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The follow sections act as supplementary details of content introduced in the main text. The 
data was gathered over three separate sample cool-downs. 

1. Sample and measurement details 

2. Examination of the Shubnikov-de Haas oscillations  

3. Hysteric features at high T 

4. Energy scales in the ZnO 2DES: electrons and composite fermions 

5. Temperature dependent magnetotransport 

6. Waterfall representation of tilt angle dependent transport data 

7. Isotropy of the magnetotransport 

 

1. Sample and measurement details 

The MgZnO/ZnO heterostructure of charge density ne = 2.3 × 1011 cm-2 and zero-field 

mobility e = 530,000 cm2/Vs was fabricated by molecular beam epitaxy33 using Zn-polar 

single crystal ZnO substrates (Tokyo Denpa), 7N5 Zn and 6N Mg metallic sources and 

oxygen species provided from distilled liquid ozone (Meidensha). The growth temperature 

was TG = 750°C, and the Mg content is estimated to be roughly 1%. The liquid nitrogen 

cooled chamber has a base pressure of 1 × 10-8 Pa, with the pressure rising to 10-5 Pa order 

during growth. Growth conditions were highly Zn rich with a Zn flux of 1 × 10-3 Pa, as 
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measured by a beam flux monitor. The growth rate was 800nm/hour, with a film thickness of 

300nm MgZnO/500nm ZnO. A roughly 4 × 4 mm2 chip was cut from the grown wafer and 

eight indium contacts were soldered at the sample edges. This system is observed to 

spontaneously form a 2DES in ZnO at the heterointerface, without the need for remote 

modulation doping or electrostatic gating. The width of the wavefunction within ZnO in the 

growth direction is estimated to be on the order of 5nm, as measured by capacitance 

experiments34 and supported by numerical calculations35. This is expected to lead to a 

relatively reduced coupling of the 2DES with an in-plane magnetic field compared to 

quantum wells (30 ~ 40nm in width) commonly used in GaAs heterostructures23,27,36 to 

investigate e = 5/2. In those systems, it is established that when the in-plane magnetic length 

becomes comparable to the 2DES width the stability of FQH states is significantly affected. 

Accordingly, in ZnO this effect is expected to be less acute. The magnetotransport studies 

were performed in van der Pauw geometry using low frequency lock-in techniques with an 

excitation current of 10 nA. The sample was loaded on a quasi-frictionless in-situ rotating 

stage in a top-loading-into-mixture dilution refrigerator with a base temperature T < 20mK to 

allow for tilted field studies.  

  

2. Examination of the Shubnikov-de Haas oscillations 

 

A magnified view of the low field Shubnikov-de Haas oscillations is provided in Fig. S1. 

Minima corresponding to even filling factors are indicated by the red guide-line and odd by 

blue. The superior stability of odd filling factors when going to lower B suggests Ez > Ecyc/2, 

and hence LL of different orbital number to be closer than of the same. The occupation of 

two subbands can normally be detected as a beating in low field Shubnikov – de Haas 

oscillations. As shown in Fig. S1, such a signature is however absent both in the raw data as 

well as their Fourier transform (see inset), suggesting this degree of freedom does not exist in 

the system under investigation. 
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Figure S1: Magnification of low field Shubnikov-de Haas oscillations with minima at even 
(red) and odd (blue) filling factors indicated. Signatures of beating are absent. Inset: The 
Fourier transform of Shubnikov-de Haas oscillations reveals two primary single peaks 
corresponding to non-spin split (open triangle) and spin-split (solid square) oscillation 
frequencies. Weak harmonics are observed for higher frequencies. 

 

3. Hysteric features at high T 

 

At high T = 600 mK, the high resistance pocket observed on the flank of the e = 2 integer 

quantum Hall state displays sweep direction dependent hysteric magnetoresistance (sweep 

rate = 100 mT/min), as shown in Fig. S2. This behavior shares similarities to the resistance 

spikes observed in both our previous work37 and in AlAs based 2DES, suggesting remnant 

magnetism due to spontaneous symmetry breaking in the vicinity24,25.  

 

Figure S2: Sweep direction dependent transport at high T ~ 600mK revealing hysteretic 
features for intermediate tilt angles. 

2	 NATURE PHYSICS | www.nature.com/naturephysics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS

© 2015 Macmillan Publishers Limited. All rights reserved



2 
 

measured by a beam flux monitor. The growth rate was 800nm/hour, with a film thickness of 

300nm MgZnO/500nm ZnO. A roughly 4 × 4 mm2 chip was cut from the grown wafer and 

eight indium contacts were soldered at the sample edges. This system is observed to 

spontaneously form a 2DES in ZnO at the heterointerface, without the need for remote 

modulation doping or electrostatic gating. The width of the wavefunction within ZnO in the 

growth direction is estimated to be on the order of 5nm, as measured by capacitance 

experiments34 and supported by numerical calculations35. This is expected to lead to a 

relatively reduced coupling of the 2DES with an in-plane magnetic field compared to 

quantum wells (30 ~ 40nm in width) commonly used in GaAs heterostructures23,27,36 to 

investigate e = 5/2. In those systems, it is established that when the in-plane magnetic length 

becomes comparable to the 2DES width the stability of FQH states is significantly affected. 

Accordingly, in ZnO this effect is expected to be less acute. The magnetotransport studies 

were performed in van der Pauw geometry using low frequency lock-in techniques with an 

excitation current of 10 nA. The sample was loaded on a quasi-frictionless in-situ rotating 

stage in a top-loading-into-mixture dilution refrigerator with a base temperature T < 20mK to 

allow for tilted field studies.  

  

2. Examination of the Shubnikov-de Haas oscillations 

 

A magnified view of the low field Shubnikov-de Haas oscillations is provided in Fig. S1. 

Minima corresponding to even filling factors are indicated by the red guide-line and odd by 

blue. The superior stability of odd filling factors when going to lower B suggests Ez > Ecyc/2, 

and hence LL of different orbital number to be closer than of the same. The occupation of 

two subbands can normally be detected as a beating in low field Shubnikov – de Haas 

oscillations. As shown in Fig. S1, such a signature is however absent both in the raw data as 

well as their Fourier transform (see inset), suggesting this degree of freedom does not exist in 

the system under investigation. 

 

3 
 

 

Figure S1: Magnification of low field Shubnikov-de Haas oscillations with minima at even 
(red) and odd (blue) filling factors indicated. Signatures of beating are absent. Inset: The 
Fourier transform of Shubnikov-de Haas oscillations reveals two primary single peaks 
corresponding to non-spin split (open triangle) and spin-split (solid square) oscillation 
frequencies. Weak harmonics are observed for higher frequencies. 

 

3. Hysteric features at high T 

 

At high T = 600 mK, the high resistance pocket observed on the flank of the e = 2 integer 

quantum Hall state displays sweep direction dependent hysteric magnetoresistance (sweep 

rate = 100 mT/min), as shown in Fig. S2. This behavior shares similarities to the resistance 

spikes observed in both our previous work37 and in AlAs based 2DES, suggesting remnant 

magnetism due to spontaneous symmetry breaking in the vicinity24,25.  

 

Figure S2: Sweep direction dependent transport at high T ~ 600mK revealing hysteretic 
features for intermediate tilt angles. 

NATURE PHYSICS | www.nature.com/naturephysics	 3

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS

© 2015 Macmillan Publishers Limited. All rights reserved



4 
 

4. Energy scales in the ZnO 2DES 

 

Electrons 

Here we explore quantitatively the energy scales of electrons in the heterostructure under 

investigation. Firstly, the electron spin susceptibility, 𝑔𝑔𝑒𝑒∗𝑚𝑚𝑒𝑒
∗/𝑚𝑚0 , is addressed through the 

observation of electron level coincidences as a function of increasing tilt.  

Coincidence positions obey the relationship 

𝑔𝑔𝑒𝑒∗𝑚𝑚𝑒𝑒
∗

2𝑚𝑚0 cos(𝜃𝜃) = 𝑗𝑗𝑒𝑒 

where  indicates the tilt angle at which the coincidence occurs, and je is the index difference 

between the crossing electron LLs. Through the remainder of this section we simplify the 

notation by referring to 𝑚𝑚𝑒𝑒
∗/𝑚𝑚0 as 𝑚̅𝑚𝑒𝑒

∗ . 

 

 

Figure S3: a, Magnetotransport data recorded at 400 mK as a function of filling factor and 
tilt angle. The Landau level number and spin orientation of the partially filled level at the 
chemical potential in the different low and high resistance regions are indicated by the red 
and orange lines. Some coincidence positions, characterized by the difference in the orbital 
index of the two levels involved, je, are indicated by white circles. b, 1/cos() of the 
identified transitions as a function of je. The slope reflects the 𝑔𝑔𝑒𝑒∗𝑚̅𝑚𝑒𝑒

∗ of the system.  

 

The magnetotransport data used for this analysis are shown in Fig. S3a as a function of e and 

. In this representation, distinct regions of ‘high’ and ‘low’ resistances are seen depending 

on the spin orientation of the partially occupied LL at the chemical potential. This is a 
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reproducible character of ZnO magnetotransport38. The resistance is high (low) when the 

partially filled level possesses the majority (minority) spin orientation, i.e. spin up (down). 

The transitions between these cases are then interpreted as a level crossing, and some of these 

are marked by white circles in panel a. Here, note that the first LL coincidence position is 

evaluated at  ~ 24o. The angle at which these transitions occur are plotted as a function of je 

in Fig. S3b. Enforcing a linear relationship passing through the origin between the je indices 

and 1/cos(), as described by the above expression, yields a value of 𝑔𝑔𝑒𝑒∗𝑚̅𝑚𝑒𝑒
∗  equal to 1.9 as a 

best fit to the data. This magnitude of 𝑔𝑔𝑒𝑒∗𝑚̅𝑚𝑒𝑒
∗ confirms that at zero tilt LL with opposite spin 

and different orbital index are closer to each other than opposite spin branches of one and the 

same LL.  The ratio of enhancement, 𝑔𝑔𝑒𝑒∗𝑚𝑚𝑒𝑒
∗ 𝑔𝑔𝑏𝑏𝑚𝑚𝑏𝑏

∗⁄  equals 3.3, consistent with previous 

studies37. 

 

 

Figure S4: a, Temperature dependence of Shubnikov-de Haas oscillations.  
b, Analysis of the effective mass. 

 

To determine the effective mass of electrons (𝑚𝑚𝑒𝑒
∗), the temperature dependence of low field 

Shubnikov de Haas (SdH) oscillations is investigated close to the first coincidence point of  

~ 24o as shown in Fig. S4. Here, spin split levels are nearly degenerate and therefore the 

damping of the SdH oscillations primarily reflects the cyclotron energy of the system, and 

hence effective mass. The analysis is performed using the following Dingle expression for 

temperature ranges where spin splitting is still not resolved: 

Δ𝑅𝑅𝑥𝑥𝑥𝑥
𝑅𝑅0

= 4𝜒𝜒exp (−𝜋𝜋 𝜔𝜔𝑐𝑐𝜏𝜏𝑞𝑞)/⁄ sinh𝜒𝜒 

In this expression, 𝜒𝜒 = 2𝜋𝜋2𝑘𝑘𝐵𝐵𝑇𝑇 ℏ𝜔𝜔𝑐𝑐⁄  and 𝜔𝜔𝐶𝐶 =  𝑒𝑒𝐵𝐵𝑝𝑝 𝑚𝑚𝑒𝑒
∗⁄ . 
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The analysis yields a value 𝑚𝑚𝑒𝑒
∗ = 0.44𝑚𝑚0 ± 0.01 , consistent with previous work39. This 

allows us to determine 𝑔𝑔𝑒𝑒∗ = 4.3 and leads to a cyclotron energy of Ecyc = 3.1Bp (K) and a 

Zeeman energy of EZ = 2.9Bt (K).  

Utilizing these single particle energy levels we can anticipate what orbital character and 

physics (based on past GaAs experiments) is expected for each partial filling factor at zero tilt. 

The real observations of this work are noted in the right column. 

 

Table S1: Summary of expected and observed behavior at half fillings of LL including level 
ordering schematics. Grey shaded panels represent the series observed in experiment. 

 

Finally, we can quantify , the ratio of the Coulomb energy to the cyclotron energy from 

which the magnitude of Landau level mixing can be inferred in this system: 

κ = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐

 

=
𝑒𝑒2 4𝜋𝜋𝜋𝜋𝑙𝑙𝐵𝐵⁄
ℏ𝑒𝑒𝐵𝐵𝑝𝑝

𝑚𝑚𝑒𝑒∗
⁄
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Here,  is the material’s dielectric constant (= 8.5 in ZnO) and lB is the magnetic length, 

√ℏ 𝑒𝑒𝑒𝑒𝑝𝑝⁄ . Table S2 summarizes the magnitude of key sample parameters. For all calculations, 

the measured effective mass 𝑚𝑚𝑒𝑒
∗ = 0.44𝑚𝑚0 has been used. 

Electron spin susceptibility, 𝑔𝑔𝑒𝑒∗𝑚̅𝑚𝑒𝑒
∗   1.9 

Enhancement of spin susceptibility, 𝑔𝑔𝑒𝑒∗𝑚𝑚𝑒𝑒
∗ 𝑔𝑔𝑏𝑏𝑚𝑚𝑏𝑏

∗⁄  3.3 

Electron effective mass, 𝑚𝑚𝑒𝑒
∗  0.44𝑚𝑚0 

Electron g-factor, 𝑔𝑔𝑒𝑒∗ 4.3 

Landau level mixing,  16.5 @ Bp = 2.1T (e = 9/2) 

14.5 @ Bp = 2.7T (e = 7/2) 

9.7 @ Bp = 6.2T (e = 3/2) 

Transport scattering time tr ~ 130 ps 

Quantum scattering time, q ~ 8 ps 

Wigner-Seitz radius, rs 11.6 

 

Table S2: Summary of key sample parameters. 

 

Composite fermions 

We may quantify the effective mass of CF (𝑚𝑚𝐶𝐶𝐶𝐶
∗ ) via two methods – analyzing the damping 

of oscillations centered on e = 3/2 through the analogy of Shubnikov-de Haas oscillations of 

CF, or alternatively by activation energy measurements in Fig. S5. For the latter method, the 

data used for this analysis is presented in Fig. S10, where the rotation angle   = 0º. 

Shubnikov-de Haas analysis:  

Previous studies have focused on CF at e = 1/2 and the oscillations centered there39,40,41.  

Here, we in analogy analyze the oscillations centered on e = 3/2. The amplitude of 

oscillations is analyzed according to the Dingle expression: 

Δ𝑅𝑅𝑥𝑥𝑥𝑥
𝑅𝑅0

= 4𝜒𝜒exp (−𝜋𝜋 𝜔𝜔𝐶𝐶𝐶𝐶𝜏𝜏𝑞𝑞)/⁄ sinh𝜒𝜒 
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Where 𝜒𝜒 = 2𝜋𝜋2𝑘𝑘𝐵𝐵𝑇𝑇 ℏ𝜔𝜔𝐶𝐶𝐶𝐶⁄  and 𝜔𝜔𝐶𝐶𝐶𝐶 =  𝑒𝑒𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 𝑚𝑚𝐶𝐶𝐶𝐶,𝑆𝑆𝑆𝑆𝑆𝑆
∗⁄  now includes the CF effective mass, 

and represents the energy separation between CF levels in the effective magnetic field Beff. 

The result of this analysis for strong fractional states is shown in Fig. S5. Focusing on the x/3 

and x/5 states, the mass is seen to increase linearly through the relationship:  

𝑚𝑚𝐶𝐶𝐶𝐶,𝑆𝑆𝑆𝑆𝑆𝑆
∗ = 1.3𝑚𝑚0 + 0.1𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 

This allows us to estimate the effective mass at filling 3/2 when Beff = 0:  𝑚𝑚𝐶𝐶𝐶𝐶,3/2
∗  = 1.3 m0. 

We note that the x/7 states deviate from this relationship. This may reflect the development of 

divergent behavior when approaching half filling, as seen in previous works40,41. 

Activation energy analysis: 

An alternative means for estimating the effective mass of composite fermions is the 

determination of the cyclotron energy gap through an activation energy analysis for the 

fractional states. The temperature dependent transport is shown in Fig. S10. The activation 

energy can be written as: 
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Here,  is a measure of the disorder. The analysis is shown in the bottom panel of Fig. S5. A 

roughly linear dependence of the activation energy of fractional states is seen to emanate 

from e = 3/2 with a negative intercept of . The slope represents the increasing cyclotron 

gap of composite fermions with increasing Beff and allows the extraction of the effective 

mass. It is found to be 1.1 m0 for negative Beff and 1.7 m0 for positive Beff. These values are in 

reasonable agreement with the values gained from the previous Dingle analysis.  
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associated with electron level A and B are denoted by level index ACF and BCF, running 

0,1,2… etc. The spin of CFs is inherently that of the host electron LL.  Since the orbital index 

of the underlying electron level differs, the composite fermions occupying the two different 

CF fans may possess a different mass. This has been taken into account by adding the label X 

to 𝑚𝑚𝐶𝐶𝐶𝐶,𝑋𝑋
∗  and ℏ𝜔𝜔𝐶𝐶𝐶𝐶,𝑋𝑋. Levels exchange position whenever the energy difference E between 

the electron levels A and B equals the difference in the orbital quantization energy of the CF 

levels: 

∆𝐸𝐸 = 𝐴𝐴𝐶𝐶𝐶𝐶 ∙ ℏ𝜔𝜔𝐶𝐶𝐶𝐶,𝐴𝐴 − 𝐵𝐵𝐶𝐶𝐶𝐶 ∙ ℏ𝜔𝜔𝐶𝐶𝐶𝐶,𝐵𝐵   (1). 

For unequal effective masses of the two CF level fans, the number of available degrees of 

freedom in this equation to fit the experimental data and coincidences hampers a convincing 

identification of the quantum numbers of the levels involved at each crossing. In the 

remainder, we will assume identical CF effective masses. Even though this assumption 

cannot be justified a priori, it simplifies the analysis considerably and, as will be seen, still 

improves our understanding.    

 

As evident from Eq. 1 assuming ℏ𝜔𝜔𝐶𝐶𝐶𝐶,𝐴𝐴 = ℏ𝜔𝜔𝐶𝐶𝐶𝐶,𝐵𝐵 = ℏ𝜔𝜔𝐶𝐶𝐶𝐶 , all the crossing points for a fixed 

level index difference jCF = (ACF - BCF) should fall on a line when plotted in the (Bp,Bt)-plane 

We note that for unequal CF effective masses contours of constant jCF are curves rather than 

lines. In addition, strictly speaking the CF effective mass is not constant, but scales with the 

Coulomb interaction strength and hence also the square root of the perpendicular magnetic 

field. This too causes a deviation of contours of constant jCF from a straight line. However the 

mass correction across the relevant range of fields is small. It will be ignored for the moment 

and revisited below. These lines for different values of jCF should all pass through a common 

point located at Bp = Bp,3/2 where 𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒  and ℏ𝜔𝜔𝐶𝐶𝐶𝐶 equal 0 and a Bt for which E = 0, i.e. for 

which the electron LL A and B swap positions.  

 

When p CF levels are completely filled, the electron system condenses in a FQH state. Here, 

the series of fractional quantum Hall states will be described by e = 1 + 𝑝𝑝
2𝑝𝑝±1, since the 

lowest spin up level of Ne = 0 is energetically separated. This is in contrast to previous 

works28 which utilize e = 2 − 𝑝𝑝
2𝑝𝑝±1 . For the assignment chosen here, filling e = 4/3 

11 
 

corresponds to one completely filled composite fermion Landau level, whereas at e = 5/3 

two such levels are completely populated. Experimental evidence supporting this particular 

assignment is discussed below in conjunction with Fig. S8. For fractional quantum Hall states 

corresponding to p completely filled composite fermion levels, we will approach a number of 

level crossings as E is altered by tilting the sample. In Fig. S6c,d we have set p = 4 for 

illustrative purposes and display two different instances for positive and negative  . At the 

level crossing, the state undergoes a discrete shift in the ratio of occupied CF levels ACF:BCF 

(insert schematic of Fig. S6.c,d).  

When electron level A has not crossed electron level B, i.e.  > 0, jCF is larger than zero 

when a level crossing occurs. In general level coincidences will be either away from or at the 

Fermi energy.  For jCF ≥ p, the coincidences always occur above the Fermi energy and they 

should only affect Rxx weakly or not at all for these tilt angles. For 0 <  jCF < p there are level 

coincidences at or below the Fermi energy. Two cases can be distinguished. If p is odd 

(even), the Fermi level will be in a gap for coincidences with jCF odd (even) and a deep 

minimum in the longitudinal resistance is expected. In contrast, if jCF is even (odd), the Fermi 

level will be located at the coincidence instead resulting in a breakdown of the quantum Hall 

effect and a maximum in Rxx can be expected.  In Table S3 we summarize the crossing events 

for different values of p and jCF and classify them according to whether they appear at, above 

or away (i.e. below and above) from the Fermi energy. The thick line running through this 

table demarcates the boundary below which coincidences only occur above the Fermi energy. 

For one specific value of p = 4, we illustrate the classification of the coincidences for 

different values of jCF with energy level diagrams.  

The above considerations provide important guidelines for assigning the features marked in 

Fig. S6e to specific contours of constant jCF. To this end the features are plotted in the (Bp,Bt)-

plane in Fig. S7. The following criteria serve as an assessment of the quality of the fit:  

 for a constant jCF index line, the series of coincidences should oscillate between 

strong/weak, corresponding to transitions at/below the chemical potential. The strong 

minima in the longitudinal resistance are labelled by red squares in Fig. S6e and S7. 

 a complete breakdown of the fractional quantum Hall state must be associated with a 

transition at the chemical potential.  
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In order to obtain a reasonable agreement between the data and expression (1), the following 

assumptions are adopted: 

 𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚𝑚𝐶𝐶𝐶𝐶
∗

𝑚𝑚0
= 𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶

∗  is constant for each line of constant jCF, but is allowed to fluctuate 

between the different lines. 

 The origin (Beff = 0) is free to fluctuate between lines.  

 

 

Fig. S6: a & b, Schematic of electron LL (green outlined panels) sequence after and before 
coincidence. The insets schematically show the differing wave function between Ne = 0 and 1. 
c & d, Intersecting CF level fans (blue outlined panels) of the corresponding electron LLs A 
and B. When p (here 4 for illustrative purposes) CF LLs are completely filled the FQH effect 
arises. e, Tracking of the minima of FQH states centered on e = 3/2 for base temperature. 
Strong local maxima are indicated by black bars with weak local maxima by white bars. 
Strong minima noted by red boxes (see text). Scaling factor of each resistance trace is 
indicated by colored tags.  

 

13 
 

 

Table S3: Summary of expected spin transitions according to the model presented. Circles 
correspond to transitions expected at the Fermi energy. Crosses (X) correspond to level 
crossings away from the Fermi energy. Shaded squares represent strong features which are 
observed in the experimental transport data at the assigned jCF index position. The marker 
“(s)” Signifies spikes identifiable in transport at intermediate temperatures (see Fig. S8). The 
bold line marks the condition below which all transitions correspond to those above the Fermi 
energy.  The bottom set of level diagrams schematically display the evolution of transitions 
for p = 4 with changing jCF when gradually shifting CF occupation between A and B levels. 

 

These two final assumptions are not described by the simple schematic representation in Fig. 

S6. However, only with their inclusion the data points may be fit effectively, as per Fig. S7. 

Tracking each jCF index line, transitions may be seen to indeed oscillate between strong/weak, 

corresponding to transitions at/below the chemical potential. A good agreement is achieved 

supporting our assignment of the transitions. An alternative representation of the fit is shown 

in Fig. S8, where the jCF lines are overlaid on the transport presented in Fig. 4 of the main text. 

For the sake of completeness we do note that the fitting procedure is complicated somewhat 

by the fact that some features in Rxx associated with levels crossings are more apparent at 
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intermediate temperatures. A few discrete traces are show in Fig. S8b where T ~ 30 mK. 

They reveal a resistance spike in the e = 5/3 minimum ( ~ 32.5o), but not for e = 4/3. This a 

posteriori confirms the assignment of the series of FQH states being described by e = 1 +
𝑝𝑝

2𝑝𝑝±1 and e = 5/3 corresponding to a p = 2 filling, since only for this assignment a single level 

crossing with jCF > 0 is expected at the chemical potential for e = 5/3 and none for e = 4/3.  

As pointed out previously within the composite fermion model the effective mass of the 

quasiparticles should depend on the strength of the Coulomb interaction42, resulting in the 

relationship 𝑚𝑚𝐶𝐶𝐶𝐶
∗ ∝ √𝐵𝐵𝑝𝑝. In Fig. S7 and S8 we have included such a dependency into the 

𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶
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∗  ∝ √𝐵𝐵𝑝𝑝/√𝐵𝐵𝑝𝑝,3/2. This 

procedure evidently does not change the jCF indices resulting from the fitting procedure as the 

difference in Coulomb interaction strength over the magnetic fields probed (5.5 T < Bp < 6.9 

T) is only of the order of 10% of the total and such difference is within the bounds of 

experimental error in determining the points of coincidence.  

 

Fig. S7: Mapping of the local maxima in the (Bp,Bt)-plane for prominent FQH states. jCF 
index lines are overlaid. The solid lines do not include the magnetic field correction to the CF 
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7 5.6 8.6 
8 - 8.4 

Table S4: Summary of values of 𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶
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Fig. S8: a, Magnetotransport mapping (as shown in Fig. 4 of main text) around e = 3/2 with 
the jCF index transitions lines overlaid (solid lines without field correction, dotted lines with 
field correction to the CF effective mass). b Intermediate temperature (T ~ 30 mK) 
magnetotransport for discrete tilt angles with level crossing events highlighted by black 
arrows. These are enforced to correspond to level crossings at the chemical potential in the 
fitting procedure.  
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This fitting procedure allows the assignment of a jCF index for all transitions observed. Using 

this index inferred from the fit, it is possible to quantify 𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶
∗ for each state across the 

transitions. A crossing occurs with an index difference jCF between the two CF spin-split 

ladders emanating from the electron levels A and B under the condition, 

−𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚𝑚𝐶𝐶𝐶𝐶
∗ ∙ 𝐵𝐵𝑡𝑡 =  𝑗𝑗𝐶𝐶𝐶𝐶 ∙ 6𝑚𝑚0 ∙ (𝐵𝐵𝑝𝑝 − 𝐵𝐵𝑝𝑝,32

) − 2𝑚𝑚𝐶𝐶𝐶𝐶
∗ 𝑚𝑚0
𝑚𝑚𝑒𝑒∗

∙ 𝐵𝐵𝑝𝑝,       (2) 

It allows extracting 𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶
∗  for every FQH state of filling 𝑝𝑝 by plotting the 𝐵𝐵𝑡𝑡/𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 values at 

which a level coincidence for this filling is observed in experiment as a function of 𝑗𝑗𝐶𝐶𝐶𝐶. This 

has been done in Fig. S9 using the data in Fig. 4 of the main text and the transitions identified 

in Fig. S6 and S7. The slope of the linear fit to these data points for a given filling yields 

𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶
∗ , since all other quantities in the above expression are known. The final term 

determines only the offset, and is discarded in the analysis performed. The plotting of the 

data reveals two distinct slopes between data points across the set of transitions.  

 

Figure S9: a, Bt/Beff as a function of coincidence index, jCF for spin transitions of odd 
denominator FQH states. Points for different filling factors are vertically offset for visual 
clarity. Vertical black lines indicate the crossover between states mixed in Ne = 0 & 1 (left 
hand side) and fully polarized in Ne = 0 (right hand side). Two indicative linear slopes for 
these two regimes are shown. This slope reflects 𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶

∗ , as per the equation. b, 𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶
∗  as a 

function of Beff for prominent FQH states for transport fully polarized in Ne = 0 (black 
squares) and mixed in Ne = 0 & 1 (red circles). The table summarizes the numerical results of 
𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶

∗ .  
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Discussion: 

 Under the assumptions used in this analysis, it can be seen that the origin of jCF lines for 

positive and negative Beff is different. Moreover, a single origin for positive Beff may not 

be determined. This cannot be explained by the simple model invoked here. It suggests 

that a parameter, either E, 𝑔𝑔𝐶𝐶𝐶𝐶∗  or 𝑚𝑚𝐶𝐶𝐶𝐶
∗  is changing as a function of tilt or polarization. All 

lines are however seen to converge close to where the 3/2 state is observed. We note that in 

a two-component ground state scenario, these two electron spin levels may potentially 

form the two degrees of freedom required for the ground state.  

 We note that the activation energy measurements performed above yield an estimate of the 

activation mass of CF, which has been shown theoretically to differ from that polarization 

mass of CF42. Knowing that 𝑔𝑔𝑒𝑒∗  ~ 4.3 and that this is the same for CF,  the measured 

𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶
∗  also allows us to infer a value for the effective mass of CF from spin transitions, 

which is roughly  𝑚𝑚𝐶𝐶𝐶𝐶
∗  ≈ 1.5 𝑚𝑚0 when the transport is polarized in Ne = 0. Coincidently, 

we find the values gathered from spin transitions to be of similar magnitude to the 

activation mass (which too probes fully polarization in Ne = 0 at  = 0˚). 

 The analysis in Fig. S9 shows that 𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶
∗ is enhanced when rotating to higher tilt angles, 

or going to lower jCF index transitions. This is entirely consistent with transport occurring 

in the Ne = 1 LL, where the stability of odd denominator states is severely reduced (or 

alternatively the mass gets larger). This behavior is clearly observed in Fig S9 where the 

slope of the linear interpolations differs depending on whether the system is mixed in Ne = 

0 & 1 (left hand side of vertical line) or polarized in Ne = 0 (right hand side of vertical 

line). This behavior is also reflected in the activation energy analysis performed in Fig. 3c 

of the main text, where the x/3 and x/5 states significantly weaken after spin transitions to 

Ne = 1 nature occur. The enhancement of 𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶
∗ from this analysis is on the order of 

50%. 

 It is important to recognize that this is a common feature of odd-denominator states. This 

can be clearly seen in Figs. 1c and 4 of the main text where the x/11 and x/9 FQH states 

disappear as the 3/2-state emerges. This is particular noticeable on the low field side of e 

= 3/2, where the analysis suggests that the jCF = 0 transition occurs (i.e. electron LL swap 

position). Here, besides e = 5/3, no other odd-denominator state exists. This is however 

entirely conducive with transport in Ne = 1. 

16	 NATURE PHYSICS | www.nature.com/naturephysics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS

© 2015 Macmillan Publishers Limited. All rights reserved



16 
 

 

This fitting procedure allows the assignment of a jCF index for all transitions observed. Using 

this index inferred from the fit, it is possible to quantify 𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶
∗ for each state across the 

transitions. A crossing occurs with an index difference jCF between the two CF spin-split 

ladders emanating from the electron levels A and B under the condition, 

−𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚𝑚𝐶𝐶𝐶𝐶
∗ ∙ 𝐵𝐵𝑡𝑡 =  𝑗𝑗𝐶𝐶𝐶𝐶 ∙ 6𝑚𝑚0 ∙ (𝐵𝐵𝑝𝑝 − 𝐵𝐵𝑝𝑝,32

) − 2𝑚𝑚𝐶𝐶𝐶𝐶
∗ 𝑚𝑚0
𝑚𝑚𝑒𝑒∗

∙ 𝐵𝐵𝑝𝑝,       (2) 

It allows extracting 𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶
∗  for every FQH state of filling 𝑝𝑝 by plotting the 𝐵𝐵𝑡𝑡/𝐵𝐵𝑒𝑒𝑒𝑒𝑒𝑒 values at 

which a level coincidence for this filling is observed in experiment as a function of 𝑗𝑗𝐶𝐶𝐶𝐶. This 

has been done in Fig. S9 using the data in Fig. 4 of the main text and the transitions identified 

in Fig. S6 and S7. The slope of the linear fit to these data points for a given filling yields 

𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶
∗ , since all other quantities in the above expression are known. The final term 

determines only the offset, and is discarded in the analysis performed. The plotting of the 

data reveals two distinct slopes between data points across the set of transitions.  
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 For the e = 5/3 state where p = 2, we see a transition in the activation energy for the jCF = 

-1 transitions as detailed in the main text. In addition however, we see weak features in the 

longitudinal resistance close to jCF = 3 and 0 where the model suggests that there is no 

crossing occurring at the chemical potential. We speculate this behavior to be the result of 

mixing of these energy levels due to the large coulomb energy in the system. Similar 

features were also observed in previous studies28 and at other filling factors in this study. 

In agreement with expectations, for the x/3 states there is no drastic change in the 

activation energy when passing through such transitions. As stated above, maximizing the 

agreement between the strong/weak transitions at/below the chemical potential is a 

requirement of the fitting procedure. 

 Due to the weak nature of these transitions, it is difficult to determine the exact magnetic 

field for higher jCF index transitions and an error in quantifying 𝑔𝑔𝐶𝐶𝐶𝐶∗ 𝑚̅𝑚𝐶𝐶𝐶𝐶
∗  inevitably will 

occur. This is compounded by the limited number of data points at the x/3 states. To 

minimize this error, the slope of the linear interpolation between points corresponding to 

transitions fully polarized in Ne = 0 and mixing in Ne = 0 & 1 is used for the analysis, 

rather than the spacing between individual transitions. This yields two notably different 

slopes. The error has been estimated in Fig. S9b for each regime independently. Where 

there are only two points in the interpolation (i.e. for the x/3 states), an error of 10% has 

been included as a rough estimate. 

 We highlight other works which describe coincidence events between CF levels 

originating from different subbands in a GaAs wide quantum well43 and valleys in AlAs44.

  

 

5. Temperature dependent magnetotransport 

 

In this section we explore the temperature dependence of the magnetotransport properties 

around various even-denominator fractional filling factors. These data sets allow the 

quantification of the energy gaps () of FQH states using the relationship 𝑅𝑅𝑥𝑥𝑥𝑥 = 𝑒𝑒−∆ 2𝑘𝑘𝐵𝐵𝑇𝑇⁄ . 

The error in quantification is expected to be on the order of ± 10%. The temperature is read 

from a calibrated Ruthenium Oxide thermometer located within the mixing chamber. 

e = 3/2,  = 0º (Fig. S10) 

19 
 

The data collected around e = 3/2 at zero tilt were used in section 3 to analyze the effective 

mass of CF. These are plotted in Fig. S10. 

 

Figure S10: a, Temperature dependence of the magnetotransport around e = 3/2 at zero tilt. 
b, Activation energy analysis of FQH states. 

 

e = 3/2, Quantized regime  = 42º (Fig. S11) 

The magnetotransport data recorded at a tilt angle of  = 42º, where the e = 3/2 state is fully 

developed and exhibits a quantized Hall resistance, are plotted in Fig S11. This tilt angle is 

close to the high-resistance regime, whose onset may be seen around Bp ≈ 5.7 T.   
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Figure S11: a, Temperature dependent magnetotransport around e = 3/2 at a tilt angle of  = 
42º, where the e = 3/2 state exhibits a quantized Hall resistance. b, Activation energy 
analysis of FQH states. 

e = 3/2, High resistance regime  = 45º (Fig. S12) 

At high tilt  ≳ 42º the system turns much more resistive. This is accompanied by the 

appearance of reentrant quantum Hall behavior as seen in Fig. S12. Temperature dependent 

magnetotransport around e = 3/2 is shown in Fig. S12. While minima at the most prominent 

fractional filling factors exist, robust reentrant integer quantum Hall behavior is observed in 

Rxy
 at low T. As a result the unambiguous identification of FQH states in this regime is not 

feasible.  

 

 

Figure S12: Temperature dependent magnetotransport around e = 3/2 at a tilt angle of  = 
45º. Developing reentrant integer quantum Hall states in Rxy are shaded light blue. 
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states observed around e = 5/2. At T ~ 50 mK it is seen that a lone re-entrant integer 

quantum Hall state develops, on the high field side of half filling. The bulk becomes 

incompressible and the resistance drops to zero at base T. 
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e = 7/2,  = 0º (Fig. S14) 
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FQH states are observed also at x/3, while being significantly weakened compared to the x/3 
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GaAs, we find that the 3 + 1/3 state is more robust than the  + 2/3 state10,27. 
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Figure S11: a, Temperature dependent magnetotransport around e = 3/2 at a tilt angle of  = 
42º, where the e = 3/2 state exhibits a quantized Hall resistance. b, Activation energy 
analysis of FQH states. 
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Figure S14: Temperature dependence of e = 7/2. a, Temperature dependent 
magnetotransport data. b, Activation energy analysis of FQH states. 

 

e = 9/2,  = 0º (Fig. S15) 

The temperature dependent magnetotransport around e = 9/2 is displayed in Fig. S15. The 

behavior here is different from that of the other partial filling factors presented above. While 

indeed at lower temperature, minima in the longitudinal resistance at rational fractional filling 

factors become more distinct, the absolute value of the minima is seen to rise when lowering 

the temperature. For the Hall resistance, plateau-like features form for these filling factors, 

but their values do not correspond to the values expected from a properly quantized state. 

Moreover, the Hall resistance shows temperature dependence. These observations prohibit 

conclusive identification of these states in this heterostructure. 
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Figure S15: Temperature dependence around e = 9/2. The magnetic field corresponding to 
rational fractional filling factors are highlighted by vertical lines. 

 

Summary of activation energies (Fig. S16) 

A summary of all activation energies quantified in this section is provided in Fig. S16. Here, 

we plot the activation energies in units of Coulomb energy (e2/lB) where  = 8.5 in ZnO, e is 

the elementary charge, and lB the magnetic length (= √ℏ 𝑒𝑒𝐵𝐵𝑝𝑝⁄ ). 

We note that the activation energy of the 7/2 state and 3/2 state are 4.1× 10-4
 e2/lB and 4.5 × 

10-4
 e2/lB, respectively, comparable to that of single component states reported in modest 

mobility AlGaAs/GaAs heterostructures23 but an order of magnitude smaller than for the 

highest quality GaAs samples27.  

 

22	 NATURE PHYSICS | www.nature.com/naturephysics

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS

© 2015 Macmillan Publishers Limited. All rights reserved



22 
 

 

Figure S14: Temperature dependence of e = 7/2. a, Temperature dependent 
magnetotransport data. b, Activation energy analysis of FQH states. 
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Figure S16: Magnetotransport (bottom) and summary of activation energies for filling 
factors identified in the text (top)  as a function of filling factor for  = 0º (black trace, solid 
squares) and 41.8º (red trace, open triangles).  

 

6. Waterfall representation of tilt angle dependent transport data 

 

The transport for 7 > e > 2 is shown in Fig S17. The e = 7/2 state remains robust up until 

the first coincidence position which occurs between the plots of  = 21.4º ~ 27.8 º, from 

where the chemical potential ceases to be pinned in a Ne = 1 level. In contrast, the e = 9/2 

minimum is seen to collapse by  ~ 11º. 
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Figure S17: Higher LL magnetotransport data as a function of filling factor for 7 > e > 2 for 
increasing tilt angles.   

 

Waterfall plots of the magnetotransport data presented as 2D color renditions in the main text 

are displayed in Figs. S18 and S19. The tilt angle for respective traces is indicated by the 

colored tag. 
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Figure S17: Higher LL magnetotransport data as a function of filling factor for 7 > e > 2 for 
increasing tilt angles.   

 

Waterfall plots of the magnetotransport data presented as 2D color renditions in the main text 

are displayed in Figs. S18 and S19. The tilt angle for respective traces is indicated by the 

colored tag. 
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Figure S18: Waterfall plots of representative base temperature data shown as a color 
rendition in Fig. 4 of the main text.  
 

 

Figure S19: Waterfall plot of the 400 mK data in Fig. 2b of the main text.  
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7. Isotropy of the magnetotransport 

 

In high mobility AlGaAs/GaAs heterostructures, it is known that transport in higher index 

LLs (Ne ≥ 2, e > 4) is dominated by anisotropic features associated with the formation of 

coulomb interaction mediated charge density wave ground states18-20. We notice a distinct 

absence of such anisotropy in the ZnO system under all configurations, despite the square van 

der Pauw geometry used here, which is known to amplify the transport anisotropy45. To 

illustrate this, the current is fed in two orthogonal crystal directions, as indicated in Fig. 

S20a,b. In this arrangement, current either passes along or across crystal steps which exist as 

a result of substrate preparation. The data for perpendicular field orientation is plotted in 

panel c. In GaAs it has been seen that tilting the 2DES can induce a charge density wave 

ground state and/or rearrange its spatial orientation29,30. Throughout this work, the current I is 

applied parallel to the [112̅0]  crystal direction. This crystal direction is in turn aligned 

perpendicular to the in-plane magnetic field applied when tilting the sample. In panel d, 

transport data for  = 44o well beyond the first coincidence position are shown. In this 

arrangement too, despite the significant in-plane magnetic field, no clear anisotropic behavior 

is observed.   

 

 

Figure S20: Current direction dependent magnetotransport in higher index LLs. a, Schematic 
showing the current orientation relative to the ZnO c-plane and b, the surface morphology as 
measured by atomic force microscopy of the heterostructure under investigation. c, Transport 
for two orthogonal current directions when the sample is only exposed to a perpendicular 
magnetic field. d, Same as before except the sample is now tilted to  = 44o. 
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Figure S18: Waterfall plots of representative base temperature data shown as a color 
rendition in Fig. 4 of the main text.  
 

 

Figure S19: Waterfall plot of the 400 mK data in Fig. 2b of the main text.  
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Even for higher tilt angles when the system has entered the highly spin polarized regime and 

screening is significantly less effective, we still observe a lack of anisotropy, as shown in Fig. 

S21. While this regime displays an inclination for reentrant quantum Hall behavior and 

localization, such behavior is essentially isotropic. In this plot it is apparent that the feature at 

e = 4/3 exists as a shoulder on the resistance for the red trace, and a weak minimum in the 

blue trace. 

 

 

Figure S21: Current direction dependent magnetotransport around e= 3/2 at a tilt angle  = 
47°. 
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