t

where r
c
t is the residual vector that represents the effect of [wi−1 zi] for 0 ≤ i < t −H, which are

independent. Using this, we can represent φ̄t as follows

φ̄t =






ft−1
...

ft−H






︸ ︷︷ ︸

R(m+p)H

+






r
c
t−1
...

r
c
t−H




 = Gcl

t










wt−2

zt−1
...

wt−2H−1

zt−2H










︸ ︷︷ ︸

R2(n+m)H

+






r
c
t−1
...

r
c
t−H






where

Gcl
t =










[ Ḡt−1 ] 0(m+p)×(m+n) 0(m+p)×(m+n) 0(m+p)×(m+n) . . .

0(m+p)×(m+n) [ Ḡt−2 ] 0(m+p)×(m+n) 0(m+p)×(m+n) . . .
. . .

0(m+p)×(m+n) 0(m+p)×(m+n) . . . [ Ḡt−H+1 ] 0(m+p)×(m+n)

0(m+p)×(m+n) 0(m+p)×(m+n) 0(m+p)×(m+n) . . . [ Ḡt−H ]










(23)

for

Ḡt=
[

G̃
(t)
1 , Γ̃tG̃

(t)
2 G̃

(t−1)
3 , Γ̃tG̃

(t)
2 G̃

(t−1)
2 G̃

(t−2)
3 , . . . , Γ̃tG̃

(t)
2 G̃

(t−1)
2 . . . G̃

(t−H+1)
2 G̃

(t−H)
3

]

∈ R
(m+p)×H(n+m)

By knowing the underlying system, the agent can deploy the optimal control policy. Gcl represents
the translation of the process and measurement noises into φ̄t while using the optimal policy:

Gcl =










[ Ḡ ] 0(m+p)×(m+n) 0(m+p)×(m+n) 0(m+p)×(m+n) . . .

0(m+p)×(m+n) [ Ḡ ] 0(m+p)×(m+n) 0(m+p)×(m+n) . . .
. . .

0(m+p)×(m+n) 0(m+p)×(m+n) . . . [ Ḡ ] 0(m+p)×(m+n)

0(m+p)×(m+n) 0(m+p)×(m+n) 0(m+p)×(m+n) . . . [ Ḡ ]










(24)
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where

Ḡ =
[
G1, ΓG2G3, ΓG2

2
G3, . . . , ΓG2

H−1
G3

]
∈ R

(m+p)×H(n+m)

for

G1=

[
C I

−KLC −KL

]

,Γ=

[
C 0
0 −K

]

,G2=

[
A −BK

LCA (I−LC)(A−BK)−LCBK

]

,G3=

[
I 0
LC L

]

.

Note that length of H is chosen such that Ḡ is full row rank. Similar to the case with truncated
open-loop noise evolution parameter, having full row rank block rows provides a full row rank Gcl

via the same QR decomposition argument. Thus, the assumption on the lower bound of the smallest
singular value of the H−length truncated closed-loop noise evolution parameter, σmin(Gcl) > σc > 0,
is valid. Due to boundedness of the set S that LqgOpt is searching on, let ‖G̃cl‖F ≤ G for all model

in S. Define Gr = G+
σc

√
H(m+p)

2 and

Tc =
2048Υ4

cH
2
(

log
(
H(m+p)

δ

)

+H2(m+ p)(m+ n) log
(

Gr +
32HΥc

√
2ηT+32Hη2T+16max{σ2

w ,σ2
z}

σ2
c min{σ2

w,σ2
z}

))

σ4
c min{σ4

w, σ
4
z}

.

We now prove Lemma 3.2, which shows that the inputs are persistently exciting uniformly during
the adaptive control period for t ≥ Tc.

Lemma A.2 (Precise Statement of Lemma 3.2). After Tc time steps in adaptive control period,
with probability 1− 3δ, we have the following for all t ≥ Tc,

σmin

(
t∑

i=1

φiφ
⊤
i

)

≥ t
σ2
c min{σ2

w, σ
2
z}

16
. (25)

Proof. Define G̃cl, which is the translation parameter for the process and measurement noises into φ̄t

for the system that is governed by the optimistically chosen parameter by LqgOpt while using

the optimal optimistic controller. Recall that we are searching for the optimistic system model
which attains the optimal LQG cost over the set of Ct ∩ S and whose closed-loop noise evolution
parameter satisfies the lower bound on the smallest singular value of the H−length truncated closed-
loop noise evolution parameter, σc. Therefore, LqgOpt has the guarantee that σmin(G̃cl) ≥ σc. Let

TG = TB

(
2H + 2HΓζ + 2H(H − 1)Γζ

σc

)2

.

Picking Tw ≥ TG , guarantees that in adaptive control period for all t ≥ Tw, ‖Gcl
t − G̃cl‖ ≤ σc

2 . Using
Weyl’s inequality on singular values, we have that σmin(Gcl

t ) ≥ σc

2 . Hence, for all t ≥ Tw, we have
that

E[φ̄tφ̄
⊤
t ] � Gcl

t Σw,zGcl⊤
t

where Σw,z ∈ R
2(n+m)H×2(n+m)H = diag(σ2

w, σ
2
z , . . . , σ

2
w, σ

2
z). This gives us σmin(E[φ̄tφ̄

⊤
t ]) ≥ σ2

c

4 min{σ2
w, σ

2
z}

for t ≥ Tw. As given in (37)-(39), we have that ‖φt‖ ≤ Υc

√
H with probability at least 1 − 2δ.
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Given this holds, for a given optimistic model, one can use Theorem H.1 as in the truncated
open-loop noise evolution parameter, to obtain the following which holds with probability 1− δ:

λmax

(
t∑

i=1

φiφ
⊤
i − E[φiφ

⊤
i ]

)

≤ 2
√
2tΥ2

cH

√

log

(
H(m+ p)

δ

)

. (26)

Notice that this bound holds only for a single model. However, we need to show that for any
random model within the confidence set, the lower bound holds. Thus, we need a standard covering
argument. Using the perturbation result that holds for all t ≥ Tw, we have ‖Gcl

t ‖F ≤ Gr. We have
the following upper bound on the covering number:

N (B(Gr), ‖ · ‖F , ǫ) ≤
(

Gr +
2

ǫ

)(m+p)(n+m)H2

.

Thus, the following holds for all the centers of ǫ-balls in ‖Gcl
t ‖F , for all t ≥ Tw, with probability

1− δ:

λmax

(
t∑

i=1

φiφ
⊤
i − E[φiφ

⊤
i ]

)

≤ 2
√
2tΥ2

cH

√

log

(
H(m+ p)

δ

)

+H2(m+ p)(m+ n) log

(

Gr +
2

ǫ

)

.

(27)

Let ηT = σw

√

2n log
(
2nT
δ

)
+ σz

√

2m log
(
2mT
δ

)
. Considering all the systems in the ǫ-balls,

during the adaptive control period with probability 1− 3δ, we have

σmin

(
t∑

i=1

φiφ
⊤
i

)

≥ t

(
σ2
c

4
min{σ2

w, σ
2
z} − 2ǫ

(

HΥc

√
2ηT +Hη2T +max{σ2

w/2, σ
2
z/2}

))

− 2
√
2tΥ2

cH

√

log

(
H(m+ p)

δ

)

+H2(m+ p)(m+ n) log

(

Gr +
2

ǫ

)

.

Let ǫ = σ2
c min{σ2

w,σ2
z}

16(HΥc

√
2ηT+Hη2

T
+max{σ2

w/2,σ2
z/2})

. This gives the following bound

σmin

(
t∑

i=1

φiφ
⊤
i

)

≥ t

(
σ2
c

8
min{σ2

w, σ
2
z}
)

− 2
√
2tΥ2

cH

√
√
√
√log

(
H(m+ p)

δ

)

+H2(m+p)(m+n) log

(

Gr+
32HΥc

√
2ηT +32Hη2T +16max{σ2

w, σ
2
z}

σ2
c min{σ2

w, σ
2
z}

)

.

For all t ≥ Tc, we have the stated lower bound.
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B System Identification

Recall that for a single input-output trajectory {yt, ut}Tt=1, using the ARX model, we can write the
following for the given system,

Yt = ΦtM
⊤ +Et +Nt

︸ ︷︷ ︸

Noise

where (28)

M =
[
CF, CĀF, . . . , CĀH−1F, CB, CĀB, . . . , CĀH−1B

]
∈ R

m×(m+p)H

Yt = [yH , yH+1, . . . , yt]
⊤ ∈ R

(t−H)×m

Φt = [φH , φH+1, . . . , φt]
⊤ ∈ R

(t−H)×(m+p)H

Et = [eH , eH+1, . . . , et]
⊤ ∈ R

(t−H)×m

Nt=
[
CĀHx0, CĀHx1, . . . , CĀHxt−H

]⊤∈R
(t−H)×m

M̂t is the solution to minX ‖Yt − ΦtX
⊤‖2F + λ‖X‖2F . Hence, we get M̂

⊤
t = (Φ⊤

t Φt + λI)−1Φ⊤
t Yt.

Proof of Theorem 3.2

M̂t =
[
(Φ⊤

t Φt + λI)−1Φ⊤
t (ΦtM

⊤ + Et +Nt)
]⊤

=
[
(Φ⊤

t Φt + λI)−1Φ⊤
t (Et +Nt) + (Φ⊤

t Φt + λI)−1Φ⊤
t ΦtM

⊤

+ λ(Φ⊤
t Φt + λI)−1

M
⊤ − λ(Φ⊤

t Φt + λI)−1
M

⊤]⊤

=
[
(Φ⊤

t Φt + λI)−1Φ⊤
t Et + (Φ⊤

t Φt + λI)−1Φ⊤
t Nt +M

⊤ − λ(Φ⊤
t Φt + λI)−1

M
⊤]⊤

Using M̂t, we get

|Tr(X(M̂t −M)⊤)| (29)

= |Tr(X(Φ⊤
t Φt + λI)−1Φ⊤

t Et) + Tr(X(Φ⊤
t Φt + λI)−1Φ⊤

t Nt)− λTr(X(Φ⊤
t Φt + λI)−1

M
⊤)|

≤ |Tr(X(Φ⊤
t Φt + λI)−1Φ⊤

t Et)|+ |Tr(X(Φ⊤
t Φt + λI)−1Φ⊤

t Nt)|+ λ|Tr(X(Φ⊤
t Φt + λI)−1

M
⊤)|

≤
√

Tr(X(Φ⊤
t Φt + λI)−1X⊤)Tr(E⊤

t Φt(Φ⊤
t Φt + λI)−1Φ⊤

t Et) (30)

+
√

Tr(X(Φ⊤
t Φt + λI)−1X⊤)Tr(N⊤

t Φt(Φ⊤
t Φt + λI)−1Φ⊤

t Nt)

+ λ

√

Tr(X(Φ⊤
t Φt + λI)−1X⊤)Tr(M(Φ⊤

t Φt + λI)−1M⊤)

=
√

Tr(X(Φ⊤
t Φt + λI)−1X⊤) ×

[√

Tr(E⊤
t Φt(Φ⊤

t Φt+λI)−1Φ⊤
t Et)+

√

Tr(N⊤
t Φt(Φ⊤

t Φt+λI)−1Φ⊤
t Nt)+λ

√

Tr(M(Φ⊤
t Φt+λI)−1M⊤)

]

where (30) follows from |Tr(ABC⊤)| ≤
√

Tr(ABA⊤)Tr(CBC⊤) for positive definite B due to
Cauchy Schwarz (weighted inner-product). For X = (M̂t −M)(Φ⊤

t Φt + λI), we get
√

Tr((M̂t −M)Vt(M̂t −M)⊤) ≤
√

Tr(E⊤
t ΦtV

−1
t Φ⊤

t Et) +

√

Tr(N⊤
t ΦtV

−1
t Φ⊤

t Nt) +
√
λ‖M‖F

(31)
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The first term on the right hand side of (31) can be bounded using Theorem H.2 since et is ‖CΣC⊤+
σ2
zI‖-sub-Gaussian vector. Therefore,

√

Tr(E⊤
t ΦtV

−1
t Φ⊤

t Et) ≤

√
√
√
√m‖CΣC⊤+σ2

zI‖ log
(

det (Vt)
1/2

δ det(V )1/2

)

(32)

For the second term,

√

Tr(N⊤
t ΦtV

−1
t Φ⊤

t Nt) ≤
1√
λ
‖N⊤

t Φt‖F ≤
√

m

λ

∥
∥
∥
∥
∥

t∑

i=H

φi(CĀHxi−H)⊤
∥
∥
∥
∥
∥

≤ t

√
m

λ
max
i≤t

∥
∥
∥φi(CĀHxi−H)⊤

∥
∥
∥

≤ t

√
m

λ
‖C‖υH max

i≤t
‖φi‖‖xi−H‖

During warm-up period, from Lemma D.1 of Lale et al. [2020], we have that for all 1 ≤ t ≤ Tw,
with probability 1− δ/2,

‖xt‖ ≤ Xw :=
(σw + σu‖B‖)Φ(A)ρ(A)

√

1− ρ(A)2

√

2n log(12nTw/δ), (33)

‖zt‖ ≤ Z := σz
√

2m log(12mTw/δ), (34)

‖ut‖ ≤ Uw := σu
√

2p log(12pTw/δ), (35)

‖yt‖ ≤ ‖C‖Xw + Z. (36)

Thus, during the warm-up phase, we have maxi≤t≤Tw ‖φi‖‖xi−H‖ ≤ ΥwXw

√
H, where Υw =

‖C‖Xw + Z + Uw. During the adaptive control phase, from Lemma 4.1, we have that for all
t ≥ Tw, with probability 1− 2δ,

‖xt‖ ≤ Xac := ‖Σ‖1/2
√

2n log(2nT/δ) + ∆̄ + X̃ , (37)

‖ut‖ ≤ ΓX̃ , (38)

‖yt‖ ≤ Ỹ. (39)

Thus, after the warm-up phase, we have maxTw≤t≤T ‖φi‖‖xi−H‖ ≤ ΥcXac

√
H, where Υc = Ỹ +ΓX̃ .

Therefore for all t,

√

Tr(N⊤
t ΦtV

−1
t Φ⊤

t Nt) ≤ t

√

mH

λ
‖C‖υH max {ΥcXac,ΥwXw}

Picking H = 2 log(T )+log(max{ΥcXac,ΥwXw})+0.5 log(m/λ)+log(‖C‖)
log(1/υ) gives

√

Tr(N⊤
t ΦtV

−1
t Φ⊤

t Nt) ≤
t

T 2

√
H (40)

Combining (32) and (40) gives the statement of Theorem 3.2. �
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Proof of Theorem 3.3: For ‖M‖F ≤ S, we have

σmin(Vt)‖M̂t−M‖2F ≤ Tr((M̂t−M)Vt(M̂t−M)⊤)

≤





√
√
√
√m‖CΣC⊤ + σ2

zI‖ log
(

det (Vt)
1/2

δ det(V )1/2

)

+S
√
λ+

t
√
H

T 2





2

During the warm-up period, for t ≥ To, using Lemma A.1, we get

‖M̂0 −M‖F ≤

√

m‖CΣC⊤ + σ2
zI‖

(

log(1δ ) +
H(m+p)

2 log
(
λ(m+p)H+tΥ2

w

λ(m+p)H

))

+ S
√
λ+ t

√
H

T 2

√

tσ
2
o min{σ2

w ,σ2
z ,σ

2
u}

2

≤ Rwarm√
t

.

where Rwarm =

√

2m‖CΣC⊤+σ2
zI‖

(

log(1/δ)+
H(m+p)

2
log

(

λ(m+p)H+TwΥ2
w

λ(m+p)H

))

+S
√
2λ+

√
2H
T

σo min{σw ,σz ,σu} . Let TM = R2
warm.

For Tw ≥ TM, we will have ‖M̂0 −M‖F ≤ 1.
During the adaptive control period, for t ≥ Tc + Tw, using Lemma A.2, we get

‖M̂t −M‖F ≤

√

m‖CΣC⊤ + σ2
zI‖

(

log(1/δ) + H(m+p)
2 log

(
λ(m+p)H+tmax{Υ2

w,Υ2
c}

λ(m+p)H

))

+ S
√
λ+ t

√
H

T 2

√

Tw
σ2
o min{σ2

w,σ2
z ,σ

2
u}

2 + (t− Tw)
σ2
c min{σ2

w ,σ2
z}

16

≤

√

m‖CΣC⊤ + σ2
zI‖

(

log(1/δ) + H(m+p)
2 log

(
λ(m+p)H+T max{Υ2

w,Υ2
c}

λ(m+p)H

))

+ S
√
λ+

√
H
T

√
t

√

min
{

σ2
o min{σ2

w,σ2
z ,σ

2
u}

2 , σ
2
c min{σ2

w ,σ2
z}
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C Confidence Set Construction for System Parameters

After estimating M̂t, we construct confidence sets for the unknown system parameters and use
these confidence sets to come up with the optimistic controller to exploit the information gathered.
LqgOpt uses SysId, a method similar to Ho-Kalman method [Ho and Kálmán, 1966], to estimate
the system parameters from M̂t. The outline of the algorithm is given in the main text and in
Algorithm 2. Note that the system is order n and minimal in the sense that the system cannot be
described by a state-space model of order less than n. Thus, without loss of generality, σn(A) > 0.
The results in this section follow similar steps with Oymak and Ozay [2018] with similar changes
mentioned in Lale et al. [2020]. The following lemma is from Oymak and Ozay [2018], it will be
used in proving confidence bounds and we provide it for completeness.

Lemma C.1 ([Oymak and Ozay, 2018]). H, Ĥt and N , N̂t satisfies the following perturbation
bounds,

max
{∥
∥
∥H+ − Ĥ+

t

∥
∥
∥ ,
∥
∥
∥H− − Ĥ−

t

∥
∥
∥

}

≤ ‖H − Ĥt‖ ≤
√

min {d1, d2 + 1}‖M̂t −M‖

‖N − N̂t‖ ≤ 2
∥
∥
∥H− − Ĥ−

t

∥
∥
∥ ≤ 2

√

min {d1, d2}‖M̂t −M‖
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Algorithm 2 SysId

1: Input: M̂t, H, system order n, d1, d2 such that d1 + d2 + 1 = H
2: Form two d1 × (d2 + 1) Hankel matrices H

F̂t
and H

Ĝt
from M̂t and construct Ĥt =

[

H
F̂t
, H

Ĝt

]

∈ R
md1×(m+p)(d2+1)

3: Obtain Ĥ−
t by discarding (d2 + 1)th and (2d2 + 2)th block columns of Ĥt

4: Using SVD obtain N̂t ∈ R
md1×(m+p)d2 , the best rank-n approximation of Ĥ−

t

5: Obtain Ut,Σt,Vt = SVD(N̂t)
6: Construct Ôt(Ā, C, d1) = UtΣt

1/2 ∈ R
md1×n

7: Construct [Ĉt(Ā, F, d2 + 1), Ĉt(Ā, B, d2 + 1)] = Σt
1/2

Vt ∈ R
n×(m+p)d2

8: Obtain Ĉt ∈ R
m×n, the first m rows of Ôt(Ā, C, d1)

9: Obtain B̂t ∈ R
n×p, the first p columns of Ĉt(Ā, B, d2 + 1)

10: Obtain F̂t ∈ R
n×m, the first m columns of Ĉt(Ā, F, d2 + 1)

11: Obtain Ĥ+
t by discarding 1st and (d2 + 2)th block columns of Ĥt

12: Obtain ˆ̄At = Ô
†
t(Ā, C, d1) Ĥ+

t [Ĉt(Ā, F, d2 + 1), Ĉt(Ā, B, d2 + 1)]†

13: Obtain Ât =
ˆ̄At + F̂tĈt

14: Obtain L̂t ∈ R
n×m, as the first n×m block of Â†

tÔ
†
t(Ā, C, d1)Ĥ−

t

The following lemma is a slight modification of Lemma B.1 in [Oymak and Ozay, 2018].

Lemma C.2 ([Oymak and Ozay, 2018]). Suppose σmin(N ) ≥ 2‖N − N̂‖ where σmin(N ) is the
smallest nonzero singular value (i.e. nth largest singular value) of N . Let rank n matrices N , N̂
have singular value decompositions UΣV

⊤ and ÛΣ̂V̂
⊤ There exists an n× n unitary matrix T so

that
∥
∥
∥UΣ

1/2 − ÛΣ̂
1/2

T

∥
∥
∥

2

F
+
∥
∥
∥VΣ

1/2 − V̂Σ̂
1/2

T

∥
∥
∥

2

F
≤ 5n‖N − N̂‖2

σn(N )− ‖N − N̂‖
The following is the proof of Theorem 3.4.

Proof of Theorem 3.4: For brevity, we have the following notation O = O(Ā, C, d1), CF =
C(Ā, F, d2 + 1), CB = C(Ā, B, d2 + 1), Ôt = Ôt(Ā, C, d1), ĈFt

= Ĉt(Ā, F, d2 + 1), ĈBt
=

Ĉt(Ā, B, d2 + 1). Let TN = TM
8H

σ2
n(H)

. Directly applying Lemma C.2 with the condition that for

given Tw ≥ TN , σmin(N ) ≥ 2‖N − N̂‖, we can guarantee that there exists a unitary transform T

such that
∥
∥
∥Ôt −OT

∥
∥
∥

2

F
+
∥
∥
∥[ĈFt

ĈBt
]−T

⊤[CF CB]
∥
∥
∥

2

F
≤ 10n‖N − N̂t‖2

σn(N )
(41)

Since Ĉt− C̄T is a submatrix of Ôt−OT, B̂t−T
⊤B̄ is a submatrix of ĈBt

−T
⊤
CB and F̂t−T

⊤F̄
is a submatrix of ĈFt

−T
⊤
CF, we get the same bounds for them stated in (41). Using Lemma C.1,

with the choice of d1, d2 ≥ H
2 , we have

‖N − N̂t‖ ≤
√
2H‖M̂t −M‖.

This provides the advertised bounds in the theorem:

‖B̂t −T
⊤B̄‖, ‖Ĉt − C̄T‖, ‖F̂t −T

⊤F̄‖ ≤
√
20nH‖M̂t −M‖
√

σn(N )
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Let TB = TM
20nH
σn(H) . Notice that for Tw ≥ TB , we have all the terms above to be bounded by

1. In order to determine the closeness of Ât and Ā we first consider the closeness of ˆ̄At − T
⊤ ¯̄AT,

where ¯̄A is the output obtained by Ho-Kalman for Ā when the input is M. Let X = OT and
Y = T

⊤[CF CB]. Thus, we have

‖ ˆ̄At −T
⊤ ¯̄AT‖F = ‖Ô†

tĤ+
t [ĈFt

ĈBt
]† −X†H+Y †‖F

≤
∥
∥
∥

(

Ô
†
t −X†

)

Ĥ+
t [ĈFt

ĈBt
]†
∥
∥
∥
F
+
∥
∥
∥X†

(

Ĥ+
t −H+

)

[ĈFt
ĈBt

]†
∥
∥
∥
F

+
∥
∥
∥X†H+

(

[ĈFt
ĈBt

]† − Y †
)∥
∥
∥
F

For the first term we have the following perturbation bound [Meng and Zheng, 2010, Wedin,
1973],

‖Ô†
t −X†‖F ≤ ‖Ôt −X‖F max{‖X†‖2, ‖Ô†

t‖2} ≤ ‖N − N̂t‖
√

10n

σn(N )
max{‖X†‖2, ‖Ô†

t‖2}

Since we have σn(N ) ≥ 2‖N − N̂‖, we have ‖N̂ ‖ ≤ 2‖N‖ and 2σn(N̂ ) ≥ σn(N ). Thus,

max{‖X†‖2, ‖Ô†
t‖2} = max

{

1

σn(N )
,

1

σn(N̂ )

}

≤ 2

σn(N )
(42)

Combining these and following the same steps for ‖[ĈFt
ĈBt

]†−Y †‖F , we get

∥
∥
∥Ô

†
t −X†

∥
∥
∥
F
,
∥
∥
∥[ĈFt

ĈBt
]†−Y †

∥
∥
∥
F
≤
∥
∥
∥N − N̂t

∥
∥
∥

√

40n

σ3
n(N )

(43)

The following individual bounds obtained by using (42), (43) and triangle inequality:
∥
∥
∥

(

Ô
†
t −X†

)

Ĥ+
t [ĈFt

ĈBt
]†
∥
∥
∥
F
≤ ‖Ô†

t −X†‖F ‖Ĥ+
t ‖‖[ĈFt

ĈBt
]†‖

≤
4
√
5n
∥
∥
∥N − N̂t

∥
∥
∥

σ2
n(N )

(

‖H+‖+ ‖Ĥ+
t −H+‖

)

∥
∥
∥X†

(

Ĥ+
t −H+

)

[ĈFt
ĈBt

]†
∥
∥
∥
F
≤ 2

√
n‖Ĥ+

t −H+‖
σn(N )

∥
∥
∥X†H+

(

[ĈFt
ĈBt

]† − Y †
)∥
∥
∥
F
≤ ‖X†‖‖H+‖‖[ĈFt

ĈBt
]† − Y †‖

≤
2
√
10n

∥
∥
∥N − N̂t

∥
∥
∥

σ2
n(N )

‖H+‖

Combining these we get

‖ ˆ̄At −T
⊤ ¯̄AT‖F ≤

31
√
n‖H+‖

∥
∥
∥N − N̂t

∥
∥
∥

2σ2
n(N )

+ ‖Ĥ+
t −H+‖




4
√
5n
∥
∥
∥N − N̂t

∥
∥
∥

σ2
n(N )

+
2
√
n

σn(N )





≤ 31
√
n‖H+‖

2σ2
n(N )

∥
∥
∥N − N̂t

∥
∥
∥+

13
√
n

2σn(N )
‖Ĥ+

t −H+‖
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Now consider Ât =
ˆ̄At + F̂tĈt. Using Lemma C.1,

‖Ât −T
⊤ĀT‖F

= ‖ ˆ̄At + F̂tĈt −T
⊤ ¯̄AT −T

⊤F̄ C̄T‖F
≤ ‖ ˆ̄At −T

⊤ ¯̄AT‖F + ‖(F̂t −T
⊤F̄ )Ĉt‖F + ‖T⊤F̄ (Ĉt − C̄T)‖F

≤ ‖ ˆ̄At −T
⊤ ¯̄AT‖F + ‖(F̂t −T

⊤F̄ )‖F ‖Ĉt − C̄T‖F + ‖(F̂t −T
⊤F̄ )‖F ‖C̄‖+ ‖F̄‖‖(Ĉt − C̄T)‖F

≤ 31
√
n‖H+‖

2σ2
n(N )

∥
∥
∥N−N̂t

∥
∥
∥+

13
√
n

2σn(N )
‖Ĥ+

t −H+‖+10n‖N−N̂t‖2
σn(N )

+(‖F̄‖+‖C̄‖)‖N−N̂t‖
√

10n

σn(N )

≤ 31
√
2nH‖H‖

2σ2
n(N )

‖M̂t −M‖+ 13
√
nH

2
√
2σn(N )

‖M̂t −M‖+ 20nH‖M̂t −M‖2
σn(N )

+ (‖F̄‖+‖C̄‖)‖M̂t −M‖
√

20nH

σn(N )

Define TA such that

TA = TM






62
√
2nH‖H‖

2σ2
n(N )

+ 26
√
nH

2
√
2σn(N )

+ (‖F̄‖+‖C̄‖)
√

80nH
σn(N ) +

√
40nHσn(Ā)

σn(N )

σn(Ā)






2

. (44)

Notice that for Tw ≥ TA, we have ‖Ât−T
⊤ĀT‖ ≤ σn(Ā)/2. Since Tw ≥ TA, from Weyl’s inequality

we have σn(Ât) ≥ σn(Ā)/2. Recalling that X = O(Ā, C, d1)T, under Assumption 2.2 we consider
L̂t:

‖L̂t −T
⊤L̄‖F

= ‖Â†
tÔ

†
tĤ−

t −T
⊤Ā†

O
†H−‖F

≤ ‖(Â†
t −T

⊤Ā†
T)Ô†

tĤ−
t ‖F + ‖T⊤Ā†

T(Ô†
t −X†)Ĥ−

t ‖F + ‖T⊤Ā†
TX†(Ĥ−

t −H−)‖F
≤ ‖Â†

t −T
⊤Ā†

T‖F ‖Ô†
t‖‖Ĥ−

t ‖+ ‖Ô†
t −X†‖F ‖Ā†‖‖Ĥ−

t ‖+
√
n‖Ĥ−

t −H−‖‖Ā†‖‖X†‖

≤
(

‖Â†
t−T

⊤Ā†
T‖F

√

2

σn(N )
+
∥
∥
∥N−N̂t

∥
∥
∥

√

40n

σ3
n(N )

‖Ā†‖
)
(

‖H−‖+‖Ĥ−
t −H−‖

)

+
√
n‖Ā†‖ 1

√

σn(N )
‖Ĥ−

t −H−‖

Again using the perturbation bounds of the Moore–Penrose inverse under the Frobenius norm
[Meng and Zheng, 2010], we have ‖Â†

t−T
⊤Ā†

T‖F ≤ 2
σ2
n(Ā)

‖Ât−T
⊤ĀT‖. Notice that the similarity

transformation that transfers A to Ā is bounded since S =
(
[C⊤ (CĀ)⊤ . . . (CĀd1−1)⊤]⊤

)†
O(Ā, C, d1).

Combining all and using Lemma C.1, we obtain the confidence set for L̂t given in Theorem 3.4.

�
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D Boundedness of The Output and State Estimation, Proof of

Lemma 4.1

The proof of Lemma 4.1 follows similar arguments with the proof of Lemma 4.2 of [Lale et al., 2020].
The main difference is that LqgOpt, the system estimations are refined during the adaptive control
period, thus the control policy is refined. Also, since the behavior of a system and its similarity
transformation is the same, without loss of generality we assume that similarity transformation
T = I.
Proof of Lemma 4.1:

Assume that Θ ∈ (CA(t)× CB(t)× CC(t)× CL(t)) for all t ≥ Tw, which is holds with probability
1− δ. We can write the decomposition for x̂t|t,Θ̃ as follows,

x̂t|t,Θ̃ = x̂t|t−1,Θ̃ + L̃t(yt − C̃tx̂t|t−1,Θ̃)

= Ãt−1x̂t−1|t−1,Θ̃ − B̃t−1K̃t−1x̂t−1|t−1,Θ̃ + L̃t(yt − C̃t(Ãt−1x̂t−1|t−1,Θ̃ − B̃t−1K̃t−1x̂t−1|t−1,Θ̃))

= (I − L̃tC̃t)(Ãt−1 − B̃t−1K̃t−1)x̂t−1|t−1,Θ̃ + L̃tyt

= (I − L̃tC̃t)(Ãt−1 − B̃t−1K̃t−1)x̂t−1|t−1,Θ̃

+ L̃t

(

Cxt − Cx̂t|t−1,Θ̃ + Cx̂t|t−1,Θ̃ + zt

)

= (I − L̃tC̃t)(Ãt−1 − B̃t−1K̃t−1)x̂t−1|t−1,Θ̃

+ L̃t

(

Cxt − Cx̂t|t−1,Θ̃ + C(Ãt−1 − B̃t−1K̃t−1)x̂t−1|t−1,Θ̃ + zt

)

=
(

Ãt−1 − B̃t−1K̃t−1 − L̃t

(

C̃tÃt−1 − C̃tB̃t−1K̃t−1 − CÃt−1 + CB̃t−1K̃t−1

))

x̂t−1|t−1,Θ̃

+ L̃tC(xt − x̂t|t−1,Θ + x̂t|t−1,Θ − x̂t|t−1,Θ̃) + L̃tzt

=
(

Ãt−1 − B̃t−1K̃t−1 − L̃t

(

C̃tÃt−1 − C̃tB̃t−1K̃t−1 − CÃt−1 + CB̃t−1K̃t−1

))

x̂t−1|t−1,Θ̃

+ L̃tC(xt − x̂t|t−1,Θ) + L̃tC(x̂t|t−1,Θ − x̂t|t−1,Θ̃) + L̃tzt. (45)

Thus, the dynamics of x̂t|t,Θ̃ is governed by

Nt = Ãt−1 − B̃t−1K̃t−1 − L̃t

(

C̃tÃt−1 − C̃tB̃t−1K̃t−1 − CÃt−1 + CB̃t−1K̃t−1

)

and it is driven by the process of L̃tC(xt − x̂t|t−1,Θ) + L̃tC(x̂t|t−1,Θ − x̂t|t−1,Θ̃) + L̃tzt. Let Tu =

TB

(
2ζρ
1−ρ

)2
. With the Assumption 2.3, and for Tw ≥ Tu, we have that ‖C̃t − C‖ ≤ 1−ρ

2ζρ which gives

‖Nt‖ ≤ 1+ρ
2 < 1 for all t ≥ Tw. Similar to the proof of Lemma 4.2 in [Lale et al., 2020], we have

that L̃tC(xt− x̂t|t−1,Θ)+ L̃tzt is ζ(‖C‖‖Σ‖1/2+σz)-sub-Gaussian, thus it’s ℓ2-norm can be bounded
using Lemma H.1:

‖L̃tC(xt − x̂t|t−1,Θ) + L̃tzt‖ ≤ ζ(‖C‖‖Σ‖1/2 + σz)
√

2n log(2nT/δ)

for all t ≥ Tw with probability at least 1− δ. A special care is needed for x̂t|t−1,Θ− x̂t|t−1,Θ̃. Denote
∆t = x̂t|t−1,Θ − x̂t|t−1,Θ̃. Consider the decomposition given in equation (51) in Lale et al. [2020].
In this setting, since at each time step after the warm-up, the estimation errors are monotonically
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decreasing, therefore we can upper bound the norm of each term in the decomposition by the norm
of the term at the time of end of warm-up. Let

Tα=TB

(
Γ (1 + ζ(1 + ‖C‖))

σ − υ

)2

, Tγ = TA
σ2
n(Ā)

4

(
1 + Γ(1 + ζ‖B‖)

σ − ρ

)2

,

Tβ=TA
σ2
n(Ā)

4

(
Γ‖B‖(1+ζ+ζ‖C‖)(Φ(A)ζ+(1+Γ)(1+ζ))

(1− σ)2

)2

. (46)

Thus, using the arguments in Lale et al. [2020], we can show that after a warm-up period of
Tw ≥ max{Tα, Tγ}, we have that for all t ≥ Tw, max{‖(A+(Ãt−A− B̃tK̃t+BK̃t))(I−L̃tC̃t)‖, ‖A−
BK̃t+BK̃tL̃t(C̃t−C)‖} ≤ σ < 1. Using the inductive argument given in [Lale et al., 2020], we can
show that for all t ≥ Tw ≥ Tβ , ‖∆t‖ ≤ ∆̄ with probability 1 − δ. Notice that the definition of ∆̄
still includes the same terms given in equation (54) of Lale et al. [2020] but βA, βB , βC is replaced
with βA(Tw), βB(Tw), βC(Tw) and ∆L is replaced by 2βL(Tw) due to new estimation method, i.e.,

∆̄ = 10

(
κ̄

1− σ
+

β̄ξ̄

(1− σ)2

)(

‖C‖‖Σ‖1/2 + σz

)√

2m log(2mT/δ)

for κ̄ = 2Φ(A)βL(Tw) + 2ζ(βA(Tw) + ΓβB(Tw)), β̄ = 2ζβC(Tw)(Φ(A) + 2(βA(Tw) + ΓβB(Tw))) +
2(βA(Tw) + ΓβB(Tw)) and ξ̄ = ζ(ρ+ 2(βA(Tw) + ΓβB(Tw))) + 2‖B‖ΓβL(Tw). Thus, we get

‖x̂t|t,Θ̃‖ =

∥
∥
∥
∥
∥

t∑

i=1

N
t−i
(

L̃iC(xi−1 − x̂i|i−1,Θ) + L̃iC(x̂i|i−1,Θ − x̂i|i−1,Θ̃) + L̃izi

)
∥
∥
∥
∥
∥

(47)

≤ max
1≤i≤t

∥
∥
∥L̃iC(xi−1 − x̂i|i−1,Θ) + L̃iC(x̂i|i−1,Θ − x̂i|i−1,Θ̃) + L̃izi

∥
∥
∥

(
t∑

i=1

‖M‖t−i

)

(48)

≤ 2

1− ρ
max
1≤i≤t

∥
∥
∥L̃iC(xi−1 − x̂i|i−1,Θ) + L̃iC(x̂i|i−1,Θ − x̂i|i−1,Θ̃) + L̃izi

∥
∥
∥ (49)

≤ X̃ :=
2ζ
(

‖C‖∆̄ +
(
‖C‖‖Σ‖1/2 + σz

)√

2n log(2nT/δ)
)

1− ρ
. (50)

with probability 1− 2δ. For yt, we have the following decomposition,

yt = Cx̂t|t−1,Θ̃ + C(xt − x̂t|t−1,Θ̃) + zt

= Cx̂t|t−1,Θ̃ + C(xt − x̂t|t−1,Θ) + C(x̂t|t−1,Θ − x̂t|t−1,Θ̃) + zt

= C(Ãt−1 − B̃t−1K̃t−1)x̂t−1|t−1,Θ̃ + C(xt − x̂t|t−1,Θ) + C(x̂t|t−1,Θ − x̂t|t−1,Θ̃) + zt

Using similar analysis with x̂t|t,Θ̃, we get the following bound for yt for all t ≥ Tw:

‖yt‖ ≤ ρ‖C‖X̃ + (‖C‖‖Σ‖1/2 + σz)
√

2m log(2mT/δ) + ‖C‖∆̄

with probability 1 − 2δ. Thus, all three statements of Lemma 4.1 hold with probability at least
1− 3δ. �
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E Regret Decomposition

Recall the following lemma from [Lale et al., 2020] on the Bellman optimality equation for LQG:

Lemma E.1 (Bellman Optimality Equation for LQG [Lale et al., 2020]). Given state estimation
x̂t|t−1 ∈ R

n and an observation yt ∈ R
m pair at time t, Bellman optimality equation of average cost

per stage control of LQG system Θ = (A,B,C) with regulating parameters Q and R is

J∗(Θ) + x̂⊤t|t
(

P − C⊤QC
)

x̂t|t + y⊤t Qyt = min
u

{

y⊤t Qyt + u⊤Ru (51)

+ E

[

x̂u⊤t+1|t+1

(

P − C⊤QC
)

x̂ut+1|t+1 + yu⊤t+1Qyut+1

]}

where P is the unique solution to DARE of Θ, x̂t|t = (I − LC)x̂t|t−1 + Lyt, y
u
t+1 = C(Axt + Bu+

wt) + zt+1, and x̂ut+1|t+1 = (I − LC) (Ax̂t|t + Bu) + Lyut+1. The equality is achieved by the optimal
controller of Θ.

Using Lemma E.1 for the optimistic system at time t, we derive the instantaneous regret decom-
position at time t with the following expressions:

x̂t|t,Θ̃t
=
(

I − L̃tC̃t

)

x̂t|t−1 + L̃tyt (52)

yt+1,Θ̃t
= C̃t

(

Ãt − B̃tK̃t

)

x̂t|t,Θ̃t
+ C̃tÃt

(

xt − x̂t|t,Θ̃t

)

+ C̃twt + zt+1 (53)

x̂t+1|t+1,Θ̃t
=
(

Ãt − B̃tK̃t

)

x̂t|t,Θ̃ + L̃tC̃tÃt

(

xt − x̂t|t,Θ̃

)

+ L̃tC̃twt + L̃tzt+1 (54)

yt+1,Θ = CAx̂t|t,Θ̃ − CBK̃tx̂t|t,Θ̃ + Cwt + CA(xt − x̂t|t,Θ̃) + zt+1 (55)

x̂t+1|t+1,Θ = (I − LC)(Ax̂t|t,Θ −BK̃tx̂t|t,Θ̃) + Lyt+1,Θ (56)

= (I − LC)(A−BK̃t)x̂t|t,Θ̃ + (I − LC)A(x̂t|t,Θ − x̂t|t,Θ̃) + Lyt+1,Θ (57)

= (I − LC)(A−BK̃t)x̂t|t,Θ̃ + LC(A−BK̃)x̂t|t,Θ̃ + LCwt + LCA(xt − x̂t|t,Θ̃)

+ (I − LC)A(x̂t|t,Θ − x̂t|t,Θ̃) + Lzt+1 (58)

= (A−BK̃t)x̂t|t,Θ̃+LCwt+LCA(xt−x̂t|t,Θ̃t
)+(I−LC)A(x̂t|t,Θ−x̂t|t,Θ̃t

)+Lzt+1. (59)

Note that these expressions are the time varying counterparts for the same expressions in
Lale et al. [2020]. Thus, the regret decomposition is similar to the regret decomposition derived
in Lale et al. [2020], but with some changes. Since we are updating the optimistic choices during
the adaptive control each regret term is written using the expressions given (52)-(59). This brings
the only significant change in term R1 in the regret decomposition of Lale et al. [2020]. In order to
analyze the effect of policy changes and obtain a similar analysis for R1, we obtain these two terms:

R1 =

T∑

t=1

{

x̂⊤
t|t,Θ̂

(

P̃t − C̃⊤
t QC̃t

)

x̂t|t,Θ̂−E

[

x̂⊤t+1|t+1,Θ

(

P̃t+1 − C̃⊤
t+1QC̃t+1

)

x̂t+1|t+1,Θ

∣
∣
∣x̂t|t−1, yt, ut

]}

Rupdate =

T∑

t=1

E

[

x̂⊤t+1|t+1,Θ

(

(P̃t − C̃⊤
t QC̃t)− (P̃t+1 − C̃⊤

t+1QC̃t+1)
)

x̂t+1|t+1,Θ

∣
∣
∣x̂t|t−1, yt, ut

]
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Therefore, due to Lemma 4.1, the overall regret decomposition can be represented as

T∑

t=1

(

y⊤t Qyt+u⊤t Rut

)

=
T∑

t=1

J∗(Θ̂)+R1+R2−R3−R4−R5−R6−R7−R8−R9−R10−R11 −Rupdate

≤ TJ∗(Θ)+R1+R2−R3−R4−R5−R6−R7−R8−R9−R10−R11−Rupdate

(60)

for

R2=
T∑

t=1

{

y⊤t Qyt − E

[

y⊤t+1,ΘQyt+1,Θ

∣
∣
∣x̂t|t−1, yt, ut

]}

,

R3=

T∑

t=1

{

x̂⊤
t|t,Θ̂(Ãt − B̃tK̃t)

⊤C̃⊤
t QC̃t(Ãt − B̃tK̃t)x̂t|t,Θ̂ − x̂⊤

t|t,Θ̂(A−BK̃t)
⊤C⊤QC(A−BK̃t)x̂t|t,Θ̂

}

,

R4=

T∑

t=1

{

x̂⊤
t|t,Θ̂(Ãt−B̃tK̃t)

⊤(P̃t−C̃⊤
t QC̃t)(Ãt−B̃tK̃t)x̂t|t,Θ̂−x̂⊤

t|t,Θ̂(A−BK̃t)
⊤(P̃t − C̃⊤

t QC̃t)(A−BK̃t)x̂t|t,Θ̂

}

,

R5=−
T∑

t=1

{

2x̂⊤
t|t,Θ̂(A−BK̃t)

⊤(P̃t − C̃⊤
t QC̃t)(I − LC)A(x̂t|t,Θ − x̂t|t,Θ̂)

}

,

R6=−
T∑

t=1

{

(x̂t|t,Θ − x̂t|t,Θ̂)
⊤A⊤(I − LC)⊤(P̃t − C̃⊤

t QC̃t)(I − LC)A(x̂t|t,Θ − x̂t|t,Θ̂)
}

,

R7=

T∑

t=1

{

E

[

w⊤
t C̃

⊤
t QC̃twt

]

− E

[

w⊤
t C

⊤QCwt

]}

,

R8=
T∑

t=1

{

E

[

w⊤
t C̃

⊤
t L̃

⊤
t

(

P̃t − C̃⊤
t QC̃t

)

L̃tC̃twt

]

− E

[

w⊤
t C

⊤L⊤
(

P̃t − C̃⊤
t QC̃t

)

LCwt

]}

,

R9=

T∑

t=1

{

E

[(

xt − x̂t|t,Θ̂

)⊤
Ã⊤

t C̃
⊤
t QC̃tÃt

(

xt − x̂t|t,Θ̂

) ∣
∣
∣x̂t|t−1, yt

]

− E

[(

xt − x̂t|t,Θ̂

)⊤
A⊤C⊤QCA

(

xt − x̂t|t,Θ̂

) ∣
∣
∣x̂t|t−1, yt

]}

,

R10=

T∑

t=1

{

E

[(

xt − x̂t|t,Θ̂

)⊤
Ã⊤

t C̃
⊤
t L̃

⊤
t

(

P̃t − C̃⊤
t QC̃t

)

L̃tC̃tÃt

(

xt − x̂t|t,Θ̂

) ∣
∣
∣x̂t|t−1, yt

]

− E

[(

xt − x̂t|t,Θ̂

)⊤
A⊤C⊤L⊤

(

P̃t − C̃⊤
t QC̃t

)

LCA
(

xt − x̂t|t,Θ̂

) ∣
∣
∣x̂t|t−1, yt

]}

,

R11=
T∑

t=1

{

2E
[

z⊤t+1L
⊤
(

P̃t−C̃⊤
t QC̃t

)

(L̃t−L)zt+1

]

+E

[

z⊤t+1(L̃t−L)⊤
(

P̃t−C̃⊤
t QC̃t

)

(L̃t−L)zt+1

]}

,

where (60) follows due to optimistic choice of system parameters. This gives us the following regret
decomposition for the adaptive control period of LqgOpt:

REGRET(T ) ≤ R1 +R2 −R3 −R4 −R5 −R6 −R7 −R8 −R9 −R10−R11 −Rupdate. (61)
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F Regret Analysis, Proof of Theorem 4.1

Notice that R1 − R11 given above have the same properties of R1 − R11 of Lale et al. [2020]. The
only difference is that during the adaptive control period of LqgOpt, the agent updates its estimate
of the underlying system using the doubling trick mentioned in the main text and in Algorithm 1.
Therefore, with probability at least 1− 5δ, the regret of each term has the following structure,

Ri = Õ
(

Tw√
Tw

+
2Tw√
2Tw

+
4Tw√
4Tw

+ . . .

)

for i = 1, 3 . . . , 11. Since R2 = Õ(
√
T − Tw) and using Lemma H.2, we get that Ri = Õ

(√
T
)

for i =

1, . . . , 11 with probability at least 1− 5δ. Notice that there are log(T ) policy changes, i.e. there are

log(T ) terms in the summation of Rupdate. Each term is bounded by 2
(

D+‖Q‖ (‖C‖+∆C)2
)

X̃ 2.

Thus, we have |R2| ≤ 2
(

D+‖Q‖ (‖C‖+∆C)2
)

X̃ 2 log(T ) = O(log(T )). Combining all, we conclude

that during the adaptive control period of LqgOpt REGRET(T ) = Õ
(√

T
)

.

�

G System Identification with Non-Steady State Initial Point

xt+1 = Ātxt +But +ALtyt

yt = Cxt + et. (62)

where Āt = A − ALtC. If the system is at steady state, i.e. Lt = L = ΣC⊤ (CΣC⊤ + σ2
zI
)−1

.
Since the system is stable, the dynamics of the system approaches exponentially fast to the steady
state dynamics. Therefore, starting at x0 = 0 and with a long enough burning period such that
‖Ft − F‖ = O

(
1

poly(T )

)

, starting from arbitrary point will provide additional bias term in the
estimation which decays over time:

yH = MφH + eH + (MH −M)φH

yH+1 = MφH+1 + eH+1 + (MH+1 −M)φH+1 + C

(
H∏

i=1

ĀH+1−i

)

x1

...

yt = Mφt + et + (Mt −M)φt + C

(
H∏

i=1

Āt−i

)

xt−H

where

M =
[
CF, CĀF, . . . , CĀH−1F, CB, CĀB, . . . , CĀH−1B

]
∈ R

m×(m+p)H

Mt=

[

CFt−1, CĀt−1Ft−2, . . . , C

(
H−1∏

i=1

Āt−i

)

Ft−H , CB, CĀt−1B, . . . , C

(
H−1∏

i=1

Āt−i

)

B

]
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φt =
[

y⊤t−1 . . . y
⊤
t−H u⊤t−1 . . . u⊤t−H

]⊤
∈ R

(m+p)H

Note that for any t, Mt − M represents the model mismatch from the steady-state model
parameters and the parameters of the evolving system. The noise terms are zero-mean including
the effect of initial state since we assume that x0 = 0. The model mismatch combined with the
upper bound on φt can be used to define the additional bias in the estimation. Notice that this bias
will decrease over time since the system approaches exponentially fast to the steady state dynamics.
We leave the exact analysis to future work.

H Technical Lemmas and Theorems

Theorem H.1 (Matrix Azuma [Tropp, 2012]). Consider a finite adapted sequence {Xk} of self-
adjoint matrices in dimension d, and a fixed sequence {Ak} of self-adjoint matrices that satisfy

Ek−1Xk = 0 and A
2
k � X

2
k almost surely.

Compute the variance parameter

σ2 :=

∥
∥
∥
∥
∥

∑

k

A
2
k

∥
∥
∥
∥
∥

Then, for all t ≥ 0

P

{

λmax

(
∑

k

Xk

)

≥ t

}

≤ d · e−t2/8σ2

Theorem H.2 (Self-normalized bound for vector-valued martingales [Abbasi-Yadkori et al., 2011]).
Let (Ft; k ≥ 0) be a filtration, (mk; k ≥ 0) be an R

d-valued stochastic process adapted to (Fk) , (ηk; k ≥ 1)
be a real-valued martingale difference process adapted to (Fk) . Assume that ηk is conditionally sub-
Gaussian with constant R. Consider the martingale

St =
t∑

k=1

ηkmk−1

and the matrix-valued processes

Vt =

t∑

k=1

mk−1m
⊤
k−1, V t = V + Vt, t ≥ 0

Then for any 0 < δ < 1, with probability 1− δ

∀t ≥ 0, ‖St‖2V −1
t

≤ 2R2 log

(

det
(
V t

)1/2
det(V )−1/2

δ

)

Lemma H.1 (Norm of a subgaussian vector [Abbasi-Yadkori and Szepesvári, 2011]). Let v ∈ R
d be

a entry-wise R-subgaussian random variable. Then with probability 1− δ, ‖v‖ ≤ R
√

2d log(2d/δ).
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Lemma H.2 (Doubling Trick [Jaksch et al., 2010]). For any sequence of numbers z1, . . . , zn with

0 ≤ zk ≤ Zk−1 := max
{

1,
∑k−1

i=1 zi

}

n∑

k=1

zk
√

Zk−1

≤ (
√
2 + 1)

√

Zn
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