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Identifying influential nodes in dynamical processes is crucial in understanding network

structure and function. Degree, H-index and coreness are widely used metrics, but previously

treated as unrelated. Here we show their relation by constructing an operator H, in terms of

which degree, H-index and coreness are the initial, intermediate and steady states of the

sequences, respectively. We obtain a family of H-indices that can be used to measure a

node’s importance. We also prove that the convergence to coreness can be guaranteed even

under an asynchronous updating process, allowing a decentralized local method of calculating

a node’s coreness in large-scale evolving networks. Numerical analyses of the susceptible-

infected-removed spreading dynamics on disparate real networks suggest that the H-index is

a good tradeoff that in many cases can better quantify node influence than either degree or

coreness.
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T
he focus of network science research has been shifting
from discovering macroscopic statistical regularities1–4 to
uncovering the role played by such microscopic elements

as nodes, links and motifs in the structure and dynamics of the
system5–10. Being able to effectively and efficiently identify the
critical nodes associated with the specific dynamics of large-scale
networks11 will allow us to better control the outbreak of
epidemics12, conduct successful advertisements for e-commercial
products13, prevent catastrophic outages in power grids or the
Internet14, optimize the use of limited resources to facilitate
information propagation15, discover drug target candidates and
essential proteins16, and design strategies for communication
breakdowns in human and telecommunication networks17.

The simplest way to measure the importance of a node is to
determine its degree, that is, to count the number of its linked
neighbours. Previous studies have shown that protecting,
immunizing and regulating large-degree nodes can maintain
network connectivity18, halt infectious disease propagation12,
enhance synchronizability19, improve transport capacity20 and
promote cooperation in evolutionary games21.

Recently, Kitsak et al.22 argued that the location of a node is
more significant than the number of its linked neighbours, and
they suggested that coreness is a better indicator of a node’s
influence on spreading dynamics than degree. The coreness of a
node is measured by k-core decomposition23, and a larger
coreness value indicates that the node is more centrally located in
the network. The k-core decomposition process is initiated by
removing all nodes with degree k¼ 1. This causes new nodes with
degree kr1 to appear. These are also removed and the process is
continued until the only nodes remaining are those of degree
k41. The removed nodes and their associated links form the
1-shell. This pruning process is repeated for the nodes of degree
k¼ 2 to extract the 2-shell, that is, in each stage the nodes with
degree kr2 are removed. The process is continued until all
higher-layer shells have been identified and all network nodes
have been removed. Then each node i is assigned a shell layer ci,
called the coreness of node i. Recent studies suggest that coreness
is a good measure of a node’s influence22,24.

Calculating coreness requires global topological information,
and its implementation is usually centralized, which can hinder
its application to very large-scale dynamical networks. In
contrast, degree is a simple local index, but of lower utility. As
a tradeoff, Chen et al.25,26 proposed indices using the local
neighbourhood information of individual nodes, which perform
well but lack an underlying mathematical structure. This
approach brings to mind the Hirsch index (also called the
H-index)27, which was originally used to measure the citation
impact of a scholar or a journal27–29. For a scholar or journal, the
H-index is defined as the maximum value h such that there exists
at least h papers, each with citation count Zh.

Here we discuss the extension of the H-index concept to
quantify how important a node is to its network30. The H-index
of a node is defined to be the maximum value h such that there
exists at least h neighbours of degree no less than h. In the
Supplementary Fig. 1, we compare calculating the H-index of a
scholar and the H-index of a node. Degree, H-index and coreness
seem to be independent but are actually interrelated. We
construct an operator H on a group of reals that returns a
node’s H-index when acting on its neighbours’ degrees. By
sequentially and synchronously applying the H operator to each
node, the returned value soon converges to coreness, that is, in
terms of this operator, degree, H-index and coreness are its initial
state, intermediate state and steady state, and all other
intermediate states can also be treated as centrality measures.
We further show that the convergence to coreness can be
guaranteed even under an asynchronous updating process, thus

allowing a distributed computing algorithm to deal with large-
scale dynamical networks. To see whether these centralities can
measure a node’s influence, we apply the standard susceptible-
infected-removed (SIR) spreading model31 on eight real networks
from disparate fields and calculate the correlation between each
node’s influence and its centrality values. Simulation results show
that the H-index outperforms both degree and coreness in several
cases, and thus can be considered a good tradeoff between degree
and coreness.

Results
Mathematical relationship. We construct an operator, H, which
acts on a finite number of reals (x1, x2, ?, xn) and returns an
integer y ¼ H x1; x2; � � � ; xnð Þ40, where y is the maximum
integer such that there exist at least y elements in (x1, x2,?, xn),
each of which is no less than y. For a scholar with n publications,
x1, x2, ?, xn is the number of citations to these publications and
H x1; x2; � � � ; xnð Þ is the scholar’s H-index.

Denote G(V, E) an undirected simple network, where V is the
set of nodes and E is the set of links. The degree of an arbitrary
node i is denoted by ki and its neighbours’ degrees are
kj1 ; kj2 ; � � � ; kjki

. Then, we define the H-index of node i

hi ¼ H kj1 ; kj2 ; � � � ; kjki

� �
: ð1Þ

We define h 0ð Þ
i ¼ ki to be the zero-order H-index of node i, and

define the n-order H-index (n40) iteratively as

h nð Þ
i ¼ H h n� 1ð Þ

j1
; h n� 1ð Þ

j2
; � � � ; h n� 1ð Þ

jki

� �
: ð2Þ

The H-index of node i is equal to the first-order H-index, namely
h 1ð Þ

i ¼ hi. A more detailed illustration can be found in
Supplementary Note 1.

Theorem 1: for every node iAV of an undirected simple
network G(V, E), its H-index sequence h 0ð Þ

i ; h 1ð Þ
i ; h 2ð Þ

i ; � � � will
converge to the coreness of node i,

ci ¼ lim
n!1

h nð Þ
i : ð3Þ

The proof is given in the Methods section. We give an example
of iterative process from degree to coreness in the Supplementary
Fig. 2.

This theorem shows that the degree, H-index and coreness
are respectively the initial, intermediate and steady states
under successive operations by H. Given a network G(V, E),
the convergence time nN is defined as the minimum number
of iterations required to reach coreness from degree using
the operator H, that is, nN is the minimum integer such that
h n1ð Þ

i ¼ h1i ¼ ci for 8iAV.
Using equation (2) and Theorem 1, we implement the

synchronous updating in eight representative real networks
drawn from disparate fields, including two social networks
(Sex and Facebook), two collaboration networks (Jazz and NS),
one communication network (Email), one information network
(PB), one transportation network (USAir) and one technological
network (Router). In brief, Jazz32 is a collaboration network of
jazz musicians and consists of 198 nodes and 2,742 interactions,
NS33 is a co-authorship network of scientists working on network
science, our Email34 network is of e-mail interchanges between
members of the Rovira i Virgili University (Tarragona), our Sex35

network is of a bipartite sexual activity web community in which
nodes are female (sex sellers) and male (sex buyers) and links
between them are established when males write posts indicating
sexual encounters with females, Facebook36 is a sample of the
friendship network of Facebook users, PB37 is a network of US
political blogs (the original links are directed, but here we treat
them as undirected), USAir38 is the US air transportation
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network and Router39 is a symmetrized snapshot of the structure
of the Internet at the level of autonomous systems. Their
topological features are shown in Table 1. Experiments show that
the sequence of H-indices quickly converges to the coreness
(nN in Table 1). In addition to the degree, H-index and coreness,
all other intermediate states h(2), h(3),? can also be considered as
centrality measures.

The resolution rate of the h(n)-index is the probability that two
randomly chosen nodes will have different h(n). It is also a useful
index for measuring the degree to which a network is coarse
grained. Note that degree is the most distinguishable index and
coreness is the least distinguishable, and that the resolution rate
decreases as the index order increases (Supplementary Fig. 3;
Supplementary Note 2). On the other hand, the calculation of
degree requires less information, while coreness requires the most
information. For a given node i, the information required to
calculate h nð Þ

i can be measured by information coverage, which is
defined as the ratio of the number of nodes with a distance no
more than n from i to the network size. The coverage rate
increases as the index order increases (Supplementary Fig. 4).
Surprisingly, we find that in some networks, such as NS and
Router, the coverage rate is o1 even for h n1ð Þ, indicating that
only partial information is required when calculating the coreness
of a node in these networks (Supplementary Note 3).

Figure 1a shows the H-indices in different orders for a typical
network Router. From left to right, we see the coarse graining
process from degree to coreness. Figure 1b shows the probability
distribution p(h), defined as the probability that a randomly
selected node’s h(n) value is equal to h for the cases n¼ 0, n¼ 1
and n¼ nN of the network Router. Note that as the order n
increases from 0 to 6 (nN¼ 6 for Router), the distribution
narrows (see Supplementary Figs. 5–12 for the distributions of all
H-family indices for the eight networks under study). Never-
theless, the distribution of values of high-order H-indices is still
relatively broad, suggesting its potential as a good indicator of a
node’s importance22.

To show the different roles of different H-family indices, we
iteratively construct a hierarchical tree (see ref. 40 for a similar
method). As shown in Fig. 1c, the initialized network is of two
levels, isomorphic to a star with L leaves. Here we set L¼ 4.
In each step, every leaf node becomes a star with L leaves,
and the central node is connected with its original neighbours.
After each step, the number of levels is increased by one, and the
nodes in the more central positions (that is, of smaller levels) have
a higher influence that is not reflected by their degree if the
number of levels is high. Note that the three trees in Fig. 1c–e
have 2, 3 and 4 levels, respectively, and in a hierarchical tree of
D levels we need the index h(0), h(1), ?, h(D� 2) to quantify node
influence. Such example clearly shows that a few low-order

H-indices are not always enough to distinguish different nodes’
influences.

Asynchronous updating. The updating driven by H uses only
local information, and it rapidly converges to coreness. However,
the updating from h(n� 1) to h(n) is implemented synchronously
according to equation (2), and thus in principle requires a
centralized controller to set up a global clock that records the
order n. In particular, if the target network is evolving, the
addition of a single link will require the recalculation of the entire
sequence of H-indices. This limits the application of H-indices to
large-scale dynamical networks. Fortunately, the asynchronous
updating can still guarantee a convergence to coreness, as shown
in the following theorem.

Theorem 2: given an undirected simple network G(V, E), for
every node jAV, we define gj¼ kj. In each iteration of the
asynchronous updating process, a node i is randomly selected and
its g value updated, that is,

H gj1 ; gj2 ; � � � ; gjki

� �
! gi; ð4Þ

where j1; j2; � � � ; jki are the neighbouring nodes of i. If Vj j is
finite, this updating process will reach a steady state
ðg11 ; g12 ; � � � ; g1Vj jÞ after a finite number of iterations such that
the updating at any node will not change its g value, namely,

8i 2 V ; g1i ¼ H g1j1
; g1j2

; � � � ; g1jki

� �
: ð5Þ

In the steady state, for every node i we have g1i ¼ ci. The proof is
given in the Methods section.

Note that in the updating process of equation (4) the g values
are not associated with a temporal superscript. In fact, at a certain
updating step the values gj1 ; gj2 ; � � � ; gjki

could lie in different
stages, some updated dozens of times and others never updated.
Thus, for any node i, before it reaches the steady state g1i ¼ ci, all
the intermediate values are not necessarily equal to any order of
H-indices. Theorem 2 makes a significant step towards making
feasible applications to large-scale dynamical networks possible: it
guarantees that a decentralized and localized method can be used
to calculate the coreness, and even if the network evolves in time,
equation (4) can be used to calculate the coreness when new links
and nodes are periodically added, and all the previously obtained
g values are still usable.

Quantifying spreading influences. Epidemic spreading, one of
the most significant dynamic behaviours in complex networks41,
can be used to characterize such real processes as the spreading of
infectious diseases42, the diffusion of microfinance43 and the
propagation of traffic congestion44. To see whether the H-indices

Table 1 | The basic topological features and the convergence time of the eight real networks.

Networks Vj j Ej j kh i dh i C r nN

Jazz 198 2,742 27.7 2.24 0.633 0.02 13
NS 379 914 4.82 6.04 0.798 �0.082 4
Email 1,133 5,451 9.62 3.61 0.254 0.078 16
Sex 15,810 38,540 4.88 5.79 0 �0.115 19
Facebook 63,731 817,090 25.64 8.09 0.253 0.177 63
PB 1,222 16,714 27.36 2.74 0.360 �0.221 18
USAir 332 2,126 12.81 2.74 0.749 �0.208 5
Router 5,022 6,258 2.49 6.45 0.033 �0.138 6

Vj j and Ej j are the number of nodes and links, respectively. kh i and dh i are the average degree and the average distance, respectively. C and r are the clustering coefficient1 and assortative coefficient3,
respectively. Nodes with degree 1 are excluded from the calculation of clustering coefficient. Sex is a bipartite network and thus is characterized by (or ‘has’) clustering coefficient zero. nN is the
convergence time to coreness, defined as the minimum steps required to reach coreness from degree by the operator H.
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can quantify the spreading of node influence, we study the
standard SIR spreading model41 in which the influence Ri of node
i is quantified using the average number of removed nodes after
the dynamics over 1,000 independent runs, each of which begins
with node i as the sole infected seed (see details in Methods).

Given the order n (0rnrnN), we have two sequences
associated with the Vj j nodes: the h(n)-index h nð Þ

1 ; h nð Þ
2 ; � � � ; h nð Þ

Vj j
and the influences R1; R2; � � � ; R Vj j. To quantify to what extent
the h(n)-index resembles node influence values, we apply the
Kendall Tau (t) coefficient45, which lies in the range � 1rtr1.
The larger value of t means a stronger correlation between the
two sequences (see Methods for the definition of t).

Figure 2 shows that the H-index of node i is highly correlated
with the influence value Ri. In many cases (Jazz, NS, Email and
PB), the H-index (that is, h(1)-index) outperforms both degree
and coreness. In other cases (Sex, USAir and Facebook), coreness
outperforms degree and the performance of low-order H-indices
rapidly approaches that of coreness as the order increases from
zero. Router is an exception, where degree performs the best and

the H-index the worst. Note that because Router is the most
sparse network it may hinder spreading and make predicting
influences more difficult (as indicated by the smallest t value).
Thus, the sequence of H-indices, starting from degree and driven
by the operator H, provides more alternative centralities in
characterizing the importance of nodes, and the low-order
H-indices are a good tradeoff between degree and coreness. We
further compare the three best known H-indices (degree, H-index
and coreness) with two well-known centrality indices (closeness
and betweenness) for undirected networks. The definitions of
closeness and betweenness are given in Methods. As shown in
Table 2, all the H-family indices are competitive, and the H-index
and closeness are the overall best performers, but the computa-
tional cost in calculating closeness is huge and thus the H-index is
the better choice.

We further test two well-known dynamical processes: the
susceptible-infected-susceptible (SIS) spreading model46 and
bond percolation47. In the SIS model, the node influence index
R is defined as the probability that this node will remain infected

h (0) (degree) h (2) h (4) h (6) (coreness)

1
2
3
4–5
6–7
8–11 h (1) (H-index) h (3) h (5)

12–17
18–25
26–38
39–57
58–86
87–106

100

10–1

10–2

10–3

10–4

100 101 102

h (n)

p 
(h

(n
) )

h (0) (degree)
h (1) (H-index)
h (6) (corenes)

h (6) h (1) h (0)

a

b c

d

e

Figure 1 | Comparisons among H-indices in different orders for the network Router. The subplot a exhibits a visualized illustration, where the colour

represents the node degree (from 1 to 106). The node location represents the h(n)-index. Nodes located at a ‘fan’ closer to the centre of the fan have higher

h(n) values, and nodes located at the same layer of a fan have the same h(n) values. The subplot b shows the distributions of values of H-indices in different

orders, where the green squares, blue crosses and red circles represent the cases for n¼0, n¼ 1 and n¼ 6, respectively. The dash lines in different colours

mark the largest values for the corresponding indices. The subplots c, d and e show an illustration of the hierarchical trees with 2, 3 and 4 levels,

respectively.
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Figure 2 | The Kendall Tau between h(n)-index and the node influence index R for undirected networks. The value of n ranges from 0 to nN. The red

circles, green squares and blue triangles represent the case of b¼ 1.5bc, 2bc and 2.5bc, respectively. The dash lines in purple, black and cyan colours

emphasize the t values for degree (that is, h(0)), H-index (that is, h(1)) and coreness (that is, hN), respectively. The influence R of a node is quantified using

the average number of removed nodes after the dynamics over 1,000 independent runs.
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in the steady state. In bond percolation, the node influence index
R is defined as either the probability that the target node belongs
to the giant component or the size of the connected component
that encompasses the target node. The results (Supplementary
Tables 3–11) suggest that the H-family indices are competitive,
especially for the H-index and coreness. Detailed information
about the dynamical processes and the simulation results can be
found in Supplementary Note 4.

Discussion
We discover an important relation among degree, H-index and
coreness—centrality measures that have previously been treated
as unrelated. We construct an operator H that functions as a
‘necklace’ stringing together degree, H-index, coreness and other
intermediate indices. All these indices are centralities that
characterize each node’s importance. Using the operator H to
achieve the coreness looks like an inverse way to the iterative
removal of nodes with degree less than k that is widely used to
determine the k-core of a network. Indeed, they are different, as
the iterative removal method cannot result in H-index, or any
other H-family indices except for degree and coreness, and the
steps required to achieve the final coreness for the two methods
are also different.

Although the importance of a given node strongly depends on
the type of dynamical processes under consideration and thus
there is no single best centrality measure, we need effective and
elegant centralities in practice. For example, although we know
that degree is not an accurate centrality measure in quantifying
node influence in many dynamical processes9,22, it is still a useful
estimation of node importance, even without the specification of
dynamics. In despite of its bias and disadvantages48,49,50 the
H-index is now becoming the most widely applied index for
academic performances, ranging from individual scientists,
scientific journals to universities and even countries. As
indicated by the simulations on the SIR model, the SIS model
and bond percolation, the H-family indices are effective in
quantifying the spreading influences of nodes.

The asynchronous updating by H can still guarantee the
convergence to coreness, and thus one can use a decentralized
local algorithm to calculate coreness, which is able to deal with
evolving networks. However, randomly selecting nodes to update
in each iteration may greatly extend the time required before
arriving at the steady state, even in static networks. Thus, the
process for selecting which node to update is a nontrivial issue.
For example, we can shorten the convergence time by reducing
the selection probability of nodes that have been updated many
times but have g values seldom changed. In addition, the change
of g value of a node will enhance the updating probabilities of its
neighbouring nodes, making this issue more complicated and
thus more interesting.

The methodologies and results presented here are also
applicable to directed networks and weighted networks, in which
degree is replaced by in-degree, out-degree or node strength. In
this way we can also define the Hin-index, Hout-index and
weighted H-index, as well as in-coreness, out-coreness and
weighted coreness. An example of how to calculate the directed
H-family indices is presented in Supplementary Fig. 13. To test
the performance, we compare the directed H-family indices with
PageRank51 and HITs52 on seven directed networks. The basic
statistics of these seven directed networks are summarized in
Supplementary Table 12 and a more detailed introduction
given in Supplementary Note 5. The results (Supplementary
Tables 13–24) suggest that the directed H-family indices are still
very competitive (in-coreness performs overall best).

Methods
Proof of Theorem 1. From the definition ofH-function, for any node i and integer

nZ0, we have h nð Þ
i � 0 and h 0ð Þ

i � h 1ð Þ
i . Applying mathematical induction, we

prove that h nð Þ
i � h nþ 1ð Þ

i for any node i and integer nZ0. If h nð Þ
i � h nþ 1ð Þ

i is valid
for all nrm, we then prove it to also be valid for n¼mþ 1. From the definition,

h mþ 2ð Þ
i ¼ Hðh mþ 1ð Þ

j1
; h mþ 1ð Þ

j2
; � � � ; h mþ 1ð Þ

jki
Þ, according to the induction hypothesis,

h mþ 1ð Þ
j � h mð Þ

j for any node j. Therefore, h mþ 2ð Þ
i ¼ Hðh mþ 1ð Þ

j1
; h mþ 1ð Þ

j2
; � � � ; h mþ 1ð Þ

jki
Þ

� Hðh mð Þ
j1
; h mð Þ

j2
; � � � ; h mð Þ

jki
Þ ¼ h mþ 1ð Þ

i , namely h mþ 1ð Þ
i � h mþ 2ð Þ

i . Since h 0ð Þ
i , h 1ð Þ

i , h 2ð Þ
i ,

? is a monotonously nonincreasing sequence, and each element is nonnegative,
it has a nonnegative limitation. Thus, we can define h1i as the limitation of the

sequence h 0ð Þ
i , h 1ð Þ

i , h 2ð Þ
i , ?.

We then introduce two simple relations. First, if G0(V0, E0)DG(V, E), then from
the definition of anH-function it is obvious that for any node iAV0 and any integer

nZ0, h nð Þ
i;G0 � h nð Þ

i;G , where the subscript G0 indicates that the corresponding index is
defined on the subgraph G0. Second, if we denote kmin the minimal degree of G,

then for any node i and any integer nZ0, h nð Þ
i � kmin . This second relation can also

be proven by mathematical induction. It is clear that it is valid for n¼ 0. We next
prove that if this relation is valid for all nrm, then it is also valid for n¼mþ 1.

For any node i, h mþ 1ð Þ
i ¼ Hðh mð Þ

j1
; h mð Þ

j2
; � � � ; h mð Þ

jki
Þ, and according to the induction

hypothesis, all elements in ðh mð Þ
j1
; h mð Þ

j2
; � � � ; h mð Þ

jki
Þ are no less than kmin and the

number of elements in ðh mð Þ
j1
; h mð Þ

j2
; � � � ; h mð Þ

jki
Þ is kiZkmin. Therefore, according to

the definition of H-function, h mþ 1ð Þ
i � kmin .

If we denote G0 the ci-core of G, it is clear that G0DG and in G0 , kminZci.
Therefore, h1i � kmin � ci . We denote G00(V00 , E00) the induced subgraph
containing all nodes j such that h1j � h1i . Note that the node i itself also belongs to
G00 . For any node lAV, we find h1l ¼ Hðh1j1

; h1j2
; � � � ; h1jkl

Þ, where j1; j2; � � � ; jkl are

the kl neighbours of node l. For any node jAV00, since in G, h1j 4h1i , there are at
least h1i neighbours of node j with hN values no less than h1i . Thus, these
neighbours also belong to V00 . Therefore, in G00 the degrees of all the nodes are no
less then h1i , that is, G00 is a subgraph of G’s h1i -core. Because ci is the coreness of i,
h1i � ci . Combining the two inequalities, we arrive at Theorem 1.

Proof of Theorem 2. For convenience, we introduce the systematic time step t.

Initially we set t¼ 0, and for every node jAV we define g 0ð Þ
j ¼ kj . Then, at each

time step, we randomly select a node and perform the H operator on it. If at time

step t40 the node i is selected, then g tð Þ
i ¼ Hðgj1 ; gj2 ; � � � ; gjki

Þ. The g value without

Table 2 | The Kendall Tau between the node influence index R of SIR model and five centrality indices.

Networks Degree H-index Coreness Closeness Betweenness

Jazz 0.8021 0.8431 0.7958 0.6961 0.4629
NS 0.5092 0.5178 0.4747 0.3510 0.3392
Email 0.7794 0.8103 0.8021 0.7747 0.6195
Sex 0.4525 0.4905 0.5049 0.7029 0.3834
Facebook 0.7173 0.7381 0.7513 0.6716 0.4851
PB 0.8159 0.8321 0.8274 0.7375 0.6589
USAir 0.7256 0.7540 0.7529 0.7453 0.5442
Router 0.3309 0.2877 0.2946 0.5975 0.3228

SIR, susceptible-infected-removed.
They are degree (that is, h(0)), H-index (that is, h(1)), coreness (that is, hN), closeness and betweenness. The spreading rate b is set as b¼ 1.5bc, and for other values of b, the results are very similar and
can be found in the Supplementary Table 1 (b¼ 2bc) and Supplementary Table 2 (b¼ 2.5bc). In each row, the largest t is highlighted in bold.
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a temporal superscript indicates the most recently updated value, since only the
current value is meaningful in the asynchronous updating procedure. Note that all
neglected superscripts are smaller than t. Note also that for an arbitrary pair (t, j),

g tð Þ
j may not exist unless the node j is selected at time step t.

We first prove that if any node jAV has been selected at time steps t1 and t2, and

t24t1Z0, then g t1ð Þ
j � g t2ð Þ

j . Note that for any node j selected at time step t¼ 1 we

have g 0ð Þ
j � g 1ð Þ

j . We apply mathematical induction and assume that the above
inequality holds when t1rn and t2rn, and we next prove this also holds for
t1rnþ 1 and t2rnþ 1. If node i is the one selected at time step t¼ nþ 1, then the
aforementioned inequality holds for all other nodes jai. We denote t0 (0rt0rn)
an arbitrary earlier updating time step of node i, and record two updates, that is,

g t0ð Þ
i ¼ Hðg f1ð Þ

j1
; g f2ð Þ

j2
; � � � ; gðfki

Þ
jki
Þ and g nþ 1ð Þ

i ¼ Hðg j1ð Þ
j1

; g j2ð Þ
j2

; � � � ; g
ðjki
Þ

jki
Þ. Note that

for any m (1rmrki) we have fmrjmrn. According to the induction

hypothesis, g fmð Þ
jm
� g jmð Þ

jm
, together with the definition of H function, we have

g t0ð Þ
i � g nþ 1ð Þ

i . We denote the updating time steps of any node iAV to be

0¼ t0ot1ot2o ?, then g t0ð Þ
i ; g t1ð Þ

i ; g t2ð Þ
i ; � � � is a monotonously nonincreasing

sequence and each element is nonnegative, and therefore it has a nonnegative
limitation. At this point, we can define g1i as the limitation of the sequence

g t0ð Þ
i ; g t1ð Þ

i ; g t2ð Þ
i ; � � �.

We first prove that for any node jAV, g1j � cj . Proving by contradiction, when
this inequality does not hold we denote i to be the first node to reach a g value

smaller than ci, and the corresponding updating time step is t, that is, g tð Þ
i oci and

before t for all nodes jAV, gjZcj. Note that gj without a superscript indicates the

last updated value before t. Therefore, g tð Þ
i ¼ Hðgj1 ; gj2 ; � � � ; gjki

Þ � Hðcj1 ; cj2 ; � � � ; cjki
Þ.

According to Theorem 1, Hðcj1 ; cj2 ; � � � ; cjki
Þ ¼ ci , namely g tð Þ

i � ci . This leads to a
contradiction and thus the inequality g1j � cj is validated.

Analogous to the proof of Theorem 1, after convergence, for any node iAV, all
nodes j such that g1j � g1i , including i itself, constitute an induced subgraph of G’s
g1i -core. Since ci is the coreness of i, g1i � ci . Combining the two inequalities, we
arrive at Theorem 2.

Spreading models. The standard SIR model, also referred to as the susceptible-
infected-recovered model, is usually applied to analyse the propagation of opinions
or news41. In the SIR model, there is a group of infected seed nodes and all other
nodes are initially susceptible. At each time step, each infected node makes contact
with its neighbours and each susceptible neighbour is infected with a probability b.
Then, each infected node enters the removed state with a probability l. For
simplicity, we set l¼ 1. To quantify the spreading influence of a target node i, we
begin the spreading process with i being the sole infected seed. When there are no
longer any infected nodes and the dynamic process ends, the number of removed
nodes Ri is a measurement of the influence of node i. Because we use small b values
in our simulations, the infected percentage of the population is also small. When b
values are high the disease infects a large percentage of the population, irrespective
of where it originated, and the influence of individual nodes cannot be measured.
According to the heterogeneous mean-field theory47,53,54, the epidemic threshold
of SIR model is approximate to bc � kh i= k2h i� kh ið Þ. To be more precise, we
determine the epidemic threshold bc by simulation on real networks55. We set
b¼ 1.5bc, 2bc and 2.5bc in this paper, and we have checked that the choice of
theoretical or simulation threshold will not affect the conclusion. Because the
fluctuation of Ri is large when b values are small, we use 1,000 independent
implementations for averaging.

Benchmark centralities. We also compare two benchmark centrality indices (that
is, closeness and betweenness) for undirected networks. Betweenness is one of the
most popular geodesic-path-based ranking measures. It is defined as the fraction of
shortest paths between all node pairs that pass through the node of interest.
Betweenness is, in some sense, a measure of the influence of a node in terms of its
role in spreading information20,56. For a network G¼ (V, E), the betweenness
centrality of node i, denoted by B(i), is defined as57,58

B ið Þ ¼
X

s 6¼ i;s 6¼ t;i 6¼ t

gst ið Þ
gst

; ð6Þ

where gst is the number of shortest paths between nodes s and t, and gst(i) denotes
the number of shortest paths between nodes s and t that pass through node i.

Closeness of node i is defined as the reciprocal of the sum of geodesic distances
to all other nodes of V59,60,

C ið Þ ¼ 1P
j2V n i

d i; jð Þ ; ð7Þ

where d(i, j) is the geodesic distance between i and j. Closeness can be used to
measure of how far information will be able to spread from a given node to other
reachable nodes in the network.

The Kendall Tau. We consider two sequences associated with Vj j nodes,
X ¼ ðx1; x2; � � � ; x Vj jÞ and Y ¼ ðy1; y2; � � � ; y Vj jÞ, as well as the Vj j two-tuples
x1; y1ð Þ; x2; y2ð Þ; � � � ; x Vj j; y Vj j

� �
. Any pair of two-tuples (xi, yi) and (xj, yj) (i a j)

are concordant if the ranks for both elements agree, that is, if both xi4xj and yi4yj

or if both xioxj and yioyj. They are discordant if xi4xj and yioyj or if xioxj and
yi4yj. If xi¼ xj or yi¼ yj, the pair is neither concordant nor discordant. Comparing
all 1

2 Vj j Vj j � 1ð Þ pairs of two-tuples, the Kendall Tau is defined as
t ¼ 2 nþ � n�ð Þ= Vj j Vj j � 1ð Þ½ �, where nþ and n� are the number of concordant
and discordant pairs, respectively. The coefficient must be in the range � 1rtr1,
and if X and Y are independent, t should be approximately zero and thus the extent
to which t exceeds zero indicates the strength of the correlation.

Notations. We summarize the notations used in this paper in Supplementary
Table 25.
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