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Bright and dark rogue internal waves: The Gardner equation approach
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We have found “bright and dark” solutions of the Gardner equation which can model internal rogue waves in
three-layer fluids. We provide the first four “bright” and “dark” exact rational solutions to the Gardner equation.
These are the lowest-order solutions of the corresponding hierarchies of rogue-wave solutions of this equation.
They have been obtained from the rogue-wave solutions of a modified Korteweg-de Vries equation by using
a Lorentz-type transformation. The maximal (and minimal) amplitudes and the background levels of these
solutions for arbitrary order are deduced, based on the lowest-order examples. These solutions can be useful for
explanations of extremely large amplitude internal waves in the ocean, as well as for abnormally large-amplitude
waves in other areas of nonlinear physics, such as optics and dusty plasmas.
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I. INTRODUCTION

Internal waves are waves in layered structures. The latter
include the atmosphere and the ocean, which are vital areas
for human activity and for the existence of life itself. For
example, layered structures in the world ocean are created
due to stratifications in salinity, pressure, temperature, or
underwater flows [1]. There can be sharp vertical density
gradients, called pycnoclines. They can be due to flows (called
“lee” or mountain waves) over topographical features on land.

Each type of stratification can be responsible for waves
propagating along the corresponding interfaces. Knowledge
of internal waves and their properties is important for the safe
flight of airplanes in the atmosphere and the safe operation
of submarines and other underwater devices in the ocean. In
some cases, slow-moving ships are impeded because their
engine energy is being transferred into an interfacial internal
wave, although the water surface visibly stays calm. This
phenomenon is known as the “dead water effect” [2], first
noted in 1893.

Internal waves are well documented. In general, the layers
of water have only a small density difference, and this means
that the wave amplitudes tend to be higher than those for sur-
face waves, while their velocities are a lot slower than those of
surface waves [3]. They can be caused by tidal forces, the mix-
ing of river fresh water with sea water [4], and from the energy
put into water by the propellers or bow waves of ships. They
have periods around 5–8 minutes and wavelengths in the range
0.6–1 km [5]. They can move oil production platforms [6].

Large-amplitude internal waves can be especially danger-
ous in this regard. They may not reveal themselves clearly on
the ocean surface, but their vertical amplitudes underwater can
exceed the amplitudes of rogue waves on the water surface.
Indeed, their amplitudes can be as high as 170 m [7]. This
value is more than 6 times the height of the “benchmark”
surface rogue wave known as the “Draupner wave,” as it
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was “only” 25.6 m high [8]. Internal waves of this amplitude
may unexpectedly shift submarines down to a depth below
the pressure capacity of the hull. They may have caused the
Thresher submarine disaster in 1963 [6]. Possibly, the sinking
was caused by a rogue internal wave with a high central
amplitude [9]. Internal waves can also affect the transmission
signals from submarines [10]. The existence of internal waves
in the ocean has also been confirmed from space observations
[11].

The term “rogue internal waves” was coined by Grimshaw
et al. [12]. Several approaches have been developed in order
to model rogue internal waves. They include the long-wave
model described by the standard Korteweg-de Vries equa-
tion (KdV) [12], a model based on a variable-coefficient
KdV equation [13], and the one based on coupled nonlinear
Schrödinger equations (cNLSE) [14], just to name a few.

In this paper, the mathematical model of internal waves is
based on the Gardner equation (GE) considered in Ref. [12].
Numerical simulations made in Ref. [12] provided an indi-
cation that this equation may have solutions in the form of
the rogue waves. Moreover, for the case of positive signs
of all terms in this equation, its continuous-wave solution is
subject to modulation instability, thus showing a similarity to
the NLSE. The latter equation does have rogue-wave solutions
represented by rational functions, as was shown in Ref. [15].
We can assume that rogue-wave solutions of GE would also
be given by rational expressions. Here, we provide the first
four rational solutions to the GE, showing localized wave
amplification. As the GE is known to be applicable to three-
component plasmas [16] and surface waves [17], the solutions
that we find here can also be useful in these areas of physics.

The GE for the description of the internal waves can be
written as:

ψx + α1ψψt + α2ψ
2ψt + δψttt = 0. (1)

Here ψ (x, t ) is the normalized function of the amplitude of the
wave, while subscripts x and t denote derivatives with respect
to x and t , respectively. The second and third terms are re-
sponsible for quadratic and cubic nonlinearities, respectively,
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and the last term denotes the third-order dispersion. Equation
(1) sometimes is called a mixed KdV-mKdV equation [18] or
simply a modified KdV (mKdV) equation [12]. However, it
is more common to call Eq. (4) below the mKdV equation.
In order to avoid confusion, we use the most common name
for Eq. (1), i.e., the “Gardner equation.” This equation is more
general than the KdV or mKdV. When α1 = 0, the Gardner
equation (1) reduces to the mKdV equation. When α2 = 0, it
reduces to the KdV equation.

All the coefficients in (1) are defined by the density strat-
ification and thickness of the layers. The coefficients α1 and
δ are positive, while the sign of the coefficient α2 for internal
waves depends on the stratification model [14,19]. In the case
of a two-layer fluid, it is always negative [10]. However,
in a three-layer model and in the case of more complicated
stratification with shear flows, this coefficient can be positive
[20,21]. In this paper, we restrict ourselves to this latter case.
It has richer dynamics than the negative case [12]. Without
loss of generality, the dependent and independent variables
can be renormalized, thus setting each of the three coefficients
to unity by a simple transformation [12]. In this way, Eq. (1)
takes the following form:

ψx + ψψt (1 + ψ ) + ψttt = 0. (2)

An inverse rescaling transformation returns us to the original
equation (1), and its solutions, with all three coefficients
included. It is easy to show that if ψ (x, t ) is a solution of the
Gardner equation, (2), then the function

ψ̂ (x, t ) = −ψ (x, t ) − 1 (3)

is also a solution of the same equation. The importance of the
transformation (3) should not be underestimated, as it relates
bright and dark rogue waves of the GE. Below, we present
both bright and dark rogue-wave solutions of Eq. (2).

II. FIRST-ORDER RATIONAL SOLUTIONS OF THE
GARDNER EQUATION

The lowest-order exact rational solution to the GE can be
obtained by using the Lorentz transformation [17] applied
to the first mKdV rational solution found in Ref. [22]. (See
Eq. (3) of Ref. [22] for β = 1 and γ3 = −1.) Namely, let
u(x, t ) be an exact solution to the mKdV equation,

ux + u2ut + uttt = 0. (4)

Then

u′(x, t ) = ku(k3x, kt ) (5)

is also a solution, with k being a real constant. This rescaling
extends an individual solution to a one-parameter family of
solutions with k being the parameter of the family. Now, if
we know any solution u′(x, t ) of Eq. (4), the function ψ (x, t )
defined as

ψ (x, t ) = u′
(

x, t + 1

4
x

)
− 1

2
(6)

is an exact solution of the GE, Eq. (2).

FIG. 1. The first-order bright rational solution of the Gardner
equation is given by Eq. (8). Here the background is −1. The
maximum, at t = 0, is 1, thus giving an amplitude of 2.

Namely, using the exact lowest-order rational solution of
mKdV [22],

u1(x, t ) = 12

3 + 2(t − x)2
− 1, (7)

and taking k = 1
2 in (5), we obtain the exact lowest- (first-)

order rational solution to the GE,

ψ1(x, t ) = 12

t2 + 6
− 1. (8)

The form of this solution is shown in Fig. 1. The solution
is stationary in x. The maximum amplitude relative to the
background at t = 0 is 2 while the background level at t →
±∞ is −1. It may look like a zero velocity soliton with
positive amplitude but we have to keep in mind that this is
rational solution rather than the sech function. The solution
(8) has been derived earlier by Grimshaw et al. in Ref. [13] as
a limiting case of a sech-shaped soliton solution.

Now, using the transformation (3), we can easily find the
inverted first-order solution:

ψ̂1(x, t ) = −ψ1(x, t ) − 1 = − 12

t2 + 6
, (9)

This solution is plotted in Fig. 2. This solution is also station-
ary in x. In contrast to the solution in Fig. 1, this one resembles
a dark soliton. For this solution, the background level is 0 and
the minimum is −2.

Thus, we have two rational first-order solutions of the GE.
One is given by Eq. (8) and the other by Eq. (9). This is not
surprising because the transformation of Eq. (3) can be used
with any solution of the GE, including rogue-wave solutions
of higher order. This transformation also means that there are
two types of rogue waves: “bright” ones, denoted ψ j (x, t ),
and “dark” ones, denoted ψ̂ j (x, t ). Although their background
levels differ, their amplitudes relative to the background level
are the same.

To connect this with soliton ideas, we can write down the
one-parameter family of soliton solutions of the GE for real
parameter κ:

ψs(x, t ) = 1 − κ2

κ
{

cosh
[√

1−κ2(κ2(6t+x)−x)
6
√

6κ3

]
+ κ

} . (10)
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FIG. 2. The first-order dark rational solution of the Gardner
equation from Eq. (9). Here the background level is 0. Minimum
at t = 0 is −2. In order to isolate clearly dark rogue-wave solutions
from bright ones, a distinct color scheme (yellow-green) is used for
the dark rogue waves here and in all figures below.

In the limit κ → −1, the solution (10) reduces to:

lim(κ→−1)ψs(x, t ) = − 12

t2 + 6
,

i.e., the first-order rational solution, Eq. (9).

III. SECOND-ORDER RATIONAL SOLUTIONS
AS ROGUE WAVES

The general relation, Eq. (6), between the solutions of
Gardner and mKdV equations allows us to construct higher-
order rogue-wave solutions. The second-order rational solu-
tion of the mKdV equation has been obtained in Ref. [22]
[see Eq. (5) therein]. Taking the coefficients of the mKdV
equation in Ref. [22] to be β = 1 and γ3 = −1 and using
one of the above-mentioned transformations, we find that the
second-order rational solution to the equation (2) is

ψ2(x, t ) = −36
G2

D2
, (11)

where

G2 = t4 + 36t2 − 24tx − 108 (12)

and

D2 = 18(t4 − 24tx) + (t3 + 12x)2 + 972t2 + 1944

= t6 + 18t4 + 24(t2 − 18)tx

+ 972t2 + 144x2 + 1944,

or, alternatively,

ψ2(x, t ) = 36(108 − t4 − 36t2 + 2tX )

(t3 − 18t + X )2 + 54(t2 + 6)2
, (13)

where X = 12x. This solution is shown in Fig. 3. It has a
high peak that we can view as a rogue wave. Indeed, the
peak is localized, both in time and in space, thus representing
an unexpected extreme event. This event is clearly seen in
Fig. 3. The background level of the solution, Eq. (13), is
zero while the maximum amplitude of the rogue event is
2. The denominator of the solution in the form (13) is a

FIG. 3. The second-order rational solution of the GE given by
Eq. (11). The “bright” rogue wave in the middle is clearly visible.
Here the background is 0. Maximum at the origin is 2.

sum of squares. It is never zero, meaning that the solution is
nonsingular. Such a form has been given in Refs. [23] and
[24].

Using Eq. (3), we find the inverted second-order solution:

ψ̂2(x, t ) = 36
G2

D2
− 1. (14)

In contrast to the solution given by Eq. (13), the background
level here is −1 and the extremal amplitude of this rogue wave
is −3. It is shown in Fig. 4. We call this solution a “dark rogue
wave.”

IV. THIRD-ORDER ROGUE WAVES

Starting with the third-order solution of the mKdV given
by Eq. (6) in Ref. [22] and using the Lorentz transformation,
we are able to find the third rational solution of the GE:

ψ3(x, t ) = 72
G3

D3
− 1, (15)

where the numerator G3 is

G3 = t10 + 90t8 + 7560t6 − 4320t5x

+ 5400t4(x2 − 18) + 259200t3x

− 32400t2(2x2 + 27) + 43200tx(x2 + 54)

+ 194400(5x2 + 27),

FIG. 4. The “dark” second-order rogue-wave solution given by
Eq. (14). Here the background is −1. The central minimum is −3.
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FIG. 5. Third-order rogue-wave solution of Gardner equation
given by Eq. (15). Here the background level is −1 while the
maximal amplitude at the origin is 3.

while the denominator D3 is

D3 = t12 + 36t10 + 120t9x + 4860t8

+ 2160t6(x2 + 234) − 233280t5x

+ 97200t4(2x2 + 45) − 86400t3x(x2 − 108)

− 3499200t2(x2 − 27) + 777600tx(2x2 − 135)

+ 129600(4x4 + 594x2 + 729).

This solution is plotted in Fig. 5. It has the background level
−1 and central amplitude 3 located at the origin due to the
suitable choice of the coordinates.

Applying the transformation (3) to Eq. (15), we find the
inverted third-order solution:

ψ̂3(x, t ) = −1 − ψ3(x, t ) = −72
G3

D3
(16)

with the same values of G3 and D3 as above. This solution
is plotted in Fig. 6. The background level is now 0 and the
minimum amplitude is −4. The two local maxima appear to
have amplitudes around ψmax ≈ 1.23.

V. THE FOURTH- AND HIGHER-ORDER ROGUE WAVES

Applying the same technique as above to known higher-
order rogue-wave solutions of mKdV equation, we can find

FIG. 6. “Dark” third-order rational solution to the GE given by
Eq. (16). This solution is inverted relative to Fig. 5 and shifted down.
Here the background is 0. The central minimum is −4.

FIG. 7. Fourth-order “bright” rogue wave of the Gardner equa-
tion, given by Eq. (A1). Here the background level is 0. Maximal
amplitude is 4.

higher-order rogue-wave solutions of the Gardner equation.
Explicit mathematical expressions of these solutions are quite
involved and the degree of complexity increases with the order
of the solution. Thus, we do not present the mathematical form
of these solutions except for the fourth-order one which is
given in the Appendix. In order to show that there are certain
rules that these solutions obey, we only illustrate them using
the next, fourth-order, solution. It is shown in Fig. 7. This
solution also has a peak at the origin and its amplitude is 4.
The background level is 0. Finally, the inverted version of the
fourth-order solution defined as

ψ̂4(x, t ) = −1 − ψ4(x, t ). (17)

is presented in Fig. 8. It has the background level −1 and the
minimum at the origin is −5.

VI. SUMMARY

Having the first four rogue-wave solutions in explicit form,
we are now in a position to predict the major characteristics
of rogue waves of arbitrary order, j. Moreover, we are able to
compare them with the features of rogue waves of the NLS
and mKdV equations found in previous works, Refs. [25] and
[22], respectively. In all three cases, the rogue-wave solutions
are given in the form of rational solutions, and thus have
much in common, even in this sense. Dimensionless forms

FIG. 8. “Dark” fourth-order rational solution of the GE, given by
Eq. (17) and Eq. (A2). This solution is inverted relative to Fig. 7 and
shifted down. Here the background is −1. The central minimum is
−5.
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TABLE I. Main features (amplitude and the background level) of rogue waves of the NLSE [25], the mKdV [22], and the “bright rogue
waves” (ψ j) of the Gardner equation. The jth-order rogue wave of the Gardner equation has amplitude j, so, in the dimensionless form, the
amplitude is much lower than the corresponding rogue waves of the mKdV equation and the NLSE.

The background level of the Maximal amplitude of the NLS The background level of Maximal amplitude of the
j NLS and mKdV rogue waves and mKdV rogue waves the GE rogue waves GE rogue waves

1 −1 3 −1 1
2 1 5 0 2
3 −1 7 −1 3
4 1 9 0 4
j (−1) j 2 j + 1 1

2 [(−1) j − 1] j

of these equations allow us to make purely mathematical
comparisons. The real-world amplitudes are clearly another
matter. The latter depend on particular parameters of the
geometric structure of the layered media, and these may vary
over a wide range.

One of the important predictions is related to the amplitude
of rogue waves. Namely, the jth member of the “bright”
set of rogue waves, denoted ψ j (x, t ), has a positive central
maximum of j, while the jth member of the “dark” set,
denoted ψ̂ j (x, t ), features a central minimum of amplitude
− j − 1.

The major difference between GE and mKdV rogue waves
and those of the NLSE case is the presence of long tails, as
can be seen from the plots above. They extend to infinity, thus
modifying the background on which the rogue waves protrude
with the higher amplitude. The presence of the tails may serve
as a tool for predicting internal rogue waves much earlier than
in the case of NLSE rogue waves, which lack such tails [15].

The presence of the central peak is the common feature
in all three cases (mKdV, GE, and NLSE), so a comparison
of their amplitudes relative to the background levels (am-
plification factor) may provide further ideas for research on
rogue waves. In Table I, we summarize these characteristics
for hierarchies of rogue waves with increasing order, for
the NLSE, taken from [25], the mKdV equation, taken from
Ref. [22] and the bright rogue waves of the Gardner equation
found in the present work. Further, in Table II, we summa-
rize the characteristics of dark rogue waves of the Gardner
equation, also found in the present work. In the “dark rogue-
wave case,” the highest magnitude amplitudes are naturally
negative, as they represent waves of depression, while “bright
rogue waves” show elevations.

Clearly, the next question to answer is the robustness
of these solutions. We leave this problem aside here, as it

TABLE II. Main characteristics (background level and ampli-
tude) of “dark rogue waves” (ψ̂ j) of the Gardner equation.

Background level of Minimal amplitude of
j “dark rogue waves” of GE “dark rogue waves” of GE

1 0 −2
2 −1 −3
3 0 −4
4 −1 −5
j 1

2 [−1 − (−1) j] −( j + 1)

requires a complicated approach. Even the first-order solu-
tions require detailed analysis before any conclusions can be
drawn. The higher-order solutions are much more involved
and may need more effort to understand their significance. All
this cannot be done in a single work. Besides, in order to study
robustness, the solutions have to be known in the first place.
This first step is the fundamental one and it has been given
in the present work. We should also note that all solutions,
including unstable ones, play significant roles in the complex
chaotic dynamics that may occur in layered systems. Thus,
knowledge of the form of the whole set of exact solutions
of the Gardner equation, whether stable or not, is crucial for
further progress in this field.

Rogue-wave solutions are general features of many evo-
lution equations and are not just “isolated” examples. They
have been found for the NLSE [15], vector NLSE [26,27],
Sasa-Satsuma equation [28], three-wave resonant interaction
problem [29], Davey-Sewartson equations [30,31], and many
other systems. These solutions are an essential part of the gen-
eral waveform evolution in nonlinear systems, as the recent
works [32,33] have shown. This addition of a new hierarchy
of rogue waves for the Gardner equation will further expand
our knowledge in this exciting field of research.
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APPENDIX

The two fourth-order rogue-wave solutions of the Gardner
equation are given by:

ψ4(x, t ) = −120
G4

D4
(A1)

for the bright rogue wave and

ψ̂4(x, t ) = 120
G4

D4
− 1 (A2)

for the dark one. In each case,

G4 = t18 + 162t16 + 144t15x + 32400t14

+ 22680t12(x2 + 180) − 544320t11x

+ 2449440t10(x2 − 57) − 2116800t9x(x2 − 324)
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− 12247200t8(35x2 + 306)

+ 97977600t7x(2x2 + 27)

− 76204800t6(2x4 − 81x2 + 729)

− 1371686400t5x(7x2 − 108)

− 138883248000t4(5x2 − 36)

− 123451776000t3x(2x2 + 81)

+ 10287648000t2(8x4 + 378x2 + 3645)

− 1111065984000tx(5x2 + 108)

+ 2286144000(4x6 + 1296x4 + 2187x2 − 19683)

and

D4 = t20 + 60t18 + 360t17x + 14580t16 + 8640t15x

+ 32400t14(x2 + 108) + 1360800t12(x2 + 405)

+ 604800t11x(x2 − 162) + 220449600t10(x2 + 58)

− 127008000t9x(x2 − 405)

+ 27216000t8(4x4 − 1215x2 + 29889)

+ 17635968000t7x(x2 − 27)

− 1143072000t6(8x4 − 1215x2 − 32076)

− 740710656000t5x(x2 + 54)

+ 4166497440000t4(14x2 + 45)

− 11110659840000t3x(5x2 − 54)

+ 22861440000t2(4x6 + 648x4 − 24057x2 + 98415)

+ 33331979520000tx(14x2 − 135)

+ 68584320000(8x6 + 3240x4 + 83106x2 + 19683).
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