
Boston University
OpenBU http://open.bu.edu
Computer Science CAS: Computer Science: Technical Reports

2018-12-05

Scheduling policies and system
software architectures for
mixed-criticality computing

Sinha, Soham. "Scheduling Policies and System Software Architectures for
Mixed-criticality Computing." Technical Report BUCS-TR-2018-001, Department of
Computer Science, Boston University, December 5, 2018.
https://hdl.handle.net/2144/40211
Boston University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boston University Institutional Repository (OpenBU)

https://core.ac.uk/display/304658766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Scheduling Policies and System Software Architectures for Mixed-criticality Computing

Soham Sinha
Computer Science Department
Boston University, Boston, USA

ABSTRACT
Mixed-criticality model of computation is being increasingly
adopted in timing-sensitive systems. The model not only
ensures that the most critical tasks in a system never fails,
but also aims for better systems resource utilization in nor-
mal condition. In this report, we describe the widely used
mixed-criticality task model and fixed-priority scheduling
algorithms for the model in uniprocessors. Because of the
necessity by the mixed-criticality task model and scheduling
policies, isolation, both temporal and spatial, among tasks is
one of the main requirements from the system design point
of view. Different virtualization techniques have been used
to design system software architecture with the goal of iso-
lation. We discuss such a few system software architectures
which are being and can be used for mixed-criticality model
of computation.

1 INTRODUCTION
Computing in embedded systems has been increasingly mov-
ing towards a new system model, Mixed-criticality System
(MCS). MCS was first introduced by Vestal in his seminal
paper [53] in 2007. This new kind of system is targeted to-
wards the new class of timing-sensitive platforms such as
autonomous cars, drones, avionic systems. In MCS-es, tasks
(or in usual systems terminology, processes) are divided into
multiple levels of criticality. A task is assigned a higher criti-
cality level when a failure to meet the deadline of that task
may result in severe consequence for the whole system. For
example, DO-178C document reports five levels of failure
conditions from "Catastrophic" (Level A) to "No Effect" (Level
E) [43]. Accordingly, tasks can be categorized to certain levels
of criticality, based on their effect on the system. Addition-
ally, a whole system can also be classified to certain levels of
criticality, based on its current condition.

In higher criticality level of the system, it may not be nec-
essary to run the lower criticality tasks as higher criticality
tasks may suffer from interferences from the lower criticality
tasks. Higher criticality tasks are more prone to be the decid-
ing factor of the running condition of the whole system. For
example, in a drone, a low criticality data logging task may
be stopped in case of critical condition (e.g., thrust of wind)
of the drone, when higher criticality flight controller task
should not be interfered. Conversely, in lower criticality level
of the system, more tasks ranging from higher to lower criti-
cality level may all run together. To facilitate this different

model of execution, tasks of different criticality levels need
to be have different set of parameters based on their critical-
ity level. The usual parameters of real-time tasks, (Runtime,
Period and Deadline) must be adjusted to suit the execution
model. Additionally, we need scheduling algorithms for this
new task model.
There has been numerous papers since Vestal’s work,

which discuss different scheduling algorithms and priority
assignment strategies for such model of Mixed-criticality
System. In this report, we will discuss the dominant and
established fixed-priority (FP) task-scheduling model for
uniprocessor scheduling. The other approaches, dynamic
priority scheduling algorithms have extra runtime overhead,
which are better to be avoided in time-critical computing.
Additionally Baruah and Vestal have proved that the mixed-
criticality model of computation does not necessarily help
in schedulability of dynamic priority scheduling algorithms,
as it does for FP scheduling algorithms. Therefore, we con-
centrate on FP scheduling algorithms.

While theoretical analysis of the scheduling algorithms for
uniprocessors forms the foundation of MCS, implementation
of such systems on top modern hardware also needs to be
explored. This is more interesting as the underlying embed-
ded hardware has been increasingly supporting multicore
processors. Moreover, the main goal of these systems is to
achieve isolation of execution, both temporally and spatially.
Temporal isolation provides timing guarantee. Spatial isola-
tion not only helps in meeting timing constraints, but also
increases overall safety and security of the system. In this
report, we explore the possible approaches in the architec-
tural design of the system software for the mixed-criticality
model of computation on top of modern multicore hardware.
Historically virtualization techniques have been used in

systems to attain isolation. Isolation helps fault-containment
to a specific component of the system and prevents spreading
to the other parts of the system. This improves the safety
of the system from, for example, the external environment
which may corrupt a part of the stored data. Isolation also
increases security so that an attacker cannot break into the
whole system easily. Many approaches try to segregate the
system into a number of domains of execution. In each of
these domains, we may need to run the uniprocessor mixed-
criticality scheduling algorithms, said earlier.

Our contributions of this report are the following:
(1) We describe different static priority assignment

strategies for mixed-criticality systems. We associate
1

those strategies with runtime scheduling policies and
discuss a number of their variants. (Section 2)

(2) We explore five system software architecture for
mixed-criticality model of computation, where isola-
tion is the primary goal: Standalone OS, Microker-
nel, Hypervisor, Microvisor, Partitioning Hypervisor.
(Section 3)

2 MIXED-CRITICALITY TASK
SCHEDULING POLICIES

The primary motivation behind the mixed-criticality systems
(MCS) is to adjust the task parameters and control the tasks
based on the criticality level. One of the most important task
parameter in real-time systems is the execution time of a
program. It is estimated by the Worst-case Execution Time
(WCET) which acts as an upper bound. Traditionally, it has
been hard to accurately estimate the WCET of a program
[54], especially because of the complexity of modern hard-
ware. Moreover, conservative estimation of WCET leads to
under-utilization of system resources in already resource-
constrained environments like embedded and real-time sys-
tems. Vestal initiated the research to develop amore practical,
alternative mixed-criticality model for timing-sensitive sys-
tems [53]. In this section, we first elaborate Vestal (task)
Model. Then, we discuss the fixed-priority scheduling algo-
rithms around the model.

2.1 Vestal’s Task Model
A task in most of the mixed-criticality taskset, following
Vestal’s task model or Vestal Model [53], is a 4-tuple: Com-
putation time at different criticality levels, period, deadline,
criticality level of the task. Therefore, a task τi can be de-
fined by (Ci (l),Ti ,Di ,Li). The task parameters are explained
below:

– Ti : The period (or rate) of a task or minimum inter-arrival
time.
– Di: The deadline of a task by which it should complete
its execution. Most mixed-criticality models assume implicit
deadline, i.e., the task period, Ti , is equal to the deadline.
Most of these models are extensible to arbitrary deadlines.
– Li: The criticality level of a task. A system developer de-
cides the criticality level of a task based on the task’s im-
portance to the system. For example, if the failure to meet
the deadline of task results into "Catastrophic" consequence
based on DO-178C standard [43], then the task could be cat-
egorized as "Level A" task. The numerical value is usually
from 1, referring to "Level E (No Effect)" to 5, referring to
"Level A (Catastrophic)". It is important to note that there
can even more or less than five levels of criticality. When

Vestal introduced the model, he referred to only four critical-
ity levels. However, there are other studies which considered
even up to thirteen levels of criticality [7].
– Ci (l): The computation time or runtime budget of a task
at criticality or assurance level l . The value is usually de-
rived by WCET estimates with varying levels of confidence
or assurance.Ci increases (or stays same) with the increment
of l which represents the assurance level. The probability
of a task missing its deadline decreases with the increment
in the assurance level, l , because Ci increases with l , which
means that the task gets higher runtime to finish its com-
putation. Assurance level thus directly relates to criticality
level of the system because tasks certified with higher level
of assurance have lower probability to failure. Therefore, l
is taken from the set of values in criticality levels (1 to 5 in
case of DO-178C).
The computation time of a task is usually assured to its

own criticality level or lower criticality level than its own.
Therefore, we can say that a task with (Ci (l),Ti ,Di ,Li) pa-
rameters has the following property for computation time:

Ci (l) = C (li) (li < Li)
= C (Li) (otherwise)
and

C (Li) ≥ C (li)

Therefore, the lowest criticality task has only one WCET
estimate for computation time.

2.1.1 Burns Model: Burns model [11] relaxes the as-
surance levels for computation time of a task from arbitrary
number of levels in Vestal Model to just two levels. He argues
that it is impractical and unlikely to derive WCET estimates
for task’s computation time parameter with more than two
levels assurance. Therefore, tasks will have two WCET es-
timates: 1) for normal mode of operation where the task is
assured to the lowest criticality level. 2) for self mode of op-
eration where the task is assured to the same criticality level
as its own. For example, a task τi with criticality level 5, will
have two WCET estimates: Ci (L1) - referring lowest assur-
ance level, Ci (L5) - referring assurance level to its own criti-
cality level. To generalize, every task’s two WCET estimates
will beC (sel f) andC (normal), whereC (sel f) ≥ C (normal).
For lowest criticality level tasks, the values would be same.

2.1.2 Concept of CriticalityMode: Wewill see in the
next subsection that many research works utilize a concept
of criticality mode. The criticality modes are interconnected
with the criticality levels. A mixed-criticality system usually
starts in the lowest criticality mode. If all tasks run accord-
ing to their lowest criticality level, the system stays in the
lowest criticality mode. Based on the scheduling policy, the
system can be changed to a higher criticality mode when

2

(a) Task Execution before PT

HC1 HC2

0 5

LC

10 15

deadline

LC HC2 LC

(b) Task Execution after PT

HC2HC1 LC HC2HC1 LC

0 5

HC2HC1 LC

10 15

deadline

Figure 1: Period Transformation (PT) Example

some task tries executing more than their lowest criticality
runtime budget. This concept of mode is applicable for a
whole system. Mode can also be task-specific. There are re-
search works going on task-specific and system-wide mode
change protocols and policies. Those works are out of the
scope of this report. We focus on the scheduling policies
which utilize the concept of criticality mode in this report.

2.2 Fixed-priority Algorithms
If the tasks do not change their priority in their entire life-
times, those algorithms are called fixed-priority (FP) algo-
rithms. The priorities of the tasks are decided offline based
on some strategies. We discuss these priority assignment
strategies in Section 2.2.1. At runtime, there can be different
scheduling policies applied for the mixed-criticality nature
of the system. The foremost and predominant motivation
of the scheduling policies is to ensure that more or prefer-
ably all higher criticality tasks meet their timing constrains.
Some scheduling policies also try to ensure a minimum level
of service guarantees for lower criticality tasks. We discuss
a few important such policies in Section 2.2.2. Finally, we
describe variations in Vestal Model and scheduling policies
in Section 2.3.

2.2.1 Priority Assignment: We enlist the most used
static priority assignment strategies.
(1) Rate-monotonic (RM) / Criticality-monotonic
(CM): Tasks can be assigned priorities statically based on
their rate or period (rate-monotonic) or criticality level
(criticality monotonic). Both of these strategies show poor
results, in terms of successfully scheduling randomly
generated tasksets [25]. Also, unmodified RM is not optimal
FP strategy for MCS, as it is for the periodic tasks. RM
scheduling is a special case of deadline-monotonic (DM)
scheduling where deadline is equal to period. DM scheduling
also demonstrates similar results as RM scheduling, for
mixed-criticality tasksets.

Table 1: Taskset for Period Transformation Example

Task Criticality
Level

C T Priority

HC1 High-
criticality

3 15 1

HC2 High-
criticality

6 15 2

LC High-
criticality

2 15 3

(2) Period Transformation (PT): In his first paper [53]
about mixed-criticality systems, one of Vestal’s suggested pri-
ority assignment strategies was Period Transformation [45].
In this approach, periods of all higher criticality tasks are first
divided by an integer, so that their periods are lower than
(or equal to) the comparatively lower criticality tasks. Then,
tasks are scheduled according to RM priority assignment.
Ultimately PT with RM scheduling becomes a criticality-
monotonic priority assignment.

To better understand PT, we show an example the taskset
in Table 1. We assume the priority is manually assigned for
the taskset. Then, without PT, the taskset is scheduled like in
Figure 1a. If we apply PT, then we need to divide the runtime
and period of HC1 and HC2 by 3, so that they are at least
equal to the lower criticality task LC’s period 5. Therefore,
the resultant taskset schedule is given in Figure 1b, where
HC1 andHC2’s (runtime, period) are respectively (1, 5) and (2,
5). We need to understand that each LC instance in Figure 1
is a new instance of the LC task. However, in Figure 1b, HC1
and HC2 actually are preempted and resumed multiple times.

(3) Audsley’s Algorithm: The prevalent priority assign-
ment strategy for mixed-criticality scheduling policies is
Audsley’s priority assignment algorithm [2]. We describe the
algorithm in a generic sense here. We tell the difference in
adoption of the algorithm wherever needed. First, a task is
selected among all the tasks and assigned the lowest priority.
The current task’s schedulability is evaluated assuming all
other tasks as higher priority tasks in a given scheduling
policy. The algorithm recursively checks schedulability of
remaining tasks until there are no tasks left, or no task is
schedulable at some priority level when the taskset is de-
clared not schedulable with the particular scheduling policy
using Audsley’s Algorithm.

Dorin et al. proved that the Audsley’s priority assignment
strategy is optimal for mixed-criticality tasksets [16]. The
primary property for the optimality of Audsley’s algorithm
and its proof comes from the phenomenon that a task schedu-
lable at some priority level is still schedulable at a higher
priority level. The optimality of Audsley’s Algorithm just

3

means that, if a taskset can be scheduled with any other FP
scheduling algorithm, then it should also be schedulable by
Audsley’s Algorithm.

2.2.2 Scheduling Policy: Given a priority assignment
strategy, scheduling policy for mixed-criticality systems de-
cide how the tasks should be managed at runtime. In case,
a task is overrunning its WCET estimate at some criticality
level, a runtime rule is enforced. There are many runtime
scheduling policies proposed over the years. We will discuss
important few of those in this section and which previously
discussed priority assignment strategies they utilize.

To check the schedulability of a taskset under a scheduling
policywith a priority assignment strategy, many papers since
Vestal’s initial paper use response-time recurrence equation
proposed by Joseph and Pandya [28]. Response-time of a task
is the worst-case total time between the arrival of a task and
its completion. It is usually calculated by summing up a task’s
WCET and interference by other tasks. The interference is
derived by measuring the runtime of other higher priority
tasks within the current task’s response-time. The higher
priority tasks can be invoked multiple times as well. Finally,
the equation becomes a recurrence relation which is solved
by iterating over multiple times, with initial response-time
being equal to the task’s WCET. For example, assume a task
τi has period as Ti and WCET as Ci and its higher priority
tasks are represented by a set hp (τi). Then, the response-
time of τi would be, Ri =

(
Ci + Interference from hp (τi)

)
=

Ci +
∑
τj ∈hp (τi)

(⌈
Ri
Tj

⌉
×Cj

)
.

We now discuss different scheduling policies.

(1) Static Mixed-criticality (SMC): The first scheduling
policy proposed for mixed-criticality systems was the SMC
policy by Vestal [53]. In this policy, tasks are allowed to
be executed for their WCETs at their own criticality levels.
To be more precise, high-criticality tasks are contracted for
their higher criticality level, and low-criticality tasks are con-
tracted only for their lower criticality levels. Therefore, when
the high-criticality tasks overrun their lower criticality level
estimate, they can still execute up to their higher criticality
execution time. Consequently, the higher criticality tasks
never miss their deadlines at their criticality level. However,
the lower criticality tasks may miss their deadline because
of the overrunning of a higher criticality task. This behavior
is fine because the lower criticality tasks are not assured to
meet their deadline at a higher criticality level.

SMC can use RM scheduling, CM scheduling, PT and Aud-
sley’s algorithm as its priority assignment strategy. However,
as Huang et al. showed [25] Audsley’s algorithm admit more
tasksets in randomly generated tasksets. An unmodified RM
and CM scheduling perform worse than PT or Audsley’s
algorithm.

(2) Adaptive Mixed-criticality (AMC): Baruah et al. pro-
posed AMC [10] by methodically formalizing the response-
time equation. In this policy, there is a system-wide criticality
mode which is initialized to the lowest criticality level at the
beginning of the system. Whenever a higher criticality task
executes for more than their lower criticalityWCET estimate,
the system-wide mode is changed to the next criticality level.
The current higher criticality task is then allowed to be exe-
cuted till the WCET at the current criticality level. Simulta-
neously, all lower criticality tasks than the current criticality
level are dropped to minimize interference by these lower
criticality tasks.
AMC uses Audsley’s priority assignment strategy to de-

cide task priorities offline. Although AMC’s scheduling pol-
icy can be fused with other static priority assignment strate-
gies, it has not been done yet, to the best of our knowledge.
AMC admits more tasksets than SMC with Audsley’s algo-
rithm and PT for randomly generated tasksets [25] because
of dynamically dropping all low criticality tasks in a higher
criticality mode. However, Baruah et al. showed that SMC
with PT and AMC with Audsley’s Algorithm are theoret-
ically incomparable because there are tasksets which are
schedulable by PT but not by AMC and vice-versa [8]. They
concluded that the benefit of PT is because of its inherent
ability to turn a taskset into a harmonic one, resulting into
better schedulability of tasksets.
(3) Slack Scheduling: Niz et al. introduced [15] a schedul-
ing policy based on Vestal model but has similarities with
Burns model. The policy is described for dual-criticality
(two criticality levels) tasksets. Higher criticality tasks have
two computation estimates: 1) a normal computation time
(Cnormal), 2) an overloaded computation time (Cover loaded)
(Cover loaded ≥ Cnormal). With this policy, tasks are first exe-
cuted with the assumption of running for their normal com-
putation time. This mode of execution is called normal mode.
Lower criticality tasks are prevented to run, only when the
high-criticality tasks are overrunning their normal computa-
tion budget and have to be continued to meet their deadline.
This restricted mode is called critical mode. The authors pro-
posed an offline algorithm to calculate a time-instant, called
zero-slack instant, by which the higher criticality tasks need
to be turned on for their critical mode execution, and lower
criticality tasks should be suspended. Overall, lower critical-
ity tasks are essentially run in the slack time generated by
the higher criticality tasks running in their normal mode.

Slack Scheduling uses RM scheduling to determine priority.
However, Niz et al. point out that any other priority-based
preemptive scheduling can be used, not only fixed-priority
ones. Therefore, Earliest Deadline First algorithm can also
be used with Slack Scheduling, but not yet done.

4

Table 2: Association between Scheduling Policies and
Priority Assignment Strategies

Scheduling Policy Implemented Priority
Assignment Strategies

Static Mixed-criticality
(SMC)

Rate-monotonic or Period
Transformation or Auds-
ley’s Algorithm

Adaptive Mixed-crititcality
(AMC)

Audsley’s Algorithm

Slack Scheduling Rate-monotonic

2.3 Variations
We have discussed the main categories of fixed-priority
scheduling algorithms for Mixed-criticality Systems. We as-
sociate the scheduling policies with their respective and tried
priority assignment strategies in Table 2 as a summary. We
now describe some variations of the above mentioned algo-
rithms in order to cater to different objectives, mostly related
to low-criticality tasks.

2.3.1 Variable Task Period: Most of the scheduling
policies are based on multiple estimates of WCET of a task.
However, in real-world, the dynamic behavior of a task may
not only affect its execution time budget, but also the period
or rate at which the tasks are needed to be executed. For
example, when an autonomous car suddenly discovers an
object in front, it may need to communicate to the driving
controller more frequently than normal. Then, the tasks
related to the driving controller should change its rate of
execution, instead of their computation budget. There are
research works which change the Vestal Model to allow
multiple values of periods (minimum inter-arrival time) at
different criticality levels.

Baruah first introduced the concept of multiple periods or
T in the mixed-criticality task model [5] in order to comply
with the requirements of the Certification Authorities (CAs)
like Federal Aviation Administration in the USA. A conser-
vative smaller value of period (T (HI)) is added in the task
model in addition to a normal value for period (T (LO)). In
this case, T (HI) ≤ T (LO). For low-criticality tasks, the two
values of periods are the same. In this extended model, each
task is allowed to complete within T (HI) which is its im-
plicit deadline. However, a task’s inter-arrival time may still
be higher than T (HI) i.e, T (LO) in the LO-criticality mode.
It is assumed that a CA will have restricted smaller value
of period like T (HI), while a system designer would try to
maximize the utilization of the system by a relaxed value
of period with T (LO). Later, Baruah extended the model [4]
to allow multiple periods to satisfy the basic functioning of
the system such as the driving control example given above.

Both these works suggest algorithm based on dynamic prior-
ity Earliest Deadline First algorithm, rather than our current
topic of Fixed-priority algorithms. Nevertheless, Baruah and
Chattopadhyay have done [9] a response-time analysis for
multiple estimations of periods with fixed-priority strategy,
by using response-time equations found in their work on
AMC [10]. They again use Audsley’s Algorithm to determine
fixed priorities of the tasks offline.
Another task model, named Elastic Mixed-criticality (E-

MC), also explores the idea of variable periods to improve
the service of the low-criticality tasks [51]. In most mixed-
criticality scheduling policies, low-criticality tasks are aban-
doned whenever there is a change of mode in the system.
E-MC allows variable periods for low-criticality tasks where
largest period is derived from a minimum service require-
ment of a low-criticality task. Additionally, E-MC also pro-
poses an EDF-based Early-Release (ER-EDF) algorithmwhich
can release low-criticality tasks early in the slack generated
by high-criticality tasks, to improve the service of the low-
criticality tasks. However, the low-criticality tasks may also
be constrained by minimum rate of execution where an early
release would not be possible. To accommodate the issue,
E-MC defines a set of early-release points in the model pa-
rameter itself. Furthermore, Su et al. used the model for dual-
criticality systems as Dual-criticality Mixed-criticality model
(DR-MC) [50] and posited the scheduling problem in the con-
text of fixed-priority scheduling as non-linear optimization
problem [49]. Another technique uses a similar and related
concept of extending the deadline of low-criticality tasks by
including a predefined stretching factor (for the periods) in
the task model [27].

2.3.2 Managing Low-criticality Tasks: High-
criticality tasks in mixed-criticality systems are most
important and always needed to be finished within their
deadlines. However, low-criticality tasks have some
flexibility in its execution requirement. There are research
works which try to exploit this flexibility to experiment with
the execution of the low-criticality tasks. Burns and Baruah
discussed a few ways to manage the low-criticality tasks,
so that they have some level of service guarantee, even in
the high-criticality mode [13]. One of the proposed topic
is similar to the E-MC task model [51] described earlier.
Among others, they also propose using a smaller runtime
budget for low-criticality tasks at higher criticality level.
Therefore, for low-criticality tasks, C (LO) ≥ C (HI). They
present a modified response-time analysis with the new
task model and AMC scheduling policy, assuming Audsley’s
priority assignment algorithm. In later research works, this
model is also called Imprecise Mixed-criticality or IMC
model [36]. However, no evaluation has been done for the
new model for fixed-priority schemes.

5

Most of the mixed-criticality systems drop all the low-
criticality tasks once the system-level mode changes to HI.
We have described a few modified task models and sched-
uling policies above (e.g., IMC/E-MC) which allow the low-
criticality to degrade its service when high-criticality tasks
overrun their LO-criticality budget. Low-criticality tasks can
be managed in various other ways as well. For example, MC-
ADAPT develops a dynamic task model where only a few
low-criticality tasks are dropped in case high-criticality tasks
overrun their LO-criticality budget [32]. As the authors ex-
tend the dynamic task priority EDF-VD algorithm [6] for
MC-ADAPT, they use a utilization bound test online to deter-
mine the low-criticality tasks to drop, starting from the one
with higher utilization. However, there has been no work
on adaptively dropping selected few low-criticality tasks
for fixed-priority scheduling algorithms, to the best of our
knowledge.

3 SYSTEM SOFTWARE ARCHITECTURES
FOR MIXED-CRITICALITY SYSTEMS

With the rise of multicore architectures in the embedded
systems space, there have been many algorithms for multi-
core mixed-criticality systems. Most of the algorithms are
extensions of the uniprocessor scheduling that we have men-
tioned above. Rather than focusing on the theoretical side
of these algorithms, we will now look at more practical im-
plementations of mixed-criticality systems. Many of the im-
plementations separate executions into multiple sandboxes
to provide spacial and temporal isolation to these isolated
domains of executions. These sandboxed domains can be de-
fined in terms of criticality, security, importance, relevance
to the system or some combination of them. Notwithstand-
ing, these isolated domains still need the notion of mixed-
criticality task execution because of the nature of the system.
Therefore, previously discussed FP scheduling policies could
be implemented in these sandboxes.
Isolation in terms of time and space is one of the key

driver of the mixed-criticality systems implementations. Tra-
ditionally, virtualization has been used by the systems re-
search community to provide isolation of execution within a
single system. Additionally, the philosophy of microkernel,
where the kernel only provides the most essential function-
alities like address space, threads of execution and inter-
process communication, has been also used to provide isola-
tion in systems. We discuss few of system software design
paradigms which can be and are being considered for mixed-
criticality computing. Table 3 provides a summary of all these
architectures.

3.1 Standalone OS
Huang et al. implemented a few fixed-priority mixed-
criticality scheduling policies in user-space Linux to measure
the overhead of specific approaches objectively [24, 25] and
provide such comparative evaluations for the first time. They
discovered that the overhead (in terms of increment in busy
period) of runtime policy enforcement for Slack Scheduling
and AMC is bounded by 3% for 32 tasks. Moreover, Period
Transformation priority assignment strategywhich increases
the number of context switches because of short bursts of
task-dispatches, incur only a ~2% overhead for 20 tasks, but
increases quickly after that. They used signals and timers
for the accounting of task budgets and periods. The authors
conclude that the real-world tasksets which can be theoreti-
cally proven to be schedulable by simple strategies like SMC
should be using those relatively straightforward runtime
scheduling policies.

LITMUSRT, based on Linux, was one of the first full-fledged
OS-es to propose using mixed-criticality scheduling [1]. The
authors extended the work to include different scheduling
policies to be applied to tasks of different criticality levels
[22]. The latter work tries mitigating more issues such as
scheduling overhead, interrupt handling. For example, inter-
rupts are redirected to only one core to reduce interference
to the other cores. However, using a monolithic complex ker-
nel like Linux is an issue. Such a bloated kernel leads to high
overhead due to contention to the shared resources, poor
security and safety, a significant concern in mixed-criticality
systems.

HIgh Performance Parallel Embedded Real-time Operating
Systems (HIPPEROS) [40] thus takes a microkernel based
approach to develop an OS for mixed-criticality systems
[41]. They separated out the lightweight tasks of the kernel
such as simple system calls and context switching to one core
while another core handles heavyweight part like scheduling,
resource handling. They implemented E-MC [51] with simple
provisions for mode-changing. The work is still going on in
HIPPEROS.

3.2 Microkernel
In an effort to increase the security and safety of the system,
the componentization of certain codebase was tried out. Mi-
crokernels came out of such necessity of bringing isolation
as one of the key characteristic of system development. Mi-
crokernel thus reduces the Trusted Computing Base (TCB)
of the system because it minimizes the amount of lines of
code (LOC) run at the highest privilege level to access all
the hardware capabilities. Only most essential services such
as address space management, IPC and thread management
are done in the microkernel and run in kernel space (ring 0

6

Table 3: Comparison between different System Software Architectures for Mixed-criticality Computing

Name Philosophy
(Size of TCB)

Architecture Scheduling Interrupt Handling Inter-domain
Communica-
tion

LITMUSRT Standalone OS
(Full Kernel)

Tasks run in containers as bud-
geted servers.

P-EDF and G-EDF in
servers.

non-real-time Linux IPC Mecha-
nisms

HIPPEROS OS with micro-
kernel flavor (Full
Kernel)

Master core is heavyweight
(scheduler, handling shared re-
source) and Slave core runs
applications and handles light-
weight kernel functionalities.

E-MC and a fixed-
priority scheduler
with budgeted
servers

Master core handles. Message passing
and shared mem-
ory

PikeOS microkernel (es-
sential microker-
nel services)

Tasks, drivers run as services in
user-space

Priority-based + time-
partitions

Based on assigned prior-
ity of interrupt-task.

Message passing

RT-Xen (or XtratuM) hypervisor (Xen
hypervisor layer
with Dom0)

Paravirtualized Guest OS-es run-
ning on top of bare metal hyper-
visor.

Preemptive fixed-
priority scheduling
of guest OS-es
through different
classes of servers.

"Split-driver" model
where all interrupts
are mediated by Dom0
with lightweight event
mechanism.

As network pack-
ets and shared
memory.

OKL4 (or NOVA) microvisor (thin
microvisor layer
and some depen-
dency on the
VMM and device
drivers)

3-layered where microhypervi-
sor is a thin layer on top of
hardware; a VMM, device driver
layer on top of it; finally guest
OS-es on top of VMM layer; each
VM gets a separate VMM

Preepmtive fixed-
priority round robin
scheduling for guest
OS-es.

Coordinated by the
VMM and co-located
device drivers to the
guest VMs through
virtual interrupts.

microvisor and
VMM coordi-
nated message
passing with ca-
pability controls.

Quest-V separation kernel
and partitioning
hypervisor (thin
Quest-V VMM)

Quest-based sandbox directly
on one or more cores.
Paravirtualized Linux directly
on other cores.
A thin VMM for every sandbox.

Quest - RMS and
AMC [39].
Other guest OS-es
own scheduling poli-
cies.

Mapped to specific cores.
Quest - priority inherited
interrupt handling.
Otherwise, based on
guest OS policy.

Shared memory

Jailhouse partitioning
hypervisor (the
thin hypervisor
layer and parts of
the Linux kernel)

Linux-based one sandbox di-
rectly on one core.
Other guest OS-es directly on
other cores.

Based on Linux and
other Guest OS-es.

Mapped to specific cores
and their guest OS-es.

Shared memory

Figure 2: Architecture of Microkernel Philosophy

Hardware

Microkernel (Address Space, Thread, IPC)

Linux
Server

Linux
Application

User
Process

Driver

ring 0
ring 3

protection mode in x86). Rest of the functionalities includ-
ing device drivers are executed in user-space (ring 3 in x86
protection mode). The interactions between the components

are done via message passing (IPC) through the microker-
nel. Figure 2 portrays the philosophy behind microkernel.
Because of smaller TCB, seL4 microkernel was one of the
first kernels to be formally verified [31]. seL4, implemented
in C, was based on the L4 microkernel family [34, 35]. L4
microkernel already demonstrated desired performance in
terms of limiting the overhead and minimizing IPC cost with
a paravirtualized Linux running on top of L4 [19].
PikeOS [29] is another microkernel which has evolved

from the concepts and goals of L4. However, L4 or the
L4Linux [19] was not geared towards the real-time systems
where time is a valuable resource. In PikeOS, time is accu-
rately accounted. Therefore, there are supports for event-
triggered (e.g., interrupt-driven) and time-triggered (e.g - pe-
riodic) applications. Tasks in PikeOS can have priorities, and
time is accounted for those tasks. However, a higher priority
task can still exhaust and block other tasks in the system.
Therefore, tasks priorities need to be assigned properly so
that interrupts are processed in a timely manner. However,
PikeOS is not entirely suitable to provide temporal isolation

7

Figure 3: Architecture of Xen Hypervisor Philosophy

Hardware

Hypervisor (virt phy mem, vCPU)

Domain0 Guest OS 1 Guest OS 2

ring 0
ring 1

C
on

tro
ls

 G
ue

st
s app app

ring 3

Device driver

Virtual driver Front driver

to tasks, which is essential to mixed-criticality systems. Al-
though PikeOS is not fully tuned to support mixed-criticality
workload, Vanga et al. demonstrated how a mixed-criticality
system can be designed with PikeOS [52]. They mainly tried
to support low latency low-criticality tasks with their sched-
uling policy. In addition, they port the PikeOS scheduling
architecture to the LITMUSRT [1] because of the proprietary
nature of PikeOS.

3.3 Hypervisor
XtratuM is a minimized hypervisor which was initially de-
signed as a nanokernel [37]. Linux was essentially used to
boot the system up, after which a XtratuM kernel mod-
ule would take over the system. It was very similar to
Linux Kernel-based VirtualMachine (KVM) [30] where Linux
worked as the host OS, while QEMU [12] and KVM could
work as the hypervisor. However, XtratuM was redesigned
as a full-fledged bare-metal hypervisor [38]. Paravirtualized
guests such as Linux or their own in-house LithOS [42] can
be run on top of the hypervisor. The hypervisor uses a fixed
cyclic scheduling to schedule each domain which is called
"partition" by the authors. The interrupts are virtualized
and managed by the hypervisor. Therefore, a high-priority
task’s interrupt may be deferred because of the virtualization.
Interestingly, the authors enable only the interrupts associ-
ated with the currently executing partition. The hypervisor
detects the other pending interrupts and defer them.
RT-Xen [55] is another full-fledged hypervisor like Xtra-

tuM, but based on the Xen virtualization infrastructure [3].
There is much in common between RT-Xen and Xtratum, as
the authors of RT-Xen admit as well. The general philoso-
phy of Xen-based hypervisor is captured in Figure 3. The
hypervisor layer sits on top of hardware and virtualizes the
CPU, physical memory for the guest OS-es. But in contrast
to XtratuM, Xen has a special Domain0 as the main hard-
ware controlling authority and mediator between the guest

Figure 4: Architecture of the Microvisor Philosophy

Hardware

Microvisor

Guest OS 1 Guest OS 2 Virtual
Appliance

app app

VMM 1
Driver

VMM 2 VMM 2

app

host,ring 0

host,ring 3

guest,ring 0

guest,ring 3

Root Partition Manager

domains and the hypervisor. Device interrupts are routed
through Domain0 in a "split-driver" model. Additionally, RT-
Xen has multiple inter-domain communication mediums,
originally offered in Xen. RT-Xen also offers many classes of
server containers such as Periodic Server, Deferrable Server.
Xen (and consequently, RT-Xen) also has wider community
support. Although both XtratuM and RT-Xen can be used
in mixed-criticality context, handling interrupts in a tim-
ing predictable manner is an issue, because interrupts are
virtualized and queued in event notification channel.

3.4 Microvisor
The systems research community has been debating [18,
21, 23] over advantages and disadvantages of microkernel
and hypervisors as virtual machine monitors (VMMs). Re-
searchers have noted many common goals of microkernels
and hypervisors [20]. Among them, reducing the TCB is one
of the primary goals. There has been efforts to combine these
streams of research together to build a unified model named
microvisor, coined by Gernot Heiser [20]. It is essentially tak-
ing the idea of microkernel and applying to the hypervisor
layer, instead of the OS. We now discuss about the major
efforts related to microvisors and how this approach can be
beneficial to mixed-criticality systems. Figure 4 encapsulates
the basic idea of a microvisor based architecture.
OKL4 [20] was one of the first efforts to combine the

two separate research streams together to show the viability
of the microvisor approach. Microvisors in general have a
three-layered architecture where the thin microvisor is the
most privileged layer just on top of the hardware. Multiple
VMMs managing Virtual Machines (VMs), device drivers and
a policy enforcement component as root partition manager sit
on top of the microhypervisor. Each Guest VM sits on top of a
VMM and interacts with the VMMs when necessary through
message passing. The microvisor approach separate policy

8

Hardware

Core 1 Core 2 Core 3 Core 4

Device A

Device B

Device C Device D Device E

OS 1 OS 2 OS 3

Monitor Monitor Monitor

Figure 5: Architecture of the Partitioning Hypervisor
Philosophy

and mechanism to different layers. Instruction execution
and memory are virtualized through a virtual CPU (vCPU)
and virtual MMU just like the hypervisor. Hardware support
like Intel VT can help in doing some of the virtualizations
to be done in hardware. NOVA [48] is another microvisor
which functionally decomposes the hypervisor into minimal
components. The most privileged component runs essential
hypervisor-related services like scheduling, communication
channel establishment and results into just 9k LOC. Thus,
the microvisor architecture is a significant step in isolating
major components of the kernel and also providing strong
isolation to the guest OS-es. However, virtualizing interrupts,
CPUs and drivers may incur cost significant to the timing-
sensitive system. Additionally, the VMM layer (host, ring 3)
is significantly bloated and privileged. Therefore, the trade-
off between isolation, security and performance needs to be
weighed.

3.5 Partitioning Hypervisor
Quest-V [33] is developed with the philosophy of a separation
kernel [44]. It segregates execution in multiple spatially and
temporally isolated domains in different sandboxes. Each
sandbox is statically given dedicated number of CPU cores
and hardware devices, as it can be seen in Figure 5. Because of
static partition, the architectural design is called Partitioning
Hypervisor. The philosophy of a separation kernel moves one
step ahead and omit any side channel between the sandboxes.
Quest-V has been designed and is being developed to achieve
the goal of a separation kernel.

Quest-V is built upon the Quest real-time operating system
(RTOS) [14] which can reside in one of the Quest-V sand-
boxes, providing real-time execution guarantee, even for the
I/O. Quest-V recommends grouping tasks based on their crit-
icality and importance into different sandboxes. As Quest-V
sandboxes can communicate between themselves via shared
memory, tasks in different sandboxes can have some relations

and dependability. However, the communication between the
sandboxes need to be explicitly provisioned. Indeed, vLibOS
[56], a virtualization paradigm based on Quest-V, presents an
idea of dual-mode applications transcending multiple sand-
boxes. In this paradigm, well-supported, legacy library ser-
vices can be provided by a well-known, established OS like
Linux, and real-time guarantees can be serviced by Quest.
Quest-V can thus bring timing guarantee to Linux-based
sandbox through its accurate timing-budget management
by Quest. This could be very useful in embedded systems
which have more I/O-related activities, where Linux may
not perform as expected. Quest-V (with support from Quest)
provides predictable I/O communication, unlike RT-Xen [55]
whose interrupt handling is not accurately time-budgeted
according to task priorities. Thus, Quest-V can be utilized
in multiple ways for mixed-criticality computation, tasks of
different criticalities mapped to different sandboxes or with
some other mapping of tasksets.
Jailhouse [46] also provides similar facilities as Quest-V

of statically partitioning hardware resources. Jailhouse uses
Linux to boot up and initialize all the hardware drivers. Then
the Jailhouse hypervisor is loaded as a firmware image by
the Jailhouse kernel module. After that, any number of sand-
boxes can be created up to the limit of the number of physi-
cal cores. However, one of those sanboxes need to be Linux
which act as a root cell. The other sandboxes are non-root cell.
The root cell acts like a Dom0 in Xen, except interrupts are
not virtualized through root cell. Rather devices are directly
attached to the particular sandboxes, with the help of the
feature like interrupt remapping in x86. A complete OS or
a bare-metal binary can be run on non-root cells. The Jail-
house hypervisor does not need to be intervened with much
of the functioning of the system, except some privileged
instruction (e.g. - cpuid) and illegal memory accesses. Con-
sequently, the hypervisor is only involved in management of
the cells and the few occurrences of trap, which makes the
surface of the hypervisor small. However, as Linux in root
cell still holds many controlling capabilities of the system, a
compromised Linux can potentially harm the whole system.
On the contrary, Quest-V copies the VMM in every sandbox,
and the failure of one sandbox can be contained within that
particular affected cell. There is no such root cell in Quest-V,
although the Quest RTOS is the primary OS in Quest-V. The
root cell increases usability of Jailhouse, at the expense of
some security and safety compromises.

4 CONCLUSION AND FUTUREWORK
In this report, we have presented the scheduling policies
and system software designs for mixed-criticality model of
computation. We have introduced the widely-used mixed-
criticality task models, sprung out from the Vestal model [53].

9

We have explained some static priority assignment sched-
uling algorithms for uniprocessors. We have identified that
most of the earlier scheduling policies focused on meeting
the timing constraints of the higher criticality tasks. Re-
cently, there has been efforts with newer scheduling policies
to maintain a tolerable service for the lower criticality tasks
while meeting all the deadlines of the high criticality tasks.
We have also worked on such a strategy, named PAStime
[47], where CPU time of a high criticality process is dynam-
ically adjusted at runtime based on its execution progress.
The research community needs to investigate whether there
are possibilities of integrating these new policies with the
previous ones such as AMC [10].

Furthermore, we have described different system software
architectures for mixed-criticality systems on top of mod-
ern multicore processors. This is an ongoing area of active
research with no clear winner [17, 26]. Primary driver of
the system design is to provide temporal guarantee to the
more critical tasks and spatial isolation of applications. Iso-
lated domains of executions are created in different ways
with multiple objectives including separating critical tasks,
fault-containment. Although different virtualization mod-
els are being explored in this research space, key factors
seem to be the reduction of Trusted Computing Base, min-
imizing overhead and predictable computation for one or
more sandboxed domain(s). In that case, microvisor and par-
titioning hypervisor seem to be ahead of others. Hardware
virtualizations techniques such Intel VT are also helping this
endeavor. In future, more research focus needs to be given
to the communication models, programming paradigm for
applications to be developed in this new virtualization in-
frastructures, where applications do not necessarily run on
a single domain.

REFERENCES
[1] James H Anderson, Sanjoy K Baruah, and Bjorn B Brandenburg. 2009.

Multicore Operating-System Support for Mixed Criticality. InWork-
shop on Mixed Criticality: Roadmap to Evolving UAV Certification. 11.

[2] N.C. Audsley. 5/2001. On Priority Assignment in Fixed Priority Sched-
uling. Inform. Process. Lett. 79, 1 (May 5/2001), 39–44.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the Art of Virtualization. In Proceedings of the Nineteenth ACM
Symposium on Operating Systems Principles (SOSP ’03). ACM, New
York, NY, USA, 164–177.

[4] Sanjoy Baruah. 2016. Schedulability Analysis of Mixed-Criticality
Systems with Multiple Frequency Specifications. In Proceedings of the
13th International Conference on Embedded Software (EMSOFT ’16).
ACM, New York, NY, USA, 24:1–24:10.

[5] S. Baruah. June 2012. Certification-Cognizant Scheduling of Tasks
with Pessimistic Frequency Specification. In 7th IEEE International
Symposium on Industrial Embedded Systems (SIES’12). 31–38.

[6] S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela,
S. van der Ster, and L. Stougie. July 2012. The Preemptive Uniproces-
sor Scheduling of Mixed-Criticality Implicit-Deadline Sporadic Task

Systems. In 2012 24th Euromicro Conference on Real-Time Systems.
145–154.

[7] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’angelo, Haohan
Li, Alberto Marchetti-Spaccamela, Suzanne Van Der Ster, and Leen
Stougie. May 2015. Preemptive Uniprocessor Scheduling of Mixed-
Criticality Sporadic Task Systems. J. ACM 62, 2 (May May 2015),
14:1–14:33.

[8] Sanjoy Baruah and Alan Burns. 2013. Fixed-Priority Scheduling of
Dual-Criticality Systems. In Proceedings of the 21st International Con-
ference on Real-Time Networks and Systems (RTNS ’13). ACM, New
York, NY, USA, 173–181.

[9] S. Baruah and B. Chattopadhyay. August 2013. Response-Time Analy-
sis of Mixed Criticality Systems with Pessimistic Frequency Specifi-
cation. In 2013 IEEE 19th International Conference on Embedded and
Real-Time Computing Systems and Applications. 237–246.

[10] S. K. Baruah, A. Burns, and R. I. Davis. November 2011. Response-Time
Analysis for Mixed Criticality Systems. In 2011 IEEE 32nd Real-Time
Systems Symposium. 34–43.

[11] Sanjoy K. Baruah, Liliana Cucu-Grosjean, Roabert I. Davis, and Claire
Maiza. 2015. Mixed Criticality on Multicore/Manycore Platforms
(Dagstuhl Seminar 15121). (2015).

[12] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator.
(2005), 6.

[13] Alan Burns and Sanjoy Baruah. 2013. Towards a More Practical Model
for Mixed Criticality Systems. InWorkshop on Mixed-Criticality Sys-
tems (Colocated with RTSS).

[14] M. Danish, Y. Li, and R. West. April 2011. Virtual-CPU Scheduling in
the Quest Operating System. In 2011 17th IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS ’11). 169–179.

[15] Dionisio de Niz, Karthik Lakshmanan, and Ragunathan Rajkumar.
12/2009. On the Scheduling of Mixed-Criticality Real-Time Task Sets.
In 2009 30th IEEE Real-Time Systems Symposium. IEEE, Washington
DC, USA, 291–300.

[16] François Dorin, Pascal Richard, Michaël Richard, and Joël Goossens.
2010-12-01. Schedulability and Sensitivity Analysis of Multiple Criti-
cality Tasks with Fixed-Priorities. Real-Time Systems 46, 3 (Dec. 2010-
12-01), 305–331.

[17] Zonghua Gu and Qingling Zhao. 2012. A State-of-the-Art Survey
on Real-Time Issues in Embedded Systems Virtualization. Journal of
Software Engineering and Applications 05, 04 (2012), 277–290.

[18] StevenHand, AndrewWarfield, Keir Fraser, Evangelos Kotsovinos, and
Dan Magenheimer. 2005. Are Virtual Machine Monitors Microkernels
Done Right?. In HotOS. 5.

[19] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schön-
berg, and Jean Wolter. 1997. The Performance of μ-Kernel-Based
Systems. In Proceedings of the Sixteenth ACM Symposium on Operating
Systems Principles (SOSP ’97). ACM, New York, NY, USA, 66–77.

[20] Gernot Heiser and Ben Leslie. 2010. The OKL4 Microvisor: Conver-
gence Point of Microkernels and Hypervisors. In Proceedings of the
First ACM Asia-Pacific Workshop on Workshop on Systems (APSys ’10).
ACM, New York, NY, USA, 19–24.

[21] Gernot Heiser, Volkmar Uhlig, and Joshua LeVasseur. January 2006.
Are Virtual-Machine Monitors Microkernels Done Right? SIGOPS
Oper. Syst. Rev. 40, 1 (Jan. January 2006), 95–99.

[22] J. L. Herman, C. J. Kenna, M. S. Mollison, J. H. Anderson, and D. M.
Johnson. April 2012. RTOS Support for Multicore Mixed-Criticality
Systems. In 2012 IEEE 18th Real Time and Embedded Technology and
Applications Symposium. 197–208.

[23] Michael Hohmuth, Michael Peter, Hermann Härtig, and Jonathan S.
Shapiro. 2004. Reducing TCB Size by Using Untrusted Components:
Small Kernels Versus Virtual-Machine Monitors. In Proceedings of the
11th Workshop on ACM SIGOPS European Workshop (EW 11). ACM,

10

New York, NY, USA.
[24] H. Huang, C. Gill, and C. Lu. April 2012. Implementation and Evalua-

tion of Mixed-Criticality Scheduling Approaches for Periodic Tasks. In
2012 IEEE 18th Real Time and Embedded Technology and Applications
Symposium. 23–32.

[25] Huang-Ming Huang, Christopher Gill, and Chenyang Lu. April 2014.
Implementation and Evaluation of Mixed-Criticality Scheduling Ap-
proaches for Sporadic Tasks. ACM Trans. Embed. Comput. Syst. 13, 4s
(April April 2014), 126:1–126:25.

[26] Asif Iqbal, Nayeema Sadeque, and Rafika Ida Mutia. 2009. An Overview
of Microkernel, Hypervisor and Microvisor Virtualization Approaches
for Embedded Systems.

[27] Mathieu Jan, Lilia Zaourar, and Maurice Pitel. 2013. Maximizing the
Execution Rate of Low-Criticality Tasks in Mixed Criticality Systems.
WMC, RTSS (2013), 6.

[28] M. Joseph and P. Pandya. 1986/01/01. Finding Response Times in a
Real-Time System. Comput. J. 29, 5 (Jan. 1986/01/01), 390–395.

[29] Robert Kaiser and Stephan Wagner. 2007. Evolution of the PikeOS
Microkernel. In First International Workshop on Microkernels for Em-
bedded Systems. 50.

[30] Avi Kivity, Yaniv Kamay, and Dor Laor. 2007. Kvm: The Linux Virtual
Machine Monitor. In Linux Symposium. 8.

[31] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. 2009. seL4: Formal Verification of an OS Kernel. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems
Principles (SOSP ’09). ACM, New York, NY, USA, 207–220.

[32] Jaewoo Lee, Hoon Sung Chwa, Linh T. X. Phan, Insik Shin, and Insup
Lee. September 2017. MC-ADAPT: Adaptive Task Dropping in Mixed-
Criticality Scheduling. ACM Trans. Embed. Comput. Syst. 16, 5s (Sept.
September 2017), 163:1–163:21.

[33] Ye Li, Richard West, and Eric Missimer. 2014. A Virtualized Separa-
tion Kernel for Mixed Criticality Systems. In Proceedings of the 10th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (VEE ’14). ACM, New York, NY, USA, 201–212.

[34] J. Liedtke. 1995. On Micro-Kernel Construction. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles (SOSP ’95).
ACM, New York, NY, USA, 237–250.

[35] Jochen Liedtke. 1996-9-1. Toward Real Microkernels. Commun. ACM
39, 9 (Sept. 1996-9-1), 70–77.

[36] D. Liu, N. Guan, J. Spasic, G. Chen, S. Liu, T. Stefanov, and W. Yi. July
2018. Scheduling Analysis of Imprecise Mixed-Criticality Real-Time
Tasks. IEEE Trans. Comput. 67, 7 (July July 2018), 975–991.

[37] MMasmano, I Ripoll, and A Crespo. 2005. An Overview of the XtratuM
Nanokernel. Workshop on Operating Systems Platforms for Embedded
Real-Time Applications (OSPERT) 18, 1 (2005), ix.

[38] M Masmano, I Ripoll, A Crespo, and J J Metge. 2009. XtratuM: A
Hypervisor for Safety Critical Embedded Systems. Real-time Linux
Workshop (2009), 9.

[39] E. Missimer, K. Missimer, and R. West. July 2016. Mixed-Criticality
Scheduling with I/O. In 2016 28th Euromicro Conference on Real-Time
Systems (ECRTS). 120–130.

[40] Antonio Paolillo, Olivier Desenfans, Vladimir Svoboda, Joël Goossens,
and Ben Rodriguez. 2015. A New Configurable and Parallel Embedded
Real-TimeMicro-Kernel forMulti-Core Platforms. OSPERT 2015 (2015),
25.

[41] Antonio Paolillo, Paul Rodriguez, Vladimir Svoboda, Olivier Desenfans,
Joël Goossens, Ben Rodriguez, Sylvain Girbal, Madeleine Faugere, and
Philippe Bonnot. 2017. Porting a Safety-Critical Industrial Application
on a Mixed-Criticality Enabled Real-Time Operating System. In Proc.
5th Workshop on Mixed Criticality Systems (WMC), RTSS. 1–6.

[42] I Ripoll, M Masmano, V Brocal, S Peiro, P Balbastre, and A Crespo.
2010. Configuration and Scheduling Tools for TSP Systems Based on
XtratuM. Real-time Linux Workshop (2010), 7.

[43] RTCA/DO-178C. 2012. Software Considerations in Airborne Systems
and Equipment Certification. (2012).

[44] J. M. Rushby. 1982. Proof of Separability A Verification Technique for a
Class of Security Kernels. In International Symposium on Programming,
G. Goos, J. Hartmanis, W. Brauer, P. Brinch Hansen, D. Gries, C. Moler,
G. Seegmüller, J. Stoer, N. Wirth, Mariangiola Dezani-Ciancaglini, and
Ugo Montanari (Eds.). Vol. 137. Springer Berlin Heidelberg, Berlin,
Heidelberg, 352–367.

[45] Lui Sha, John P. Lehoczky, and Ragunathan Rajkumar. 1986. Solutions
for Some Practical Problems in Prioritized Preemptive Scheduling. In
RTSS.

[46] Siemens. 2018-11-20T11:46:27Z. Jailhouse: Linux-Based Partition-
ing Hypervisor. https://github.com/siemens/jailhouse. (Nov. 2018-11-
20T11:46:27Z).

[47] Soham Sinha, Richard West, and Ramesh Peri. PAStime: Progress-
Aware Scheduling for Time-Critical Computing.

[48] Udo Steinberg and Bernhard Kauer. 2010. NOVA: A Microhypervisor-
Based Secure Virtualization Architecture. In Proceedings of the 5th
European Conference on Computer Systems (EuroSys ’10). ACM, New
York, NY, USA, 209–222.

[49] H. Su, P. Deng, D. Zhu, and Q. Zhu. August 2016. Fixed-Priority
Dual-Rate Mixed-Criticality Systems: Schedulability Analysis and Per-
formance Optimization. In 2016 IEEE 22nd International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA).
59–68.

[50] H. Su, N. Guan, and D. Zhu. August 2014. Service Guarantee Explo-
ration for Mixed-Criticality Systems. In 2014 IEEE 20th International
Conference on Embedded and Real-Time Computing Systems and Appli-
cations. 1–10.

[51] H. Su and D. Zhu. March 2013. An Elastic Mixed-Criticality Task
Model and Its Scheduling Algorithm. In 2013 Design, Automation Test
in Europe Conference Exhibition (DATE). 147–152.

[52] Manohar Vanga, Andrea Bastoni, Henrik Theiling, and Björn B. Bran-
denburg. 2017. Supporting Low-Latency, Low-Criticality Tasks in a
Certified Mixed-Criticality OS. In Proceedings of the 25th International
Conference on Real-Time Networks and Systems (RTNS ’17). ACM, New
York, NY, USA, 227–236.

[53] S. Vestal. December 2007. Preemptive Scheduling of Multi-Criticality
Systems with Varying Degrees of Execution Time Assurance. In 28th
IEEE International Real-Time Systems Symposium (RTSS 2007). 239–243.

[54] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, DavidWhalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, FrankMueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenström. May 2008. The Worst-
Case Execution-Time Problem – Overview of Methods and Survey
of Tools. ACM Trans. Embed. Comput. Syst. 7, 3 (May May 2008),
36:1–36:53.

[55] Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. 2011. RT-
Xen: Towards Real-Time Hypervisor Scheduling in Xen. In Proceedings
of the Ninth ACM International Conference on Embedded Software (EM-
SOFT ’11). ACM, New York, NY, USA, 39–48.

[56] Ying Ye, Zhuoqun Cheng, Soham Sinha, and Richard West. 2018-01-
24. vLibOS: Babysitting OS Evolution with a Virtualized Library OS.
arXiv:1801.07880 [cs] (Jan. 2018-01-24). arXiv:cs/1801.07880

11

http://arxiv.org/abs/cs/1801.07880

	Abstract
	1 Introduction
	2 Mixed-criticality Task Scheduling Policies
	2.1 Vestal's Task Model
	2.2 Fixed-priority Algorithms
	2.3 Variations

	3 System Software Architectures for Mixed-criticality Systems
	3.1 Standalone OS
	3.2 Microkernel
	3.3 Hypervisor
	3.4 Microvisor
	3.5 Partitioning Hypervisor

	4 Conclusion and Future Work
	References

