
Phys. Fluids 28, 021901 (2016); https://doi.org/10.1063/1.4940904 28, 021901

© 2016 AIP Publishing LLC.

Choice of computational method
for swimming and pumping with
nonslender helical filaments at low
Reynolds number
Cite as: Phys. Fluids 28, 021901 (2016); https://doi.org/10.1063/1.4940904
Submitted: 16 June 2015 . Accepted: 05 January 2016 . Published Online: 02 February 2016

J. D. Martindale, M. Jabbarzadeh, and H. C. Fu

ARTICLES YOU MAY BE INTERESTED IN

The method of regularized Stokeslets in three dimensions:  Analysis, validation,
and application to helical swimming
Physics of Fluids 17, 031504 (2005); https://doi.org/10.1063/1.1830486

Life at low Reynolds number
American Journal of Physics 45, 3 (1977); https://doi.org/10.1119/1.10903

Propulsion in a viscoelastic fluid
Physics of Fluids 19, 083104 (2007); https://doi.org/10.1063/1.2751388

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/test.int.aip.org/adtest/L16/1772678147/x01/AIP/HA_POF_PDF_AIPPAcademy_2019/HA_POF_PDF_AIPPAcademy_2019.jpg/4239516c6c4676687969774141667441?x
https://doi.org/10.1063/1.4940904
https://doi.org/10.1063/1.4940904
https://aip.scitation.org/author/Martindale%2C+J+D
https://aip.scitation.org/author/Jabbarzadeh%2C+M
https://aip.scitation.org/author/Fu%2C+H+C
https://doi.org/10.1063/1.4940904
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.4940904
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.4940904&domain=aip.scitation.org&date_stamp=2016-02-02
https://aip.scitation.org/doi/10.1063/1.1830486
https://aip.scitation.org/doi/10.1063/1.1830486
https://doi.org/10.1063/1.1830486
https://aip.scitation.org/doi/10.1119/1.10903
https://doi.org/10.1119/1.10903
https://aip.scitation.org/doi/10.1063/1.2751388
https://doi.org/10.1063/1.2751388


PHYSICS OF FLUIDS 28, 021901 (2016)

Choice of computational method for swimming
and pumping with nonslender helical filaments at low
Reynolds number

J. D. Martindale, M. Jabbarzadeh, and H. C. Fu
Department of Mechanical Engineering, University of Nevada, Reno, Nevada 89557, USA

(Received 16 June 2015; accepted 5 January 2016; published online 2 February 2016)

The flows induced by biological and artificial helical filaments are important to many
possible applications including microscale swimming and pumping. Microscale he-
lices can span a wide range of geometries, from thin bacterial flagella to thick helical
bacterial cell bodies. While the proper choice of numerical method is critical for
obtaining accurate results, there is little guidance about which method is optimal for a
specified filament geometry. Here, using two physical scenarios — a swimmer with a
head and a pump — we establish guidelines for the choice of numerical method based
on helical radius, pitch, and filament thickness. For a range of helical geometries
that encompass most natural and artificial helices, we create benchmark results using
a surface distribution of regularized Stokeslets and then evaluate the accuracy of
resistive force theory, slender body theory, and a centerline distribution of regularized
Stokeslets. For the centerline distribution of regularized Stokeslets or slender body
theory, we tabulate appropriate blob size and Stokeslet spacing or segment length,
respectively, for each geometry studied. Finally, taking the computational cost of each
method into account, we present the optimal choice of numerical method for each
filament geometry as a guideline for future investigations involving filament-induced
flows. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4940904]

I. INTRODUCTION

Low Reynolds number flows induced by filaments are commonly encountered in microscale
scenarios. They occur in the swimming of microorganisms such as bacteria and spermatozoa,1 as
well as artificial flagella.2–6 Furthermore, cilia- and flagella-induced microscale pumping is used in
applications such as particle transport in biological systems7,8 and the regulation and transport of
fluids by fabricated systems utilizing bacterial flagella.9 Filament-induced flows have been modeled
using Resistive Force Theory (RFT), slender body theory (SBT), and boundary element methods
(BEMs). For the slender filaments encountered in flagellar (bacterial and eukaryotic) swimming,
there is some guidance in the literature as to which of these methods to use. Resistive force theory
has been found to be inaccurate relative to slender body theory results,10 while slender body theory
and boundary element methods have compared favorably.11,12 Recently, it has been shown that
for slender helical filaments, RFT also gives misleading results in comparison to experiments.13

However, not all helical filaments of interest are as slender as flagella, and there is less guidance
available for the choice of method for thicker filaments. Thicker helical filaments can be realized
in the helical cell bodies of many motile bacteria and are also important for magnetically actuated
microscale swimming used for microrobotics, which could be used in medical applications such as
in vivo surgery.2,3,6,14,15

While accurate and efficient computational models are needed for these filament-induced flows,
it has not been established that which methods are appropriate for a given geometry given the wide
range of filament thicknesses and helical pitches encountered, making it difficult for practitioners to
make an informed choice without extensive numerical studies. Here, we compare the popular RFT,
SBT, and two other methods based on the use of regularized Stokeslets. Each has different advan-
tages and disadvantages in terms of ease of use, accuracy, and computational cost. Our objective
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is to evaluate the accuracy and computational requirements of these methods across the range of
geometries encountered in microscale applications in order to provide a guideline which may be
used to make an informed choice of which numerical method to use for a given filament geometry.

What helical geometries are observed in the study of biological and artificial pumping and
swimming applications? Consider a rigid helical filament whose geometry depends on three dimen-
sionless parameters (see Fig. 1(a)): the ratio of the filament radius to helical radius ã = a/R, the
ratio of helical pitch to helical radius p̃ = p/R, and the number of turns. In this study, we vary the
parameters ã and p̃ to encompass the range of geometries encountered across most applications.
Because Rodenborn et al.13 find that the accuracy of SBT and the method of regularized Stokeslets
are not dependent on total arclength, in this study we keep the arclength fixed at 3 pitch lengths.

Bacterial flagella are the thinnest filaments in our study with a radius of a = 0.012 µm.16 For
bacteria such as Salmonella and E. coli, the flagella may undergo polymorphic transformations be-
tween helical forms categorized by the number (n) of “R”-type protofilaments in the flagellum.16–18

These polymorphic forms have a wide variation in both ã and p̃. For example, the normal (n = 2)
form has values of ã = 0.023 and p̃ = 1.611, while the curly I (n = 5) form, seen in flagellar un-
bundling, has values of ã = 0.029 and p̃ = 8.724.18 In Fig. 1(b), we have noted ã and p̃ for the
n = 1,2, and 9 polymorphic forms. These different bacterial flagellar forms are important not only
for swimming and chemotaxis but also in micropumping applications. While we do not take into
account the fluid structure interactions in this study, our results are relevant to any approach which
would add deformations to the hydrodynamic interactions, such as for understanding the hydro-
dynamics associated with transformations between polymorphic configurations of these bacterial
flagella.

FIG. 1. (a) Geometry for helical filament in terms of filament radius a, helical pitch p, helical radius R, and helical length
L. (b) Range of ã = a/R and p̃ = p/R values spanned by natural and artificial examples.3,4,16,19,28 The shaded region
indicates the geometry range investigated in this study; circles represent the specific investigated geometries. [Nanopropeller
reprinted with permission from Ghosh et al., “Dynamical configurations and bistability of helical nanostructures under
external torque,” Phys. Rev. E 86, 031401 (2012). Copyright 2012 American Physical Society. Artificial flagellum reprinted
with permission from C. Peters, O. Ergeneman, B. J. Nelson, and C. Hierold, in 2013 IEEE 26th International Conference
on Micro Electro Mechanical Systems (MEMS) (IEEE, 2013), pp. 564-567. Copyright 2013 IEEE. Salmonella, n = 2
reprinted with permission from N. Darnton and H. C. Berg, “Force-extension measurements on bacterial flagella: Triggering
polymorphic transformations,” Biophys. J. 92, 2230-2236 (2007). Copyright 2007 Elsevier. Bull, Man spermatozoa reprinted
with permission from C. Brennen and H. Winet, “Fluid mechanics of propulsion by cilia and flagella,” Annu. Rev. Fluid
Mech. 9, 339–398 (1977). Copyright 1977 Annual Reviews Inc. L. illini and B. burgdorferi reprinted with permission from
S. Goldstein, K. Buttle, and N. Charon, “Structural analysis of the Leptospiraceae and Borrelia burgdorferi by high-voltage
electron microscopy,” J. Bacteriol 178, 6539–6545 (1996). Copyright 1996 American Society for Microbiology.]
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At the slender end of the spectrum, we also find the flagella of various mammalian sperma-
tozoa, whose waveforms were presented by Brennen and Winet.19 Human spermatozoa have a fila-
ment radius of a ≈ 0.25 µm, around 20 times larger than that of bacterial flagella. However, due to
their larger helical radius, their values of ã and p̃ are on the same order as those of bacterial flagella,
with ã ranging from 0.01 for bull spermatozoa to 0.05 for human spermatozoa, and p̃ ≈ 10.19

For the slender regime of bacterial and eukaryotic flagella, Brennen and Winet note that the
slender body theory originally proposed by Lighthill20 or the resistive force theory of Gray and
Hancock21 should be applicable. Although there are many well-known variants of slender body
theory,22–26 in this study, as a representative SBT, we use the implementation proposed by Higdon,27

which is equivalent to Lighthill’s and which provides a relatively easy to implement numerical
framework.

Rodenborn et al. focus on the slender regime up to ã = 0.0625, but thicker helical filaments are
common. For example, spirochetes have helical or wavy cell bodies, such as L. illini, with ã = 0.835
and p̃ = 7.977, and B. burgdorferi, with ã = 0.868 and p̃ = 14.895.28 Along with these spirochetes,
thick filaments include artificial swimmers such as the magnetically actuated nanopropellers fabri-
cated and studied by Ghosh et al.2,3,29 with ã = 1.188 and p̃ = 5.688, and the artificial flagella
studied by Peters and others4,5 with ã = 0.483 and p̃ = 5.517. In this regime, we would expect
the previously mentioned theories to fail as the filament is no longer slender.27 Instead, to obtain
accurate results, typically one must employ a BEM.30 As a simple implementation of a BEM, we
utilize the method of regularized Stokeslets, which covers the surface of an object with continuous
analogues of the classical Stokes flow singularities14,31–34 and has gained popularity due to its ease
of use. Recent work on swimming sperm35 and the beating patterns of cilia8 have also distributed
regularized Stokeslets along filament centerlines rather than at the surface, which yields significant
savings in computational effort, so we also examine such centerline distributions of regularized
Stokeslets. Optimal parameters have been found for centerline distributions for slender ellipsoids,36

which may be used to model straight rods, but not for helical filaments.
To summarize the range of biological and artificial helical filaments encountered in microscale

applications, in Fig. 1(b), we plot a number of the examples mentioned above in ã and p̃ space.
In the following investigation, we will examine geometries with ã between 0.05 and 0.95 in incre-
ments of 0.1, and p̃ between 10 and 50 in increments of 10, which encompass most of the physical
and artificial microswimmers seen in Fig. 1(b).

Our investigation evaluates the accuracy of resistive force theory, the centerline distribution
of regularized Stokeslets, and the slender body theory for two physical scenarios by comparing to
benchmark results obtained from surface distributions of regularized Stokeslets, which are verified
by convergence studies. The first scenario we consider is that of a swimmer with an ellipsoidal
head and helical flagellum (seen in Fig. 2). The swimmer is force-free (F = 0) and is driven by
setting a constant relative angular velocity ω between the body and flagellum. The outputs we use
to evaluate accuracy in this scenario are the translational velocity V and the total torque Nf on the
flagellum. The second scenario we consider is a pump created by a rotating helical filament attached
to a no-slip plane (seen in Fig. 2). Since the filament is fixed to a plane, the translational velocity
is V = 0, and to drive the pump, we apply a constant torque N to the filament. The outputs used

FIG. 2. The two physical scenarios modeled in this study: swimmer (left), pump (right).
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to evaluate accuracy are the total force on the filament F and the angular velocity Ω. These two
scenarios differ enough that they may be used as representatives for a broad range of applications.

Finally, we combine evaluation of the accuracy of resistive force theory, slender body theory,
and the centerline distribution of regularized Stokeslets with an analysis of the relative compu-
tational cost for each method. The end result is a framework that can guide the choice of an
optimal numerical method for a given filament geometry, which we hope will be broadly useful to
researchers encountering flows caused by helical filaments in microscale applications.

II. NUMERICAL METHODS

In practice, SBT and methods involving regularized Stokeslets involve a similar procedure:
the flow is created by an unknown force distribution, either on a surface for the method of regu-
larized Stokeslets or on the filament centerline for slender body theory and centerline regularized
Stokeslets. No-slip boundary conditions are imposed by setting the flow velocities at a set of
collocation points equal to the velocity specified from the kinematics of the object. The result is
the formation of a linear system of equations which may be solved to find the force distribution
and hence velocity field everywhere. In equations, if r0 is the origin of the body frame, V is the
translational velocity, andΩ is the angular velocity about r0, then the velocity at point α is given by

u(rα) ≡ uα = V +Ω × ∆rα, (1)

where ∆rα = rα − r0. Since this is a linear equation, we may write it in terms of the 3 × 6 matrix kα,

uα = kα *
,

V
Ω
+
-
=
*...
,

1 0 0 0 ∆rαz −∆rαy
0 1 0 −∆rαz 0 ∆rαx
0 0 1 ∆rαy −∆rαx 0

+///
-

*
,

V
Ω
+
-
. (2)

This allows us to represent the velocity at the collocation points of the system as

U ≡
*....
,

u1

...

uN

+////
-

=

*....
,

k1

...

kN

+////
-

*
,

V
Ω
+
-
≡ K *

,

V
Ω
+
-
, (3)

where K ∈ R3N×6. Note that we use a capital letter U to represent the 3N × 1 vector containing the
N velocities of all collocation points and similarly a capital K which is composed of all N kα. To
satisfy no-slip boundary conditions, the velocity specified by the kinematics is set equal to the fluid
velocity at the collocation points. Thus, the fluid velocity vector U can also be written as

U =

*......
,

g1,1 g1,2 . . . g1,N

g2,1 g2,2 . . . g2,N

...
...

. . .
...

gN,1 gN,2 . . . gN,N

+//////
-

*....
,

p1

...

pN

+////
-

≡ GP, (4)

where G ∈ R3N×3N and P ∈ R3N×1 contains the 3 × 1 force pα at each collocation point. We call the
submatrices gα,β ∈ R3×3 the kernel. The kernel represents the velocity at point α due to a force at
point β. Each numerical method in our study can be specified by choosing a different kernel.

A. BEM for flagellar filament above a no-slip plane

For the case of a rotating helical filament attached to a no-slip plane, we choose r0 = 0 at the
attachment point at the plane surface (see Fig. 2) and represent the total force and torque on the
body as

F =
N

α=1

pα, (5)
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N =
N

α=1

∆rα × pα, (6)

which can be written as

*
,

F
N
+
-
= KTP. (7)

Enforcing the no-slip boundary condition on the surface of the filament lets us to form a relationship
between the velocities V and Ω, and the total force F and torque N on the filament. Solving Eq. (4)
for P = G−1U and using Eqs. (3) and (7),

*
,

F
N
+
-
= KTG−1K *

,

V
Ω
+
-
= R *

,

V
Ω
+
-
= *
,

RT RC

RC
T RR

+
-
*
,

V
Ω
+
-
, (8)

where R = KTG−1K is the resistance matrix with 3 × 3 translational, rotational, and coupling
components denoted by RT, RR, and RC, respectively. We apply a constant torque N tangential to
the axis of the filament and set the translational velocity V = 0 since the filament remains anchored
above the x = 0 plane. These constraints yield the system

*
,

F
N
+
-
= *
,

RC

RR
+
-
Ω, (9)

with solution

Ω = RR
−1N, (10)

F = RCRR
−1N. (11)

B. BEM for swimmer with ellipsoidal head

For the swimmer with an ellipsoidal head, we choose the origin of the body-fixed frame r0

as the flagellum attachment point on one end of the head (see Fig. 2). A surface distribution of
regularized Stokeslets is always used to model the head, and these collocation points are denoted as
rα1

h for 1 ≤ α1 ≤ N1. The collocation points on the flagellum are denoted as rα2
f for 1 ≤ α2 ≤ N2. In

this scenario, V and Ω represent the translation and rotation about the origin. Here, the kinematics
specify

uh(rα1
h ) = uα1

h = V +Ω × ∆rα1
h , (12)

uf(rα2
f ) = uα2

f = V +Ω × ∆rα2
f + kα2

× ω, (13)

where ω = (ω,0,0)T is the specified relative rotation rate between the head and flagellum and

kα2
× =

*...
,

0 ∆rα2
z −∆rα2

y

−∆rα2
z 0 ∆rα2

x

∆rα2
y −∆rα2

x 0

+///
-

.

As in Section II, this is a linear system of equations and can be written as

*
,

Uh

Uf
+
-
≡

*.............
,

u1
h
...

uN1
h

u1
f
...

uN2
f

+/////////////
-

=

*.............
,

kα1=1

...

kα1=N1

kα2=1

...

kα2=N2

+/////////////
-

*
,

V
Ω
+
-
+ L̇ ≡ K *

,

V
Ω
+
-
+ L̇, (14)

where K ∈ R3(N1+N2)×6, Uh ∈ R3N1×1 is the velocity at each collocation point on the head, Uf ∈
R3N2×1 is the velocity at each collocation point on the flagellum, and L̇ ∈ R3(N1+N2)×1 is
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L̇ =

*.............
,

0
...

0
kα2=1
×
...

kα2=N2
×

+/////////////
-

ω.

On the other hand, the hydrodynamics specify

*
,

Uh

Uf
+
-
= *
,

Ghh Ghf

Gfh Gff
+
-
*
,

Ph

Pf
+
-
= GP, (15)

where Ghh ∈ R3N1×3N1 and Gfh ∈ R3N2×3N1 give the velocity on the head and flagellum, respectively,
due to the point forces pα1

h located on the head, and Ghf ∈ R3N1×3N2 and Gff ∈ R3N2×3N2 give the
velocity on the head and flagellum, respectively, due to the point forces pα2

f located on the flagellum.
Enforcing no-slip boundary conditions requires that the kinematic and hydrodynamic velocities to
be equal, which yields the equation

G *
,

Ph

Pf
+
-
= K *

,

V
Ω
+
-
+ L̇. (16)

In this scenario, we also require that the net force and net torque be zero, so Eq. (7) implies

0 = KT *
,

Ph

Pf
+
-
= KTG−1 *

,
K *
,

V
Ω
+
-
+ L̇+

-
. (17)

This equation can be solved for V andΩ to obtain

*
,

V
Ω
+
-
= −

�
KTG−1K

�−1KTG−1L̇, (18)

where M =
�
KTG−1K

�−1 is the inverse of the resistance matrix, called the mobility matrix. In this
scenario, the translational velocity V and the torque on the flagellum Nf are the outputs. To solve for
the torque, we find Pf through Eq. (16) since V andΩ are now known, giving

Nf =

N2
α2=1

∆rα2 × pα2
f . (19)

C. Resistive force theory for swimmer with ellipsoidal head

We also examine the accuracy of resistive force theory for the case of the swimmer. In resistive
force theory, long-range hydrodynamic interactions are ignored, so we treat the hydrodynamics of
the flagellum and head separately through their resistance matrices. The resistance matrix of the
ellipsoidal head Rh may be calculated from analytical results, e.g., as presented in the textbook of
Kim and Karrila.37 Resistive force theory is used to calculate the resistance matrix of the helix as
follows. The local force per unit length on the filament is

fRFT = ξ⊥vrel +
�
ξ ∥ − ξ⊥

�
t̂t̂ · vrel, (20)

where vrel = V +Ω × r, t̂ is the local unit tangent vector, and the coefficients ξ ∥ and ξ⊥ are
drag coefficients obtained by slender body analysis. For the theories of Gray and Hancock21 and
Lighthill,20 these coefficients are

ξ ∥, ξ⊥ =




2πµ
ln(2p̃/ã) − 1/2

,
4πµ

ln(2p̃/ã) + 1/2
(Gray and Hancock)

2πµ
ln(0.18p̃/ã) ,

4πµ
ln(0.18p̃/ã) + 1/2

(Lighthill)
.
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Note that in Lighthill’s formula, we use the pitch as suggested by analysis of helical filaments.38

The Lighthill coefficients might be expected to be more applicable since in a comparison of RFT
and SBT for planar thin filaments, Johnson and Brokaw10 found that the Lighthill coefficients
adequately predicted local forces and torques on the filament, while the Gray and Hancock coeffi-
cients required ∼35% adjustments to produce comparable accuracy. Integrating the force and torque
r × fRFT along the filament for various translational and rotational velocities yields the resistance
matrix Rf of the flagellum. The origin of rotation for both Rh and Rf is the flagellum attachment
point.

Given the resistance matrices, we require that the total force and torque be zero,

0 = *
,

Ftot

Ntot

+
-
= *
,

Fh

Nh
+
-
+ *
,

Ff

Nf
+
-
, (21)

and using Eq. (8), we may express the above equation as

0 = Rh *
,

V
Ω
+
-
+ Rf *

,

V
Ω + ω

+
-
. (22)

This equation is solved for V andΩ to give

*
,

V
Ω
+
-
= −(Rh + Rf)−1Rf *

,

0
ω
+
-
, (23)

which gives us one of our outputs, the translational velocity V. Using the relationship

*
,

Ff

Nf
+
-
= Rf *

,

V
Ω + ω

+
-
, (24)

we find our second output, the torque on the flagellum Nf.

D. Geometries

1. Filament

In each of the physical scenarios described in Section I, we consider a helical filament oriented
in the positive x-direction of non-dimensional radius ã and non-dimensional helical pitch p̃ whose
arclength is fixed at L̃ = L/R = 3p̃. The filament centerline is described by

rc(s) = sx̂ +
(
1 − e−s

2/k2
E

)
[cos(2πs/p̃)ŷ + sin(2πs/p̃)ẑ] . (25)

The exponential term describes a tapering region near the attachment point, where kE = p̃/(2π) is
the characteristic length of the tapering region.14

2. Helical swimmer

For the helical swimmer, we use an ellipsoidal cell body with semi-major and semi-minor axes
which are ãh = ah/R = 10.204 and b̃h = bh/R = 5.102, respectively. The major axis is placed along
the x-axis, and a helical flagellum whose geometry is prescribed in Eq. (25) is attached at x = 0. The
helix is translated away from the ellipsoid to create a gap between the head and flagellum in order to
ensure accurate results for nearby moving surfaces.14 An example of this geometry is seen in Fig. 2.

3. Filament above a no-slip plane

Here, we examine the rotation of a helical filament with its end at a distance of h̃ = 10ã above
a no-slip plane (Fig. 2). To model this scenario, we translate the centerline prescribed above by h̃ in
the x-direction. This setup is inspired by pumping applications where pumping flows may be caused
by the movement of filaments.
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E. Numerical methods: Kernels and discretization

1. Method of regularized Stokeslets: Surface distribution

For the benchmark cases, we employ the method of regularized Stokeslets by distributing
smoothed analogues of the classical Stokeslet on the filament surface or body.31–33 In the following
calculations, we make use of a standard smoothing function which depends on a “blob” parameter δ
that describes the spread of the point forces and allows us to obtain non-singular numerical values
for all calculations. A full description of the regularized Stokeslet is found in the literature,31–33 and
the kernel gα,β (defined in Section II) that we use for the method of regularized Stokeslets is given
by Eq. (10b) in the work of Cortez et al.33

For discretization, the filament is divided into cross sections perpendicular to the centerline of
the filament. We place nc evenly spaced Stokeslets on the perimeter of each cross section, similar
to the discretization described previously by Hyon et al.14 The cross sections are spaced so that
the distance between Stokeslets (∆s) on a given cross section is the same as the distance between
successive cross sections. Therefore, ∆s = 2ã sin(π/nc). This spacing means that the total number
of Stokeslets increases rapidly as we increase the number of Stokeslets per cross section and as
the filament radius decreases. For a given spacing, the blob parameter δ is set equal to the distance
between Stokeslets, δ = ∆s.

For the discretization of the swimmer with an ellipsoidal head, each successive filament cross
section is rotated by an angle π/nc with respect to its normal axis in order to stagger the Stokeslets.
Also, the ends of the filament are capped with hemispheres that are discretized using the grid method
given by Cortez et al.33 The ellipsoidal head is discretized by cutting into cross sections perpendicular
to the major (fore-aft) axis. If we define ∆sh as the spacing between Stokeslets on the cell body and
successive cross sections, the number of Stokeslets on each cross section depends on the radius of
the cross section and is determined by nc = 2πrh/∆sh, where rh = b̃h


1 − (x/ãh)2. Similarly to the

flagellum, each successive cross section of the head is rotated by an angle ∆sh/2rh to stagger the
Stokeslets on the cell body. For our investigation,∆sh = 0.1 is the non-dimensional Stokeslet spacing
on the head, and N1 = 750 is the total number of regularized Stokeslets on the head.

The case of the filament rotating above a no-slip plane uses a slightly different discretization.
The cross sections are not rotated about the normal axis of the filament, and there are no hemi-
spherical caps added to the end of the filament. Most importantly, the kernel is modified to satisfy
the no-slip boundary conditions at the planar boundary (x = 0). For the method of regularized
Stokeslets, we employ a full regularized Blakeslet distribution which consists of the regularized
Stokeslet and its corresponding image system mirrored about the x = 0 plane:31 for a collocation
point on the filament surface at rα = (hα, yα, zα), its image is located at a point rα∗ = (−hα, yα, zα).
In this scenario, the kernel gα,β is derived from Eq. (21) in the work of Ainley et al.31

2. Method of regularized Stokeslets: Centerline distribution

The flows around filaments have also been computed using a centerline distribution along the
center of the filament instead of at the filament surface. For this method, we use the same kernels
as in Section II E 1. For the swimmer, the head is always modelled using a surface distribution of
regularized Stokeslets with spacing and blob size as defined in Sec. II E 1.

For both the swimmer and the pump, we discretize the filament centerline by placing regular-
ized Stokeslets with blob size δ at equally spaced points along the filament centerline with spacing
∆s. There is no a priori choice of Stokeslet spacing ∆s or blob size δ, although physically the blob
size is expected to be of the same order of magnitude as the filament radius. These parameters must
be tuned for each geometry to obtain the most accurate result. We report the optimal parameter
values for each geometry we study later; these provide starting points for studies determining the
optimal parameter values for other geometries in future studies. Despite this, the positive aspects of
this discretization are twofold. First, it still relies on the method of regularized Stokeslets, and so
we may use the same kernels found in the works of Cortez et al.33 and Ainley et al.,31 which are
relatively easy to implement. Second, the number of Stokeslets needed for the discretization is much
lower than that of the surface distribution, increasing the computational efficiency of the method.
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3. Slender body theory

In our investigation, we use the slender body theory outlined by Higdon27 as a representative
SBT. This method calculates the flow due to a distribution of classical Stokeslets and dipoles along
the centerline of the filament. The force distribution f along the centerline is unknown, while the
dipole strength d = −(ã2/4µ)f⊥ is specified to preserve no-slip boundary conditions on the surface
of the filament. In Higdon’s method, the filament centerline is discretized into small cylindrical
segments of length 2q, and the Stokeslet (and hence dipole strength) is assumed to be constant
within each segment. The integral of the Stokeslet and dipole distribution along each segment can
be evaluated analytically to yield the flow produced by each segment, which defines the kernel. The
expression for the kernel we use can be found in Eq. (27) in the work of Higdon.27 Similarly to the
centerline distribution of regularized Stokeslets discussed in Sec. II E 2, the parameter q must be
tuned to ensure the most accurate results, but the advantage is far fewer discretization elements than
a surface discretization, especially for thin filaments.

For the swimmer, we always model the ellipsoidal head using the surface distribution of regu-
larized Stokeslets described in Section II E 1. Therefore, the Ghh and Gfh submatrices in Eq. (16)
are always formulated in terms of the regularized Stokeslet kernel discussed in Section II E 1. The
other submatrices Ghf and Gff are formulated using the kernel for the slender body theory.

For the case of a helical filament above a plane, we must include an image system to satisfy
the no-slip condition on the plane. The singularities distributed along the centerline of the fila-
ment are Stokeslets and dipoles, and so the system is not simply a Blakeslet distribution since
we must include the image system of the dipole.25 To evaluate the contribution of the images, we
integrate the contribution from each image segment numerically using Simpson’s rule since they
are non-singular at the collocation points on the filament centerline. The kernel for this method is
defined by the sum of Eq. (27) in the work of Higdon27 and the numerical integral of the Stokeslet
and dipole image systems provided by Blake and Chwang.25

F. Error metric

In order to assess the accuracy of these methods, we examine an error metric which includes
both output parameters, the swimming velocity V and torque on the filament Nf in the case of the
swimmer, and the net force F and the angular velocityΩ in the case of the pump,

Eswimmer (%) = 100

( |Vb − V|
|Vb |

)2

+

( |Nf
b − Nf |
|Nf

b |
)2

, (26)

Epump (%) = 100

( |Fb − F|
|Fb |

)2

+

( |Ωb −Ω|
|Ωb |

)2

, (27)

where we add the sum-squared error of each respective output. The “b” superscript denotes the
output from the benchmark case using the surface distribution of regularized Stokeslets.

III. RESULTS

A. Convergence study for regularized Stokeslets on filament surface

In previous work,14 we have shown that for geometries similar to those used here for swim-
ming, the method of regularized Stokeslets agrees well with SBT and boundary element method
results presented in the work of Phan-Thien et al.11 For this study, we create benchmark re-
sults using the surface distribution of regularized Stokeslets and perform convergence studies for
selected geometries for swimming and pumping. These sample cases correspond to p̃ = 20 and ã =
0.05, 0.35, 0.65, 0.95. For the swimmer, we examine the x-component of the non-dimensionalized
translational velocity against the Stokeslet spacing ∆s. For the pump, we examine the x-component
of the non-dimensionalized force against ∆s.
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FIG. 3. Convergence studies for selected geometries of (a) swimmer (velocity normalized by extrapolant de) and (b) pump
(force normalized by extrapolant de) using surface distribution of regularized Stokeslets. Inset in each figure is a plot of the
data di normalized by the extrapolant against the Stokeslet spacing ∆s with linear fit. As described in the text, the linear fit
applies to each data set except for ã = 0.05, for which it yields a conservative estimate of error. From these, we estimate that
our results are converged to within 5% accuracy.

Fig. 3 presents the convergence studies for the swimmer and pump, respectively. In both cases,
the quantity examined (either velocity or force) is normalized by a Richardson extrapolant obtained
as described below, as a function of number of regularized Stokeslets used in the discretization. The
extrapolant de for each case is obtained from the expectation that the error for each data point di

obeys a power law relation to the discretization spacing ∆s,

di − de = C∆sγ, (28)

where C and γ are constants. In each case, we examine the data for which γ is in the asymptotic
range to obtain a fit for C and γ in the least-squared sense.

Ainley et al. find slightly greater than first order convergence when using a blob size δ ∼ ∆s0.9

for the problem of a sphere translating near a wall.31 Since we use the similar δ = ∆s, we expect
similar rates of convergence, and indeed in nearly all the cases, we find that γ ≈ 1. To provide
estimates of error, in the insets of Fig. 3, we show the fits to di/|de| vs. ∆s for γ = 1 over the asymp-
totic range. The swimming and pumping geometries with ã = 0.05 (red crosses) display higher
order behavior. In those cases, for consistency, we still find the extrapolant using γ = 1, which
yields a conservative estimate of error. For the swimmer, the non-dimensionalized x-component of
velocity for every geometry has converged to within 4% of the linear extrapolant. For the pump, the
non-dimensionalized x-component of force has converged to within 5% of the linear extrapolant.

Based on these convergence studies, benchmark results for all the other geometries are gener-
ated using 8300 − 12 000 regularized Stokeslets for the swimmer and 10 000 − 12 500 regularized
Stokeslets for the pump, for which we expect an error of less than 5%. These convergence studies
also highlight the computational cost of this method and the motivation behind our investigation of
other computationally cheaper numerical methods. The computational cost for all methods scales as
N3, where N is the total number of collocation points. As we will see in Secs. III B and III C, the
method of regularized Stokeslets distributed on the filament centerline as well as the slender body
theory provides a significant reduction in the total number of collocation points. This reduction
comes at the cost of reduced accuracy, and so we examine the error due to each of these methods to
assess their utility in various physical regimes.

B. Regularized Stokeslets distributed on the filament centerline

We now investigate the accuracy of the computationally cheaper methods outlined in Section II
by comparing the results with the benchmarks obtained from calculations using the converged sur-
face distribution of regularized Stokeslets. First, we present findings for the method of regularized
Stokeslets distributed on the filament centerline. For each of the 50 filament geometries, we mini-
mize the total percentage error metric E as defined in Section II F with respect to the blob parameter
δ and the Stokeslet spacing ∆s. Tables I and II report the value of these optimal parameters. From
the tables, we see that for those geometries where the error can be made small (<10%), the optimal
blob size is typically between ã and 3ã, while the spacing is similar to the blob size. In this regime
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FIG. 4. Total error for (a) pump and (b) swimmer using centerline distribution of regularized Stokeslets. The size of circles
at each investigated geometry is proportional to the total error (Eqs. (26) and (27)). Contour lines show interpolated errors.

of accuracy, both the optimal spacing and blob size tend to increase as p̃ increases. Our result for
optimal blob size is consistent with the results of Bouzarth and Minion,36 who found an optimal
blob size of 1.43a for slender prolate ellipsoids with aspect ratios >10, which might be used to
model straight rods.

Fig. 4 shows the total error for each geometry for pumping and swimming, respectively. In
these figures, the circle size is scaled according to the percent error, and interpolated contour lines
are drawn at 5, 10, 20, and 30 percent error in order to give a visual representation of the regions
of accuracy. From the results, we make the following observations. First, the centerline distribution
of regularized Stokeslets is more accurate for the swimmer than the pump. Second, this numerical
method is most accurate for thin filaments (where ã is relatively small) and not accurate for the
thickest filaments examined. For example, comparing to Fig. 1(b), this numerical method is quite
accurate (with errors less than 5%) in the modeling of the flagella of bacteria such as Salmonella
and E. coli as well as spermatozoa, but not accurate (with errors of approximately 25% in each
scenario) for spirochetes such as L. illini and B. burgdorferi.

C. Slender body theory

We perform a similar investigation by comparing results for the slender body theory outlined
in Section II to the benchmark results. In this numerical method, the total error is minimized with
respect to the parameter q (recall that the length of the individual cylindrical segments is 2q).
Tables I and II report the optimal value of q for each geometry. From the tables, we see that accurate
results are produced when both q/ã > 5 (the segment length is at least 5 times the diameter) and
N & 45 (&15 segments per turn). For slender body theory, we only report error values for the first
25 geometries since the error grows rapidly as a/R increases. This is consistent with expectations
for this method: as the filament radius approaches the helical radius, the filament is less slender, and
so it follows that a slender body theory approach would break down.

Fig. 5 shows the total error for each geometry for pumping and swimming, respectively. The
total error in the slender body theory is within a tolerable range (<10%) only for ã . 0.10. We note
that the total error using the method of regularized Stokeslets on the filament centerline is also quite
low for these particularly slender geometries, so in this range, we must make a judgement based on
computational cost to compare the two methods.

D. Resistive force theory

Table III shows the results of RFT using the drag coefficients from the theories of Gray and
Hancock21 and Lighthill.20 Throughout the whole range, neither gives accurate results; for the
coefficients derived by Lighthill, the total percent error is minimal at ETotal = 26% and for the
coefficients derived by Gray and Hancock, the total percent error is minimal at ETotal = 33.6%, both
for the geometry specified by ã = 0.05 and p̃ = 50.

Although the total error is large throughout the range tested, it is interesting to note that if
one only considers the error in swimming speed (separately reported in Table III), the coefficients
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FIG. 5. Total error for (a) pump and (b) swimmer using slender body theory. The size of circles at each investigated geometry
is proportional to the total error (Eqs. (26) and (27)). Contour lines show interpolated errors.

derived by Gray and Hancock produce accurate results for the swimming speed (EV < 10%) for
ã ≤ 0.65 and p̃ ≥ 30, a large range of geometries. In this regime, however, we find large errors
in the filament torque. On the other hand, the theory of Lighthill produces accurate results for the
filament torque for ã < 0.15, but always gives large errors for the translational velocity. Thus, RFT
may give accurate results for individual quantities, as has previously been observed in the literature,
not only for swimming speeds but also for quantities such as distance traveled per revolution,15 but
does not accurately capture the full dynamics for any investigated geometry. Furthermore, without a
more accurate benchmark comparison such as that performed here, it is difficult to know in advance
if any particular quantity of interest will be accurately calculated using RFT.

IV. DISCUSSION

To summarize the results up to this point, based on a convergence study, we created benchmark
results for swimming and pumping flows caused by helical filaments using a surface distribution of
regularized Stokeslets. By comparison to the benchmark results, we found that resistive force theory
does not give accurate results (in terms of total error) for any of the geometries studied. We also
used the benchmark case to optimize the relevant parameters of a centerline distribution of regular-
ized Stokeslets and slender body theory with respect to a total error metric and obtained regimes
of accuracy for each numerical method. Together, Figs. 1, 4, and 5 allow us to make a judgement
about which numerical method is appropriate for a wide variety of biological and artificial filament
geometries. The regimes of accuracy for more cost efficient methods (SBT and centerline distrib-
uted regularized Stokeslets) overlap, so it is of interest to examine which numerical method will be
optimal in terms of computational efficiency as well as total error. The computational cost of the
numerical methods scales as N3, where N is the number of collocation point. As noted before, a
surface distribution of regularized Stokeslets (or any boundary element method) requires more and
more collocation points as the filament becomes thinner since the spacing of the cross sections be-
comes smaller, but for slender filaments, SBT and centerline distributions of regularized Stokeslets
are accurate and much cheaper computationally.

The overall choice for the cheapest numerical method which is still accurate can be summa-
rized in Fig. 6. In this figure, we first choose an error threshold of 10% against the benchmarks
obtained from the surface distribution of regularized Stokeslets. A contour is drawn for an interpo-
lated 10% error threshold for each of the cheaper methods, which delineate three regions labeled
near the bottom of each plot as “SBT” for the slender body theory, “CL” for the centerline distri-
bution of regularized Stokeslets, and “SURFACE” for the surface distribution. These regions show
the method which, given the 10% error threshold, is the most computationally efficient for a
given geometry. Note that the regions are similar for the swimming and pumping scenarios, which
suggests that these recommendations are broadly appropriate across many applications.

In order to provide information about the computational costs in each region, in Fig. 6, we
also write the number of collocation points for each geometry tested. For the surface distribution
region, we report the number of collocation points obtained by decreasing the number of collocation
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FIG. 6. Diagram of best choice of method (regions labeled above horizontal axis) to be used for 10% error in ã-p̃ phase
space for (a) pump and (b) swimmer based on computational efficiency. Note that the choice of method is broadly similar
for both pumps and swimmers. Computational cost can be deduced from number at each geometry, which indicates optimal
number of collocation points for the centerline distribution of regularized Stokeslets and slender body theory, and the number
of collocation points needed to achieve 10% error for surface distribution of regularized Stokeslets.

points for each geometry by lowering the number of regularized Stokeslets per cross section nc

until we reach the error threshold of 10%. Points marked with an asterisk denote geometries for
which the error of the surface distribution against the benchmark case was always less than 10%,
even for the lowest number of regularized Stokeslets per cross section (nc = 3). In these cases, the
value of N using nc = 3 is reported. This number allows us to compare to the costs required for the
other methods. For the centerline distribution and SBT regions, we report the number of collocation
points needed for the optimal accuracy parameters.

Within its regime of accuracy, we see that slender body theory requires approximately half as
many collocation points as the centerline distribution of regularized Stokeslets. This means that the
slender body theory may be up to ∼10 times more computationally efficient in these regimes, which
include more slender forms of bacterial flagella as well as spermatozoa. This result is consistent
with the experimentally confirmed results of Rodenborn et al.13 It should be noted that due to
the addition of the dipole singularity (as well as the corresponding image system in the case of
the pump), this method requires a larger initial investment for implementation than the method of
regularized Stokeslets. Taking this into account, it becomes a value judgement in this regime as to
whether the computational savings will be worth the initial effort in the long run.

For 0.15 < ã < 0.40, the centerline distribution of regularized Stokeslets provides a very effi-
cient model for a wider range of physical examples. This range may include some bacterial flagella
which are enveloped by a sheath, which makes them thicker than a bare flagellum, such as those of
H. pylori39 or Vibrio species.40 Finally, as expected for the thickest filaments, such as the cell bodies
of spirochetes or artificial helical microswimmers, the surface distribution of regularized Stokeslets
is required for accurate results but increases the required number of collocation points by at least an
order of magnitude.

In conclusion, the numerical methods tested — resistive force theory, slender body theory, and
the method of regularized Stokeslets — have gained popularity due to their ease of implementation.
We investigated their use throughout the range of geometries likely to be encountered in applica-
tions. In Tables I and II, we present optimized parameters for each method we study. Although in
other geometries these precise parameters may not be optimal, they should provide useful starting
points for tuning the parameters in other applications and geometries. For the case of a 10% accu-
racy threshold, Fig. 6 shows how an appropriate choice of method can be made for a wide range
of filament geometries. Thus, our results provide necessary guidance for selection of computational
method and should be useful for many future investigation involving filament induced flows.
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APPENDIX: TABLES

TABLE I. Optimal parameters for centerline distribution and slender body theory, swimmer with head. For the slender body
theory, only the first 25 entries are shown since error is large for all other (thick) geometries.

Centerline SBT

ã p̃ ∆s/a δ/a Eswimmer (%) N q/a Eswimmer (%) N

0.05 10 2.5 1.8 1.1 241 5 3 60
0.05 20 2.5 1.8 1.2 481 9 3 67
0.05 30 3.0 1.8 1.3 601 10 3 90
0.05 40 3.5 2.0 1.6 686 10 4 120
0.05 50 3.5 2.0 1.7 858 10 4 150
0.15 10 1.5 2.0 1.7 134 3 13 33
0.15 20 3.0 2.2 2.3 134 5 12 40
0.15 30 3.5 2.4 4.2 172 5 10 60
0.15 40 3.5 2.4 5.1 229 5 10 80
0.15 50 3.5 2.4 5.6 286 5 10 100
0.25 10 1.0 2.2 5.0 121 3 23 20
0.25 20 2.5 2.8 5.0 97 3 22 40
0.25 30 3.0 2.8 9.6 120 3 21 60
0.25 40 3.0 2.8 11.8 160 3 21 80
0.25 50 3.0 3.0 12.9 200 3 21 100
0.35 10 2.0 2.6 7.2 43 2 36 21
0.35 20 1.0 3.2 7.7 172 2 31 43
0.35 30 2.5 3.4 16.1 103 2 31 64
0.35 40 3.5 3.6 19.4 98 2 32 86
0.35 50 5.5 4.2 20.9 78 2 33 107
0.45 10 1.0 2.6 9.3 67 2 49 17
0.45 20 1.0 3.6 12.4 134 2 41 33
0.45 30 3.0 3.8 23.3 67 2 41 50
0.45 40 3.0 4.2 27.4 89 2 42 67
0.45 50 5.0 4.8 29.3 67 2 42 83
0.55 10 1.5 2.8 14.1 37
0.55 20 1.0 3.8 17.0 110
0.55 30 4.0 4.4 29.8 41
0.55 40 3.0 4.4 35.3 73
0.55 50 3.5 5.2 37.4 78
0.65 10 1.5 3.0 14.9 31
0.65 20 1.0 4.0 21.9 93
0.65 30 4.5 4.6 36.7 31
0.65 40 1.0 9.8 33.6 185
0.65 50 1.0 10.0 28.5 231
0.75 10 1.5 2.8 18.2 27
0.75 20 1.0 4.0 26.1 81
0.75 30 4.5 4.6 43.2 27
0.75 40 1.0 9.4 25.8 161
0.75 50 1.0 10.0 14.5 201
0.85 10 2.0 3.0 22.3 18
0.85 20 1.0 4.2 30.4 71
0.85 30 1.0 7.8 40.1 106
0.85 40 1.0 9.0 21.5 142
0.85 50 1.0 9.6 13.5 177
0.95 10 1.0 2.8 25.7 32
0.95 20 1.0 4.2 34.0 64
0.95 30 1.0 7.6 35.2 95
0.95 40 1.0 8.6 19.1 127
0.95 50 1.0 9.2 15.8 158
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TABLE II. Optimal parameters for centerline distribution and slender body theory, filament above no-slip surface. For the
slender body theory, only the first 25 entries are shown since error is large for all other (thick) geometries.

Centerline SBT

ã p̃ ∆s/a δ/a Epump (%) N q/a Epump (%) N

0.05 10 0.91 2.01 0.95 562 5.3 2.6 56
0.05 20 1.01 2.27 1.66 1136 8.5 3.2 70
0.05 30 1.66 2.56 2.04 1063 9.7 3.3 92
0.05 40 1.36 2.74 1.46 1745 9.6 4.9 124
0.05 50 1.90 2.84 2.35 1568 9.9 6.1 152
0.15 10 1.33 2.27 2.79 129 3.1 14.2 32
0.15 20 2.60 2.75 6.35 148 4.8 14.0 41
0.15 30 3.54 3.22 8.67 167 5.1 14.1 58
0.15 40 4.37 3.74 10.85 182 5.3 13.8 75
0.15 50 5.28 4.24 12.58 189 5.3 12.7 94
0.25 10 1.31 2.57 5.64 79 3.0 27.0 19
0.25 20 3.10 3.46 13.72 75 3.2 26.3 37
0.25 30 4.10 4.42 18.69 87 3.2 24.1 56
0.25 40 4.20 5.37 23.02 114 3.3 23.8 72
0.25 50 3.61 6.25 26.47 166 3.3 23.2 90
0.35 10 1.70 2.76 10.20 44 1.9 38.9 22
0.35 20 1.95 4.10 21.86 85 2.0 36.6 42
0.35 30 2.19 5.60 29.44 116 2.0 36.4 64
0.35 40 2.37 7.28 36.29 144 2.0 36.8 85
0.35 50 2.56 8.82 41.82 168 2.0 34.3 107
0.45 10 1.78 2.89 14.43 33 1.8 58.0 18
0.45 20 0.46 4.86 28.57 278 1.8 56.1 37
0.45 30 0.73 8.05 31.93 270 1.8 57.4 55
0.45 40 0.90 9.36 36.83 294 1.9 61.0 70
0.45 50 0.85 9.65 47.54 391 1.9 57.8 87
0.55 10 1.34 2.93 24.23 36
0.55 20 0.87 5.22 36.13 121
0.55 30 1.04 8.54 35.09 156
0.55 40 1.10 9.75 36.77 198
0.55 50 1.10 10.05 58.54 248
0.65 10 1.72 2.98 25.83 24
0.65 20 0.45 5.16 25.91 197
0.65 30 0.90 8.25 27.84 152
0.65 40 0.96 9.35 27.22 192
0.65 50 1.00 9.80 58.19 231
0.75 10 1.81 3.01 29.52 20
0.75 20 0.46 5.22 23.68 168
0.75 30 0.92 7.96 23.77 129
0.75 40 1.17 9.45 26.23 137
0.75 50 1.47 10.54 70.87 138
0.85 10 1.79 3.01 36.49 18
0.85 20 0.46 5.05 21.13 148
0.85 30 1.05 7.76 22.13 100
0.85 40 1.18 9.18 19.71 120
0.85 50 1.40 10.29 64.93 127
0.95 10 1.51 2.95 39.67 19
0.95 20 0.48 4.90 20.03 127
0.95 30 1.12 7.63 21.04 84
0.95 40 1.26 9.03 14.36 101
0.95 50 1.35 10.00 57.54 118
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TABLE III. Resistive force theory results for swimmer computed using analytical resistance matrix for the ellipsoidal head.
For the theories of Gray and Hancock, and Lighthill, we present the percent error in the translational velocity V, filament
torque Nf, and the total percent error.

Gray and Hancock Lighthill

ã p̃ EV (%) ENf (%) ETotal (%) EV (%) ENf (%) ETotal (%)

0.05 10 26.95 35.95 44.9 69.80 5.54 70.0
0.05 20 16.77 36.32 40.0 51.90 5.82 52.2
0.05 30 9.89 34.88 36.3 41.58 6.14 42.0
0.05 40 7.45 34.17 35.0 32.21 6.80 32.9
0.05 50 6.03 33.09 33.6 25.11 6.56 26.0
0.15 10 28.18 47.39 55.1 70.94 10.19 71.7
0.15 20 15.40 46.23 48.7 54.92 12.89 56.4
0.15 30 7.40 44.75 45.4 42.42 14.04 44.7
0.15 40 7.18 43.60 44.2 32.16 14.56 35.3
0.15 50 8.05 42.55 43.3 24.69 14.67 28.7
0.25 10 31.00 56.10 64.1 69.80 16.92 71.8
0.25 20 15.04 54.58 56.6 57.35 21.94 61.4
0.25 30 6.12 53.11 53.5 44.18 23.49 50.0
0.25 40 6.46 52.09 52.5 33.50 24.35 41.4
0.25 50 8.18 51.26 51.9 25.87 24.85 35.9
0.35 10 31.04 62.86 70.1 65.59 23.45 69.7
0.35 20 14.74 61.52 63.3 59.44 30.64 66.9
0.35 30 6.00 60.51 60.8 46.15 33.09 56.8
0.35 40 6.95 59.63 60.0 35.44 34.17 49.2
0.35 50 8.53 58.96 59.6 27.93 34.89 44.7
0.45 10 34.97 68.73 77.1 61.24 30.46 68.4
0.45 20 15.70 67.46 69.3 62.46 38.85 73.6
0.45 30 5.93 66.48 66.7 49.07 41.34 64.2
0.45 40 7.62 65.84 66.3 38.21 42.75 57.3
0.45 50 9.10 65.30 65.9 30.94 43.60 53.5
0.55 10 36.49 73.24 81.8 53.97 36.04 64.9
0.55 20 16.47 72.16 74.0 64.75 45.65 79.2
0.55 30 7.25 71.36 71.7 52.40 48.41 71.3
0.55 40 8.06 70.78 71.2 41.70 49.83 65.0
0.55 50 8.45 70.26 70.8 34.73 50.62 61.4
0.65 10 39.06 76.92 86.3 45.78 40.77 61.3
0.65 20 18.03 75.97 78.1 67.66 51.40 85.0
0.65 30 9.20 75.27 75.8 55.89 54.26 77.9
0.65 40 9.00 74.68 75.2 45.79 55.57 72.0
0.65 50 9.54 74.19 74.8 39.39 56.32 68.7
0.75 10 40.88 79.85 89.7 35.97 44.49 57.2
0.75 20 19.99 78.98 81.5 70.74 56.04 90.2
0.75 30 11.38 78.33 79.1 60.19 58.92 84.2
0.75 40 11.16 77.77 78.6 50.74 60.19 78.7
0.75 50 11.71 77.27 78.2 44.78 60.85 75.6
0.85 10 41.96 82.21 92.3 27.42 47.31 54.7
0.85 20 22.69 81.44 84.5 74.45 59.90 95.6
0.85 30 14.18 80.79 82.0 64.97 62.72 90.3
0.85 40 13.96 80.23 81.4 56.20 63.90 85.1
0.85 50 14.98 79.69 81.1 51.11 64.45 82.3
0.95 10 44.65 84.18 95.3 33.16 49.55 59.6
0.95 20 25.65 83.45 87.3 78.24 63.11 100.5
0.95 30 17.62 82.79 84.6 70.29 65.84 96.3
0.95 40 17.83 82.21 84.1 62.33 66.93 91.5
0.95 50 19.53 81.64 83.9 58.13 67.35 89.0
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