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Abstract
Nonlinear response of dielectric polarization to electric field in certain media is the foundation of nonlinear optics.
Optically, such nonlinearities are observed at high light intensities, achievable by laser, where atomic-scale field
strengths exceeding 106–108 V/m can be realized. Nonlinear optics includes a host of fascinating phenomena such as
higher harmonic frequency generation, sum and difference frequency generation, four-wave mixing, self-focusing,
optical phase conjugation, and optical rectification. Even though nonlinear optics has been studied for more than five
decades, such studies in analogous acoustic or microwave frequency ranges are yet to be realized. Here, we
demonstrate a nonlinear dielectric resonator composed of a silicon micromechanical resonator with an aluminum
nitride piezoelectric layer, a material known to have a nonlinear optical susceptibility. Using a novel multiport
approach, we demonstrate second and third-harmonic generation, sum and difference frequency generation, and
four-wave mixing. Our demonstration of a nonlinear dielectric resonator opens up unprecedented possibilities for
exploring nonlinear dielectric effects in engineered structures with an equally broad range of effects such as those
observed in nonlinear optics. Furthermore, integration of a nonlinear dielectric layer on a chip-scale silicon
micromechanical resonator offers tantalizing prospects for novel applications, such as ultra high harmonic generation,
frequency multipliers, microwave frequency-comb generators, and nonlinear microwave signal processing.

Introduction
The nonlinear relation between electric field and

polarization response is at the heart of nonlinear optics1–
4. In its simplest manifestation, second harmonic gen-
eration (SHG) combines two identical photons of fre-
quency ω1 to form a single photon with twice the
frequency (ω2= 2ω1). SHG is the most commonly
employed commercial technique for frequency doubling
of lasers. Similarly, if two photons of dissimilar fre-
quencies (ω1 and ω2) are applied, frequency sums and
differences can be generated. The next order nonlinear
effect, third-harmonic generation (THG), can take an
input of three dissimilar frequencies and generate various
algebraic combinations of sums and differences from the

inputs, in addition to frequency tripling. This is known as
four-wave mixing. Other SHG-related fundamental
effects include optical rectification, Pockel’s effect,
and parametric amplification, and THG-related
effects include Kerr nonlinearity and nonlinear Raman
scattering3, 4.
Analogous nonlinear dielectric effects in the acoustic

frequency range could provide similar benefits of har-
monic generation, phase conjugation, parametric oscilla-
tion, and scattering effects. The simplest approach to
achieving a mechanical nonlinear dielectric resonator is to
combine nonlinearity in the dielectric polarization with an
elastic system, so that an applied electric field can gen-
erate nonlinear dielectric response in an appropriate
material such as aluminum nitride (AlN)5–9. The non-
linear response can be captured in an elastic system
capable of transducing the polarization effect into
mechanical motion in the acoustic frequency range. One
such transduction mechanism is piezoelectric effect,
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which can transduce an electric field to a mechanical
strain. The resulting higher-order components in polar-
ization can manifest (via the piezoelectric effect) as
higher-order acoustic frequency components with
mechanical vibrations of the resonator. Furthermore,
reducing the thickness of the material to the micron scale,
and sandwiching the layer between two electrodes, high
electric field ranges can be accomplished even with
moderate voltages applied across the layer. For instance, 1
volt applied across a thickness of 1 μm generates an
electric field of 106 V/m, approaching the regime in which
dielectric nonlinearity in the material starts to appear
(~106 V/m).

Materials and methods
Application of an external field in a dielectric material

sets up a response field inside the material due to its
polarization, reducing the strength of the external field.
The polarization field, ~P, is in the same direction as the
external field:

~P ¼ ε0χ
1ð Þ
e
~E; ð1Þ

where ε0 is the permittivity of free space and χe is the
linear (first-order) susceptibility. The total field inside of
the material,~E, is a result of both the free charges given by
the displacement field ~D, and the bound charges given by
~P, hence ~D ¼ ε0~E þ~P. For a linear dielectric, ~D ¼ ε~E,
where the dielectric constant is ε ¼ ε0ð1þ χ 1ð Þ

e Þ.

As the intensity of the electric field is increased beyond
the linear regime, ~P is given by a Taylor expansion in
powers of electric field with coefficients χ(n) correspond-
ing to the n-th order susceptibility:

~P ¼ ε0χ
1ð Þ
e
~E þ ε0χ

2ð Þ
e

~E
h i2

þε0χ
3ð Þ
e

~E
h i3

þ¼ ð2Þ

Symmetry of the material has a key role in that the second
term, responsible for second harmonic generation, is not
present in materials, such as silicon, that have cen-
trosymmetric crystalline structures. Such crystals have an
indistinguishable point (−x, −y, −z) for every point (x, y,
z) within their unit cell. Hence the inversion-symmetric
medium is invariant under the parity operator, although it
does add a negative sign to both ~P ! �~P and ~E ! �~E.
This is only possible if the coefficients χ(n)= 0, for even n.
However, these coefficients are nonzero in non-
centrosymmetric crystals that also exhibit the piezo-
electric effect. Thus, second harmonic generation can be
produced in piezoelectric materials such as aluminum
nitride.

In the presence of high-intensity field in a dielectric
medium, the system can be modeled3, 4 as an oscillator
with a nonlinear restoring force and a driving electric field
consisting of two-frequency components ω1 and ω2 such

that E tð Þ ¼ E1eiω1t þ E2eiω2t þ c:c. For such a system, the
second-order nonlinear polarization is given as

Pð2Þ ¼ ε0χð2Þ E2
1e

�i2ω1t þ E�
1

� �2
ei2ω1t þ E2

2e
�i2ω2t

h

þ E�
2

� �2
ei2ω2t þ 2E1E2e�i ω1þω2ð Þt þ 2E�

1E
�
2e

i ω1þω2ð Þt

þ2E1E�
2e

�i ω1�ω2ð Þt þ 2E�
1E2e

i ω1�ω2ð Þt þ ε0χð2Þ
�
2E1E�

1 þ 2E2E�
2

� �
:

ð3Þ
This expression includes the second harmonic terms 2ω1

and 2ω2 as well as the sum and difference frequency
(three-wave mixing) components ω1+ ω2 and ω1− ω2. In
the case where ω1 and ω2 are equal, the mixing is
degenerate. In addition, there is a component
corresponding to a steady-state polarization density
that creates a static electric field in the material even
though a time varying signal is applied—this is the
rectification effect3, 4. Similarly, when driven by an
electric field having three frequency components,
E tð Þ ¼ E1eiω1t þ E2eiω2t þ E3eiω3t þ c:c:, third-order non-
linear polarization reveals multiple four-wave mixing
components.

P 3ω1ð Þ ¼ ε0χð3ÞE3
1 ; P 3ω2ð Þ ¼ ε0χð3ÞE3

2 ; P 3ω3ð Þ ¼ ε0χð3ÞE3
3 ;

P ω1 þ ω2 þ ω3ð Þ ¼ 6ε0χð3ÞE1E2E3; P ω1 þ ω2 � ω3ð Þ ¼ 6ε0χð3ÞE1E2E�
3 ;

P ω1 � ω2 þ ω3ð Þ ¼ 6ε0χð3ÞE1E3E�
2 ; P �ω1 þ ω2 þ ω3ð Þ ¼ 6ε0χð3ÞE�

1E2E3;

ð4Þ
In a nonlinear-optics material, second harmonic genera-
tion corresponds to a mechanism where two photons with
frequency ω are destroyed to produce a single photon
with a frequency 2ω, thus conserving energy as well as
phase; third-harmonic generation corresponds to the
creation of a single photon of frequency 3ω out of three
photons of frequency ω. These processes can be extended
to the acoustic range where two frequencies can combine
to generate a different frequency. For these effects, electric
field amplitude needs to be very high, so that the second
order and third-order effects (second and third terms in
Eq. (2)) are of the same order of magnitude as the first

one, χ 1ð Þ
e ~E
h i1

� χ 2ð Þ
e ~E
h i2

� χ 3ð Þ
e ~E
h i3

, or the corresponding

field magnitude, ~E
h i

� ðχ 1ð Þ
e =χ 2ð Þ

e Þ � 1=χ 2ð Þ
e , as χ 1ð Þ

e is on

the order of 1. Hence, in most materials, the dielectric
nonlinearity described here requires large electric fields
for higher harmonic generation.

This dielectric nonlinearity is fundamentally different
from mechanical or elastic nonlinearity which arises due
to parametric nonlinearity or nonlinear spring constant10,
such as in a Duffing oscillator11, 12 or in nonlinear
damping13, 14, or other forms of materials nonlinearity
such as piezoelectric nonlinearity involving a nonlinear
strain–field relationship. In the context of energy har-
vesting, nonlinear properties of piezoelectric materials
have been explored in piezoelectric constitutive
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relationship15, and in elastic nonlinearity16. Nonlinear
higher harmonic generation17 and four-wave mixing18

have been observed in piezoelectric resonators at higher
power levels, possibly implying an underlying nonlinear
strain–field mechanism or conventional elastic non-
linearity or a combination of mechanisms. The phenom-
enon is also different from acoustical nonlinear effects
studied in microfluidics19–21 where motion of particles,
microspheres or other objects can be controlled by
manipulating fluid motion on microscale.
We use piezoelectric effect, already intrinsic to the

chosen material, as a mechanism for transducing polar-
ization effects in the acoustic frequency range. Nonlinear
components in polarization as a function of electric field,
as described in Eqs. (2–4) can give rise to strain at specific
frequencies, determined by the natural resonance fre-
quencies of the resonator. Piezoelectricity consists of two
complementary effects—the direct and the inverse effects.
The direct effect is the generation of charge polarization
as a result of applied stress on the material, while the
inverse effect is the generation of strain by applied electric
field across the material. The piezoelectric constitutive
equations are

Sij ¼ sijklTkl þ dT
ijnEn;

Dm ¼ dmklTkl þ εmnEn:
ð5Þ

The first equation represents the inverse piezoelectric
effect while the second equation represents the accom-
panying direct effect. Here Sij is the rank-2 strain tensor,
sijkl is the rank-4 compliance tensor, Tkl is the rank-2
stress tensor, dmkl is the rank-3 piezoelectric coefficient,
εmn is the rank-2 material permittivity, En is the electric
field, and Dm is the displacement field. These constitutive
equations are only valid in the linear, low-electric-field-
intensity regime. For high-intensity electric fields, Dm, to
the first order, includes both nonlinear terms in the pie-
zoelectric constant (first term in Eq. 5) and the electric
field (second term in Eq. 5), as the polarization field P is
no longer linear. These nonlinear interactions produce
multiple frequency components as well, though these
nonlinear effects are related predominantly to non-
linearity in the piezoelectric material involving piezo-
electric coefficients with higher-order terms. The
dielectric nonlinear effects, described in Eqs. (2–4) require
a material with non-centrosymmetry, but not all non-
centrosymmetric materials are piezoelectric. Absence of
center of symmetry is a necessary but not a sufficient
requirement for a material to exhibit an appreciable pie-
zoelectric effect. The nonlinear effects arising out of
nonlinear field–polarization relationship at large electric
fields can be observed even when the strain–field rela-
tionship is linear.

Results
We use a micron-sized piezoelectric resonator, shown

in Fig. 1a, consisting of an aluminum nitride (AlN) pie-
zoelectric layer sandwiched between two layers of metallic
electrodes which are deposited on a suspended silicon
resonator. AlN has a non-centrosymmetric crystalline
structure, enabling both second and third-harmonic
generation, whereas the underlying silicon layer with
centrosymmetric crystal structure may contribute to only
third-harmonic generation. To detect ultra-small signals
arising from nonlinear interactions, we employ a multi-
port design to actuate and detect the resonator’s response.
With multiple ports, the resonator can be operated in a
common-mode configuration to increase the signal-to-
noise ratio and avoid electrical mixing. Even though the
nonlinear medium material generates higher-order non-
linear polarization at all frequencies, the resonator dis-
plays responses corresponding to its resonance
frequencies where on-resonance signals are enhanced by
their respective quality factor.
The micrograph in Fig. 1a shows the plate-type four-

port piezoelectric resonator device, about 250 by 100 μm.
The resonator consists of two layers of molybdenum
(each 1 μm thick) which sandwich the aluminum nitride
(2 μm thick) piezoelectric layer, followed by layers of
silicon oxide and bulk structural silicon layers. In our
experiment, the highest power of 5 dBm (or 1.125 V peak-
to-peak) across a 2-μm layer of aluminum nitride corre-
sponds to a maximum attainable electric field of 0.563 ×
106 V/m peak-to-peak. The suspended resonator is con-
nected to the substrate by thin anchors. The top molyb-
denum layer is deposited in the form of four sets of
interdigitated transducer (IDT) electrodes; each set is
comprised of two electrodes and connected to one of the
four square molybdenum tabs on all four sides of the
device. These ports (labeled P1 through P4) are the four
ports of the resonator device, used symmetrically to
provide radio frequency (RF) inputs to or receive output
signals from the device. In this study, output signals are
measured at P4 while inputs are provided at P1, P2, and
P3, as needed. The tabs labeled “G” are used for device
grounding. As shown in Fig. 1b, function generators were
used to provide either two or three RF inputs (as required)
at ports 1 through 3 while the output was measured by a
spectrum analyzer connected to port 4 (P4) after being
amplified by a low-noise amplifier. Figure 1c shows the
layers of materials in the suspended part of the resonator
stack, where the AlN layer is sandwiched between two
metal electrodes.
We start with a frequency sweep between 100 and 150

MHz at P1 while recording the response at P4. The
response, shown in Fig. 2a, shows two resonance peaks,
one at 106.69MHz and the other at 121.3MHz. We next
provide identical, in-phase signals at P1 and P2. The
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results, shown in Fig. 2b, show a reduction of the signal
and increase in noise. The largest resonance peak (located
at 121.3MHz) is also reduced in amplitude. Finally, we
provide identical, but 180° out-of-phase, signals to P1 and
P2. The common-mode rejection response is shown in
Fig. 2c, which depicts an increase in the signal-to-noise
ratio in comparison to the response shown in Fig. 2a and
b. In fact, the application of the same signal with a 180°
phase difference at two consecutive ports results in the
canceling of the common-mode noise signals, which are
applied equally to both parts of the inputs. This scheme
can be locally employed to provide a cleaner, less noisy

response. For nonlinear frequency-mixing measurements,
it also allows application of different frequency signals at
different ports without any electrical signal mixing.
The resonator has large resonance peaks at the fre-

quencies of 121.3, 106.69, and 33.56MHz. We next
employ three-wave mixing scheme for second harmonic
generation using two frequencies (f1 and f2) applied to P1
and P2 at 0 dBm while an output is recorded at P4.
The response plots for these frequency pairs f1= 121.3
MHz and f2= 106.69MHz, f1= 121.3MHz and
f2= 33.56MHz, and f1= 106.69MHz and f2= 33.56MHz
are shown in Fig. 3a–c, respectively. The algebraic sum
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Fig. 1 Device micrograph and schematic circuit diagram and materials layer stack. a Micrograph at ×20 magnification of the four-port
micromechanical resonator. The tabs marked as P1, P2, P3 and P4 can be used symmetrically as the inputs and outputs, while the tabs marked with G
are the common ground for the device. Throughout this paper, inputs with different frequencies are applied to Ports 1, 2 and 3 (P1, P2, and P3,
respectively) while the output is measured at port 4 (P4). The central rectangular plate-type piezoelectric element of the resonator measures 100 by
245 μm and is straddled by eight (molybdenum) interdigitated transducers (IDTs). Two of these transducers are connected to each of the ports by
thin molybdenum connects. b Circuit diagram for the measurement setup is presented. A schematic of the resonator is presented in the center while
the ports 1 to 3 (P1 to P3) are presented in blue red and purple, respectively. Port 4 (P4) is part of the output circuit and is presented in black. The
three function generators provide the three input frequency signals (f1, f2, and f3, respectively) to ports P1 to P3. The output at port 4 (P4) is fed
through a low-noise voltage amplifier before being collected by a signal analyzer. c The stack of materials in the suspended part of the resonator
consist, from bottom to top, a silicon layer (5 μm thick), an oxide layer (2 μm thick) and the first electrode layer (1 μm thick), aluminum nitride layer (2
μm thick) and the second electrode layer (1 μm thick)
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and difference components can be seen in each of the
plots.
Next we explore the threshold input signal power for

the two frequencies f1= 121.3MHz, f2= 106.69MHz,
applied at P1 and P2, at which the first component of
harmonic generation appears. Figure 3d, shows the linear
response containing only the two resonance peaks at
input signal power of −45 dBm. Next the power is
increased, and, as depicted in Fig. 3e, we find that the
third-harmonic component of 3f1 appears at −35 dBm.
Silicon, which forms the structural base of the resonator,
is a dielectric however since it has an inversion-symmetric
crystalline structure, so it produces the third-harmonic
component. As the power is increased further to 0 dBm,
we observe a linear response along with second and third-
harmonic components, as depicted in Fig. 3f. Here, the
second harmonic component is produced entirely due to
the nonlinearity inherent in the aluminum nitride layer.
As discussed earlier, in an acoustic nonlinear medium
such as the hybrid micron-sized resonator, three-wave
mixing produces a complete set of frequency components.
Next, we apply three frequency signals, f1= 121.3MHz

at P1, f2= 106.69MHz at P2, and f3= 33.56MHz at P3,
each at 5 dBm. We observe complete four-wave mixing.

As shown in Fig. 4, linear response along with second,
third and fourth harmonics are visible. Here, for easier
viewing, signals related to components consisting of var-
ious positive combinations of two out of the three applied
frequencies have been grayed out, while those represent-
ing only four-wave mixing are colored (red, blue, or
purple). The applied input signal peaks and their multi-
ples are shown in black. Each signal corresponds to within
two decimal places of the actual analytical calculation. It is
noteworthy that increasing the power of the applied sig-
nals further increases the amplitudes of the resultant
components and also adds higher harmonics.
We further investigate the effect of the applied electric

field on the peak height of the first, second, third and
fourth harmonic for the 121.3MHz mode. We apply a
signal at frequency (f1) at P1 and measure the response at
P4. The log-log plot of this dependence is shown in
Fig. 4b. The four data sets, corresponding to the four
harmonics, are each overlaid with a linear fit. As expected
from the field dependence of polarization, P � ϵ0 χ 1ð Þ�

E þ
χ 2ð ÞE2 þ χ 3ð ÞE3 þ χ 4ð ÞE4 þ ¼ the first four harmonic
peaks scale with power law dependence with exponents
approximately equal to 1, 2, 3, and 4, respectively. First-
order susceptibility χ(1) is a property of the material. For
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AlN, χ(1) is 4.8 along the c-axis16. Starting with a fixed
electric field value of 100 kV/m, we estimate second-order
susceptibility χ(2) as 4.3 × 10−6 m/V, third-order suscept-
ibility χ(3) as 21.5 × 10−22 m/V and fourth-order

susceptibility χ(4) as 20.0 × 10−18 m/V, at a frequency of
121.3MHz at room temperature. Further measurements
of higher harmonics for two additional mode frequencies
of 106 and 33MHz display similar trends.
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Fig. 4 Non-degenerate four-wave mixing. a Four-wave mixing, where frequencies f1= 121.3 MHz, f2= 106.69 MHz, f3= 33.56 MHz, are applied at
Ports 1, 2, and 3 (P1, P2, and P3, respectively), at 5 dBm, and an output is observed at Port 4 (P4). In colors of purple, blue, and red, the peaks for the
four-wave mixed frequencies are highlighted. The applied frequencies f1, f2, and f3 and their multiples as they appear are shown in black. The grayed
out peaks are the degenerate algebraic compositions of any two of the three frequencies. The plot depicts the span covering the first four harmonics.
It can be seen from the marked peaks and the inset (top right corner) that complete four-wave mixing is observed. The signal due to common-mode
inputs does depict considerable noise above the second harmonic. b Effect of applied electric field on the peak height of the first four harmonics of
the 121.3 MHz mode is shown on a log-log plot. The four harmonics display the expected power law dependence of the polarization on the applied
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Conclusion
Using a novel multiport resonator, we show that a

common-mode rejection scheme can greatly enhance the
signal-to-noise ratio by applying the same signal to the
two inputs 180° out-of-phase with respect to each other of
a four-port piezoelectric resonator. We demonstrate rea-
lization of a micromechanical nonlinear dielectric reso-
nator and display the entire suite of three-wave and four-
wave mixing components. In addition to enabling the
study of a broad range of novel nonlinear acoustics effects,
our demonstration can enable unprecedented applications
in micron-scale devices, including frequency generators
and multipliers, chip-scale frequency-comb generators,
and other nonlinear signal processing devices. In parti-
cular, electric field magnitude can be increased by orders
of magnitude by a thinner layer of non-centrosymmetric
material to gain access to higher-order effects. Similar to
nonlinear optics systems, higher harmonic generation can
be of very high order, as high as several hundreds (or even
several thousands22). A chip-scale resonator with funda-
mental frequencies in the 100MHz range, capable of
being used as a frequency source in the 1–10 GHz fre-
quency band, is exciting. Furthermore, CMOS-compatible
process for manufacturing of such devices can accelerate
real-world use of nonlinear acoustics with a scope com-
parable to—and perhaps beyond—that of nonlinear
optics.
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