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Abstract

We study the problem of adaptive control in partially observable linear dynamical systems.
We propose a novel algorithm, adaptive control online learning algorithm (AdaptOn), which
efficiently explores the environment, estimates the system dynamics episodically and exploits
these estimates to design effective controllers to minimize the cumulative costs. Through in-
teraction with the environment, AdaptOn deploys online convex optimization to optimize the
controller while simultaneously learning the system dynamics to improve the accuracy of con-
troller updates. We show that when the cost functions are strongly convex, after T times step
of agent-environment interaction, AdaptOn achieves regret upper bound of polylog (T ). To
the best of our knowledge, AdaptOn is the first algorithm which achieves polylog (T ) regret in
adaptive control of unknown partially observable linear dynamical systems which includes linear
quadratic Gaussian (LQG) control.

1 Introduction

Reinforcement learning (RL) is the study of sequential decision making under uncertainty. One
of the main and challenging problems in the field of RL is the design of algorithms to maxi-
mize/minimize given notions of reward/cost in a priori unknown environments [Bertsekas, 1995,
Sutton and Barto, 2018]. Given an environment, the learning agent interacts with the environment,
explores it to learn the environment behavior, and exploits the gathered experiences to improve the
future performance [LaValle, 2006]. In order to assess the performance of an agent, we deploy a
notion of regret, which is how much more cost the agent receives compared to the cost of an optimal
policy [Cesa-Bianchi and Lugosi, 2006, Lai et al., 1982].

Adaptive control is one of the core problems in control theory and studies the problem of
controlling unknown dynamical systems, [Stengel, 1994]. It has a long and extensive history of
research from a variety of viewpoints. Robust control analyses controllers which are robust to
the worst-case events under uncertainty, mainly in terms of H2 and H∞ theory [Zhou et al., 1996,
Hassibi et al., 1999]. In the case of learning through interaction, asymptotic optimality has been
the topic of study for decades in order to improve performance [Lai et al., 1982, Lai and Wei, 1987].

Recent developments in the statistical learning theory [Peña et al., 2009], propose a set of tools
to study finite time sample complexity of estimation methods. These methods have been lev-
ered to adaptive control to study the problem of sample complexity in fully observable linear sys-
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tems [Fiechter, 1997, Abbasi-Yadkori and Szepesvári, 2011]. In the setting where the observations
of the system’s state evolution are partial and noisy, learning the dynamics of linear systems brings
a series of challenges due to lack of direct access to the underlying events. For partially observable
systems, a variety of methods have been proposed to learn the open-loop system dynamics via ex-
citing the system with random and uncorrelated noise for long enough that the regression methods
provide efficient estimations of the model parameters [Oymak and Ozay, 2018, Sarkar et al., 2019,
Tsiamis and Pappas, 2019, Simchowitz et al., 2019].

Following these developments, a series of recent works advance these estimation procedures
and propose explore-then-commit based methods, with guaranteed regret upper bounds of order
Õ(T 2/3) [Lale et al., 2020a, Simchowitz et al., 2020]. Here Õ(·) presents the dominant time depen-
dency. The model estimation procedures in these methods rely on an initial and long period of
plain exploration using open-loop uncorrelated noise excitation. However, these methods do not
generalize to the setting where the agents use the past observations and model estimations to derive
better controllers, or even when the agents deploy plain closed-loop controllers. Recently, Lale et al.
[2020b] proposed a novel model estimation method which lifts the mentioned limitation, does not
rely on the initial long plain open-loop exploration, and can be used in interactive and adaptive
learning paradigms. Lale et al. [2020b] deploy this estimator, along with the optimism in the face
of uncertainty principle, and propose an interactive RL algorithm which achieves a regret of Õ(

√
T ).

One of the key elements of their algorithm, which allows such regret bound, is the possibility of
continuously updating estimation of model parameters, yielding more and more accurate models,
therefore, a better controller. While the mentioned work does not make strong convexity assump-
tions on the cost function, Simchowitz et al. [2020] shows that under this additional assumption, an

explore-then-commit based approach can achieve a regret of Õ
(√

T
)
, even when the disturbances

are semi-adversarial. The authors propose to deploy a random excitement open-loop controller for
the long plain exploration phase, estimate the model parameters, and then exploit these estimations
to run online convex optimization for regret minimization.

In this paper, we propose AdaptOn, adaptive control online learning algorithm that efficiently
learns the model dynamics of the environment and optimizes for the controller to reduce the cumula-
tive cost. An agent employing AdaptOn, adaptively learns the model dynamics through interaction
with the environment, and deploys online convex optimization on a convex set of persistently ex-
citing linear controllers, to gradually update the controller. We consider a general case where the
learning agent need not have access to the cost function until committing its action. We show that
when the cost functions are strongly convex, AdaptOn achieves a regret of polylog (T ) after T time
steps of environment-agent interaction. The regret analysis in this work is built on the top of the
analyses in Lale et al. [2020b], Simchowitz et al. [2020], and Anava et al. [2015]. The proposed re-
gret bound improves the prior work Lale et al. [2020b] when the cost functions are strongly convex,

and advances the Õ
(√

T
)

regret in Simchowitz et al. [2020] in stochastic setting. To the best of

our knowledge, this is the first logarithmic regret bound for partially observable linear dynamical
systems when the dynamics are unknown a priori.

2 Preliminaries

We denote the Euclidean norm of a vector x as ‖x‖2. For a given matrix A, ‖A‖2 denotes the
spectral norm, ‖A‖F denotes the Frobenius norm, A⊤ is its transpose, A† is the Moore-Penrose
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inverse, and Tr(A) gives the trace of matrix A. The j-th singular value of a rank-n matrix A is
denoted by σj(A), where σmax(A) := σ1(A) ≥ σ2(A) ≥ . . . ≥ σmin(A) := σn(A) > 0. I is the
identity matrix with an appropriate dimension. In the following, N (µ,Σ) denotes a multivariate
normal distribution with mean vector µ and covariance matrix Σ.

Suppose we have an unknown discrete time linear time-invariant system Θ = (A,B,C) charac-
terized as,

xt+1 = Axt +But + wt

yt = Cxt + zt, (1)

where xt ∈ R
n is the (latent) state of the system, ut ∈ R

p is the control input, and the observation
yt ∈ R

m is the output of the system. Let (Ft; t ≥ 0) be the corresponding filtration. For any t,
wt and zt are σ2w-Gaussian and σ2z -Gaussian Ft−1 measurable random vectors, respectively. In this
paper, in contrast to the standard assumptions that the algorithm is given the knowledge of both
σ2w and σ2z apriori, we assume that we only have the knowledge of their upper and lower bounds,
i.e., σ2w, σ

2
w, σ

2
z, and σ2z, such that, 0 < σ2w ≤ σ2w ≤ σ2w and 0 < σ2z ≤ σ2z ≤ σ2z, for some finite σ2w, σ

2
z.

For the given system Θ, let Σ be the unique positive semidefinite solution to the following (Discrete
Algebraic Riccati Equation) DARE:

Σ = AΣA⊤ −AΣC⊤
(
CΣC⊤ + σ2zI

)−1
CΣA⊤ + σ2wI. (2)

Σ can be interpreted as the steady state error covariance matrix of state estimation under Θ. Let

L denote the Kalman filter for the given system, where L = ΣC⊤(CΣC⊤+σ2zI
)−1

.
The system characterization depicted in (1) is called state-space form of the system Θ. There

are several ways to represent the same discrete time linear time-invariant system [Kailath et al.,
2000, Tsiamis et al., 2019, Lale et al., 2020b]. One of the most common form is the predictor form1

of the system characterized as

xt+1 = Āxt +But + Fyt

yt = Cxt + et (3)

where F = AL is the Kalman gain in the observer form, et is the zero mean white innovation process
and Ā = A−FC. In this equivalent representation of system, the state xt can be seen as the estimate
of the state in the state space representation. In the steady state, e(t) ∼ N

(
0, CΣC⊤ + σ2zI

)
. Notice

that at the steady state, the current output yt can be described by the history of inputs and outputs
with an i.i.d. Gaussian disturbance et. Recall that the Kalman filter converges exponentially fast
to the steady-state. Thus, without loss of generality, we assume that x0 ∼ N (0,Σ), i.e., the system
starts at the steady-state.

At each time step t, the system is at state xt and the agent observes yt, i.e., an imperfect
state information. Then, the agent applies a control input ut, the agent pays the cost ct, and the
system evolves to a new xt+1 at time step t+ 1. At each time step t, the cost ct = ℓt(yt, ut) where
ℓt is smooth and strongly convex loss for all t, i.e., 0 ≺ αlossI � ∇2ℓt(·, ·) � αlossI for a finite
constant αloss. Note that the standard cases of regulatory costs of ℓt(yt, ut) = y⊤t Qtyt + u⊤t Rtu

⊤
t

with bounded positive definite matrices Qt and Rt are special cases of the mentioned setting.

1For simplicity, the predictor form of system representation is presented for the steady-state of the system.
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Assumption 2.1. The unknown cost function of each times step t, ct = ℓt(·, ·), is non-negative
strongly convex and associated with a parameter L, such that for any R with ‖u‖, ‖u′‖ ≤ R, and
‖y‖, ‖y′‖ ≤ R, we have,

|ℓt(y, u)− ℓt(y
′, u′)| ≤ LR(‖y − y′‖+ ‖u− u′‖) and |ℓt(y, u)| ≤ LR2.

Definition 2.1. A linear system Θ = (A,B,C) is controllable if the controllability matrix

[B AB A2B . . . An−1B]

has full row rank. Similarly, a linear system Θ = (A,B,C) is observable if the observability matrix

[C⊤ (CA)⊤ (CA2)⊤ . . . (CAn−1)⊤]⊤

has full column rank.

Definition 2.2. For any positive integer H, the H-length Markov parameters matrix is given as

G(H) = [G[0] G[1] . . . G[H−1]] ∈ R
m×Hp.

G(H) is the length H impulse response of the system Θ. Moreover, the Markov parameters operator
of the system Θ is defined using the set G = {G[i]}i≥0 with G[0] = 0m×p, and ∀i > 0, G[i] = CAi−1B.

Utilizing the definition of Markov parameters operator, we rewrite the observation at each time
step t as follows;

yt = zt +

t−1∑

i=1

CAt−i−1wi +

t−1∑

i

G[i]ut−i. (4)

Subtracting the controller contributing parts of yt, we derive the Nature’s y vector [Youla et al.,
1976, Simchowitz et al., 2020].

Definition 2.3 (Nature’s y). For a linear dynamical system Θ and Markov parameters operator G,
given a sequence of disturbances (wi, zi), i ∈ {1 . . . t}, Nature’s y, bt(G), is defined as follows,

bt(G) := yt −
t−1∑

i

G[i]ut−i = zt +

t−1∑

i=1

CAt−i−1wi.

It is the output of the system without the inputs applied until time step t.

We study the setting where the matrices A, B, and C, therefore the set of Markov parameters
operator G of the system, are unknown. The agent interacts with this environment for T time steps
and aims to minimize its cumulative cost

∑T
t=1 ct. We consider the following problem setup.

Assumption 2.2. The system is order n and stable, i.e. ρ(A) < 1, where ρ(·) denotes the spectral

radius of a matrix which is the largest absolute value of its eigenvalues. Define Φ(A) = supτ≥0
‖Aτ‖
ρ(A)τ .

We assume that Φ(A) <∞ for the given system.

The assumption regarding Φ(A) is a mild condition, e.g. if A is diagonalizable, Φ(A) is finite.
Similar settings of study are also the main topic of interest in the recent literature [Oymak and Ozay,
2018, Sarkar et al., 2019, Tsiamis and Pappas, 2019, Simchowitz et al., 2020].

Assumption 2.3. For the unknown system Θ = (A,B,C, F ), (A,B) is controllable, (A,C) is
observable and (A,F ) is controllable. Tr(G(H)⊤G(H)) ≤ κ2 for some κ ≥ 0, where G(H) ∈ R

m×Hp

is the H-length Markov parameters matrix of system Θ. κG is an upper bound on the Markov
parameters operator of the system Θ, i.e.,

∑
i≥0 ‖G[i]‖ ≤ κG for κG ≥ 1.
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3 Linear Controller

A linear dynamical controller (LDC), π, is a s dimensional linear controller on a state sπt ∈ R
s of a

linear dynamical system (Aπ, Bπ, Cπ,Dπ), with input yπt and output uπt , where the state dynamics
evolves as follows,

sπt+1 = Aπs
π
t +Bπy

π
t ,

with the controller given as

uπt = Cπs
π
t +Dπy

π
t .

Deploying a LDC policy π on the environment characterized with Θ = (A,B,C) induces the follow-
ing joint dynamics of the xπt , s

π
t and the observation-action process:

[
xπt+1

sπt+1

]
=

[
A+BDπC BCπ

BπC Aπ

]

︸ ︷︷ ︸
A′

π

[
xπt
sπt

]
+

[
In×n BDπ

0s×n Bπ

]

︸ ︷︷ ︸
B′

π

[
wt
zt

]

[
yπt
uπt

]
=

[
C 0s×d

DπC Cπ

]

︸ ︷︷ ︸
C′

π

[
xπt
sπt

]
+

[
0d×n Id×d
0m×n Dπ

]

︸ ︷︷ ︸
D′

π

[
wt
zt

]
, (5)

where (A′
π, B

′
π, C

′
π,D

′
π) are the associated parameters of induced closed loop system. Consider the

Markov parameters operator of the system (A′
π, B

′
π, C

′
π,D

′
π), {G′

π
[i]}i=0, as G′

π
[0] = D′

π, and ∀i > 0,

G′
π
[i] = C ′

πA
′i−1
π B′

π.

Let B′
π,w :=

[
In×n
0s×n

]
, and B′

π,z :=

[
BDπ

Bπ

]
, the columns of B′

π applied on process noise, and

measurement noise respectively. Similarly C ′
π,y :=

[
C 0s×d

]
and C ′

π,u :=
[
DπC Cπ

]
are rows of

C ′
π generating the observation and action.

Let ψ : N → R≥0 be a proper decay function, such that ψ is non-increasing and limh′→∞ ψ(h′) =
0. For a Markov operator G, ψG(h) defines the induced decay function on G, i.e., ψG(h) :=∑

i≥h ‖G[i]‖. Π(ψ) denotes the class of LDC policies associated with a proper decay function ψ,

such that for all π ∈ Π(ψ), and all h ≥ 0,
∑

i≥h ‖G′
π
[i]‖ ≤ ψ(h). Let κψ := ψ(0).

In this work, we adopt disturbance feedback controllers (DFCs), truncated approximations to
LDC policies. A DFC policy of depth H ′ is defined with a set of parameters M(H ′) := {M [i]}H′−1

i=0

and Nature’s y, which prescribe the control input of

uMt =

H′−1∑

i=0

M [i]bt−i(G).

and results in state xMt+1 and observation yMt+1. The following lemma shows that Nature’s y, bt(G),
is uniformly bounded throughout the interaction with the system.

Lemma 3.1 (Bounded Nature’s y). For all t ∈ [T ], the following holds with probability at least
1− δ,

‖bt(G)‖ ≤ κb := σz

√
2m log

4mT

δ
+
σwΦ(A)‖C‖

√
2n log 4nT

δ

1− ρ(A)
. (6)
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The proof is given in the Appendix A.1. In the following, directly using the analysis in
Simchowitz et al. [2020], we show that for any π ∈ Π(ψ) and any input uπt at time step t, there is a
parameters set M, such that uMt is sufficiently close to uπt , and the resulting yπt is sufficiently close
to yMt .

Lemma 3.2. For any policy LDC policy π ∈ Π(ψ), there exist a H ′ length DFC policy M(H ′) such
that, with probability at least 1− δ,

‖uπt − uMt ‖ ≤
∥∥∥∥∥

t∑

i=H′

C ′
π,uA

′
π
i−1
B′
π,zbt−i

∥∥∥∥∥ ≤ ψ(H ′)κb

‖yπt − yMt ‖ ≤ ψ(H ′)κGκb

and one of the DFC policies that satisfies these conditions is M [0] = Dπ, and M [i] = C ′
π,uA

′
π
i−1B′

π,z

for all 0 < i < H ′.

The proof is provided in Appendix A.2. Lemma 3.2 further entails that any stabilizing LDC can
be well approximated by a DFC that belongs to the following class of DFCs

M
(
H ′, κψ

)
=



M(H ′) := {M [i]}H′−1

i=0 :

H′−1∑

i≥0

‖M [i]‖ ≤ κψ



 .

This observation indicates that using the set of DFC for the policy design does not, considerably,
alter the performance of the LDC controllers.

4 Regret Analysis

We evaluate the agent’s performance by its regret with respect to π⋆, which is the optimal policy
for infinite horizon control problem,

π⋆(Θ)= lim
T→∞

argmin
π∈Π(ψ)

1

T
E

[
T∑

t=1

ℓt(yt, u
π
t )

]
.

After T time step of agent-environment interaction, we consider agent’s regret Regret(T ) as follows,

Regret(T ) =

T∑

t=1

ct −
T∑

t=1

ℓ(yπ⋆ , uπ⋆).

Throughout the interaction with the system, the agent has access to a convex set of DFCs,
M (H ′, κM), such that κM ≥ 2κψ and all controllers M ∈ M (H ′, κM) is persistently exciting on
the system Θ. The precise definition of persistence of excitation condition is given in Appendix
C.3. Furthermore, we assume that M⋆(H

′) := {M⋆
[i]}H′−1

i=0 , a DFC approximation of π⋆ with

M⋆
[0] = Dπ⋆ , and M⋆

[i] = C ′
π⋆,uA

′
π⋆
i−1B′

π⋆,z for all 0 < i < H ′, is contained in M (H ′, κM).

6



4.1 AdaptOn

We propose AdaptOn, a sample efficient adaptive control online learning algorithm which learns
the model dynamics through interaction with the environment and simultaneously deploys online
convex optimization approach to optimize the control policy. AdaptOn is illustrated in Algorithm 1.
AdaptOn uses ut ∼ N (0, σ2uI) to excite the system for a fixed warm-up period of Tburn ≥ Tmax,
where

Tmax := max{H,H ′, To, TA, TB , Tc, TǫG , Tcl, Tcx}. (7)

The duration of the warm-up period is chosen to guarantee an accountable first estimate of the
underlying system (To), the stability of the online learning algorithm on the underlying system
(TA, TB), the stability of the inputs and outputs (TǫG), the persistence of excitation during the
adaptive control period (Tcl), an accountable estimate at the first epoch of adaptive control (Tc),
and the conditional strong convexity of expected counterfactual losses (Tcx). The precise expressions
are given in the Appendix.

In the adaptive control period, AdaptOn operates in epochs with doubling length. We set the
base period Tbase to an initial value Tbase = Tburn. After the warm-up period, in the first epoch of
adaptive control, the agent runs for Tbase time steps. For each remaining epoch i, the AdaptOn

runs for 2i−1Tbase time steps. At the beginning of epoch i, i.e., at time step ti, AdaptOn exploits
the past experiences up to the i’th epoch and estimates Ĝi(H), the first H Markov parameters of
the environment. AdaptOn utilizes these estimates to approximate bt(G) using Ĝi(H). During the
i’th epoch, at any time step t ∈ [ti, . . . , ti+1 − 1], AdaptOn computes

bt(Ĝi) = yt −
H∑

j=1

Ĝ
[j]
i ut−j , (8)

and using the approximations of Nature’s y, AdaptOn executes a DFC policy Mt ∈ M (H ′, κM),

uMt
t =

∑H′−1
j=0 M

[j]
t bt−j(Ĝi) and observes the loss function ℓt. Using the estimate Ĝi(H), we define

the counterfactual loss at time step t as follows,

ft

(
Mt, Ĝi, b1(Ĝi), . . . , bt(Ĝi)

)
= ℓt


bt(Ĝi) +

H∑

j=1

Ĝ
[j]
i

H′−1∑

l=0

M [l]bt−j−l(Ĝi),

H′−1∑

l=0

M [l]bt−l(Ĝi)


 .

Note that the counterfactual loss is convex in G. During the time steps in epoch i, t ∈ [ti, . . . , ti+1−
1], AdaptOn applies steps of online learning on this cost function while keeping updates in the set
M (H ′, κM) via projection.

4.2 Dynamics Learning

In order to estimate the Markov parameters, AdaptOn follows the estimation process provided
in Lale et al. [2020b] which uses the predictor form of the state-space representation given in (3).
Using the generated input-output sequence Dτ = {yt, ut}τt=1, the agent constructs N subsequences
of Hest input-output pairs, φt for Hest ≤ t ≤ τ , where τ = Hest +N − 1,

φt =
[
y⊤t−1 . . . y

⊤
t−Hest

u⊤t−1 . . . u
⊤
t−Hest

]⊤
∈ R

(m+p)Hest .

7



Algorithm 1 AdaptOn

1: Input: T , H, H ′, Tburn, M = M (H ′, κM)
—— Warm-Up ————————————————————————————

2: for t = 1, . . . , Tburn do

3: Deploy ut∼N (0, σ2uI)
4: end for

5: Store DTburn ={yt, ut}Tburnt=1 ,
6: Set Tbase = Tburn, t = Tbase + 1, and , t1 = Tbase

—— Adaptive Control ———————————————————————–
7: Set Mt as any member of M
8: for i = 1, 2, . . . do

9: Solve (11) using Dt, estimate Âi, B̂i, Ĉi using SysId and construct Ĝi(H)

10: Compute bτ (Ĝi) := yτ −
∑H

j=1 Ĝ
[j]
i uτ−j , ∀τ ≤ t

11: while t ≤ ti + 2i−1Tbase and t ≤ T do

12: Observe yt, and compute bt(Ĝi) := yt −
∑H

j=1 Ĝ
[j]
i ut−j

13: Commit to ut := uMt
t =

∑H′−1
j=0 M

[j]
t bt−j(Ĝi), observes ℓt, and pays a cost of ℓt(yt, ut)

14: Update Mt+1 = projM
(
Mt − ηt∇ft

(
Mt, Ĝi, b1(Ĝi), . . . , bt(Ĝi)

))

15: Dt+1 = Dt ∪ {yt, ut}
16: t = t+ 1
17: end while

18: ti+1 = ti + 2i−1Tbase
19: end for

One can write the following truncated autoregressive exogenous (ARX) model for the given
system Θ,

yt = Gyuφt + et + CĀHxt−Hest

where Gyu ∈ R
m×(m+p)Hest defined as

Gyu =
[
CF, CĀF, . . . , CĀHest−1F, CB, CĀB, . . . , CĀHest−1B

]
. (9)

Using this, we have the following form for any input-output trajectory {yi, ut}τt=1 can be represented
as

Yτ = ΦτGyu
⊤ +Eτ +Nτ (10)

where

Yτ =[yHest , yHest+1, . . . , yτ ]
⊤ ∈ R

N×m Φτ =[φHest , φHest+1, . . . , φτ ]
⊤ ∈ R

N×(m+p)Hest

Eτ =[eHest , eHest+1, . . . , eτ ]
⊤ ∈ R

N×m Nτ =
[
CĀHestx0, CĀ

Hestx1, . . . , CĀ
Hestxτ−Hest

]⊤∈ R
N×m

for N = τ −Hest + 1. After the warm-up period and before the first epoch, AdaptOn obtains the
first estimate of the unknown truncated ARX model Gyu by solving the following regularized least
square problem for i = 1,

Ĝyu,i = argmin
X

‖Yti − ΦtiX
⊤‖2F + λ‖X‖2F (11)

8



where the solution

Ĝ⊤
yu,i = (Φ⊤

tiΦti + λI)−1Φ⊤
tiYti .

Using this solution, AdaptOn deploys SysId, a system-identification algorithm given in Appendix
B. SysId uses the blocks of the estimate Ĝyu,1 to form two Hankel matrices and concatenate them
to construct, Ĥ1. Using Definition 2.1, if the input to the SysId was Gyu then the constructed
matrix, H, would be rank n, where ‖H‖ denotes the spectral norm and σn(H) > 0 denotes n’th
singular value of H. From Ĥ1, SysId obtains the estimates of the system parameters Â1, B̂1, Ĉ1.
For more details of SysId refer to Lale et al. [2020b]. Finally, from these estimates, AdaptOn forms
the estimate Ĝ1(H). As explained in the previous section, this estimation process is repeated in
the beginning of each epoch by using all the data gathered.

First, consider the effect of truncation bias term, Nti . From Assumption 2.3, there exists a
similarity transformation that gives ‖Ā‖ ≤ υ < 1. Thus, each term in Nti is order of υH . In
order to get consistent estimation, for some problem dependent constant cH , AdaptOn sets Hest ≥
max{2n+1, log(cHT

2√m/
√
λ)

log(1/υ) }, resulting in a negligible bias term of order 1/T 2. Now, consider Hest-

length truncated open-loop noise evolution parameters, Gol as defined in Appendix A of Lale et al.
[2020b]. Let σo denote a lower bound on σmin(Gol), i.e., σmin(Gol) > σo > 0. Similarly, due to
persistence of excitation of all M ∈ M (H ′, κM), defined in detail in Appendix C.3, during the
adaptive control period we have the lower bound, σc, on the smallest singular value of the matrix
that generates φt from system disturbances w1:t, z1:t. Let

σ2⋆ := min

{
σ2oσ

2
w

2
,
σ2oσ

2
z

2
,
σ2oσ

2
y

2
,
σ2cσ

2
w

16
,
σ2cσ

2
z

16

}
. (12)

The following is an adaptation of Theorem 3.3 of Lale et al. [2020b] to the given setting using the

problem dependent parameters Υw(δ) = poly
(
‖C‖, σz, σw, σu,

√
m,

√
n,

√
p,
√

log(Tburn/δ)
)

and

Υc(δ) = poly (κM, κb, κG,
√
m).

Theorem 4.1. [Estimation of Truncated ARX Model After Warm-up] Let δ ∈ (0, 1). During the
warm-up period, for all t ≤ Tburn, ‖φt‖ ≤ Υw(δ)

√
Hest and ‖ut‖ ≤ κuburn := σu

√
2p log(2pTburn/δ)

with probability at least 1− δ. Let ‖Gyu‖F ≤ S. After the warm-up period of Tburn ≥ Tmax, the first

estimate of truncated ARX model, Ĝyu,1, obeys the following with probability at least 1− 2δ,

‖Ĝyu,1 − Gyu‖ ≤ κest

σ⋆
√
Tburn

,

where κest =

√
m‖CΣC⊤+ σ2zI‖

(
log(1δ ) +

Hest(m+p)
2 log

(
1 + T max{Υ2

w(δ),Υ2
c(δ)}

λ(m+p)

))
+ S

√
λ+

√
Hest

T .

The proof is given in Appendix C.1, where we show the persistence of excitation of the inputs
in the warm-up period and use this to derive the presented bound via Theorem E.2. Define the

9



following quantities,

γG = (‖B‖+‖C‖+1)

(
1 +

Φ(A)

1− ρ(A)
+

2Φ(A)

(1− ρ(A))2

)
+

2Φ(A)

(1− ρ(A))2
‖C‖‖B‖

γH =

√
nHest(‖H‖+ σn(H))

σ2n(H)

α ≤ αloss

(
σ2z + σ2w

(
σmin (C)

1 + ‖A‖2
)2
)

where α is a lower bound to the strong convexity dependent parameter. The following lemma shows
that warm-up duration was long enough to obtain good initial Markov parameter estimates.

Lemma 4.1. [Estimation Error in First Epoch] Let δ ∈ (0, 1), T > Tburn ≥ Tmax and ψG(H +1) ≤
1/10T . In the first epoch of the adaptive control period, at any time step t ∈ [Tbase, . . . , 2Tbase − 1],
with probability at least 1− 2δ, Markov parameter estimation error of AdaptOn is bounded as

∑

j≥1

‖Ĝ[j]
1 −G[j]‖ ≤ ǫG(1, δ) ≤ max

{
1

4κbκMκG

√
α

H ′αloss
,

1

2κMκG

}
,

where ǫG(1, δ) := 2c1γGγHκest
σ⋆

√
Tburn

for some problem dependent constant c1.

The proof is given in Appendix C.2. To give an overview, we combine Theorem 4.1 with Theorem
E.3, which translates ‖Ĝyu,i − Gyu‖ to estimation error bounds on the system parameter estimates
obtained by SysId, to get the guarantee for the Markov parameter estimates that hold during the

first epoch of adaptive control period. Notice that for the first epoch, ǫG(1, δ) = O
(
polylog(T )√

Tburn

)
.

Using Lemma 4.1, we show that with the given Tburn duration, the Markov parameter estimates
are well-refined such that the inputs, outputs and Nature’s y estimates of AdaptOn are bounded
uniformly, i.e., the system remains stable.

Lemma 4.2 (Lemma 6.1 in [Simchowitz et al., 2020]). Let T > Tburn ≥ Tmax and ψG(H + 1) ≤
1/10T for δ ∈ (0, 1). Then, for all t ∈ [T ], with probability at least 1− 2δ, the following holds,

‖ut‖ ≤ κu := 2max {κuburn , κMκb}
‖bt(Ĝ)‖ ≤ 2κb

‖yt‖ ≤ κy := κb + κGκu

Next, we consider the concentration of truncated ARX Model estimates during the adaptive
control period. The following shows that the estimation error of closed-loop truncated ARX Model
estimates have the same characteristics (decay) with the open-loop estimates, i.e. Theorem 4.1.

Theorem 4.2. [Estimation of Truncated ARX Model During Adaptive Control] During the adaptive
control period for all t > Tburn ≥ Tmax, ‖φt‖ ≤ Υc(δ)

√
Hest with probability 1−2δ. Let ‖Gyu‖F ≤ S.

Then for all i = {1, 2, . . .}, at the beginning of i’th epoch the estimate of the truncated ARX model,
Ĝyu,i, obeys the following with 1− 4δ,

‖Ĝyu,i − Gyu‖ ≤ κest
σ⋆

√
ti
.

10



The proof is given in Appendix C.4, but here we provide a proof sketch. We first show that the
initial estimation error given in Lemma 4.1 is small enough to provide persistence of excitation in
expectation. Then using Theorem E.1 and a standard covering argument, we show that AdaptOn

has persistence of excitation during the adaptive control period with high probability. Combining
this result with Theorem E.2, we derive Theorem 4.2. Similar to Lemma 4.1, we have the following
lemma which extends ‖Ĝyu,i − Gyu‖ to estimation error in Markov parameters.

Lemma 4.3. [Estimation Error in All Epochs] Let δ ∈ (0, 1), T > Tburn ≥ Tmax and ψG(H + 1) ≤
1/10T . During the i’th epoch of adaptive control period, at any time step t ∈ [ti, . . . , ti+1−1], with
probability at least 1− 4δ, for all i, Markov parameter estimation error of AdaptOn is bounded as

∑

j≥1

‖Ĝ[j]
i −G[j]‖ ≤ ǫG(i, δ) :=

2c1γGγHκest
σ⋆

√
ti

,

for some problem dependent constant c1.

The proof of Lemma 4.3 is identical with Lemma 4.1. Notice that for the i’th epoch, ǫG(i, δ) =

O
(
polylog(T )√

ti

)
. This observation will be key in proving the main result of this work, Theorem 4.4.

4.3 Regret Bound

Using the guarantees in learning the system dynamics, we obtain the following regret upper bound
of AdaptOn.

Theorem 4.3. Let the decision makers memory H ′ satisfy H ′ ≥ 3H ≥ 1, ψ(⌊H ′/2⌋−H) ≤ κM/T
and ψ(H +1) ≤ 1/10T . Under the Assumptions 2.1-2.3, after a warm-up period time Tburn ≥ Tmax,
if AdaptOn runs with step size ηt =

12
αt , then with probability at least 1−5δ, the regret of AdaptOn

is bounded as follows

Regret(T ) . TburnLκ
2
y︸ ︷︷ ︸

R1

+
L2H ′3min{m, p}κ4bκ4Gκ2M

min{α,Lκ2bκ2G}

(
1+

αloss
min{m, p}LκM

)
log

(
T

δ

)

︸ ︷︷ ︸
R2

+
T∑

t=Tburn+1

ǫ2G

(⌈
log2

(
t

Tburn

)⌉
, δ

)
H ′κ2bκ

2
M

(
κ2Gκ

2
b (αloss + L)2

α
+ κ2ymax

{
L,
L2

α

})

︸ ︷︷ ︸
R3

.

The proof is given in Appendix D. The proof follows and adapts Theorem 5 of Simchowitz et al.
[2020] to the setting of AdaptOn. The key difference is that the Markov parameter estimation
errors are not fixed during the adaptive control period and they decay in each epoch due to closed-
loop model estimation that AdaptOn runs. Note that regret upper bound is composed of fairly
accessible terms. The first term is the regret obtained during the warm-up period and the second
term is the regret of online learning controller. Finally, the last term is due to Markov parameter
estimation errors. However, notice that the regret scales quadratically with the estimation error,
due to strong convexity of the loss function.

Following the doubling update rule of AdaptOn, the length of each epoch grows as Tbase, 2Tbase,
4Tbase, . . .. Therefore after T times steps of agent-environment interaction, the number of epochs,
i.e. the number of times AdaptOn estimates the first H Markov parameters is O (log T ).

11



As indicated in Lemma 4.1 and Lemma 4.3, during the i’th epoch of the adaptive control period,

at any time step t ∈ [ti, . . . , ti − 1], ǫ2G

(⌈
log2

(
t

Tburn

)⌉
, δ
)

is O
(
polylog(T )

ti

)
. Following the update

rule of AdaptOn, we have

T∑

t=Tbase+1

ǫ2G

(⌈
log2

(
t

Tburn

)⌉
, δ

)
=

O(log T )∑

i=1

2i−1Tbaseǫ
2
G(i, δ)

≤
O(log T )∑

i=1

2i−1Tbase O
(
polylog(T )

2i−1Tbase

)
= O (polylog(T )) (13)

Using the result of (13), we can upper bound the R3 of the regret upper bound in Theorem 4.3
with a polylog(T ) bound which entails the following polylogarithmic regret:

Theorem 4.4. Under the conditions of the Theorem 4.3, the regret of AdaptOn is bounded as
follows:

Regret(T ) = polylog(T ).

Note that without any estimation updates during the adaptive control, AdaptOn reduces to
a variant of the algorithm given in Simchowitz et al. [2020]. While the update rule in AdaptOn

results in O(log(T )) updates in adaptive control period, one can follow different update schemes as
long as AdaptOn obtains enough samples in the beginning of the adaptive control period to obtain
persistence of excitation. The following is an immediate corollary of Theorem 4.4 which considers
the case when number of epochs or estimations are limited during the adaptive control period.

Corollary 4.1. As long as enough samples are gathered in the adaptive control period, with any
update scheme less than log(T ) updates during adaptive control period, the regret of AdaptOn is
bounded as follows:

Regret(T ) ∈
[
polylog(T ), Õ(

√
T )
]
.

Now consider the case where the condition on persistence of excitation of M (H ′, κM) does
not hold. In order to efficiently learn the model parameters and minimize the regret, one can add
an additional independent Gaussian excitation to the control input ut for each time step t. This
guarantees the concentration of Markov parameter estimates, but it also results in an extra regret
term in the bound of Theorem 4.3.

If the variance of the added Gaussian vector is set to be σ̃2, exploiting the Lipschitzness of
the loss functions, the additive regret of the random excitation is Õ(T σ̃). Following the results in
Lemma 4.3, the additional random excitation helps in parameter estimation and concentration of
Markov parameters up to the error of O(polylog(T )/

√
σ̃2t). Since the contribution of the error in

the Markov parameter estimates in the Theorem 4.3 is quadratic, the contribution of this error in
the regret through R3 will be O(polylog(T )/σ2).

Corollary 4.2. When the condition on persistent excitation of all M ∈ M (H ′, κM) is not fulfilled,
adding independent Gaussian vectors with variance of O(1/T 1/3) to the inputs in adaptive control
period results in the regret upper bound of Õ(T 2/3).
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5 Related Works

Adaptive control arises when there is uncertainty in the system model. In order to achieve good
performance, the agent needs to learn the dynamics by interacting with the system and adapt accord-
ingly based on its observations. For fully observable linear systems, Lai et al. [1982], Chen and Guo
[1987] provide asymptotic analysis of consistency in the model estimation, which is based on pure
exploration.

In order to capture the control objective while learning the system dynamics in finite time,
Abbasi-Yadkori and Szepesvári [2011] used regret as the performance metric to provide Õ(

√
T ) re-

gret in the adaptive control of linear quadratic regulator (LQR). Their method builds upon optimism
in the face of uncertainty (OFU) principle and self-normalized estimations [Abbasi-Yadkori et al.,
2011a,b]. This work sparked the flurry of research with different directions in the regret analysis
of controlling unknown LQR [Faradonbeh et al., 2017, Abeille and Lazaric, 2017, 2018, Dean et al.,
2018, Faradonbeh et al., 2018, Cohen et al., 2019, Mania et al., 2019, Abbasi-Yadkori et al., 2019].
These works consider the systems with stochastic noise. Recently, Cassel et al. [2020] show that log-
arithmic regret is achievable if only A or B is unknown in LQR. Moreover, Simchowitz and Foster
[2020] recently provide Õ(

√
T ) regret lower bound for LQR setting with the fully unknown system.

They show that a slight deviation in the input matrix causes in an ambiguity in learning the model
for the agent that competes against an oracle and this ambiguity prevents logarithmic regret. Note
that, due to the persistent noise in the observations of the hidden states in partially observable
linear dynamical systems, the mentioned lower bound does not carry to the provided guarantee of
AdaptOn.

In the adversarial noise setting, most of the works consider full information of the underlying
system and aim to control the system under adversarial noise [Agarwal et al., 2019a, Cohen et al.,
2018, Agarwal et al., 2019b, Foster and Simchowitz, 2020]. Recent efforts extend to adaptive control
in the adversarial setting for the unknown system model [Hazan et al., 2019, Simchowitz et al.,
2020].

In the partially observable linear systems, similar to the trend in fully observable counterparts,
most of the prior works focus on the system identification aspects [Ljung, 1999, Chen et al., 1992,
Juang et al., 1993, Phan et al., 1994, Lee and Zhang, 2019, Oymak and Ozay, 2018, Sarkar et al.,
2019, Simchowitz et al., 2019, Lee and Lamperski, 2019, Tsiamis and Pappas, 2019, Tsiamis et al.,
2019, Umenberger et al., 2019, Tsiamis and Pappas, 2020]. A body of work aimed to extend the
problem of estimation and prediction to online convex optimization where a set of strong theoretical
guarantees on cumulative prediction errors are provided [Abbasi-Yadkori et al., 2014, Hazan et al.,
2017, Arora et al., 2018, Hazan et al., 2018, Lee and Zhang, 2019, Ghai et al., 2020]

Building upon the system identification algorithms, Lale et al. [2020a] provides Õ(T 2/3) regret
upper bound in system with stochastic noise using OFU. Similarly building upon the system identi-
fication algorithms, Simchowitz et al. [2020] uses online convex optimization [Anava et al., 2015] to
achieve Õ(T 2/3) for convex cost functions and Õ(

√
T ) for strongly convex cost functions. Exploiting

the different model representations of partially observable linear models, Lale et al. [2020b] devise
a new system identification method and provide Õ(

√
T ) regret in stochastic setting without strong

convexity assumption.
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6 Conclusion

In this paper, we propose AdaptOn, a novel adaptive control algorithm that efficiently learns the
truncated Markov parameters of the underlying dynamical system and deploys projected online
gradient descent to design a controller. The design of AdaptOn is developed based on the recent
novel studies on RL in partially observable dynamical systems [Simchowitz et al., 2020, Lale et al.,
2020b]. We show that in the presence of convex set of persistently exciting linear controllers and
strongly convex loss functions, AdaptOn achieves a regret upper bound of polylogarithmic in number
of agent-environment interactions.

In this work, we relaxed the requirement in a priori knowledge of the variance of the Gaussian
process noise, and measurement noise to just their upper and lower bounds. For the future work,
we plan to extend the study of AdaptOn to more general sub-Gaussian noise, and potentially to
adversarial perturbations [Simchowitz et al., 2020].
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Appendix

A Proofs of Section 3

A.1 Proof of Lemma 3.1

Using Lemma E.1, the following hold for all t ∈ [T ], with probability at least 1− δ,

‖wt‖ ≤ σw

√
2n log

4nT

δ
, ‖zt‖ ≤ σz

√
2m log

4mT

δ
. (14)

Thus we have,

‖bt(G)‖ = ‖zt +
t−1∑

i=1

CAt−i−1wi‖ ≤ ‖zt‖+ ‖C‖‖wt‖
∞∑

i=1

‖At−i−1‖. (15)

Combining (14) and (15) gives the advertised bound. �

A.2 Proof of Lemma 3.2

Rolling out the dynamical system defining a policy π in Eq. 5 we can restate the action uπt as follows,

uπt = Dπzt +
t−1∑

i=1

C ′
π,uA

′
π
i−1
B′
π,zzt−i +

t−1∑

i=1

C ′
π,uA

′
π
i−1
B′
π,wwt−i

= Dπzt +
t−1∑

i=1

C ′
π,uA

′
π
i−1
B′
π,zzt−i + C ′

π,uB
′
π,wwt−1 +

t−1∑

i=2

C ′
π,uA

′
π
i−1
B′
π,wwt−i

= Dπzt +

t−1∑

i=1

C ′
π,uA

′
π
i−1
B′
π,zzt−i +DπCwt−1 +

t−1∑

i=2

C ′
π,uA

′
π
i−1

B′
π,wwt−i

Note that A′
π
i−1B′

π,w is equal to

[
A+BDπC

BπC

]
. Based on the definition of A′

π in Eq. 5, we

restate A′
π as follows,

A′
π =

[
A+BDπC BCπ

BπC Aπ

]
=

[
BDπC BCπ
BπC Aπ

]
+

[
A 0n×s

0s×n 0s×s

]
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For any given bounded matrices A′
π and A, and any integer i > 0, we have

A′
π
i
=

[
A+BDπC BCπ

BπC Aπ

]i
=

[
A+BDπC BCπ

BπC Aπ

]i−1 [
BDπC BCπ
BπC Aπ

]
+

[
A+BDπC BCπ

BπC Aπ

]i−1 [
A 0n×s

0s×n 0s×s

]

=

[
A+BDπC BCπ

BπC Aπ

]i−1 [
BDπC BCπ
BπC Aπ

]

+

[
A+BDπC BCπ

BπC Aπ

]i−2 [
BDπC BCπ
BπC Aπ

] [
A 0n×s

0s×n 0s×s

]

+

[
A+BDπC BCπ

BπC Aπ

]i−2 [
A2 0n×s
0s×n 0s×s

]

...

=

[
Ai 0n×s
0s×n 0s×s

]
+

i∑

j=1

A′
π
j−1
[
BDπC BCπ
BπC Aπ

] [
Ai−j 0n×s
0s×n 0s×s

]

We use this decomposition to relate uπt and uMt . Now considering A′
π
i−1B′

π,w, for i− 1 > 0 we have

A′
π
i−1
B′
π,w =

[
Ai−1

0s×n

]
+

i−1∑

j=1

A′
π
j−1
[
BDπC BCπ
BπC Aπ

] [
Ai−1−j

0s×n

]
=

[
Ai−1

0s×n

]
+

i−1∑

j=1

A′
π
j−1

B′
π,zCA

i−1−j

Using this equality in the derivation of uπt we derive,

uπt = Dπzt +
t−1∑

i=1

C ′
π,uA

′
π
i−1
B′
π,zzt−i +DπCwt−1

+
t−1∑

i=2

[
DπC Cπ

] [Ai−1

0s×n

]
wt−i +

t−1∑

i=2

C ′
π,u

i−1∑

j=1

A′
π
j−1

B′
π,zCA

i−1−jwt−i

= Dπzt +

t−1∑

i=1

C ′
π,uA

′
π
i−1
B′
π,zzt−i +

t−1∑

i=1

DπCA
i−1wt−i +

t−1∑

i=2

i−1∑

j=1

C ′
π,uA

′
π
j−1

B′
π,zCA

i−1−jwt−i

Note that bt(G) = zt +
∑t−1

i=1 CA
t−i−1wi = zt +

∑t−1
i=1 CA

i−1wt−i. Inspired by this expression, we
rearrange the previous sum as follows:
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uπt = Dπ

(
zt +

t−1∑

i=1

CAi−1wt−i

)
+

t−1∑

i=1

C ′
π,uA

′
π
i−1

B′
π,zzt−i +

t−1∑

i=2

i−1∑

j=1

C ′
π,uA

′
π
j−1

B′
π,zCA

i−1−jwt−i

= Dπ

(
zt +

t−1∑

i=1

CAi−1wt−i

)
+

t−1∑

i=1

C ′
π,uA

′
π
i−1

B′
π,zzt−i +

t−2∑

j=1

t−1∑

i=j+1

C ′
π,uA

′
π
j−1

B′
π,zCA

i−1−jwt−i

= Dπ

(
zt +

t−1∑

i=1

CAi−1wt−i

)
+

t−1∑

i=1

C ′
π,uA

′
π
i−1

B′
π,zzt−i +

t−2∑

j=1

C ′
π,uA

′
π
j−1

B′
π,z

t−j−1∑

i=1

CAt−j−i−1wi

= Dπbt +
t−1∑

i=1

C ′
π,uA

′
π
i−1
B′
π,zbt−i

Now setting M [0] = Dπ, and M [i] = C ′
π,uA

′
π
i−1B′

π,z for all 0 < i < H ′, we conclude that for any
LDC policy π ∈ Π, there exists at least one length H ′ DFC policy M(H ′) such that

uπt − uMt =

t∑

i=H′

C ′
π,uA

′
π
i−1

B′
π,zbt−i

Using Cauchy Schwarz inequality we have

‖uπt − uMt ‖ ≤
∥∥∥∥∥

t∑

i=H′

C ′
π,uA

′
π
i−1
B′
π,zbt−i

∥∥∥∥∥ ≤ ψ(H ′)κb

which states the first half of the Lemma.
Using the definition of yπt Eq. 4, we have

yπt = zt +
t−1∑

i=1

CAt−i−1wi +
t−1∑

i

G[i]uπt−i.

Similarly for yMt we have,

yMt = zt +

t−1∑

i=1

CAt−i−1wi +

t−1∑

i

G[i]uπt−i.

Subtracting these two equations, we derive,

yπt − yMt =

t−1∑

i

G[i]uπt−i −
t−1∑

i

G[i]uMt−i =
t−1∑

i

G[i](uπt−i − uMt−i)

resulting in

‖yπt − yMt ‖ ≤ ψ(H ′)κGκb

which states the second half of the Lemma. �
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B System Identification Algorithm

Algorithm 2 gives the system-identification algorithm, SysId, that is called in the beginning of each
epoch. For further discussion of the algorithm please refer to Lale et al. [2020b].

Algorithm 2 SysId

1: Input: Ĝyu,i, Hest, system order n, d1, d2 such that d1 + d2 + 1 = Hest

2: Form two d1 × (d2 + 1) Hankel matrices H
F̂i

and H
Ĝi

from Ĝyu,i =

[F̂i,1, . . . , F̂i,Hest
, Ĝi,1, . . . , Ĝi,Hest

], and construct Ĥi =
[
H

F̂i
, H

Ĝi

]
∈ R

md1×(m+p)(d2+1)

3: Obtain Ĥ−
i by discarding (d2 + 1)th and (2d2 + 2)th block columns of Ĥi

4: Using SVD obtain N̂i ∈ R
md1×(m+p)d2 , the best rank-n approximation of Ĥ−

i

5: Obtain Ui,Σi,Vi = SVD(N̂i)
6: Construct Ôi(Ā, C, d1) = UiΣt

1/2 ∈ R
md1×n

7: Construct [Ĉi(Ā, F, d2 + 1), Ĉi(Ā, B, d2 + 1)] = Σi
1/2

Vi ∈ R
n×(m+p)d2

8: Obtain Ĉi ∈ R
m×n, the first m rows of Ôi(Ā, C, d1)

9: Obtain B̂i ∈ R
n×p, the first p columns of Ĉi(Ā, B, d2 + 1)

10: Obtain F̂i ∈ R
n×m, the first m columns of Ĉi(Ā, F, d2 + 1)

11: Obtain Ĥ+
i by discarding 1st and (d2 + 2)th block columns of Ĥi

12: Obtain ˆ̄Ai = Ô
†
i (Ā, C, d1) Ĥ+

i [Ĉi(Ā, F, d2 + 1), Ĉi(Ā, B, d2 + 1)]†

13: Obtain Âi =
ˆ̄Ai + F̂iĈi

14: Obtain L̂i ∈ R
n×m, as the first n×m block of Â†

iÔ
†
i (Ā, C, d1)Ĥ−

i

C Proofs for Dynamics Learning

C.1 Proof of Theorem 4.1

First, we have the following lemma that provides the persistence of excitation of inputs in the

warm-up period. Let To =
32Υ4

w log2
(

2Hest(m+p)
δ

)

σ4min(Gol)min{σ4
w,σ

4
z ,σ

4
u}

.

Lemma C.1 (Open-Loop Persistence of Excitation, Lemma A.1 of Lale et al. [2020b]). If the warm-
up duration Tburn ≥ To, then for To ≤ t ≤ Tburn, with probability at least 1− δ we have

σmin

(
t∑

i=1

φiφ
⊤
i

)
≥ t

σ2o min{σ2w, σ2z, σ2u}
2

. (16)

Combining Lemma C.1 with Theorem E.2 gives

‖Ĝyu,1 − Gyu‖ ≤ κest

σo
√
Tburn

√
min{σ2

w,σ
2
z ,σ

2
u}

2

,

with probability at least 1−2δ. Notice that σ2∗ := min
{
σ2oσ

2
w

2 ,
σ2oσ

2
z

2 ,
σ2oσ

2
y

2 ,
σ2cσ

2
w

16 ,
σ2cσ

2
z

16

}
≤ σ2o min{σ2w,σ2

z ,σ
2
u}

2 .

Thus, the statement of Theorem 4.1 holds for Tburn ≥ t ≥ To with probability at least 1− 2δ. �

22



C.2 Proof of Lemma 4.1

In the beginning of the first epoch, AdaptOn constructs H-length Markov parameters matrix using
the estimates, Â1, B̂1, Ĉ1, provided by SysId on the estimated Ĝyu,1. From the assumption that

ψG(H + 1) ≤ 1/10T , we have that
∑

j≥H+1 ‖Ĝ
[j]
1 − G[j]‖ ≤ ǫG(1, δ)/2. Next consider the first

H-parameters
H∑

j≥1

‖Ĝ[j]
1 −G[j]‖ =

H∑

j≥1

‖Ĉ1Â
j−1
1 B̂1 − CAj−1B‖. (17)

Consider Theorem E.3. For some unitary matrix T, we denote ∆A := ‖Â1 − T
⊤AT‖, ∆B :=

‖B̂1 −T
⊤B‖ = ‖Ĉ1 − CT‖. Define

TGyu
:=

κ2est
σ2∗

, TA := TGyu

4c21γ
2
H

(1− ρ(A))2
, TB := TGyu

20nHest

σn(H)
,

Tcx := TGyu

16c21κ
2
bκ

2
Mκ2GH

′γ2Gγ
2
Hαloss

α
, TǫG := 4c21κ

2
Mκ2Gγ

2
Gγ

2
HTGyu . (18)

For Tburn > max{TA, TB}, we have that ∆A ≤ 1−ρ(A)
2 and ∆B ≤ 1. Using this fact, we bound (17):

H∑

j≥1

‖Ĉ1Â
j−1
1 B̂1 − CAj−1B‖

≤ ∆B(‖B‖+‖C‖+1)+

H−1∑

i=1

Φ(A)ρi(A)∆B(‖B‖+‖C‖+1) + ‖Âi1−T
⊤AiT‖(‖C‖‖B‖+‖B‖+‖C‖+1)

≤
(
1 +

Φ(A)

1− ρ(A)

)
∆B(‖B‖+‖C‖+1) + ∆A(‖C‖‖B‖+‖B‖+‖C‖+1)

H−1∑

i=1

i−1∑

j=0

(
i

j

)
‖Aj‖(∆A)i−1−j

≤
(
1 +

Φ(A)

1− ρ(A)

)
∆B(‖B‖+‖C‖+1)

+ ∆AΦ(A)(‖C‖‖B‖+‖B‖+‖C‖+1)
H−1∑

i=1

i−1∑

j=0

(
i

j

)
ρj(A)

(
1− ρ(A)

2

)i−1−j

≤
(
1 +

Φ(A)

1− ρ(A)

)
∆B(‖B‖+‖C‖+1) +

2∆AΦ(A)

1− ρ(A)
(‖C‖‖B‖+‖B‖+‖C‖+1)

H−1∑

i=1

[(
1 + ρ

2

)i
− ρi

]

≤ ∆B

(
1 +

Φ(A)

1− ρ(A)

)
(‖B‖+‖C‖+1) +

2∆AΦ(A)

(1− ρ(A))2
(‖C‖‖B‖+‖B‖+‖C‖+1)

Assuming that ‖F‖ + ‖C‖ > 1 for simplicity, from the exact expressions of Theorem E.3, we have
∆A > ∆B. For the given γG and γH, we can upper bound the last expression above as follow,

H∑

j≥1

‖Ĉ1Â
j−1
1 B̂1 − CAj−1B‖ ≤ γG∆A ≤ c1γGγHκest

σ⋆
√
Tburn

, (19)

where (19) follows from Theorem 4.1 and the concentration result for ‖Â−T
⊤AT‖ in Theorem E.3.

The second inequality of the lemma holds since Tburn ≥ max{TǫG , Tcx}. �
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C.3 Persistence of Excitation Condition of M ∈ M (H ′, κM)

If the underlying system is fully known, the following are the inputs and outputs of the system:

ut =
H′−1∑

j=0

M
[j]
t bt−j(G)

yt = [G[0] G[1] . . . G[H]]
[
u⊤t u⊤t−1 . . . u

⊤
t−H

]⊤
+ bt(G) + rt

where rt =
∑t−1

k=H+1G
[k]ut−k. For Hest defined in Section 4.2, Hest ≥ max{2n+1, log(cHT

2
√
m/

√
λ)

log(1/υ) },
define

φt =
[
y⊤t−1 . . . y

⊤
t−Hest

u⊤t−1 . . . u
⊤
t−Hest

]⊤
∈ R

(m+p)Hest .

We have the following decompositions for φt:

φt=




G[0] G[1] . . . . . . . . . G[H] 0m×p 0m×p . . . 0m×p
0m×p G[0] . . . . . . . . . G[H−1] G[H] 0m×p . . . 0m×p

. . .
. . .

0m×p . . . 0m×p G[0] G[1] . . . . . . . . . G[H−1] G[H]

Ip×p 0p×p 0p×p 0p×p 0p×p 0p×p . . . . . . . . . 0p×p
0p×p Ip×p 0p×p 0p×p 0p×p 0p×p . . . . . . . . . 0p×p

. . .

0p×p 0p×p . . . Ip×p 0p×p . . . . . . . . . . . . 0p×p




︸ ︷︷ ︸
TG∈RHest(m+p)×(Hest+H)p




ut−1
...

ut−H
...

ut−H−Hest




︸ ︷︷ ︸
Ut

+




bt−1
...

bt−Hest

0p
...
0p




︸ ︷︷ ︸
By(G)(t)

+




rt−1

...
rt−Hest

0p
...
0p




︸ ︷︷ ︸
Rt

Ut=




M
[0]
t−1 M

[1]
t−1 . . . . . . M

[H′−1]
t−1 0p×m 0p×m . . . 0p×m

0p×m M
[0]
t−2 . . . . . . M

[H′−2]
t−2 M

[H′−1]
t−2 0p×m . . . 0p×m

. . .
. . .

0p×m . . . 0p×m M
[0]
t−Hest−H . . . . . . . . . . . . M

[H′−1]
t−Hest−H




︸ ︷︷ ︸
TMt

∈R(Hest+H)p×m(H+H′+Hest−1)




bt−1(G)
bt−2(G)

...
bt−H′+1(G)

...
bt−Hest−H−H′+1(G)




︸ ︷︷ ︸
B(G)(t)

B(G)(t)=




Im 0m . . . 0m C CA . . . . . . . . . CAt−3

0m Im 0m 0m×n C . . . . . . . . . CAt−4

. . .
. . .

. . .

0m 0m . . . Im 0m×n . . . . . . C . . . CAt−Hest−H−H′−1




︸ ︷︷ ︸
Ot




zt−1

zt−2
...

zt−Hest−H−H′+1

wt−2

wt−3
...
w1




︸ ︷︷ ︸
ηt
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and By(G)(t)=




Im 0m . . . . . . 0m C . . . . . . . . . CAt−3

. . .
...

. . .
. . .

0m . . . Im . . . 0m 0m×n . . . C . . . CAt−Hest−2

0(pHest)×((Hest+H+H′−1)m+(t−2)n)




︸ ︷︷ ︸
Ōt

ηt.

Combining all gives
φt =

(
TGTMtOt + Ōt

)
ηt +Rt.

Persistence of Excitation of M ∈ M (H ′, κM) on System Θ. For the given system Θ, for
t ≥ H +H ′ +Hest, TGTMtOt + Ōt is full row rank for all M ∈ M (H ′, κM), i.e.,

σmin(TGTMtOt + Ōt) > σc > 0. (20)

C.4 Proof of Theorem 4.2

First we have the following lemma, that shows inputs have persistence of excitation during the
adaptive control period. Let d = min{m, p}. Using (18), define

Tcl =
TǫG(

3σ2c min{σ2
w,σ

2
z}

8κ2uκyHest
− 1

10T

)2 , Tc =
2048Υ4

cH
2
est log

(
Hest(m+p)

δ

)
+H ′mp log

(
κM

√
d+ 2

ǫ

)

σ4c min{σ4w, σ4z}
.

Lemma C.2. After Tc time steps in the adaptive control period, with probability 1 − 3δ, we have
persistence of excitation for the remainder of adaptive control period,

σmin

(
t∑

i=1

φiφ
⊤
i

)
≥ t

σ2c min{σ2w, σ2z}
16

. (21)

Proof. During the adaptive control period, at time t, the input of AdaptOn is given by

ut =

H′−1∑

j=0

M
[j]
t bt−j(G) +M

[j]
t

(
bt−j(Ĝi)− bt−j(G)

)

where

bt−j(G) = yt−j −
t−j−1∑

k=1

G[k]ut−j−k = zt−j +
t−j−1∑

k=1

CAt−j−k−1wk (22)

bt−j(Ĝi) = yt−j −
H∑

k=1

Ĝ
[k]
i ut−j−k (23)
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Thus, we obtain the following for ut and yt,

ut =

H′−1∑

j=0

M
[j]
t bt−j(G) +

H′−1∑

j=0

M
[j]
t

(
t−j−1∑

k=1

[G[k] − Ĝ
[k]
i ]ut−j−k

)

︸ ︷︷ ︸
u∆b(t)

yt = [G[0] G[1] . . . G[H]]
[
u⊤t u⊤t−1 . . . u

⊤
t−H

]⊤
+ bt(G) + rt

where rt =
∑t−1

k=H+1G
[k]ut−k and

∑t−1
k=H ‖G[k]‖ ≤ ψG(H + 1) ≤ 1/10T which is bounded by the

assumption. Notice that ‖u∆b(t)‖ ≤ κMκuǫG(1, δ) for all t ∈ Tburn. Using the definitions from
Appendix C.3, φt can be written as,

φt =
(
TGTMtOt + Ōt

)
ηt +Rt + TGU∆b(t) (24)

where

U∆b(t) =




u∆b(t− 1)
u∆b(t− 2)

...
u∆b(t−Hest)

...
u∆b(t−Hest −H)




.

Consider the following,

E

[
φtφ

⊤
t

]
= E

[ (
TGTMtOt + Ōt

)
ηtη

⊤
t

(
TGTMtOt + Ōt

)⊤
+ η⊤

t

(
TGTMtOt + Ōt

)⊤
(TGU∆b(t) +Rt)

+ (TGU∆b(t) +Rt)
⊤ (TGTMtOt + Ōt

)
ηt + (TGU∆b(t) +Rt)

⊤ (TGU∆b(t) +Rt)

]

σmin

(
E

[
φtφ

⊤
t

])
≥ σ2c min{σ2w, σ2z}

− 2κb (κM + κMκG + 1)
√
Hest((1 + κG)κMκuǫG(1, δ)

√
Hest +

√
Hestκu/10T )

≥ σ2c min{σ2w, σ2z} − 2κ2uκyHest(2κGκMǫG(1, δ) + 1/10T )

Note that for Tburn ≥ Tcl, ǫG(1, δ) ≤ 1
2κMκG

(
3σ2c min{σ2

w,σ
2
z}

8κ2uκyHest
− 1

10T

)
with probability at least 1− 2δ.

Thus, we get

σmin

(
E

[
φtφ

⊤
t

])
≥ σ2c

4
min{σ2w, σ2z}, (25)

for all t ≥ Tburn. Using Lemma 4.2, we have that for Υc := (κy + κu), ‖φt‖ ≤ Υc

√
Hest with

probability at least 1− 2δ. Therefore, for a chosen M ∈ M (H ′, κM), using Theorem E.1, we have
the following with probability 1− 3δ:

λmax

(
t∑

i=1

φiφ
⊤
i − E[φiφ

⊤
i ]

)
≤ 2

√
2tΥ2

cHest

√
log

(
Hest(m+ p)

δ

)
. (26)
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In order to show that this holds for any chosen M ∈ M (H ′, κM), we adopt a standard covering
argument. We know that from Lemma 5.4 of Simchowitz et al. [2020], the Euclidean diameter of
M (H ′, κM) is at most 2κM

√
min{m, p}, i.e. ‖Mt‖F ≤ κM

√
min{m, p} for all Mt ∈ M (H ′, κM).

Thus, we can upper bound the covering number as follows,

N (B(κM
√

min{m, p}), ‖ · ‖F , ǫ) ≤
(
κM
√

min{m, p}+ 2

ǫ

)H′mp

.

The following holds for all the centers of ǫ-balls in ‖Mt‖F , for all t ≥ Tburn, with probability 1− 3δ:

λmax

(
t∑

i=1

φiφ
⊤
i − E[φiφ

⊤
i ]

)
≤ 2

√
2tΥ2

cHest

√
log

(
Hest(m+ p)

δ

)
+H ′mp log

(
κM
√

min{m, p}+ 2

ǫ

)
.

(27)

Consider all M in the ǫ-balls, i.e. effect of epsilon perturbation in ‖M‖F sets, using Weyl’s inequality
we have with probability at lest 1− 3δ,

σmin

(
t∑

i=1

φiφ
⊤
i

)
≥ t

(
σ2c
4

min{σ2w, σ2z} −
8cκ3bκGHestǫ

(
2κ2M + 3κM + 3

)
√

min{m, p}

(
1 +

1

10T

))

− 2
√
2tΥ2

cHest

√
log

(
Hest(m+ p)

δ

)
+H ′mp log

(
κM
√

min{m, p}+ 2

ǫ

)
.

for some enough constant c and ǫ ≤ 1. Let ǫ = min

{
1,

σ2c min{σ2
w,σ

2
z}
√

min{m,p}
68cκ3

b
κGHest(2κ2M+3κM+3)

}
. For this choice

of ǫ, we get

σmin

(
t∑

i=1

φiφ
⊤
i

)
≥ t

(
σ2c
8

min{σ2w, σ2z}
)

− 2
√
2tΥ2

cHest

√
log

(
Hest(m+ p)

δ

)
+H ′mp log

(
κM
√

min{m, p}+ 2

ǫ

)
.

For picking Tburn ≥ Tc, we can guarantee that after Tc time steps in the first epoch we have the
advertised lower bound.

Combining Lemma C.2 with Theorem E.2 gives

‖Ĝyu,i − Gyu‖ ≤ κest

σc
√
ti

√
min{σ2

w,σ
2
z}

16

,

for all i, with probability at least 1 − 4δ. Notice that σ2⋆ := min
{
σ2oσ

2
w

2 ,
σ2oσ

2
z

2 ,
σ2oσ

2
y

2 ,
σ2cσ

2
w

16 ,
σ2cσ

2
z

16

}
≤

σ2c min{σ2
w,σ

2
z}

16 . Thus, the statement of Theorem 4.2 holds with probability at least 1− 4δ.
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D Proofs for Regret Bound

In order to prove Theorem 4.3, we follow the proof steps of Theorem 5 of Simchowitz et al. [2020].
The main difference is that, AdaptOn updates the Markov parameter estimates in epochs through-
out the adaptive control period which provides decrease in the gradient error in each epoch. These
updates allow AdaptOn to remove O(

√
T ) term in the regret expression of Theorem 5. In the

following, we state how the proof of Theorem 5 of Simchowitz et al. [2020] is adapted to the setting
of AdaptOn.

D.1 Proof of Theorem 4.3

Recall the hypothetical “true prediction” y’s, ypredt and losses, fpredt (M) defined in Definition 8.1 of
Simchowitz et al. [2020]. Up to truncation by H, they describe the true counterfactual output of the
system for AdaptOn inputs during the adaptive control period and the corresponding counterfactual
loss functions. Lemma E.2, shows that at all epoch i, at any time step t ∈ [ti, . . . , ti+1 − 1], the

gradient fpredt (M) is close to the gradient of the loss function of AdaptOn:

∥∥∥∇ft
(
M, Ĝi, b1(Ĝi), . . . , bt(Ĝi)

)
−∇fpred

t (M)
∥∥∥
F
≤ CapproxǫG(i, δ), (28)

where Capprox :=
√
H ′κGκMκ2b (16αloss + 24L). For a comparing controller Mcomp ∈ M (H ′, κM)

and a restricted set M0 = M(H ′
0, κM/2) ⊂ M (H ′, κM), where H ′

0 = ⌊H′

2 ⌋ − H, we have the
following regret decomposition:

Regret(T ) ≤
(
Tburn∑

t=1

ℓt (yt, ut)

)

︸ ︷︷ ︸
warm-up regret

+




T∑

t=Tburn+1

ℓt (yt, ut)−
T∑

t=Tburn+1

F pred
t [Mt:t−H ]




︸ ︷︷ ︸
algorithm truncation error

+




T∑

t=Tburn+1

F pred
t [Mt:t−H ]−

T∑

t=Tburn+1

fpredt (Mcomp)




︸ ︷︷ ︸
fpred policy regret

+




T∑

t=Tburn+1

fpredt (Mcomp)− inf
M∈M0

T∑

t=Tburn+1

ft (M,G, b1(G), . . . , bt(G))




︸ ︷︷ ︸
comparator approximation error

+


 inf

M∈M0

T∑

t=Tburn+1

ft (M,G, b1(G), . . . , bt(G))− inf
M∈M0

T∑

t=Tburn+1

ℓt
(
yMt , u

M
t

)



︸ ︷︷ ︸
comparator truncation error

+

(
inf

M∈M0

T∑

t=1

ℓt
(
yMt , u

M
t

)
−

T∑

t=0

ℓ(yπ⋆ , uπ⋆)

)

︸ ︷︷ ︸
policy approximation error

(29)
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We will consider each term separately.

Warm-up Regret: From Assumption 2.1 and Lemma 4.2, we get

(
Tburn∑

t=1

ℓt (yt, ut)

)
≤ TburnLκ

2
y.

Algorithm Truncation Error: From Assumption 2.1, we get

T∑

t=Tburn+1

ℓt (yt, ut)−
T∑

t=Tburn+1

F pred
t [Mt:t−H ] ≤

T∑

t=Tburn+1

∣∣∣∣∣ℓt (yt, ut)− ℓt

(
bt(G) +

H∑

i=1

G[i]ut−i, ut

)∣∣∣∣∣

≤
T∑

t=Tburn+1

Lκy

∥∥∥∥∥yt − bt(G) +

H∑

i=1

G[i]ut−i

∥∥∥∥∥

≤
T∑

t=Tburn+1

Lκy

∥∥∥∥∥
∑

i=H+1

G[i]ut−i

∥∥∥∥∥

≤ TLκyκuψG(H + 1)

Since ψG(H + 1) ≤ 1/10T , we get
∑T

t=Tburn+1 ℓt (yt, ut)−
∑T

t=Tburn+1 F
pred
t [Mt:t−H ] ≤ Lκyκu/10.

Comparator Truncation Error: Similar to algorithm truncation error above,

inf
M∈M0

T∑

t=Tburn+1

ft (M,G, b1(G), . . . , bt(G))− inf
M∈M0

T∑

t=Tburn+1

ℓt
(
yMt , u

M
t

)
≤ TLκGκ

2
Mκ2bψG(H + 1)

≤ LκGκ
2
Mκ2b/10

Policy Approximation Error: By the assumption thatM⋆ lives in the given convex set M (H ′, κM)
and Assumption 2.1, using Lemma 3.2, we get

inf
M∈M0

T∑

t=1

ℓt
(
yMt , u

M
t

)
−

T∑

t=1

ℓt(y
π⋆
t , u

π⋆
t ) ≤

T∑

t=1

ℓt

(
yM⋆
t , uM⋆

t

)
− ℓt(y

π⋆
t , u

π⋆
t )

≤ TLκy
(
ψ(H ′

0)κb + ψ(H ′
0)κGκb

)

≤ 2TLκyκGκbψ(H
′
0)

Since ψ(H ′
0) ≤ κM/T , we get infM∈M0

∑T
t=1 ℓt

(
yMt , u

M
t

)
−∑T

t=1 ℓt(y
π⋆
t , u

π⋆
t ) ≤ 2LκMκyκGκb.

f
pred Policy Regret : In order to utilize Theorem E.4, we need the strong convexity, Lipschitz-

ness and smoothness properties stated in the theorem. Lemmas E.3-E.5 provide those conditions.
Combining these with (28), we obtain the following adaptation of Theorem E.4:
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Lemma D.1. For step size η = 12
αt , the following bound holds with probability 1− δ:

f
pred policy regret +

α

48

T∑

t=Tburn+1

‖Mt −Mcomp‖2F

.
L2H ′3min{m, p}κ4bκ4Gκ2M

min{α,Lκ2bκ2G}

(
1+

αloss
min{m, p}LκM

)
log

(
T

δ

)
+

1

α

T∑

t=Tburn+1

C2
approxǫ

2
G

(⌈
log2

(
t

Tburn

)⌉
, δ

)

Proof. Let d = min{m, p}. We can upper bound the right hand side of Theorem E.4 via following
proof steps of Theorem 4 of Simchowitz et al. [2020]:

f
predp.r.−

(
6

α

T∑

t=k+1

‖ǫt‖22 −
α

48

T∑

t=1

‖Mt −Mcomp‖2F

)
.
L2H ′3dκ4bκ

4
Gκ

2
M

min{α,Lκ2bκ2G}

(
1+

αloss
dLκM

)
log

(
T

δ

)

f
predp.r.+

α

48

T∑

t=1

‖Mt −Mcomp‖2F .
L2H ′3dκ4bκ

4
Gκ

2
M

min{α,Lκ2bκ2G}

(
1+

αloss
dLκM

)
log

(
T

δ

)

+
1

α

T∑

t=Tburn+1

C2
approxǫ

2
G

(⌈
log2

(
t

Tburn

)⌉
, δ

)
, (30)

where (30) follows from (28).

Comparator Approximation Error:

Lemma D.2. Suppose that H ′ ≥ 2H ′
0 − 1 +H, ψG(H+1) ≤ 1/10T . Then for all τ > 0,

Comp. app. err. ≤ 4LκyκuκM

+
T∑

t=Tburn+1

[
τ ‖Mt−Mcomp‖2F + 8κ2yκ

2
bκ

2
M(H +H ′)max

{
L,
L2

τ

}
ǫ2G

(⌈
log2

(
t

Tburn

)⌉
, δ

)]

Proof. The lemma can be proven using the proof of Proposition 8.2 of Simchowitz et al. [2020].
Combining Lemma E.3 and Lemma E.4 in Simchowitz et al. [2020],

T∑

t=Tburn+1

fpredt (Mcomp)− inf
M∈M0

T∑

t=Tburn+1

ft (M,G, b1(G), . . . , bt(G))

≤ 4Lκy

T∑

t=Tburn+1

ǫ2G

(⌈
log2

(
t

Tburn

)⌉
, δ

)
κ2Mκb

(
κM+

κb
4τ

)
+κuκMψG(H+1)+(H+H ′)τ ‖Mt−Mcomp‖2F

≤
T∑

t=Tburn+1

[
τ ‖Mt−Mcomp‖2F + 8κ2yκ

2
bκ

2
M(H +H ′)max

{
L,
L2

τ

}
ǫ2G

(⌈
log2

(
t

Tburn

)⌉
, δ

)]

+ 4TLκyκuκMψG(H+1)

≤4LκyκuκM+

T∑

t=Tburn+1

[
τ ‖Mt−Mcomp‖2F + 8κ2yκ

2
bκ

2
M(H +H ′)max

{
L,
L2

τ

}
ǫ2G

(⌈
log2

(
t

Tburn

)⌉
, δ

)]
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Combining all the terms bounded above, with τ = α
48 gives

Regret(T )

. TburnLκ
2
y + Lκyκu/10 + LκGκ

2
Mκ2b/10 + 2LκMκyκGκb + 4LκyκuκM

+
L2H ′3min{m, p}κ4bκ4Gκ2M

min{α,Lκ2bκ2G}

(
1+

αloss
min{m, p}LκM

)
log

(
T

δ

)
+

1

α

T∑

t=Tburn+1

C2
approxǫ

2
G

(⌈
log2

(
t

Tburn

)⌉
, δ

)

+
T∑

t=Tburn+1

8κ2yκ
2
bκ

2
M(H +H ′)max

{
L,

48L2

α

}
ǫ2G

(⌈
log2

(
t

Tburn

)⌉
, δ

)

. TburnLκ
2
y

+
L2H ′3min{m, p}κ4bκ4Gκ2M

min{α,Lκ2bκ2G}

(
1+

αloss
min{m, p}LκM

)
log

(
T

δ

)

+

T∑

t=Tburn+1

ǫ2G

(⌈
log2

(
t

Tburn

)⌉
, δ

){
H ′κ2Gκ

2
Mκ4b (αloss + L)2

α
+ κ2yκ

2
bκ

2
M(H +H ′)max

{
L,

48L2

α

}}

�

E Technical Lemmas and Theorems

Theorem E.1 (Matrix Azuma [Tropp, 2012]). Consider a finite adapted sequence {Xk} of self-
adjoint matrices in dimension d, and a fixed sequence {Ak} of self-adjoint matrices that satisfy

Ek−1Xk = 0 and A2
k � X2

k almost surely.

Compute the variance parameter

σ2 :=

∥∥∥∥∥
∑

k

A2
k

∥∥∥∥∥

Then, for all t ≥ 0

P

{
λmax

(
∑

k

Xk

)
≥ t

}
≤ d · e−t2/8σ2

Theorem E.2 (Closed-Loop Identification [Lale et al., 2020b]). Let Ĝyu,i be the solution to (11) at

the beginning of epoch i. For Hest ≥ max{2n+ 1, log(cHT
2
√
m/

√
λ)

log(1/υ) }, define

Vti = V +

ti∑

k=Hest

φkφ
⊤
k

where V = λI. Let ‖Gyu‖F ≤ S. For δ ∈ (0, 1), with probability at least 1− δ, for all i, Gyu lies in
the set CGyu(i), where

CGyu(i) = {M′ : Tr((Ĝyu,i − Gyu
′)Vt(Ĝyu,i − Gyu

′)⊤) ≤ βi},
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for βt defined as follows,

βi =




√√√√m‖CΣC⊤ + σ2zI‖ log
(
det (Vti)

1/2

δ det(V )1/2

)
+ S

√
λ+

ti
√
Hest

T 2




2

.

Theorem E.3 (System Parameter Estimation Error using SysId [Lale et al., 2020b]). Let H be the
concatenation of two Hankel matrices obtained from Gyu. Let Ā, B̄, C̄, L̄ be the system parameters
that SysId provides for Gyu. At time step t, let Ât, B̂t, Ĉt, L̂t denote the system parameters obtained

by SysId using the least squares estimate of the truncated ARX model, Ĝyu,i. Suppose Assumptions
2.2 and 2.3 hold, thus H is rank-n. After long enough warm-up period of Tburn, for the given choice
of Hest, there exists a unitary matrix T ∈ R

n×n such that, with high probability, Θ̄ = (Ā, B̄, C̄) ∈
(CA × CB × CC) where

CA(t) =
{
A′ ∈ R

n×n : ‖Ât −T
⊤A′

T‖ ≤ βA(t)
}
,

CB(t) =
{
B′ ∈ R

n×p : ‖B̂t −T
⊤B′‖ ≤ βB(t)

}
,

CC(t) =
{
C ′ ∈ R

m×n : ‖Ĉt − C ′
T‖ ≤ βC(t)

}
,

for

βA(t) = c1

(√
nH(‖H‖+ σn(H))

σ2n(H)

)
‖M̂t −M‖, βB(t) = βC =

√
20nH

σn(H)
‖M̂t −M‖, (31)

for some problem dependent constant c1.

Theorem E.4 (Theorem 8 of Simchowitz et al. [2020]). Suppose that K ⊂ R
d and h ≥ 1. Let

Ft := Kh+1 → R be a sequence of Lc coordinatewise-Lipschitz functions with the induced unary
functions ft(x) := Ft(x, . . . , x) which are Lf-Lipschitz and β-smooth. Let ft;k(x) := E [ft(x)|Ft−k ]
be α-strongly convex on K for a filtration (Ft)t≥1. Suppose that zt+1 = ΠK (zt − ηgt), where gt =
∇ft (zt) + ǫt for ‖gt‖2 ≤ Lg, and Diam(K) ≤ D. Let the gradient descent iterates be applied for
t ≥ t0 for some t0 ≤ k, with z0 = z1 = · · · = zt0 ∈ K for k ≥ 1. Then with step size ηt =

3
αt , the

following bound holds with probability 1− δ for all comparators z⋆ ∈ K simultaneously:

T∑

t=k+1

ft (zt)− ft (z⋆)−
(
6

α

T∑

t=k+1

‖ǫt‖22 −
α

12

T∑

t=1

‖zt − z⋆‖22

)

. αkD2 +

(
kLf + h2Lc

)
Lg + kdL2

f + kβLg

α
log(T ) +

kL2
f

α
log

(
1 + log

(
e+ αD2

)

δ

)

Lemma E.1 (Norm of a subgaussian vector [Abbasi-Yadkori and Szepesvári, 2011]). Let v ∈ R
d be

a entry-wise R-subgaussian random variable. Then with probability 1− δ, ‖v‖ ≤ R
√

2d log(2d/δ).

Lemma E.2 (Lemma 8.1 of Simchowitz et al. [2020]). For any M ∈ M, let fpred
t (M) denote

the unary counterfactual loss function induced by true truncated counterfactuals (Definition 8.1
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of Simchowitz et al. [2020]). During the i’th epoch of adaptive control period, at any time step
t ∈ [ti, . . . , ti+1 − 1], for all i, we have that

∥∥∥∇ft
(
M, Ĝi, b1(Ĝi), . . . , bt(Ĝi)

)
−∇fpred

t (M)
∥∥∥
F
≤ Capprox ǫG(i, δ),

where Capprox :=
√
H ′κGκMκ2b (16αloss + 24L).

Lemma E.3 (Lemma 8.2 of Simchowitz et al. [2020]). For any M ∈ M, fpred
t (M) is β-smooth,

where β = 16H ′κ2bκ
2
Gαloss.

Lemma E.4 (Lemma 8.3 of Simchowitz et al. [2020]). For any M ∈ M, given ǫG(i, δ) ≤ 1
4κbκMκG

√
α

H′αloss
,

conditional unary counterfactual loss function induced by true counterfactuals are α/4 strongly con-
vex.

Lemma E.5 (Lemma 8.4 of Simchowitz et al. [2020]). Let Lf = 4L
√
H ′κ2bκ

2
GκM. For any M ∈

M and for Tburn ≥ Tmax, f
pred
t (M) is 4Lf -Lipschitz, fpred

t [Mt:t−H ] is 4Lf coordinate Lipschitz.

Moreover, maxM∈M
∥∥∥∇ft

(
M, Ĝi, b1(Ĝi), . . . , bt(Ĝi)

)∥∥∥
2
≤ 4Lf .
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