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Abstract. Population viability analysis (PVA) uses concepts from theoretical ecology to
provide a powerful tool for quantitative estimates of population dynamics and extinction risks.
However, conventional statistical PVA requires long-term data from every population of inter-
est, whereas many species of concern exist in multiple isolated populations that are only moni-
tored occasionally. We present a hierarchical multi-population viability analysis model that
increases inference power from sparse data by sharing information among populations to
assess extinction risks while accounting for incomplete detection and sampling biases with
explicit observation and sampling sub-models. We present a case study in which we customized
this model for historical population monitoring data (1985-2015) from federally threatened
Lahontan cutthroat trout populations in the Great Basin, USA. Data were counts of fish cap-
tured during backpack electrofishing surveys from locations associated with 155 isolated popu-
lations. Some surveys (25%) included multi-pass removal sampling, which provided valuable
information about capture efficiency. GIS and remote sensing were used to estimate August
stream temperatures, peak flows, and riparian vegetation condition in each population each
year. Field data were used to derive an annual index of nonnative trout densities. Results indi-
cated that population growth rates were higher in colder streams and that nonnative trout
reduced carrying capacities of native trout. Extinction risks increased with more environmental
stochasticity and were also related to population extent, water temperatures, and nonnative
densities. We developed a graphical user interface to interact with the fitted model results and
to simulate future habitat scenarios and management actions to assess their influence on
extinction risks in each population. Hierarchical multi-population viability analysis bridges the
gap between site-level field observations and population-level processes, making effective use
of existing datasets to support management decisions with robust estimates of population
dynamics, extinction risks, and uncertainties.

Key words:  conservation; extinction risk; hierarchical Bayesian time series; imperfect detection, isolated
populations; Lahontan cutthroat trout; observation model; population viability analysis; removal sampling;
Ricker model.

INTRODUCTION

Population viability analysis (PVA) plays a central role
at the crossroads of population ecology, conservation
biology, and environmental policy (Beissinger and
McCullough 2002, Morris and Doak 2002). It bridges
the gap between theoretical and applied ecology, and it is
sought after to forecast dynamics of imperiled popula-
tions and to estimate extinction risks under different

Manuscript received 5 June 2018; accepted 20 August 2018;
final version received 24 September 2018. Corresponding Edi-
tor: Brett T. McClintock.

®E-mail: doug.leasure@gmail.com

management or climate scenarios. Applications have
included high profile conservation efforts for threatened
species including grizzly bears (Shaffer 1978, 1983) and
northern spotted owls (Lande 1988, Doak 1989, Boyce
1994). However, traditional demographic PVA requires
many years of data from each population to be assessed.
Monitoring programs for imperiled species generally col-
lect data from multiple populations, but may not monitor
any single population enough to perform a data-driven
PVA. A statistical framework is needed that can harness
sparse data that already exist from across the range of a
species to rigorously assess population viability for all of
its isolated populations. This requires a synthesis of clas-
sical concepts in theoretical ecology (May 1973, Gotelli
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2008) and conservation biology (Beissinger and McCul-
lough 2002, Morris and Doak 2002) with recent
advances in occupancy modeling (Royle and Dorazio
2008) and Bayesian statistics (Gelman et al. 2013, Hobbs
and Hooten 2015).

Two paradigms in conservation biology have devel-
oped in parallel (Caughley 1994): The declining popula-
tion paradigm and the small population paradigm. The
declining population paradigm focuses on environmen-
tal or demographic factors associated with population
declines, often with the intention of manipulating those
factors (Boyce 1992, Akcakaya and Raphael 1998).
Favored by managers for its practicality, this approach
often relies on site-level observations of abundance and
habitat. The challenge with this approach can be extrap-
olating inferences to population-level processes like
recruitment, demographic stochasticity, and extinction.
The small population paradigm is more focused on pop-
ulation-level processes, relying heavily on concepts from
theoretical ecology. The primary goal is to identify mini-
mum viable population sizes (Shaffer 1981) that can per-
sist in the face of demographic and environmental
stochasticity (May 1973), without regard for habitat fac-
tors associated with population dynamics. A challenge
with this approach is incorporating site-level observa-
tions to inform parameter estimates rather than relying
on expert opinion or pure simulation studies. PVA mod-
els that include demographic and environmental
stochasticity while also estimating effects of habitat
covariates can be used to explore the intersection of
these two paradigms theoretically and to better harness
the strengths of both approaches for applied conserva-
tion issues.

The challenge of linking site-level observations to
population-level processes has been a wedge between the
declining- and small-population paradigms, and more
generally, between applied and theoretical ecology. Pop-
ulation-level processes are often difficult to observe
directly because they operate at larger spatial and tem-
poral scales than field sampling can accommodate.
There are several challenges: (1) accurately estimating
site abundances using field observations that imperfectly
detect organisms, (2) scaling-up site abundances to esti-
mate total population sizes while accounting for sam-
pling error and unsampled habitat, and (3) obtaining
sufficient time-series data to estimate demographic rates
and their responses to the environment. There has been
significant progress in each of these areas using hierar-
chical observation and process models (Berliner 1996,
Royle and Dorazio 2008) and integrated population
models (Shaub and Abadi 2011).

Imperfect detection is a topic rich with theoretical
advancements followed by widespread conservation
applications (MacKenzie et al. 2006, Royle and Dorazio
2008). Methods have historically focused on site-level
abundances and covariate effects rather than popula-
tion-level processes, but recent progress has linked these
models to time-series models and demographic processes
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at the scale of the sample site. N-mixture models (Royle
2004) have been particularly influential because they
require only count data, avoiding resource intensive
mark-recapture surveys. We will use the term N-mixture
models to include the class of models designed for
counts of unmarked individuals, be it repeated point
counts common for birds or removal sampling common
for fish. Appropriate count data are collected by many
conservation monitoring programs and historical data
are available for many species. N-mixture models glean
information from repeated counts of unmarked animals
at each site to estimate true site abundances, with the
critical assumption that the site is closed to migration
and there are no births or deaths during the survey per-
iod. Dail and Madsen (2010) relaxed these assumptions
by explicitly modeling “gains” (births + immigration)
and “losses” (deaths + emigration) to the population
each year. Zipkin et al. (2014) added stage structure to
this framework, and Kanno et al. (2015) added density-
dependent recruitment and covariate effects. Kanno
et al. (2015) assumed that covariate effects on demo-
graphic rates were consistent among sites, allowing them
to leverage data from multiple sites to estimate these
effects, which may have otherwise required many years
of data from each site. These models account for imper-
fect detection and they link site-level observations to
demographic processes, but they assume that a sampled
site is representative of the entire population and inde-
pendent from other sampling locations. For this reason,
they cannot incorporate data from multiple sample sites
within a population, and most importantly, they cannot
estimate total population sizes or extinction risks.
Incomplete sampling from the total spatial extent of a
population is a necessary limitation for almost all moni-
toring programs, but sampling error can bias estimates
of population size and extinction risk with a tendency
toward overly pessimistic estimates of viability (Staples
et al. 2004). Carlin et al. (1992) and Berliner (1996) pro-
vided a hierarchical Bayesian framework for time series
models (i.e., state-space models) that explicitly accounts
for both the observation process (i.c., field surveys) and
its relationship to unobserved demographic processes.
Clark (2007) thoroughly explored a range of ecological
applications for this class of models, including concepts
like age structure, density dependence, demographic and
environmental stochasticity, mark-recapture studies,
and covariate effects. Hobbs and Hooten (2015) added a
sampling model to this hierarchical structure (i.e., pro-
cess, sampling, and observation model) to accommodate
data arising from incomplete sampling of a population’s
spatial extent. The sampling model also allowed them to
include multiple sampling locations from a single popu-
lation. This is a critical step towards leveraging existing
data from population monitoring programs to assess
population viability because it allows inferences to be
made for the total population extent rather than being
limited to the sampling location. This is necessary to
estimate total population sizes and overall extinction
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risks. Unfortunately, there are few cases where sufficient
time series data exist from a single population to fit these
models.

We developed a hierarchical Bayesian model for popu-
lation viability analysis that uses data from multiple iso-
lated populations simultaneously to bolster inference
power across the range of a species and into the future.
Hierarchical multi-population viability analysis (MPVA)
bridges the gap between the declining- and small-popula-
tion paradigms by including demographic and environ-
mental stochasticity while also relating demographic
rates to environmental covariates. Wenger et al. (2017)
previously introduced the process model that lies at the
core of MPVA, demonstrating how information can be
borrowed from well-sampled populations to predict via-
bility of data-poor populations. However, they did not
link this to an observation model or sampling model,
which is necessary to derive the full benefits of the
approach. Here we present the full hierarchical model,
which can accommodate counts of unmarked individuals
from multiple sampling locations within each population,
making it appropriate for use with many existing data-
sets. The Bayesian framework provides flexibility to cus-
tomize the model for specific datasets and it explicitly
accounts for uncertainty at each level of the model. Hier-
archical MPVA makes it possible to: (1) Use all available
abundance data from multiple isolated populations, (2)
Account for observation and sampling error, (3) Infer
population-level parameters from site-level observations,
(4) Estimate effects of spatio-temporal covariates on
demographic rates, and (5) Account for demographic
and environmental stochasticity.

We provide an overview of a general model structure
for hierarchical MPVA along with a case study using
30 years of sporadic population monitoring data from
155 isolated populations of federally threatened Lahon-
tan cutthroat trout (Oncorhynchus clarkii henshawi).

OVERVIEW: MULTI-POPULATION VIABILITY ANALYSIS

Following the structure outlined by Hobbs and Hoo-
ten (2015), a hierarchical MPVA model has three com-
ponents: an observation model, a sampling model, and a
process model. The observation model accounts for
imperfect detection of organisms during field surveys at
each site. The sampling model accounts for sampling
error that arises from incomplete sampling from the spa-
tial extent of a population and non-uniform distribu-
tions of individuals. The process model represents the
temporal dynamics of population growth and can
include features like density dependence, age structure,
and environmental stochasticity.

Biological data for MPVA should include multiple
populations monitored over multiple years, with multi-
pass surveys conducted at some sites. Time series may
include years without data. Observations y;;;, are
counts of individuals observed during each survey pass
m at site j in year ¢ for population i. Surveys could be
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repeated point counts, removal sampling, multi-surveyor
designs, distance sampling, or virtually any other count-
based survey design for which an appropriate observa-
tion model can be specified. Age or stage structure may
be included or not.

Hierarchical MPVA has three key model parameters:
(1) Demographic rates R;; from the process model: rates
of population change from year-to-year, (2) Occurrence
probabilities v;,; from the sampling model: probability
that an individual from the population would occur at
sample site j and Detection probabilities p;,;» from the
observation model: probability that an individual occu-
pying a site would be observed during survey m.

A general model structure for hierarchical MPVA can
be written as

[Ni,r ‘Nzl,t—l ) Ri,r]
[Ri,r‘xi,n B]
[ni1,[Vis.7, Nig)

b’i,h_i,m |pi,t,j,m7 Nig, /} .

Bracket notations represent generic probability distribu-
tions (i.e., the first line indicates that N;, is stochastic
and dependent on N;,_; and R;;). N;, are total popula-
tion sizes each year, n;,; are total abundances at each site
J» and ;. are counts of individuals observed during
each survey m. The x;, are spatio-temporal covariates
and P are their effects on population growth rates R; .

Modeling R;, as a function of spatiotemporal covari-
ates enables data-driven population simulations any-
where within the modeling domain where covariates can
be measured or estimated. Remotely sensed and GIS-
based covariates are valuable in this context because
they provide consistent range-wide habitat measure-
ments annually. This general structure for hierarchical
MPVA can be customized by selecting appropriate error
structures, functional relationships, and covariates for
each sub-model based on characteristics of the data and
expectations about how the system behaves.

CASE STuDY: LAHONTAN CUTTHROAT TROUT

We demonstrate MPVA using data from multiple
monitoring programs for federally threatened Lahontan
cutthroat trout (LCT; Oncorhynchus clarkii henshawi)
throughout its range in Nevada, Oregon, and California,
USA. We chose this species because it exists in isolated
populations, there is a substantial amount of data avail-
able, and it is a focus of management programs. Our
intention was to demonstrate MPVA using a real-world
example to highlight key concepts and model results, but
it is beyond the scope of this paper to give thorough
treatment to ecological inferences and management rec-
ommendations. Our LCT model was developed in col-
laboration with project partners who contributed data
and expert opinion. These included representatives from
U.S. Fish and Wildlife Service, Bureau of Land
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Management, U.S. Forest Service, Nevada Department
of Wildlife, Oregon Department of Fish and Wildlife,
and California Department of Fish and Wildlife.

We aggregated LCT survey data from project partners to
build a database that included 155 populations with data
from the 30-yr period from 1984 to 2015. This included 71
streams where LCT were extirpated. Traditional popula-
tion viability analyses were previously conducted for 13
populations individually (Peacock and Dochtermann
2012) providing 5-10 consecutive years of data for these
populations from 1993 to 2002. The rest of the data were
from sporadic sampling events with few consecutive years
of data for most populations. Spatial coverage of sampling
was usually small compared to populations’ spatial extents
(mean = 3%, maximum = 20%). Multi-pass removal sam-
pling (i.e., repeated sampling without replacement from a
closed habitat unit) was conducted during 25% of sampling
events, and single-pass sampling was conducted during the
rest. Our goals for the Lahontan Cutthroat Trout MPVA
model were: (1) Estimate population sizes and extinction
probabilities for populations with monitoring data, (2)
Assess population viability for unsampled streams using
environmental covariates only, and (3) Evaluate potential
effects of management actions and future environments on
population viability.

MPVA model development

Throughout the paper, we numbered only the mathe-
matical expressions that were used in multi-population via-
bility analysis for Lahontan cutthroat trout. Unnumbered
mathematical expressions were included to demonstrate
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connections with previously published models and possible
model extensions. The directed acyclic graph (Fig. 1) pro-
vides an overview of how parameters and data throughout
the model relate to one another and to numbered expres-
sions in the text. Table 1 provides definitions for symbols.

Process model—The process model represents popula-
tion change from one year to the next. From classical
population ecology, there are a number of models for
density-dependent population growth that may be
appropriate to use with count data (Verhulst 1838, Bev-
erton and Holt 1957). If age or stage structured counts
are available, structured population dynamics could
potentially be modeled (Leslie 1945). We will focus on a
basic Ricker model (Ricker 1954), which is fundamental
to theoretical ecology and has been widely applied for
management. This model assumes density-dependent
population growth with no age structure. It is often writ-
ten in the form

N1

N, =N, %)

where N, is population size (age 1 + ) in year ¢, r is the
intrinsic rate of population growth, and K is carrying
capacity. This is an exponential growth model with
growth rates that decline toward zero as the population
approaches carrying capacity.

One of the primary goals for MPVA is to model multi-
ple populations simultaneously to reduce data require-
ments from any single population by sharing
information among populations. To make carrying
capacities K; comparable among populations occupying

Observation model

Sampling model

Process model

(13)

data parameter
nonativ;,
Stochastic Deterministic temp; r_q ndVli,t
> N flow; ;4 elev;

Fic. 1.

Directed acyclic graph (DAG) for hierarchical multi-population viability analysis. Numbers refer to mathematical

expressions in the text that are represented by each arrow. Symbols are defined in Table 1.
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TaBLE 1. Definitions of symbols with references to
expressions where they are used.
Symbol Definition Expression
Data
Vistjim Count of individuals observed 15
each survey pass
Yi. Total observed individuals 14
among passes at a site
Y, Total observed individuals 13
among all sites
aj, Translocated individuals 8
E; Extent of population (length or 5
area)
E;, J Extent of sample site (length or 11
area)
temp;, Water temperature 6
flow, , Peak flow 7
nonativ;, Density of nonnative trout 7
ndvi;, Riparian vegetation condition 7
elev; Binary elevation indicator 7
(above or below 2,000 m)
Parameters
Ni, Population size 2,8,5,8,2,13
i Expected initial population size 8
R;, Realized population growth 2,35
rate
iy Intrinsic population growth 5,6
rate
B Eftects of covariates on r;, 6
Pis Strength of density dependence 5,7
% Effects of covariates on ¢;, 7
ORi Environmental stochasticity 33
[T Mean of og; among 3
populations
[ Standard deviation of og; 3
among populations
iy Site abundance 2,14
is) Occupancy probability 2,11,13
T Sampling precision 11,12
Ditjom Detection probability during 13,14,15,16,17
pass m
Oijm Probability of non-detection in 15,16
prior passes
S Decline in detection rates in 15,18
each subsequent pass
0 Effects of covariates on first- 15,18

pass detection rates

different spatial extents E;, we redefined them in terms
of density rather than abundance,, ,
Ni; :Ni,t—ler(l_ Ki I)~

Attempting to estimate both free parameters r and K;
can lead to identifiability issues (multiple parameter
states that produce identical model behavior) because
their relationship is multiplicative in this model. To
improve identifiability, we used an alternative formula-
tion of the Ricker model (Hobbs and Hooten 2015)

Nig-1

N = Ni,t—le'urd’i B
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This is simply an algebraic rearrangement where ¢; =
(—r/K;), representing the effect of density dependence.
The units for ¢; are changes in realized growth rates
resulting from adding one individual per unit area to last
year’s population. This linear formulation improves our
ability to model r and ¢ as a function of spatio-temporal
covariates x;

i = BO + lei4t+
ir = Yo + ViXis + -

So far, this deterministic process model is a multi-popu-
lation form of a simple exponential growth model with
growth rates that are a linear function of covariates, den-
sity, and their interactions. It could be re-written as:

Nii-1 " Nis1
Ni.t :Ni [_leﬁn+ﬁ1xi,1+‘/o 5 TNt

At this stage of formulation, the model does not account
for demographic and environmental stochasticity. Ran-
dom variation is critical to account for because it can
drive small populations extinct (Shaffer 1981). Demo-
graphic stochasticity arises from the fact that reproduc-
tion and survival are integer-based processes (May
1973). If average per-capita recruitment is 2.5, most
adults produce either two or three offspring but never
2.5 offspring. This can cause population sizes to drift
randomly over time. To capture this, we modeled popu-
lation sizes N;, as a Poisson process

Ni, ~Poisson (N;,_1efi) I

where R;; are realized population growth rates.

Environmental stochasticity (May 1973) arises from
variation in unmodeled environmental factors that affect
demographic rates. Following others, we modeled this as
normally distributed random variation in realized popu-
lation growth rates (Morris and Doak 2002, Clark and
Bjornstad 2004, Gotelli 2008)

R;, ~Normal(R;,, og;) )

where R,v,, is the mean and op; is the standard deviation.
OR; Is a population-specific estimate of environmental
stochasticity, and it can be modeled hierarchically with
hyper-parameters shared among all populations

or; ~ Half Cauchy(j, 05) 3)
Ugs O ~ Uniform(0, 10).

We used Half-Cauchy distributions to represent stan-
dard deviations in realized growth rates following rec-
ommendations of Gelman (2006) for hierarchical
variance models. The hierarchical structure shares infor-
mation among populations to estimate this data-hungry
parameter, and it constrains estimates of environmental
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stochasticity to be similar among populations unless
observed data provide significant evidence to the con-
trary. It also allows predictions for populations where no
data have been collected. Uniform hyper-priors were
selected to be uninformative. As a practical decision to
improve convergence, we truncated the distribution of
Gg; to be above 0.01, avoiding unrealistic accumulation
of density near zero that sometimes occurred. For this
parameter to approach zero would imply that our four
covariates explained all of the variation in realized
growth rates, which is extremely unlikely.

In this stochastic Ricker model, expected realized
population growth rates R;; are a linear function of the
prior year’s population density

- Nii—1
Ris=ris+ &y IE[-
1

4)

where the intercept r;, is intrinsic population growth rate
and the slope ¢, is the effect of density dependence. We
selected spatio-temporal covariates as predictors of Fig
and ¢,;, in collaboration with project partners. We
emphasized remotely sensed and GIS-based covariates
because they can be measured consistently every year for
all populations. We included two predictors of intrinsic
population growth rates

rie = Bo + Brtemp; ,_; + Boflow;

(5)
B ~ Normal(0, 10).

The normal priors for elements in the vector of regres-

sion coefficients p were selected to be uninformative.

The variable temp; ,_; is mean August stream temper-
ature estimated using a regional stream temperature
model (Isaak et al. 2017) averaged throughout each pop-
ulation’s extent each year. We expected intrinsic popula-
tion growth rates to increase with colder stream
temperatures because the trout populations we modeled
are at the southern extent of the species’ range (Selong
et al. 2001, Wenger et al. 2011). Notice that we modeled
this effect with a 1-yr time lag. We expected environmen-
tal conditions in the previous year to influence recruit-
ment of age 1 individuals into the current year’s
population. temp,,_; was centered and scaled (i.e., sub-
tract the mean among all years and populations, divide
by the standard deviation).

The variable flow;,_; is peak stream discharge (maxi-
mum 3-day average) estimated using surface flows from
the National Land Data Assimilation System (Xia
et al. 2012) at the downstream-most point of each pop-
ulation extent. We expected population growth to
increase after high flows because of their potential to
increase production (Bellmore et al. 2017) and available
space (Dunham and Vinyard 1997). flow;,; was cen-
tered and scaled on a per-population basis so that it
reflected deviations from each population’s normal
peak discharge.
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We included two predictors of density-dependence

¢;, = Yo + vinonativ;, + Yaeley; ndvi;,

(6)
v~ Normal(0, 1)

The normal priors for elements in the vector of regression

coefficients y were selected to be uninformative. Different

priors from Egs. 5 and 6 reflect differences in scale between

rand ¢.

The variable ndvi;, is a satellite-derived measure of
riparian vegetation condition based on the Normalized
Difference Vegetation Index (NDVI; Pettorelli et al.
2011). The variable elev; is a binary indicator variable that
is 1 for populations below 2,000 m elevation and 2 for
populations above 2,000 m. This represents two separate
effects of ndvi;, above and below the ecotone between
sagebrush-steppe and montane forests within the Great
Basin where riparian communities are dominated by wil-
low-sedge or alpine forests, respectively. We expected a
weaker effect of density dependence (i.e., increased carry-
ing capacities) when riparian zones were greener (i.e.,
higher NDVI) due to the association with greater vegeta-
tion cover and primary productivity (Sellers 1985) and
the corresponding influence on trout habitat via stream
shading, habitat complexity, and terrestrial food subsidies
(Wesche et al. 1987, Zoellick 2004, Baxter et al. 2005).
We expected this effect to be particularly strong for low
elevation sites where there is greater riparian disturbance
from cattle grazing (Li et al. 1994, Saunders and Fausch
2012, 2017). We calculated NDVI based on surface reflec-
tance Landsat images (Landsat 5, 7, and 8) using Google
Earth Engine (Gorelick et al. 2017). For each year, we
identified the peak NDVI value observed during the late
growing season (day of year 206-260) and calculated a
spatial average with a 25-m buffer of each population’s
spatial extent. The variable ndvi;, was centered and
scaled on a per-population basis.

The variable nonativ;, is an index of nonnative trout
density estimated based on field data obtained from pro-
ject partners. Nonnatives included rainbow trout
(Oncorhynchus mykiss), brown trout (Salmo trutta),
brook trout (Salvelinus fontinalis), and hybrids. We
expected stronger density dependence (i.e., reduced car-
rying capacities) as nonnative trout densities increased
(Seegrist and Gard 1972, Dunham and Vinyard 1997,
Dunham et al. 2002). Nonnative densities were calcu-
lated by summing counts among all sites and dividing by
the total length of stream reaches sampled. This did not
account for imperfect detection or sampling error. Years
with missing data were common. In consultation with
experienced LCT biologists, we filled in missing data
with zeros for streams thought to be free of nonnatives.
For other streams, a moving weighted average was used
to fill in missing data. The variable nonativ;, was scaled
(divide by the standard deviation among all years and
populations) but not centered, so that other regression
coefficients reflected conditions with zero nonnatives.
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To accommodate data from historical fish transloca-
tions for Lahontan cutthroat, we added the following
modification:

Ni,t—l =Nii1+ a1 (7

This included additions to recipient populations
(ai;—1 > 0) and removals from donor populations
(a;,-1<0). We plugged the supplemented N;,_; into
Egs. 1 and 4 to provide a mechanism for populations to
recover after extirpation from isolated streams, an
observed pattern that could not otherwise be represented
by our Ricker model. We assumed that translocated
individuals survived and reproduced at the same rates as
resident fish because we did not have data to support
better estimates. Effects of violating this assumption
would be minor.

The population time series must be initialized, and we
chose the year before the first year with field surveys
(t = 0) for each population

N; o~ Poisson (A;)

®)
Li~Gamma (1 x 10731 x 1073)

The Gamma distribution is the conjugate prior for the
Poisson parameter and we chose the Gamma hyperpa-
rameters to be minimally informative.

Sampling model— The focus of the sampling model is to
estimate the probability v;,; that an individual from the
population would occupy a given sampling location j.
This reflects relative habitat suitability at a site compared
to available habitat throughout the population extent.
This parameter relates population sizes ;, from the pro-
cess model to site abundances n;,; from the observation
model: E(”i,t,j) = N,‘),D,"u'.

We estimated the probability v;,; that an individual
would occur at a given site as a binomial process

ni,j ~ Binomial(v; ., N;,) )

where n;;; is the number of individuals from the total
population that occur at site j. We assume with Eq. 9
that individuals could occur at multiple sites surveyed
within a population in a year. If we assume that individ-
uals are randomly distributed throughout the spatial
extent of each population (i.e., no habitat selection) then
a good approximation of the occurrence probability
would be v;,; = 2 717/ Ei, Where Ei‘t j 1s the spatial extent
of sample site j (e.g., area or length of site) and E; is the
total population extent. For example, if site j represents
5% of the population extent, we would expect about 5%
of the population to occur there.

Habitat selection and other processes resulting in non-
random distributions of individuals will cause deviations
from this expectation. We can account for this by model-
ing occurrence probabilities v;,; as stochastic. Beta
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regression (Ferrari and Cribari-Neto 2004) provides a
good framework

l),',[:/' ~ Beta(f),-,,J‘t, (1 — B,‘J},‘)‘E)
E;,; (10)
E;

Vi =

where v;,; is the expected occurrence probability at site j
(i.e., mean of the Beta distribution) and 7 is the precision
of the Beta distribution. In practice, the Beta distribu-
tion must be truncated to avoid values of one or zero
where the density may be infinity. We truncated the Beta
distribution between 1 x 107'° and 1-1 x 107'°. We
used an uninformative uniform prior for sampling
precision

7~ Uniform(0, 1 x 10%). (11)
Sampling precision T will be low when survey data sug-
gest that site abundances strongly deviate from the
expectation of n;;; = N;,V;,;. This would mean that site
densities differ from the overall population density
(ni‘,J/EN« # Ni,/E;). 1f individuals were not selecting
habitat or clustering for other reasons, we would expect
the overall population density and all site densities to be
equal and for sampling precision 1 to be high.

So far, we have not included any survey data in the
sampling model. Remember, our data are counts of indi-
viduals y; ., observed during each survey pass m at site
j. Assuming no individuals were captured at multiple
sites, we also know the total number of individuals
observed among all sites sampled in a given year
Yi, = 2,1:11 Z,];Qf Yiujm- This total count Y;, for a pop-
ulation in a given year is important because it is the only
observed data related directly to total population size

Yi, ~ Binomial(g;,, Ni,)

J.
it ~ (12)
Q= 1= 1= viejPi)
=1

where @, is the probability that an individual from pop-
ulation i occupied any surveyed site in year ¢ and was
also captured in a survey. i)i,, j 1s the probability that an
individual at site j was detected during one of the survey
passes conducted there (see Observation model).

Eq. 12 provides more information about the magni-
tude of N;, than Eq. 9, but it relies on the additional
assumption that an individual can only be captured at
one sampling location in a given year. This information
about the magnitude of N;, is important because the
process model only accounts for changes in N;, from
year to year, not its overall magnitude. Notice that
Egs. 9 and 12 have somewhat conflicting assumptions:
that individuals could occur at multiple survey sites
within a year (Eq. 9), but they could only be captured at
one site (Eq. 12). Population sizes N;;, would be
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overestimated if individuals were frequently captured at
multiple sites. Double-counting individuals is unlikely
when sample sites cover only a small portion of the pop-
ulation extent, as in our case study.

For Lahontan cutthroat trout, we delineated the total
extent E; of each population based on (1) population
delineations in the range-wide status assessment
(USFWS, 2009), (2) where the most upstream and down-
stream LCT were observed, (3) elevation limits estimated
by the topographic-thermal niche model of Warren et al.
(2014), (4) known barriers to fish movement, and (5)
expert opinion from experienced field biologists. Lengths
of sampled sites El»_,, j were obtained from field notes.

Observation model.—The focus of the observation model
is to estimate the probability p;,,, that an individual pre-
sent during a site survey would be captured. There have
been observation models developed for many common
survey designs including mark-recapture surveys,
repeated point counts, and removal sampling. We will
start with a model for repeated point counts for simplicity
and consistency with work on N—mixture models (Royle
2004, Dail and Madsen 2010, Zipkin et al. 2014), and we
will build toward a removal sampling model customized
for Lahontan cutthroat trout.

For repeated point count surveys (i.e., sampling with
replacement), observed counts y;,;,, for each survey
pass m at site j can be modeled as

YVitjm ™ Binomial(Pm.jzw nm.j)
logit(piijm) = 00 + 01Xi1jm~+

where p; ,;m are pass-specific detection probabilities, and
n;,; are true site abundances. To account for effects of
site conditions on detection probabilities, it is often
desirable to include site- or pass-specific covariates
Xiijm using logit regression. As written, this model
assumes that covariates affect detection probabilities
consistently at all sites and populations, but this assump-
tion could be relaxed using random effects.

For Lahontan Cutthroat Trout, electrofishing surveys
included either single-pass or multi-pass removal sam-
pling where captured fish were temporarily removed
from the stream while additional survey passes were con-
ducted (i.e., sampling without replacement). This pro-
vides additional information about detectability because
we know that fish captured during the third pass were
present but not detected during the first and second
passes. Block nets were usually (but not always) placed
at the upstream and downstream end of stream reaches
being sampled. Fish collected during each pass were
counted and their lengths recorded. We used counts of
age 1+ fish as our response variable. Age 1 + fish were
defined as those longer than 60 mm for surveys prior to
August and greater than 80 mm after August based on
age-length frequencies reported by Neville et al. (2016).
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Removal sampling provides two pieces of data: pass-
specific counts y;,;» and the total number of fish Y;,;
captured among all survey passes at a site. Our first data
model relates true site abundances #;,; to total observed
fish

Y;,; ~ Binomial(P;,;,n;, )
M;,;

Pij=1- H L —pisjm

m=1

(13)

where P;, j 1s the probability that a fish occupying site j
would be captured in any of the M;,; survey passes con-
ducted there and p;,;,, is the capture probability for a
fish present during the mth electrofishing pass.

Our second data model relates total fish counts Y;,;
to pass-specific counts

yialJa(m) ~ Multinomial(ri’,:/‘.(m), )/i,f,j)

_ Pitjm Qitjm

(14)
ri,r,jm -
Pisj

We used parentheses notation in the indexing for y;m
and I';,;,, to indicate vectors with an element for each
pass m conducted at site j. I';,j,, is the conditional prob-
ability that a fish was captured during pass m and not
during previous passes, given that it was detected in one
of the passes conducted. Q;,;,» is the probability of not
capturing a fish that was present during all previous sur-
vey passes

Qiji =1
m—1 (15)
Qi.,t,j,ml,,,>1 = H 1 — Ditjm
m=1

In contrast to the assumption of equal capture probabili-
ties among passes underlying many abundance estima-
tors, it has been demonstrated that detection rates for
salmonids decline with each subsequent electrofishing
pass (Peterson et al. 2004, Rosenberger and Dunham
2005). We specified an exponential model to allow for
this

Pitjm :Piﬁm,lea(m_l) (16)

logit(pi;j1) = 0o + O1drain; ;.

We modeled first-pass detection probabilities (m = 1) as
a function of drainage area drain;,; at sampled sites. We
expected detection rates to decline in larger streams. We
are not aware of other observation models for removal
sampling that include declining detection rates and also
share information among sites to bolster inference
power, although similar approaches have been used inde-
pendently (Otis et al. 1978, Mantyniemi et al. 2005,
Rivot et al. 2008).
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We used uninformative normal priors for parameters
in the observation model
00, 01,6 ~ Normal(0, 10) (17)
We could have used informative priors for 6 and &
based on previous empirical estimates (Peterson et al.
2004, Rosenberger and Dunham 2005), but we chose
instead to preserve our ability to conduct an unbiased
comparison of MPVA parameter estimates to these pre-
vious studies. In practice, p;,;» cannot be zero because
then I';,;,, may be undefined, so we set a limit where
Dijm > 0.001.

Model fitting and evaluation

Our MPVA model was implemented using JAGS soft-
ware (Plummer 2015) and the R package runjags (Den-
wood 2013, R Core Team, 2016). The fitted JAGS model
(with data and model code) is included as Data S1. We
ran 10 chains in parallel on separate processing cores
using the “parallel” method of the run.jags() function. A
total of 14,401,501 Markov chain Monte Carlo
(MCMCQ) iterations were run for each of 10 chains with
a burn-in period of 1,000,000 iterations and a thinning
rate of 500. A total of 26,804 MCMC samples were
retained from each chain. Convergence was assessed
using the Gelman-Rubin statistic (Gelman and Rubin
1992) from the R package coda (Plummer et al. 2006).
Gelman-Rubin statistics (also known as potential scale
reduction factors) with upper confidence limits less than
1.1 were interpreted as indicating convergence for a
parameter (Gelman et al. 2013).

We evaluated model fit graphically by comparing pos-
terior predictions to the observed data: y;;;m, Yi.;, and
Y:,. This is a very weak test of the model’s ability to esti-
mate population sizes or extinction risks because (1) the
model was fit to these data and should predict them well,
and (2) posterior predictions are constrained by observed
data in other parts of the model (e.g., predicted y;» is
constrained by observed Y;,;). Poor fit here would indi-
cate a lack of basic error structure to accommodate varia-
tion in the observed data.

We evaluated out-of-sample prediction accuracy using
both temporal and spatial cross-validations. Forecast
accuracy was assessed by withholding the last year of
data for each population, refitting the model, and then
forecasting population dynamics to the last year of data.
Spatial prediction accuracy was assessed by witholding
all data from the five populations with the most data,
refitting the model, and then predicting population
dynamics for each of the five time series. The first year
of data from these populations was retained in the model
to initialize the time series. For all cross-validations, we
compared observed survey data (withheld from model
fitting) to model-based predictions of survey results
expected at those sites. This is a severe test of model fit
because it not only requires accurate estimates of
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population sizes but also accurate predictions of survey
results at specific sites. For this reason, we focused our
cross-validation assessment on Y;, because it aggregates
data among sites and is therefore least dependent on
site-specific predictions.

We summarized residuals for in-sample model fit and
out-of-sample cross-validations by measuring bias
(mean of residuals), imprecision (standard deviation of
residuals), and inaccuracy (mean of absolute residuals).
Residuals of Y;, and Y;,; are not comparable among
populations because different numbers of sites may have
been sampled (i.e., 1-44 sites) and those sites may differ
in size (i.e., 24-200 m) and number of survey passes con-
ducted (i.e., one to six passes). Therefore, we focused on
Yiujm for summarizing residuals because they are more
comparable among populations and sites, but we still
needed to standardize by the length of sample sites to
make them comparable. We standardized y;,;, into
units of fish captured per 30 m to reflect the most com-
mon site length.

Forecasting

A fitted MPVA model can forecast population dynam-
ics and extinction risks by applying process model param-
eters to future covariate scenarios. There are many ways
to construct time series to represent future covariate sce-
narios, but we chose a simple resampling procedure based
on historical conditions. For each forecast year in a popu-
lation, we randomly selected a year from that popula-
tion’s historical record and used all covariate values from
that year for the forecast year. Resampling with replace-
ment was repeated for each forecast year to construct a
future covariate time series for a population. Hundreds or
thousands of time series may be constructed with param-
eter values from each MCMC iteration. This approach
preserves relationships among covariates (e.g, warmer
years tend to have lower stream flows) and randomizes
the sequence of environmental conditions from year to
year. This procedure assumes that future conditions will
be similar to historical conditions.

We created stand-alone R functions to simulate differ-
ent future covariate scenarios and to forecast population
dynamics based on MPVA parameter estimates (i.e.,
saved MCMC samples). Scenarios could include reintro-
ductions of Lahontan cutthroat trout, changes in nonna-
tive trout densities, and changes in total population
extent. Future environmental stochasticity could also be
manipulated to represent different frequencies of extreme
events (e.g, catastrophes or rare migration events).

We developed a graphical user interface (Data S2)
using the R packages shiny (Chang et al. 2017) and leaf-
let (Cheng et al. 2017). This provided managers and
decision-makers direct access to the model so they could
estimate extinction risks for any population and evaluate
effects of different environmental and management sce-
narios. Populations can be explored on an interactive
map; results from each population can be easily accessed
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in graphs and tables (e.g, population forecasts, demo-
graphic rates, environmental conditions, raw data); and
future scenarios can be manipulated from a menu of but-
tons and slider bars.

The forecasting results presented here for Lahontan
cutthroat trout were based on a 30 year forecast period
from 2015 to 2045 (see Appendix S1 for an example).
We ran 100 forecast simulations for each of 53,610
MCMC samples (thinned from the full model) for each
population. Confidence intervals for extinction risks rep-
resented variation among the 100 simulations. See Data
S2 for code and data.

Results

We detected covariate effects on demographic rates
and detection probabilities that were consistent with

DOUGLAS R. LEASURE ET AL.

-0.001 -7

< .0.004

|

-0.007 L=

w —

0.00
-0.05
&
-0.10
-0.15
I I I !
0 500 1000 1500
nonativ; ¢

Ecology, Vol. 100, No. 1

expectations (Fig. 2, Table 2). Cold streams and high
flushing flows in the previous year were positively
related to recruitment into the current year’s population.
Densities of nonnative trout were negatively related to
carrying capacities of Lahontan cutthroat trout popula-
tions (i.e., caused ¢,;, to be more negative). Greener
riparian vegetation had a weak positive relationship with
carrying capacities in low elevation sagebrush steppe,
but no effect in higher elevation populations with
forested catchments. The effects of water temperature
and nonnative trout were statistically significant at the
95% confidence level, but effects of high flow and ripar-
ian vegetation were not (Table 2).

As an example, we will present results from a popula-
tion in a 7.3 km segment of Abel Creek in the Santa
Rosa Range of northern Nevada (see Appendix S1). This
stream had a mean August water temperature of 13.2°C,
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1.0~ ///
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FiG. 2.  Effects of covariates on intrinsic population growth rates r; ;, density-dependence ¢; ,, and first-pass detection rates p; 1.
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TaBLE 2. Means and quantiles of posterior densities for MPVA parameters.

Parameter Mean 2.5% 5% 25% 50% 75% 95% 97.5%
Bo 0.964 0.604 0.672 0.859 0.971 1.076 1.231 1.281
By —0.181 —0.343 —0.316 —0.236 —0.181 —0.125 —0.047 —0.021
B2 0.048 —0.076 —0.057 0.003 0.046 0.091 0.157 0.18

Yo —0.0036 —0.0048 —0.0046 —0.004 —0.0036 —0.0032 —0.0026 —0.0024
Y1 —0.0119 —0.0219 —0.0198 —0.0145 —0.0114 —0.0088 —0.0057 —0.0049
V2low 0.00029 —0.00057 —4e—04 6e—05 0.00032 0.00055 0.00087 0.00097
V2high —8e—05 —0.00074 —0.00062 —0.00029 —7e—05 0.00014 0.00044 0.00054
Ho 1.084 0.914 0.943 1.028 1.085 1.141 1.224 1.252
Co 0.302 0.137 0.156 0.23 0.291 0.361 0.485 0.533

T 307 279 283 297 307 317 332 336

0o —0.219 —0.628 —0.566 —0.373 —0.226 —0.073 0.158 0.232
0, —2.25 -2.99 —2.88 —2.52 —2.27 —-1.99 —1.56 -1.4

3 —0.518 —0.685 —0.661 —0.582 —0.522 —0.457 —0.359 —0.329

which was about average among streams that we
assessed. The most recent density of nonnative trout at
Abel Creek was 139 trout/km, higher than most streams.
Assuming future conditions will be similar to historical
conditions for this population, MPVA estimated its
probability of extinction by the year 2045 to be 17.6%
(16.8-18.5%). That assumes a constant density of 139
nonnative trout per kilometer. Increasing the density of
nonnatives back to the highest historical level from this
stream (661 per km) raised the extinction risk to 22%
(19.7-25.2%). When we simulated the removal of nonna-
tives from Abel Creek, extinction risk was reduced to
12.9% (13.7-14.6%).

Differences in extinction risks among populations were
associated with several factors (Figs. 3 and 4). Popula-
tions with the most environmental stochasticity always
had very high extinction risks, and populations with the
lowest environmental stochasticity always had very low
extinction probabilities. Most, however, had moderate
environmental stochasticity and a range of extinction
risks. The relationship of extinction risk with other
parameters was less pronounced, but a few trends were
observed (Fig. 3). Populations occupying more than 15
stream km usually had extinction risks <50%. Almost all
populations in streams with average summer water tem-
peratures below 11°C had extinction risks less than 50%.
The median extinction risk for streams without nonnative
trout was 27% (quartiles = 14-42%), whereas the median
extinction risk was 47% (23-86%) for streams with non-
native trout. Populations with high extinction risks were
almost always in streams with average August water tem-
peratures above 11°C or with less than 15 km of available
habitat.

MPVA estimated detection rates for first survey passes
in average sized streams (63 km? drainage) to be 45%, and
to decline to 27% in the second pass and 16% in the third
pass (Fig. 5). These results are consistent with previous
experimental evaluations of detection rates for salmonids
with backpack electrofishing in streams (Peterson et al.
2004, Rosenberger and Dunham 2005). Our results also

indicated that detection rates were significantly reduced in
larger streams (Fig. 2).

Posterior predictions matched very well to the observed
data that were used for model fitting (Fig. 6, Table 3).
One exception was the error structure in our observation
model, which did not quite accommodate all of the varia-
tion in the data (i.e, a few credible intervals do not overlap
the 1:1 line in Fig. 6). We explored the addition of an error
term in the observation model (i.e., beta regression for
Dirj,1), but this led to identifiability issues among observa-
tion error, sampling precision t, and the intercept for
detection 0, and so was not used.

As expected, cross-validation results showed fits that
were much worse than the fit to model data (Fig. 7,
Table 3). Spatial and temporal predictions were rela-
tively unbiased, but they were imprecise. Spatial cross-
validations were most imprecise because these predic-
tions relied almost entirely on covariates, whereas tem-
poral cross-validations were constrained by fish counts
from previous years. Note that spatial cross-validation
used the first year of data to initialize the time-series, but
in reality MPVA predictions at new locations will usually
not have these data. If new locations are being consid-
ered for reintroductions, the expected number of animals
to be introduced can be used to initialize an MPVA time
series, otherwise an educated guess would be required
and this may affect prediction accuracy.

All root node parameters in the model converged.
Population-specific estimates of environmental stochas-
ticity did not converge for 28 populations due to insuffi-
cient data. We used random draws from Half-Cauchy
(Ly, Os) to represent environmental stochasticity in
these populations, just as we would for populations with
no survey data.

Discussion

We consider MPVA to be an adaptive management
tool (sensu Walters 1986). It provides explicit estimates
of uncertainty to support informed decision making and
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Extinction risks across all populations in response to population extent (£;), environmental stochasticity (cg;), average

stream temperature (mean(temp;.;)), and the most recent observed density of nonnative trout (nonativ; 7). Vertical lines are
thresholds beyond which extinction risks tend to be less than 50% (E; > 15km; og, <1.2; mean(temp;) < 11°C). Points represent
individual populations. In the boxplot, mid-lines represent median values, box edges represent interquartile ranges, and whiskers
extend to the most extreme data points not exceeding 1.5 times the interquartile range.

it requires periodic updates with new data and model
structures to keep pace with improving ecological knowl-
edge and changing management needs. A fitted hierar-
chical MPVA can be used in a variety of ways to meet
conservation objectives. It can help target data collection
towards populations where uncertainty is greatest, as
more data from those populations will reduce uncer-
tainty when the model is updated. A fitted model can
use simulated covariate scenarios to evaluate potential
risk reduction due to management actions in real popu-
lations (e.g, reintroductions, nonnative removals). It can
identify habitat characteristics related to population
declines and it can assess the risk posed by environmen-
tal stochasticity when populations are small.

Model extensions

We focused on an observation model for removal sam-
pling, but various other observation models could be
developed for hierarchical MPVA to accommodate other
survey designs such as point counts, distance sampling,
multi-observer surveys, or mark-recapture studies
(Royle and Dorazio 2008). It may also be possible to
apply different observation models to subsets of data
within an MPVA when historical data sets were obtained
using multiple survey designs (Shaub and Abadi 2011).

In the sampling model, it would be ideal to include
site-level covariates that influence occurrence probabili-
ties. This would essentially create population- and year-
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specific species distribution models nested within the
MPVA model. Additional work is needed to extend our

MPVA covariate structure to account for habitat in
un-sampled portions of a population’s extent. A Dirich-
let-Multinomial sampling model may be more appropri-
ate when individuals cannot move among sites.

Within the process model, stage-structured models
(Leslie 1945, Zipkin et al. 2014) or meta-population
models (Hanski and Gilpin 1997) are obvious extensions
that could potentially be incorporated when appropriate
data are available. The Ricker model could also be
replaced with a Beverton-Holt model (Beverton and
Holt 1957) or logistic growth model (Verhulst 1838).
Another useful addition may be region-based random
intercepts or spatial block covariance to constrain
nearby populations to be similar to one another or to
covary through time (Cressie and Wikle 2011).

Challenges

Although MPVA benefits from sharing information
among populations, it still requires a substantial amount
of data. The minimum data requirements depend on the
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TABLE 3. Summaries of residuals for in-sample posterior
predictions and out-of-sample cross validations for y; ; ;.

Prediction Bias Imprecision Inaccuracy
In-Sample 0 1.4 0.8
Temporal 0.8 7.3 3.0
Spatial —0.3 14.8 34

characteristics of the biological system (e.g, degree of
environmental stochasticity, spatial extent of popula-
tions, longevity of organisms), the level of model com-
plexity (e.g, covariates, variance structure, type of
observation model), and strength of priors. With

informative priors, an MPVA model can be fit with few
data, but the effectiveness of such an exercise will
depend on the suitability of prior estimates.

It is difficult to include field-based habitat measure-
ments in MPVA because covariates must be measured
consistently among all populations and years. Missing
data in the covariate time series (e.g, years when field sur-
veys were not conducted) must be filled in and this intro-
duces measurement error. In some cases, noisy field
measurements are adequate because the signal is strong,
as was the case with nonnative trout in our example. In
most cases, MPVA will rely heavily on GIS and remotely
sensed covariates. Fortunately, appropriate data are widely
available (Dauwalter et al. 2017, Gorelick et al. 2017).
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Assessing model fit for hierarchical MPVA is a chal-
lenge. A fair test would be to compare predicted popula-
tion sizes to observed population sizes or extinction
outcomes, but it is usually not possible to measure these
response variables directly (a problem for all PVAs). Pos-
terior predictive checks are often used to assess Bayesian
model fit. These compare model predictions to the
observed data that were used to fit the model. In our case,
that included y;jm, Yi , and Y;,. For MPVA, this would
usually indicate excellent fit to data in the model, but it is
a biased assessment of forecast accuracy or spatial predic-
tions, the two primary uses of MPVA. Spatial and tempo-
ral cross-validations seem ideal for this, but they provide
pessimistic estimates of MPVA model fit because they
require the model to not only forecast population sizes
but to also accurately predict survey data at sample sites
within those populations. We focused on Y;, for cross-
validation because it was less dependent on site-specific
or pass-specific predictions (i.e., it aggregated data among
sites). However, this was still particularly challenging
when only a few sites (or a single site) were surveyed or
when individuals had clumped spatial distributions within
population extents.

We urge users of MPVA to explore the assumptions
and behavior of fitted MPVA models using covariate
simulations and sensitivity analyses. This is best done on

a population-by-population basis because changes in
covariates and model parameters may affect extinction
risks very differently among populations. For example in
our LCT model, a population in a warm stream would
be more sensitive to increasing temperatures than a pop-
ulation in a cold stream. Populations restricted to small
stream segments may be more sensitive to increases in
environmental stochasticity. We recommend graphical
user interfaces for fitted MPVA models so that users can
explore the sensitivity of individual populations to
changes in covariates and model parameters. This allows
stakeholders to better understand the strengths and
weaknesses of the model overall, and to better interpret
results for specific populations where decisions are being
made.

Conclusion

Hierarchical —multi-population  viability —analysis
(MPVA) provides data-driven estimates of extinction
risks by connecting field observations to theoretical pop-
ulation models. It harnesses the statistical power of
sparse datasets by sharing information among multiple
populations. With creative user interfaces, we can put
these sophisticated models directly into the hands of
managers and decision makers. These tools can serve as



Article e02538; page 16

a focal point for organizing people and information,
assessing uncertainty, and making collaborative, well-
informed decisions. At its best, hierarchical multi-popu-
lation viability analysis can be a process that brings
together disparate datasets and the biologists who col-
lected them; it can help to formalize prevailing hypothe-
ses and test them against data; and it can provide an
objective basis for evaluating risks and prioritizing
investments.
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