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The modes of silicon meta-atoms are investigated, motivated by their use as building blocks of Huygens
metasurfaces. A model based on these modes is presented, giving a clear physical explanation of all
features in the extinction spectrum. Counterintuitively, this model can show negative contributions to
extinction, which are shown to arise from the interference between nonorthogonal modes. The direct and
interference contributions to extinction are determined, showing that conservation of energy is preserved.
The Huygens condition of matched electric- and magnetic-dipole moments leads to strong forward
scattering and suppressed backscattering. It is shown that higher-order modes with appropriate symmetry
generalize this condition, leading to multiple bands of directional scattering. The presented results are
obtained using a robust approach to find the modes of nanophotonic scatterers, commonly referred to as
quasinormal modes. By utilizing an integral formulation of Maxwell’s equations, this work avoids the
problem of normalizing diverging far fields, which other approaches require. The model and presented
results are implemented in open-source code.
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I. INTRODUCTION

Dielectric resonators have applications in microwave and
optical frequency ranges, including antennas [1] and as
building blocks of metamaterials [2–4], particularly imped-
ance-matched Huygens metasurfaces [5]. The results
obtained in such structures are typically explained in terms
of modes, determined from the fields at peaks or dips in the
spectrum. However, these ad hoc methods cannot resolve
multiple modes which overlap spectrally, nor can they show
how each mode contributes to the spectral response. To
obtain a complete picture of the physics of such structures,
it is necessary to find the modes independently, as
eigensolutions satisfying Maxwell’s equations with no
incident field.
Approximate methods for finding the modes of dielectric

resonators are known [6] which usually assume that ε ≫ 1.
These methods are inaccurate for the moderate values of
permittivity available at optical frequencies, and more
sophisticated methods are needed to account for radiation
effects. Open nanophotonic resonators such as meta-atoms,
nanoantennas, and oligomers are typically strongly radia-
tive systems, where loss cannot be treated as a perturbation.
In many nanophotonic systems, material dispersion and
losses cannot be neglected, further complicating the prob-
lem of finding their modes.
In radiating and dissipative systems, the modes have

complex frequencies sn ¼ jωn þ Ωn, corresponding to
damped oscillations of the form expðΩntÞ cosðωntÞ, with

Ωn < 0 [using the time convention expðstÞ, with
s ¼ jωþ Ω]. The corresponding modal fields En do not
possess the orthogonality usually found in the modes of
closed systems, and they are commonly referred to as
quasinormal modes [7]. They are particularly useful for
solving dipole emission problems [8] since they allow a
mode volume to be defined for open cavities [9]. A
significant practical difficulty is the requirement to normal-
ize a mode with diverging far fields [10].
A different perspective on the modes of scatterers can be

found within the microwave-engineering literature [11],
originally motivated by time-domain radar problems. By
using integral methods to solve Maxwell’s equation, only
currents on the scatterer need to be solved for, avoiding the
need to explicitly handle the diverging far fields. As it is
based on finding the singularities of a scattering operator,
this approach is referred to as the singularity expansion
method (SEM). The field distributions corresponding to
these singularities are identical to the quasinormal modes at
the complex frequencies of the singularities jωn þ Ωn. The
key difference is that, when solving scattering problems on
the jω axis, the fields in the SEM approach are recon-
structed from the dyadic Green’s function, which remains
finite in the far field. Thus, the SEM avoids the most
significant practical disadvantage of quasinormal modes
based on fields.
Recently, it has been shown that the singularity expan-

sion method can be applied to meta-atoms and plasmonic
resonators [12–14], clearly identifying the modes which
contribute to scattering and coupling problems. However,
finding all modes within a region of the complex-frequency*david.a.powell@anu.edu.au
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plane requires an iterative procedure with multiple contour
integrations [15]. This iteration greatly increases the
computational burden, and it remains unclear how robust
this procedure is. In addition, it has not yet been demon-
strated whether all spectral features can be explained by
such a model, particularly the interference between non-
orthogonal modes in the extinction spectrum and the
suppression of backscattering corresponding to the
Huygens condition [16].
In this work, a robust integral approach to finding modes

of open resonators is demonstrated for several all-dielectric
meta-atoms, based on the singularity expansion method. In
contrast to previous works, it is not limited to bodies of
rotation [17]. It is shown how this model leads to a clear
decomposition of the extinction spectrum of a silicon disk,
automatically accounting for interference between the
nonorthogonal modes. By performing a vector-spherical-
harmonic decomposition of each mode, the unidirectional
scattering behavior is explained. It is shown that higher-
order modes can also interfere to suppress backscattering,
corresponding to the generalized Huygens condition [18].
Examples are also presented of structures with reduced
symmetry, leading to bianisotropic and birefringent
meta-atoms.

II. MODELING APPROACH

In this work, quantities are described using the time
convention expðstÞ, with s ¼ jωþ Ω, so that the imagi-
nary part of the frequency gives the oscillation rate, and the
real part gives the decay rate. A frequency-domain function
fðsÞ has a corresponding time-domain function fðtÞ which
can be obtained through the inverse Laplace transform
fðtÞ ¼ L−1ffðsÞg. Physically observable quantities must
be represented by a real function in the time domain; thus,
they must satisfy the constraint fðs�Þ ¼ f�ðsÞ in the
frequency domain.

A. The modes of an open resonator

An overview of the integral-equation method used to
solve Maxwell’s equations, based on the surface equiv-
alence principle, is given in Appendix A. This procedure
yields a frequency-dependent matrix ZðsÞ, which describes
the response of the scatterer to an arbitrary excitation field.
The unknown current vector I excited by the incident-field
vector V is

IðsÞ ¼ Z−1ðsÞ · VðsÞ: ð1Þ
This equation could be solved numerically, as is done in
many commercial software packages. More interestingly, it
serves as the starting point for developing the model based
on modes.
If the matrix Z−1 is singular at the frequency

sn ¼ jωn þ Ωn, then a finite current I can be supported
without requiring any excitation source V. This case is

similar to the well-known one with modes in a closed,
lossless system, except that, in an open system, mode
frequencies must have some finite damping rate Ωn. The
most important singularities are the pole frequencies sn,
where the impedance matrix satisfies the equations

ZðsnÞ · In ¼ 0; Kn · ZðsnÞ ¼ 0 ð2Þ

for nonzero vectors In and Kn. Physically, In corresponds
to the current distribution of the mode, and Kn determines
how well the mode is matched to the incident field. Because
of geometric symmetry, many modes are degenerate, with
several different eigenvectors In and Kn having the same
pole location sn. For example, the electric-dipole mode of a
sphere can be excited by x-, y-, or z-polarized fields, and
this mode is triply degenerate.
The poles of the impedance matrix are found by a

contour integration procedure, details of which are given in
Appendix B. Figure 1 illustrates such a contour, which is
chosen to encompass all modes which are likely to be of
interest. It is offset slightly from the jω axis to eliminate
any modes which do not couple to incident radiation and
hence haveΩn ¼ 0. The desired radiating modes are shown
by green crosses and have Ωn < 0. Since currents must be
real functions in the time domain, for each pole there is a
corresponding complex-conjugate pole at −jωn þΩn,
shown in orange. As the poles and residues are just
complex conjugates of those with positive jωn’s, they
can be found by symmetry and do not need to be included
within the contour. Note that some poles are overdamped,
with jωn ¼ 0, and these poles do not appear in conjugate
pairs. The contour incorporates the jω ¼ 0 axis in order to
capture these poles.

FIG. 1. Modes are found using a contour integration in the
complex plane, which yields all enclosed poles sn ¼ jωn þ Ωn
and their residues with only a single integration. The green
crosses represent physical modes with finite radiation damping.
The pink crosses indicate spurious internal solutions with no
damping. The orange crosses display conjugate modes which can
be found by symmetry.
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In general, no orthogonality relation exists between the
mode current vectors In and Kn. As is discussed in
Appendix C, orthogonality is not required for this
approach. It is shown in Sec. III how this nonorthogonality
leads to physically meaningful interference effects.

B. Expanding currents in terms of modes

Once the modes have been found, the current can be
solved for arbitrary incident fields,

IðjωÞ ¼
X
n

In

�
1

jω − sn
þ 1

sn

�
Kn · VðjωÞ; ð3Þ

where we consider excitation at physically realizable
frequencies on the jω axis. The vector Kn operates on
the incident field V to give its overlap with the mode. The
bracketed term accounts for how close the excitation
frequency is to the mode’s resonant frequency. Note that
this polynomial has the correct asymptotic behavior, thus
improving the convergence and removing the need to
include an entire function contribution [19]. The important
result obtained from Eq. (3) is a scalar weighting of each
mode’s current vector, In.
Regardless of whether it is calculated directly from

Eq. (1) or as a superposition of modes from Eq. (3), the
current vector I can give the surface current over the entire
structure using Eq. (A2). This current distribution could
then be used to calculate the total electric and magnetic
fields. However, many quantities of physical interest such
as scattering, radiation forces, and torques can be calculated
directly [20] from the current vector I. The quantity of most
interest is the extinction cross section

σext ¼ Re½V�ðjωÞ · IðjωÞ�η0=jE0j2; ð4Þ

giving the total work done by the incident fields on the
currents in normalized form. Here, jE0j is the electric field
of the incident plane wave. This quantity can be defined for
each mode by substituting the mode’s current and its
weighting from Eq. (3), yielding

σext;n ¼ Re½V�ðjωÞ · In�η0=jE0j2: ð5Þ

III. SILICON DISKS

The techniques outlined in Sec. II are now applied to
study the scattering behavior of a single silicon-disk meta-
atom, an important building block of Huygens metasurfa-
ces. Initially, the structure is modeled directly using
Eqs. (1) and (4), without considering the modes. The
radius is taken as 242 nm, with a height of 220 nm and
rounded edges with a radius of 50 nm. The material
properties of silicon are obtained by fitting an eight-pole
model to the experimental data from Ref. [21]. In Fig. 2, the
extinction cross section of the disk is plotted with the solid

black line. The incident wave vector is parallel to the axis of
the disk.
As a first attempt to explain the spectral features, a

multipole expansion is also shown in Fig. 2. Details of the
expansion are given in Appendix D. Solid lines show
the electric-multipole moments al, and dashed curves
show the magnetic moments bl. Although the multipoles
accurately reproduce the total extinction, there is no
direct correspondence between modes and multipoles, with
each peak exhibiting contributions from many multipole
moments. Furthermore, several multipole moments show
peaks and dips at similar locations, but it is unclear if these
moments are linked to each other. Therefore, the multipole
decomposition is unable to resolve the internal dynamics
which are observed in the extinction spectrum. It will be
demonstrated that the model based on Eq. (3) can resolve
these internal dynamics, showing which modes correspond
to each of the spectral features.

A. Modes of the silicon disk

The modes of the silicon disk are found by using
the procedure outlined in Sec. II A and Appendix B.
Figure 3(a) shows the location of the poles in the complex-
frequency plane, with many of them being doubly degen-
erate. Since currents decay in time as eΩt, more-highly-
damped modes have more-negative values of Ωn. The
schematic of the incident-field orientation is shown in the
inset. The modes which most strongly couple to this
incident field are indicated with colored markers. The
equivalent surface current J of the first five of these modes
is shown in Fig. 4. Since these currents are complex, the
plotted vectors give a snapshot of the oscillating current
distribution. The divergence ∇ · J is proportional to the

FIG. 2. The extinction cross section of the disk, with direct
calculation given by the solid black line. Also shown are
contributions from electric- (solid curves) and magnetic- (dashed
curves) multipole moments. Curves are shown for different
values of multipole order l, summed over all values of the
azimuthal index m.
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equivalent surface charge (and hence to the normal com-
ponent of the electric field) and is indicated by the shading
of the surface. The colors of the markers next to each
current distribution correspond to the poles shown in
Fig. 3(a). Each mode is also given an arbitrary label in
Roman numerals for reference purposes.
We can consider the dielectric disk to be a sphere which

has been transformed in a continuous manner, breaking the
spherical symmetry. By performing a multipole decom-
position of the current for each mode of the disk, we can see
which mode of the sphere it is most closely related to. This
decomposition is shown in the right column of Fig. 4,
where each mode’s multipole moments are normalized to
the total scattered power, as outlined in Appendix D. In all
cases, there is a single dominant multipole moment,
although, for higher-order modes, the influence of higher
moments becomes more significant. In the following
sections, this multipole expansion of the modes is used
to explain their contributions to extinction and scattering.
Several of the modes shown in Fig. 4 can be seen to

correspond to well-known modes of cylindrical dielectric

FIG. 3. (a) Complex frequencies of the modes of the silicon
disk. Schematic shows the incident plane wave propagating along
the disk axis. The colored markers are the modes which couple
strongly to the incident wave. (b) Directly calculated extinction
(black curve), and contributions from each of the modes. Colors
indicate correspondence between the poles and the extinction
curves.

FIG. 4. (Left panels) Modes of the disk, showing
equivalent electric surface currents (arrows) and charges
(colors). Markers correspond to poles in Fig. 3. (Right panels)
Spherical multipoles of each mode, normalized to the total
scattered power.
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resonators shown in Refs. [3,22,23]. Specifically, mode II is
the HEM11δ mode (also known as HE11δ) and mode III is
the HEM12δ mode (also known as EH11δ). The fundamental
dipole-type mode I does not correspond to any of the modes
presented in the cited works, but it can be seen to closely
resemble the TE111 mode of a closed metallic cavity [24].
It is shown below that this mode makes a significant
contribution to the response of the disk over a broad
frequency range.

B. Extinction spectrum

Figure 3(b) shows the extinction contribution from
each of the modes, calculated from Eqs. (3) and (5).
The extinction from degenerate pairs of modes has been
combined, along with the contribution of their conjugate
modes at −jωn þ Ωn. All features in the extinction
spectrum can be clearly attributed to the modal contribu-
tions. The extinction spectrum for each mode exhibits only
a single feature, being a peak and/or dip in the vicinity of
its pole frequency ωn. There is a very clear correspondence
between the damping rate Ωn and the sharpness of the
features in the corresponding extinction curve. Note that,
for more highly damped modes, there is some shift
between the peak and pole frequencies. Such modes
couple strongly to the incident field, and therefore the
overlap term in Eq. (3) can shift the spectral features away
from the natural frequency jωn. The accuracy and con-
vergence of this model of extinction is shown in
Appendix E.
One of the most striking features of Fig. 3(b) is that

several modes show negative contributions to extinction.
These contributions are due to the nonorthogonality of the
modes, which means that, even if the incident field matches
the profile of one mode, it may still excite others. It can be
seen that the dip in extinction at around 260 THz can be
attributed to a strong negative contribution from mode III,
emitting radiation in the forward direction that is in phase
with the incident field.
To better illustrate this interference phenomenon, and to

confirm that conservation of energy is not violated, the
extinction is decomposed into direct terms from each mode,
plus interference terms between every pair of modes [25].
This decomposition utilizes an alternative expression for
extinction based on the total rate of work done by the
excited currents:

σext ¼ Re½I�ðjωÞ · ZðjωÞ · IðjωÞ�η0=jE0j2: ð6Þ

This expression quantifies the total power radiated and
dissipated by the currents. Substituting Eq. (3) into Eq. (6),
we can decompose the extinction into contributions from
each pair of modes:

σext;m;n ¼ Re½I�m · ZðjωÞ · In�η0=jE0j2: ð7Þ

Here, σext;m;n represents the rate of work done on the
currents of mode m by those of mode n. The self-terms
m ¼ n represent the direct contribution of the mode to
scattering and absorption, and they must always be positive
in a passive system. These terms are illustrated in Fig. 5(a),
and it can be seen that they have much simpler line shapes
and are positive, as expected. Thus, if any one of these
modes were excited in isolation, there would be no negative
contributions to extinction.
The off-diagonal terms m ≠ n explicitly show how

modes n and m interact with each other. These terms are
zero in a closed, lossless system with orthogonal modes
and, in an open system, they can also be zero for modes of
opposite symmetry, such as modes I and II of the disk
studied here. Figure 5(b) shows the most significant
interference terms for this structure. The conditions for
significant interference between the modes are that they are
nonorthogonal, and that they are both excited within the
same spectral region. Thus, we see that mode I, with its
broad spectral response, interferes with both modes III and
VI. On the other hand, although modes III and VI are also
nonorthogonal, their limited spectral overlap gives much
weaker interference, as is shown by the dashed curves.

FIG. 5. Interference effects in the extinction spectrum of the
silicon disk. (a) Direct extinction contribution σext;n;n of each
mode. (b) The most significant interference terms between
modes, σext;m;n, for m ≠ n (the solid lines), and selected weaker
interference terms (the dashed lines).
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Because of passivity requirements, the interference terms
between a pair of modes are constrained by the direct terms
according to

σext;m;n þ σext;m;n ≥ −ðσext;m;m þ σext;n;nÞ: ð8Þ

The extinction obtained from Eq. (5) can be understood
as the sum of all direct and interference terms acting on
mode n,

σext;n ¼
X
m

σext;n;m: ð9Þ

It should be emphasized that this summation does not need
to be performed explicitly, and Eq. (3) yields the total
current coefficient for each mode accounting for all
interference effects. This expression includes interference
between any other modes which have not been explicitly
incorporated within the model. Therefore, a sufficient set of
modes must be included within the model to have a
physically meaningful result; otherwise, Eq. (8) may be
violated by some terms not being included.

C. Total scattering

To calculate the total scattering cross section, vector
spherical harmonics are used since the total scattering is the
incoherent sum of all multipole contributions, given by
Eq. (D1). Figure 6 shows the contribution of each multipole
coefficient to the scattering cross section. As with the
multipole extinction spectrum shown in Fig. 2, the features
of the multipole scattering spectra are rather complex, but
they can be explained by considering the contributions of
different modes. In the wavelength range above 1000 nm,
corresponding to the measured range in Ref. [5], it can
be seen that the scattering is dominated by the electric-
dipole and magnetic-dipole moments a1 and b1. The
magnetic-dipole moment can be attributed to the resonance

of mode II, which has negligible contributions from other
moments.
The electric-dipole moment a1 appears to have two

distinct maxima in Fig. 6. From the coefficients shown in
Fig. 4, it is clear that only modes I and III contribute to this
dipolar scattering. From Fig. 3(b), we can see that mode I
has a very broad resonance, while mode III has a much
narrower resonance, with a negative contribution to extinc-
tion. The result is cancellation of electric-dipole radiation,
corresponding to an anapole distribution [26]. This effect is
typically explained in terms of a quasistatic electric dipole
(a linear current distribution) interfering with a toroidal
dipole (a poloidal current distribution). The surface currents
shown in Fig. 4 are consistent with this picture; however,
the explanation in terms of modes is more general and does
not rely on any low-frequency approximations. Indeed, in
Ref. [26], it was shown that, for spheres, the anapole
distribution is excited when the contributions from the first
and second a1 modes cancel. The situation for the disk is
similar, the difference being that the interfering modes I
and III have additional contributions from other multipole
moments.

D. Directional scattering

For applications in Huygens metasurfaces, the most
important attribute of a meta-atom is to have suppressed
backscattering and strong forward scattering. This direc-
tional scattering is typically achieved by overlapping
electric- and magnetic-dipole-type resonances. Figure 7
shows the forward and backward scattering amplitudes,
with peaks labeled according to the corresponding reso-
nant modes. The first peak of forward scattering corre-
sponds to the overlap of modes I and III, with almost
purely electric-dipole radiation, and mode II, with almost
purely magnetic-dipole radiation.
It can also be seen that, at the resonances of modes IV

and V, there are additional highly directional scattering

FIG. 6. Contribution of multipole moments to the scattering
cross section.

FIG. 7. Forward and backward scattering amplitudes. The
markers indicate the modes corresponding to each of the peaks.
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features, as these modes also overlap with the electric-
dipole-type modes I and III. Examining the multipole
decompositions in Fig. 4, it can be seen that mode IV is
dominated by its electric-quadrupole response, with a
significant contribution from its magnetic-dipole response.
By contrast, mode V is dominated by its magnetic-dipole
response, with lesser contributions from electric-quadrupole
and magnetic-octupole moments. It is significant that all of
these multipole moments radiate antisymmetric electric
fields into the forward and backward directions. When
combined with the symmetric electric fields radiated by
modes I and III, the backward scattering is canceled, and the
forward scattering is enhanced.
Considering the contribution of modes to this directional

scattering process, the generalized Huygens condition
introduced in Ref. [18] can be reinterpreted as interference
between modes of different symmetries. This interpretation
suggests that, to optimize this generalized Huygens effect,
the meta-atoms should be placed within a homogeneous
dielectric environment [5]. A dielectric substrate without a

compensating superstrate introduces bianisotropy by cou-
pling modes of opposite symmetry [27].

IV. OTHER STRUCTURES

The technique presented here is quite general and can be
applied to a variety of geometries. It is also applicable to a
wide range of materials, as discussed in Appendix F. The
only significant limitation on geometry is that sharp corners
need to be handled carefully since they can cause numerical
instability. The simplest solution is to round the edges with
some finite radius, and such rounding is expected to occur
in experimental samples. The approach makes no assump-
tions that the structure is smaller than the wavelength;

A

B

C

FIG. 8. (Left panels) Modes of a bianisotropic disk with a hole,
showing equivalent electric surface currents (arrows), and
charges (colors). (Right panels) Spherical multipoles of each
mode, normalized to the total scattered power.

FIG. 9. (a) Location of poles for an elliptical silicon cylinder.
(b) Extinction cross section for the incident field polarized along
the x axis (the black solid line), along with contributions from the
three dominant modes. (Inset) The coordinate convention.
(c) Corresponding extinction for an incident field polarized along
the y axis.
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however, as the structure becomes large compared to the
wavelength, the number of modes typically increases quite
dramatically, thus reducing the usefulness of the model. To
demonstrate the generality of the method, it is applied to
two additional structures.

A. Bianisotropic disk

Recent theoretical [28] and experimental [29] work has
shown that placing a hole asymmetrically in a dielectric
disk creates an all-dielectric bianisotropic meta-atom. The
magnetoelectric polarizability of this structure leads to
asymmetric backscattering; however, it is unclear how
the various modes of the structure contribute to this process.
The structure considered has the same dimensions as the
disk studied in Sec. III, with the addition of a hole having a
radius of 121 nm and a depth of 110 nm. In Fig. 8, the first
three modes of this structure are plotted, along with their
multipole expansions. Since the structure is strongly
perturbed by the introduction of the hole, these modes

can be understood as mixtures of several modes of the
regular disk shown in Fig. 4.
Mode A is a predominantly electric-dipole-type mode,

and it can be seen that it has a very similar current
distribution to mode I of the simple disk. Mode B has
quite significant electric- and magnetic-dipole contribu-
tions. Examining the current distribution, it can be seen to
have circulating current between the front and back faces,
similar to mode II of the disk. However, the current in the
hole has the opposite direction of that on the rim, leading to
a poloidal current distribution which strongly resembles
mode III. Mode C is most closely related to mode IVof the
simple disk, having a quadrupolar surface charge, but also
having significant magnetic-dipole moments.
For all modes, it can be seen that the introduction of the

hole has increased the influence of higher-order multipoles,
although both modes A and B remain dominated by dipole
moments. For the chosen geometric parameters, mode B
is the most important contributor to the bianisotropic
response. Considering the case where modes A and B

FIG. 10. (Left panels) Modes of the elliptical cylinder, showing equivalent electric surface currents (the arrows) and charges (the
colors). Markers correspond to poles in Fig. 9. (Right panels) Spherical multipoles of each mode, normalized to the total scattered power.
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are dominant, mode A suppresses the bianisotropy by
adding electric-dipole polarizability which is cross-coupled
to a weak magnetic-dipole excitation. Thus, tuning the
spectral overlap between these modes enables the net
bianisotropy of the structure to be controlled.

B. Elliptical cylinder

Because of their rotational symmetry, the response of
disks at normal incidence is identical for both polarizations.
For applications in polarization manipulation, anisotropic
structures are required. It has been demonstrated [18,30]
that long dielectric cylinders of an elliptical cross section
allow broadband birefringent metasurfaces to be fabricated,
with such applications as phase plates, holograms, and
vector beam generators. It can be useful to think of such
long meta-atoms as truncated sections of a waveguide,
where the transverse variation corresponds to a propagating
waveguide mode.
In Fig. 9(a), the poles of an elliptical cylinder are shown,

with x and y radii rx ¼ 125 nm and ry ¼ 200 nm, and a
length l ¼ 1100 nm. These parameters are chosen to
approximately overlap several modes for both polariza-
tions, to make forward scattering dominant. The corre-
sponding surface current distributions and multipole
moments are shown in Fig. 10. In Figs. 9(b) and 9(c),
the extinction is shown for x- and y-polarized incident
plane waves, respectively. The inset shows the coordinate
convention. As expected, the modes naturally divide into x
and y polarizations, determined by the direction of the
surface currents on the incident face in Fig. 10.
Examination of Fig. 10 shows that modes I and IV are

both magnetic-dipole type, with currents circulating in the
plane tangential to H, accompanied by a quadrupolar
surface charge distribution. Modes II and V are electric-
dipole type, with quite significant magnetic-quadrupole
contribution. Finally, modes III and VI are dominated by
their electric-quadrupole moments, but they also have quite
significant magnetic-dipole and octupole contributions. For
each polarization, it can be seen that the higher-order
modes have more field maxima in the longitudinal direc-
tion, but comparable transverse-field variations. This obser-
vation suggests that they arise from a few fundamental
transverse waveguide modes, with different longitudinal
variations corresponding to Fabry-Perot resonances. From
Fig. 9, it is clear that interference effects are considerably
less pronounced in this elliptical cylinder than in the disk.
This lack of interference makes the structure simpler to
analyze but reduces the potential to tailor its spectral
response by controlling interference.

V. CONCLUSION

A robust technique based on the singularity expansion
method is presented to find the modes of a meta-atom, fully
accounting for radiative losses. By solving Maxwell’s

equations using integral techniques, the problem of normal-
izing diverging fields is avoided. The technique is applied
to a silicon disk, a bianisotropic disk with a hole, and an
elliptical cylinder, which are all building blocks of exper-
imentally demonstrated metasurfaces. It is demonstrated
that the complicated features of the extinction spectrum can
be readily explained in terms of contributions from the
modes. Interference between nonorthogonal modes is
shown to play a key role, and it is shown how the model
automatically accounts for both direct and interference
contributions to extinction.
When considering far-field scattering properties, a

vector-spherical-harmonic expansion yields an accurate,
if somewhat opaque, description. By combining it with the
modal analysis, the nature and origin of all scattering
features can be elucidated. In the case of the silicon disk,
there are several bands of strong forward scattering and
suppressed backscattering, corresponding to the general-
ized Huygens condition. It is shown that each band
corresponds to the overlap of modes with odd and even
radiation symmetry. The techniques used to find modes and
construct models of scatterers are implemented in an open-
source code OPENMODES [31], along with notebooks to
reproduce all of the results in this paper [32].
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APPENDIX A: INTEGRAL APPROACH
TO MAXWELL’S EQUATIONS

Here, a brief outline of the integral approach to solving
Maxwell’s equations is given. In this work, dielectric
objects are considered and are treated through a surface-
equivalent problem, with surface-equivalent electric and
magnetic currents, J ¼ n ×H and M ¼ −n × E, where n
is the surface normal. These surface currents can be excited
by the incident electric or magnetic field, yielding the
electric-field integral equation and magnetic-field integral
equation, respectively. To yield a stable solution, both of
these equations must be combined using chosen weighting
coefficients [33]. In this work, the Poggio-Miller-Chang-
Harrington-Wu-Tsai form is used [34], which has been
established to be positive definite [20,35], as is required for
a passive structure. This procedure gives us an operator
equation relating equivalent surface currents to the tangen-
tial components of the incident fields:

ZðJ;MÞ ¼ ðEinc;HincÞjtan: ðA1Þ

Equation (A1) is solved numerically using the boundary-
element method (also known as the method of moments
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[36]). The equivalent surface currents are expanded in
terms of a set of basis functions fkðrÞ,

JðrÞ ¼
XN
k¼1

IkfkðrÞ; MðrÞ ¼ 1

η0

XN
k¼1

IkþNfkðrÞ; ðA2Þ

where η0 is the impedance of free space. The current
weighting coefficients Ik are assembled into the vector I.
The current expanded in terms of a finite series of basis

functions as per Eq. (A2) cannot exactly satisfy Eq. (A1).
Therefore, it must be solved by minimizing the residual
error with respect to some weighting functions gk. These
functions are applied to the source fields, yielding the
source coefficients

Vk ¼
�Z

gkðrÞ · EincðrÞd2r; η0

Z
gkðrÞ ·HincðrÞd2r

�
T
;

ðA3Þ

which are assembled into the source vector V. In this work,
loop-star functions [37] are used for both basis and testing
functions since using the more common Rao-Wilton-
Glisson [38] first-order linear functions is found to generate
many spurious poles. The weighted operator Z has a
complex expression which can be found in Ref. [34],
resulting in the impedance matrix ZðsÞ.
The response of the system is now described by a matrix

equation,

VðsÞ ¼ ZðsÞ · IðsÞ: ðA4Þ

The impedance matrix ZðsÞ is dense and frequency
dependent, and it contains all information regarding the
response of the scatterer to arbitrary incident fields.

APPENDIX B: POLES OF THE
IMPEDANCE MATRIX

It can be seen from Eq. (1) that the singularities of
Z−1ðsÞ will dominate the spectrum of the response, and,
using Mittag-Leffler’s theorem, the response may be
expanded in terms of these singularities [19]. They corre-
spond to solutions which can exist in the absence of a
source, and hence they can be used to model the response to
an arbitrary incident field. The most important singularities
of the impedance matrix are its poles, corresponding to the
quasinormal modes of the system. In practice, it may
usually be assumed that all poles are of first order [39].
The poles of the impedance matrix are found by the

contour-integration procedure of Ref. [40]. First, a pair of
matrix integrals C1 ¼

H
Z−1ðsÞds and C2 ¼

H
sZ−1ðsÞds

is evaluated about a contour, as shown schematically in
Fig. 1. As discussed in Sec. II A, the contour is chosen to
enclose only those modes which are likely to be of physical
interest. Also note that an arc is used to eliminate the

spurious numerical poles which cluster near the origin
when using integral operators of the first kind [41].
The mode frequencies and currents are eigenvalues and

eigenvectors of C2 · In ¼ snC1 · In. A singular value
decomposition is used to determine the number of valid
solutions to this equation [40], and solving for the corre-
sponding left-eigenvalue problem yields the projectorsKn.
This procedure can yield solutions lying both inside and
outside the contour, and those falling outside the
contour are discarded. The poles and currents are further
improved by Newton iteration, then normalized so that
Kn · Z0ðsnÞ · In ¼ 1. This normalization ensures that the
dyadic product of the eigenvectors matches the pole
residue, i.e.,

ZðsÞ ¼ InKn

s − sn
; ðB1Þ

in the vicinity of sn, simplifying the pole expansion.
When solving the structure numerically, the imperfect

symmetry of the mesh usually results in some frequency
splitting of degenerate modes, so a thresholding procedure
is used to group closely spaced poles. The contour-
integration and iterative search procedures are found to
cope with these nearly degenerate poles without requiring
any special handling. Note that it is not necessary to
orthogonalize degenerate modes since the method is
intrinsically able to account for nonorthogonality, as long
as the modes span the full eigenspace.

APPENDIX C: ORTHOGONALITY
OF THE MODES

As discussed in Ref. [42], the electric fields of quasi-
normal modes do not obey the usual orthogonality
relationship based on a conjugated inner product, i.e.,R
E�

n ·Emd3r ≠ δnm. However, they do obey an uncon-
jugated orthgonality relationship, which is utilized in most
quasinormal mode formulations [10] for the normalization
of modes and the projection of external fields.
By contrast, the current vectors on the scatterer obtained

in this work do not exhibit any form of orthogonality. Such
orthogonality is not required when working with modal
currents since they are normalized by weighting them to
match the residue of the pole, as shown in Eq. (B1). In
addition to providing the current vector In, this approach
also yields the correctly normalized projector Kn, which
gives the projection of an arbitrary field onto each mode by
a simple scalar product, as used in Eq. (3).
It is noted that, in the literature, a number of orthogonal

decompositions of the impedance matrix Z have been
presented, most prominently the characteristic-mode
analysis [43]. As these mode vectors are real, they exhibit
the conventional conjugated orthogonality. However, such
decompositions suffer from a number of problems
which make them unsuited for physically modeling open
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resonators. First, the eigenvalue problem must be solved at
each frequency, yielding a different set of current vectors at
each frequency. An algorithm is required to track these
modes with frequency [44], and they cannot be used to
solve time-domain problems.
More significantly, the enforcement of mode orthogon-

ality in an inherently non-Hermitian system results in an
artificial set of basis vectors which contain a complex
mixture of underlying eigenvectors. This mixing leads to
unphysical avoided crossings, whereby the nature of a pair
of modes is swapped in some frequency region [45]. The
author has observed similar behavior when utilizing other
orthogonal decompositions of the impedance matrix, such
as the singular value decomposition. In order to reproduce
the interference phenomena observed in Fig. 3, it is
essential to use the nonorthgonal modes obtained either
from the singularity expansion method, or the quasinormal
mode approaches.

APPENDIX D: MULTIPOLE DECOMPOSITION

The electric-multipole coefficients alm and the magnetic-
multipole coefficients blm are computed directly from the
surface currents using the formulas from Ref. [46]. Duality
allows these formulas to be generalized to include the
equivalent magnetic currents through the substitution
J → jð1=η0ÞM. The normalization of multipole coeffi-
cients from Ref. [47] is used, as this simplifies the
expression for the scattering cross section, which is
given by

σscat ¼
η0

k2jE0j2
Xlmax

l¼1

jalj2 þ jblj2; ðD1Þ

where the coefficients include contributions from all values
of azimuthal index m:

jalj2 ¼
Xl

m¼−l
jalmj2; jblj2 ¼

Xl

m¼−l
jblmj2: ðD2Þ

In Fig. 4, jalj2 and jblj2 are normalized to their sum, and
their square root is plotted since it more clearly shows the
smaller contributions. In Fig. 6 these terms are plotted,
including the prefactor from Eq. (D1), to give them
dimensions of the scattering cross section.
For a plane wave propagating in the z direction, with an

incident electric field along the y direction, the extinction
cross section is given by [46]

σext ¼
π

k2
Xlmax

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p �� X
m¼−1;1

Imfalmg
�

þ
� X
m¼−1;1

mImfblmg
��

: ðD3Þ

The quantities in square brackets are plotted in Fig. 2,
including all of the common prefactors in Eq. (D3). For
three terms of the multipole expansion, the extinction
plotted in Fig. 2 agrees with the direct calculation to a
relative error below 2% for frequencies below 350 THz.
By adapting the formulas from Mie theory [48], forward

scattering can be found as

Wf ¼ π

4k2

����
Xlmax

l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p Xl

m¼−1;1
alm þmblm

����
2

; ðD4Þ

while backscattering is given by

Wb ¼
π

4k2

����
Xlmax

l¼1

ð−1Þl ffiffiffiffiffiffiffiffiffiffiffiffiffi
2lþ 1

p Xl

m¼−1;1
alm −mblm

����
2

: ðD5Þ

As losses are low in this system, the total extinction and
scattering are approximately equal due to the optical
theorem. However, the optical theorem still allows each
multipole’s contribution to extinction shown in Fig. 2 to be
different from its contribution to scattering shown in Fig. 6.

APPENDIX E: ACCURACY OF
THE MODAL EXPANSION

To confirm the accuracy of the modal expansion, the
directly calculated extinction curve is plotted in Fig. 11 (the
solid line), as is the sum of all contributions plotted in
Fig. 3(b) (the red dashed line). It can be seen that the
agreement is good for frequencies below 250 THz; how-
ever, at high frequencies, it becomes poorer. In this curve,
the number of poles considered is 28, corresponding to the
seven modes studied in Sec. III, each doubly degenerate
and with conjugate poles.
To improve agreement, all 145 poles found by the

contour-integration process are included, not just the most

FIG. 11. Accuracy of the extinction calculated from the model
including different numbers of modes (the dashed lines), com-
pared with the directly calculated result (the solid line).
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significant. In this case, some of the included modes are
polarized along the disk axis—and hence are not doubly
degenerate—while others are overdamped and hence
do not appear in conjugate pairs. Including all of these
poles, much better agreement is achieved, as shown by
the blue dashed curve. Clearly, a model involving so
many parameters is less useful as a design tool; thus, there
is an inevitable trade-off between accuracy and the level
of insight provided. However, in contrast to simpler
approaches based on point dipole or equivalent circuit
models, it is possible to control the level of detail which is
included within the model by choosing to include or
exclude poles.

APPENDIX F: MATERIAL MODELS

Any material may be incorporated into the model, as
long as its permittivity (and permeability, if applicable) can
be described by a meromorphic function in the complex-
frequency plane. This condition corresponds to the per-
mittivity having a real, causal representation in the time
domain, and it is exactly the same issue faced when
creating material models for use with, e.g., the finite-
difference time-domain method. The common material
model of a sum of Drude-Lorentz oscillators, or a related
approach, can be used [49]. Such material models simulta-
neously include both dispersion effects, as required by the
Kramers-Kronig relations. Except in the case of idealized
lossless and nondispersive materials, the material permit-
tivity will have its own poles and zeros in the complex
plane. In general, the pole frequencies of a scatterer are
influenced both by its geometry and by the poles and zeros
of the material permittivity.
It is important to note that the impedance matrix ZðsÞ

contains terms of the form expð−γ0rÞ, with the complex
wave number γ0 ¼

ffiffiffiffiffiffiffiffi
εðsÞp ðs=cÞ. The square root operation

results in branch points at the poles and zeros of the
permittivity, connected by branch cuts [14,50]. For the
material data used in this work, all such branch points occur
at frequencies above 800 THz; thus, their contribution is
neglected in Eq. (3). The accuracy of the results shown in
Fig. 11 confirms that no significant contribution from
branch points is missing from the result. The lack of
branch points in the frequency range of interest also ensures
that the integration contour illustrated in Fig. 1 does not
intersect any of the branch cuts. Applying the contour
integration in a frequency range of high material dispersion
would require choosing the contour carefully to account for
all branch cuts.
The surface equivalence approach used in this work is

best suited to structures composed of a single material. It
can be extended to multimaterial structures by also solving
for equivalent surface currents on the internal boundary
between materials [51]. For composite particles with a
highly complex internal structure, the volume integral
approach taken in Ref. [15] may be preferable.
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