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Abstract 

 

Protein recovery and biomolecule detection are commonly required for scientific research 

as well as industrial activities. However, it is generally complicated and costly either to 

produce and purify recombinant proteins (especially therapeutic proteins) from 

engineered Escherichia coli cells, or to directly separate proteins or detect other 

biomolecules from natural sources. Here the PHA synthase (PhaC) mediated 

polyhydroxyalkanoate (PHA) bead display technology was explored as a solution to these 

problems by developing streamlined processes with less complex steps to achieve protein 

recovery and biomolecule detection. 

 

Firstly, by fusing a target protein to PhaC via a self-cleavable linker tag of either sortase 

(sortase A from Staphylococcus aureus) or intein (DnaB mini intein from Synechocystis 

sp. PCC 6803), new self-cleavable recombinant protein production and purification resins 

were developed. It was shown that the PhaC fusion could mediate in vivo production of 

PHA beads displaying the target protein. Functional target protein could be obtained at 

high purity from isolated PHA beads by incubation with CaCl2 and triglycine (in the case 

of the self-cleavable sortase tag) or by a pH shift to 6 (in the case of the self-cleavable 

intein tag). Six recombinant proteins were successfully produced and purified via the 

intein approach, including 3 model proteins (Aequorea victoria green fluorescent protein 

(GFP), Mycobacterium tuberculosis vaccine candidate Rv1626, and the synthetic 

immunoglobulin G (IgG) binding ZZ domain of protein A derived from Staphylococcus 

aureus) and 3 therapeutic proteins (human tumour necrosis factor alpha (TNFα), human 

interferon alpha-2b (IFNα2b), and human granulocyte colony-stimulating factor (G-
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CSF)). Of these, TNFα and IFNα2b were also successfully produced and purified via the 

sortase approach.  

 

Secondly, in vivo one-step production of PHA affinity resins was achieved by fusing to 

PhaC differently customised OBody ligands. These ligands were previously engineered 

by other groups from the OB-fold domain of aspartyl-tRNA synthetase (aspRS) from 

Pyrobactulum aerophilum, by using phage display technology, to have specific binding 

affinities to biomolecules of interest. The resulting recombinant OBody beads were used 

for lysozyme sepration from a complex substrate, and for progesterone (P4) binding. 

Further optimisation of the P4 binding condition is necessary before the OBody bead 

system can be used for P4 detection in bovine milk. However, recombinant 

immobilisation of OBody ligands on the surface of PHA beads expands not only the 

attractiveness of these emerging OBody scaffolds, but also the utility scope of PHA beads 

as affinity resins.   
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domain of aspRS from P. aerophilum 
OPD o-Phenylenediamine dihydrochloride 
ori Origin of replication 
PAb Polyclonal antibody 
P4 Progesterone  
PBS Phosphate buffered saline  
PCR Polymerase chain reaction 
PHA Polyhydroxyalkanoate 
PhaA β-ketothiolase 
PHAMCL Medium chain length PHA 
PHASCL Short chain length PHA 
PHASCL-MCL PHA containing mixtures of C3-C5 and C6-C14 monomers 
PhaB Acetoacetyl-CoA reductase 
phaCAB PHA biosynthesis gene operon 
PhaC PHA synthase 
PhaE Type III PHA synthase subunit 
PhaM Regulatory protein 
PhaP Phasin protein 
PhaR Transcriptional regulator that control the transcription of phasin and the 

synthesis of PHA beads;  Or Type IV PHA synthase subunit 
PhaZ Intracellular PHA depolymerase 
PHB Polyhydroxybutyrate, poly(3-hydroxybutyric acid) 
RBS Ribosome binding site 
RIA Radioimmunoassay   
rpm Revolutions per minute 
SD Standard deviation 
SDS Sodium dodecyl sulphate 
SDS-PAGE Sodium dodecyl sulphate polyacrylamide gel electrophoresis 
SG-linker A triplicate SGGGG linker introduced at C-terminus of PhaC to maintain its 

hydrophobic environment for a proper PHA synthase functionality 
S-S bond disulphide bond 
Ssp Intein DnaB helicase mini intein from Synechocystis sp. strain PCC6803, derived 

from pTwin1 vector (NEB), which self-cleaves when pH drops to 6 
SrtA Sortase A from Staphylococcus aureus minus the N-terminal membrane 

anchor region 
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SrtAc / SrtAΔ59 catalytic core of SrtA (amino acids 60-206) 
Strep tag AWRHPQFGG or WSHPQFEK peptide used as a tag for affinity 

chromatography 
T7 promoter Promoter for bacteriophage T7 RNA polymerase 
T7 terminator Transcription terminator for bacteriophage T7 RNA polymerase 
TB Terrific Broth  
TBE Tris-Borate-EDTA buffer 
TEM Transmission Electron Microscopy 
TEMED N, N, N’, N’-tetramethylethyl-endiamine 
Tetr Tetracycline resistance 
TEV Tobacco Etch Virus protease 
TNFα Human tumour necrosis factor alpha, soluble form 
Tris Trishydroxymethylaminomethane 
trxB  Gene coding for thioredoxin reductase  
v/v Volume / volume ratio 
WT Wild Type 
w/v Weight / volume ratio 
ZZ  
 

Two copies of a IgG binding Z domain of protein A derived from 
Staphylococcus aureus 

  
Abbreviations (one and three letter codes) for amino acids 
A / Ala Alanine 
C / Cys Cysteine 
D / Asp Aspartic acid 
E / Glu Glutamic acid 
F / Phe Phenylalanine 
G / Gly Glycine 
H / His Histidine 
I / Ile Isoleucine 
K / Lys Lysine 
L / Leu L / Leu 
M / Met Methionine 
N / Asn Asparagine 
P / Pro Proline 
Q / Gln Glutamine 
R / Arg Arginine 
S / Ser Serine 
T / Thr Threonine 
V / Val Valine 
W / Trp Tryptophan 
Y / Tyr Tyrosine 
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Chapter 1: Introduction 

 

It is of great importance in both academic and commercial sectors to either produce and 

purify recombinant proteins from engineered Escherichia coli cells, or to directly separate 

proteins or detect other biomolecules from natural sources (Lightfoot & Moscariello 

2004; Oliveira & Domingues 2018). However, these processes are usually complicated 

and costly, and urgently need improvement. Here polyhydroxyalkanoate (PHA) bead 

display technology was explored for developing streamlined processes with less 

complicated steps toward protein recovery and biomolecule detection.  

 

1.1 Polyhydroxyalkanoate (PHA) and PHA bead display 

technology 

 

1.1.1 Polyhydroxyalkanoate (PHA) 

 

Polyhydroxyalkanoate (PHA), a polymer made up of (R)-3-hydroxy fatty acid units 

joined through ester bonds, is a naturally occurring polyester synthesised by both Gram-

negative bacteria (such as some species belonging to the genera Cupriavidus and 

Pseudomonas) and Gram-positive bacteria (such as some species of Bacillus) (Lu et al. 

2009; Tan et al. 2014), some halophilic Archaea (members of the family 

Halobacteriaceae) (Han et al. 2010; Poli et al. 2011), as well as some eukaryotic yeast 

cells such as Candida tropicalis (Priji et al. 2013; Priji et al. 2016). These microorganisms 

produce intracellular PHA granules as carbon / energy reservoirs. This generally occurs 

under imbalanced nutrient conditions such as excessive carbon but can also occur under 

limited nitrogen, phosphorus and oxygen conditions. The PHAs are also mobilised or 
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degraded under carbon starvation conditions (Grage et al. 2009; Rehm 2010; Obruca et 

al. 2017). On average 5 to 10 PHA granules (or beads) with sizes ranging from 50 to 500 

nm are accumulated in each cell (Rehm 2007; Grage et al. 2009; Koller et al. 2010), 

reaching up to 80% of cell dry weight in fed-batch bacterial fermentations (Madison & 

Huisman 1999; Chen 2009; Tan et al. 2014). 

 

In addition to native PHA producers, an expanding set of genetically modified organisms 

(GMOs) harbouring appropriate PHA biosynthesis genes (section 1.2.1) have been 

created to recombinantly produce PHA. These non-native PHA producers include not 

only prokaryotes such as Gram-negative Escherichia coli (Li et al. 2007) and Gram-

positive Bacillus subtilis (Law et al. 2003; Wang et al. 2006; Singh et al. 2009; Lin & 

Chen 2017), but also eukaryotes including yeasts such as Saccharomyces cerevisiae and 

Pichia pastoris (Breuer et al. 2002; Poirier et al. 2002), insects such as Spodoptera 

frugiperda (Williams et al. 1996) and plants such as Arabidopsis thaliana, tobacco and 

sugarcane (Bohmert et al. 2000; Bohmert-Tatarev et al. 2011; McQualter et al. 2016).    

 

The most well-known and well-studied form of PHA, poly(3-hydroxybutyric acid) 

(PHB), which is based on 3-hydroxybutyrate (3-HB) monomers, was also the first 

recorded bacterial PHA polymer, and was identified by Maurice Lemoigne from Bacillus 

megaterium more than 90 years ago (Albuquerque & Malafaia 2018). So far, over 150 

different (R)-3-hydroxy fatty acids have been reported as PHA constituents (Parlane et 

al. 2017). This number is growing through supply of  tailor-made monomers or monomer 

precursors as carbon substrates for bacterial PHA production (Jia et al. 2016), through 

genetic modification or metabolic engineering of PHA producing strains (Chen et al. 

2015), or through chemical or physical modification of existing PHA polymers (Levine 

et al. 2016). The monomer diversity and vast modification possibilities lead to a range of 
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PHAs with different thermal and mechanical properties. PHAs, occurring as either 

homopolymers or copolymers, contain typically 600 - 35,000 (R)-3-hydroxy fatty acid 

monomers (Khanna & Srivastava 2005), and fall into two major groups depending on the 

monomer size. The two groups are (1) short chain length PHA (PHASCL), the classic and 

the most-investigated, where the monomer contains 3-5 carbon atoms (Wang et al. 2016), 

and (2) medium chain length PHA (PHAMCL), typically produced by Pseudomonas 

species where the monomer contains 6-14 carbon atoms (Rai et al. 2011). Generally 

PHASCL is hard and brittle with a high level of crystallinity (40-80%) and a high melting 

temperature (80 - 180°C). In contrast, PHAMCL is more elastomeric with low crystallinity 

(20 - 40%) and lower melting point (30 - 80°C) (Zinn & Hany 2005). Recently, PHASCL-

MCL copolymers or terpolymers (PHA containing two or three mixtures of C3-C5 and C6-

C14 monomers) are attracting industrial interest due to better thermal and physical 

properties than either PHASCL or PHAMCL (Nomura et al. 2004; Bhubalan et al. 2010; 

Balakrishna Pillai & Kumarapillai 2017). 

 

Due to their diversity as well as their biodegradability, biocompatibility and thermoplastic 

nature, PHA polymers could be potentially used as renewable plastics, biomedical 

materials (such as sutures, repair patches, stents, tissue engineering scaffolds or drug 

delivery carriers), biochemical precursors or even feed supplements (Chen 2009; 

Somleva et al. 2013; Ali & Jamil 2016; Michalak et al. 2017). However, all these 

applications are based on extracted PHAs themselves that are no longer in granule form, 

and thus without any granule associated proteins (GAPs).  

 

PHAs obtained via fermentation are said to be 5-10 times more expensive than 

traditionaly oil based or chemically synthesised plastics, thus PHA usage is largely 

limited to biomedical / biotech areas (Parlane et al. 2016). Granule form can justify the 
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high production cost, because it can add additional protein functionalities of high value. 

Only when beads are in gruanue form, the intact GAPs could be potentially used to tag 

various protein ligands of interest onto beads through genetic recombinant technologies, 

thus add up bead functionality and broaden their usage in ligand related applications, such 

as protein recovery, biomolecule detection, disease diagnosis and vaccine delivery.    

 

In native PHA-producing cells, hydrophobic granular PHA polymers are surrounded by 

proteins that are responsible for PHA metabolism, including enzymes such as PHA 

synthases (PhaC) that catalyse polymerisation of PHA, PHA depolymerases (PhaZ) 

responsible for PHA degradation / mobilisation, structural protein phasins (PhaP) that 

control the size and number of PHA beads, as well as regulatory proteins (PhaR) that 

control the synthesis of PHA beads and the transcription of PhaP (Rehm 2010; Parlane et 

al. 2017).  

 

These granule associated proteins (GAPs), especially PHA synthase (PhaC), have been 

used extensively through recombinant DNA technologies as anchors to display functional 

proteins on the surface of either recombinantly, natively or even chemically produced 

PHA beads. The resulting PHA beads could have many uses, depending on the 

functionality of the surface displayed proteins. For example, protein immobilisation 

(Moldes et al. 2004; Peters & Rehm 2006; Rasiah & Rehm 2009; Blatchford et al. 2012; 

Hooks et al. 2013; Robins et al. 2013; Chen et al. 2014; Lee et al. 2014; Jahns & Rehm 

2015; Seo et al. 2016; Bello-Gil et al. 2017; Hafizi et al. 2017; Ran et al. 2017), 

recombinant protein production and purification (Banki et al. 2005; Barnard et al. 2005; 

Wang et al. 2008; Geng et al. 2010; Zhang et al. 2010; Grage et al. 2011; Zhou et al. 

2011), biomolecule recognition such as protein separation, endotoxin removal or antigen 

detection  (Brockelbank et al. 2006; Grage & Rehm 2008; Peters & Rehm 2008; Lewis 



5 
 

& Rehm 2009; Li et al. 2011), diagnostic testing (Lee et al. 2005; Bäckström et al. 2007; 

Atwood & Rehm 2009; Chen et al. 2014), bioimaging (Jahns et al. 2008), insecticide 

carrier (Moldes et al. 2006), vaccine delivery (Parlane et al. 2009; Parlane et al. 2011; 

Martinez-Donato et al. 2016; Rubio Reyes et al. 2016) and targeted drug delivery (Yao 

et al. 2008; Lee et al. 2011). 

 

1.1.2 Biosynthesis of PHA and self-assembly of PHA beads 

 

1.1.2.1 PHA Biosynthesis  

 

There are three major natural pathways leading to PHA biosynthesis. For the most 

classical natural pathway of PHA biosynthesis, represented by PHB (PHASCL) 

biosynthesis in Cupriavidus necator (with earlier synonyms of Wautersia eutropha, 

Ralstonia eutropha or Alcaligenes eutrophus) (Vandamme & Coenye 2004), three key 

enzymes are required. These are β-ketothiolase (PhaA, which condenses two molecules 

of acetyl-CoA to form acetoacetyl-CoA), acetoacetyl-CoA reductase (PhaB, which 

reduces the acetoacetyl-CoA to form (R)-3-hydroxybutyryl-CoA), and PHA synthase 

(PhaC, which polymerizes (R)-3-hydroxybutyryl-CoA to form PHA with the release of 

CoA) (Normi et al. 2005; Rehm 2007). Corresponding biosynthesis genes quite 

frequently are clustered together, like the phaCAB operon in C. necator (Rehm 2003; 

Rehm 2007; Grage et al. 2009).  

 

Two other major natural pathways are represented by PHAMCL biosynthesis found in the 

genus Pseudomonas, where either the fatty acid β-oxidation cycle (via enoyl-CoA 

intermediate) or fatty acid de novo synthesis cycle (via (R)-3-hydroxyacyl-ACP 
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intermediate) could be independently utilised to provide (R)-3-hydroxyacyl-coA thioester 

monomers for PHA synthesis (Rehm et al. 1998; Tsuge et al. 2003; Chen et al. 2015).  

 
Figure 1.1 Major pathways of PHA biosynthesis and major enzymes involved in 

PHA metabolism. 

 

With extensive metabolic engineering efforts in either native or non-native PHA 

producers, so far about 10 engineered pathways leading to PHA biosynthesis have been 

reported (Meng et al. 2014; Chen et al. 2015). Generally starting with different carbon 

sources, these pathways use different metabolic routes to supply various kinds of PHA 

precursors (namely (R)-3-hydroxyacyl-coA thioester monomers) for corresponding PHA 

synthases to catalyse the polymerisation reactions (Meng et al. 2014; Chen et al. 2015).  

 

Thirty years ago, recombinant PHB production by introducing the whole PHA 

biosynthesis gene operon from C. necator into E. coli was published separately by two 

groups at the same time (Schubert et al. 1988; Slater et al. 1988). Since then, more 

precised genetic and metabolic engineering has been achieved in a wide range of 

organisms due to increased knowledge of genes and pathways related to PHA 

biosynthesis. For instance, by transforming different PHA biosynthesis genes into 

different plant compartments, transgenic Arabidopsis thaliana could be engineered to 
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produce either PHASCL, PHAMCL or PHASCL-MCL polymers (Mittendorf et al. 1998; 

Bohmert et al. 2000; Matsumoto et al. 2009). The PHAMCL production in A. thaliana was 

straightforward as it simply involved expressing and targeting the PHA synthase phaC1 

gene from Pseudomonas aeruginosa into leaf peroxisome and glyoxysomes in cotyledons 

where fatty acid β-oxidation pathway is extremely active (Mittendorf et al. 1998). 

Whereas PHASCL production in A. thaliana was achieved by coexpressing and targeting 

the phaA, B, and C genes (encoding β-ketothiolase, acetoacetyl-CoA reductase and PHA 

synthase, respectively) from C. necator into leaf chloroplasts where acetyl-CoA is 

abundant (Bohmert et al. 2000).  

 

In contrast to PHASCL or PHAMCL, the production of PHASCL-MCL in the plastids of A. 

thaliana was the most complex, as it required both short and medium chain length 

monomers to be supplied through different metabolic pathways, along with a PHA 

synthase with broad substrate specificity to enable incorporation of these monomers into 

the final PHA product (Matsumoto et al. 2009). Briefly, 4 differently originated wild type 

or mutated genes were coexpressed and targeted to the plastids of A. thaliana in that study. 

These included phaA and phaB genes from C. necator encoding β-ketothiolase and 

acetoacetyl-CoA reductase for converting acetyl-CoA to (R)-3-hydroxybutyryl-CoA 

monomers; along with a gene encoding a mutated (F87T) 3-ketoacyl-acyl carrier protein 

(ACP) synthase III (FabH) from E. coli to supply medium chain length monomers via the 

fatty acid de novo synthesis pathway. According to the study of Matsumoto et al. (2009) 

the F87T mutant was able to recognise medium chain length 3-ketoacyl-ACP substrates 

in addition to short chain length 3-ketoacyl-ACP substrates that are recognised by wild 

type FabH. Lastly a gene coding for a mutant PhaC1 (ST/QK) (a Ser325Thr and 

Gln481Lys double mutants) PHA synthase from Pseudomonas sp. 61-3 for PHA 

polymerisation reaction (Matsumoto et al. 2009).    
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Therefore, factors affecting the final PHA composition include not only the PHA 

biosynthesis pathways involved, but also the key PHA synthases whose substrate 

specificities ultimately decide the PHA structure (Rehm 2003; Meng et al. 2014; Chen et 

al. 2015).    

 

1.1.2.2 PHA synthases 

 

Though all PHA synthases polymerise the acyl moiety of the (R)-3-hydroxyacyl-CoA 

substrates by releasing free CoA, they vary a lot in subunit compositions and substrate 

specificities, which form the basis for their classification (Rehm 2003).   

 

There are four major groups of PHA synthases (Rehm 2003; Rehm 2006; Rehm 2007). 

In terms of subunit compositions, Class I and II PHA synthases, represented respectively 

by the synthases from C. necator and P. aeruginosa, consist of a single subunit of PhaC 

(molecular mass (MW) = 60 - 73 kDa) (Timm & Steinbüchel 1992; Rehm 2003; 

Hoffmann & Rehm 2004; Rehm 2006; Zou et al. 2017). Class III and IV PHA synthases, 

represented respectively by the synthases from Allochromatium vinosum and Bacillus 

megaterium, comprise a secondary subunit PhaE (~40 kDa) in the case of Class III 

synthases, or PhaR (~20 kDa) in the case of Class IV synthases, in addition to the catalytic 

subunit PhaC synthases (~40 kDa) in both (Rehm 2003; Rehm 2006; Zou et al. 2017). In 

terms of substrate specificities, generally Class I, III and IV PHA synthases prefer 

monomers of short chain length (C3-C5) to form PHASCL, whereas Class II PHA 

synthases polymerise monomers of medium chain length (C6-C14) to form PHAMCL 

(Rehm 2007; Zou et al. 2017), with PhaC1 or PhaC2 showing similar substrate 

specificities (Qi et al. 1997; Guo et al. 2013).   
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Class I and II PHA synthases exist in equilibrium as monomers and dimers, and the 

dimeric forms have been shown to be the active forms (Zhang et al. 2003; Rehm 2007). 

Though amino acid sequences of all four types of PhaCs are quite diversified with highly 

variable N-terminal regions (Rehm 2007), they do share in the C-terminal catalytic 

domains an essential PhaC box sequence ([G/S]-X-C-X-[G/A]-G) (Tsuge et al. 2015), as 

well as a crucial Cys-His-Asp catalytic triad (Rehm 2003). This includes, for example,  

Cys319-His508-Asp480 of class I PHA synthase from C. necator (Gerngross et al. 1994; 

Jia et al. 2001), Cys296-His453-Asp452 of class II PHA synthase from P. aeruginosa 

(Amara & Rehm 2003), Cys149-His331-Asp302 of class III PHA synthase from A. 

vinosum (formally Chromatium vinosum) (Jia et al. 2000), and Cys151-His335-Asp306 

of class IV PHA synthase from Bacillus cereus (Tsuge et al. 2015). All these features are 

similar to hydrolases such as lipases bearing a core α/β hydrolase fold (an α/β sheet 

composed of eight β-sheets connected by six α-helices) (Ollis et al. 1992), except that the 

serine in the catalytic site is replaced by cysteine in PHA synthases (Jaeger et al. 1995; 

Jia et al. 2000; Jendrossek & Handrick 2002; Rehm 2003; Tsuge et al. 2015).  

 

Crystal structures became available only very recently for two Class I PHA synthases, 

one from C. necator (Wittenborn et al. 2016; Kim et al. 2017; Kim et al. 2017) (PhaCCn 

hereinafter) and the other from Chromobacterium sp. USM2 (Chek et al. 2017) (PhaCCsp 

hereinafter). The PhaCCn structures published by two individual groups are similarly in a 

partially open form with an obvious channel or tunnel (in the vicinity of the active site) 

that is proposed for substrate entrance or binding (Wittenborn et al. 2016; Kim et al. 2017; 

Kim et al. 2017), while the PhaCCsp structure is in a closed form where the active site is 

covered by a CAP subdomain and the catalytic residues are facing a water-filled large 

channel inside the protein (Chek et al. 2017). It is suggested that these structural 



10 
 

differences might represent two dimeric states of the Class I PHA synthase which raises 

the possibility of rearrangement via conformational change of the CAP subdomain (Chek 

et al. 2017). Nevertheless, the above mentioned monomer-dimer equilibrium and active 

dimeric forms, the Cys-His-Asp catalytic triad, and the core α/β hydrolase fold (though 

with 4-5 more β-sheets and 2 more α-helices as compared to a canonical lipase α/β 

hydrolase fold) were all confirmed in these crystal structures (Wittenborn et al. 2016; 

Chek et al. 2017; Kim et al. 2017).   

 

Despite the structural knowledge, the exact mechanisms for Class I PHA synthase 

catalytic reaction remain unknown except that a single active site from the PhaC dimer is 

required for PHA biosynthesis (Wittenborn et al. 2016; Chek et al. 2017; Kim et al. 2017). 

For example for the PhaCCn structure, two different mechanisms have been proposed by 

the two individual groups (Wittenborn et al. 2016; Kim et al. 2017). The first suggests a 

substrate entrance channel which is also used for the release of free CoA, and a separate 

egress route for the elongation of the nascent PHA chain (Wittenborn et al. 2016). In this 

mechanism, the catalytic Cys319 keeps bonding with the growing PHA chain while 

repeatedly accepting the (R)-3-hydroxyacyl (HA) moiety and releasing CoA moiety 

(Wittenborn et al. 2016), but the proposed egress route was too narrow and would require 

substantial conformational changes for the growing PHA chain to pass through (Chek et 

al. 2017). Whereas the second suggested mechanism is in favour of a ping-pong 

mechanism in which the substrate and the growing PHA chain take turns to enter and 

leave the catalytic site through a single tunnel, with the catalytic Cys319 acting to transfer 

one HA monomer from HA-CoA to the PHA chain every cycle (Kim et al. 2017), which 

is inconsistent with the detection of a product covalently bound to the catalytic Cys319 

(Wodzinska et al. 1996). Furthermore, comments on the role of N-terminal region of 

PhaC are different: one is localising PhaCCn onto PHA granule and stabilizing the growing 
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PHA polymer (Kim et al. 2017), while the other is stabilizing dimeric PhaCCsp (Chek et 

al. 2017). Clear elucidation might be reached in the near future with more knowledge 

accumulated on crystal structures of PHA synthases.  

 

1.1.2.3 Self-assembly of PHA beads 

 

In vitro synthesis of PHAs and self-assembly of spherical beads was first demonstrated 

by Gerngross and Martin with purified PHA synthases and (R)-3-hydroxybutyryl-CoA 

substrates (Gerngross & Martin 1995). However, the exact in vivo PHA bead assembly 

mechanism remains unclear. A total of three models have been proposed for in vivo PHA 

granule assembly: (i) the currently favoured micelle model, (ii) the controversial 

membrane budding model, and (iii) the relatively new scaffolding model. 

 

Figure 1.2 PHA bead self-assembly models. 
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In the micelle model, soluble dimerised PHA synthase interacts with the substrate 

randomly in the cytoplasm to initiate the polymerisation process, during which the 

growing hydrophobic PHA chain remains covalently attached to the PHA synthase 

(Gerngross et al. 1993). Several of these amphipathic synthase-polymer molecules self-

aggregate to form energetically-favourable micelle-like structures with a granular 

hydrophobic core surrounded by PHA synthase (Gerngross et al. 1993). In native PHA 

producers, these intracellularly formed nascent PHA granules are further coated by other 

granule-associated proteins (GAPs) that are involved in PHA metabolism, such as Phasins 

(PhaP), depolymerases (PhaZ) or regulatory proteins (PhaR) (Thomson et al. 2010; 

Parlane et al. 2017). The micelle model is well supported by the above-mentioned in vitro 

PHA formation study using only purified PHA synthase and substrate (Gerngross & 

Martin 1995). 

 

The membrane budding model is based on early observations of the lipid membrane-like 

matter surrounding either isolated PHA beads or beads inside intact cells (Lundgren et al. 

1964; Jensen & Sicko 1971; Dunlop & Robards 1973; Mayer & Hoppert 1997). In this 

model, soluble PHA synthases associate with or stay close to the inner cell membrane, 

and the polymerisation reaction occurs in the inter-membrane space, where the elongation 

of PHA chains makes the membrane fold around them, leading to granules surrounded 

by a phospholipid monolayer with PHA synthases and other proteins attached, which 

eventually bud from the membrane into the cytoplasm (Jendrossek et al. 2007; Thomson 

et al. 2010).  

 

Evidence in favour of the membrane budding model includes data from transmission 

electron microscopy (TEM), confocal laser scanning fluorescence microscopy (CLSM) 

or fluorescence microscopy (FM) demonstrating that nascent PHA beads are not 
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randomly distributed in the cytosol but rather frequently located at or near the cytoplasmic 

membranes (such as the cell poles, cell wall or cell division sites) in either native or 

recombinant PHA producers (Jendrossek 2005; Peters & Rehm 2005; Jendrossek et al. 

2007; Xiao et al. 2015). However, evidence against this model is accumulating.  For 

example, an electron cryotomography technique used to examine near-native state PHA 

biogenesis in the native producer C. necator revealed that, along the length of the cell, 

PHA granules of different sizes are distributed towards the centre of the cytoplasm and 

are coated with only a discontinuous surface layer, which is more like a partial protein 

coat rather than a continuous phospholipid layer (Beeby et al. 2012). The absence of a 

phospholipid layer for in vivo formed PHA beads is further evidenced by fluorescence 

microscopy (FM) colocalisation analysis of phospholipid-targeted fluorescent proteins in 

three native PHA producers (C. necator, Pseudomonas putida and Magnetospirillum 

gryphiswaldense) (Bresan et al. 2016). In that study, DsRed2EC and other fluorescent 

proteins were separately fused with the phospholipid-binding domain (LactC2) of 

lactadherin, and the fusion proteins were found to only colocalise with the cytoplasmic 

membrane but not with PHA granules in all circumstances (Bresan et al. 2016). 

 

The scaffolding model arose due to the granule localisation close to dark “mediation 

elements” in the cell centre as observed first in C. necator and later in Comamonas sp. 

EB172 via transmission electron microscopy (TEM) (Tian et al. 2005; Mumtaz et al. 

2011). Undefined at that time, these mediation elements were proposed to serve as 

scaffolding initiation sites for granule formation (Tian et al. 2005; Mumtaz et al. 2011). 

These mediation elements are now believed to be bacterial nucleoids (Jendrossek & 

Pfeiffer 2014). In the model PHA producer C. necator, a regulatory protein PhaM that 

can bind not only PHA synthase PhaC but also DNA is proposed to be responsible for 

anchoring the PhaM-PhaC-PHB initiation complex to a bacterial nucleoid for granule 
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formation (Jendrossek & Pfeiffer 2014). However, this PhaM mediated scaffolding event 

could be unnecessary for PHA granule formation, as an earlier study showed that even a 

∆phaM mutant C. necator strain formed PHA granules (Pfeiffer et al. 2011).  

 

1.1.2.4 PHA granule associated proteins (GAPs) 

 

In addition to PHA synthases, three other major types of proteins are also known to 

associate with PHA beads in a diverse range of native PHA producers; these proteins 

include depolymerases, phasins and regulatory proteins. Except for PHA synthases that 

are essential for PHA synthesis and covalently bound to PHA granules, all other granule 

associated proteins (GAPs) are nonessential for PHA accumulation and only attached to 

the granules through hydrophobic interactions (Draper et al. 2013). Provided below is a 

brief summary of important GAPs discovered in the model strain C. necator. 

 

1.1.2.4.1 Depolymerases (PhaZ) 

 

Intracellular PHA depolymerases bind to PHA granules and act through thiolysis 

reactions to degrade or mobilise native PHA (Uchino et al. 2007). So far in the model 

PHA producer C. necator, nine enzymes have been reported or predicted to mediate PHA 

degradation, including seven PHA depolymerases (PhaZ1 to PhaZ7) and two 3-

hydroxybutyrate-oligomer hydrolases (PhaY1 and PhaY2) (Sznajder & Jendrossek 2014; 

Arikawa et al. 2016). Alternative names have been suggested by Kobayashi et al. (2005)  

that better reflect their amino acid sequence similarities (Kobayashi et al. 2005): PhaZa1 

to PhaZa5 (for PhaZ1 to PhaZ5) are a group of isoenzymes with active cysteine sites; 

PhaZb and PhaZc (for oligohydrolases PhaY1 and PhaY2 respectively) both contain 

active sites resembling the lipase box (Gly-X-Ser-X-Gly) (Kobayashi et al. 2005); while 
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PhaZd1 and PhaZd2 (for PhaZ6 and PhaZ7) are another group showing high activity as 

well as the Ser-Asp-His catalytic triad (Abe et al. 2005; Sznajder & Jendrossek 2014). 

Several in vivo PHA mobilisation studies have been carried out using phaZ gene deletion 

mutants of C. necator in different combinations, but except for PhaZa1 whose in vivo 

PHA mobilisation function has been proved (Uchino et al. 2008), a clear role for any 

other enzyme is yet to be elucidated. However one recent study showed that PhaZd1 

affects the molecular weight of PHA accumulated in C. necator (Arikawa et al. 2016).  

 

1.1.2.4.2 Phasins (PhaP) 

 

Phasins are the most abundant GAPs, and are of small size (MW = 11-25 kDa) (Grage et 

al. 2009). So far in the model PHA producer C. necator, seven phasins (PhaP1 to PhaP7) 

have been identified (Pfeiffer & Jendrossek 2012). Of these, PhaP1 has been most 

extensively studied and among the 6 other variants, only three (PhaP2 to PhaP4) are 

homologous to PhaP1 with 38-70% identity (Pfeiffer & Jendrossek 2012). Nevertheless, 

all 7 phasin proteins contain a common characteristic “phasin 2 motif” which is a region 

enriched in hydrophobic residues (Pfeiffer & Jendrossek 2012). The phasins consist of a 

hydrophobic domain responsible for association with the surface of the PHB granules, 

and a predominantly hydrophilic/amphiphilic domain exposed to the cytoplasm of the cell 

(Pötter & Steinbüchel 2005). Among them, the most studied, PhaP1, has been shown by 

secondary structure analysis to occur as a planar triangular homotrimer (Neumann et al. 

2008) and is bound to the hydrophobic surface of PHA polymers as soon as the polymer 

is available (Cho et al. 2012). PhaP1 functions to control the amount, size and number of 

PHA granules, to prevent PHA granule aggregation and inhibit nonspecific association 

of other proteins with the PHA granules (Grage et al. 2009; Draper et al. 2013; Maestro 

& Sanz 2017; Parlane et al. 2017). 
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1.1.2.4.3 Regulatory proteins (PhaR and PhaM) 

 

In C. necator, the two identified regulatory proteins PhaR and PhaM both are capable of 

binding not only to PHA granules but also to DNA (or to the nucleoid) (Pötter et al. 2002; 

York et al. 2002; Pfeiffer et al. 2011; Wahl et al. 2012; Bresan & Jendrossek 2017).  

 

The transcriptional regulator PhaR functions through binding to PHA granules as well as 

DNA promoter regions upstream of the phaP (actually the most studied phaP1 gene) and 

phaR genes (Pötter et al. 2002; York et al. 2002). In their proposed regulation model, 

PhaR binds the phaP promoter so as to inhibit phaP transcription under non-PHA 

accumulating conditions. But once PHA accumulation begins, PhaR binds to the 

hydrophobic surfaces of newly formed PHA granules, leading to a reduced level of free 

PhaR until it is insufficient to repress the transcription of phaP gene. Then PhaP protein 

(actually the most studied PhaP1 protein) is produced and immediately attaches to the 

PHA granules. After the granules have reached maximum size and are completely coated 

by PhaP along with PhaR, the excess free PhaR binds to the promoter regions of both 

phaP and phaR genes, and prevents transcription of both (Pötter et al. 2002; York et al. 

2002). 

 

As mentioned in the scaffolding model (section 1.1.2.3), regulatory protein PhaM (26.6 

kDa) is able to locate the PhaM-PhaC-PHB complex to the bacterial nucleoid through 

binding to both PHA granule and DNA/nucleoid (Jendrossek & Pfeiffer 2014). PhaM also 

interacts with PhaP5 and affects the number, size and distribution of PHA granules 

(Pfeiffer et al. 2011). One study indicated that PhaM has little or no direct interaction 

with the PHA polymer chain (Ushimaru & Tsuge 2016). In addition, a very recent study 
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suggested that PhaM associates with PhaC through interaction with N-terminal domain 

of the synthase, and activates PhaC by providing a more extensive surface area for PhaC 

to interact with the growing PHA polymer (Kim et al. 2017). 

 

1.1.3 Functionalised PHA beads mediated via GAP fusion  

 

As mentioned in section 1.1.1, granule associated proteins (GAPs), especially PHA 

synthase (PhaC), due to their ability to bind to PHA beads, have been extensively 

explored to display functional proteins on the surface of PHA beads by designing 

appropriate GAP-target protein fusions. The resulting PHA beads find applications in 

areas such as recombinant protein production and purification as well as biomolecule 

recognition.  

 

1.1.3.1 PHA beads as recombinant protein production and purification 

platforms  

 

Previously, granule associated proteins (GAPs) including PHA synthase PhaC, phasin 

protein (PhaP, actually the most studied PhaP1) and regulatory protein PhaR from C. 

necator each have been used for recombinant protein production and purification. By 

fusing a target protein to one of these GAPs through a linker consisting of either a protease 

cleavage site or a self-cleavage Intein tag ((see section 1.2.1 for a detailed explanation), 

engineered from an appropriate protein splicing element known as Intein, this kind of tag 

is cleavable at one of its termini by pH shift or thiol addition), the target protein could be 

anchored by its GAP fusing partner onto the surface of PHA beads that serve as 

purification resins. The resulting PHA beads carrying the target protein could be easily 
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separated from soluble cell fractions, and finally release the target protein from beads 

either via protease treatment or self-cleavage of the Intein tag.  

 

In one study involving the PHA synthase PhaC, a plasmid expressing PhaC-EK-X (EK 

represents enterokinase cleavage site, and X the target protein) was transformed into a 

recombinant E. coli strain harbouring phaA and phaB genes (encoding β-ketothiolase 

(PhaA) and acetoacetyl-CoA reductase (PhaB) that are key enzymes for PHA 

biosynthesis) (Grage et al. 2011). This enabled production of PHA beads displaying the 

fusion protein of PhaC-EK-X. Then after bead isolation and washing steps, the beads 

were treated with enterokinase to release pure target protein such as fluorescent protein 

HcRed and anti-β-galactosidase antibody single chain variable fragment scFv13R4 

(Grage et al. 2011).    

 

In a different study, phasin protein PhaP (actually the most studied PhaP1) was used in a 

similar approach involving thrombin cleavage. By transforming a plasmid expressing 

PhaP-THR-tPA (THR represents thrombin cleavage site, and tPA represents recombinant 

human tissue plasminogen activator) into a recombinant E. coli strain harbouring phaCAB 

genes (encode all three key enzymes for PHA biosynthesis), recombinant human tissue 

plasminogen activator could be successfully produced and purified (Geng et al. 2010).  

 

A collaborative group based in the USA was the first to combine the self-cleaving tag 

technology with PHA bead display technology in the production and purification of 

recombinant proteins (Banki et al. 2005; Barnard et al. 2005). In their pioneering work, 

a plasmid expressing PhaP-PhaP-PhaP-intein-X or PhaP-PhaP-intein-X (PhaP was used 

in mulitiple copies to increase hydrophobic association with PHA beads, the intein used 

was a pH inducible Mtu ∆I-CM mini-intein, and X represents the target protein) was 
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transformed into engineered E. coli cells harbouring the PHA biosynthesis genes 

phaABC. PHA beads attached with corresponding fusion proteins could be produced and 

isolated, then the target protein was released by lowering pH. Four recombinant proteins 

were purified using this method, including maltose binding protein (MBP), β-

galactosidase (LacZ), chloramphenicol acetyltransferase (CAT) and N utilisation 

substance protein A (NusA) (Banki et al. 2005).  

 

Next, the same group tested a different intein in native PHA producers by using C. necator 

to produce PhaP-intein-X (the intein used was a thiol controllable Mxe GyrA intein, and 

X represents the target protein) protein respectively. Similarly PHA beads with 

corresponding attached fusion proteins could be produced and isolated, then the target 

protein (GFP or LacZ) was released by addition of thiol reagents (Barnard et al. 2005). 

Later Wang’s group was successful in using exactly the same PhaP-PhaP-PhaP-intein-X 

and recombinant E. coli system from the pioneer study (Banki et al. 2005) to produce and 

purify porcine interferon alpha (PoIFNα) (Zhou et al. 2011).  

 

Chen’s group from Tsinghua University extended this recombinant protein purification 

platform mediated by self-cleaving PHA beads further by using in vitro chemically 

synthesised PHA beads and using PhaR tags (Wang et al. 2008; Zhang et al. 2010). In 

their studies, the PHA polymer was chemically produced separately, while the 

recombinant protein was produced by E. coli in the form of either PhaP-intein-X or PhaR-

intein-X (the intein used was a pH inducible Ssp DnaB intein, and X represents the target 

protein). Then the PHA polymer and the cleared cell lysate were mixed together to pull 

down the fusion proteins, and finally via pH shift induced intein cleavage, the target 

protein (including EGFP (enhanced green fluorescent protein), MBP and LacZ) could be 

released from the beads (Wang et al. 2008; Zhang et al. 2010).  
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1.1.3.2 PHA beads as affinity resins 

 

Granule associated proteins (GAPs) including PHA synthase PhaC and phasin protein 

could also be used to functionalise PHA beads with appropriate affinity ligands in order 

to separate, remove or detect a target biomolecule based on molecular recognition.  

 

For example, the group led by Professor Bernd H. A. Rehm has developed a variety of 

PHA bead affinity resins by using engineered PHA synthase (PhaC) fusions (Brockelbank 

et al. 2006; Grage & Rehm 2008; Peters & Rehm 2008; Lewis & Rehm 2009). This 

included IgG purification resins of PHA beads displaying the immunoglobulin G (IgG) 

binding ZZ domain of protein A from Staphylococcus aureus (Brockelbank et al. 2006; 

Lewis & Rehm 2009); β-galactosidase (antigen) detection resins of PHA beads displaying 

anti-β-galactosidase antibody single chain variable fragment scFv13R4 (Grage & Rehm 

2008); and biotin-recognising affinity resins of PHA beads displaying different variants 

of streptavidin that are applicable for ELISA, DNA purification, enzyme immobilisation 

and flow cytometry (Peters & Rehm 2008).  

 

In addition, the above-mentioned Tsinghua group developed endotoxin removal resins of 

PHA beads by mixing chemically prepared PHA particles with recombinantly produced 

and purified rhLBP-PhaP fusion protein (rhLBP = human lipopolysaccharide binding 

protein, PhaP was actually the most studied PhaP1) (Li et al. 2011). 
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1.2 Existing technologies related to protein recovery and 

biomolecular detection 

 

1.2.1 Recombinant protein production and purification from E. coli cells 

 

In a conventional recombinant protein production scheme, upstream production and 

downstream purification are two separate processes, and the latter often requires 

expensive chromatography columns and considerable process optimisation (Asenjo & 

Andrews 2009). Although affinity chromatography using affinity tags such as His, FLAG, 

GST or Strep can facilitate the recombinant protein purification process (Young et al. 

2012), their industrial scale up is however limited by the additional protease treatment 

and chromatography required for tag removal.  

 

Amongst various recombinant proteins, therapeutic proteins are especially hard to express 

in E. coli, because overexpression of heterologous eukaryotic genes in E. coli tends to 

result in proteins as insoluble inclusion bodies (IBs). For example, one recent study 

reported that human tumour necrosis factor alpha (TNFα) production in E. coli resulted 

in an IB format product of up to 50% (Zhang et al. 2014). Similarly human interferon 

alpha-2b (IFNα2b) production in E. coli was frequently reported to be in the form of IB 

aggregates (Rabhi-Essafi et al. 2007). In addition, human granulocyte colony-stimulating 

factor (G-CSF) production in E. coli tends to aggregate and forms inclusion bodies (IBs) 

(Do et al. 2014). Indeed, several recently published studies on production and purification 

of recombinant TNFα, IFNα2b and G-CSF focus on optimising protein refolding from 

inclusion bodies as well as optimising chromatography operations (Vemula et al. 2015; 

Wang et al. 2015; Romanov et al. 2017). Many are trying to avoid tedious refolding by 

adopting solubility-enhancing tags or affinity tags in combination with specialized 
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affinity resins plus additional protease treatment efforts in tag removal (Rabhi-Essafi et 

al. 2007; Do et al. 2014; Alizadeh et al. 2015).  

 

Several types of self-cleaving tags, including sortase and intein, are emerging as 

alternatives to protease treatment for tag removal. For example, sortase A (SrtA) from 

Staphylococcus aureus functions as a transpeptidase by identifying proteins with a C-

terminal five amino acid LPXTG signal (X represents any amino acid), cleaving between 

the T and G, and ligating the T to peptidoglycan of the cell wall (Clancy et al. 2010). In 

vitro studies revealed that cleavage activity of recombinant SrtA was independent of 

triglycine, but the cleavage rate was increased in the presence of triglycine (Ton-That et 

al. 2000). Previously, the catalytic core of SrtA (SrtAc or SrtAΔ59, amino acids 60-206) 

was used for protein purification in the format of a His6-SrtA-LPETG-target protein 

fusion (Mao 2004) or a similar biotin reactive bls-SrtA-LPETG-target protein / blsbls-

SrtA-LPETG-target protein (bls represents biotin label signal) fusion (Matsunaga et al. 

2010), which upon binding to respective affinity resins, released free target proteins into 

elution fractions via SrtA activation in the presence of Ca2+ +/- triglycine (Mao 2004; 

Matsunaga et al. 2010). Nevertheless, these processes still relied on the use of expensive 

and specialized affinity resins. 

 

Another well-studied self-cleaving tag is intein, an intervening protein element that is 

involved in protein splicing, namely the self-excision and ligation of its flanking peptides 

(exteins) (Perler et al. 1994). Various inteins have been engineered to abolish the ligation 

but retain cleavage at only one terminus (either N- or C- terminus) controllable by pH / 

temperature / thiol agents (Shi et al. 2013). The DnaB mini intein from Synechocystis sp. 

PCC 6803 has been commercialised and widely used in the pTWIN1 vector (New 

England Biolabs, Hitchin, UK); this mini intein is activated at pH 6-7 at 25°C and 
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undergoes self-cleavage at the C-terminus. Recently, this intein has been employed in 

combination with polyhydroxyalkanoate (PHA) beads (as detailed in sections 1.1) for 

target protein production and purification (Wang et al. 2008; Zhang et al. 2010). These 

strategies rely on phasin (Wang et al. 2008) or a regulatory protein (PhaR) (Zhang et al. 

2010) that non-covalently associates with PHA beads as “affinity” tags and fusion 

partners of target proteins. By incubating PHA beads with cell lysate containing PhaP-

intein-target protein or PhaR-intein-target protein, the target protein can be anchored to 

PHA beads via PhaP / PhaR and thus separated from cell debris and host proteins. The 

pH inducible intein as linker subsequently allows the release of target protein by a pH 

drop. However, the non-covalent anchoring of the target protein to PHA beads can cause 

leakage of the respective PhaP-intein-target protein or PhaR-intein-target protein during 

the PHA bead wash cycles (Wang et al. 2008; Zhang et al. 2010).  

 

1.2.2 Protein separation or biomolecule detection from natural sources 

 

There are often industrial needs to separate or detect biologically important molecules 

from natural sources, like for instance commercial lysozyme separation from hen egg 

white in the food and pharmaceutical industry (Shahmohammadi 2017), and progesterone 

(P4) detection in the dairy industry (Jang et al. 2017). So far affinity separation and 

affinity detection techniques exploiting the biorecognition between a biomolecule and its 

ligand (or binding partner) are commonly regarded as the most efficient techniques. 

Biorecognition, or molecular recognition, is defined as the specific noncovalent 

interaction between a biomolecule and its ligand (or binding partner), which plays a vital 

role in cellular activities (McCammon 1998). Examples of such biomolecule - ligand 

pairs include enzyme - substrate, protein - cofactor, antibody - antigen. Affinity separation 

and detection technologies are mostly exemplified by affinity resins with immobilised 
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antibodies that are capable of recognising antigenic epitopes of the molecules of interest 

(Tozzi et al. 2003; Crivianu-Gaita & Thompson 2016). Manufacture of this type of 

affinity resin generally requires three main processes: (1) the preparation of a support 

matrix (either through chemical treatment of existing natural resources such as agarose, 

dextrose and cellulose, or through de novo chemical synthesis such as polyacrylamide 

and polymethacrylate derivatives) (Vařilová et al. 2006), (2) the recombinant production 

and purification of an antibody or antibody fragment which is usually costly (Dias & 

Roque 2017) and (3) chemical cross-linking of the antibody or antibody fragment to the 

support matrix to avoid random orientation or denaturation of the antibody or antibody 

fragment, which can be a complex process (Shen et al. 2017). Therefore, developing 

alternative non-antibody affinity ligands or resins that enable simplified ligand 

immobilisation is necessary, such as in the cases of lysozyme separation and progesterone 

detection.  

 

Lysozyme (E.C.3.2.1.17, N-acetyl-muramic-hydrolase, ~14.3 kDa) is widely used as a 

preservative in food and is in high demand in the pharmaceutical industry due to its 

bacteriostatic and bactericidal effects (Cegielska-Radziejewska et al. 2008). Lysozyme is 

usually obtained from hen egg white but separation methods such as crystallization, 

adsorption, chromatography, and ultrafiltration are often complicated and inefficient. 

Lysozyme can also be separated using substrate (chitin or chitosan)-based affinity 

chromatography (Yuan et al. 2009; Wolman et al. 2010), but even this method suffers 

from slow flow rates and high resin costs (Abeyrathne et al. 2013). Furthermore, affinity 

chromatography methods based on metal ions (Ergün et al. 2007; Derazshamshir et al. 

2008; Baydemir et al. 2013; Liu et al. 2013) or dyes (Arica et al. 2004; Altintaş & Denizli 

2006) have been developed for lysozyme separation. However, these methods often 

require significant process optimisation to ensure selectivity, as metal ions and dyes are 
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not as specific as biological ligands like antibodies or substrates (El Khoury et al. 2015). 

There are only sparse reports of successful lysozyme separation using affinity 

chromatography based on engineered antibodies. Actually only a synthetic octapeptide 

analogous to a lysozyme antibody light chain hypervariable loop (L3) (Hahn et al. 2001), 

as well as variable fragment (Fv) or single chain Fv (scFv) derived from lysozyme 

antibodies have been documented (Berry et al. 1991; Welling et al. 1991; Berry & Pierce 

1993; Fong et al. 2002). Therefore, there is an urgent need for new types of affinity resins 

carrying selective non-antibody ligands that can enable efficient and streamlined 

lysozyme separation.    

  

Progesterone (P4, ~ 314.46 g/mol) is a 21-carbon steroid hormone secreted mainly by the 

corpus luteum (CL, which forms after ovulation of the oocyte in the ovary) that affects 

the menstrual cycle, pregnancy, and embryogenesis in female mammals (Jang et al. 

2017). The P4 level in cow's milk is typically within a range of 1-10 ng/ml, and has long 

been used as an indicator of reproductive status (Daems et al. 2017). Bovine milk P4 is 

minimal on Day 0 of oestrus (ovulation) at 1-2 ng/ml, increases within 2 days as the CL 

starts to grow and peaks at ~ 3.5 ng/ml around Day 10. It remains stable for about one 

week and sharply decreases from Day 17 as the CL begins to regress in the absence of 

fertilization till Day 21 when the next oestrus occurs. On the contrary, for a pregnant cow 

where the CL is maintained, milk P4 level is usually higher than 7 ng/ml and remains 

high throughout gestation (Simersky et al. 2007; Samsonova et al. 2015; Daems et al. 

2017). Regular milk P4 level detection contributes to accurate ovulation prediction for 

timely artificial insemination, to optimise herd reproductive performance and maintain 

farm profitability, which is of great importance in the dairy industry. However, existing 

chromatography or mass spectrometry technology used for P4 detection is usually 

complicated and requires expensive equipment (Gao et al. 2016; Goyon et al. 2016). 
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There are various reports on P4 antibody based immunoassay methods such as 

radioimmunoassay (RIA) (Byszewska-Szpocińska & Markiewicz 2006), electrochemical 

immunosensor (Zhang et al. 2013), fluorescence immunoassay (FIA) (Käppel et al. 2007), 

lateral flow immunoassay (LFI) (Samsonova et al. 2015) and enzyme-linked 

immunosorbent assay (ELISA) (Wu et al. 2014). However, due to the inherent high 

production costs and low stability related to antibodies during or after immobilisation, as 

well as the limited numbers of tests per assay kit, they are still costly for daily use on 

farms (Posthuma-Trumpie et al. 2009). Research on new types of detection involving 

non-antibody ligands bound to a matrix would help to bring down the related bovine milk 

P4 detection cost.   

 

Thanks to advances in protein engineering technologies (Grönwall & Ståhl 2009; Ståhl et 

al. 2013), various engineered non-antibody protein scaffolds are emerging as alternative 

elements for molecular recognition (Skerra 2007; Zhao et al. 2013; Škrlec et al. 2015; 

Dias & Roque 2017). One such promising candidate scaffold is the OB-fold, which was 

originally identified in four different proteins that were able to bind oligonucleotides or 

oligosaccharides, including staphylococcal nuclease, the anticodon binding domain of 

yeast asp-tRNA synthetase, as well as B-subunits of heat-labile enterotoxin and 

verotoxin-1 from E. coli (Murzin 1993). The OB-fold comprises a 5-stranded closed β-

barrel that presents a concave binding face (Murzin 1993). The OB-fold is now known to 

be a common domain in a growing protein superfamily within all three kingdoms of life, 

with various binding affinities to oligonucleotides, oligosaccharides, proteins, metal ions 

or catalytic substrates (Arcus 2002). Those natural OB-fold harbouring proteins have no 

significant sequence similarity but most of them recognise their respective binding 

partners through the fold-related binding face (Steemson et al. 2014). It was thus 

hypothesised that the easily-adaptable binding face of the ancient OB-fold domain is 
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tolerant to mutation (Murzin 1993). Previously, several residues on the binding face of 

the OB-fold domain of aspartyl-tRNA synthetase (aspRS) from Pyrobactulum 

aerophilum were artificially randomized to make a library by using phage display 

technology, and the resulting library was screened for binding to a molecule of interest 

(Steemson 2011; Steemson et al. 2014). For example, an engineered OB-fold (termed an 

OBody) with a 3 nM affinity for hen egg-white lysozyme has been demonstrated 

(Steemson et al. 2014). It would be of great interest to immobilise such engineered 

biomolecular recognising OBodies on a proper support matrix for affinity separation or 

detection.  

 

1.3 Proposed solution and the significance of this research 

 

There is great potential to simplify processes related to protein recovery and biomolecular 

detection by integrating the emerging self-cleavable tag technology or OBody technology 

with the established PHA bead display technology via a PhaC fusion approach.  

 

The proposed research is of great research and industrial importance. To properly design 

self-cleaving PhaC fusions to gain controlled release of functional target proteins would 

expand knowledge of the PHA bead display technology, and provide a streamlined 

process for recombinant protein production and purification. Simpler procedures and 

optimisation would benefit the protein industry economically. Furthermore, this study has 

the potential to enable large scale production and purification of medically important 

therapeutic proteins, which would help to bring down their production cost and retail 

price. 
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In addition, immobilisation of OBody ligands onto PHA beads is aimed to provide a 

“proof of concept” of new types of cheaper affinity resins (OBody beads) useful for 

separation or detection of industrially important enzymes or other biomolecules. This 

would also broaden applications of both OBody technology and PHA bead display 

platform.  

  

1.4 Aims, objectives and hypotheses 

 

In view of the generally complicated and costly processes related to protein recovery and 

biomolecular detection, the aims of this research were to develop (1) a streamlined 

process with less complicated steps toward the production and purification of 

recombinant proteins, especially therapeutic proteins, and (2) a simplified process for 

preparation of affinity resins with non-antibody ligands that could be used for separation 

and detection of industrially important biomolecules. Specifically, the PHA synthase 

(PhaC) mediated PHA bead display technology was explored to develop (1) self-

cleavable recombinant protein production and purification resins, and (2) affinity resins 

carrying non-antibody ligands useful for biomolecular separation and detection.  

 

The first aim of this research was to design PHA beads as self-cleavable recombinant 

protein production and purification resins, and was achieved by the following objectives: 

 

1. Determine whether sortase tags can be combined with PHA bead display 

technology to develop self-cleavable recombinant protein production and 

purification resins 
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First, the phaC-srtA hybrid gene (encoding PHA synthase (PhaC) and sortase A from 

Staphylococcus aureus) was transformed into E. coli cells along with  phaAB genes 

(encoding β-ketothiolase (PhaA) and acetoacetyl-CoA reductase (PhaB) that are key 

enzymes for PHA biosynthesis) to assess the production of bead fusion proteins and the 

self-cleavage activity of sortase in the presence of CaCl2.  

  

Then, the phaC-srtA-x hybrid gene (there was a LPETG coding region immediately 

before x, and x = coding gene for a target protein) was co-transformed with phaAB genes 

into E. coli cells to assess the production of bead fusion proteins and the self-cleavage of 

the sortase (in the presence of CaCl2 and triglycine) so as to release a G-tagged target 

protein. Human tumour necrosis factor alpha (TNFα) and human interferon alpha-2b 

(IFNα2b) were tested as therapeutic target proteins. 

 

2. Determine whether intein tags can be combined with PHA bead display 

technology to develop self-cleavable recombinant protein production and 

purification resins 

 

First, the phaC-intein-x hybrid gene (intein = coding gene for the pH inducible Ssp DnaB 

mini intein, and x = coding gene for a model protein) was co-transformed with phaAB 

genes into E. coli cells to assess the production of bead fusion proteins and the pH drop 

induced self-cleavage of the intein so as to release the model protein. Model proteins 

tested for this object were Aequorea victoria green fluorescent protein (GFP), 

Mycobacterium tuberculosis vaccine candidate Rv1626, and the synthetic 

immunoglobulin G (IgG) binding ZZ domain of protein A derived from Staphylococcus 

aureus.  
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Then, this self-cleaving system was similarly tested for the production and purification of 

therapeutic targets by replacing the x gene (in phaC-intein-x construct) to one coding for 

TNFα, IFNα2b or human granulocyte colony-stimulating factor (G-CSF). 

 

The hypothesis behind this aim was that the intergration of self-cleavable tags and PhaC 

synthase mediated PHA bead display platform would simplify the production and 

purification of recombinant proteins. 

 

The second aim of this research was to design PHA beads as affinity resins carrying non-

antibody ligands useful for biomolecular separation and detection, and was achieved by 

the following objectives: 

 

1. Determine whether a lysozyme recognising OBody ligand can be immobilised on 

PHA beads and used for lysozyme separation 

 

To this end, the coding region for lysozyme-recognising OBody ligand was fused to the 

phaC gene, and co-transformed with phaAB genes into E. coli cells to assess the 

production of bead fusion proteins, as well as the lysozyme separation usage of the 

resulting OBody beads as affinity resins.  

 

2. Determine whether a progesterone recognising OBody ligand can be immobilised 

on PHA beads and used for progesterone detection 

 

The coding region for two progesterone (P4)-recognising OBody ligands was each fused 

to the phaC gene, and respectively co-transformed with phaAB genes into E. coli cells to 

assess the production of bead fusion proteins, as well as the P4 detection usage of the 
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resulting OBody beads as affinity resins. Parameters such as P4 binding capacity and P4 

binding affinity were carefully investigated.  

 

The hypothesis behind this aim was that the immoblisation of OBody ligands on PHA 

beads would  maintain the functionality of respective OBody ligands in separation and 

detection of industrially important biomolecules . 
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Chapter 2: Materials and Methods 

 

2.1 Bacterial strains and plasmids 

 

The Escherichia coli strains and plasmids used in this study are listed in Tables 2.1 and 

2.2 below. 

 

2.1.1 E. coli strains 

 

Table 2.1 E. coli strains used in this study 

Strain Genotype * References 

XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 
[F’ proAB lacIqZ∆M15 Tn10 (Tetr)] 

Stratagene, La Jolla, 
USA 

BL21 (DE3) F- dcm ompT hsdS (rB
- mB

-) gal λ(DE3) Novagen, Madison, 
USA 

SHuffle® T7 
express 

fhuA2 lacZ::T7 gene1 [lon] ompT ahpC gal 
λatt::pNEB3-r1-cDsbC (SpecR, lacIq) ΔtrxB sulA11 
R(mcr-73::miniTn10--TetS)2 [dcm] R(zgb-210::Tn10 
--TetS) endA1 Δgor ∆(mcrC-mrr)114::IS10 

New England BioLabs 
(NEB), Hitchin, UK 

* Tetr, tetracycline resistance. 

 

XL1-Blue was used for plasmid propagation, BL21 (DE3) was used for standard bead 

production, and SHuffle® T7 express was used for bead production where a target protein 

contains disulphide bond.  

 

2.1.2 Plasmids 

 

Table 2.2 Plasmids used in this study 

Plasmid Description* Sources or references 
Plasmid for expression of PhaC-sortase or PhaC-sortase-LPETG-target protein fusions 
pET14b Ampr; T7 promoter Novagen 
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Plasmid Description* Sources or references 
pETCa pET14b derivative encoding PhaC (Peters & Rehm 2008) 
pMCS69b Cmr; pBBR1MCS derivative encoding 

PhaA and PhaB 
(Amara & Rehm 2003) 

pMCS69Eb   pBBR1MCS derivative encoding Erv1p 
in addition to PhaA and PhaB 

Iain Hay 

pET14b:phaC-linker-MalE pET14b derivative encoding PhaC-linker-
MalE 

(Jahns & Rehm 2009) 

pET14b-PhaC-SrtAa pET14b derivative encoding PhaC-linker-
SrtAΔN59 

This study 

pET14b-PhaC-SrtA-TNFαa pET14b derivative encoding PhaC-linker-
SrtA ΔN59-LPETG-TNFα 

Iain Hay 

pET14b-PhaC-SrtA-
IFNα2ba 

pET14b derivative encoding PhaC-linker-
SrtAΔN59-LPETG-IFNα2b 

Iain Hay 

   
Plasmid for expression of PhaC-intein-target protein fusions 
pTWIN1 Ampr; pBR322 derivative encoding two 

mini-inteins (Ssp DnaB and Mxe Gyr) 
NEB 

pET14b Ampr; T7 promoter Novagen 
pMCS69b Cmr; pBBR1MCS derivative encoding 

PhaA and PhaB 
(Amara & Rehm 2003) 

pMCS69Eb pBBR1MCS derivative encoding Erv1p 
in addition to PhaA and PhaB 

Iain Hay 

pET14b-PhaC-linker-ZZ pET14b derivative encoding PhaC-linker-
ZZ 

(Jahns et al. 2013) 

pET14b-ZZ(−)PhaC pET14b derivative encoding ZZ-PhaC  (Brockelbank et al. 2006) 
pET14b-PhaC-linker-GFP pET14b derivative encoding PhaC-linker-

GFP  
(Jahns & Rehm 2009) 

pPOLY-C-phaC-rv1626 pET14b derivative encoding PhaC-
RV1626  

(Rubio Reyes et al. 2016) 

pET14b-PhaC-SrtA-TNFα pET14b derivative encoding human 
TNFα 

Iain Hay 

pET14b-PhaC-SrtA-
IFNα2b 

pET14b derivative encoding human 
IFNα2b 

Iain Hay 

pET14b-PhaC-SrtA-G-CSF pET14b derivative encoding human G-
CSF 

Iain Hay 

pET14b-PhaC-Intein-GFPa pET14b derivative encoding PhaC-Intein-
GFP   

This study 

pET14b-PhaC-Intein-
Rv1626a 

pET14b derivative encoding PhaC-Intein-
Rv1626  

This study 

pET14b-PhaC-Intein-ZZa pET14b derivative encoding PhaC-Intein-
ZZ  

This study 

pET14b-PhaC-Intein-
TNFαa 

pET14b derivative encoding PhaC-Intein-
TNFα 

This study 

pET14b-PhaC-Intein-
IFNα2ba 

pET14b derivative encoding PhaC -
Intein-IFNα2b 

This study 

pET14b-PhaC-Intein-G-
CSFa 

pET14b derivative encoding PhaC -
Intein-GCSF 

This study 
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Plasmid Description* Sources or references 
   
Plasmid for expression of fusion proteins between PhaC and lysozyme binding OBody  
pET14b Ampr; T7 promoter Novagen 
pETCa pET14b derivative encoding PhaC (Peters & Rehm 2008) 
pMCS69b Cmr; pBBR1MCS derivative encoding 

PhaA and PhaB 
(Amara & Rehm 2003) 

pProEx HTb-L200EP-06 Ampr; pProEx HTb derivative encoding 
OBody L200EP-06 

(Steemson 2011) 

pET14b-GFP-PhaC pET14b derivative encoding GFP-PhaC (Jahns et al. 2013) 
pET14b-PhaC-linker-SG 
linker-GFP 

pET14b derivative encoding PhaC-linker-
SG linker-GFP  

(Jahns & Rehm 2009) 

pET14b-O6-PhaCa pET14b derivative encoding OBody 
L200EP-06-PhaC 

This study 

pET14b-PhaC-O6a pET14b derivative encoding PhaC-linker-
SG linker-OBody L200EP-06 

This study 

   
Plasmid for expression of fusion proteins between PhaC and progesterone binding OBody 
pET14b Ampr; T7 promoter Novagen 
pETCa pET14b derivative encoding PhaC  (Peters & Rehm 2008)  
pMCS69b Cmr; pBBR1MCS derivative encoding 

PhaA and PhaB 
(Amara & Rehm 2003) 

pProEx-B7 Ampr; pProEx derivative encoding 
OBody B7 

Vickery Arcus 

pET14b-GFP-PhaC pET14b derivative encoding GFP-PhaC (Jahns et al. 2013) 
pPOLY-N pETC derivative containing NdeI, XmaI, 

SmaI andSpeI sites upstream of phaC 
(Hay et al. 2014) 

pPOLY-C pETC derivative containing containing 
StuI, XhoI, XmaI, SmaI and BamHI sites 
downstream of phaC 

(Hay et al. 2014) 

pET14b-PhaC-D7a pET14b derivative encoding PhaC-
OBody P4013-D7  

This study 

pET14b-3xD7-PhaCa pET14b derivative encoding 3xOBody 
P4013-D7-PhaC 

This study 

pET14b-3xD7-PhaC-D7a pET14b derivative encoding 3xOBody 
P4013-D7-PhaC-OBody P4013-D7 

This study 

pET14b-D7-PhaCa pET14b derivative encoding OBody 
P4013-D7-PhaC 

This study 

pET14b-B7-PhaCa pET14b derivative encoding OBody B7-
PhaC 

This study 

pET14b-3xB7-PhaCa pET14b derivative encoding 3xOBody 
B7-PhaC 

This study 

a Plasmid A encoding the PHA synthase PhaC or PhaC fusions necessary for PHA polymerisation.  
b Helper plasmid B encoding PhaA (β-ketothiolase) and PhaB (acetoacetyl-CoA reductase) preparing R-

(3)-hydroxybutyryl-CoA substrate required for PhaC to produce PHA; or additionally encoding Erv1p 

(sulfhydryl oxidase) helpful for disulphide bond formation.  
* Ampr, Ampicillin resistance;  * Cmr, chloramphenicol resistance.  



35 
 

 

2.2 Medium and cultivation conditions 

 

2.2.1 E. coli growth medium 

 

Two types of E. coli growth media were used in this study. Luria-Bertani (LB) medium 

was used for plasmid propagation and standard bead production. Terrific Broth (TB) 

medium was used for shorter periods of bead production to minimize premature cleavage 

of intein or sortase caused by cytosolic H+ or Ca2+ level. This is because TB, as compared 

to LB, contains increased concentrations of peptone and yeast extract such that sufficient 

amount of cell biomass and beads could be accumulated in shorter periods; and TB also 

contains a medium pH buffer solution which could counteract media acidification and the 

cytosolic pH drop effect that occurs during cell cultivation. 

 

All media were autoclaved at 121°C for 20 min. Unless stated, all supplements were 

sterilised either by autoclaving or filtration through a 0.22 µm filter before being added 

to sterile autoclaved media. 

 

2.2.1.1 Luria-Bertani (LB) medium 

 

LB medium was prepared by adding 20 g of LB (Lennox) powder (Acumedia, Lansing, 

USA) per litre of distilled water. 

 

LB-agar medium was made by adding 16 g of agar (Acumedia) per litre of LB medium. 
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2.2.1.2 Terrific Broth (TB) medium 

 

TB medium was prepared by adding 12 g of tryptone (BD, Franklin Lakes, USA), 24 g 

of yeast extract (Merck, Kenilworth, USA) and 4 ml of glycerol (Thermo Fisher 

Scientific, Waltham, USA) per 900 ml of distilled water. 

 

Then before use, 100 mL of sterile medium pH buffer solution was added; this was either 

10×phosphate buffer (0.17 M KH2PO4, 0.72 M K2HPO4, pH 7.4) for production of beads 

displaying PhaC-sortase or PhaC-sortase-LPETG-target protein fusions, or 10×HEPES 

(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)) buffer (250 mM, pH 8.6) for 

production of beads displaying PhaC-intein-target protein fusions. 

 

2.2.2 E. coli cultivation conditions 

 

E. coli cultivation conditions such as antibiotic addition, IPTG (isopropyl-β-D-

thiogalactopyranoside) induction, glucose supplementation, growth temperature and 

incubation time were as described below.   

 

2.2.2.1 Antibiotic, IPTG and glucose stocks and working concentrations 

 

Antibiotics solutions used in this study are listed in Table 2.3. All solutions were prepared 

as previously described (Hay et al. 2014) and were passed through a 0.22 µm filter for 

sterilization, aliquoted and stored at -20°C for further use. Addition of antibiotics into 

autoclaved LB-agar media was done after cooling down the media to approximately 

50°C. 
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Table 2.3 Antibiotic, IPTG and glucose stocks and working concentrations 

Antibiotic Stock solution 
Working concentration           
(dilution from stock solution) 

Ampicillin Sodium salt                            
(Applichem, Darmstadt, Germany) 100 mg/ml in Milli-Q water 100 μg/ml (1:1000) 

Chloramphenicol                                           
(Gold Biotechnology St. Louis, USA) 50 mg/ml in 100% EtOH 50 μg/ml (1:1000) 

Tetracycline (Sigma, St. Louis, USA) 12.5 mg/ml in 70% EtOH 12.5 μg/ml (1:1000) 

IPTG (Gold Biotechnology) 1 M in Milli-Q water 1 mM (1:1000) 

Glucose (Merck) 25% w/v in Milli-Q water 1% (1:25) 

 

2.2.2.2 Cultivation conditions for plasmid propagation 

 

E. coli strains containing plasmids (Table 2.2) were grown overnight at 37°C in an 

incubator oven on LB-agar plates (2.2.1.1, supplemented with antibiotics as appropriate 

(Table 2.3)), or in shaken (200 rpm) Erlenmeyer flasks containing about 1/5 flask volume 

of liquid LB medium (with antibiotics as appropriate), as previously described 

(Blatchford et al. 2012).  

 

2.2.2.3 Cultivation conditions for bead production 

 

For standard bead production, overnight pre-cultures were prepared similarly as 

mentioned above for plasmid propagation in liquid LB medium (2.2.2.2). Then sufficient 

amount of the resulting overnight pre-cultures were inoculated into 1 litre of LB media 

(2.2.1.1) supplemented with 1% w/v glucose and antibiotics as appropriate (in 5 litre 

Erlenmeyer flasks) to give main cultures with a starting OD600 of 0.1. The main cultures 

were grown at 37°C for about 3 h to reach an OD600 of 0.5 to 0.8, induced with 1 mM 

IPTG, and allowed to grow at 25°C for additional 45 h, as previously described (Hay et 

al. 2014).  
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For production of beads displaying PhaC-sortase or PhaC-sortase-LPETG-target protein 

fusions, similar conditions were used, except that main cultures were grown in TB media 

with 1×phosphate buffer as medium pH buffer solution (2.2.1.2), and after IPTG 

induction allowed to grow only for additional 20 h.   

 

For production of beads displaying PhaC-intein-target protein fusions, similar conditions 

were used, except that main cultures were grown in TB media with 1×HEPES buffer as 

medium pH buffer solution (2.2.1.2), and after IPTG induction allowed to grow for 

additional 20 h at 22°C (to avoid premature intein cleavage at 25°C which is the optimum 

temperature for intein activity). In addition, in order to counteract media acidification and 

the cytosolic pH drop effect that occurs during cell cultivation, an extra 25 mM HEPES 

(pH 8.6) was added manually every 3 h for the first 12 h. 

 

2.2.3 Short and long term storage of E. coli strains  

 

For short term storage of E. coli strains, overnight cultures as described in 2.2.2.2 were 

streaked onto LB-agar plates (with antibiotics as appropriate). After an overnight 

incubation at 37°C, the plates were sealed with Parafilm and stored at 4°C for up to one 

month. 

 

For long term storage of E. coli strains, 1 ml of the overnight culture from liquid LB 

medium (2.2.2.2) was mixed with 70 μl of sterile dimethylsulfoxide (DMSO) in a 2 ml 

cryovial tube and stored at -80°C. To revive E. coli strains, a small chip of frozen stock 

was removed via a sterile pipette tip and inoculated into sterile liquid LB medium 

(2.2.1.1) containing appropriate antibiotics.  
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2.3 Preparation of chemically competent E. coli cells  

 

Competent E. coli cells were prepared as described elsewhere (Hanahan 1983). 50 ml of 

liquid LB medium (2.2.1.1) was inoculated with 0.5 ml inoculum of an overnight culture 

and incubated at 37°C for 2-3 h until the OD600 reached approximately 0.3-0.5. The cell 

culture was left on ice for about 15 min and then harvested by centrifugation at 8,000×g 

for 15 min. The cell pellets were re-suspended in 16 ml of cold RF1 solution and left on 

ice for 30 min. Cells were spun again at 8,000×g for 15 min and then re-suspended in 4 

ml of cold RF2 solution. Finally, 200 μl aliquots of the resulting competent cells were 

transferred into 1.5 ml sterile microcentrifuge tubes, snap frozen in liquid nitrogen and 

stored at -80°C for future use. The recipes for RF1 and RF2 solutions are detailed as 

below, and both were sterilized by filtration through a 0.22 μm filter: 

 

RF1 solution:  

100 mM RbCl, 50 mM MnCl2, 30 mM KAc, 10 mM CaCl2·6H2O, pH 5.8 adjusted with acetic acid. 

RF2 solution:  

10 mM RbCl, 10 mM MOPS, 75 mM CaCl2·6H2O, 15 mM Glycerol, pH 5.8 adjusted with NaOH. 

 

2.4 DNA manipulation and molecular cloning 
 

2.4.1 Polymerase chain reaction (PCR) 

 

PCR was used to amplify target DNA fragments either for verification (standard PCR) or 

subcloning (high fidelity PCR) (Sambrook et al. 1989). All PCRs were performed in 200 
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µl PCR vials and stored at -20°C for further use. Sequences of PCR primers are provided 

in Table 2.4. 

 

Table 2.4 PCR primers used in this study 

Primer name Sequence from 5’ to 3’ (with restriction site underlined) Used for  

Primer for standard PCR or DNA sequencing 

5pET14b GTAGTAGGTTGAGGCCGTTGA Insert verification  

N-phaC_R CGATCTTGACGCCTGCCAGC Insert verification  

C-phaC_F AGCCACTGGACTAACGATGC Insert verification  

T7_terminator GCTAGTTATTGCTCAGCGG Insert verification  

T7_promoter TAATACGACTCACTATAGGG Insert verification  

M13_F CCCAGTCACGACGTTGTAAAACG Insert verification  

M13_R AGCGGATAACAATTTCACACAGG Insert verification  

   

Primer for high fidelity PCR  

O6_SpeI_F CCGACTAGTGTGTATCCTAAAAAGACCCACTGGACC pET14b-O6-PhaC  

O6_SpeI_R ATAACTAGTGTCTATTGGAAGCGGCTTGGCCTTG pET14b-O6-PhaC 

O6_SmaI_F   GATACCCGGGGTGTATCCTAAAAAGACCCACTGGACC pET14b-PhaC-O6 

O6_BamHI_R TATGGATCCGTCTATTGGAAGCGGCTTGGCCTTG pET14b-PhaC-O6 

D7_ SpeI_F TCACTAGTATGGCTACGCATTGGACC pET14b-D7-PhaC 

D7_ SpeI_R AGACTAGTATGGTGATGGTGGTGGTG pET14b-D7-PhaC 

B7_NdeI_F TTCATATGGCCACCCACTGGACC pET14b-B7-PhaC 

B7_SpeI_R AGACTAGTATGGTGATGGTGGTGGTGTTCCAGAGCGG
CAGCGTCTATTGGAAGCGGC 

pET14b-B7-PhaC 

 

2.4.1.1 Standard PCR 

 

Standard PCR was performed with Taq DNA polymerase (Fisher Scientific International, 

Pittsburgh, USA). The reaction mixture (per 100 μl) contained 10 μl of 10×Taq reaction 

buffer without MgCl2, 10 μl of MgCl2 (at 25 mM), 5 μl of DMSO; 10 μl of each primer 

(10 pmoles/μl), 10 μl of dNTPs (10 mM of dATP, dTTP, dCTP and dGTP), 5-10 ng of 

template DNA and 1 μl of Taq polymerase. The following conditions were used: one 

cycle at 94°C for 2 min (for hot start); 35 cycles at 94°C for 30 s (for denaturing), 45-

68°C (generally 5°C below the lowest Tm of the primer pair) for 30 s (for annealing) and 
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72°C for 1 min per kb (for extension); one cycle at 72°C for 10 min (for completion of 

extension). 

 

2.4.1.2 High fidelity PCR 

 

For high fidelity PCR, the hot start Platinum® Pfx DNA polymerase (Invitrogen, Carlsbad, 

USA) was used. The reaction mixture (per 100 μl) contained 10 μl of 10×Pfx reaction 

buffer, 10 μl of MgSO4 (at 25 mM), 10 μl of PCR enhancer buffer; 10 μl of each primer 

(10 pmoles/μl), 10 μl of dNTPs (10 mM of dATP, dTTP, dCTP and dGTP), 5-10 ng of 

template DNA and 1 U of Pfx polymerase. The following conditions were used: one cycle 

at 94°C for 2 min (for hot start); 30 cycles at 94°C for 15 s (for denaturing), 45-68°C 

(generally 5°C below the lowest Tm of the primer pair) for 30 s (for annealing) and 68°C 

for 1 min per kb (for extension); one cycle at 68°C for 10 min (for completion of 

extension). 

 

2.4.2 Plasmid isolation and quantification 

 

For plasmid isolation, 3-5 ml of overnight E. coli cultures (2.2.2.2) were collected by 

centrifugation at 8000×g for 1 min, and plasmid isolation was performed by alkaline lysis 

and extraction using the High Pure Plasmid Isolation Kit (Roche, Basel, Switzerland) 

according to the manufacturer’s instructions. 

 

Plasmids were quantified using a NanoDrop 1000 (Thermo Scientific, Waltham, USA) 

according to the manufacturer’s instructions. 
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2.4.3 DNA digestion with restriction endonucleases  

 

DNA digestion were performed according to laboratory protocols (Sambrook et al. 1989).  

Generally, 1-5 µg of plasmid DNA was digested at 37°C (or 25°C in rare cases) for 2 h 

with 20 U of restriction endonucleases purchased from Roche, Invitrogen or NEB. Double 

restriction enzyme digestion could be performed in a single reaction in compatible buffers 

(ideally 100% activity for both enzymes) at a temperature of choice; otherwise, a stepwise 

enzyme digestion was necessary due to different optimum temperature or buffer 

conditions. In that case, DNA Clean and Concentrator Kit (Zymo Research, Irvine, USA) 

was applied according to the manufacturer’s instructions to recover enough digested 

DNA product from the first enzyme digestion reaction.  

 

2.4.4 Agarose gel electrophoresis and gel purification of DNA fragment 

 

Separation of DNA fragments was achieved with agarose gel electrophoresis (AGE) 

(Sambrook et al. 1989). Typically, 1-3% agarose gels were made in 1×TBE Buffer (50 

mM Tris-HCl, 50 mM Boric acid, 2.5 mM EDTA (Ethylenediaminetetraacetic acid), pH 

8.0) depending on fragment sizes being separated (1% for DNA fragments >1000 bp, 2% 

for DNA fragments <1000 bp and 3% for DNA fragments <100 bp).  DNA samples were 

mixed with 6×loading dye (60% (v/v) glycerol, 20 mM Tris-HCl pH 8.0, 60 mM EDTA, 

0.03% (w/v) bromophenol blue, 0.03% (w/v) xylene cyanol FF) prior to well loading, 

along with a suitable molecular size standard. Gel electrophoresis was run in 1×TBE 

buffer at about 100-150 V for 30-60 min depending on the gel electrophoresis chamber 

(5-8 V/cm of the distance between anode and cathode) and degree of separation required. 

Gels were stained for about 30 min in ethidium bromide solution (2 µg/ml) and destained 
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for 1 min in distilled water. Gels were visualised using a UV transilluminator (Bio-Rad, 

Gel DocTM EZ system, Hercules, USA).  

 

In order to extract and purify specific PCR products or restriction digest fragments, SYBR 

safe DNA gel stain (Invitrogen) was used according to manufacturer’s instructions. 

Corresponding DNA bands were excised from gels using sterile scalpel blades under blue 

light (Safe Imager™ 2.0 Transilluminator, Invitrogen). The gel slice was transferred to a 

clean microcentrifuge tube, and the DNA fragment purified using the ZymocleanTM Gel 

DNA Recovery Kit (Zymo Research) according to the manufacturer’s instructions.  

 

2.4.5 DNA ligation  

 

Desired inserts and vectors were digested with appropriate restriction endonucleases 

(2.4.3) and gel purified (2.4.4). For ligation (Sambrook et al. 1989), inserts were 

combined with vectors in a 3:1 molar ratio, together with 1 µl of T4 DNA ligase 

(Invitrogen), and 3 µl of 5×DNA ligase buffer in a final volume of 15 µl. The reaction 

mixture was incubated overnight at 4°C (or at room temperature for 2 h).  

 

2.4.5.1 A-tailing 

 

Where pGEM-T Easy vector (Promega, Madison, USA), an intermediate cloning vector, 

was necessary for AT ligation with a PCR product generated by a proofreading DNA 

polymerase, the PCR product was first A-tailed by Taq DNA polymerase to facilitate the 

cloning (Trower & Elgar 1996). The PCR product was first gel purified (2.4.4) and then 

incubated at 72°C for 30 min with 0.5 µl of Taq DNA polymerase, 1 µl of 10×Taq reaction 

buffer without MgCl2, 1 μl of MgCl2 (at 25 mM), and 0.2 mM dATP in a final volume of 
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10 µl. An aliquot of the A-tailed PCR product was then incubated overnight at 4°C (or at 

room temperature for 2 h) with 0.5 µl pGEM-T Easy vector, 5 µl pGEM-T Easy 2×ligase 

buffer and 1 µl pGEM-T Easy ligase in a final volume of 10 µl. 

 

2.4.5.2 Alkaline phosphatase treatment of vectors 

 

To prevent re-ligation of linearized plasmids created by restriction endonucleases (2.4.3), 

Antarctic phosphatase (NEB) was used according to manufacturer’s instructions for the 

removal of the 5’ phosphate group.  

 

2.4.6 Transformation of E. coli cells 

 

The transformation of E. coli cells has been described elsewhere (Sambrook et al. 1989). 

200 µl aliquots of frozen E. coli competent cells (2.3) were thawed on ice before the 

addition of 1-3 µl of purified plasmid DNA or 7.5 µl ligation mix, tapped briefly and left 

on ice for 45 min. Cells were heat-shocked at 42°C for 90 s then immediately put back 

on ice for 5 min. 800 µl of liquid LB media was added and cells were incubated at 37°C 

with shaking (200 rpm) for 1 h. 100 µl of the cells were spread onto a LB-agar plate 

containing selective antibiotics as required and, once dry, the plate was incubated 

overnight at 37°C.   

 

2.4.7 DNA sequencing 

 

DNA sequencing of recombinant plasmids was performed by the Massey University 

Genome Service using a capillary ABI3730 Genetic Analyzer (Applied Biosystems Inc.). 

DNA sequencing samples were prepared in sterile 0.2 ml thin-walled PCR tube (Axygen, 
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Union City, USA) containing 400 ng of DNA template and 4 pmols of sequencing primer 

(Table 2.4) in a final volume of 20 μl. Sequence data were assembled and analysed by 

Vector NTI Advance® 11.5.3 (Invitrogen). 

 

2.4.8 Preparation of plasmid constructs for this study 

 

Plasmids for expression of PhaC-sortase or PhaC-sortase-LPETG-target protein fusions 

were prepared as below: 

 

In order to test whether Class A sortase from Staphylococcus aureus could be functionally 

immobilised on PHA beads, its catalytic region (namely the coding region minus the N-

terminal membrane anchor region) (Ilangovan et al. 2001) (amino acids 60-206, GenBank 

accession number WP_053875978) (SrtAΔN59) was codon optimised against E. coli and 

synthesized by Genscript (Piscataway, USA) with flanking XhoI and BamHI sites. The 

product was digested with XhoI and BamHI and ligated into the corresponding sites on 

the plasmid pET14b-phaC-linker-MalE (Jahns & Rehm 2009), resulting in the plasmid 

pET14b-PhaC-SrtA as shown in Figure 7.1, Appendix 7.1.  

 

Plasmids pET14b-PhaC-SrtA-TNFα and pET14b-PhaC-SrtA-IFNα2b (as respectively 

shown in Figure 7.2 and 7.3, Appendix 7.1) were constructed by Iain Hay for 

corresponding therapeutic protein purification via self-cleavage of sortase displayed on 

bead surface. The tnfα gene encodes a soluble form of human tumour necrosis factor alpha 

(TNFα) (amino acids 77-233, GenBank accession number NP_000585) and the ifnα2b 

gene encodes human interferon alpha 2b (IFNα2b) without signal peptide (amino acids 

24-188, GenBank accession number NP_000596). 
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Plasmids for expression of PhaC-intein-target protein fusions were prepared as below: 

 

This group of plasmids was designed for corresponding target protein purification via 

self-cleavage of intein displayed on bead surface.  

 

For plasmid pET14b-PhaC-Intein-GFP as shown in Figure 7.4, Appendix 7.1, the phaC 

gene flanked by XbaI and NdeI sites was excised from plasmid pET14b-PhaC-linker-GFP 

(Jahns & Rehm 2009) and inserted into the corresponding XbaI and NdeI sites on the 

plasmid pTWIN1 (NEB); then the resulting phaC-intein fusion gene between XbaI and 

XhoI sites was excised and ligated back into the corresponding XbaI and XhoI sites of the 

original plasmid pET14b-PhaC-linker-GFP. The gfp gene encodes green fluorescent 

protein (GFP) minus the starting methionine from Aequorea victoria (amino acids 2-238, 

GenBank accession number P42212). 

 

Then, for plasmid pET14b-PhaC-Intein-RV1626 as shown in Figure 7.5, Appendix 7.1, 

the rv1626 gene flanked by XhoI and BamHI sites was excised from plasmid pPOLY-C-

phaC-Rv1626 (Rubio Reyes et al. 2016) and inserted into the corresponding XhoI and 

BamHI sites of plasmid pET14b-PhaC-Intein-GFP. The rv1626 gene encodes a full length 

putative transcriptional antiterminator Rv1626 from Mycobacterium tuberculosis (amino 

acids 1-205, GenBank accession number 1S8N_A). 

 

Similarly, for plasmid pET14b-PhaC-Intein-ZZ as shown in Figure 7.6, Appendix 7.1, 

the zz coding region flanked by XhoI and BamHI sites was excised from plasmid pET14b-

PhaC-linker-ZZ (Jahns et al. 2013) and inserted into the corresponding XhoI and BamHI 

sites of plasmid pET14b-PhaC-Intein-GFP. The zz coding region encodes a synthetic IgG 
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binding ZZ domain of protein A derived from Staphylococcus aureus (amino acids 1-58, 

GenBank accession number M74186). 

 

To construct plasmid pET14b-PhaC-Intein-TNFα as shown in Figure 7.7, Appendix 7.1, 

the tnfα gene-containing plasmid pET14b-PhaC-SrtA-TNFα was first digested by AgeI 

and self-ligated to remove the phaC-srtA part; then the resulting plasmid was digested by 

NcoI, at which site a phaC-intein fragment flanked by NcoI sites (resulted from NcoI 

digestion of pET14b-PhaC-Intein-GFP) was inserted.  

 

Similarly, for plasmid pET14b-PhaC-Intein-IFNα2b as shown in Figure 7.8, Appendix 

7.1, the ifnα2b gene-containing plasmid pET14b-PhaC-SrtA-IFNα2b was digested by 

AgeI and self-ligated to remove the phaC-srtA part; then the resulting plasmid was 

digested by NcoI, at which site a phaC-intein fragment flanked by NcoI (resulted from 

NcoI digestion of pET14b-PhaC-Intein-GFP) was inserted.  

 

While for plasmid pET14b-PhaC-Intein-G-CSF as shown in Figure 7.9, Appendix 7.1, a 

g-csf gene-containing fragment flanked by AgeI restriction recognition sites was digested 

from pET14b-PhaC-SrtA-G-CSF (prepared by Iain Hay), and ligated with a phaC-intein 

fragment flanked also by AgeI sites (resulted from AgeI digestion of pET14b-PhaC-

Intein-TNF). The g-csf gene encodes a short isoform of human granulocyte colony-

stimulating factor (G-CSF) without signal peptide or VSE after the QEKL residue (amino 

acids 31-65 and 69-207, GenBank accession number NP_000750).  

 

Plasmids for expression of fusion proteins between PhaC and lysozyme binding OBody 

were prepared as below: 
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This group of plasmids was designed to produce beads displaying OBodies that can be 

used for affinity purification of hen white egg lysozyme.  

 

Plasmid pProEx Htb-L200EP-06 (Steemson 2011) harbouring a coding region for a 

lysozyme binding OBody L200EP-06 (abbreviated as O6 hereinafter) (a synthetic peptide 

that was engineered based on OB-fold domain of aspartyl-tRNA synthetase (aspRS) from 

Pyrobaculum aerophilum, with amino acid sequence shown in Figure 7.10, Appendix 

7.1) was used as a template for high fidelity PCR (2.4.1.2). The PCR product obtained 

using primer set O6_SpeI_F / O6_SpeI_R (Table 2.4) was digested with SpeI and ligated 

into the corresponding SpeI site of pET14b-GFP-phaC (Jahns et al. 2013) to obtain 

pET14b-O6-PhaC as shown in Figure 7.11, Appendix 7.1. The PCR product obtained 

using primer set O6_SmaI_F / O6_BamHI_R (Table 2.4) was digested with SmaI and 

BamHI, and ligated into the corresponding sites of pET14b-phaC-linker-SG linker-GFP 

(Jahns & Rehm 2009) to obtain pET14b-PhaC-O6 as shown in Figure 7.12, Appendix 

7.1.  

 

Plasmids for expression of fusion proteins between PhaC and progesterone (P4) binding 

OBody were prepared as below: 

 

This group of plasmids was designed to produce beads displaying OBodies that have 

affinity towards P4 thus can be used for P4 detection. 

 

Coding region for a P4 binding OBody P4013-D7 (abbreviated as D7 hereinafter) (a 

synthetic peptide that was engineered based on OB-fold domain of aspRS from P. 

aerophilum, with amino acid sequence information from the collaborator (Vickery Arcus 

and the company OBodies Limited (Hamilton, New Zealand)) as shown in Figure 7.13, 
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Appendix 7.1) was codon optimised against E. coli and synthesized by Genscript with 

flanking XhoI and BamHI sites. The product was digested with XhoI and BamHI and 

ligated into the corresponding sites on the plasmid pPOLY-C (Hay et al. 2014), resulting 

in the plasmid pET14b-PhaC-D7 as shown in Figure 7.14, Appendix 7.1. 

 

This plasmid pET14b-PhaC-D7 was then used as a template for high fidelity PCR (2.4.1.2) 

using primer set D7_SpeI_F / D7_SpeI_R (Table 2.4). The resulting PCR product was 

digested with SpeI and ligated into the corresponding SpeI site of pET14b-GFP-phaC 

(Jahns et al. 2013) with an intention to obtain plasmid pET14b-D7-PhaC. Unexpectedly, 

a plasmid pET14b-3xD7-PhaC with a triplet insertion as shown in Figure 7.15, Appendix 

7.1 was obtained. This was mistaken as a normal single insertion due to poor preliminary 

sequencing result (covering the restriction site and a further 200 bp or so from each 

direction) and further cloning work was continued based on it. 

 

Then plasmid pET14b-3xD7-PhaC was digested with XhoI and BamHI, and ligated with 

the XhoI and BamHI digested DNA fragment from Genscript product, resulting the 

plasmid pET14b-3xD7-PhaC-D7 as shown in Figure 7.16, Appendix 7.1. 

 

When later a single copy insertion was found necessary, pET14b-D7-PhaC as shown in 

Figure 7.17, Appendix 7.1 was obtained by ligating the SpeI digested PCR product as 

mentioned above with a SpeI digested pPOLY-N (Hay et al. 2014). 

 

When the coding region for a new generation of P4 binding OBody B7 (a synthetic 

peptide that was engineered based on OB-fold domain of aspRS from P. aerophilum, with 

amino acid sequence shown in Figure 7.18, Appendix 7.1) became available from plasmid 

pProEx-B7 (gifted by Vickery Arcus from Waikato University), primer set B7_NdeI_F / 
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B7_SpeI_R (Table 2.4) was designed to perform high fidelity PCR (2.4.1.2). The 

resulting PCR product was digested with NdeI and SpeI and ligated into the corresponding 

sites of pPOLY-N (Hay et al. 2014) so as to obtain plasmid pET14b-B7-PhaC as shown 

in Figure 7.19, Appendix 7.1.  

 

Furthermore, to prepare a counterpart plasmid for pET14b-3xD7-PhaC (harbouring a 

triplet coding regions of the first generation of P4 binding OBody P4013-D7), sequence 

coding for a triplet coding regions of the OBody B7 was synthesized by Genewiz (South 

Plainfield, USA) with flanking NdeI and SpeI sites. The product was digested with NdeI 

and SpeI and ligated into the corresponding sites on the plasmid pPOLY-N (Hay et al. 

2014), resulting in the plasmid pET14b-3xB7-PhaC as shown in Figure 7.20, Appendix 

7.1. 

 

All plasmids as mentioned above were subjected to DNA sequencing (2.4.7) which 

confirmed their sequences and maps to be as shown in Appendix 7.1. 

 

2.5 Fluorescence microscopy analysis of E. coli cells producing 

PHA beads and isolation of PHA beads   

 

E. coli cells for PHA bead production were cultured as described in 2.2.2.3.  Prior to cell 

harvesting and bead isolation, 1 ml of cell culture was sampled for Nile Red staining and 

fluorescence microscopy analysis in order to assess intracellular accumulation of PHA 

beads, as previously described (Blatchford et al. 2012).  
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2.5.1 Fluorescence microscopy analysis of cells producing PHA beads  

 

Cell pellets were collected by centrifugation at 6000×g for 1 min, then 1 ml of PBS buffer 

(137 mM NaCl, 2.7 mM KCl, 10.0 mM Na2HPO4, 1.76 mM KH2PO4, pH 7.4) and 10 µl 

of Nile Red solution (0.25 mg/ml in DMSO) were added and mixed thoroughly. The 

mixture was left in the dark at room temperature for 15 min. Then cells were pelleted 

again and washed once with 1 ml of PBS buffer. The resulting cell pellet was re-

suspended in 1 ml of PBS buffer, of which 3-4 µl was spotted onto a glass slide, and 

covered with a coverslip. The slide was examined using a fluorescent light microscope 

(Olympus BX51, Japan) with a PI-41005 filter (excitation = HQ 535/50, emission = HQ 

645/75) against Nile Red (excitation, 450-500 nm; emission > 528 nm) under 1000× 

magnification. For PHA beads carrying GFP (Green fluorescent protein) (excitation, 

395/475 nm; emission, 509 nm), a U-MNIB2 Filter (Excitation = 480/20, Emission = 

510LP) was also used for fluorescence microscopy. All images were captured using 

MagnafireTM 2.1 (Optronics International, Muskogee, USA). 

 

2.5.2 Isolation of PHA beads  

 

E. coli cells were harvested by centrifugation at 8000×g for 15 min, re-suspended via a 

homogenizer (MICCRA D-9 45132, Müllheim, Germany) to a 10% slurry in a tailored 

Lysis Buffer (as detailed below) based on a published patent application (Thompson et 

al. 2013), and then mechanically disrupted using a microfluidizer (Microfluidics M-110P, 

Westwood, USA). Beads were recovered by centrifugation at 6000×g for 30 min at 4°C 

then washed twice at 8000×g for 30 min with lysis buffer, and stored as a 20% (w/v) or 

200 mg/ml (w/v) slurry in Storage Buffer (as detailed below). 

 

https://www.youtube.com/watch?v=33IFTwpGZDg
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Lysis Buffer  

    for standard beads:  

 25 mM Tris-Cl, 5 mM EDTA, 0.04% (w/v) SDS, pH 9.0 

    for beads displaying PhaC-sortase-LPETG-target protein fusions: 

 50 mM Tris-Cl, 150 mM NaCl, 10 mM EDTA, 0.04% (w/v) SDS, pH 8.8 

Storage Buffer 

    for standard beads: 

 PBS, pH 7.4 

    for beads displaying PhaC-sortase-LPETG-target protein fusions: 

 50 mM Tris-Cl, 150 mM NaCl, 10 mM EDTA, pH 7.8 

    for beads displaying PhaC-intein-target protein fusions: 

 20 mM Tris, 500 mM NaCl, 1 mM EDTA, pH 8.6 

 

2.6 Protein manipulation and analysis 

 

In this section, analysis methods related to proteins (being immobilised on PHA beads, 

or cleaved off beads, or affinity purified by beads) are described.  

 

2.6.1 Cleavage of target proteins from isolated PHA beads 

 

For beads displaying PhaC-sortase-LPETG-target protein fusions or PhaC-intein-target 

protein fusions, after bead isolation according to 2.5.2, activation of the self-cleavage tags 

(sortase or intein) was performed as below in order to release target protein as soluble 

fractions.  

 

Before bead activation, 1 ml of the 20% bead slurry was placed into a pre-weighed 1.5 

ml tube, pelleted at 8000×g for 4 min, then washed with 1 ml of Urea Washing Buffer 

(detailed as below) three times to remove any residual impurities. The resulting pellet was 
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washed once with Pre-Cleavage Washing Buffer (detailed as below), weighed again, re-

suspended to a 40% slurry in Cleavage Buffer (detailed as below), and sonicated for 2 

min with Elmasonic S 15H unit (Elma Schmidbauer GmbH, Singen, Germany). The 

beads were incubated on a rotary mixer (Labnet Mini LabRoller, Edison, USA) for 16 h 

at either 37°C (for beads displaying PhaC-sortase-LPETG-target protein fusions) or 25°C 

(for beads displaying PhaC-intein-target protein fusions). To isolate the released soluble 

target protein, the mixture was centrifuged at 17,000×g for 10 min, and the supernatant 

was removed into a clean tube, and analysed by SDS-PAGE. Note that supernatant 

resulted from intein cleavage was neutralised with high pH Storage Buffer (2.5.2, but 

with a pH of 9.1) for beads displaying PhaC-intein-target protein fusions. For PhaC-

intein-GFP beads, after supernatant collection and bead sampling, the remaining post-

cleavage beads were re-suspended to a 40% slurry in Cleavage Buffer and subjected to a 

second round of cleavage.  In addition, for beads displaying PhaC-intein-therapeutic 

target protein fusions, an additional 0.2% v/v Tween 20 was included in the Cleavage 

Buffer to improve solubility of cleaved therapeutic target proteins. 

 

Urea Washing Buffer 

    for beads displaying PhaC-sortase-LPETG-target protein fusions: 

 50 mM Tris, 10 mM EDTA, 1 M urea, 2% v/v Triton X-100, pH 8.5 

    for beads displaying PhaC-intein-target protein fusions: 

 100 mM Tris, 5 mM EDTA, 1 M urea, 2% v/v Triton X-100, pH 8.6 

  

Pre-Cleavage Washing Buffer 

    for beads displaying PhaC-sortase-LPETG-target protein fusions: 

 50 mM Tris-Cl, 150 mM NaCl, 0.2% v/v Tween 20, pH 7.8 

    for beads displaying PhaC-intein-target protein fusions: 

 20 mM Tris, 500 mM NaCl, 1 mM EDTA, pH 6.0 
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Cleavage Buffer 

    for beads displaying PhaC-sortase-LPETG-target protein fusions: 

 50 mM Tris-Cl, 150 mM NaCl, 0.2% v/v Tween 20, 5 mM CaCl2, 10 mM 

triglycine, pH 7.8 

    for beads displaying PhaC-intein-target protein fusions: 

 20 mM Tris, 500 mM NaCl, 1 mM EDTA, pH 6.0 

 

2.6.2 Protein resolution and identification  

 

Sodium dodecylsulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) (Sambrook et 

al. 1989) was used to resolve proteins of interest, and western blotting or mass 

spectrometry was used to confirm their identity.  

 

2.6.2.1 SDS-PAGE 

 

The denaturing SDS-PAGE conditions used in this study were Bis-Tris (Bis(2-

hydroxyethyl)amino-tris(hydroxymethyl)methane) gel in combination with MOPS (3-

(N-morpholino) propanesulfonic acid) running buffer.  

 

2.6.2.1.1 Preparation of Bis-Tris gels 

 

Each Bis-Tris gel was prepared between two clean glass plates separated with a 1.0 mm 

integrated spacer (Mini PROTEAN® system, Bio-Rad). Each gel consisted of a lower 

separating gel layer (10-15% w/v) and an upper stacking gel layer (4% w/v), and was 

prepared from about 4.5 ml of separating gel mixture and about 1.5 ml of stacking gel 

mixture, respectively: 
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Separating gel mixture (5 ml) 

10% w/v 12% w/v 15% w/v  

1.43 ml 1.43 ml 1.43 ml 3.5×Bis-Tris gel buffer (1.25 M Bis-Tris, pH 6.5-

6.8) 

1.67 ml 2.00 ml 2.50 ml 30% Acrylamide/Bis solution 37.5:1 (Bio-Rad) 

1.90 ml 1.57 ml 1.07 ml Milli-Q water 

 

Approximately 3-5 mg of Na2SO3 were added while mixing the separating gel mixture in 

a beaker to prevent formation of air bubbles. The polymerisation reaction was started by 

the addition of 5 µl of N, N, N’, N’-tetramethylethyl-endiamine (TEMED) and 10 µl of 

ammonium persulfate (APS) (40% w/v). 4.5 ml of this solution was gently poured 

between the two glass plates with a 5 ml pipette tip and a layer of isopropanol (about 0.5 

ml) was immediately placed on top of the separating gel layer. The gel was left to set for 

0.5-1 hr.     

 

4% Stacking gel mixture (2 ml) 

0.57 ml 3.5×Bis-Tris gel buffer  

0.26 ml 30% Acrylamide/Bis solution 37.5:1 (Bio-Rad) 

1.17 ml Milli-Q water 

 

Once the separating gel had set, the isopropanol was washed out with distilled water. 

Similarly, 3-5 mg of Na2SO3 was added while mixing the stacking gel mixture in a beaker 

to degas, followed by the addition of 5 µl TEMED and 10 µl of APS (40% w/v) to start 

the polymerisation reaction. 1.5 ml of this solution was gently poured between the two 

glass plates with a 5 ml pipette tip on top of the separating gel layer and a comb was 

inserted for the formation of the wells and left to set for 30 min. 
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2.6.2.1.2 Preparation of protein samples and electrophoresis conditions 

 

For preparation of protein samples, 5 volumes of protein sample were mixed with 1 

volume of 6×SDS loading dye (0.375 M Tris, 12% SDS, 60% glycerol, 0.6 M 

dithiothreitol (DTT), 0.06% bromophenol blue, pH 6.8) in a 1.5 ml microcentrifuge and 

incubated on a heating block at 95°C for 10 min. The denatured sample was centrifuged 

at 17,000×g for 5 min before loading 2-20 µl as required into wells. Either Mark12TM 

Unstained Standard (2.5-200 kDa) (Novex®, InvitrogenTM, Thermo Fisher Scientific) or 

GangNam-STAINTM Prestained Protein Ladder (10-245 kDa) (iNtRON Biotechnology, 

Sungnam, Korea) were used as the molecular weight standards for protein size 

determination. 

 

Standard electrophoresis conditions were 15 mA through the stacking gel layer and 25 

mA through the separating gel layer until samples had reached the end of the gel. 

Electrode buffer (500 ml per gel) was prepared with 100 ml of 5×MOPS running buffer 

(250 mM MOPS, 250 mM Tris, 0.5% SDS and 5 mM EDTA) and 2.5 ml of 200×reducing 

agent (1 M sodium bisulphite).  

 

2.6.2.1.3 Protein staining and destaining 

 

After electrophoresis, the gel was carefully removed from the gel plate and transferred to 

staining solution (4 g of Coomassie blue R-250, 300 ml of ethanol, 100 ml of Acetic acid 

and 600 ml of distilled water) and stained for 15-30 min with slow shaking.     

 

After staining, the gel was rinsed with distilled water and left in destaining solution (of 

the same recipe for staining solution but without the dye) until protein bands were visible 
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and background colour removed. Gels were visualized using a Gel DocTM EZ system 

(Bio-Rad). 

 

2.6.2.2 Western blotting 

 

Protein bands separated by SDS-PAGE were transferred to a nitrocellulose membrane 

using an iBlot™ Dry Blotting System (Invitrogen) according to the manufacturer’s 

instructions. The membrane was blocked overnight at 4ºC with 2% w/v BSA in PBST 

(PBS, pH 7.4, 0.1% v/v Tween-20%, pre-filtered), and then washed with PBST (3×10 

min). The membrane was incubated with primary antibody (1:20,000 dilution) in PBST 

(with 1% w/v BSA) for 1 h at room temperature. After washing with PBST (3×10 min), 

the membrane was incubated with a horse radish peroxidase (HRP) conjugated secondary 

antibody (1:20,000 dilution) in PBST (with 1% w/v BSA) for 1 h at room temperature. 

After washing with PBST (3×10 min), the membrane was incubated with 2 ml of enhancer 

solution and 2 ml of peroxide solution from SuperSignal® West Pico Chemiluminescent 

Substrate kit (Thermo Scitentific) for 5 min at room temperature. After excess ECL 

solution was drained, the membrane was laminated between two plastic sheets, to which 

X-ray film (Kodak Cat# 165-1454, Rochester, USA) was exposed (10 s to 1 min) in a 

dark room. The film was then developed using an automated X-ray developer (ALLPRO 

Imaging, Melville, USA). 

 

2.6.2.3 Mass spectrometry  

 

Protein bands of interest separated by SDS-PAGE were subjected to an in-gel digestion 

with trypsin to obtain tryptic arginine-ending and / or lysine-ending peptide fragments 

(Shevchenko et al. 2006), before submitting for the in-house Liquid Chromatography 
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with tandem mass spectrometry analysis (LC-MS/MS) (Thermo QExactive Plus) which 

was kindly conducted by Trevor Loo. Briefly, it consisted of four major steps: gel 

destaining (with 50% v/v methanol in 50 mM ammonium bicarbonate (ABC) solution), 

reduction and alkylation of the cysteine / cystine residues (with 10 mM DTT in 50 mM 

ABC solution and 20 mM iodoacetamide in 50 mM ABC solution, respectively), tryptic 

cleavage of the protein (with 20 ng/µL trypsin (Sigma Proteomics grade T6567) in 50 

mM ABC solution) and extraction of the resulting peptides (collection of the overnight 

digestion mixture, as well as two extractions: once with 5% v/v formic acid in 50% v/v 

acetonitrile and once with 0.1% formic acid in 80% acetonitrile). 

 

2.6.3 Protein quantification  

 

Total protein concentration was measured by Bradford assay, while concentration in a 

specific protein band was determined by densitometry analysis. 

 

2.6.3.1 Bradford assay for total protein concentration 

 

A Bradford assay (Bradford 1976) was used to quantify protein either immobilised on or 

purified by PHA beads. 100 μl of serially diluted protein samples (or bead samples) were 

prepared in a low-binding flat bottom microtitre plate (Greiner Bio-One 655101, 

Frickenhausen, Germany) along with known BSA (bovine serum albumin) or IgG 

(immunoglobulin G, GE life sciences) standards. To each well containing a sample or 

standard, 200 μl of filtered Bradford reagent (Bio-Rad) was loaded and incubated for 5 

min in the dark at room temperature for colour development. After incubation, the 

absorbance was measured at 595 nm using an ELx808iu ultra microtiter plate reader 

(BIO-TEK Instruments Inc.). Protein concentrations in bead samples were determined by 

https://en.wikipedia.org/wiki/Redox
https://en.wikipedia.org/wiki/Alkylation
https://en.wikipedia.org/wiki/Extraction_(chemistry)
https://en.wikipedia.org/wiki/Peptide
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a standard curve prepared based on absorbance readings of known protein concentrations 

of BSA (0.05-0.4 mg/ml). 

 

2.6.3.2 Densitometry analysis for specific protein bands 

 

Densitometry was used to quantify a specific protein band based on a known BSA 

standard by analysing the SDS-PAGE gel image (2.6.2.1) through Image LabTM Software 

(Version 3.0, Bio-Rad) according to their user guide.  

 

2.6.4 Protein conformation / function assessment 

 

Enzyme-linked immunosorbent assay (ELISA) was performed to measure the specific 

recognition of a protein antigen by a corresponding antibody. A sortase assay was used 

to assess the function of sortase displayed on PHA beads, while different types of affinity 

binding assay were designed to demonstrate protein affinities for their corresponding 

ligands.  

 

2.6.4.1 ELISA 

 

As a general procedure, a high-binding flat bottom microtitre plate (Greiner Bio-One 

655061) was coated at 4°C overnight with 100 µl of serially diluted protein samples (or 

bead samples) along with proper negative / positive controls. The plate was washed three 

times with 370 μl of PBST (PBS, pH 7.4, 0.05% v/v Tween-20) and then blocked with 

3% w/v BSA in PBST or PBST for 1 h at room temperature. After washing three times 

with 370 μl of PBST, the plate was then incubated with primary antibody diluted as 

appropriate in 100 µl of PBS containing 1% BSA for 1 h at room temperature. After 
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washing three times with 370 μl of PBST, the plate was then incubated with HRP 

conjugated secondary antibody diluted as appropriate in 100 µl of PBS containing 1% 

BSA for 1 h at room temperature. After further washing, 100 μl of substrate, 

SIGMAFAST™ OPD (o-Phenylenediamine dihydrochloride) tablet (P9187, Sigma), as 

prepared according to manufacturer’s instructions, was added and incubated for 30 min 

at room temperature. The reaction was stopped by adding 50 μl of 1 N H2SO4, and the 

absorbance was measured at 490 nm on an ELx808iu ultra microtiter plate reader (BIO-

TEK Instruments Inc., Winooski, USA). Results were presented as optical density units 

at 490 nm. 

 

For ELISA using therapeutic target proteins, a smaller 80 µl system was used due to the 

insufficient quantities obtained. TBS (50 mM Tris-HCl, 150 mM NaCl, pH 7.8) was used 

as blank, TBST (TBS, pH 7.8, 0.05% v/v Tween 20) was used for washing, and TBS 

containing 1% BSA was used for dilution of primary and secondary antibodies. 

Respective protein standards and antibodies were all from Sino Biological Inc. (Beijing, 

China), namely human TNFα protein (10602-HNAE), TNFα Antibody Rabbit PAb 

(10602-T16), human G-CSF protein (10007-HNCE), G-CSF Antibody Rabbit PAb 

(10007-T16), human interferon alpha 2 protein (13833-HNAY) and IFNα2 antibody 

Rabbit PAb (13833-T16). Protein concentration used was 0.2 µg/ml for proteins cleaved 

from PHA beads, protein standards, as well as primary antibodies. Goat anti-rabbit IgG 

HRP-conjugate (Abcam ab6721) was used as secondary antibody at 1:3000 dilution. Note 

these primary antibodies from Sino Biological are conformation-specific antibodies that 

had been thoroughly tested to recognise only conformationally folded epitopes presented 

by correctly folded protein antigens in ELISA assays. 
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For ELISA investigating the specific binding between Rv1626 and its antibody, as well 

as IgG binding function of the synthetic ZZ domain of protein A derived from 

Staphylococcus aureus, ELISA plates were incubated overnight at 4°C with 50 µl of 

Rv1626 or ZZ at 1 ng/ul concentration in PBS buffer. And as negative and positive 

controls, 50 µl of wild type PhaC beads (with an equivalent 50 ng of protein amount in 

terms of PhaC) or ZZ-PhaC beads ((Brockelbank et al. 2006), with an equivalent 50 ng 

of protein amount in terms of ZZ alone) respectively were included. Then a primary 

mouse polyclonal anti-Rv1626 antibody (Rubio Reyes et al. 2016) was added only for 

Rv1626 and blank, while a non-specific primary mouse polyclonal anti-DDA antibody 

(Rubio Reyes et al. 2016) only for Rv1626 as a negative control, and a secondary goat 

anti-mouse IgG HRP-conjugate antibody (Abcam ab6789, UK) to all sample wells for 

detection of bound IgG antibodies. 

 

2.6.4.2 Sortase assay 

 

To assess the function of sortase displayed on PHA beads, a synthetic DABCYL-LPETG-

EDANS substrate (AnaSpec, Fremont, USA) was used. This is a fluorescently self-

quenched peptide FRET (Förster resonance energy transfer) substrate, the fluorophore 

EDANS (excitation, 336 nm; emission, 490 nm), a U-MNIB2 Filter (Excitation = 480/20, 

Emission = 510LP) and the quencher DABCYL is separated by LPETG, the 5 amino acid 

sortase sorting signal. If the sorting signal is cleaved, then the fluorophore is separated 

from the quencher and its fluorescence can be detected. Reaction was performed with a 

black non-binding flat bottom microplate (Greiner Bio-One 655900) by addition of 180 

μl of reaction mix per well. The FRET substrate was dissolved in DMSO and added at a 

final concentration of 5 μM to a 5% slurry of beads in TBS (50 mM Tris-HCl, 150 mM 

NaCl, pH 7.8) with 5 mM CaCl2. As it was reported that triglycine was not essential for 
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sortase cleavage activity on TG peptide bond (Ton-That et al. 2000),  the sortase assay 

was performed in the absence of triglycine. Plates were incubated at 37°C in dark for 4 h. 

Fluorescence was monitored over time using a FLUOstar Omega (BMG labtech, 

Offenburg, Germany) microplate reader with the sample shaking between readings, filters 

used were 340 nm for excitation, and 520/10 nm for emission.  

 

2.6.4.3 GFP fluorescence measurement 

 

To assess the functionality of GFP protein resulted from intein cleavage reaction, 100 µl 

of GFP-containing soluble fraction samples were mixed with 100 µl of TBS (50 mM Tris-

HCl, 150 mM NaCl, pH 7.8) and added into wells of black non-binding flat bottom 

microplate (Greiner Bio-One 655900).  A FLUOstar Omega (BMG labtech, Offenburg, 

Germany) microplate reader was used to measure the fluorescence of GFP (excitation, 

395/475 nm; emission, 509 nm), with a filter setup of 380/10 nm for excitation, and 

520/10 nm for emission. 

 

2.6.4.4 Lysozyme binding assay 

 

Beads were prewashed once in TBST (150 mM NaCl, 50m M Tris-HCl, 0.1% v/v Tween 

20, pH 8.4). Approximately 50 mg of beads were added to 1 ml of TBST containing 2 

mg/ml BSA, 2 mg/ml skim milk powder, and 1 mg/ml lysozyme. The beads were 

resuspended and incubated on a rotary mixer (Labnet Mini LabRoller) for 20 min, after 

which the beads were sedimented by centrifugation at 6,000×g for 4 min. The supernatant 

was removed, and the beads were washed three times (each wash consisting of 

resuspension of the beads, centrifugation, and removal of supernatant) in TBST with 

0.05% v/v Tween 20. To elute the bound protein, the beads were resuspended in 500 µl 



63 
 

of 50 mM glycine (pH 2.0); the beads were removed by centrifugation at 16,000×g, and 

the supernatant was neutralized with 50 µl of 1 M K2HPO4. The protein content of the 

resulting elution fractions was assessed by Bradford assay (2.6.3.1). 

 

2.6.4.5 Progesterone binding capacity test 

 

A commercial Progesterone EIA Kit (Cayman Chemical, Ann Arbor, USA) was used to 

assess progesterone (P4) binding capacity of P4 binding OBody beads. The EIA kit assay 

is based on competitive antibody binding between free P4 in liquid sample and 

progesterone-acetylcholinesterase (P4 tracer) included with kit, thus colour intensity upon 

addition of Ellman's reagent is inversely proportional to free P4 amount.  Therefore, the 

EIA kit cannot directly measure the amount of P4 bound by beads, but works indirectly 

by detecting P4 levels in the solution before and after bead incubation. Thus the amount 

of P4 reduced after bead incubation could be deemed as that bound by beads (either 

through the specific biorecognition of P4 by the OBody ligand D7, or through non-

specific physical attachment of P4 to PHA beads). Therefore, to consider only the specific 

binding between P4 and OBody ligand D7, a simple wash step was introduced for beads 

after P4 incubation to wash off any physically attached P4, which could be detected by 

the EIA kit, and should be subtracted as well in the calculation of bead P4 binding 

capacity. 

 

In detail, a P4 stock solution was prepared in absolute ethanol at a concentration of 2 

mg/ml. Then 1 volume of the stock solution was mixed with 4 volumes of PBS buffer 

(137 mM NaCl, 2.7 mM KCl, 10.0 mM Na2HPO4, 1.76 mM KH2PO4, pH 7.4), resulting 

a P4 solution of 400 µg/ml, which is defined as a feed fraction for later quantification of 

total P4 added. About 20 mg of beads were mixed with 1.5 ml of the feed fraction at 37ºC 
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for 30 min on a rotary mixer (Labnet Mini LabRoller), after which beads were sedimented 

by centrifugation at 17,000×g for 10 min. The supernatant was collected as an unbound 

fraction for later quantification of soluble P4 left. Then beads were washed once with 1.5 

ml of PBS and the wash fraction was collected as well for later quantification of P4 that 

was non-specifically attached to beads and washed off. The feed, unbound and wash 

fractions were diluted as appropriate to be within the concentration ranges of P4 standard 

provided by the kit and respectively assayed for P4 content. The P4 binding capacity of 

beads was calculated as:     

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 −𝑊𝑊𝑊𝑊𝑊𝑊ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑊𝑊𝑊𝑊𝑊𝑊ℎ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢

 

 

2.6.4.6 Progesterone binding assay to obtain apparent equilibrium 

dissociation constant (KD) 

 

In order to reveal the binding strength (or binding affinity) between progesterone (P4) 

and OBody beads that is represented by an equilibrium dissociation constant (KD), a P4 

binding assay was carried out with fixed amount of beads (or soluble OBody where 

appropriate) but varying amount of a biotin labelled P4 (progesterone 3-PEG11-biotin 

(Cayman Chemical), gifted by Vickery Arcus). As compared to the progesterone EIA kit 

assay in 2.6.4.5, the use of a biotin labelled P4 in combination with HRP-Conjugated 

Streptavidin (Thermo Fisher Scientific, gifted by Vickery Arcus) would enable a sensitive 

direct quantification of P4 bound on beads. Here the SIGMAFAST™ OPD (o-

Phenylenediamine dihydrochloride) tablet (Sigma) was used as HRP substrate, reaction 

was stopped by addition of H2SO4 and colour intensity was monitored at 490 nm.  
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Bead samples were assayed at a concentration of 0.5, 0.1 or 0.01 µM bead fusion protein 

where appropriate (in terms of respective target fusion protein for OBody beads or PhaC 

itself for WT PhaC beads) based on densitometry analysis. And P4 tested was serially 

diluted with a concentration range from 0.02 to 43.84 µM. Soluble OBody samples were 

assayed at a concentration of 0.5 µM. 

 

This P4 binding assay was performed similarly to ELISA described in 2.6.4.1, but in a 

smaller 50 µl system. The primary antibody was replaced by serially diluted progesterone 

3-PEG11-biotin (Cayman Chemical, Ann Arbor, USA), and the secondary antibody was 

replaced by HRP-Conjugated Streptavidin (Thermo Fisher Scientific). PBS was included 

as blank, WT PhaC beads were included as negative controls, and wells coated with beads 

only (without addition of P4) were included as bead background control. Before graphing, 

PBS blank reading was subtracted from soluble OBody sample reading where OBody 

sample was assayed, and the bead background reading was subtracted from each bead 

sample reading.  

 

2.7 Statistical Analysis 

 

Analyses were carried out in duplicate (n=2) or triplicate (n=3) and were presented as 

means ± SD. A one way ANOVA (Analysis of variance) (Minitab® 18) was used to 

determine statistical significance, and differences were considered significant when 

P<0.05, which means greater than 95% of likelihood or probability that the difference 

observed in sample means is real and not due to chance. 
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Chapter 3: Results 

 

3.1 Design of PHA beads as self-cleavable protein purification 

resins  

 

Recombinant protein production and purification from Escherichia coli often involves 

expensive chromatography equipment and complicated procedures, especially for 

therapeutic proteins (Jozala et al. 2016; Oliveira & Domingues 2018). Even the most 

efficient affinity chromatography technique that is based on the usage of affinity tags has 

the disadvantages of additional protease treatment and chromatography for tag removal 

(Pina et al. 2014).  

 

As alternatives to protease treatment for tag removal, self-cleaving tags such as sortase 

and intein are gaining popularity. For example, the catalytic core of sortase A (SrtA) from 

Staphylococcus aureus has been developed as a self-cleaving tag that is able to recognise 

a LPXTG signal (X represents any amino acid) and cleaves between the T and G in the 

presence of Ca2+ +/- triglycine (Ton-That et al. 2000; Mao 2004; Clancy et al. 2010; 

Matsunaga et al. 2010). Furthermore, differently engineered self-clevable inteins that are 

controllable by pH or thiols have been widely used for recombinant protein purification 

(Lahiry et al. 2017). Recently, a variety of inteins (including pH inducible Mtu ∆I-CM 

mini-intein and Ssp DnaB mini intein, as well as thiol inducible Mxe GyrA intein) have 

been used in combination with polyhydroxyalkanoate (PHA) beads for recombinant 

protein purification (Banki et al. 2005; Barnard et al. 2005; Wang et al. 2008; Zhang et 

al. 2010; Zhou et al. 2011). These strategies rely on phasin (PhaP, actually the most 

studied PhaP1) (Banki et al. 2005; Barnard et al. 2005; Wang et al. 2008; Zhou et al. 
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2011) or a regulatory protein (PhaR) (Zhang et al. 2010) that non-covalently associates 

with PHA beads as “affinity” tags in the form of PhaP-intein-X or PhaR-intein-X fusions; 

X represents a target protein, and in two studies two or three copies of PhaP were used to 

increase PhaP hydrophobic association with PHA beads (Banki et al. 2005; Zhou et al. 

2011). Corresponding PhaP or PhaR fusions attached to PHA beads (that were produced 

either recombinantly (Banki et al. 2005; Zhou et al. 2011), natively (Barnard et al. 2005) 

or even chemically (Wang et al. 2008; Zhang et al. 2010)) could be easily separated from 

other cellular components through centrifugation and washing cycles,  and the target 

protein could be released from beads via subsequent inducible self-cleavage of the inteins 

(Banki et al. 2005; Barnard et al. 2005; Wang et al. 2008; Zhang et al. 2010; Zhou et al. 

2011). However, the non-covalent anchoring of the target protein to PHA beads can cause 

leakage of the respective PhaP-intein-X or PhaR-intein-X during the PHA bead wash 

cycles.  

 

PHA beads are naturally occurring nanometre-scale polyester granules which are 

accumulated intracellularly under imbalanced nutrient conditions such as excessive 

carbon (Grage et al. 2009). The most well-known type of PHA is composed of poly-β-

hydroxybutyrate (PHB) homopolymer (Ke et al. 2016). Taking PHB biosynthesis as an 

example, formation of PHA requires three key enzymes, namely, β-ketothiolase (PhaA, 

which condenses two molecules of acetyl-CoA to form acetoacetyl-CoA), acetoacetyl-

CoA reductase (PhaB, which reduces the acetoacetyl-CoA to form (R)-3-hydroxybutyryl-

CoA), and PhaC the PHA synthase (which polymerizes (R)-3-hydroxybutyryl-CoA to 

form PHA) (Normi et al. 2005). PhaA and PhaB do not attach to PHA beads, but PhaC 

remains covalently attached to the nascent PHA chain, which self assembles into beads 

having a polyester core that is surrounded by the unique covalently bound PhaC. Along 

with this are various non-covalently bound granule associated proteins (GAPs), such as 
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the PHA depolymerase (PhaZ) responsible for PHA metabolism, the structure protein 

phasin (PhaP) that controls the size and number of PHA beads, and the regulatory protein 

(PhaR) that controls the synthesis of PHA beads and the transcription of PhaP (Rehm 

2006; Rehm 2007; Rehm 2010; Draper et al. 2013). The unique bead covalent attachment 

nature of PhaC makes it an ideal anchor to display a target protein on the bead surface 

mediated via translational fusions between PhaC and the target protein in engineered 

microbial cells (Grage et al. 2009; Jahns & Rehm 2009). Previously, by genetic 

engineering of PhaC, PHA beads have been designed to display proteins with diverse 

functions for different purposes such as affinity separation, protein production, enzyme 

immobilisation, diagnostic testing and vaccine delivery (Grage et al. 2009; Hooks et al. 

2014). 

 

In order to develop a time-efficient and streamlined process of recombinant protein 

production and purification, the first objective of this PhD study was to display the self-

cleaving tag sortase A (SrtA) from S. aureus on the surface of PHA beads which serve as 

purification resins. As depicted in Figure 3.1, it was hypothesised that by introducing a 

PhaC-sortase-LPETG-target protein fusion expressed by plasmid A, along with PhaA and 

PhaB proteins expressed by helper plasmid B, E. coli cells could be engineered to produce 

PHA beads displaying PhaC-sortase-LPETG-target protein fusions. Therefore, the target 

protein could be first produced and sequestered on the natural PHA resins, then separated 

from contaminating host proteins via simple PHA bead isolation / washing steps, and 

finally cleaved with a minimal G scar by specific release into the soluble fraction via 

sortase activation triggered by Ca2+ +/- triglycine. 
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Figure 3.1 Schematic representation of PHA beads as self-cleavable protein 

production resins mediated via PhaC-sortase-LPETG-target protein fusion. 

Adapted from Hay et al. (2015a), Appendix 7.2. 
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To overcome the potential problems of the requirement for Ca2+ +/- triglycine for sortase 

activation, as well as possible unwanted impacts of the G scars on target proteins in the 

PhaC-sortase-LPETG-target protein fusion strategy, the second objective of this PhD 

study involved use of a self-cleaving intein tag as an alternative to sortase. The self-

cleaving tag Ssp DnaB intein derived from the commercial pTwin1 vector (NEB) was 

displayed on the surface of PHA beads which serve as purification resins. As depicted in 

Figure 3.2, it was hypothesised that by introducing a PhaC-intein-target protein fusion 

expressed by plasmid A, along with PhaA and PhaB proteins expressed by helper plasmid 

B, E. coli cells could be engineered to produce PHA beads displaying PhaC-intein-target 

protein fusions. Therefore, the target protein could be first produced and sequestered on 

the natural PHA resins, then separated from contaminating host proteins via simple PHA 

bead isolation / washing steps, and finally cleaved taglessly by specific release into the 

soluble fraction via intein activation triggered by a simple pH drop. 
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Figure 3.2 Schematic representation of PHA beads as self-cleavable protein 

production resins mediated via PhaC-intein-target protein fusion. Adapted from Du 

& Rehm (2017b) (Appendix 7.2). 
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3.1.1 PHA beads as self-cleavable protein purification resins mediated 

via PhaC-sortase-LPETG-target protein fusion 

 

3.1.1.1 Sortase from S. aureus can be functionally displayed on PHA beads 

 

To first assess whether the N-terminus truncated sortase transpeptidase A (SrtA) from S. 

aureus (SrtAΔ59) could be functionally displayed on the surface of PHA beads, a PhaC-

SrtA fusion expressing plasmid pET14-PhaC-SrtA (Table 2.2) was prepared according to 

section 2.4.8. The plasmid DNA sequence was confirmed (2.4.7) and its map is shown in 

Figure 7.1, Appendix 7.1. Plasmid transformation, cell cultivation for production of beads 

displaying PhaC-sortase, standard bead isolation and SDS-PAGE were performed 

according to sections 2.4.6, 2.2.2.3, 2.5.2 and 2.6.2.1, respectively. 

 

It was established previously that wild type PHA beads (PhaC beads) could be produced 

using BL21 (DE3) E. coli strain (Table 2.1) harbouring plasmids A and B (namely 

plasmid pETC encoding PhaC the PHA synthase and plasmid pMCS69 encoding PhaA 

and PhaB) (Table 2.2) (Peters et al. 2007). Similarly, in the current work, when plasmid 

pETC was replaced by pET14-PhaC-SrtA (with SrtA fused in frame to the C-terminus of 

PhaC as compared to pETC), a dominant band at the size corresponding to PhaC-SrtA 

was found as shown in Figure 3.3, suggesting that PHA beads displaying PhaC-SrtA were 

produced successfully.  
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Figure 3.3 Protein profiles of isolated PHA beads. 10% SDS-PAGE was performed 

to examine whether PHA beads were produced with the correct protein profiles. Lane 1, 

Molecular weight marker (Mark12TM Unstained Standard (Novex®, InvitrogenTM, 

Thermo Fisher Scientific, Waltham, MA, USA)); Lane 2, PhaC-SrtA beads (~ 83 kDa); 

Lane 3, PhaC beads (~ 64 kDa). 

 

To assess whether the sortase was functional in the PhaC-SrtA beads, a sortase assay was 

performed by using DABCYL-LPETG-EDANS, a synthetic fluorescently self-quenched 

peptide FRET (Förster resonance energy transfer) substrate (2.6.4.2). Specific cleavage 

of the LPETG by SrtA would separate fluorophore EDANS from quencher DABCYL 

thus give a fluorescence signal. PhaC or PhaC-SrtA beads were incubated with 5 µM of 

the FRET substrate in the presence of 5 mM CaCl2 in a black non-binding flat bottom 

microplate (Greiner Bio-One 655900, Frickenhausen, Germany) in the dark at 37°C. As 

it was reported that triglycine was not essential for SrtA cleavage activity on the TG 

peptide bond in the LPETG signal (Ton-That et al. 2000), the sortase assay was performed 

in the absence of triglycine. PhaC-SrtA beads inactivated before assay (by denaturing at 

95°C for 15 min) were also included as a bead blank control. Listed in Table 3.1 is a 

summary of assay reagents added. 
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Table 3.1 Sortase assay to assess cleavage activity of SrtA displayed at the bead 
surface 

Column Test material FRET substrate* 5 mM CaCl2
* 

1 PhaC beads   

2 PhaC-SrtA beads    

3 PhaC-SrtA beads   

4 
PhaC-SrtA beads inactivated at 95°C 

before assay 
  

5 PhaC-SrtA beads   

6 TBS blank    

* Addition of these reagents is indicated with a tick.   

 

No significant activity could be detected from the PhaC beads as compared to the PhaC-

SrtA beads, whereas significant activity could be detected from the PhaC-SrtA beads 

(Figure 3.4). The activity was dependent on the presence of CaCl2 and could be removed 

by inactivating the PhaC-SrtA beads at 95°C for 15 min before conducting the assay, 

indicating that this activity was the result of the SrtA displayed at the bead surface. 
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Figure 3.4 Activity of the PhaC-SrtA beads measured via cleavage of the synthetic 

DABCYL-LPETG-EDANS substrate. All reactions were performed in duplicate, and 

the error bars represent standard deviations. Fluorescent units are arbitrary. ***p = 0.0006. 

Published in Hay et al. (2015a), Appendix 7.2. 

 

3.1.1.2 PhaC-sortase-LPETG-target protein fusion facilitated purification of 

target proteins 

 

To assess whether the sortase displayed at the bead surface could be used for therapeutic 

protein production and purification, human tumour necrosis factor alpha (TNFα) and 

human interferon alpha-2b (IFNα2b) were tested. Overexpression of heterologous 

eukaryotic genes in E. coli tends to result in proteins as insoluble inclusion bodies (IBs). 

For example, one recent study reported that TNFα production in E. coli resulted in an IB 

format product of up to 50% (Zhang et al. 2014). Similarly IFNα2b production in E. coli 

was frequently reported to be in the form of IB aggregates (Rabhi-Essafi et al. 2007). It 

was thus also an additional aim to avoid IB formation of these proteins by immobilising 
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them on PHA beads in vivo, as it is widely accepted that immobilisation improves protein 

stability / solubility (Rehm et al. 2016; Rehm et al. 2017). 

 

Plasmids encoding PhaC-sortase-LPETG-TNFα or PhaC-sortase-LPETG-IFNα2b (Table 

2.2) were prepared according to section 2.4.8. The plasmid DNA sequences were 

confirmed (2.4.7) and their maps are shown in Figures 7.2-7.3, Appendix 7.1. Plasmid 

transformation, cell cultivation for production of beads displaying PhaC-sortase-LPETG-

target protein fusions, isolation of beads displaying PhaC-sortase-LPETG-target protein 

fusions, cleavage of target proteins from beads displaying PhaC-sortase-LPETG-target 

protein fusions, SDS-PAGE, densitometry analysis and mass spectrometry were 

performed according to methods sections 2.4.6, 2.2.2.3, 2.5.2, 2.6.1, 2.6.2.1, 2.6.3.2 and 

2.6.2.3, respectively. 

 

Here, E. coli SHuffle® T7 express (Table 2.1) was chosen as the production strain, as 

TNFα contains one disulphide bond while IFNα2b contains two required for stability / 

functionality. The SHuffle® T7 express strain has an oxidizing cytosol due to trxB/gor 

mutations and also constitutively produces a cytosolic form of disulphide isomerase 

(DsbC) that acts as a chaperone. Also pMCS69E was used as helper plasmid B which 

encodes sulfhydryl oxidase (Erv1p) that can facilitate disulphide bond formation as well 

as containing the phaA and phaB genes (Table 2.2). 

 

A dominant band at the size corresponding to PhaC-sortase-TNFα or PhaC-sortase-

IFNα2b was found as shown in Figure 3.5 A & B, suggesting that PHA beads displaying 

corresponding proteins were produced successfully. The isolated PhaC-Sortase-TNFα 

and PhaC-Sortase-IFNα2b beads each were subjected to a cleavage reaction according to 

section 2.6.1. As shown in Figure 3.5 A & B, soluble TNFα and IFNα2b could be released 
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upon activation of the sortase with CaCl2 and triglycine. This amounted to about 7.0 µg 

TNFα per gram of wet beads or 0.5 µg per gram of wet cell biomass, and about 1.8 µg or 

0.1 µg respectively for IFNα2b (Table 3.2). In both cases, the therapeutic test proteins 

were the predominant proteins in the soluble fractions that resulted from cleavage 

reactions of the respective isolated PHA beads, accounting for about 80-90% of the 

soluble proteins (Figure 3.5 A & B and Table 3.2).  
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Figure 3.5 Protein profiles of PHA-bead-producing whole cell lysate, PHA beads 

isolated and post-cleavage, and the resulting soluble fractions. 10% SDS-PAGE was 

performed to examine protein profiles for (A) TNFα: Lane 1, Molecular weight marker 

(GangNam-STAINTM Prestained Protein Ladder (iNtRON Biotechnology, Sungnam, Korea)); 

Lane 2, PhaC-SrtA-TNFα bead producing whole cell lysate; Lane 3, Isolated PhaC-SrtA-

TNFα beads (pre-cleavage); Lane 4, PhaC-SrtA-TNFα beads post-cleavage; Lane 5, Cleaved 

TNFα in the soluble fraction, corresponding to the lowest bottom band (~ 17.4kDa); Lane 6-

8, 50, 100 and 200 ng BSA; and (B) IFNα2b: Lane 1, Molecular weight marker (GangNam-

STAINTM Prestained Protein Ladder); Lane 2, PhaC-SrtA-IFNα2b bead producing whole cell 

lysate; Lane 3, Isolated PhaC-SrtA-IFNα2b beads (pre-cleavage); Lane 4, PhaC-SrtA-

IFNα2b beads post-cleavage; Lane 5, Cleaved IFNα2b in the soluble fraction, corresponding 

to the lowest bottom band (~ 19.3kDa); Lane 6-8, 25, 50 and 100 ng BSA. *Arrow in lane 5 

indicates a minor co-purifying protein. *Image contrast was adjusted for visibility. Published 

in Du & Rehm (2017a) (Appendix 7.2). 
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Table 3.2 Quantification of target proteins obtained from beads displaying PhaC-
sortase-LPETG-target protein fusions* 

Target 
protein µg/L 

µg per 
gram wet 
beads 

µg per 
gram wet 
cell mass 

% 
Cleavage 
ratio1 

% purity 
based on 
SDS-PAGE2 

% purity based on ELISA 
with conformation-
specific antibody3,4 

TNFα 7.7 7.0 0.5 10.7 90.1 72.2 

IFNα2b 2.1 1.8 0.1 4.3 80.7 39.7 
* Published in Du & Rehm (2017a) (Appendix 7.2). 
1 Estimated cleavage ratio, calculated as the % reduction in PhaC-sortase-LPETG-target protein 
band levels post-cleavage as compared to pre-cleavage, based on densitometry analysis of the 
SDS-PAGE images shown in Figure 3.5 A & B;  
2 Estimated purity, calculated as the % of the cleaved target protein band content in the soluble 
fractions resulting from the cleavage reaction, based on densitometry analysis of the SDS-PAGE 
images shown in Figure 3.5 A & B; 
3 Estimated purity, calculated as the % of the mean absorbance value for the cleaved target 
proteins as compared to that for the respective commercial standard based on the ELISA assay 
results shown in Figure 3.6 A & B; 
4 Conformation-specific antibodies as used here were commercial antibodies that had been 
thoroughly tested to recognise only conformationally folded epitopes presented by correctly 
folded protein antigens in ELISA assays.   

 

To confirm the identity of both purified target proteins, the bands corresponding to these 

proteins were excised and subjected to an in-gel trypsin digestion (section 2.6.2.3) 

followed by LC-MS/MS analysis. The  peptide coverage ratios for TNFα and IFNα2b 

were 90% and 36% respectively (Figure 7.21 A & B, Appendix 7.1). The co-purifying 

host cell protein was similarly processed with in-gel trypsin digestion (section 2.6.2.3); 

and the subsequent LC-MS/MS analysis suggested a match to the E. coli chaperone 

protein DnaK with a peptide coverage ratio of 72% (Figure 7.21 C, Appendix 7.1).   
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3.1.1.3 Assessment of proper folding / specific antibody recognition of target 

proteins cleaved from PHA beads displaying PhaC-sortase-LPETG-target 

protein 

 

In order to assess the proper folding of the TNFα and IFNα2b cleaved from respective 

PHA beads (section 3.1.1.2), both TNFα and IFNα2b were analysed by ELISA assays 

according to section 2.6.4.1 with corresponding conformation-specific antibodies (Sino 

Biological Inc., Beijing, China) that had been thoroughly tested to recognise only 

conformationally folded epitopes presented by correctly folded protein antigens in ELISA 

assays. The ELISA results showed that, at the end of the assay, readings for both cleaved 

proteins were significant higher than that for TBS blank control, but relatively lower than 

that for their respective standard(Figure 3.6 A & B). This verified their specific binding 

with respective conformation-specific antibodies, and indicated their proper folding. 
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Figure 3.6 ELISA assay result showing specific antibody recognition of (A) TNFα 

and (B) IFNα2b. Protein amount used was 160 ng for cleaved proteins, standards as well 

as primary conformation-specific antibodies; secondary goat anti-rabbit IgG HRP-

conjugate (Abcam ab6721) was used at 1:3000 dilution from commercial stock; TBS (50 

mM Tris-HCl, 150 mM NaCl, pH 7.8) was used as blank. All assays were performed in 

duplicate, and the error bars represent standard deviations.  Published in Du & Rehm 

(2017a) (Appendix 7.2). 



82 
 

 

3.1.2 PHA beads as self-cleavable protein purification resins mediated 

via PhaC-intein-target protein fusion 

 

The next objective involved testing the self-cleaving intein instead of sortase in the same 

protein production system.  It was expected that in the PhaC-intein-target protein fusion 

strategy, by exploiting the pH inducible self-cleavage of the Ssp DnaB intein, a simpler 

cleavage of the target protein could be achieved. Namely, in contrast to the addition of 

Ca2+ +/- triglycine required to trigger sortase self-cleavage, and the residual G-scars left 

on target proteins by sortase self-cleavage, there would be no additional requirement of 

chemical reagents for intein self-cleavage apart from a pH drop, nor any concern of 

residual scars left after intein self-cleavage. 

 

3.1.2.1 Engineering of PhaC-intein-target protein fusion enabled PHA bead 

production and facilitated purification of three model proteins 

 

To assess whether beads displaying PhaC-intein-target protein fusions could be used for 

protein production and purification, three model proteins were first tested, including 

Aequorea victoria green fluorescent protein (GFP), Mycobacterium tuberculosis vaccine 

candidate Rv1626 and the synthetic immunoglobulin G (IgG) binding ZZ domain of 

protein A derived from Staphylococcus aureus. Corresponding plasmids are listed in 

Table 2.2 (as grouped for expression of PhaC-intein-target protein fusions) and were 

prepared according to methods section 2.4.8. The plasmid DNA sequences were 

confirmed (2.4.7) and their maps are shown in Figures 7.4-7.6, Appendix 7.1. Plasmid 

transformation, cell cultivation for production of beads displaying PhaC-intein-target 

protein fusions, isolation of beads displaying PhaC-intein-target protein fusions, cleavage 
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of target proteins from beads displaying PhaC-intein-target protein fusions, SDS-PAGE, 

densitometry analysis, and mass spectrometry were performed according to methods 

sections 2.4.6, 2.2.2.3, 2.5.2, 2.6.1, 2.6.2.1, 2.6.3.2 and 2.6.2.3, respectively. 

 

PHA beads could be isolated from all strains (E. coli BL21 (DE3) containing pMCS69 as 

the helper plasmid B) producing the respective fusion proteins and, in each case, a 

dominant protein band corresponding to the PhaC-intein-target protein was detected by 

using SDS-PAGE (Figure 3.7). Each of the isolated beads displaying PhaC-intein-target 

protein fusions were subjected to a cleavage reaction according to section 2.6.1. In all 

cases, lowering the pH to 6 induced self-cleavage of intein and only the pure target protein 

became soluble, i.e. was released into the supernatant without any detectable 

contaminating proteins (Figure 3.7). Gel densitometry indicated that after 16 h incubation 

under cleavage conditions, about 7% of the bead immobilised target protein was 

converted into a soluble form. The purified target proteins amounted to around 100 µg 

per g of wet beads or slightly over 10 µg per g of wet cell biomass (Table 3.3). 
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Figure 3.7 Protein profiles of PHA beads isolated and post-cleavage, and the 

resulting soluble fractions. 10% SDS-PAGE was performed to examine protein profiles. 

Lane 1 Molecular weight marker (GangNam-STAINTM Prestained Protein Ladder); Lane 

2 Isolated PhaC-Intein-GFP beads (pre-cleavage); Lane 3 PhaC-Intein-GFP beads post-

cleavage; Lane 4 Cleaved GFP in the soluble fraction (~ 28 kDa); Lane 5 Isolated PhaC-

Intein-Rv1626 beads (pre-cleavage); Lane 6 PhaC-Intein-Rv1626 beads post-cleavage; 

Lane 7 Cleaved Rv1626 in the soluble fraction (~ 24 kDa); Lane 8 Isolated PhaC-Intein-

ZZ beads (pre-cleavage); Lane 9 PhaC-Intein-ZZ beads post-cleavage; Lane 10 Cleaved 

ZZ in the soluble fraction (~ 18 kDa). Published in Du & Rehm (2017b) (Appendix 7.2). 

 

Table 3.3 Quantification of model proteins obtained from beads displaying PhaC-
intein-target protein fusions* 

Target protein µg/L  µg per gram wet beads  µg per gram wet cell mass % Cleavage ratio1 

GFP 225.3 104.9 11.6 6.6 
Rv1626 278.1 136.7 14.5 6.5 
ZZ 258.5 95.7 14.6 7.6 
* Published in Du & Rehm (2017b) (Appendix 7.2). 
1 Estimated cleavage ratio, calculated as the % reduction in PhaC-intein-target protein band levels 
post-cleavage as compared to pre-cleavage, based on densitometry analysis of the SDS-PAGE 
image shown in Figure 3.7. 
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All of the bands corresponding to the three target proteins were separately excised and 

subjected to an in-gel trypsin digestion (section 2.6.2.3) followed by LC-MS/MS analysis, 

which confirmed their identity (Figure 7.22, Appendix 7.1).  

 

In order to study whether the target protein was increasingly released over continuous 

incubation time with the low pH buffer, the cleavage of PhaC-Intein-GFP was examined 

over a 16 h time course. As expected, an increase in soluble GFP concentration and a shift 

of the PhaC-Intein-GFP band to the PhaC-Intein band was observed over time (Figure 

3.8).  

 

 

Figure 3.8 Time course GFP cleavage off PhaC-Intein-GFP beads as revealed by 

10% SDS-PAGE. Lane 1, Molecular weight marker (GangNam-STAINTM Prestained 

Protein Ladder); Lane 2, Isolated beads (pre-cleavage, 0 h); Lane 3, Beads after 16 h 

incubation at pH 8.6 as control; Lane 4-6, Beads after 4 h (4), 8 h (5) and 16 h (6) 

incubation at pH 6; Lane 7, Soluble fraction after 16 h incubation at pH 8.6 as control; 

Lane 8-10, GFP cleaved in the soluble fraction after 4 h (8), 8 h (9) and 16 h (10) 

incubation at pH 6. Published in Du & Rehm (2017b) (Appendix 7.2). 
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A densitometry analysis based on the SDS-PAGE gel image shown in Figure 3.8 was 

performed according to section 2.6.3.2, which provided a relative quantification of the 

protein band conversion from PhaC-intein-GFP into PhaC-intein plus GFP over the 16 h 

cleavage incubation at pH 6 as outlined in Table 3.4.  

 

Table 3.4 Quantification of cleavage reaction for PhaC-intein-GFP beads 

Protein band Incubation time at pH 6 (h)                                        
 0 4 8 16 2nd 16* 
% PhaC-intein-GFP band1 68.7 62.7 62.3 62.0 54.9 
% PhaC-intein band1 31.3 37.3 37.7 38.0 45.1 
% Cleavage ratio2a  - 6 6.4 6.7 13.8# 

Intensity of GFP band3  - 1,546,293 1,651,727 1,737,535 1,817,167 
1 Estimated value, calculated as the % relative ratio between PhaC-intein-GFP and PhaC-
intein band in the same lane.  
2 Estimated cleavage ratio, calculated as the % reduction in PhaC-intein-GFP band levels 
post-cleavage as compared to pre-cleavage starting material at 0 h.  
3 Estimated pixel counts. 
* A second 16h cleavage cycle. 
# Estimated total cleavage ratio after two 16h cleavage cycles.  

 

As a significant amount of non-cleaved PhaC-intein-GFP still remained on the PHA beads 

even after 16 h of incubation as indicated in Lane 6 in Figure 3.8, a further attempt was 

made to see whether an additional round of incubation with the low pH buffer could lead 

to further cleavage of GFP. Specifically, remaining post-cleavage PhaC-intein-GFP bead 

samples after the 16 h cleavage reaction shown in Figure 3.8 were washed and re-

suspended to a 40% slurry in fresh cleavage buffer and subjected to a second round of 16 

h cleavage (section 2.6.1). Interestingly, GFP could again be cleaved off in a further round 

of 16 h cleavage reaction at a similar level to the first round of 16 h cleavage reaction 

(Figure 3.9). Densitometry quantification based on the SDS-PAGE image shown in 

Figure 3.9 was listed in the last column of Table 3.4.  
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Figure 3.9 GFP cleavage off PhaC-intein-GFP beads from two consecutive rounds 

of 16 h cleavage reaction as revealed by 10% SDS-PAGE. Lane 1, Molecular weight 

marker (GangNam-STAINTM Prestained Protein Ladder); Lane 2, Isolated PhaC-intein-

GFP beads (pre-cleavage); Lane 3, Beads after the 1st cleavage reaction (16 h, pH 6); 

Lane 4, Beads after the 2nd cleavage reaction (2nd 16 h, pH 6); Lane 5, Cleaved GFP in 

the soluble fraction from the 1st cleavage reaction (16 h, pH 6); Lane 6, Cleaved GFP in 

the soluble fraction from the 2nd cleavage reaction (2 nd 16 h, pH 6). Published in Du & 

Rehm (2017b) (Appendix 7.2). 

 

 

3.1.2.2 Functionality assessment of the model proteins cleaved from beads 

displaying PhaC-intein-target protein fusion 

 

In order to assess the functionality of the GFP cleaved from PHA-Intein-GFP beads 

(section 3.1.2.1), fluorescence of the soluble fractions resulting from a 16 h cleavage 

reaction (corresponding to lanes 8-10 in Figure 3.8) was measured using a FLUOstar 

Omega (BMG labtech, Offenburg, Germany) microplate reader according to section 

2.6.4.3. Results depicted in Figure 3.10 showed an increase of GFP fluorescence intensity 
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over the 16 h cleavage cycle (Figure 3.10). Fluorescence of GFP is indicative of 

functional folding (Ormö et al. 1996) throughout this production / purification process.  

 
Figure 3.10 GFP Fluorescence measurement of the soluble fractions resulting 

from a 16 h cleavage reaction. All assays were performed in triplicate, and the error bars 

represent standard deviations. Published in Du & Rehm (2017b) (Appendix 7.2). 

 

 

In the case of the RV1626 protein cleaved from PHA-Intein-Rv1626 beads (section 

3.1.2.1), a western blotting assay (methods section 2.6.2.2) using a primary mouse 

polyclonal anti-Rv1626 antibody (Rubio Reyes et al. 2016) (1:10000) in combination 

with a secondary goat anti-mouse IgG HRP-conjugate (1:10000) (Abcam ab6789, UK), 

specifically revealed the cleaved Rv1626 protein, as well as the fusion protein PhaC-

intein-Rv1626 both in the pre-cleavage bead sample and in the post-cleavage bead 

sample, respectively (Figure 3.11). PhaC-intein-GFP beads or cleaved GFP did not react 

with the antibody and served as negative controls (Figure 3.11). 
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Figure 3.11 Specific recognition of the Rv1626 antigen by a polyclonal anti-

Rv1626 antibody from mice immunized with beads displaying Rv1626. A, SDS-

PAGE; B, immunoblot. Lane 1, Molecular weight marker (GangNam-STAINTM 

Prestained Protein Ladder); Lane 2, Isolated PhaC-Intein-Rv1626 beads (pre-cleavage); 

Lane 3, Isolated PhaC-Intein-GFP beads (pre-cleavage) as negative control; Lane 4, 

PhaC-Intein-Rv1626 beads post-cleavage; Lane 5, PhaC-Intein-GFP beads post-cleavage 

as negative control; Lane 6, Rv1626 in soluble fraction (~ 24 kDa); Lane 7, GFP in soluble 

fraction as negative control (~ 28 kDa). Published in Du & Rehm (2017b) (Appendix 7.2). 
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Because the previous immunoblot was done with denatured Rv1626 antigen, in order to 

further investigate the specific binding between native Rv1626 and its antibody, as well 

as the IgG binding function of the synthetic ZZ domain of protein A derived from S. 

aureus, an ELISA assay was performed according to methods section 2.6.4.1 using the 

Rv1626 and ZZ proteins cleaved from respective beads (section 3.1.2.1). Briefly, ELISA 

plates were incubated overnight with 50 ng of Rv1626 or ZZ protein. Wild type PhaC 

beads or ZZ-PhaC beads (Brockelbank et al. 2006) were included as controls. Addition 

of the test material, the specific mouse polyclonal anti-Rv1626 antibody (anti-Rv1626 

PAb) or a non-specific mouse polyclonal anti-DDA antibody (non-specific anti-DDA 

PAb) (Rubio Reyes et al. 2016), as well as the secondary goat anti-mouse IgG HRP-

conjugate antibody (2nd goat anti-mouse IgG) is summarised in Table 3.5. 

 

Table 3.5 ELISA assay to assess specific antibody binding of Rv1626 and IgG binding 
of ZZ domain* 

Column Test material 

Non-specific 

anti-DDA PAb# 

anti-Rv1626 

PAb# 

2nd goat 

anti-mouse IgG# 

Absorbance1  

value ± SD2 

1 PBS Blank 
 

  0.050 ± 0.001 

2 Rv1626 cleaved 
 

  0.413 ± 0.007 

3 Rv1626 cleaved  
 

 0.054 ± 0.001 

4 Rv1626 cleaved 
  

 0.047 ± 0.002 

5 ZZ cleaved 
  

 0.767 ± 0.015 

6 ZZ-PhaC beads 
  

 0.802 ± 0.025 

7 WT PhaC beads    0.050 ± 0.003 
* Published in Du & Rehm (2017b) (Appendix 7.2). 
# Addition of these reagents is indicated with a tick.   
1 Absorbance at 490 nm, which is proportional to the amount of IgG bound to the well. 
2 All assays were performed in triplicate.  

 

The ELISA assay result as summarised in Table 3.5 confirmed the specific binding 

between native Rv1626 and its antibody (Table 3.5, column 2), while in the absence of 
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the primary anti-Rv1626 antibody, only background absorbance similar to PBS was 

measured (Table 3.5).  Both results suggested Rv1626 was produced and purified in a 

functional form. 

 

In contrast to the background absorbance similar to PBS as measured for wild type PhaC 

beads, the purified ZZ domain was able to bind IgG as shown in the ELISA analysis, at a 

similar level as compared with the positive bead control, ZZ-PhaC beads, containing the 

same amount of ZZ protein (Table 3.5, column 5 & 6), which indicated the successful 

retention of its IgG binding capacity when produced and purified based on the PhaC-

intein-target protein fusion approach.    

 

3.1.2.3 Validation of the PhaC-intein-target protein fusion strategy to 

produce therapeutic proteins 

 

To further assess the applicability of PhaC-intein-target protein fusion strategy to produce 

and purify high-value therapeutic proteins, three first-line anti-cancer therapeutic proteins 

were targeted including human tumour necrosis factor alpha (TNFα), human interferon 

alpha 2b (IFNα2b) and human granulocyte colony-stimulating factor (G-CSF). G-CSF 

production in E. coli tends to aggregate and forms inclusion bodies (IBs) (Do et al. 2014), 

like TNFα and  IFNα2b mentioned in section 3.1.1.2. It was thus also an additional aim 

to avoid IB formation of these proteins by in vivo immobilising them on PHA beads, as 

it is widely accepted that immobilisation improves protein stability / solubility (Rehm et 

al. 2016; Rehm et al. 2017). 

 

Corresponding plasmids are listed in Table 2.2 as grouped for expression of PhaC-intein-

target protein fusions) and were prepared according to methods section 2.4.8. The plasmid 
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DNA sequences were confirmed (2.4.7) and their maps are shown in Figures 7.7-7.9, 

Appendix 7.1. Plasmid transformation, cell cultivation for production of beads displaying 

PhaC-intein-target protein fusions, isolation of beads displaying PhaC-intein-target 

protein fusions, cleavage of target proteins from beads displaying PhaC-intein-target 

protein fusions, SDS-PAGE, densitometry analysis, and mass spectrometry were 

performed according to methods sections 2.4.6, 2.2.2.3, 2.5.2, 2.6.1, 2.6.2.1, 2.6.3.2 and 

2.6.2.3, respectively. 

 

Here, E. coli SHuffle® T7 express (Table 2.1) was chosen as the production strain, and 

pMCS69E was used as helper plasmid B, as TNFα contains one disulphide bond while 

IFNα2b and G-CSF both contain two required for stability / functionality. As mentioned 

earlier under section 3.1.1.2, SHuffle® T7 express strain has an oxidizing cytosol due to 

trxB/gor mutations and also constitutively produces a cytosolic form of disulphide 

isomerase (DsbC) that acts as a chaperone. Furthermore pMCS69E encodes sulfhydryl 

oxidase (Erv1p) helpful for disulphide bond formation, in addition to containing the phaA 

and phaB genes (Table 2.2). 

 

PHA beads could be isolated from the respective recombinant bacteria and the PhaC-

intein-target protein could be detected as the dominant protein on the beads (Figure 3.12). 

Levels of premature cleavage (PhaC-intein) were similar to that of the GFP displaying 

PHA beads. Gel densitometry indicated that activation of the beads with a pH shift to 6 

released about 10 to 20 µg therapeutic proteins per g of wet beads or about 1 to 1.6 µg 

per g of wet cell biomass (Table 3.6).  

  



93 
 

 

Figure 3.12 Protein profiles of the resulting soluble fractions upon a 16 h cleavage 

incubation as well as the PHA beads isolated and post-cleavage. 15% SDS-PAGE was 

performed to examine protein profiles. Lane 1, Molecular weight marker (GangNam-

STAINTM Prestained Protein Ladder); Lane 2, Cleaved TNFα in the soluble fraction, 

corresponding to the lowest bottom band (~ 18.6 kDa); Lane 3, Cleaved G-CSF in the 

soluble fraction, corresponding to the lowest bottom band (~ 19.9 kDa); Lane 4, Cleaved 

IFNα2b in the soluble fraction, corresponding to the lowest bottom band (~ 20.5 kDa); 

Lane 5, Isolated PhaC-Intein-TNFα beads (pre-cleavage); Lane 6, PhaC-Intein-TNFα 

beads post-cleavage; Lane 7; Isolated PhaC-Intein-G-CSF beads (pre-cleavage); Lane 8, 

PhaC-Intein-G-CSF beads post-cleavage; Lane 9, Isolated PhaC-Intein-IFNα2b beads 

(pre-cleavage); Lane 10, PhaC-Intein-IFNα2b beads post-cleavage. *Note that in lanes 2-

4 there are two to three co-purified carry-over proteins which are respectively numbered 

and indicated with arrows on the left side. Published in Du & Rehm (2017b) (Appendix 

7.2). 

 

Table 3.6 Quantification of therapeutic proteins obtained from beads displaying PhaC-
intein-target protein fusions 

Target protein µg/L µg per gram wet beads  µg per gram wet cell mass % Cleavage ratio1 

TNFα 20.6 12.2 1.5 2.7 
G-CSF 23.5 10.8 1.6 2.9 
IFNα2b 16.2 18.2 1.0 1.1 
* Published in Du & Rehm (2017b) (Appendix 7.2). 
1 Estimated cleavage ratio, calculated as the % reduction in PhaC-intein-target protein band 
levels post-cleavage as compared to pre-cleavage, based on densitometry analysis of the SDS-
PAGE image shown in Figure 3.12. 
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TNFα, G-CSF and IFNα2b were visable in the soluble fractions that resulted from 

cleavage reactions of the respective isolated PHA beads (Figure 3.12). Minor impurities 

could likely be avoided by optimisation of bead isolation / washing steps or after cleavage 

by applying further purification steps, as would be required to achieve biopharmaceutical 

grade purity.  

 

The bands corresponding to the therapeutic proteins were separately excised and 

subjected to an in-gel trypsin digestion (section 2.6.2.3) followed by LC-MS/MS analysis, 

which confirmed their identity (Figure 7.23, Appendix 7.1). The co-purifying host cell 

proteins were similarly identified and the results suggested them to be the E. coli 

chaperone protein DnaK, and both full length and truncated outer membrane protein A, 

respectively (Figure 7.24, Appendix 7.1).   

 

In order to assess the proper folding of these therapeutic proteins cleaved from respective 

PHA beads, they were analysed by ELISA assays according to section 2.6.4.1 with 

corresponding conformation-specific antibodies (Sino Biological Inc.). The ELISA 

results as shown in Figure 3.13 A, B & C verified their specific binding with respective 

conformation-specific antibodies, and suggested that they were properly folded.  
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A 

 
B 

 
C 

 
Figure 3.13 ELISA assay results with respective conformation-specific antibody 

for (A) TNFα, (B) G-CSF and (C) IFNα2b showing the specific antibody recognition. 

Protein amount used was 160 ng for cleaved proteins and standards as well as primary 

conformation-specific antibodies; secondary goat anti-rabbit IgG HRP-conjugate (Abcam 

ab6721) was used at 1:3000 dilution from commercial stock; TBS (50 mM Tris-HCl, 150 

mM NaCl, pH 7.8) was used as blank. All assays were performed in duplicate, and the error 

bars represent standard deviations. Published in Du & Rehm (2017b) (Appendix 7.2).   
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A brief comparison of this PhaC based protein purification method versus previous methods based on PhaP / PhaR tag is summarized in Table 3.7. 

Table 3.7 Comparison of the PhaC based protein purification method with previous methods based on PhaP / PhaR tag* 

PHA bead tag PhaC-intein-target 
This thesis 

PhaP-intein-target 
(Banki et al. 2005) 

PhaP-intein-target   
(Zhou et al. 2011) 

PhaP-intein-target 
(Barnard et al. 2005) 

PhaP-intein-target   
(Wang et al. 2008) 

PhaR-intein-target   
(Zhang et al. 2010) 

Association with beads Covalently attached 
in vivo in E. coli 

Non-covalently attached 
in vivo in E. coli 

Non-covalently attached 
in vivo in E. coli 

Non-covalently attached 
in vivo in R. eutropha 

In vitro non-covalent  
association 

In vitro non-covalent  
association 

Intein / activate condition Ssp DnaB intein / 
low pH 

∆I-CM engineered from 
Mtu recA intein / low pH 

∆I-CM engineered from 
Mtu recA intein / low pH 

Mxe GyrA intein/ thiols Ssp DnaB intein / 
low pH 

Ssp DnaB intein / 
low pH 

Efforts on extra protein / 
polymer production 

No concerns Extra triple or dual PhaP 
protein production 

Extra triple PhaP protein 
production 

Extra PhaP production Extra separate chemical 
synthesis of PHB polymer 

Extra separate chemical 
synthesis of PHB polymer 

Tailoring efforts on 
washing / elution 
conditions to prevent  
PhaP / PhaR leaching 
 

No concerns Tailoring efforts needed 
for an intermediate salt 
content of 50-150 mM in 
washing / elution 

No discussion but  
necessary to prevent 
PhaP leaching while only 
allow target elution 

No discussion but  
necessary to prevent 
PhaP leaching while 
only allow target elution 

No discussion but 
necessary to prevent PhaP 
leaching while only allow 
target elution 

No discussion but 
necessary to prevent PhaR 
leaching while only allow 
target elution 

Purification for a 
potentially bead 
associated target 

No concerns (except 
for PhaC itself) 

With limitations, e.g. 
β-lactamase unsuitable 

No discussion but with 
limitations in order to 
maintain non-covalent 
PhaP : bead binding 

No discussion but with 
limitations in order to 
maintain non-covalent 
PhaP : bead binding 

With limitations, e.g. 
PhaC unsuitable 

No discussion but with 
limitations in order to 
maintain non-covalent 
PhaR : bead binding 
 

Potentially multiple short 
cleavage cycles 

Exemplified with 
PhaC-intein-GFP 
beads 
 

Unexplored Unexplored Unexplored Unexplored Unexplored 

Purification for 
therapeutic proteins 
containing S-S bond 

Exemplified with 
human TNFα, 
IFNα2b and G-CSF 

Unexplored Exemplified with porcine 
IFNα 

Unsuitable due to use of 
thiols 

Unexplored Unexplored 

* Adapted from Du & Rehm (2017b) (Appendix 7.2). 
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3.2 Design of PHA beads as affinity resins for molecular 

recognition by immobilising OBody ligands on bead surface 

 

Affinity resins based on the biorecognition (specific noncovalent interaction 

(McCammon 1998)) between a biomolecule and its ligand (or binding partner) are so far 

the most efficient techniques, and are widely used to separate or detect biologically 

important molecules from natural sources.  

 

However, manufacture of a typical affinity resin (with an antibody or antibody fragment 

immobilised on a support matrix) (Tozzi et al. 2003; Crivianu-Gaita & Thompson 2016) 

generally requires the expensive recombinant production of the antibody (or antibody 

fragment) (Dias & Roque 2017), the separate preparation of the support matrix (Vařilová 

et al. 2006), and complicated chemical cross-linking of the antibody (or antibody 

fragment) to the support matrix (Shen et al. 2017).  

 

Therefore, developing alternative non-antibody affinity ligands or resins that enable 

simplified ligand immobilisation are necessary, such as in the cases of commercial 

lysozyme separation from hen egg white in the food and pharmaceutical industry 

(Shahmohammadi 2017), and progesterone (P4) detection in the dairy industry (Jang et 

al. 2017). 

 

OBody is one of the emerging engineered non-antibody protein scaffolds serving as 

alternative elements for molecular recognition (Skerra 2007; Zhao et al. 2013; Škrlec et 

al. 2015; Dias & Roque 2017). OBody is engineered from OB-fold domain (see section 

1.2.2 for detail) of aspartyl-tRNA synthetase (aspRS) from Pyrobactulum aerophilum by 

using phage display technology (Steemson 2011; Steemson et al. 2014). For example, an 
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OBody with a 3 nM affinity for hen egg-white lysozyme has been demonstrated 

(Steemson et al. 2014). It would be of great interest to immobilise such engineered 

biomolecular recognising OBodies on a proper support matrix for the purpose of affinity 

separation or detection.  

 

Polyhydroxyalkanoate (PHA) beads could potentially serve as support matrices for 

OBody proteins. As mentioned in section 3.1, PHA beads have been produced in 

recombinant E. coli cells harbouring two plasmids encoding three key enzymes (PhaC 

the PHA synthase, either as a wild type protein or as a fusion with a protein of interest, 

encoded by plasmid A, as well as PhaA the β-ketothiolase and PhaB the acetoacetyl-CoA 

reductase encoded by helper plasmid B) (Jahns & Rehm 2009). Also, PHA beads have 

been previously functionalised to display various affinity domains and used as affinity 

resins, including a ZZ domain of protein A derived from S. aureus for IgG binding / 

separation (Brockelbank et al. 2006; Lewis & Rehm 2009), a streptavidin for biotin 

binding (Peters & Rehm 2008), and a single-chain variable fragment antibody (scFv) for 

β-galactosidase antigen binding (Grage & Rehm 2008).  

 

Hence, it was envisaged that by translationally fusing an engineered OBody to PhaC, 

PHA beads with immobilised OBody could be produced in a single step, and the resulting 

“OBody beads” upon isolation as a whole would be useful as affinity resins for binding 

of an external target biomolecule recognised by said OBody ligand. This potential 

application of PHA bead fusions is described in this section, in contrast to the previous 

section 3.1 where a target protein was internally produced as immobilised on beads and 

subsequently cleaved in a free soluble form.  
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Two types of previously engineered OBody ligands based on the same OB-fold domain 

from P. aerophilum aspRS were examined, one recognising hen egg-white lysozyme as 

disclosed in a PhD thesis (Steemson 2011), the other recognising progesterone (P4) as 

generously shared by Vickery Arcus and the company “OBodies limited” 

(http://www.obodies.com/). These two types of engineered OBody ligands were chosen 

because both hen egg-white lysozyme separation and bovine milk P4 detection processes 

are of industrial significance as mentioned above.   

 

In order to develop a new type of affinity resin enabling efficient and streamlined 

lysozyme separation, the third objective of this PhD study was to immobilise on PHA 

beads the lysozyme recognising OBody ligand L200EP-06 (Steemson 2011) (L200EP-06 

was a clone code given for this particular OBody ligand during library screening 

(Steemson 2011) and abbreviated as O6 hereinafter), and to test the performance of these 

beads for external lysozyme separation. It was expected that either a PhaC-O6 or O6-

PhaC fusion could mediate formation of PHA beads, and the resulting PhaC-O6 or O6-

PhaC beads upon isolation could retain the O6 affinity for lysozyme and thus could be 

used as affinity resins for lysozyme separation. 

 

In addition, in order to develop a new type of economic bovine milk progesterone (P4) 

detection method involving non-antibody ligands bound to a matrix, the fourth objective 

of this PhD study was to immobilise on PHA beads the P4 recognising OBody ligand 

P4013-D7 (abbreviated as D7 hereinafter), and test the performance of these beads for P4 

detection. It was expected that different fusions between PhaC and D7 could mediate 

formation of PHA beads, and the resulting PHA beads upon isolation could retain the D7 

affinity for progesterone and thus be used as affinity resins for P4 detection. It should be 

noted that, when later a 2nd generation of P4 recognising OBody ligand B7 became 

http://www.obodies.com/
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available, it was similarly immobilised on PHA beads by fusing to the N-terminus of 

PhaC (based on results available for the 1st generation D7), and respective beads upon 

isolation were assessed for P4 detection as well.  

  

3.2.1 Design of PHA beads as affinity resins for lysozyme separation 

 

3.2.1.1 Production of lysozyme binding OBody beads 

 

To test whether a lysozyme-binding OBody ligand could be functionally immobilised on 

PHA beads, OBody L200EP-06 (O6) was examined. The O6 ligand is a synthetic peptide 

that was engineered based on the OB-fold domain of aspartyl-tRNA synthetase (aspRS) 

from P. aerophilum and binds specifically to hen white egg lysozyme with an affinity of 

612.8 nM (Steemson 2011). It is 113 amino acids in length (with amino acid sequence 

shown in Figure 7.10, Appendix 7.1), and contains 4 amino acid insertions plus 19 

substitutions as compared to the wild type OB-fold (residues 1-109, GenBank ID 

NP_558783.1) (see sequence alignment in Figure 7.25, Appendix 7.1).  

 

The O6 peptide was fused either N- or C- terminally to PhaC, the PHA synthase. 

Corresponding plasmids are listed in Table 2.2 (as grouped for expression of fusion 

proteins between PhaC and lysozyme binding OBody) and were prepared according to 

methods section 2.4.8. The plasmid DNA sequences were confirmed (2.4.7) and their 

maps are shown in Figures 7.11-7.12, Appendix 7.1. Plasmid transformation, cell 

cultivation for standard bead production, bead isolation, SDS-PAGE, Bradford assay and 

densitometry analysis were performed according to methods sections 2.4.6, 2.2.2.3, 2.5.2, 

2.6.2.1, 2.6.3.1 and 2.6.3.2, respectively. 
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It was established previously that wild type PHA beads (PhaC beads) could be produced 

using BL21 (DE3) E. coli strain (Table 2.1) harbouring plasmids A and B (namely 

plasmid pETC encoding PhaC the PHA synthase and plasmid pMCS69 encoding PhaA 

and PhaB) (Table 2.2) (Peters et al. 2007). Similarly, in the current work, PHA beads 

were produced by respective strains (E. coli BL21 (DE3) containing either pET14b-O6-

PhaC or pET14b-O6-PhaC as plasmid A and pMCS69 as the helper plasmid B), as shown 

by the dominant fusion protein bands in Figure 3.14. 

 

      
Figure 3.14 Protein profiles of isolated PHA beads and schematic representation 

of relevant protein components. (A) 10% SDS-PAGE was performed to examine 

whether PHA beads were produced with the correct protein profiles. Lane 1, Molecular 

weight marker (Mark12TM); Lane 2, WT PhaC beads (~ 64 kDa); Lane 3, PhaC-O6 beads 

(~ 80 kDa); Lane 4, O6-PhaC beads (~ 77 kDa). Arrows indicate the PhaC protein or 

respective fusion proteins. (B) Schematic representation of relevant protein components. 

Number in front of each linear diagram corresponds to lane number in A. 

 

As expected, fusion protein PhaC-O6 was slightly bigger than O6-PhaC, which was 

reflected by the size difference between corresponding protein bands on the SDS-PAGE 

gel (Figure 3.14, Lanes 3 & 4). This was caused by the two different starting plasmids 
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used for corresponding cloning work (pET14b-phaC-linker-SG linker-GFP containing an 

extra “linker-SG linker” region at 3’ end of phaC gene, and plasmid pET14b-GFP-phaC 

without that region, section 2.4.8). Briefly, during construct preparation, the respective 

gfp gene in the starting plasmids was simply swapped with the corresponding O6 coding 

region; therefore the extra “linker-SG linker” region was kept in the final pET14b-PhaC-

O6 construct but absent in the final pET14b-O6-PhaC construct, contributing to the 

observed size difference between the final fusion protein products. The “linker-SG linker” 

region was designed in a previous study (Jahns & Rehm 2009) on PhaC tolerance for C-

terminal fusions. Upon translation, the “linker” component could allow flexible folding 

of a peptide or protein fused to the C-terminus of PhaC, while the “SG linker” component 

(a triplicate SGGGG peptide) could maintain the hydrophobic environment at C-terminus 

of PhaC which is essential for its synthase functionality (Jahns & Rehm 2009) 

 

3.2.1.2 Lysozyme binding function assessment 

 

To evaluate whether these OBody beads could be used for lysozyme separation, a 

lysozyme binding assay was carried out with corresponding OBody beads (as well as WT 

PhaC beads as negative controls) and using a mixture solution of skim milk, BSA and 

lysozyme as the complex substrate, according to Methods section 2.6.4.4.  

 

SDS-PAGE analysis results for the elution fractions as shown in Figure 3.15 indicated 

that both PhaC-O6 and O6-PhaC beads could be used to purify lysozyme from the mixture 

solution, whereas the negative control WT PhaC beads did not. These PhaC-O6 and O6-

PhaC beads showed low levels of nonspecific binding (Figure 3.15). Based on 

densitometry, the purity of the eluted products was higher and the amount of lysozyme 

eluted was higher for the O6-PhaC beads than for the PhaC-O6 beads (about 95% vs. 72% 
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in terms of purity, and 465 vs. 360 nmol of lysozyme per g of beads in terms of lysozyme 

binding capacity), whereas the binding of the negative control WT PhaC beads was 

negligible (Figure 3.15 and Table 3.8).   

 
Figure 3.15 Use of OBody beads for lysozyme separation from a solution of skim 

milk, BSA and lysozyme. 15% SDS-PAGE was performed for resolving proteins in 

respective samples. Lane 1, mixture solution of skim milk, BSA and lysozyme; Lane 2, 

Molecular weight marker (Mark12TM); Lane 3, elution fraction from WT PhaC beads; 

Lane 4, elution fraction from O6-PhaC beads; Lane 4, elution fraction from PhaC-O6 

beads. Published in Hay et al. (2015b), Appendix 7.2. 

 

Table 3.8 Lysozyme binding capacity and purification power of the OBody beads* 

Bead 
prototype 

Amount of target protein 
eluted (mg/g beads ± SD)1 

Amount of target 
protein (nmol/g beads) 

% purity (based on 
SDS-PAGE)2 

WT PhaC  0.32 ± 0.11 22  ± 8 NA 

O6-PhaC 6.65 ± 0.17a,b 465 ± 12a,b 95 

PhaC-O6 5.13 ± 0.20a 358 ± 14a 72 
* Published in Hay et al. (2015b), Appendix 7.2. 
1 Value obtained from Bradford assay (2.6.3.1), n = 3; 
2 Estimated purity, calculated as the % of the lysozyme band content in the elution fraction 
resulted from lysozyme binding assay (2.6.4.4) based on densitometry analysis of the SDS-PAGE 
image as shown in Figure 3.15. 
a p = 0.00001 vs. WT PhaC control beads. 
b p = 0.00008 vs. PhaC-O6 beads. 
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3.2.2 Design of PHA beads as affinity resins for progesterone detection 

 

Given the encouraging lysozyme recognition power demonstrated by PHA beads 

displaying the OBody ligand L200EP-06 (O6) (section 3.2.1.2), attempts were made to 

immobilise a progesterone-recognising OBody ligand on PHA beads for the purpose of 

progesterone detection.  

 

3.2.2.1 Production of progesterone binding OBody beads 

 

In this section, a different OBody ligand recognising a different molecule, progesterone 

(P4), would be similarly immobilised on PHA beads and tested for P4 detection usage. 

To test whether a P4 binding OBody ligand could be functionally immobilised on PHA 

beads, OBody P4013-D7 (D7) was tested. The D7 ligand is also a synthetic peptide that 

was engineered based on the OB-fold domain of aspartyl-tRNA synthetase (aspRS) from 

P. aerophilum and binds specifically to P4 with an affinity of about 300 - 400 nM 

(information generously shared by Vickery Arcus and the company “OBodies limited” 

(http://www.obodies.com/), and P4013-D7 was a clone code given by them for this 

particular OBody ligand during library screening). It is 106 amino acids in length (with 

amino acid sequence shown in Figure 7.13, Appendix 7.1), and contains 3 amino acid 

deletions plus 23 substitutions as compared to the wild type OB-fold (residues 1-109, 

GenBank ID NP_558783.1) (see sequence alignment in Figure 7.26, Appendix 7.1). 

 

This D7 peptide was fused N- and / or C- terminally to PhaC (PHA synthase). 

Corresponding plasmids (pET14b-PhaC-D7, pET14b-3xD7-PhaC and pET14b-3xD7-

PhaC-D7) are listed in Table 2.2 (as grouped for expression of fusion proteins between 

http://www.obodies.com/
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PhaC and progesterone binding OBody) and prepared according to methods section 2.4.8. 

As noted in methods section 2.4.8, during preparation of the N-terminal fusion construct 

by using a single enzyme insertion site (SpeI), a triplicate N-terminal insertion (pET14b-

3xD7-PhaC) was obtained instead. This construct pET14b-3xD7-PhaC was mistaken as 

a normal single insertion due to a false positive sequencing result (covering restriction 

site and further 200 bp or so from each direction), accordingly further cloning work was 

continued based on it, resulting in the plasmid pET14b-3xD7-PhaC-D7 as the dual 

terminal fusions. The correct plasmid DNA sequences were reconfirmed later (2.4.7) and 

their maps are shown in Figures 7.14-7.16, Appendix 7.1. Plasmid transformation, cell 

cultivation for standard bead production, bead isolation, SDS-PAGE and densitometry 

analysis were performed according to methods sections 2.4.6, 2.2.2.3, 2.5.2, 2.6.2.1 and 

2.6.3.2, respectively. 

 

As mentioned in sections 3.2.1.1, it was established previously that wild type PHA beads 

(PhaC beads) could be produced using BL21 (DE3) E. coli strain (Table 2.1) harbouring 

plasmids A and B (namely plasmid pETC encoding PhaC the PHA synthase and plasmid 

pMCS69 encoding PhaA and PhaB) (Table 2.2) (Peters et al. 2007). Similarly, in the 

current work, PHA beads were produced by respective strains (E. coli BL21 (DE3) 

containing either pET14b-PhaC-D7, pET14b-3xD7-PhaC or pET14b-3xD7-PhaC-D7 as 

plasmid A and pMCS69 as the helper plasmid B), as shown by the dominant fusion 

protein bands in Figure 3.16.  
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Figure 3.16 Protein profiles of isolated PHA beads and schematic representation 

of relevant protein components. (A) 10% SDS-PAGE was performed to examine 

whether beads were produced with the correct protein profiles. Lane 1, Molecular weight 

marker (GangNam-STAINTM Prestained Protein Ladder); Lanes 2-4, 100, 200 and 400 

ng BSA; Lane 5, PhaC-D7 beads (~ 78 kDa); Lane 6, 3xD7-PhaC beads (~ 106 kDa); 

Lane 7, 3xD7-PhaC-D7 beads (~ 117 kDa); Lane 8, WT PhaC beads (~ 64 kDa). Arrows 

indicate the PhaC protein or respective fusion proteins. (B) Schematic representation of 

relevant protein components. Number in front of each linear diagram corresponds to lane 

number in A. 

 

The triplicate insertion problem was finally realised at this stage when a significant size 

difference was noticed between the C-terminal and N-terminal fusion protein bands as 

shown in lanes 5 and 6 in Figure 3.16. A repeated round of sequencing (2.4.7) for 

concerned plasmids confirmed the existence of 3xD7 at the N-terminus of PhaC.  

 

As a remedy, a new construct coding for a single copy of D7 at the N-terminus of PhaC 

was under preparation. However, as it would take several weeks from plasmid cloning 

work to final bead product, and P4 assay kit and reagents had been purchased for a while 

and about to expire, further progesterone binding tests proceeded with just the beads 

available at that time, ie. without single copy N-terminal insertion beads.  
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3.2.2.2 Assessment of the progesterone binding capacity 

 

In order to assess progesterone (P4) binding capacity of corresponding isolated beads 

(3.2.2.1), beads were incubated with a P4 solution, and a progesterone binding capacity 

test was performed by using a commercial Progesterone EIA Kit (Cayman Chemical, Ann 

Arbor, USA) according to Methods section 2.6.4.5. The EIA kit assay is based on 

competitive antibody binding between free P4 in a liquid sample and progesterone-

acetylcholinesterase (P4 tracer) included with the kit, thus colour intensity upon addition 

of Ellman's reagent is proportional  to  the  amount  of  P4  tracer  bound  to  the  well,  

which  is inversely proportional to the amount of free P4 present in the well during the 

incubation.  Therefore, the EIA kit cannot directly measure the amount of P4 bound by 

beads, but works indirectly by detecting P4 levels in the solution before and after bead 

incubation. Thus the amount of P4 reduced after bead incubation could be deemed as that 

bound by beads (either through the specific biorecognition of P4 by the OBody ligand 

D7, or through non-specific attachment of P4 to PHA beads). Therefore, to consider only 

the specific binding between P4 and OBody ligand D7, a simple wash step was introduced 

for beads after P4 incubation to wash off any non-specifically attached P4, which could 

be detected by the EIA kit, and should be subtracted as well in the calculation of bead P4 

binding capacity. 

 

A starting P4 solution (400 µg/ml dissolved in PBS buffer containing 20% ethanol as 

detailed in section 2.6.4.5) was used for bead binding capacity assay, and is defined as a 

feed fraction for later quantification of total P4 added. Following a pilot test,  ~ 20 mg of 

WT PhaC beads or OBody beads outlined in the previous section were each mixed and 

incubated with about 75 Volumes (1.5 ml) of the feed fraction at 37ºC for 30 min, after 
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which beads were sedimented by centrifugation. The supernatant was collected as an 

unbound fraction for later quantification of the remaining soluble P4. Then beads were 

washed once with about 75 Volumes (1.5 ml) of PBS and the wash fraction was collected 

as well for later quantification of P4 that was non-specifically attached to beads and 

washed off. The feed, unbound and wash fractions were diluted as appropriate to be 

within the concentration ranges of progesterone standard provided by the kit and 

respectively assayed for P4 content. The P4 binding capacity of beads was calculated as:     

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 −𝑊𝑊𝑊𝑊𝑊𝑊ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑊𝑊𝑊𝑊𝑊𝑊ℎ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑔𝑔𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢
 

 

As shown in Table 3.9, non-specific P4 binding of WT PhaC control beads was observed, 

which was possibly caused by the hydrophobic interactions between the lipophilic P4 and 

PHA polymers, a process of physical absorption reported recently (Schäfer et al. 2011). 

Besides, the PBS buffer used and / or the single wash step might be insufficient to remove 

the non-specifically adsorbed P4 off the beads. Nevertheless, as compared to the WT 

PhaC beads, all OBody beads demonstrated a significantly higher binding capacity for 

progesterone, though no significant difference was found between any two types of 

OBody beads.  

 

As fusion protein production level varied among different types of beads (Figure 3.16), 

P4 binding capacity based on bead biomass might not accurately reflect the role of OBody 

ligand D7 in P4 binding. Data conversion based on fusion protein amount again revealed 

similarly high P4 binding capacity for all OBody beads, and suggested that the 

recognition between bead fusion protein and P4 was not based on a 1:1 molar ratio (Table 

3.9). It was unclear whether this was a reflection of the P4 recognition nature of D7, or 
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an indication of high background non-specific binding noises caused by PHA beads, as 

the exact recognition mechanism between D7 itself and P4 is still unknown so far. 

 

Although the P4 EIA Kit assay provided a measurement of how much P4 could be bound 

by OBody beads, there were disadvantages in working with the Kit. As mentioned above, 

it could not be used for a direct quantification of P4 bound by beads, which involved a 

relatively more complicated procedure to separately collect feed, unbound and washing 

fractions, as well as related P4 level measuring efforts, thus it was inevitably error-prone. 

Besides, it could not reveal the binding strength (or binding affinity) between P4 and 

OBody beads, which would be an important factor in assessing whether OBody beads 

could be used for detection of bovine milk P4 usually at a low biological level of 1-10 

ng/ml (Daems et al. 2017). Therefore, an alternative assay leading to a simplified direct 

quantification of P4 bound on beads and a measurement of binding affinity between P4 

and OBody beads was desirable.  
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Table 3.9 Progesterone binding capacity of OBody beads 

Bead prototype Amount of P4 bound (value ± SD) MW Fusion proteina Beads loaded Fusion protein concentrationa Amount of P4 bound (value ± SD) 
 mg/g beads1 µmol/g beads kg/mol ng2 (pmole) µg pmol/µg =µmol/g beads mg/µmol fusion proteina µmol/µmol fusion proteina 

PhaC-D7 23.2 ± 3.1* 73.8 ± 9.9* 78 236.2 (3.0) 32 0.093 249.5 ± 33.3* 793.5 ± 106.5* 
3xD7-PhaC 29.5 ± 2.3* 93.8 ± 7.3* 106 382.2 (3.6) 32 0.113 261.1 ± 20.4* 830.1 ± 64.6*  
3xD7-PhaC-D7 29.7 ± 2.7* 94.4 ± 8.6* 117 211.3 (1.8) 16 0.113 262.8 ± 23.9* 835.4 ± 76.1* 
WT PhaC 3.8 ± 1.3 12.0 ± 4.1 64 258.1 (4.0)a 24 0.16 a 22.8 ± 7.8a 71.9 ± 24.6a 

1 Value obtained from the commercial Progesterone EIA Kit assay (2.6.4.5), n = 2. 
2 Estimated value based on densitometry analysis of the SDS-PAGE image as shown in Figure 3.16. 
a Fusion protein for OBody beads or PhaC protein in the case of WT PhaC beads. 
* p < 0.005 vs. WT PhaC controls (with a specific p value of 0.00473, 0.00164 and 0.00159 for PhaC-D7, 3xD7-PhaC and 3xD7-PhaC-D7, respectively). 

 

 

Table 3.10 Calculation of bead dilution and theoretical amount of P4 needed  

Bead prototype MW Fusion protein1 Beads Loaded2 Fusion protein concentration Assay at 0.5 µM Assay at 0.1 µM Assay at 0.01 µM Assay at 0.01 µM 
 kg/mol ng µl ng/µl nmol/ml = µM  bead dilution times (µg bead used per 50 µl assay)3 µM P4 for saturation4 
PhaC-D7 78 236.2 0.16 1476.3 18.9  37.8 (264.6) 189 (52.9) 1890 (5.3) 7.9 ± 1.1 
3xD7-PhaC 106 382.2 0.16 2388.8 22.5 45.0 (222.2)  225 (44.4) 2250 (4.4) 8.3 ± 0.6 
3xD7-PhaC-D7 117 211.3 0.08 2641.3 22.6 45.2 (221.2) 226 (44.2)  2260 (4.4) 8.4 ± 0.8 
WT PhaC 64 258.1 0.12 2150.8 33.6 67.2 (148.8) 336 (29.8) 3360 (3.0) 0.7 ± 0.2 
1 Estimated value based on densitometry analysis of the SDS-PAGE image as shown in Figure 3.16. 
2 Value calculated as  µl of diluted bead sample loaded on gel

bead sample dilution times
. 

3 Value calculated based on the 20% (200 mg/ml) (w/v) bead stocks, the dilution listed, and the assay volume of 50 µl.  
4 Value calculated based on P4 binding capacity shown in Table 3.9. 
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3.2.2.3 Assessment of the equilibrium dissociation constant (KD) 

 

Before entering into descriptions about the alternative assay, it is necessary to summarize 

the concept of binding affinity. Binding affinity is commonly quantitatively represented 

by the equilibrium dissociation constant (KD). When a target molecule A and its 

recognising molecule B are associated to form a complex (AB) in a solution, the 

corresponding equilibrium dissociation constant is defined as: KD = [A][B]
[AB]

, where [A], [B] 

and [AB] represent the concentrations of A, B and bound complex, respectively. The 

dissociation constant KD has units of molarity (M), and corresponds to the concentration 

of target molecule [A] at which the binding site on the recognising molecule B is half 

occupied, i.e. when the concentration of B with target bound [AB] equals the 

concentration of B with no target bound [B]. Therefore, a KD value is traditionally 

deduced from a typical saturated binding curve obtained through an ELISA format 

binding assay, and is approximately the concentration of target molecule [A] at which the 

binding reaction reading corresponds to half of the saturation reading. The smaller the KD 

value is, the more tightly or strongly bound the two molecules are, which contributes to 

significant binding even at very low concentrations of A and B. 

 

In order to determine an equilibrium dissociation constant (KD), a progesterone binding 

assay with a fixed amount of beads but varying amount of a biotin labelled P4 

(progesterone 3-PEG11-biotin (Cayman Chemical), gifted by Vickery Arcus) was 

performed according to Methods section 2.6.4.6. WT PhaC beads were included as 

negative controls. A monoclonal anti-progesterone antibody produced in rat (1:2000) 

(P1922, Sigma) was used as a positive control. As compared to the above-mentioned 

progesterone EIA kit, the use of a biotin labelled P4 in combination with HRP-Conjugated 
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Streptavidin (Thermo Fisher Scientific, gifted by Vickery Arcus) would enable a sensitive 

direct quantification of P4 bound on beads. Here an OPD (o-Phenylenediamine 

dihydrochloride) tablet (P9187, Sigma) was used as HRP substrate, the reaction was 

stopped by addition of H2SO4 and colour intensity was monitored at 490 nm.  

 

First, as a pilot experiment, all bead samples were tested in a volume of 50 µl at a 

concentration of 0.5 µM protein (in terms of respective target fusion protein for OBody 

beads or PhaC itself for WT PhaC beads), based on densitometry analysis of the SDS- 

PAGE image as shown in Figure 3.16 and calculations shown in Table 3.10. The biotin 

labelled P4 added was 50 µl of serial dilutions with a concentration range from 0.02 to 

43.84 µM. Results shown in Figure 3.17 indicated the lack of saturation for all samples 

with 0.5 µM bead fusion protein at the P4 concentrations tested, and non-specific binding 

occurred as well in this biotin labelled P4 binding assay for the negative controls WT 

PhaC beads, which bound P4 at a similar level to positive control rat anti-progesterone 

antibody (Figure 3.17). Nevertheless, OBody beads did show relatively high levels of P4 

binding, particularly the 3xD7-PhaC PHA beads (Figure 3.17). 

 



113 
 

 
Figure 3.17 P4 binding of PHA beads at 0.5 µM bead fusion protein. All reactions 

were performed in duplicate, and the error bars represented standard deviations.  

 

Too much bead fusion protein and to too little biotin labelled P4 used in the experiment 

could have both caused the lack of saturation. Either reducing the fusion protein amount 

or increasing the P4 amount might be helpful to solve this problem. However, lab budget 

was limited and the biotin labelled P4 was expensive and preciously gifted by the 

collaborator (Vickery Arcus and the “OBodies Limited”), therefore further tests were 

carried out with only OBody beads, at concentrations lower than 0.5 µM bead fusion 

protein. PBS was included as blank, and wells coated with OBody beads only (without 
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addition of P4) were included as bead background control. The bead background reading 

was subtracted for each bead sample reading before graphing. 

 

In an attempt to get a saturated binding curve, OBody beads were diluted further down to 

0.1 µM bead fusion protein. But results still indicated the lack of saturation as shown in 

Figure 3.18. 

 

 
 

Figure 3.18 P4 binding of OBody beads at 0.1 µM bead fusion protein. All reactions 

were performed in duplicate, and the error bars represented standard deviations. 
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In another attempt to get a saturated binding curve, OBody bead samples were diluted 

further down to 0.01 µM bead fusion protein. Note that at this assay concentration of 0.01 

µM, theoretical concentration of P4 needed to saturate all the binding sites on beads (as 

calculated in Table 3.10) was within the tested P4 concentration range (0.02 - 43.84 µM). 

But unfortunately, results still indicated the lack of saturation (Figure 3.19), which meant 

no KD value could be deduced from the experiment. The lack of saturation in this biotin 

labelled P4 binding assay implied a binding capacity even higher than that was indicated 

by the P4 EIA kit assay, which might be attributed to the sensitivity of the biotin labelled 

P4 assay. Therefore, the lack of saturation might not be a bad thing, especially considering 

the intended usage in detecting bovine milk P4 generally at a low level of 1-10 ng/ml 

(Daems et al. 2017). 
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Figure 3.19 P4 binding of OBody beads at 0.01 µM bead fusion protein. All 

reactions were performed in duplicate, and the error bars represented standard deviations. 

 

No further dilution was assayed due to the following two condensations. Firstly, as shown 

in Table 3.10, to obtain an assay dilution of 0.01 µM bead fusion protein from respective 

stock bead samples (200 mg/ml (w/v) bead slurry indicated in section 2.5.2), a 10-3 order 

of dilution was already necessary which resulted in an extremely clear diluted suspension. 

Considering the small volume (50 µl) of beads added in each plate well (corresponding 

to 3 - 5.3 µg of bead biomass shown in Table 3.10), further bead dilution was undesirable 

for an ideally even bead sampling to typically represent the real binding events. Secondly, 

a new generation of P4 binding OBody B7 became available from the collaborator 

(Vickery Arcus and the “OBodies Limited”) with an improved affinity as compared to 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25 30 35 40 45

A
bs

or
ba

nc
e 

at
 4

90
 n

m
 

Progesterone 3-PEG11-biotin concentration (µM)
PhaC-D7 beads

3xD7-PhaC beads

3xD7-PhaC-D7 beads



117 
 

D7 (below 300 nM vs. 300 - 400 nM). It would be interesting to immobilise B7 on PHA 

beads and assess the P4 binding functionality in comparison with the 1st generation D7 

counterparts, which is detailed in the next section. 

 

3.2.2.4 Production and function assessment of the 2nd generation of 

progesterone binding OBody beads  

 

In this section, the 2nd generation OBody B7 with improved affinity for P4 was similarly 

immobilised on PHA beads and tested for P4 detection usage. The B7 ligand is also a 

synthetic peptide that was engineered based on OB-fold domain of aspartyl-tRNA 

synthetase (aspRS) from P. aerophilum, and developed by the collaborator (Vickery 

Arcus and “OBodies Limited”) for a stronger binding towards P4 (with an affinity below 

300 nM as compared to 300 - 400 nM for the 1st generation OBody D7). B7 was a clone 

code given by them for this particular OBody ligand during library screening and was 

adopted accordingly in this study.  It is 106 amino acids in length (with amino acid 

sequence shown in Figure 7.18, Appendix 7.1), and contains 3 amino acid deletions plus 

24 substitutions as compared to the wild type OB-fold (residues 1-109, GenBank ID 

NP_558783.1) (see sequence alignment in Figure 7.27, Appendix 7.1). In addition, as 

compared to the 1st generation D7 (with amino acid sequence shown in Figure 7.13, 

Appendix 7.1), B7 (with amino acid sequence shown in Figure 7.18, Appendix 7.1) 

contains 8 amino acid substitutions (see sequence alignment in Figure 7.28, Appendix 

7.1). 

 

This B7 peptide was fused only to the N-terminus of PhaC (PHA synthase) based on the 

following two considerations. Firstly, for OBody beads displaying the 1st generation D7 

(abbreviation for its clone code P4013-D7), no significant statistical difference was found 
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among the three types beads of PhaC-D7, 3xD7-PhaC and 3xD7-PhaC-D7 in P4 binding 

(Table 3.9, section 3.2.2.2), regardless of the fusion copy and/or orientation of D7. It was 

thus anticipated that whether a N- or a C-terminal fusion of B7 would not make much 

difference either. Secondly, the construct bearing a single copy N-terminal fusion of D7 

(pET14b-D7-PhaC as shown in Table 2.2 which was prepared according to methods 

section 2.4.) was ready for assessment by then. It was thus decided to prepare counterpart 

N-terminal B7 fusion constructs (pET14b-B7-PhaC and pET14b-3xB7-PhaC as shown in 

Table 2.2) according to methods section 2.4.8 for affinity comparison purpose with D7. 

 

The plasmid DNA sequences were confirmed (2.4.7) and their maps are shown in Figures 

7.17, 7.19 and 7.20, Appendix 7.1. Plasmid transformation, cell cultivation for standard 

bead production, bead isolation, SDS-PAGE and densitometry analysis were performed 

according to methods sections 2.4.6, 2.2.2.3, 2.5.2, 2.6.2.1 and 2.6.3.2, respectively. 

 

As mentioned in sections 3.2.1.1, it was established previously that wild type PHA beads 

(PhaC beads) could be produced using BL21 (DE3) E. coli strain (Table 2.1) harbouring 

plasmids A and B (namely plasmid pETC encoding PhaC the PHA synthase and plasmid 

pMCS69 encoding PhaA and PhaB) (Table 2.2) (Peters et al. 2007). Similarly, in the 

current work, PHA beads were produced by respective strains (E. coli BL21 (DE3) 

containing either pET14b-D7-PhaC, pET14b-B7-PhaC, pET14b-3xD7-PhaC or pET14b-

3xB7-PhaC as plasmid A and pMCS69 as the helper plasmid B), as shown by the 

dominant fusion protein bands in Figure 3.20. 
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Figure 3.20 Protein profiles of isolated PHA beads and schematic representation 

of relevant protein components. (A) 10% SDS-PAGE was performed to examine 

whether PHA beads were produced with the correct protein profiles. Lane 1, Molecular 

weight marker (GangNam-STAINTM Prestained Protein Ladder); Lane 2, D7-PhaC beads 

(~ 78 kDa); Lane 3, B7-PhaC beads (~ 77 kDa); Lane 4, 3xB7-PhaC beads (~ 103 kDa); 

Lane 5, 3xD7-PhaC beads (~ 106 kDa); Lane 6, WT PhaC beads (~ 64 kDa); Lane 7-10, 

100, 200, 400 and 500 ng BSA. Arrows indicate the PhaC protein or respective fusion 

proteins. (B) Schematic representation of relevant protein components. Number in front 

of each linear diagram corresponds to lane number in A. 
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A biotin labelled P4 based progesterone binding assay was performed according to 

Methods section 2.6.4.6 using these OBody beads at 0.01 µM bead fusion protein (see 

calculations in Table 3.11). Soluble D7 and B7 were also assayed at 0.5 µM (as 

recommended by Vickery Arcus), which were gifted by the collaborator upon request as 

it would be interesting to see what difference could be brought about by immobilising 

respective OBody ligands on the surface of PHA beads. According to the collaborator, 

the soluble D7 has an affinity of 300 - 400 nM for P4, while B7 is below 300 nM when 

analysed with a similar biotin labelled P4 based progesterone binding assay. Thus the P4 

concentration tested (0.02 to 43.84 µM) in this study theoretically was sufficient to 

saturate all the binding sites on D7 or B7. WT PhaC beads were included as negative 

controls, and rat anti-progesterone antibody (1:4000) was used as a positive control. PBS 

was included as blank, and wells coated with beads only (without addition of P4) were 

included as bead background control. Before graphing, the PBS blank reading was 

subtracted from soluble OBody sample reading, and the bead background reading was 

subtracted from each bead sample reading.   

Table 3.11 Dilution calculation of bead immobilised and soluble OBodies 

Bead prototype MW ng fusion Beads Loaded3 Fusion protein concentrationa Assay at 0.01 or 0.5 µM 
 kg/mol proteina µl ng/µl nmol/ml = µM bead dilution (µg bead used per assay)4 
  D7-PhaC 78 355.71 0.15 2371.3 30.4 3040 (3.3) - 
  B7-PhaC 77 242.31 0.15 1615.3 21.0 2100 (4.8) 42 (238.0) 
  3xB7-PhaC 103 200.61 0.15 1337.3 13.0 1300 (7.7) - 
  3xD7-PhaC 106 189.41 0.15 1262.7 11.9 1190 (8.4) - 
  WT PhaC 64 226.61 0.75 302.1 4.7 470 (21.2) - 
  WT PhaC  64 221.52 0.15 1476.7 23.1 - 46.2 (216.5) 
Soluble OBody MW   Soluble OBody concentration               Assay at 0.5 µM 
 kg/mol   µg/mlb µmol/l = µM               OBody dilution times 
  D7 13   690 54.3  108.6 
  B7 13   2230 175.6  351.2 
a Fusion protein for OBody beads or PhaC protein in the case of WT PhaC beads. 
1 Estimated value based on densitometry analysis of the SDS-PAGE image as shown in Figure 3.20. 
2 Estimated value based on densitometry analysis of a batch of WT PhaC beads. 
3 Value calculated as µl of diluted bead sample loaded on gel

bead sample dilution times
. 

4 Value calculated based on the 20% (200 mg/ml) (w/v) bead stocks, the dilution listed, and the assay volume of 50 µl.  
b Recorded value with the gifted soluble OBody from the collaborator.   
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The results shown in Figure 3.21 again indicated a lack of saturation for all samples with 

0.01 µM bead fusion protein at the P4 concentrations (0.02 - 43.84 µM) tested. Negative 

control WT PhaC beads showed an abnormally high level of P4 binding (Figure 3.21), 

although this might have been due to the fact that over 2-6 times more of WT PhaC bead 

biomass was used (as compared to OBody beads) to get a consistent PhaC protein 

concentration of 0.01 µM (see Table 3.11), which naturally means more chances of non-

specific binding.  
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Figure 3.21 P4 binding at 0.01 µM bead fusion protein for immobilised OBodies 

and 0.5 µM protein for soluble OBodies. All reactions were performed in duplicate, and 

the error bars represented standard deviations.   * p = 0.0056 at the maximum absorbance. 

** p = 0.0016 at the maximum absorbance. *** p = 0.0050 at the maximum absorbance. 

**** p = 0.0001 at the maximum absorbance. 

 

However, in general, the 2nd generation of OBody showed a relatively higher degree of 

P4 binding than its 1st generation counterpart, namely, soluble B7 higher than soluble D7, 

-0.01
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19

0.2

0 5 10 15 20 25 30 35 40 45

A
bs

or
ba

nc
e 

at
 4

90
 n

m

Progesterone 3-PEG11-biotin concentration (µM)
D7-PhaC beads
B7-PhaC beads
3xD7-PhaC beads
3xB7-PhaC beads
WT PhaC beads
soluble B7
soluble D7
Rat anti-P4 Ab (1:4000 diluted)

****
***

*
**



123 
 

and immobilised B7 (B7-PhaC beads) higher than immobilised D7 (D7-PhaC beads) 

(Figure 3.21). Interestingly, for both generations of immobilised OBodies, the single copy 

fusion performed better than the triplicate fusion, namely D7-PhaC beads bound more P4 

than 3xD7-PhaC beads did, and B7-PhaC beads more than 3xB7-PhaC beads (Figure 

3.21). Promisingly, the best performer, immobilised B7 (B7-PhaC beads) at 0.01 µM bead 

fusion protein performed comparably to the soluble B7 at 0.5 µM, and considering the 

50-fold difference in their assay concentrations, bead immobilised B7 (B7-PhaC beads) 

might be useful in detecting P4 in bovine milk. 

 

Unexpectedly, the P4 concentration (0.02 - 43.84 µM) tested did not even saturate the 

binding sites of soluble D7 or B7, which was in contradiction to observations from the 

collaborator. This led to questions on the analysis system used in this study. A careful 

examination of the experimental protocol used in this study and that from the collaborator 

revealed that both protocols were essentially the same, except for a house made PBS in 

this study vs. a commercial DPBS buffer (Thermo Fisher Scientific), an OPD (o-

Phenylenediamine dihydrochloride) substrate (which requires plate reading at 490 nm, 

Sigma #P9187) in this study vs. a TMB (3,3',5,5' tetramethylbenzidine) substrate (which 

requires plate reading at 450 nm, Thermo Fisher scientific # 34028), as well as a high-

binding microtitre plate (Greiner Bio-One #655061) in this study vs. a low-binding one 

(Greiner Bio-One #655101). Buffers and substrates (and respective reading wavelength 

as required) were unlikely to be responsible for differences seen between my results and 

those of our collaborator. However plates made of high-binding and low-binding 

polystyrene could have possibly caused a significant difference in non-specific physical 

absorption of P4 through hydrophobic interactions with the lipophilic P4 (Longman & 

Buehring 1986; Schäfer et al. 2011). 
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Because both PHA beads and the high-binding ELISA plate used in this study could have 

possibly caused the lack of saturation for either immobilized or soluble OBodies (as well 

as the abnormally high P4 binding of the negative control WT PhaC beads) due to non-

specific physical absorption processes (Figure 3.21), then using an approximately 

equivalent bead biomass for each bead sample and adding blocking agents throughout the 

assay process might help to counteract these effects. In order to test this, a modified 

progesterone binding assay was done still using the high-binding ELISA plate but in the 

presence of both 1% BSA and 5% skim milk. Again, due to budget limit, only the same 

batch of best performing B7-PhaC beads (Figure 3.21) and a freshly isolated batch of 

control WT PhaC beads were tested, such that to get consistent protein concentration of 

0.5 µM, about equivalent WT PhaC bead biomass was used as compared to B7-PhaC 

beads (Table 3.11). 

 

Preliminary results showed that with an approximately equivalent bead biomass and the 

presence of blocking agents, a counteracting effect on the non-specific binding noise for 

both negative control WT PhaC beads and B7-PhaC beads was obvious (Figure 3.22). 

Particularly, within the tested range of progesterone concentration (0.086-21.92 µM), WT 

PhaC beads tended to give relatively flat low level of absorbance, whereas B7-PhaC beads 

showed a typical binding curve which saturated at around 5.5 µM (Figure 3.22). The half-

maximum binding capacity corresponded to an absorbance of about 0.028, which was 

close to the value when about 0.7 µM progesterone 3-PEG11-biotin were used, therefore 

the deduced apparent equilibrium dissociation constant (KD) between B7-PhaC beads and 

P4 was about 0.7 µM or 7×10-7 M (Figure 3.22). This KD value was not ideal as compared 

to that for the soluble B7 (< 0.3 µM as shared by the collaborator), pointing again to the 

issue of non-specific P4 binding possibly caused by PHA beads and / or the high-binding 

ELISA plate, which led to a less tight overall binding between B7-PhaC beads and P4. 



125 
 

Nevertheless, the result was really encouraging considering the fact that 5.5 µM of P4 

could saturate B7-PhaC beads assayed at 0.5 µM in the presence of blocking agents 

(Figure 3.22), whereas up to 43.84 µM of P4 could not when the same batch of B7-PhaC 

beads was assayed at a concentration as low as 0.01 µM without blocking agents (Figure 

3.21). 

 

 
Figure 3.22 P4 binding at 0.5 µM bead fusion protein. Both 1% BSA and 5% skim 

milk were used as blocking agent. All reactions were performed in duplicates, and the 

error bars represented standard deviations. 

 

Further study is necessary to examine whether the remaining non-specific binding noise 

shown in Figure 3.22 could be further eliminated by using a low-binding ELISA plate 

and / or choosing an optimum blocking agent, which will be elaborated upon in the 

Discussion / Future work sections.
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Chapter 4: Discussion 

 

4.1 Design of PHA beads as self-cleavable protein purification 

resins 

 

Recombinant protein production and purification from Escherichia coli is usually 

complicated and costly, especially for therapeutic proteins. For example, in terms of 

production and purification for medically important proteins such as human tumour 

necrosis factor alpha (TNFα), human granulocyte colony-stimulating factor (G-CSF) and 

interferon alpha-2b (IFNα2b), several recently published studies focus on optimising 

protein refolding from inclusion bodies as well as optimising chromatography operations 

(Vemula et al. 2015; Wang et al. 2015; Romanov et al. 2017). Many are trying to avoid 

tedious refolding by adopting solubility-enhancing / affinity tags in combination with 

specialized affinity resins plus additional protease treatment efforts in tag removal 

(Rabhi-Essafi et al. 2007; Do et al. 2014; Alizadeh et al. 2015).  Hence, there is a need 

for a streamlined process with less complicated steps toward purification of recombinant 

proteins. 

 

Production of recombinant target proteins as part of PhaC (PHA synthase) fusion was 

recently conceived as means to bind the target to PHA inclusions in vivo for facilitated 

purification. The target protein was covalently anchored to PHA beads via PhaC gene 

fusion, enabling efficient enrichment of the target protein (Grage et al. 2011). An 

enterokinase cleavage site was inserted between PhaC and the target protein, such that 

enterokinase treatment of respective PHA beads enabled release of the target protein 

(Grage et al. 2011). This platform had the advantages of being convenient and cost-
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effective. Nevertheless, this process used additional expensive protease to initiate the 

release of the target protein. Further downstream processing might be necessary to 

remove the enterokinase, especially when purity is of critical importance, such as for 

biopharmaceuticals or protein crystallography.  

 

In the current study, purification resins based on PHA beads were developed by inserting 

a self-cleavable tag (sortase or intein) between PhaC and the target protein, thereby the 

target protein was produced and immobilised on PHA beads during cell growth. During 

PHA bead isolation / washing step the target protein was separated from other cell 

components, and finally during inducible self-cleavage of the sortase or intein tag the 

protein was released off the isolated beads as a soluble fraction. Therefore, the common 

need for complicated chromatography or specialised affinity resin or costly protease 

treatment could be eliminated, which is particularly advantageous over previous studies.    

 

Furthermore, the current platform is beneficial for the stability and solubility of target 

proteins due to their in vivo immobilisation on PHA beads. It is widely accepted that 

immobilisation improves protein stability and solubility (Rehm et al. 2016; Rehm et al. 

2017), therefore the in vivo immobilisation of target proteins on the surface of PHA beads 

may aid in the functional folding of hard-to-express proteins (i.e., those prone to inclusion 

body (IB) formation). Indeed, all of the IB-prone therapeutic proteins exemplified in the 

current study could be cleaved off isolated PHA beads in a soluble form without any 

refolding effort.  

 

Conformation-specific antibodies suggested a high fraction of the target protein 

population is properly folded. Making the assumption that commercial protein standards 

(Sino Biological Inc.) tested in the ELISA with respective conformation-specific 
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antibodies were 100% correctly folded (Figure 3.6, section 3.1.1.3 and Figure 3.13, 

section 3.1.2.3), a large proportion of the exemplified therapeutic proteins were suggested 

to be properly folded; for example 72.2% of TNFα and 39.7% of IFNα2b appeared to fold 

properly when the sortase tag was used, and 68.8% of TNFα, 39.1% of G-CSF and 60.4% 

of IFNα2b when the intein tag was used (Figure 3.6, section 3.1.1.3 and Figure 3.13, 

section 3.1.2.3, respectively). 

 

Nevertheless, the observed fraction of misfolded proteins might be due to the complexity 

of disulphide bond formation within these proteins. TNFα only contains one S-S bond, 

while both G-CSF and IFNα2b need two S-S bonds for correct folding. This is 

undoubtedly the limitation when producing disulphide-bonded eukaryotic proteins in E. 

coli cytoplasm (Lobstein et al. 2012). In E. coli, disulphide bond formation / 

isomerization is confined to the periplasm through the Dsb (disulphide bond formation) 

family of oxidoreductases (Denoncin & Collet 2013). Thus eukaryotic proteins requiring 

disulphide bond for folding / stability are generally misfolded and inactive in the reducing 

environment of E. coli cytoplasm (Lobstein et al. 2012). Some E. coli cells were 

engineered and commercialised to provide an oxidizing cytosol to ease disulphide bond 

formation of recombinant proteins. For example, SHuffle® T7 express contains mutated 

trxB/gor genes (coding for thioredoxin reductase and glutaredoxin reductase) as well as 

an extra chaperone dsbC gene without a signal sequence that ensures the disulphide 

isomerase stays in the cytoplasm, therefore allowing disulphide bond formation in the 

cytoplasm. The Shuffle® T7 express strain was used in this study in combination with a 

sulfhydryl oxidase (Erv1p) expressing plasmid pMCS69E to aid in disulphide bond 

formation of such proteins as TNFα, G-CSF and IFNα2b. However, all these efforts 

seemed not so efficient to ensure a 100% correct folding.  
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One or more co-purifying host cell proteins were observed along with each cleaved 

therapeutic target protein by SDS-PAGE analysis (indicated by an arrow in Figure 3.5 A 

& B, section 3.1.1.2, or numbered as 1 to 3 in Figure 3.12, section 3.1.2.3), and were 

suggested via mass spectrometry to be the E. coli chaperone protein DnaK and both full 

length and truncated outer membrane protein A, respectively (Figure 7.21C and 7.24, 

Appendix 7.1), which are known as common impurities in E. coli inclusion bodies (Carrió 

& Villaverde 2005; Jürgen et al. 2010). Further purity improvement will likely be 

achievable via process optimisation during bead isolation and washing steps or by 

applying further purification steps after cleavage. As mentioned in the Methods section 

2.5.2, a lysis buffer containing 0.04% (w/v) SDS with or without 150 mM NaCl at a pH 

of either 8.8 or 9.0 was adopted in this study for PHA bead isolation from E. coli. 

Increasing salt concentration and / or pH as well as addition of 0.05% (v/v) nonionic 

surfactant Tween 20 has been recommend for cleaning PHA beads displaying proteins of 

interest (Hay et al. 2014). It has also been previously reported that mechanical disruption 

of cell biomass suspended in a high concentration of SDS could improve both the purity 

of final PHA products and cell disruption efficiency. For example PHA of 95% purity 

could be obtained from Methylobacterium sp V49 cells suspended in 5% (w/v) SDS (no 

pH information) (Ghatnekar et al. 2002), and a cell disruption efficiency >99.99% could 

be reached for Cupriavidus necator cells suspended in 1% (w/v) SDS (pH 12) (Koller et 

al. 2013). However, these studies aimed at only PHA material as the final target, rather 

than any valuable protein coated on PHA beads as is the case of this study, therefore the 

bead treatment of using 1% to 5% SDS might be too harsh for proteins. Nevertheless, 

using a lysis buffer containing SDS > 0.04% (w/v) and/or at a pH > 9, along with more 

washing steps, might yield purer PHA beads, although optimisation would be required to 

avoid protein inactivation due to high pH or high SDS levels. Furthermore, use of the 

nonionic surfactant Triton X-100 in the lysis buffer might also help to remove the non-
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specifically attached chaperone protein DnaK and membrane protein A, because Triton 

X-100 has long been used in membrane protein solubilisation (Schnaitman 1971), and 

has been proven to inhibit nonspecific adhesion of proteins onto a hydrophobic surface 

(Numata et al. 2006). Additionally, further chromatograph purification (or simple 

rebuffering / dialysis) after cleavage might be desirable to remove the CaCl2 and 

triglycine introduced during cleavage, in the case of the sortase tag, to achieve 

biopharmaceutical grade purity.  

 

4.1.1 Design of PHA beads as self-cleavable protein purification resins 

mediated via PhaC-sortase-LPETG-target protein fusion 

 

Here it was demonstrated that PHA beads based purification resins mediated via PhaC-

sortase-LPETG-target protein fusions could be used for the production and purification 

of therapeutic proteins. Target therapeutic proteins were produced with a single G scar 

on the N-terminus. Nevertheless, G’s properties (uncharged and the smallest possible 

amino acid) should make it a relatively innocuous addition to most proteins.  

 

Premature cleavage of sortase before subjecting PHA bead fusions to the cleavage buffer 

that contained 5 mM CaCl2 (section 2.6.1) amounted to about 30-35% as measured via 

densitometry (Figure 3.5 A & B, section 3.1.1.2), despite the fact that E. coli only 

maintains cytosolic free Ca2+ homeostasis at about 100-300 nM (Dominguez 2004). This 

was despite efforts to reduce premature cleavage by adopting a relatively short bead 

production period (about 24 h vs. normal 48 h) as well as using high EDTA content during 

bead isolation and washing steps to chelate Ca2+. This suggested a less than stringent Ca2+ 

control of the sortase activation, which was consistent with previous studies (Mao 2004; 

Bellucci et al. 2013), and inevitably impacted the final yield of target proteins. Future 
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studies investigating molecular mechanisms on how to improve control of sortase 

activation might be necessary in this regard. 

 

4.1.2 Design of PHA beads as self-cleavable protein purification resins 

mediated via PhaC-intein-target protein fusion 

 

Previously, two different PHA granule associated proteins (namely, PHA structure 

protein phasin (PhaP), and PHA regulatory protein (PhaR)) were utilized for protein 

purification by serving as PHA bead anchors fused via a self-cleavable intein to a target 

protein (Banki et al. 2005; Barnard et al. 2005; Wang et al. 2008; Zhang et al. 2010; Zhou 

et al. 2011). However, the intrinsically less stable hydrophobic interaction between the 

PhaP / PhaR and the PHA beads imposed constraints on its application. For example, 

during PHA bead isolation and even during target the protein elution process, the salt 

concentration had to be kept within an intermediate range of 50-150 mM in order to 

reduce association of non-PhaP proteins with the bead surface whilst maintaining binding 

of PhaP fusions with PHA beads (Banki et al. 2005), otherwise impurities of non-PhaP 

proteins, PhaP-intein-target or PhaP-intein would occur in the final soluble fraction of 

target protein. Moreover, this approach required that target proteins do not interact with 

PHA beads either before or after cleavage, otherwise they would associate with the 

preformed beads rather than staying in the soluble fraction under the mild salt elution 

conditions (Banki et al. 2005; Wang et al. 2008).  

 

These problems were solved here by using PhaC that, upon polymerisation of PHA, was 

covalently bound to beads (see the summary in Table 3.7, section 3.1.2.3). PhaC 

maintained the attachment of PhaC-intein-target to the beads regardless of salt 

concentrations, therefore eliminating any concerns about non-elution of a bead associated 
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target protein, or detachment of PhaC-intein-target or PhaC-intein under various washing 

/ elution conditions that could potentially contaminate the target protein. Moreover, as 

exemplified by PhaC-intein-GFP beads, multiple shorter cleavage reactions (2 rounds of 

cleavage reaction at pH 6, 16 h each) were feasible in this study (Figure 3.9, section 

3.1.2.1) to favour completion of intein cleavage while minimizing the risk of degradation 

or activity loss of the target protein, which was advantageous as compared to one 

extended cleavage reaction over 24 h or even 36 h (Zhang et al. 2010; Zhou et al. 2011). 

 

It is known that protein secondary structures tend to be disrupted at an acidic pH, though 

certain proteins remain stable at pH 6, as was the case of the proteins tested in the current 

study. For example, wild type GFP is known to be fluorescently stable over a broad pH 

range from 6 to 10 (Patterson et al. 1997). Also, for the solution structure of Rv1626, a 

putative transcriptional antiterminator from Mycobacterium tuberculosis and a potential 

vaccine candidate against this bacterium (Morth et al. 2004; Rubio Reyes et al. 2016), no 

change in X-ray scattering curves has been observed even when the pH dropped from 8 

to 4, suggesting a structure stability within this pH range (Morth et al. 2004). Moreover, 

a backbone amide hydrogen/deuterium exchange rate study on the Z domain of 

staphylococcal protein A revealed that amide protons of all its three helices are protected 

from rapid exchange at both pH 6.5 and 4.4 demonstrating the intact structure of Z domain 

at acidic pH (Tashiro et al. 1997). Recently researchers have developed a strategy of 

cation exchange chromatography at pH 6.0 for successful purification of recombinant 

human tumour necrosis factor alpha (TNFα), and they found via circular dichroism (CD) 

analysis that the secondary structure of TNFα was perturbed only when pretreated below 

pH 5.0 (Zhang et al. 2014). Furthermore, a study on pH dependence of structural stability 

of human granulocyte colony-stimulating factor (G-CSF) disclosed that G-CSF displayed 

similar secondary helical content across a pH range of 4 through 7 via CD analysis (Ricci 
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et al. 2003). In addition, there is evidence that the highly helical secondary structure of 

human interferon alpha-2b (IFNα2b) is very conserved over a broad pH range from 2 to 

10 (Beldarraín et al. 2001). In agreement with these findings, in this study, even though 

all the proteins tested remained in an environment of pH 6 for 16 h, they appeared to be 

quite stable in terms of functionality / proper folding.  

 

Premature cleavage was really a challenge when working with the pH inducible Ssp DnaB 

intein, as was obvious with previous studies in which this intein system was used (Wood 

2003), and this inevitably impacted the final yield of target proteins.  Ssp DnaB intein is 

activated at pH 6-7 at 25°C (New England Biolabs), while the E. coli cytosolic pH is 

documented to drop below 7 due to media acidification and acetate production during 

shake-flask cultivation (Losen et al. 2004). In order to mitigate this pH drop i.e. minimize 

the intracellular premature cleavage of the target protein, a pH buffered Terrific broth (pH 

8.6 with 25mM HEPES) was established as PHA bead production media using a 24 h 

incubation time. Besides, buffers with high pH (pH 8.8) were used during cell disruption 

and bead isolation in order to reduce extracellular premature cleavage of the target 

proteins. In addition, bead production after IPTG induction was carried out at 22°C rather 

than 25°C described elsewhere (Jahns & Rehm 2009; Hay et al. 2014; Rubio Reyes et al. 

2016) to avoid activation of the Ssp DnaB intein. This avoided undesirable premature 

cleavage to a level within about 30-40% as measured via densitometry analysis (Figure 

3.7, section 3.1.2.1, and Figure 3.12, section 3.1.2.3). To our knowledge, this is the first 

detailed effort in controlling the premature intein cleavage at shake-flask level. 

Bioreactors enabling accurate real-time pH and temperature control might further reduce 

intracellular premature cleavage. 
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However, on the other hand, it has to be admitted that both the pH buffered alkaline 

medium and the relatively shorter growth period were not ideal for the growth of E. coli 

cells or accumulation of PHA beads, which might have contributed to the relatively low 

final protein yield, with microgram levels per litre of cell culture (Table 3.3, section 

3.1.2.1, and Table 3.6, section 3.1.2.3), as compared to a milligram/L level of protein 

yield commonly achieved with intein tags without medium buffering (Shi et al. 2013).  

 

4.2 Design of PHA beads as affinity resins for molecular 

recognition by immobilising OBody ligands on bead surface 

 

There are often industrial needs to separate or detect biologically important molecules 

from natural sources, like for instance commercial lysozyme separation from hen egg 

white in the food and pharmaceutical industry (Shahmohammadi 2017), and progesterone 

(P4) detection in the dairy industry (Jang et al. 2017). So far affinity separation and 

affinity detection techniques exploiting the biorecognition between a biomolecule and its 

ligand (or binding partner) are commonly regarded as the most efficient techniques. These 

technologies are mostly exemplified by affinity resins with immobilised antibodies that 

are capable of recognising antigenic epitopes of the molecule of interest (Tozzi et al. 

2003; Crivianu-Gaita & Thompson 2016). Manufacture of this type of affinity resin 

generally requires three main processes: (1) the preparation of a support matrix (either 

through chemical treatment of existing natural resources such as agarose, dextrose and 

cellulose, or through de novo chemical synthesis such as polyacrylamide and 

polymethacrylate derivatives) (Vařilová et al. 2006), (2) the recombinant production and 

purification of an antibody or antibody fragment which is usually costly (Dias & Roque 

2017), and (3) chemical cross-linking of the antibody or antibody fragment to the support 

matrix to avoid random orientation or denaturation of the antibody or antibody fragment, 
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which can be a complex process (Shen et al. 2017). Therefore, developing alternative 

non-antibody affinity ligands or resins that enable simplified ligand immobilisation are 

necessary. 

    

This study addressed these problems by generating affinity resins in vivo in a single step 

through recombinant production of OBody ligands covalently attached to a PHA support 

matrix. The OBody ligands were produced simultaneously with the PHA bead support, 

and immobilised on the bead surface in functional orientations, thus eliminating any extra 

effort for chemical cross-linking. Furthermore, OBody ligands examined in this study are 

small (~13 kDa) with non-antibody protein scaffolds that do not require any S-S bonds 

for self-stability or affinity activity. These features, in contrast to antibodies or antibody 

fragments, contribute to a simpler production process and lower overall production cost.   

 

4.2.1 Design of PHA beads as affinity resins for lysozyme separation 

 

Here it was demonstrated that OBody beads made recombinantly in which the OBody 

ligand L200EP-06 (O6) was immobilised on PHA beads, retained lysozyme recognition 

functionality and thus could be used as affinity resins for lysozyme separation. The 

resulting OBody beads (both O6-PhaC and PhaC-O6 beads) showed encouraging 

purification power from a complex substrate consisting of BSA, skimmed milk and 

lysozyme (Figure 3.15, section 3.2.1.2), with significantly higher lysozyme binding 

capacities as compared to control WT PHA beads (Table 3.8, section 3.2.1.2).  

 

It was also observed that O6-PhaC beads performed significantly better than PhaC-O6 

beads in terms of both purity and yield for the lysozyme purified from the complex 

substrate (Figure 3.15, Table 3.8, section 3.2.1.2). This was not uncommon when using 
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PhaC fusion strategy for protein immobilisation, as some proteins do tolerate fusion to 

one terminus better than the other as found previously (Hay et al. 2014). It is well known 

that in designing a protein fusion strategy, the orientation and distance of the fusion 

partners as well as linker region choice can all impact on the performance of the final 

fusion protein (Yu et al. 2015). Further structural analysis of O6, O6-PhaC and PhaC-O6 

might shed light on the molecular mechanism behind this.   

 

4.2.2 Design of PHA beads as affinity resins for progesterone detection 

 

Here it was demonstrated that OBody beads made by immobilisation of either the 1st 

generation of the OBody progesterone-binding ligand P4013-D7 (D7), or the 2nd 

generation ligand B7 on PHA beads, retained their respective progesterone (P4) 

recognition functionality (Table 3.9, section 3.2.2.2; Figure 3.17-19, section 3.2.2.3; and 

Figure 3.21-22, section 3.2.2.4). Of the six prototypes of OBody beads (PhaC-D7, 3xD7-

PhaC, 3xD7-PhaC-D7, D7-PhaC, 3xB7-PhaC and B7-PhaC beads), the most promising 

B7-PhaC beads under the current assay conditions, without much optimisation, had a P4 

binding affinity of about 0.7 µM (Figure 3.21, section 3.2.2.4), which is close to the 

soluble B7 counterpart that has an affinity of less than 0.3 µM when analysed with a 

similar biotin labelled P4 based binding assay, according to personal communication with 

the collaborator.  

 

It was noticed that three types of the 1st generation D7 beads (PhaC-D7, 3xD7-PhaC and 

3xD7-PhaC-D7 beads) performed similarly in P4 binding, regardless of the fusion copy 

and/or orientation of D7 (Table 3.9, section 3.2.2.2). Further P4 binding analysis with 

both generations of beads with a single or triplicate copy N-terminal orientation of D7 or 

B7 ligand (namely D7-PhaC, B7-PhaC, 3xD7-PhaC and 3xB7-PhaC beads) showed that 
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the single copy N-terminal orientation was preferred, in terms of P4 binding level, over 

triplicate copies (Figure 3.21, section 3.2.2.4). Further structural analysis of these ligands 

and the respective fusion proteins might help to elucidate why a single copy N-terminal 

orientation showed better P4 binding. As the N-terminal orientation preference was 

similar to what was observed for the lysozyme-biding OBody ligand L200EP-06 (O6) 

discussed in section 4.2.1, further structural studies might also help to explain whether it 

is merely a coincidence or a universal prerequisite for optimum functionality of all OBody 

ligands.  

 

Previously it has been reported that lipophilic P4 tends to attach (or absorb) to polymer 

materials such as polystyrene plasticware and polyester membranes via non-specific 

hydrophobic interactions (Longman & Buehring 1986; Schäfer et al. 2011). Consistent 

with those observations, high background P4 binding noise brought by the PHA polymer 

materials and/or high-binding ELISA plates used in this study was obvious (Table 3.9, 

section 3.2.2.2; Figure 3.17, section 3.2.2.3; and Figure 3.21, section 3.2.2.4). Preliminary 

efforts that involved using approximately equivalent PHA bead biomasses for the 

different samples, as well as both 1% BSA and 5% skim milk as blocking agents 

throughout the assay, showed a promising counteracting effect on the non-specific P4 

absorption noise (Figure 3.22, section 3.2.2.4).  

 

In future, changing to the low-binding ELISA plates (Greiner Bio-One #655101, 

Frickenhausen, Germany) and / or optimising blocking conditions could be examined to 

try to eliminate non-specific P4 absorption. A study in 2015 suggested that since BSA 

only binds weakly to different ELISA plates tested (including polypropylene, polystyrene 

and polycarbonates) and tends to be washed away easily, BSA blocking is not necessary 

for ELISA assays as long as PBST (PBS containing 1% Tween 20) washing is performed 
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(Ahirwar et al. 2015). The blocking condition used in that study was 2% BSA in a neutral 

10 mM PBS buffer (0.85% NaCl, pH 7.2) (Ahirwar et al. 2015). In a more recent paper, 

it was demonstrated that by adjusting the pH of blocking buffer to the isoelectric point of 

BSA (pH 4.6),  a 2% BSA solution in a 0.1 M sodium citrate/citric acid buffer showed 

the best surface blocking performance on an optical-fiber biosenseor (Wang et al. 2017). 

Therefore it would be interesting to test these new methods in the current P4 binding 

ELISA assay to improve non-specific blocking performance. In addition, it would be 

worthwhile to test other regular protein blockers (such as casein and ovalbumin proteins) 

along with nonionic detergent blockers (such as Tween 20 and Triton X-100) using 

different combinations and concentrations. 

 

4.3 General Conclusions 

 

4.3.1 PHA beads as self-cleavable protein purification resins 

 

New self-cleavable protein purification resins based on PHA beads were developed in 

this study. It was shown that a target protein fused to PhaC via a self-cleavable linker tag 

mediates in vivo production of PHA beads displaying the target protein. Functional target 

protein could be obtained at high purity from isolated PHA beads by incubation with 

CaCl2 and triglycine (in the case of the self-cleavable sortase tag) or by a pH shift to 6 (in 

the case of the self-cleavable intein tag). Here the target protein was firstly produced as 

immobilized to the surface of PHA beads in vivo, then separated from contaminating host 

proteins via simple bead isolation / washing steps and finally purified by specific release 

into the soluble fraction.  
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This process requires neither expensive protein purification resins nor toxic chemicals or 

additional costly enzymes, and promises to serve as an economic and simplified platform 

for protein production and purification. The current platform was utilized for production 

and purification of the medically important proteins TNFα, IFNα2b and G-CSF, hence 

provides a promising approach to lower production costs of therapeutic proteins. PHA 

production itself has already been established as a commercially scalable process (Rehm 

2010). There have been extensive studies devoted to bioprocessing strategies for large-

scale PHA production (Kaur & Roy 2015), and globally there were 24 companies 

commercialising PHA products (mainly PHB (poly-β-hydroxybutyrate)) in the year 2009 

(Chen 2009). Therefore this study provided the foundation for scalable and industrial 

PHA bead-based protein production.  

 

4.3.2 PHA beads as affinity resins 

 

Overall, in this study it was demonstrated that in vivo one-step production of PHA affinity 

resins is enabled by genetically fusing PhaC (PHA synthase) to differently customised 

OBody ligands. Furthermore, resulting recombinant OBody beads with appropriate 

ligands were used to achieve lysozyme separation from a complex substrate, or 

progesterone (P4) binding. Further optimisation of the P4 binding assay is necessary 

before the OBody bead system can be used for P4 detection in bovine milk. However, 

recombinant immobilisation of OBody ligands on the surface of PHA beads expands not 

only the attractiveness of these emerging OBody scaffolds, but also the utility scope of 

PHA beads as affinity resins.   
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Chapter 5: Future work 

 

5.1 PHA beads as self-cleavable protein purification resins  

 

As discussed in sections 4.1.1 and 4.1.2, the main challenge in our PHA bead based self-

cleavable protein production / purification platforms was the unwanted premature self-

cleavage of either sortase or intein, as previously reported by others (Wood 2003; Mao 

2004; Bellucci et al. 2013).  

 

5.1.1 Future measures to control premature cleavage of sortase  

 

Several measures could be taken to control premature cleavage of sortase, such as 

modification of the LPXTG signal sequence, adjustment of sortase position in the 

tripartite fusions (PhaC, sortase, target protein), optimisation of linker region design, and 

production of target protein independently of sortase, as described below.  

 

Firstly, an alternative LPXTG (X represents any amino acid) signal sequence recognised 

by sortase could be conceived.  LPETG was chosen in the current study merely because 

it exists in native sortase A (SrtA) substrates (such as S. aureus protein A) (Kruger et al. 

2004) and is commonly used in sortase mediated recombinant protein purification (Mao 

2004; Matsunaga et al. 2010; Bellucci et al. 2013). Previous studies of amino acid 

substitutions in the LPXTG signal showed that six alternatives (LPM/Y/L/F/Q/N/FTG) 

actually were preferred by SrtA over LPETG. Although amino acid substitutions at other 

positions in this signal generally lowered the SrtA reaction rate, some variants such as 

MPETG, LPEAG and IPKTG were quite well tolerated by SrtA (Kruger et al. 2004; 
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Piotukh et al. 2011). Further, LPGAG was found to significantly reduce premature self-

cleavage of SrtA in a SrtA-ELP-LPGAG-target protein fusion effort for protein 

purification (Bellucci et al. 2013). Therefore, it would be worthwhile to try the LPGAG 

signal sequence or a differently tailored one in the current sortase mediated self-cleavable 

PHA beads based purification platform as a measure to control the premature cleavage of 

sortase. 

 

Secondly, optimisation of sortase orientation in the tripartite fusions (PhaC, sortase, target 

protein) as well as the linker region design might be helpful in achieving more stringent 

calcium control. Previous NMR and crystal structure models revealed that the sortase A 

(SrtA) catalytic domain (residues 60-206) contains a closed eight-strand β-barrel fold 

with a disordered β6/β7 loop that is involved in the binding of both LPXTG and Ca2+, but 

the LPXTG binding pocket and Ca2+ binding pocket are located on opposing faces of 

SrtA (Ilangovan et al. 2001; Zong et al. 2004; Naik et al. 2006; Suree et al. 2009). Further 

studies demonstrated that Ca2+ binding allosterically activates and stabilises SrtA by 

inducing partial closure and ordering of the β6/β7 loop, leading to preorganisation of the 

LPXTG binding pocket, which in turn upon contacting with the LPXTG substrate 

becomes fully organised; but not the other way aroud - LPXTG binding alone can not 

lead to conformation change or stabilisation (Naik et al. 2006; Kappel et al. 2012; 

Moritsugu et al. 2012; Pang & Zhou 2015). Therefore, it would be interesting to study 

whether the current fusion context of the PhaC-sortase-LPETG-target protein caused less 

dependency on Ca2+ binding towards conformation transition to an active state, as 

compared to the stringent Ca2+ dependency of a native sortase. Positioning sortase 

alternatively, such as in the form of sortase-PhaC-LPETG-target protein, and / or 

introducing differently designed linker regions between each of the fusion partners, might 

affect the SrtA conformation and reduce the premature cleavage.    
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Another way to reduce premature cleavage might be by producing the target protein and 

sortase on separate beads and separating the protein production and cleavage steps. In this 

way the concern of either intracellular or extracellular Ca2+ concentration or premature 

cleavage of sortase would be completely abolished. In particular, a target protein could 

be designed as a PhaC-LPXTG-target protein fusion in the absence of sortase, which 

would lead to the production of PHA beads displaying PhaC-LPXTG-target protein. Then, 

the isolated PHA beads displaying PhaC-LPXTG-target protein could be incubated with 

the PhaC-sortase PHA beads described in 3.1.1.1 in the presence of CaCl2 and triglycine 

so that only the G-tagged target protein is cleaved and released as a soluble fraction. An 

obvious disadvantage associated with this approach would be the two separate PHA bead 

production processes vs. one bead production process in the current study. Further, the 

optimum mixing ratio between the two beads (PhaC-LPXTG-target beads and PhaC-

sortase beads) to give the best target protein yield might need to be worked out. These 

extra production / testing efforts in this approach might seem complicated and less 

economic, but might be worthwhile if significant yield improvements could be gained.  

 

5.1.2 Future measures to control premature cleavage of intein  

 

In terms of the pH-cleavable intein approach, in addition to use of an alternative 

production host other than E. coli that could tolerate a higher pH than E. coli, the use of 

split inteins or a different type of intein that did not rely on pH shifts for stringent control 

could be considered.   

 

To overcome the limited growth of E. coli cells on a pH buffered medium, an alternative 

host might be considered, for example, the endotoxin free GRAS (Generally Recognized 
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As Safe) grade Bacillus subtilis (Vavrová et al. 2010) could probably adapt better to 

alkaline pH (Krulwich et al. 1994; Wiegert et al. 2001; Padan et al. 2005) and could be 

engineered to produce PHA (Law et al. 2003; Wang et al. 2006; Singh et al. 2009; Lin & 

Chen 2017).  By using engineered B. subtilis in combination with an even higher pH 

buffered medium, it is likely that a simultaneous reduction in premature cleavage and 

yield increase in target proteins could be obtained. 

 

Another option to be considered is split inteins. Split-inteins are inteins that are either 

naturally or artificially separated into two individually inactive segments which undergo 

trans-splicing only upon reassembly of the two segments (Li 2015). Split inteins can also 

be engineered to deliver cleavage only at their N- or C-termini. Therefore by separately 

producing the inactive segments (usually one fused with affinity tag, while the other fused 

with target protein), cleavage could be controlled and induced only upon reassembly of 

the two segments, thereby eliminating the problem of premature cleavage (Lahiry et al. 

2017). So far, natural or artificial split inteins such as Ssp split-inteins based on 

Synechocystis sp. PCC6803 DnaE (Ssp DnaE) and Mtu ΔI-CM split inteins based on 

Mycobacterium tuberculosis recA (Mtu RecA) have been used for protein purification via 

either spontaneous in vivo / in vitro trans-splicing or in vitro pH-controllable N / C-

terminal cleavage (Evans et al. 2000; Miao et al. 2005; Lu et al. 2011; Shi et al. 2013). 

A newly published patent application disclosed Npu split intein pairs based on Nostoc 

punctiforme DnaE (Npu DnaE) showing pH sensitive cleavage without premature 

cleavage (Wood & Shi 2016). Combining any of those split intein pairs with the current 

PHA beads based protein purification platform might prove promising in solving the 

premature cleavage issues.  

 



144 
 

An example of one pair of artificially engineered Ssp DnaE split inteins comprised a N-

segment of 106 residues and a C-segment of 48 residues. Reassembly of Ala1-DnaEN 

(amino acid change at position 1 from original Cysteine to Alanine) and DnaEC leads to 

pH-controllable C-terminal cleavage, whereas reassembly of DnaEN and Ala154-DnaEC 

(amino acid change at position 154 from original Asparagine to Alanine)  leads to pH-

controllable N-terminal cleavage (Lu et al. 2011). These could be incorporated into the 

current platform, by designing respective fusions with PhaC and/or target protein in the 

format of PhaC-Ala1-inteinN and PhaC-inteinC-target protein (or target protein-inteinN-

PhaC and PhaC-Ala154inteinC), thus two different PHA beads displaying respective 

fusion proteins could be separately produced and isolated, and then, upon mixing of those 

beads, a pH-controllable C- or N-terminal cleavage mediated via the split intein pairs 

would potentially release the target protein into the soluble fraction.  

 

Alternatively, the spontaneous in vitro trans-splicing function of the naturally occurring 

Ssp DnaE split intein pairs (DnaE(N) of amino acids 5-123 and DnaE(C) of the C-terminal 

36 residues) published by Evans et al. (Evans et al. 2000) could also be exploited in the 

current platform. Namely, by splitting a target protein in two halves (target protein(N) 

and target protein(C)) and fusing each with a corresponding split intein segment along 

with PhaC in the format of target protein(N)-DnaE(N)-PhaC and PhaC-DnaE(C)-target 

protein(C), two different PHA beads displaying respective fusion proteins could be 

separately produced and isolated, and then, upon mixing of those beads, spontaneous in 

vitro trans-splicing medicated via the split intein pairs would potentially yield an intact 

target protein in the soluble fraction. This would be of particular advantage in production 

and purification of proteins toxic to host cells.   
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Another potential mechanism to eliminate unwanted premature cleavage is by replacing 

the Ssp DnaB intein with a differently non-pH stringently controlled one, such as the salt-

dependent MCM2 intein derived from Halorhabdus utahensis (Hut MCM2 intein) whose 

cleavage occurs in 4 M NaCl in the absence of reducing agents (Ciragan et al. 2016). 

Moreover, this Hut MCM2 intein was artificially split into two highly soluble segments 

(Hut MCM2ΔC62 and Hut MCM2C42) and exhibited high rates of trans-splicing upon 

reassembly in the presence of 4 M NaCl (Ciragan et al. 2016). Therefore, it might be 

feasible to introduce either the intact continuous Hut MCM2 intein or the two split 

segments into the current platform to produce proteins in a salt controllable manner.  

 

In addition, the above mentioned Hut MCM2 intein showed higher cleavage efficiency in 

the presence of additional reducing agents (Ciragan et al. 2016), which was desirable for 

increasing the cleavage yield of a target protein containing no thiol sensitive residues. 

Along with this line, when a target protein is not sensitive to thiols, the Ssp DnaB intein 

in the current platform could also be substituted with the salt sensitive Hsa PolII intein 

derived from Halobacterium salinarum (Hsa PolII intein) that is cleavable at > 1.5 M 

NaCl in the presence of reducing agents (Reitter et al. 2016). Alternatively, a more 

stringently controlled thiol-inducible intein might be considered, such as Mxe GyrA or 

Mth RIR1 intein as provided in the commercial pTWIN1 or pTWIN 2 system (NEB).  

 

5.2 PHA beads as affinity resins  

 

As demonstrated in Figure 3.21, section 3.2.2.4, the best-performing progesterone (P4) 

recognising OBody beads, B7-PhaC beads, showed promising P4 binding affinity and 

capacity. As discussed in section 4.2.2, by using low-binding ELISA plates and / or 

choosing an optimum blocking condition, the high background non-specific P4 binding 
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noise brought by the PHA polymer materials and/or high-binding ELISA plates might be 

potentially solved. 

 

In this section, some future work to practically use the B7-PhaC beads in bovine milk P4 

detection is outlined.  

 

5.2.1 Future bovine milk progesterone detection assay using OBody 

beads  

 

5.2.1.1 Milk spike test  

 

Briefly, a fixed amount of biotin-labelled progesterone (bio-P4) would be spiked into a 

real bovine milk sample before performing a bead P4 binding assay similarly to the 

protocol described in section 2.6.4.6. The progesterone (P4) naturally present in the milk 

sample would compete with the bio-P4 to bind the binding sites on OBody beads, and 

thus the colour intensity upon addition of OPD (o-Phenylenediamine dihydrochloride) 

reagent (section 2.6.4.6) would be proportional to the  amount  of  bio-P4 bound  to  the  

beads,  which  is inversely proportional to the amount of natural P4 present in the milk 

sample. 

 

To ensure detection sensitivity and accuracy, optimisation would be required to find the 

right amount of bio-P4 to be spiked, as well as the right bead biomass to be used for the 

assay. 
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5.2.1.2 Strip test  

 

Different to the ELISA format assay outlined in section 5.2.1.1, the strip test is a lateral 

flow format of analysis, but still based on competitive binding. It is envisaged that a fixed 

amount of BSA conjugated progesterone (BSA-P4) would be immobilised on the top “test 

line” of a nitrocellulose membrane, and the bottom of the resulting strip would be dipped 

in to a mixture suspension composed of bovine milk sample and a fixed amount of OBody 

beads (previously stained with Nile Red or recombinantly tagged with GFP protein). Thus 

natural P4 present in the milk sample would occupy the binding sites on OBody beads, 

leaving only limited empty binding sites on the OBody beads. Hence the OBody beads, 

upon migrating along to the top “test line” comprising BSA-P4, would only stay there (by 

binding to the BSA-P4) in amounts proportional to the empty binding sites left (and 

inversely proportionally to the amount of natural P4 present in the milk sample). 

Therefore, by quantification of the bead fluorescence on the test line, a measure of bovine 

milk P4 level could be revealed.  

 

Again, to ensure bead migration along the strip as well as detection sensitivity and 

accuracy, optimisation would be required to find the right bead size or dilution condition, 

as well as the best Nile Red staining condition (or recombinant GFP tagging condition). 

 

5.3 Overall summary 

 

In summary, both aims of this study were achieved. On one hand, by fusing a target 

protein to PhaC via a self-cleavable linker tag (either sortase or intein), the target protein 

was firstly produced as immobilized to the surface of PHA beads in vivo, then separated 

from contaminating host proteins via simple bead isolation / washing steps and finally 
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purified by specific release into the soluble fraction, either by incubation with CaCl2 ± 

triglycine, or by a pH shift to 6. In this way, the first aim was fulfilled, namely to provde 

a streamlined process with less complicated steps toward the production and purification 

of recombinant proteins, especially therapeutic proteins,. On the other hand, by fusing 

PhaC (PHA synthase) to differently customised OBody ligands, functional OBody beads 

could be obtained and used for  lysozyme separation from a complex substrate, or for 

progesterone (P4) detection. Therefore, the second aim was fulfilled, namely to develop 

a simplified process for preparation of affinity resins with non-antibody ligands that could 

be used for separation and detection of industrially important biomolecules.  

 

Nevertheless, future work to overcome the premature self-cleavage problem could 

include for example optimising the LPXTG signal sequence and sortase orientation in the 

tripartite fusions (PhaC, sortase, target protein) and testing different linkers between the 

two fusion partners in the sortase approach, or choosing non-pH stringently controlled 

inteins in the intein approach. An alternative option is to separate the protein production 

and cleavage steps, by producing the target protein and sortase on separate beads in the 

sortase approach, or producing the inactive segments of a split intein (one fused with the 

target protein while the other not) on separate beads in the intein approach, before mixing 

counterpart beads to induce a controlled self-cleavage.   

 

With the knowledge gained in this study on production and purification of recombinant 

proteins (including medically important therapeutic proteins) and with plasmid contructs 

made as part of this study, it would be straightforward to develop further constructs that 

incorporate the ideas outlined above. Transformation of these constructs into E. coli or 

other appropriate hosts would allow for assessment of bead protein production and tag 

cleavage for the purpose of target protein purification.   
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In addition, the ‘ready to use’ B7-PhaC beads (the best-performing P4-recognising 

OBody beads), as well as knowledge gained in the biotin-labelled progesterone (bio-P4) 

based P4 binding assay, pave the way for future bovine milk progesterone (P4) detection 

methods that could easily be applied in industrial situations, such as by milk spike tests 

or strip tests. 
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Chapter 7: Appendices 
 

7.1 Supplementary figures 

Key for plasmid components in the supplementary figures: 

T7 promoter Promoter for bacteriophage T7 RNA polymerase 

T7 terminator Transcription terminator for bacteriophage T7 RNA polymerase 

AmpR Ampicillin resistance conferred by β-Lactamase  

ori Origin of replication 

PhaC PHA synthase from Ralstonia eutropha, wild type 

SrtA Sortase A from Staphylococcus aureus minus the N-terminal membrane 
anchor region 

LPETG signal SrtA recognises this five amino acid signal and cleaves between the T and G 
in the presence of Ca2+ +/- triglycine 

TNFα Human tumour necrosis factor alpha, soluble form 

IFNα2b Human interferon alpha 2b, without signal peptide 

Ssp Intein Ssp DnaB helicase mini intein from Synechocystis sp. strain PCC6803, 
derived from pTwin1 vector (NEB), which self-cleaves when pH drops to 6. 

CBD Chitin binding domain derived from pTwin1 vector (NEB) 

GFP Green fluorescent protein from Aequorea victoria 

Rv1626 Putative transcriptional antiterminator Rv1626 from Mycobacterium 
tuberculosis 

ZZ Two copies of a IgG binding Z domain of protein A derived from 
Staphylococcus aureus 

G-CSF Human granulocyte colony-stimulating factor, short isoform without signal 
peptide or VSE after the QEKL residue 

Linker A flexible DNA linker inserted between 3’ end of phaC gene and 5’ end of a 
target coding region to facilitate the folding of the target protein or peptide   

SG-linker A triplicate SGGGG linker introduced at C-terminus of PhaC to maintain its 
hydrophobic environment for a proper PHA synthase functionality  

O6 Lysozyme binding OBody L200EP-06, a synthetic peptide engineered based 
on the OB-fold domain of aspartyl-tRNA synthetase (aspRS) from 
Pyrobaculum aerophilum 

D7 1st generation of progesterone (P4) binding OBody P4013-D7, a synthetic 
peptide engineered based on the OB-fold domain of aspartyl-tRNA synthetase 
(aspRS) from P. aerophilum 

B7 2nd generation of P4 binding OBody B7, a synthetic peptide engineered based 
on the OB-fold domain of aspRS from P. aerophilum 
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Figure 7.1 Plasmid map for pET14b-PhaC-SrtA (Methods section 2.4.8). 
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Figure 7.2 Plasmid map for pET14b-PhaC-SrtA-TNFα (Methods section 2.4.8). 
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Figure 7.3 Plasmid map for pET14b-PhaC-SrtA-IFNα2b (Methods section 2.4.8). 
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Figure 7.4 Plasmid map for pET14b-PhaC-Intein-GFP (Methods section 2.4.8). 
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Figure 7.5 Plasmid map for pET14b-PhaC-Intein-Rv1626 (Methods section 2.4.8).  
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Figure 7.6 Plasmid map for pET14b-PhaC-Intein-ZZ (Methods section 2.4.8). 
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Figure 7.7 Plasmid map for pET14b-PhaC-Intein-TNFα (Methods section 2.4.8). 
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Figure 7.8 Plasmid map for pET14b-PhaC-Intein-IFNα2b (Methods section 2.4.8). 
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Figure 7.9 Plasmid map for pET14b-PhaC-Intein- G-CSF (Methods section 2.4.8). 
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Figure 7.10 Amino acid sequence of OBody L200EP-06 (O6) (Methods section 

2.4.8). 

 

 

 

Figure 7.11 Plasmid map for pET14b-O6-PhaC (Methods section 2.4.8). 
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Figure 7.12 Plasmid map for pET14b-PhaC-O6 (Methods section 2.4.8). 
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Figure 7.13 Amino acid sequence of OBody P4013-D7 (D7) (Methods section 2.4.8). 

   

 

 

 

Figure 7.14 Plasmid map for pET14b-PhaC-D7 (Methods section 2.4.8). 
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Figure 7.15 Plasmid map for pET14b-3xD7-PhaC (Methods section 2.4.8). 
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Figure 7.16 Plasmid map for pET14b-3xD7-PhaC-D7 (Methods section 2.4.8). 
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Figure 7.17 Plasmid map for pET14b-D7-PhaC (Methods section 2.4.8).  
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Figure 7.18 Amino acid sequence of OBody B7 (B7) (Methods section 2.4.8). 

 

 

 

Figure 7.19 Plasmid map for pET14b-B7-PhaC (Methods section 2.4.8). 
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Figure 7.20 Plasmid map for pET14b-3xB7-PhaC (Methods section 2.4.8). 

 

  



189 
 

A. Human tumour necrosis factor alpha (soluble form, 77-233 from original 

numbering) 

Protein sequence coverage: 90% (142/157) 

Matched peptides shown in bold red. 

 

  1 VRSSSRTPSD KPVAHVVANP QAEGQLQWLN RRANALLANG VELRDNQLVV   

 51 PSEGLYLIYS QVLFKGQGCP STHVLLTHTI SRIAVSYQTK VNLLSAIKSP  

101 CQRETPEGAE AKPWYEPIYL GGVFQLEKGD RLSAEINRPD YLDFAESGQV  

151 YFGIIAL     

 

B. Human Interferon alpha 2b (without SP, 24-188 from original numbering) 

Protein sequence coverage: 36% (59/165) 

Matched peptides shown in bold red. 

 
  1 CDLPQTHSLG SRRTLMLLAQ MRRISLFSCL KDRHDFGFPQ EEFGNQFQKA   

 51 ETIPVLHEMI QQIFNLFSTK DSSAAWDETL LDKFYTELYQ QLNDLEACVI  

101 QGVGVTETPL MKEDSILAVR KYFQRITLYL KEKKYSPCAW EVVRAEIMRS  

151 FSLSTNLQES LRSKE  

 

C. Escherichia coli chaperone protein DnaK   

Protein sequence coverage: 72% (457/638) 

Matched peptides shown in bold red. 

 

Figure 7.21 Mass spectrometry analysis result for the therapeutic proteins as well 

as a minor co-purified carry-over protein obtained from beads displaying PhaC-

sortase-LPETG-target protein fusions. Published in Du & Rehm (2017a) (Appendix 

7.2). 
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Figure 7.22 Mass spectrometry analysis result for the model proteins obtained 

from beads displaying PhaC-intein-target protein fusions. Published in Du & Rehm 

(2017b) (Appendix 7.2). 
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Figure 7.23 Mass spectrometry analysis result for the therapeutic proteins 

obtained from beads displaying PhaC-intein-target protein fusions. Published in Du 

& Rehm (2017b) (Appendix 7.2). 
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1. Escherichia coli chaperone protein DnaK   

Protein sequence coverage: 67% (427/638) 

Matched peptides shown in bold red. 

 

 

 

 

 

 

 

 

 

2. Escherichia coli Outer membrane protein A (full length)  

Protein sequence coverage:  82% (283/346) 

Matched peptides shown in bold red. 
   1 MKKTAIAIAV ALAGFATVAQ AAPKDNTWYT GAKLGWSQYH DTGFINNNGP 

  51 THENQLGAGA FGGYQVNPYV GFEMGYDWLG RMPYKGSVEN GAYKAQGVQL 

 101 TAKLGYPITD DLDIYTRLGG MVWRADTKSN VYGKNHDTGV SPVFAGGVEY 

 151 AITPEIATRL EYQWTNNIGD AHTIGTRPDN GMLSLGVSYR FGQGEAAPVV 

 201 APAPAPAPEV QTKHFTLKSD VLFNFNKATL KPEGQAALDQ LYSQLSNLDP 

 251 KDGSVVVLGY TDRIGSDAYN QGLSERRAQS VVDYLISKGI PADKISARGM 

 301 GESNPVTGNT CDNVKQRAAL IDCLAPDRRV EIEVKGIKDV VTQPQA    

3. Escherichia coli Outer membrane protein A (without SP, 22-346 from original 

numbering) 

Protein sequence coverage: 87% (284/325) 

Matched peptides shown in bold red. 

   1 APKDNTWYTG AKLGWSQYHD TGFINNNGPT HENQLGAGAF GGYQVNPYVG   
  51 FEMGYDWLGR MPYKGSVENG AYKAQGVQLT AKLGYPITDD LDIYTRLGGM 

 101 VWRADTKSNV YGKNHDTGVS PVFAGGVEYA ITPEIATRLE YQWTNNIGDA 

 151 HTIGTRPDNG MLSLGVSYRF GQGEAAPVVA PAPAPAPEVQ TKHFTLKSDV 

 201 LFNFNKATLK PEGQAALDQL YSQLSNLDPK DGSVVVLGYT DRIGSDAYNQ 

 251 GLSERRAQSV VDYLISKGIP ADKISARGMG ESNPVTGNTC DNVKQRAALI 

 301 DCLAPDRRVE IEVKGIKDVV TQPQA  

 

 

 

Figure 7.24 Mass spectrometry analysis result for the co-purified carry-over proteins 

obtained from beads displaying PhaC-intein-target protein fusions. Published in Du & Rehm 

(2017b) (Appendix 7.2). 
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Figure 7.25 Sequence alignment of wild type OB-fold from P. aerophilum aspRS (WT, residues 1-109, GenBank ID NP_558783.1) and 

the lysozyme binding OBody L200EP-06 (O6, sequence shown in Figure 7.10). Identical residues are high lightened in green, similar ones in 

orange, and different ones are in grey without high lightening.    

 

 

 

 

Figure 7.26 Sequence alignment of wild type OB-fold from P. aerophilum aspRS (WT, residues 1-109, GenBank ID NP_558783.1) and 

the P4 binding OBody P4013-D7 (D7, sequence shown in Figure 7.13). Identical residues are high lightened in green, similar ones in orange, 

and different ones are in grey without high lightening.  
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Figure 7.27 Sequence alignment of wild type OB-fold from P. aerophilum aspRS (WT, residues 1-109, GenBank ID NP_558783.1) and 

the P4 binding OBody B7 (sequence shown in Figure 7.19). Identical residues are high lightened in green, similar ones in orange, and different 

ones are in grey without high lightening.    

 

 

 
Figure 7.28 Sequence alignment of the two generations of P4 binding D7 and B7 (sequences shown in Figures 7.13 and 7.19). Identical 

residues are high lightened in green, and different ones are in grey without high lightening.    
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