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Hierarchical modeling of space-time dendroclimatic fields: Comparing a
frequentist and a Bayesian approach
Michela Cameletti a and Franco Biondi b

aDepartment of Management, Economics and Quantitative Methods, University of Bergamo, Bergamo, Italy; bDendroLab, Department of
Natural Resources and Environmental Science, University of Nevada, Reno, Nevada, USA

ABSTRACT
Environmental processes, including climatic impacts in cold regions, are typically acting at multi-
ple spatial and temporal scales. Hierarchical models are a flexible statistical tool that allows for
decomposing spatiotemporal processes in simpler components connected by conditional prob-
abilistic relationships. This article reviews two hierarchical models that have been applied to tree-
ring proxy records of climate to model their space–time structure: STEM (Spatio-Temporal
Expectation Maximization) and BARCAST (Bayesian Algorithm for Reconstructing Climate
Anomalies in Space and Time). Both models account for spatial and temporal autocorrelation
by including latent spatiotemporal processes, and they both take into consideration measurement
and model errors, while they differ in their inferential approach. STEM adopts the frequentist
perspective, and its parameters are estimated through the expectation-maximization (EM) algo-
rithm, with uncertainty assessed through bootstrap resampling. BARCAST is developed in the
Bayesian framework, and relies on Markov chain Monte Carlo (MCMC) algorithms for sampling
values from posterior probability distributions of interest. STEM also explicitly includes covariates
in the process model definition. As hierarchical modeling keeps contributing to the analysis of
complex ecological and environmental processes, proxy reconstructions are likely to improve,
thereby providing better constraints on future climate change scenarios and their impacts over
cold regions.
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Introduction

Ecological and environmental phenomena are usually
complex, influenced by multiple interacting factors
linked to physical and biological systems as well as
anthropogenic influences. At the same time, in order
to understand and manage the processes that control
our environment, researchers and practitioners are
finding opportunities and challenges in the growing
availability of data from a wide range of sources with
different spatial and temporal scales (Jin et al. 2015). In
this framework, statistical research has been developed
with the purpose of modeling complex phenomena by
taking into account data and underlying (latent)
sources of variability at multiple levels (Gelman 2006),
and by providing results (e.g., parameter estimates,
prediction maps, risk assessments) that explicitly quan-
tify the corresponding degree of uncertainty. In parti-
cular, for studies on climate impacts (e.g., drought) and

disturbance regimes (e.g., wildfires, insect outbreaks) at
macrosystem scales (Heffernan et al. 2014; Becknell
et al. 2015), investigators may combine instrumental
data from monitoring networks or remote sensing, out-
puts from simulation models, and proxy data (e.g., tree-
ring records; Harley et al. 2018). All these sources of
information may differ in their spatial and temporal
scales, measurement error, biases, and missing data;
nevertheless, combining them using hierarchical, or
completely nested, levels can lead to an improvement
in analytical capability (Gelman and Hill 2006).

One of the most important environmental variables
in cold regions is air temperature (Körner and Paulsen
2004; Paulsen and Körner 2014). While many different
ways may exist to measure a variable such as tempera-
ture (Körner and Hiltbrunner 2018), in a strict sense it
is impossible to measure, simulate, or reconstruct air
temperature without errors. Instrumental observations
from a set of sensors can be biased or missing if sensors
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are not properly calibrated or if they stop working.
Monitoring or sampling sites are usually placed in
locations that are not fully representative of the entire
area of interest, a problem known as preferential sam-
pling (for an air pollution example see Shaddick and
Zidek 2014). When numerical outputs from simulation
models are available, one should consider that determi-
nistic models are a simplification of real complex sys-
tems found in nature; hence model errors should be
taken into account. In tree-ring reconstructions of past
air temperature changes, the final outcome may depend
on data-processing choices made by the investigator.
These choices include the screening of predictors to be
used, the historical periods selected for model calibra-
tion and verification, the standardization formula used
for obtaining the final tree-ring chronology, and so on.
While progress continues to be made, for example,
using signal-free (Melvin and Briffa 2008) and theory-
based (Biondi and Qeadan 2008) standardization meth-
ods, other reconstruction issues, such as the universal
use of the reverse regression method (Auffhammer
et al. 2015), remain unresolved.

A statistical way to deal with most, if not all, of these
issues consists in the definition of latent (or hidden)
processes, also known as random effects, which represent
the true state of a phenomenon (e.g., true air tempera-
ture) at the desired spatial and temporal resolution.
Latent processes can be embedded inside hierarchical
models, which are composed of multiple levels connected
through conditional distributions. This is particularly
useful when dealing with proxy climate reconstructions,
which are notoriously plagued with difficulties (McShane
and Wyner 2011), primarily because of the relatively low
signal-to-noise ratio in the observations themselves
(Hughes, Swetnam, and Diaz 2011; Bradley 2014).

Hierarchical (or multilevel) modeling is an active
area of research (Clark and Gelfand 2006; Cressie and
Wikle 2011), with applications in ecological, environ-
mental, and epidemiological research (Cressie et al.
2009; Lawson 2009; Gelfand 2012). The capabilities of
hierarchical models are primarily evident when massive
amounts of data are available to represent complex,
highly dimensional phenomena in space and time
(Wikle 2003). Statistical approaches to climate recon-
struction have also been recently framed in the flexible
class of hierarchical models (Tingley et al. 2012). In
fact, thanks to their conditional viewpoint, hierarchical
models can manage complex processes by decomposing
them in simpler components, while simultaneously
considering uncertainty sources as well as spatial, tem-
poral, and spatiotemporal interactions.

To navigate the increasing amount of scientific litera-
ture on hierarchical models, we offer here an

introduction to tools that have been used for tree-ring
reconstructions of climate, which are crucial to better
constrain future scenarios on the impact of climatic
changes, especially over cold regions. We introduce the
basic notations of hierarchical modeling and spatial pro-
cesses by describing and comparing two models that have
been applied to tree-ring records in space and time: the
STEM (spatiotemporal expectation maximization) model
proposed by Fassó and Cameletti (2010) and the
BARCAST (Bayesian algorithm for reconstructing cli-
mate anomalies in space and time) model developed by
Tingley and Huybers (2010b). Characteristics, strengths,
and limitations of the two models are discussed to high-
light general differences in the frequentist and Bayesian
approaches to hierarchical modeling. While the original
STEM and BARCAST notations have been slightly mod-
ified for comparison reasons, we have attempted to strike
a balance between a rigorous mathematical presentation
and a desire to better inform interested scientists and
practitioners about these powerful statistical tools.

Basic notions

Hierarchical modeling

At the first level of the hierarchy, the distribution1 of
the data Z = (Z1,…, Zn) is defined conditionally to the
underlying latent processes Y = (Y1,…, Yn) and a set of
parameters θ1 that define the data model. This distribu-
tion, denoted by ZjY; θ1½ �, is known as likelihood.
The second stage regards the distribution of all the
hidden processes Y given other parameters contained
in θ2. The third level, which specifies the prior distribu-
tion of all the parameters θ = (θ1, θ2), is optional and
exists only if we assume, as in the Bayesian approach,
that parameters are random variables defined by
a probability distribution. This hierarchical structure
can be represented as follows (Wikle 2003):

Level 1—Data model: [data | processes, parameters]
= [Z | Y, θ1].

Level 2—Process model: [process | parameters] = [Y | θ2].
Level 3—Parameter model (optional): [parameters] = [θ].

This can be also illustrated by means of the “directed
acyclic graph” (DAG; Gelman et al. 2013; Figure 1),
which is a structure consisting of nodes linked by uni-
directional connections (a good example of a DAG is
a family tree).

If the modeling complexity increases, it is possible to
decompose further each model into sublevels. For exam-
ple, if two sets of data Za and Zb are available, possibly
with different spatiotemporal resolutions, two data mod-
els are specified conditional on the common process of
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interest Y and some parameters θ1a, θ1b. In this case the
data model is usually defined for simplicity as

Za; ZbjY; θ1a; θ1b½ � ¼ ZajY; θ1a� ZbjY; θ1b½ �½
meaning that, conditioned on the true process Y, the
data are assumed to be independent, and thus the
corresponding conditional distributions factorize.

The data and the process model can be combined in
the following distribution:

½Z;Y θ� ¼ ½Zj jY; θ�½Yjθ� ¼ ZjY; θ1½ � Yjθ2½ � (1)

which represents the joint distribution of the data and
the latent variables conditional upon the parameters.
Statistical inference can then be carried out by means of
a frequentist or a Bayesian approach. In the first case,
parameters are considered fixed and unknown and can
be estimated using a maximum likelihood (ML) proce-
dure. In the case of hierarchical models with latent
processes, one of the best ways to deal with the ML
estimation is the expectation-maximization (EM) algo-
rithm (McLachlan and Krishnan 1997). EM was origin-
ally proposed for ML estimation in presence of
structural missing data (Dempster, Laird, and Rubin
1977), and its strength lies in not requiring to find the
observed data likelihood. If the main interest is the
estimation of the latent variable Y (e.g., the true

temperature), the plug-in principle can be applied;
that is, the ML parameter estimates are plugged into
the conditional distribution [Y | θ]. This approach,
however, does not take into account the parameter
and spatial prediction uncertainty, a problem that can
be solved, for example, through resampling procedures,
such as the bootstrap (Efron and Tibshirani 1986).

The Bayesian approach assumes that the parameters
are random variables with given prior distributions,
which can incorporate experts’ opinions or results com-
ing from previous studies (Gelman et al. 2013). The
main interest of a Bayesian analysis is in the distribu-
tion of the unknown quantities given the data, that is,
the posterior distribution, which is obtained through
Bayes’ theorem and is given by

½Y; θjZ� ¼ Z; Y; θ½ �
Z½ � ¼ ZjY; θ1½ � Yjθ2½ � θ½ �

Z½ �
/ ZjY; θ1½ � Yjθ2� θ½ �½

where / means “proportional to,” and the marginal
distribution of the data [Z] in the denominator is
a normalizing constant.

Samples from the posterior distribution may be
simulated through Markov chain Monte Carlo
(MCMC) algorithms (Brooks et al. 2011). The most
used MCMC methods are the Gibbs sampler and the
Metropolis–Hastings algorithm, which can be adapted
to almost any kind of model, including hierarchical
ones. A crucial aspect of MCMC concerns the compu-
tational costs, which can become prohibitive in case of
massive data sets or complex models. Moreover, in
order to get reliable and accurate MCMC outputs,
attention has to be paid to the initial setting and tuning
of the algorithm and to the convergence assessment.
Recently, some new approaches have been proposed in
the literature to speed up Bayesian estimation.
Hamiltonian Monte Carlo (Girolami and Calderhead
2011; Neal 2011) is an algorithm, based on differential
geometry, that is able to explore the density of the
target distributions more efficiently than classical meth-
ods such as the Metropolis–Hastings one. It is imple-
mented in the Stan software (http://mc-stan.org) and
can result in improved efficiency and faster inference
for complex problems in high-dimensional spaces. The
integrated nested Laplace approximated (INLA, http://
www.r-inla.org) method developed by Rue, Martino,
and Chopin (2009) is a computationally effective alter-
native to MCMC designed for latent Gaussian models,
which include a very wide and flexible class of hier-
archical models ranging from (generalized) linear
mixed models to spatiotemporal ones (Blangiardo and
Cameletti 2015). Differently from the simulation-based

Figure 1. Directed acyclic graph (DAG) of a general hierarchical
model structure, with data model given by [Z | Y, θ1], process
model by [Y | θ2], and parameter prior model by [θ1] and [θ2].
Circles represent stochastic nodes, which may be observed, so
that they are data, or unobserved, and therefore are latent
processes; arrows denote stochastic dependence. Notice that
arrows are unidirectional, and there is no cyclic pathway
included in the graph.
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MCMC methods, INLA is a deterministic algorithm
that provides accurate and fast approximation of the
posterior distributions.

Spatial processes

In many environmental studies, data are geographically
referenced, meaning that each datum is associated with
a location in space denoted by s. From a statistical point
of view these spatial data are defined as realizations of
a stochastic process (i.e., a collection of random vari-
ables) indexed by space, that is,

ZðsÞ; ZðsÞ; s 2 Df g
where D is a (fixed) subset of a d-dimensional spatial
domain. Following the classification adopted by Cressie
(1993) and Gelfand et al. (2010), three types of spatial
data have been identified:

● Area data: In this case Z(s) is a random aggregate
value over an area unit s with well-defined bound-
aries in D, which is defined as a countable collection
of areas. These data are often used in epidemiologi-
cal mapping applications, where the observations
may regard the number of deaths or hospitalizations
in a given area, and the objective is estimating spatial
risk related to a certain disease (Lawson 2009).

● Point-referenced (or geostatistical) data: In this
case the spatial index s varies continuously in the
fixed domain D, and Z(s) is a random outcome
observed at a specific (nonrandom) location,
which is typically a two-dimensional vector with
latitude and longitude but may also include alti-
tude. For example, we may be interested in air
temperature for a specific region, a phenomenon
that exists everywhere in the considered area but
can be measured only at a limited number of
monitoring stations with locations s1,…, sn.

● Spatial point patterns: In this case the locations are
random and Z(s) represents the occurrence or not
of an event—for example, coordinates of a given
tree species in a forest or addresses of persons
with a particular disease. In this case, while loca-
tions are random (e.g., we do not know a priori
where trees will be located), Z(s) takes 0 or 1
values—that is, the event has occurred or not. If
some additional covariate information is available
(e.g., tree diameter), the point pattern process is
marked (Illian et al. 2008).

In this article we consider the case of geostatistical
data, assuming to deal with a phenomenon that
changes continuously in a D subset of the two-

dimensional space, but that is observed at a finite num-
ber of known locations. In the classical geostatistical
model, Z(s) is defined as

Z sð Þ ¼ μðsÞ þ eðsÞ
where µ(s) is a mean also known as large-scale compo-
nent, possibly defined as a polynomial trend surface or
as a function of some covariates, and e(s) is a zero-
mean stationary spatial process with covariance func-
tion Cov(e(s), e(s')). The spatial process is second-order
stationary when the covariance function depends only
on the separation vector h between locations for each
s and s', and is isotropic when only the distance matters
irrespective of direction (Cressie 1993). A commonly
used covariance function is the exponential one, which
is defined as

Cov e sð Þ; e s0ð Þð Þ ¼ σ2exp �ϕhð Þ ¼ σ2Cϕ hð Þ (2)

where h = ||s−s'|| is the Euclidean distance, σ2 the
spatial variance, and ϕ is related to the range R = 1/ϕ,
defined as the distance at which the spatial covariance
becomes almost null. Other covariance functions are
available for defining isotropic second-order stationary
spatial processes, and have been known for some time
(see, e.g., Isaaks and Srivastava 1989).

Usually the main research interest in geostatistics is
the prediction of the spatial process at new locations
where it is not measured, a statistical procedure that is
known as kriging. In the classical geostatistical
approach (e.g., Diggle and Ribeiro 2007), the empirical
variogram is used as an exploratory tool. In this pre-
liminary stage, variogram models can sometime pro-
vide information by themselves on underlying
ecological processes (Biondi, Myers, and Avery 1994).
The mean and covariance parameters are estimated
through least square methods, and a two-step proce-
dure is usually adopted, whereby the mean is estimated
first, and then residuals are used to make inference on
the spatial parameters. Estimated parameters are
plugged into the mean and covariance function, ignor-
ing parameter uncertainty, and kriging is computed as
a linear combination of the observed values. This
approach provides nonoptimal estimators (Cressie and
Wikle 2011); for this reason it is preferable to adopt
a likelihood-based procedure like the ones adopted in
the STEM and BARCAST models.

The concept of spatial process can be extended to
the spatiotemporal case when spatial data are available
at different times. A spatiotemporal random process
(Wikle 2015) is simply a collection of random variables
indexed by space and time, Z (s,t) ≡
Z s; tð Þ; s; tÞ 2 Dðf g. In this case a valid (i.e., positive
definite) spatiotemporal covariance function Cov(Z (s,
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t), Z (s', t')) should be defined. In practice, to overcome
the computational complexity of spatio-temporal mod-
els, some simplifications are introduced. For example, it
is possible to assume separability so that the space–time
covariance function is decomposed into the sum (or the
product) of a purely spatial and a purely temporal term.
Alternatively, it can be supposed that the spatial corre-
lation is constant in time, giving rise to a space-time
covariance function that is purely spatial when t = t'
and is zero otherwise. Temporal evolution could be
introduced, assuming that the spatial process changes
in time following autoregressive dynamics (Harvill
2010). This is the approach adopted by the STEM and
BARCAST models, but we note briefly that another
approach to take into account space–time covariance
is by means of appropriate spatiotemporal variograms
(Gneiting 2002).

Model analysis

STEM

STEM is a three-level hierarchical model implemented
in the frequentist inferential framework through the
EM algorithm. It was originally developed by Fassó
and Cameletti (2010) for modeling air pollutant con-
centration, but it has been applied to hydroclimatolo-
gical data sets, such as daily rainfall (Militino et al.
2015) and dendroclimatic records (Biondi 2014). For
implementing the model, a software package named
Stem (Cameletti 2013) is freely available in the
R CRAN repository (R Core Team 2015).

Model description
Let the spatiotemporal process U(s, t) represent the
true (latent) level of the considered phenomenon (e.g.,
air temperature), which is assumed to be observed
with a measurement error at n monitoring stations
and T time points. This yields, at the generic time
t (t = 1,…, T), the following data model for the
observations Zt = (Z (s1,t),…, Z (sn,t)) coming from
the n locations s1,…,sn:

Zt ¼ Ut þ εt (3)

where εt is a multivariate zero mean normal distribu-
tion with independent and identically distributed (i.i.d.)
components, that is, εt ∼ N(0, σ2ε In), where σ2ε is the
measurement error variance and In is an n-dimensional
identity matrix. We then define Yt = (Y1 (t),…, Yp (t))
as a p-dimensional vector (with p ≤ n) for the unob-
served temporal process at time t (this could be related
for example to the “true” air temperature). The process
model is defined by the following two levels:

Ut ¼ Xtβþ KYt þ ωt (4)

Yt ¼ GYt�1 þ ηt (5)

In equation (4) the unobserved spatio-temporal process Ut

is defined as the sumof three components: a function of the
(n × d)-dimensional matrix Xt defined by d covariates
observed at time t at the n locations, the latent space-
constant temporal process Yt, and the spatiotemporal
model error ωt. The (n × p)-dimensional matrix K is
known and accounts for theweights of the p components of
Yt for each spatial location si, i = 1,…,n. In equation (5) the
temporal dynamics of Yt are modeled as a p-dimensional
autoregressive process of order 1, or AR(1), with G and ηt
being the transition matrix and the innovation error,
respectively. The three error components, namely, εt, ηt,
and ωt, have zero mean and are independent over time, as
well as being mutually independent. In particular, ηt is
supposed to follow a p-dimensional Gaussian distribution
with variance–covariance matrix Ση. Finally, ωt is an
n-dimensional Gaussian spatial process for which the time-
constant spatial covariance function is defined by the expo-
nential covariance function in equation (2) with σ2 = σ2ω; we
also assume that Cov(ηt, ηt0 ) = 0 for t ≠ t'.

Substitution of equation (4) into equation (3) yields
the following two-stage hierarchical model:

Zt ¼ Xtβþ KY t þ et (6)

Y t ¼ GY t�1 þ ηt (7)

which has the structure of a state-space moddel (Durbin
and Koopman 2001), with equations (6) and (7) repre-
senting the measurement equation and state equation,
respectively. If all the parameters are known, the unob-
served temporal process Yt can be estimated for each
time point t using the Kalman filter and Kalman
smoother techniques (Wikle and Berliner 2007;
Shumway and Stoffer 2011). The error et = ωt + εt in
equation (6) is uncorrelated in time, and for each time
t has a zero-mean Gaussian distribution with variance–
covariance matrix Σe for which the generic element is
defined as follows:

Cov e si; tð Þ; e sj; t
� �� � ¼ σ2ω þ σ2ε si ¼ sj h ¼ 0ð Þ

σ2ωCϕ hð Þ si � sj h > 0ð Þ
�

(8)

The vector of unknown parameters of the STEM model
is given by

θ ¼ β; σ2ω; G; Ση; log γð Þ; ϕ� �
(9)

where log (γ) = log (σ2ε/σ
2
ω) is introduced for numerical

purposes. Given the state-space model defined by equa-
tions (6) and (7), no conditions are required to ensure
the positive definiteness of the variances in the models.
In particular, as discussed in Sections 3.2 and 3.3 of
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Fassó and Cameletti (2009), it is possible to verify that
the variances estimated using closed formulas are posi-
tive. The use of the logarithmic transformation for the
positive definite parameter γ is related to the computa-
tional aspects of the Newton–Raphson (NR) algorithm,
which is used to estimate γ (for which no closed for-
mulas are available). Using log(γ) is therefore
a computational requirement to avoid under- or over-
flow when working with double-precision floating-
point numbers. This helps with the convergence of
the NR algorithm and to get a reasonable (i.e., positive
definite) estimate of the parameter.

The log-likelihood function is

log½ZjY; θ� ¼ �nT
2

log 2πð Þ

� 1
2

XT
t¼1

log Ωtj j þ Zt � μt
� �0

Ω�1
t Zt � μt
� �� �

where Ωt¼ KPt�1
t K 0 þ Σe

� �
and μt ¼ Xtβþ Kyt�1

t

� �
;

with yt�1
t ¼ E Y tð ÞjZ1; . . . ;Zt�1ð Þ and Pt�1

t ¼
Var Y tð ÞjZ1; . . . ;Zt�1ð Þ being the Kalman filter output,
defined as the conditional mean and variance of Yt

given data up to time t−1. Such likelihood is
a complex and nonlinear function of the unknown
parameters, and its numerical maximization by means
of classical Newton–Raphson algorithms (Gentle 2009)
could be problematic. The adoption of the EM algo-
rithm, which is described in the next section, copes
with this problem.

Estimation with the EM algorithm
Maximum likelihood estimation of the unknown para-
meters in θ is performed by means of the EM algorithm
(McLachlan and Krishnan 1997; Little and Rubin 2002),
which is an iterative procedure especially useful for
missing-data problems (Dempster, Laird, and Rubin
1977). Note that in the STEM model defined by equa-
tions (6) and (7), the missing-data component is given
by the latent variable Yt. The implementation of the EM
algorithm for the STEM model (Fassó and Cameletti
2009, 2010) is briefly summarized in the following
paragraph.

At each iteration k the EM algorithm alternates an
expectation (E) and a maximization (M) step. Given the
current values of the parameters θ (k), the E-step com-
putes the expected value of the so-called complete like-
lihood function, defined as the joint distribution of the
data Z and of the latent process Y = (Y0,Y1,…,YT) given
the full observation matrix Z = (Z1,…, ZT) and θ(k).
This essentially corresponds to the joint distribution in
equation (1) with θ = θ(k). Then at the M-step the
complete likelihood function is maximized with respect

to θ, and the solution represents the updated parameter
vector θ(k+1). The EM algorithm converges when one or
more criteria based on the distance between parameters
are met; the ML estimates are then denoted by θ̂. For
almost all parameters the M-step gives rise to closed-
form solutions, which are very convenient from the
computational point of view in terms of algorithm
stability and reduced fast inference. Only for ϕ and
log(γ) it is necessary to resort to numerical optimiza-
tion methods, such as the Newton–Raphson algorithm,
which represents an additional step inside each EM
iteration. The main disadvantage of the EM algorithm
is that it does not provide ready-to-use standard errors
(i.e., uncertainty) of the parameter estimates. The avail-
able approaches for standard error estimation in the
EM algorithm require the calculation of gradients,
Hessian matrices, and conditional expected values,
which can be really challenging to calculate, especially
when the likelihood function is complex and involves
recursive equations, as for the state-space model con-
sidered in this article. Thus, the bootstrap resampling
method described in a later section represents a feasible
approach for computing standard errors, and was
adopted to overcome this problem.

Spatial prediction
The main purpose of geostatistical analysis is spatial
prediction and mapping. Given the STEM model
introduced earlier, the aim is estimating U(s0,t) at
a new spatial location s0 given the actual data Zt. The
spatial predictor is obtained by the following joint
(n + 1)-dimensional Gaussian conditional
distribution:

Zt

U s0; tð Þ
				Yt; θ


 �
,N

μ1
μ2


 �
;

Σe Ω
Ω

0
σ2ω


 �� 


where μ1 ¼ Xtβþ KYt , μ2 ¼ X s0; tÞ βþ K s0ð ÞYtð ,
and X s0; tð Þ is the covariate vector observed at time t in
the new site s0. The quantity K(s0) is a p-dimensional
loading vector. The covariance vector Ω is constant in
time, and contains elements for i = 1,…,n given by

Cov Z si; tð Þ;U s0; tð Þ½ � ¼ σ2ωexp �ϕjjsi � s0ð jjÞ:
From multivariate Gaussian standard theory (Hoff
2009), it follows that the conditional random variable
U s0; tð ÞjZt;Yt; θ has a univariate Gaussian distribution

with mean Û s0; tð Þ and variance σ̂2K s0ð Þ given by

Û s0; tð Þ ¼ μ2 þΩ
0
Σ�1
e Zt � μ1
� �

(10)

σ̂2K s0ð Þ ¼ σ2ω �Ω
0
Σ�1
e Ω (11)
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which coincide with the simple kriging predictor and error
variance obtained in classical geostatistics (Cressie 1993).

Because the parameters θ and the latent process Yt

are unknown quantities, they are substituted, respec-
tively, by the ML estimate θ̂ and by the Kalman
smoother output. However, this solution does not
take into account the uncertainty deriving from the
parameter and latent process estimation. This could
be overcome by substituting the kriging variance of
equation (11) with an uncertainty measure that con-
siders all sources of variability and is computed using
the spatiotemporal bootstrap described in the next
section.

Bootstrap for uncertainty assessment
The parametric bootstrap implemented by STEM is
aimed at assessing the parameter and spatial prediction
uncertainty. A number B of data samples are simulated
from the Gaussian distributions of the STEM model.
Equations (6) and (7), with parameter vector θ replaced
by its ML estimate θ̂, are used to obtain a new data
vector, while covariates are kept fixed for all simula-
tions. A step-by-step description of the bootstrap simu-
lation for each time t = 1,…,T is as follows:

● Simulate the random vector η�t from the p-dimen-
sional Gaussian distribution with zero mean and

estimated variance-covariance matrix given by bΣη.
● Use equation (7) to update the latent process, i.e.

Y�
t ¼ Ĝþ KY�

t�1 þ η�t .
● Simulate the random vector e�t from the d-dimen-

sional Gaussian distribution with zero mean and

variance–covariance matrix given by Σ̂e.
● Compute the bootstrap observation vector at time

t as Z�
t ¼ Xtβ̂þ Y�

t þ e�t .
● Obtain the b-th bootstrap sample Z*

b = (Z*
1,…, Z*

T)
by combining the simulated data for all the T times;
note that the ML estimate θ̂�b and the spatial pre-

diction Û�
b s0; tð Þ are computed using the EM algo-

rithm and the kriging estimator previously
described.

Repeating this procedure for b = 1,…,B produces the
bootstrap replications θ̂�1; . . . ; θ̂�B and

Û�
1 s0; tð Þ; . . . ; Û�

B s0; tð Þ, which are used for computing
the standard error of each parameter and spatial pre-
diction by simply calculating the sample variance.
Percentile confidence intervals can be easily calculated
from the empirical distributions; for example, the end-
points of the 95% percentile bootstrap confidence

interval are given by the 2.5% and 97.5% quantiles of
the bootstrap distribution.

BARCAST

The BARCAST model (Tingley and Huybers 2010a,
2010b) is implemented using a Bayesian approach. It
was developed for the reconstruction of the tempera-
ture field by using both proxy and instrumental time
series on a yearly basis. The model has been further
used for other hydroclimatological studies (Tingley
2011; Werner, Luterbacher, and Smerdon 2012;
Mannshardt, Craigmile, and Tingley 2013; Tingley
and Huybers 2013), and the original Matlab code is
freely available at ftp://ftp.ncdc.noaa.gov/pub/data/
paleo/softlib/barcast.

Model description
In BARCAST the data model consists of two sublevels
to take into account data from different sources. Let ZI,t

denote the instrumental (I) observations at time t,
which are assumed to be the noisy versions of the
true temperature, the latent process YI,t, according to
the following model:

ZI;t ¼ YI;t þ eI;t (12)

where eI,t is the instrumental measurement error,
assumed to be normally distributed with zero mean
and variance equal to σ2I for each i.i.d. component.
The second data model sublevel regards the proxy (P)
observations ZP,t, which are connected to the true tem-
perature YP,t through a linear relationship given by

ZP;t ¼ β1YP;t þ β01þ eP;t (13)

where 1 is a vector of ones for the intercept β0, and the
noise term eP,t is given by i.i.d. normal distributions, each
being distributed as N(0, σ2P).

The process model defines the distribution of the
true temperature process at the instrumental and
proxy, and for the full vector Y = (YI,t , YP,t) it is
defined by a multivariate AR(1) process given by

Yt � μ1 ¼ α Yt�1 � μ1ð Þ þ ωt (14)

where α is the autoregressive coefficient, and the innova-
tionsωt are assumed to be independent in time and spatially
dependent, with distribution given by ωt ~ N(0, Σω). The
generic element of Σω is given by the exponential spatial
covariance function of equation (2) with σ2 ¼ σ2ω.

As BARCAST adopts the Bayesian approach (e.g.,
Gelman et al. 2013), there is an additional, third level
for the specification of the prior distributions, the so-
called parameter model. Weakly informative but proper
priors are specified for the eight parameters contained
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in θ = (θ1, θ2), where θ1 ¼ σ2I ; σ2P; μ; β0; β1
� �

and
θ2 ¼ σ2ω; ϕ; α

� �
. In particular, as specified in Table 1

and Appendix A of Tingley and Huybers (2010b), the
following prior distributions are used in BARCAST:
inverse-gamma for the variances; normal for
μ; β0; and β1; uniform for α; and log-normal for ϕ.
The hyperparameters of these distributions are chosen
in order to obtain proper but weakly informative priors
and to have the posterior distributions dominated by
the data. For example, the interval [0,1] is chosen as
support of the uniform distribution used for the coeffi-
cient α of the stationary AR(1) model of equation (14).
This is a reasonable choice when the temporal correla-
tion is expected to be positive, but the preferred prior
should not be too informative. Another example can be
provided for the inverse range parameter ϕ, for which
the hyperparameters of the log-normal distribution are
chosen by assuming that spatial correlation is present at
distances between 10 and 1000 km, as is appropriate for
large-scale climate reconstructions.

Given the model defined by equations (12)–(14), the
joint posterior distribution of the parameters and latent
process is given by

Y0; . . . ; YT ; θjZ1; . . . ; ZT½ �

/ Y0½ � θ½ �
YT
t¼1

½Zt Yt; θ1�½Ytj j Yt�1; θ2� (15)

which corresponds to the complete-likelihood function
of the STEM model.

Bayesian estimation
Parameter estimation is implemented via MCMC meth-
ods, which produce replicates drawn from the posterior
distribution of equation (15). In practice, givenmMCMC
iterations indexed by l, for the generic parameter θi in θ,
the set of values θ lð Þ

i ; l ¼ l0 þ 1; . . . ; m
n o

simulated
from the corresponding posterior distribution is avail-
able, where l0 is the number of iterations discarded in
order to eliminate the starting values influence (also
known as the “burn-in period”). This set can be used to
compute relevant posterior summaries (e.g., mean, med-
ian) or a measure of uncertainty given by the sample
variance; moreover, a 95% credible interval can be imme-
diately derived by using the 2.5% and 97.5% quantiles.

For all parameters but ϕ, which is the inverse of the
spatial range, BARCAST employs the Gibbs sampler
(Casella and George 1992). This method is appropriate
when the full conditional distribution, that is, the poster-
ior conditional distribution of a parameter given all
unknown quantities, is a known distribution from
which it is easy to sample. Such a condition is usually

satisfied when Gaussian distributions are combined with
conjugate priors—in Bayesian terms, a prior is conjugate
to a given likelihood when the posterior distribution
belongs to the same family as the prior distribution
(Hoff 2009). The Gibbs sampling fails for ϕ because the
full conditional is intractable, and hence the Metropolis–
Hastings algorithm (Chib and Greenberg 1995) is used.
This hybrid MCMC method has also been called the
Metropolis-within-Gibbs algorithm (Banerjee, Carlin,
and Gelfand 2014), and it operates by individually updat-
ing the parameters at each MCMC iteration.

Spatial prediction
In the Bayesian framework, to estimate at time t the true
temperature at a new location s0, it is not necessary to
adopt the plug-in approach used by STEM. This is due to
the fact that the posterior predictive distribution, which is
the basis for Bayesian prediction, naturally includes para-
meter uncertainty. Thus, it is possible to write

Y s0; tð ÞjZ½ � ¼ � Y s0; tð Þ; θjZ½ �dθ ¼ � Y s0; tð Þjθ;Z½ �½θjZ�dθ
(16)

where [Y (s0) | θ, Z] has a conditional normal distribu-
tion obtained from the joint multivariate Gaussian dis-
tribution of Y(s0, t). In practice, values from [Y (s0) | Z]
can be obtained through composition sampling
(Banerjee, Carlin, and Gelfand 2014) using posterior
draws of the parameters θ. This consists of using each
value in the set θ kð Þ; k ¼ k0 þ 1; . . . ; m

n o
, which is

obtained from the posterior [θ | Z] as described in
the previous section, to simulate a value Y(s0,t)

(k)

from [Y(s0)|θ, Z] with θ = θ(k). Then the collection

Y s0; tð Þ kð Þ; k ¼ k0 þ 1; . . . ; m
n o

forms a sample from

the posterior predictive distribution, and can be used to
compute posterior summaries such as the median, var-
iance, credible quantile intervals, and the likelihood of
exceeding a given threshold.

Discussion

Statistics has a key role in the scientific understanding
of environmental and ecological dynamics, because it
can model possible sources of variability and provide
a probabilistic evaluation of estimates and predictions
(Katz 2002; Katz et al. 2013). Not surprisingly, the
number of citations for hierarchical modeling in ecol-
ogy and climate research has increased rapidly in recent
years, even outpacing the rate of growth of citations for
hierarchical models in general (Figure 2).
Understanding past climate variability is crucial for
placing accurate constraints on current and potentially
future changes, despite the difficulties involved in
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properly using proxy records for climate reconstruc-
tions (National Research Council 2006). In this article,
we have used formal mathematical notation to explain
similarities and differences between two hierarchical
space–time models for tree-ring reconstructions of cli-
mate, with one providing an example of a frequentist
approach (STEM), and the other having a Bayesian
character (BARCAST).

There are also nonhierarchical models that have
been used and described in the literature to reconstruct
climate fields from proxy records, such as the regular-
ized EM (RegEM) algorithm for Gaussian data
(Schneider 2001). This approach is based on iterated
multivariate linear regression analysis of variables (e.g.,
air temperature) with missing values on variables with
available values (e.g., tree-ring proxy data), also
accounting nonparametrically for spatial and temporal
(auto)correlation. More recently, Guillot, Rajaratnam,
and Emile-Geay (2015) proposed an extension of
RegEM called the GraphEM method, which combines
the EM algorithm with a Gaussian Markov random
field for modeling the spatial temperature field through
a neighborhood-graph approach. The hierarchical
model structure has been again adopted by Tipton

et al. (2016), who proposed a Bayesian model for tree-
ring data based on a mixture of Gaussian distributions
that depend on two deterministic growth models
defined as a function of climate data (temperature
and precipitation). The model has been applied to
multiple tree species and is able to deal with the tem-
poral misalignment given by the fact that climate data
have a monthly resolution while tree-ring data are
annual. Both temporal and spatial (auto)correlation
are introduced parametrically by means of a temporal
multivariate conditionally autoregressive structure
(Cressie and Wikle 2011).

It is always a challenge to bridge the gap between
advanced statistical methods and traditional applications
of well-established procedures, especially because of the
relatively fast pace of current advances. For instance,
Bayesian hierarchical models have recently been used to
reconstruct temperature by jointly modeling tree-ring
width, age, and climate data (Schofield et al. 2016). This
joint modeling approach is an alternative to the multistep
conventional methodologies for reconstructing a climate
variable, such as the traditional standardization and gen-
eration of tree-ring chronologies followed by climate
reconstruction (Fritts 1976). Besides overcoming the
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Figure 2. Publications listed by Google Scholar (https://scholar.google.com) over the past years (2005–2017). Search terms were
“hierarchical model” either alone (plotted on the left y-axis) or together (logical AND) with the discipline (“ecology,” “climate,”
“environmental science,” “natural resource”; all plotted on the right y-axis). The number of citations for hierarchical models almost
tripled (a 2.8-fold increase) during the past 13 years, but that overall growth was exceeded by their applications in all fields:
environmental science (3.6-fold increase), ecology (3.7-fold increase), climate (4.0-fold increase), and natural resources (4.2-fold
increase).
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“segment length curse” (Cook et al. 1995), the joint mod-
eling approach is able to propagate the parameter estima-
tion uncertainty from the standardization through the
reconstruction. Using the same set of data (i.e., the
Torneträsk ring-width data) used by Schofield et al.
(2016), first Steinschneider et al. (2017) and then
Schofield and Barker (2017) investigated the predictive
performance of several modeling choices, including data
transformation, inclusion of temporal autocorrelation,
and homogenous or heterogeneous variance. However,
none of these recent modeling efforts took explicitly into
account spatial (auto)correlation.

With regard to model structure, STEM and
BARCAST both include spatial and temporal compo-
nents. In particular, STEM includes a process model—
equation (4)—that comprises a linear function of cov-
ariates, a spatial process uncorrelated in time, and
a low-dimensional temporal process with AR(1)
dynamics. BARCAST has a two-level data model for
taking into account both instrumental and proxy time
series, each having a different relationship with the
latent temporal field. The BARCAST process model—
equation (14)—is characterized by an AR(1) temporal
structure with spatially correlated and serially indepen-
dent innovations. The size of the AR(1) latent process is
defined by the number of spatial sites n for BARCAST,
while for STEM it is given by p ≤ n, where p can be
determined from the observed data using a principal
component decomposition (Wikle and Cressie 1999) or
can be set equal to one (Cameletti, Ignaccolo, and
Bande 2011). It should be mentioned that tree growth
may have time-series persistence that extends well
beyond one year, but first-order autoregressive models
have usually performed well for prewhitening tree-ring
chronologies of the western United States (Biondi and
Swetnam 1987).

Despite differences in hierarchical structure, both
models are quite flexible. The inclusion of covariates,
such as individual- and site-level variables that can
account for confounding factors, is straightforward in
STEM thanks to the measurement equation (6). An
example of such covariates is site elevation, which can
play a critical role in the identification of dendrocli-
matic signals across an entire tree-ring network
(Touchan et al. 2016). In BARCAST it is possible to
include additional variables in the process model (14),
even though they would not be spatially explicit. With
regard to the inferential approach, STEM estimation is
performed via EM algorithm in a frequentist approach,
assuming that parameters are fixed and unknown,
whereas BARCAST has a Bayesian perspective that
calls for parameter prior distributions. This means
that assessing the uncertainty of parameter estimates

and spatial predictions is straightforward for BARCAST
(just by computing summaries of the posterior draws),
while STEM requires a two-step procedure involving
bootstrap as a resampling method. Both approaches are
viable and effective for estimating hierarchical models,
and it is not a priori possible to determine which
method is preferable in terms of computational
requirements or accuracy of results. Although different
in hierarchical structure and inferential aspects, both
models take advantage of the conditional viewpoint
when dealing with probability distributions. Moreover,
if all scalar parameters are not considered as random
variables but are specified a priori, the BARCAST esti-
mates of the latent field Y are equivalent to those from
the Kalman smoother method adopted by STEM
(Tingley and Huybers 2010b). This provides an inter-
esting connection between the frequentist and the
Bayesian philosophy.

From the computational point of view, both STEM
and BARCAST cannot be implemented using ready-to-
use software, but ad hoc code has been made freely
available by the model authors. The computational
effort required by the two models is likely to be similar,
as both are based on iterative methods: STEM makes
use of the EM algorithm for each bootstrap iteration,
while BARCAST alternates the Gibbs and the
Metropolis–Hastings algorithms at each MCMC itera-
tion. For both STEM and BARCAST, it is possible to
reduce the processing time by exploiting parallel com-
puting, that is, by splitting a computation-intensive
problem into smaller jobs to be solved concurrently
by a cluster of processors or central processing unit
(CPU) cores (Fassó and Cameletti 2009; Tingley and
Huybers 2010b).

STEM and BARCAST have both been extended.
BARCAST has inspired several spatiotemporal hierarch-
ical models for hydroclimatological reconstruction
(Tingley et al. 2012), and its capability to preserve the
temporal persistence of long-range memory in simulated
data has been recently tested by Nilsen et al. (2018).
A new version of STEM named D-STEM (Distributed
Space Time Expectation Maximization) has been pro-
posed for the analysis of multivariate space–time data,
such as those generated by the fusion of ground-level
and remote-sensing observations (Fassó and Finazzi
2011). A model very similar to STEM has been applied
to air pollution data (Cameletti et al. 2013) in a Bayesian
context by means of the INLA algorithm (Blangiardo
et al. 2013; Blangiardo and Cameletti 2015). As hierarch-
ical modeling, either with a frequentist or a Bayesian
approach, keeps contributing to the analysis of complex
ecological and environmental processes in space and
time, proxy reconstructions of climate will continue to
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improve, thereby providing better constraints on future
climate change scenarios and their impacts over cold
regions.

Notes

1. Following Gelfand and Smith (1990), brackets denote
probability density functions of random variables. For
example, [X] is the marginal distribution of the uni-
dimensional random variable X, while [X |Y] and [X,Y]
represent the conditional and joint distribution of
X and Y, respectively. Bold characters are adopted for
multivariate random variables.
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