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Abstract

Quantum Hall/superconductor junctions have been an attractive topic as the two macroscop-

ically quantum states join at the interface. Despite longstanding efforts, however, experimental

understanding of this system has not been settled yet. One of the reasons is that most semi-

conductors hosting high-mobility two-dimensional electron systems (2DES) usually form Schottky

barriers at the metal contacts, preventing efficient proximity between the quantum Hall edge states

and Cooper pairs. Only recently have relatively transparent 2DES/superconductor junctions been

investigated in graphene. In this study, we propose another material system for investigating

2DES/superconductor junctions, that is ZnO-based heterostrcuture. Due to the ionic nature of

ZnO, a Schottky barrier is not effectively formed at the contact with a superconductor MoGe, as

evidenced by the appearance of Andreev reflection at low temperatures. With applying magnetic

field, while clear quantum Hall effect is observed for ZnO 2DES, conductance across the junction

oscillates with the filling factor of the quantum Hall states. We find that Andreev reflection is

suppressed in the well developed quantum Hall regimes, which we interpret as a result of equal

probabilities of normal and Andreev reflections as a result of multiple Andreev reflection at the

2DES/superconductor interface.
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INTRODUCTION

Andreev reflection is a phenomenon at the metal/superconductor interface where an

electron with an energy less than the superconducting gap (∆) in the metal incident on the

superconductor is reflected as a hole tracing the same trajectory of the incident electron

(retroreflection) through creation of a Cooper pair in the superconductor as shown in Fig.

1(a) [1]. Upon Andreev reflection, rigid momentum and spin relationships are maintained

between the incident electron and the retroreflected hole [2]. This property has been utilized

as a unique probe to detect the degree of spin polarization of the metal from zero-bias

conductance enhancement or reduction, since Andreev reflection is forbidden for a spin-

polarized ferromagnet/singlet-superconductor interface due to the absence of spin density

of states for retroreflected holes [Fig. 1(b)] [3–5]. Superconducting symmetry has also been

deduced for d-wave cuprate superconductors based on the unusual shape of the Andreev

spectra [6].

In the presence of a magnetic field (B), the aforementioned picture of Andreev reflection

needs reconsideration because the reflected hole no longer traces back to the trajectory of the

incident electron due to the Lorentz force. Particularly in the case of a two-dimensional elec-

tron system (2DES), the chiral edge modes in the quantum Hall states at first sight are not

compatible with the Andreev reflection because of the absence of counterpropagating edge

modes for retroreflected holes. However, in a schematic of skipping orbitals at the edge of

the sample shown in Fig. 1(c), an electron incident on an edge of the 2DES/superconductor

interface eventually comes out from the other edge of the interface either as an electron or a

hole through multiple Andreev reflections (MAR) as well as normal reflections along the in-

terface. The issue of Andreev reflection under quantizing magnetic field has been addressed

in a number of theoretical [7–12, 14–16] and experimental [17–31] studies for two-dimensional

electron systems realized in semiconductor heterostructures or in graphene. Many of these

studies indicated that Andreev reflection indeed coexist with the chiral edge modes albeit

the detailed quantum mechanical understanding is not yet settled.

Recently, the interaction between superconductivity and chiral or helical edge states has

attracted renewed attention because non-abelian quasiparticles are predicted to emerge as

electron-hole hybrids at the interface [32–38]. However, making good proximity between

Cooper pairs and 2DES are not easily achieved due to Schottky barrier formation at the
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FIG. 1: (color online). Schematics of (a) Andreev reflection at the nonmag-

netic metal/superconductor interface, (b) normal reflection at the spin-polarized ferromag-

net/superconductor interface, and (c) 2DES/superconductor interface in the quantum Hall effect

(QHE). In the case of (b), Andreev reflection is forbidden due to the absence of spin-down hole

density of states. In the quantum Hall regime of 2DES in (c), Andreev reflection is feasible through

multiple Andreev and normal reflections at the 2DES/superconductor interface.

semiconductor surface [39]. This problem originates from Fermi level pinning caused by

dangling bond states at the semiconductor surface. In order to avoid this issue, InAs 2DES

have frequently been employed since the pinning level tends to be formed outside of the band

gap. However, the inherently high carrier density in InAs prevents the investigation of the

quantum Hall effect at low filling factors (ν) [17, 21, 22]. Only recently have high-quality

superconductor/quantum Hall edge junctions been realized using graphene, free from the

Schottky barrier problem [24, 25, 27–31].

Here we utilize ZnO-based heterostructures to investigate Andreev reflection in the quan-

tum Hall regime. Compared with covalent semiconductors, the ionic nature of oxide semi-

conductors usually suppresses the Fermi level pinning effect owing to less dangling bond

states at the surface [40]. Therefore, ideal ohmic contacts for 2DES can be easily formed
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with low-workfunction metals such as Ti [41, 42] unlike the above-mentioned covalent semi-

conductors [39]. Among oxide semiconductors, the 2DES in ZnO heterostructures is an

exceptional candidate, exhibiting pronounced integer and fractional quantum Hall effects

[43–47].

In this study, we have fabricated 2DES/superconductor junctions on MgxZn1−xO/ZnO

heterostructures, and investigated the Andreev reflection under magnetic field up to the

quantum Hall regime close to ν = 1. MoGe is employed as a superconductor because

of its high upper critical field in the amorphous form [48, 49]. At low temperature, the

junction shows signatures of Andreev reflection, indicating a modest energy barrier at the

interface. Under quantizing magnetic fields above 1 T, the Landau quantization causes a

periodic modulation in the conductance, suggestive of the variation of the Andreev reflection

probability. At high magnetic field, our result indicates that normal and Andreev reflections

become nearly equal through MAR in the quantum Hall regime.

EXPERIMENTAL

Sample fabrication

The MgxZn1−xO/ZnO (x ≈ 0.015) heterostructures were grown by molecular beam epi-

taxy as described in Ref. [47]. The 2DES/superconductor junction was formed by etching a

part of the MgxZn1−xO capping layer by Ar ion milling at an incidence angle of 45◦ followed

by deposition of 70-nm thick MoGe with RF magnetron sputtering. Subsequently, the Hall-

bar patterns were defined by ion milling for ZnO 2DES and MoGe as shown in Fig 2. The

Hall-bar pattern was designed to enable the measurement of junction properties simultane-

ous to the transport properties of ZnO 2DES and MoGe. Finally, Ti ohmic electrodes were

deposited by electron beam evaporation for ZnO 2DES. The width of the junction (W ) is

10 µm.

Electrical measurement

The transport properties were measured in a 4He cryostat down to 2 K and in a dilution

refrigerator at a temperature of 0.05 K with lock-in amplifiers at a typical frequency of 7 Hz.

For the Andreev reflection measurement, while the alternating voltage (VAC) is superimposed
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FIG. 2: (color online). Schematics for top and cross-sectional views of the ZnO2DES/MoGe

junction. External circuit for the Andreev reflection measurement is also depicted. The series

resistance R connected between the voltage source and an electrode is either 10 MΩ or 100 MΩ

depending on the measurement voltage range.

on the bias voltage (VDC), alternating component of the current (dI) and the differential

voltage including the junction and a part of the ZnO channel were measured by lock-in

amplifiers as shown in Fig. 2. In addition, the channel resistances of ZnO 2DES and MoGe

were simultaneously measured by extra lock-in amplifiers (not shown in the figure). The

differential voltage across the junction (dV ) was calculated by subtracting the voltage drop

in the ZnO channel (dVZnO) from the measured voltage drop (dVM) as dV = dVM − dVZnO.

The differential conductance was finally calculated as dI/dV .

Modified Blonder-Tinkham-Klapwijk model

For analyzing Andreev reflection, we employed the modified Blonder-Tinkham-Klapwijk

(BTK) model. In the BTK model, the current for spin-unpolarized and polarized electrons

across the interface is expressed as [2, 50–53]

Iu/p ∝

∫

∞

−∞

[f(E − eV )− f(E)]
[

1 + Au/p(E)− Bu/p(E)
]

dE, (1)

where subscripts u and p denote spin-unpolarized and -polarized current, respectively, f(E)

is the Fermi-Dirac distribution function, E is the energy of electrons, e is the elementary
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FIG. 3: (color online). Calculated dI/dV normalized at |eV/∆| = 3 as a function of eV/∆.

Interface barrier strength (Z) varies in (a), while spin polarization parameter (P ) varies in (b)

assuming zero broadening parameter (Γ/∆ = 0), meaning infinite quasiparticle lifetime. Z and

P dependences are shown in (c) and (d), respectively, assuming a relatively strong quasiparticle

scattering of Γ/∆ = 0.5

electric charge, V is the voltage applied across the junction, Au/p(E) and Bu/p(E) are the

coefficients giving the probability of Andreev and normal reflection, respectively. With

taking into account of spin polarization P (0 < P < 1) of the metal (ZnO 2DES in the

present case) [3–9], total current is calculated as

I ∝ (1− P )Iu + PIp. (2)

The probabilities of Andreev (Au/p) and normal reflections (Bu/p) are calculated by solv-

ing Bogoliubov equations with proper boundary conditions as

Au(E) =

√

(α2 + η2)(β2 + η2)

γ2
, (3)

Bu(E) = Z2 [(α− β)Z − 2η]2 + [2ηZ + (α− β)]2

γ2
, (4)

Ap(E) = 0, (5)

Bp(E) =
[Z(α− β)− η]2 + (2ηZ − β)2

[Z(α− β) + η]2 + (2ηZ − α)2
, (6)
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where α, β, and η are defined from Bogoliubov coherence factors (u0, v0) as

u2
0 =

1

2

[

1 +

√

(|E|+ iΓ)2 −∆2

|E|+ iΓ

]

= α+ iη, (7)

v20 = 1− u2
0 = β + iη, (8)

and

γ2 =
[

α + Z2(α− β)
]2

+
[

η(2Z2 + 1)
]2
. (9)

Here, we introduced quasi-particle broadening energy Γ = ~/τ (~: Planck constant di-

vided by 2π, τ : quasi-particle lifetime) to describe broadening of Andreev spectra [54].

Z = V0/~vf is the energy barrier strength parameter between the metal and superconductor

for given barrier height V0 and Fermi velocity vf of the metal. Finally, the experimental

differential conductance normalized by that at |V | ≫ ∆/e was fitted with the theoretical

expression based on Eq. (2).

In order to obtain an insight into the dependence of the dI/dV spectrum on the various

parameters in modified BTK model, we show calculation results based on Eq. (2) in Fig.

3. In the ideal case, that is no quasiparticle broadening (Γ/∆ = 0), no spin polarization

(P = 0), and no energy barrier (Z = 0), dI/dV exhibits nearly twice enhancement within

the voltage corresponding to superconducting gap (|eV | < ∆), indicating complete Andreev

reflection. By increasing the energy barrier strength at the interface (increasing Z), the

dI/dV spectrum is changed from enhancement to tunneling-type showing sharp peaks indi-

cating quasiparticle density of states at |eV | = ∆ [Fig. 3(a)]. On the other hand, increasing

the spin polarization parameter P simply varies the normalized dI/dV from 2 to 0 with-

out quasiparticle peaks [Fig. 3(b)]. When nontrivial quasiparticle broadening is turned on

(Γ/∆ = 0.5 for example), all the dI/dV spectrum become blurred as shown in Figs. 3(c)

and 3(d), which actually better reproduce our experimental results as discussed later.

RESULTS

Basic transport properties of ZnO 2DES and MoGe

First, we characterize the basic transport properties for ZnO 2DES and MoGe individually

as shown in Figs. 4(a) and 4(b). From the low-field magnetotransport, the carrier density

and the mobility of the ZnO 2DES used in this study are estimated as 3.0× 1011 cm−2 and
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FIG. 4: (color online). (a) Magnetic field dependence of longitudinal resistance Rxx and Hall

resistance Rxy of ZnO 2DES measured at 0.05 K. The carrier density (n) and electron mobility

obtained from the magnetotransport are 3.0 × 1011 cm−2 and 310 000 cm2 V−1 s−1, respectively.

(b) Magnetic field dependence and temperature dependence (inset) of the resistance (RMoGe) of

the MoGe thin film normalized by the normal resistance (RN ≈ 100 Ω )

310 000 cm2 V−1 s−1, respectively. At 0.05 K, the ZnO 2DES exhibits a number of integer

quantum Hall states as evidenced by the vanishing Rxx and quantized Rxy [Fig. 1(b)]. The

superconducting transition temperature (Tc) and the upper critical field (Bc2) of MoGe are

6.3 K and 11.5 T, respectively [Fig. 4(b)].

Andreev reflection at B = 0 T

Having the ZnO 2DES and MoGe individually characterized, we measure differential

conductance of the junction (dI/dV ) as a function of V at several temperatures as shown
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FIG. 5: (color online). (a) Differential conductance of the ZnO2DES/MoGe junction (dI/dV ) as

a function of the voltage across the interface (V ) at several temperatures from 8 K down to 0.05

K. (b) The differential conductance at 0.05 K normalized at V = −10 mV. The fit based on Eq.

(2) is also shown together with the fitting parameters.

in Fig. 5(a). At temperatures above Tc, dI/dV is almost constant with V , indicating an

ohmic junction. With decreasing temperature, dI/dV gradually increases around V = 0

V, indicative of Andreev reflection. At the lowest temperature of T = 0.05 K, sharp dip

appears in addition to the broad enhancement in dI/dV . Figure 5(b) shows the fitting of

the differential conductance at T = 0.05 K, which is normalized at V = −10 mV, using the

modified BTK model with ∆, Γ, P , and Z being free parameters. The modified BTK model

overall well fits the experimental data although the sharp dip around V = 0 V is not well

reproduced. The resultant fitting parameters are ∆ = 2.7 meV, Γ = 1.1 meV, P = 0.31, and

Z = 0.35. The ∆ value is significantly larger than that of bulk value (1.1 meV [48, 49]) and
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FIG. 6: (color online). (a) Differential conductance dI/dV normalized at V = −10 mV as a

function of V at several magnetic fields below 2 T (solid curves). The dashed curves are fits to the

experimental dI/dV for negative V region. The curves are shifted vertically for clarity. (b) The

color map of the normalized dI/dV as functions of magnetic field and V .

the broadening factor Γ is relatively large. We also obtain finite P although ZnO is nominally

nonmagnetic. These unexpected fitting parameters may be due to various nonideal effects

frequently existing at semiconductor/superconductor junctions such as damage layer in ZnO

2DES or spatial variation of ∆ near the interface [55]. In this respect, we limit our discussion

within the qualitative dependence of Andreev spectra on magnetic field (filling factor) in

the following discussions.

Andreev reflection at low magnetic field (0 < B < 2 T)

Next we investigate Andreev reflection with the application of a small (B < 2 T) magnetic

field. As shown in Fig. 6, The normalized dI/dV does not significantly change the spectral

shape up to ∼ 1 T, which exhibits broad conductance enhancement and sharp dip around
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FIG. 7: (color online). (a) Differential conductance dI/dV normalized at V = −1.5 mV as a

function of V at several magnetic fields between 1 T and 2 T(solid curves). The dashed curves are

fits to the experimental dI/dV for negative V region. The curves are shifted vertically for clarity.

(b) The color map of the normalized dI/dV as functions of magnetic field and V . The triangles

indicate the magnetic fields taken in the panel (a). (c) Replot of Rxx and Rxy for comparison with

Andreev spectra in the panel (b). (d) The value of a fitting parameter P as a function of magnetic

field. The shaded areas correspond to magnetic field regions of small conductance enhancement

shown in the panel (b).

V = 0 V. As shown in Figs. 6(a) and 6(b), the dip structure around V = 0 V becomes

sharper with increasing magnetic field toward 1 T compared with that near 0 T. This

narrowing means that, under magnetic field, apparent superconducting gap becomes small

although the exact reason is not clear at the moment. In order to analyze the detail, we

measured dI/dV in the narrower voltage range of −1.5 < V < 1.5 mV above 1 T with a finer

voltage step as shown in Fig. 7. Since, above 1 T, dI/dV is almost constant at |V | > 1.5

mV, the spectra are normalized at V = −1.5 mV. Here Rxx and Rxy of ZnO 2DES are also
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replotted in the panel (c) to be compared with Adnreev spectra in the panels (a) and (b). At

some magnetic fields, dI/dV shows nontrivial asymmetry with V and therefore we fit only

the negative V region as shown in Fig. 7(a). Overall, conductance enhancement is observed

around |V | < 0.5 mV together with a dip around V = 0 V originating from the effect of

Z. However, the effect of Z is less dominant (Z / 0.3) at magnetic fields higher than 1.4

T, and is not focused on here. If we closely look at the magnetic field dependence, we find

that the height of the normalized dI/dV appears to oscillate. For instance, as shown in Fig.

7(a), the normalized dI/dV at B = 1.56 T (ν ≈ 8) and 1.80 T (ν ≈ 7) are clearly smaller

than those at other magnetic fields, where ν is defined as nh/eB (h: Planck constant).

The shaded area in the panels (c) and (d) indicate the range of relatively small dI/dV .

In terms of modified BTK formula, as discussed in Fig. 3, the conductance enhancement

or reduction is nominally reflected in the spin polarization parameter P . The P value is

plotted as a function of magnetic field in Fig. 7(d). Comparing the Andreev spectra in Fig.

7(b) and the magnetotransport of ZnO 2DES in Fig. 7(c), relatively high P regions roughly

corresponds to the developing quantum Hall plateau. The interpretation of the behavior of

P will be discussed later.

Andreev reflection in the quantum Hall region (B > 2 T, ν < 6.1)

The effect of the Landau level quantization on Andreev reflection is more pronounced

at higher magnetic fields in the well developed quantum Hall regime. Figure 8 shows the

Andreev spectra above 2 T, corresponding to a filling factor range of ν < 6.1. Here, dI/dV

is normalized at V = −3 mV as the spectra tend to saturate at larger voltages. Most of

the dI/dV spectra are well fitted although the spectral shape is sometimes asymmetric with

V . We find that the strength of the conductance enhancement [red regions in Fig. 8(b)]

periodically varies with the filling factor, indicating that Andreev spectra indeed reflect the

quantum Hall edge states. As in the case of low magnetic field in Fig. 7, dI/dV is suppressed

in some regions of filling factors as shown in Figs. 8(a) and 8(b). Particularly around ν = 2,

dI/dV is almost constant with V as shown in Fig. 8(a), and reliable fitting is not feasible.

Instead, we compare the experimental dI/dV with modified BTK calculation in Fig. 3.

Since experimental dI/dV spectra around ν = 2 do not show quasiparticle peaks, the effect

of the Z parameter is not dominant and the comparison is made between the experimental
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FIG. 8: (color online). (a) Differential conductance dI/dV normalized at V = −3.0 mV as a

function of V at several filling factors ν < 6.1 corresponding to the magnetic field range of B > 2

T (solid curves). The dashed curves are fits to the experimental dI/dV for negative V region. The

curves are shifted vertically for clarity. (b) The color map of the normalized dI/dV as functions

of filling factor and V . The triangles indicate the filling factors taken in the panel (a). (c) Replot

of Rxx and Rxy as a function of ν for comparison with Andreev spectra in the panel (b). (d)

The value of a fitting parameter P as a function of filling factor. The shaded areas correspond to

magnetic field regions of small conductance enhancement shown in the panel (b).

data in Fig. 8(a) and calculation in Fig. 3(d), where P parameter is varied, indicating that

P ≈ 0.5–0.7 relatively well reproduce almost constant dI/dV .

DISCUSSIONS

So far, we observe that the magnetic field (filling factor) dependence of Andreev reflection

exhibits periodic modulation in dI/dV , indicating that Laudau level quantization plays an

important role. In terms of fitting by Eq. (2), the conductance enhancement or reduction

13



is dominantly reflected in the P value as seen in Fig. 3. Conventionally, P is interpreted as

degree of spin polarization in the metal or semiconductor because spin-polarized density of

states prohibits Andreev reflection and interface conductance is suppressed towards zero at

full spin polarization of P = 1. However, in a more general sense, P reflects the probability

of normal reflection [Fig. 1(b)] with respect to Andreev reflection [Fig. 1(a)] [3–5]. In

the quantum Hall regime, P may effectively be interpreted as the ratio of normal reflection

with respect to Andreev reflection in the MAR process shown in Fig. 1(c). Then, the flat

dI/dV [e.g. at ν = 3.49 or at ν = 2.11 in Fig. 8(a)] means nearly equal probability of

Andreev and normal reflections. This is consistent with a simple idea that, when Andreev

reflection probability is between 0 and 1 in a single reflection process, total Andreev reflection

probability becomes 0.5 after MAR process. In our experiment, since the cyclotron radius

(RC = 13 nm at 5 T) is much smaller than the width of the interface (W = 10 µm),

this picture may be valid, which has been more precisely calculated in several reports. In

Ref. [13], where MAR is treated as successive single Andreev or normal reflections in the

high ν region with taking into account the interface disorder (roughtness), conductance

oscillations periodic in filling factor ν are theoretically predicted, which is consistent with

our data in Figs. 7 and 8. However, in Ref. [12], where electron and hole skipping cyclotron

orbits at the 2DES/superconductor interface are theoretically calculated at low ν based on

Bogoliubov–de Gennes equation, conductance enhancement appears every two indices in ν

due to Zeeman splitting, which is not the case in our experiment. One reason would be that

the simple Zeeman splitting picture may not be valid in the case of ZnO 2DES owing to

strong correlation [56].

Finally, we compare our result with recent experiments in other materials systems. As

mentioned in the introduction, since most of semiconductors form Shottky barrier, InAs and

graphene may be suitable materials for comparison. Most studies use Josephson structures

comprised of superconductor-2DES-superconductor with the interface width and channel

length of ∼ 1 µm. They observed supercurrent at B = 0 T as well as conductance enhance-

ment at quantum Hall plateaux in some cases [24, 25, 28]. Single superconductor/2DES

junctions have also been investigated, which showed oscillating dI/dV periodic in ν, similar

to our study [22, 30]. In Ref. [29], on the other hand, full conversion from an electron to

a hole occurs only when the width of the superconductor is less than the coherence length

of the Cooper pair (≈ 50 nm). A particularly important question for realizing exotic inter-
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face states is whether complete Andreev process is necessary or partial conversion from an

electron to a hole is sufficient, which remains to be investigated in the future.

CONCLUSIONS

In this study, we have investigated electrical properties across the interface between two-

dimensional electron system of ZnO and MoGe superconductor particularly in the quantum

Hall states utilizing Andreev reflection spectroscopy. At low temperature, conductance en-

hancement indicating Andreev reflection is observed. With applying magnetic field, the

conductance exhibits oscillations periodic in filling factor, signaling a proximity effect be-

tween the quantum Hall edge states and Cooper pairs. The Andreev spectra are analyzed

based on the modified Blonder-Tinkham-Klapwijk equation. The result indicates that, in the

quantum Hall regime, electrons incident on an edge of the 2DES/superconductor interface

are partially converted to holes at the other edge of the interface through multiple Andreev

reflection. However, conductance enhancement is suppressed in the regions of quantum Hall

plateaux, giving rise to a P parameter of ≈ 0.5–0.7, which can be interpreted as about a

half probability of Andreev reflection with the rest of normal reflection through multiple

Andreev reflection along the interface. This is probably due to long interface of 10 µm

used in this study, and phase coherence between the incident electrons and outgoing holes

are randomized. Regarding the non-abelian particles predicted to appear at the interface

between helical or chiral edges and a superconductor, our study shows that two-dimensional

electron system in ZnO may be one of the suitable systems because of the good proximity

with a superconductor and the high electron mobility of the 2DES.
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(2005).

16



[22] S. Matsuo, K. Ueda, S. Baba, H. Kamata, M. Tateno, J. Shabani, C. J. Palmstrøm, and S.

Tarucha, Sci. Rep. 8, 3454 (2018).
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