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ABSTRACT 

       Flooding is one of the most dangerous natural disasters that repeatedly occur globally, and 

flooding frequently leads to major urban, financial, anthropogenic, and environmental impacts in 

the subjected area. Therefore, developing flood susceptibility maps to identify flood zones in the 

catchment is necessary for improved flood management and decision making. Streamflow and 

flood forecasting can provide important information for various applications including 

optimization of water resource allocations, water quality assessment, cost analysis, sustainable 

design of hydrological infrastructures, improvement in agriculture and irrigation practices. 

Compared to conventional or physically based hydrological modelling, which need a large amount 

of historical data and parameters, the recent data-driven models which require limited amounts of 

data, have received growing attention among researchers due to their high predictive performance. 

This makes them more appropriate for hydrological forecasting in basin-scale and data-scarce 

regions. In this context, the main objective of this study was to evaluate the performance of various 

data driven modeling approaches in flood and streamflow forecasting. One of the significant 

desires in daily streamflow prediction in today’s world is recognizing possible indicators and 

improving their applicability for effective water management strategies. In this context, the authors 

proposed an ensemble data mining algorithm coupled with various machine learning methods to 

perform data cleaning, dimensionality reduction and feature subset selection. To perform the task 

of data mining, three data cleaning approaches: Principle Component Analysis (PCA), Tensor 

Flow (TF) and Tensor Flow K-means clustering (TF-k-means clustering) have been used. For the 

feature selection four different machine learning approaches including: K Nearest Neighbor 

(KNN), Bootstrap aggregating, Random Forest (RF) and Support Vector Machin (SVM) have been 
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investigated. Out of twelve different combinations of data mining and machine learning, the best 

ensemble model was TF-k-means clustering coupled with RF, which outperformed the other 

methods with 96.52% classification accuracy.   

 Thereafter, a modified Nonlinear Echo State Networks Multivariate Polynomial (NESN-MP) 

named in the current study as Robust Nonlinear Echo State Network (RNESN) was utilized for 

daily streamflow forecasting. The RNESN decreases the size of the reservoir (hidden layer which 

performs random weigh initialization), reduces the computational burden compared with NESN-

MP, and increases the interactions between the internal states. The model is thus simple and user-

friendly with better learning ability and more accurate forecasting performance. The method has 

been tested with data provided by the United States Geological Survey (USGS), Natural Resource 

Conservation Service (NRCS), National Weather Service Climate Prediction Center (NOAA) and 

Daymet Data Set from NASA through the Earth Science Data and Information System (ESDIS). 

Each data set includes the daily records of the local observed hydrological and large-scale 

weather/climate variability parameters. The efficiency of the proposed method has been evaluated 

in three regions namely Berkshire County (MA), Tuolumne County (CA), and Wasco County 

(OR). These basins were designated based upon the wide range of climatic conditions across the 

US that they represent. The simulation results were compared with NESN-MP and Adaptive 

Neuro-Fuzzy Inference System (ANFIS). The results validate the superiority of the proposed 

modeling approach compared to NESN-MP and ANFIS. The proposed RNESN approaches out 

performs the other methods with an RMSE = 0.98. 

 For flood forecasting, an Evidential Belief Function (EBF) model, both as an individual 

model and in combination with Logistic Regression (LR) methods, has been proposed to prepare 

the flood susceptibility map. In in this study we proposed a new ensemble of models of Bootstrap 
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aggregating as a Meta classifier based upon the K-Nearest Neighbor (KNN) functions including 

coarse, cosine, cubic and weighted as base classifiers to perform spatial prediction of flood. We 

first selected 10 conditioning factors to spatial prediction of floods and then their prediction 

capability using the relief-F attribute evaluation (RFAE) method was assessed. Model validation 

was performed using two statistical error-indexes and the area under the curve (AUC). Results 

concluded that the Bootstrap aggregating -cubic KNN ensemble model outperformed the other 

ensemble models. Therefore, the Bootstrap aggregating -cubic KNN model can be used as a 

promising technique for the sustainable management of flood prone areas. Furthermore, the AUC 

results indicated that the EBF, EBF from LR, EBF-LR (enter), and EBF-LR (stepwise) success 

rates were 94.61%, 67.94%, 86.45%, and 56.31%, respectively, and the prediction rates were 

94.55%, 66.41%, 83.19%, and 52.98%. The results showed that the EBF model had the highest 

accuracy in predicting the flood susceptibility map, in which 14% of the total areas were located 

in high and very high susceptibility classes and 62% were located in low and very low 

susceptibility classes. 
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1 Introduction 

1.1 Streamflow and Flood Forecasting 

1.1.1 Background  

Climate and weather-driven natural hazards, such as floods, flash floods, storm surges, and 

consequent massive mass movements and sedimentation are the most prominent natural 

disasters all over the world. Guha et al has reported that a total of 57% of natural disaster’s 

victims in 2011 are related to “hydrological disasters”, which triggered a total economic 

loss of more than 70 billion US dollars (e.g.  230%average increase compared to the 

previous decade) (Guha-sapir, Hoyois, & Below, 2011) 

Flood is defined as overflow of the resulting stream-flow from heavy rainfall which 

ultimately covers the flood plain, and areas that are not covered by water under normal 

conditions (Kron, 2002).  With world population increasing, the need for optimizing 

allocation plans for water resources and energy production demands has become more 

important. Therefore, the development of technologically driven solutions for controlling 

water quality and quantity in river systems is an essential task. According to the United 

Nations International Strategy for Disaster Reduction and data from insurance companies, 

the socioeconomic effect of floods is growing. Floods affect more people worldwide than 

any other natural hazard. Flood risk results from the interplay of a range of processes. For 

river floods, these are the flood-triggering processes in the atmosphere, runoff generation 

in the catchment, flood waves traveling through the river network, possibly flood defense 

failure, and finally, inundation and damage processes in the flooded areas. In addition, 

ripple effects, such as regional or even global supply chain disruptions, may occur. 



2 
 

 
 

Therefore, Floods are not considered as secluded events, as they are profoundly 

accompanied by other issues such as food supply reduction, disease epidemics and 

environmental deprivation. With variations in intensity and frequency of future climate, 

prediction of severe climatic events is becoming a key element to shield the social order 

and commence timely reaction, hence efficiently dropping socioeconomic damage 

(Pappenberger et al., 2015). Although flood prediction is critical at the local level, it is 

likewise vital at the global level. Therefore, the management of the immediate response 

and assistance for major upcoming disasters must be reformed through action by 

international organizations at different levels. The earlier the planning phase starts, the 

more improved preliminary actions, organization and data collection are  possible, and as 

a result limitation of the consequences of social and economic losses. While some countries 

,e.g.,  European countries, have apparatuses in place to mitigate the effects of natural 

disasters, developing countries often struggle through a much longer recovery process. In 

this context, flood hazard maps which would be accessible on the national, regional and 

global level, could be attained to intensify preparedness, (Alfieri, Thielen, & Pappenberger, 

2012). However, this set of maps is useful to define flood hazard zones, they do not 

integrate daily changes, which require a real-time system observation(Bui et al., 2019). 

A basic flood map can be quickly developed using available datasets, including: 

• Flood surfaces (generally from flood model outputs) for a range of flood 

magnitudes 

• Digital Elevation Models (DEM) often from LiDAR 

• Forecast floods in the catchment (at storm surge levels) 
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Additional datasets can be incorporated to improve the complexity and skill of the system 

to provide perception into the behavior of a flood, such as: 

• Actual and forecast streamflow, along with catchment conditions 

• A complete GIS dataset of assets, building and roads, infrastructure etc. 

• Real-time hydrologic modelling 

The best information provided by a flood map is restricted to classifying the flooded area 

and the potential of flooding for infrastructure and buildings. Taking this a step further, a 

map of a flood depth surface can be formed by integrating the water surface forecasts and 

streamflow level onto a Digital Elevation Model (DEM). The depth of the surface not only 

provides information on the depth of flood and likely flood extent, but also on the strictness 

of flooding (Bui et al., 2019) 

However, for a better result a flood mapping tools can be created by integrating the forecast 

flood surface and streamflow level with GIS datasets. For instance, a GIS dataset might 

comprise the low points on evacuation routes to determine what roads are passable, or what 

facilities require managed evacuation, for example a nursing home. Moreover, it can 

provide the base levels on all transformers for electricity sub-stations in a given region then 

by incorporating the flood surface into the GIS, a signal of power availability to the region 

can be fast determined during flood events. In addition to peak forecast information, time-

based flood forecasts complement additional detail to a flood map, and afford information 

on at risk areas along with time of happening (Bui et al., 2019). 

The remote sensing data, such as satellite imagery, can produce summaries of affected 

areas and improve the management plan(Proud, Fensholt, Rasmussen, & Sandholt, 2011). 
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Although, various research institutes and national hydrometeorological services use 

operational flood forecasting tools to surge the attentiveness for floods and any water-

related challenges, they often focused on specific river basins or climatic region, which is 

restricted to national boundaries(Alfieri, Salamon, Pappenberger, Wetterhall, & Thielen, 

2012)  

Recently various machine learning and data mining algorithms for the flood forecasting 

have been studied. These approaches include: logistic model tree  (Chapi et al., 2017), Nave 

bayes tree (NBT)  (Khosravi et al., 2018b), support vector machine (SVM) (Khosravi et 

al., 2018b) and hybrid of adaptive neuro-fuzzy inference system (ANFIS) with cultural 

algorithm (Tien Bui et al., 2018) and bees algorithm  or with imperialistic competitive 

algorithm (ICA) and firefly algorithm (FA) (Bui et al., 2018). 

Although these algorithms showed a reasonable ability in the prediction of flood 

susceptibility mapping, Khosravi et al. (2018c) ) (Khosravi et al., 2018a) stated that there 

isn’t a universal guideline to evaluate a model performance under different condition. 

While every model has advantages and disadvantages, in under different condition, 

diversemodels must be applied and eventually the best performance has to be selected for 

the future analysis (Bui et al., 2019).  

However, some research shows that bivariate statistical models demonstrate better 

predictive power than both machine learning and data mining algorithms (Rahmati and 

Pourghasemi 2017) this is due to the fact that machine learning and data mining algorithms 

are more complex and require an expert to perform accurate simulations, thus, bivariate 
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models, which are very simple to run with similar or sometimes better predictive power, 

can be used as adequate substitutes.  

Furthermore, numerous flood forecasting modeling approaches are based on the observed 

river stage, while future values are deduced through river routing models or by coupling 

observed rainfall data into hydrological models.  Nevertheless, only few attempts have 

been made so far to move towards operational systems with coupled hydro-meteorological 

models producing streamflow predictions at the global scale (Sperna Weiland, Van Beek, 

Kwadijk, & Bierkens, 2010); To the best authors’ knowledge, none of these runs 

operationally with ensemble predictions. Indeed, real-time hydrological modeling requires 

a large amount of information, including not only static maps describing the surface and 

sub-surface basin features, but also data assimilation techniques or a long-term balance of 

streamflow forecasts to give an estimate of the initial conditions, from which the forecast 

is run (Bui et al., 2019).  

With the occurrence of heavy precipitation across most of the U.S., it can be found that 

streamflow levels are increasing as well. A Climate Central analysis of streamflow data 

performed at more than 2,100 active gauges across US demonstrated that the number of 

days with high stream flow (the top 25 percent of readings) has risen over the past 30 years 

in the largest rivers of the U.S., including the Ohio, Missouri, and Mississippi. ((2017, May 

10). High Streamflow is Increasing, Raising Flood Risks. Retrieved from 

https://www.climatecentral.org/gallery/maps/high-streamflow-is-increasing-raising-

flood-risk) 
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This streamflow analysis agreed with the National Climate Assessment and 

previous Climate Central analyses findings about rise in  heavy precipitation in the 

Northeast and Midwest, as a result of global warming. Heavy precipitation is the key 

element driving streamflow and flooding, accompanied with urbanization, the expansion 

of impermeable surfaces and failure in engineering of dams and levees. The increasing 

number of days with high streamflow indicates that the risk for stream and river flooding 

is also on the rise. Additional data from the National Climate Assessment shows this is 

already happening, as the magnitude of flooding is increasing in the Mississippi and Ohio 

Valleys, and the Northeast.  In addition to heavy rain, spring snow melt can also play a role 

in streamflow. During spring, the largest increases in high streamflow days occur in the 

Upper Mississippi River Valley and the Northwest as a result of snowmelt. Therefore, with 

the knowledge of streamflow contribution in flooding, we have to improve the streamflow 

prediction accuracy (Bahrami, 2018a) 

However, a variety of hydrological models has been recently implemented for forecasting 

streamflow, in the last decades data-driven models have gained significant interest among 

researchers. Because, data-driven models are capable of handling highly non-linear, non- 

additive hydrological processes numerically with no need of understanding underlying 

physical processes involved. These models include artificial neural network (ANN) 

(Prakash, Sudheer, & Srinivasan, 2014), recurrent neural networks (Chen, Chang, & 

Chang, 2013)support vector machines, genetic programming approach(Nayak, Sudheer, 

Rangan, & Ramasastri, 2005), and neuro-fuzzy (Nayak et al., 2005). Among the mentioned 

data driven modeling approaches, no single modeling approach consistantly beats the 

https://www.climatecentral.org/gallery/maps/heres-where-heavy-rain-is-increasing-the-most-in-us
http://nca2014.globalchange.gov/highlights/report-findings/extreme-weather/graphics/trends-flood-magnitude
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others. Unlike physic-based models, data-driven models principally depend upon historical 

observational data, which takes into account watershed characteristics and the physical 

processes involved. However, the operation of physically based models often necessitates 

severe computation, user expertise, and parameter identification through field 

measurement, which can be very challenging. In addition, physic-based models sometimes 

cannot be adjusted to a minor change in watershed response where the boundary condition 

changes (Alvisi & Franchini, 2011). All these physic-based models factors inspire the 

application of data-driven models instead, which mainly aim to yield accurate predictions 

while disregarding the complicated underlying physical processes. 

Most recently, the wavelet-based data-driven modeling approach has grown significantly 

due to its power in capturing both the periodic and chaotic behavioral trend of time series 

data(Adamowski & Sun, 2010). The wavelet decays the original signal into several 

different resolutional levels to extract the useful information and hence raises the model 

performance (Nourani  Vahid A4  - Komasi, Mehdi A4  - Mano, Akira, 2009). The 

application of wavelet based neural network (WNN) for hydrologic modeling was initially 

introduced by (Wang et al., 2011), who indicated that the combination of wavelet 

techniques and ANN could enhance the model accuracy, especially in the long lead-time 

prediction. Since then, many studies have performed WNN for both the long and short 

lead-time stream flow forecasting. They have verified that WNNs frequently yield more 

consistent and accurate results when compared to the traditional ANNs (Adamowski & 

Sun, 2010) Moreover, several studies have counted uncertainty in wavelet-based flood 

forecasting to improve the model reliability . In streamflow forecasting, the model 
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accuracy, in general, deteriorates with the increase in the lead-time, which can be attributed 

to the weak dependence between the modeled variable and input(s). The prediction error is 

generally classified into three main categories including phase/temporal error, amplitude 

error, and shape error (Prakash et al., 2014). The phase error is related to lag in timing of 

the simulated hydrograph, which is perilous in flow forecasting(Prakash et al., 2014).The 

amplitude error is mainly caused by the noisy input data or due to the uncalibrated model 

structure. This would lead to either overfitting or underfitting (Shamseldin & O’Connor, 

2010). The shape error is evaluated by the rate of flow change in the rising and falling 

limbs of a hydrograph. Moreover, the evaluation of the model performance has been shown 

by the instinctive graphical representation as well as statistical measures such as root mean 

square error (RMSE), Nash–Sutcliffe coefficient (ESN) and WI, which are objective and 

quantitative in nature but without considering the temporal dimension of time series (i.e., 

hydrograph). In a few studies, the temporal error, but only restricted to the peak flow rather 

the entire hydrograph, has been engrossed to improve the prediction accuracy of peak flow 

in terms of both magnitude and/or timing(Liu, Brown, Demargne, & Seo, 2011). In such a 

situation, the model may not warrant the best possible solution when there are multiple 

peaks as the model performance often biases toward a particular peak flow. Furthermore, 

several researchers have made effort to reduce the phase error by modifying the modeling 

approaches. For instance, to diminish the phase error, Abrahart et.al. (Abrahart, 

Heppenstall, & See, 2007) used correction factor for calibrating ANN models; however, 

they concluded that this method is only applicable for a short lead-time forecasting. 

Besides, the model accuracy degrades as the lead-time of forecasting 

increases(Kasiviswanathan, Cibin, Sudheer, & Chaubey, 2013). In the long lead-time 
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forecasting, several possible reasons such as the decrease of the interconnection between 

input(s) and output, over parameterization, and uncalibrated model structure could lead to 

the increase of prediction uncertainty. However, most studies have focused on conferring 

the model accuracy, but not the model precision except few (Alvisi & Franchini, 

2011)(Kasiviswanathan, He, Sudheer, & Tay, 2016) Additionally, Kasiviswanathan et.al, 

conducted a research to evaluate the performance of WNN data driven models in 

forecasting high flow event. Their result indicated that the model they used is not capable 

of capturing high flow event while pretty accurate forecasting of low flow event. 

In view of the above, the primary objective of this research is to identify the robust 

modeling approach from coupling data analytics with data-driven methods, namely data 

mining and deep learning algorithm, for the long lead-time streamflow and flood 

forecasting, through assessing both modeling accuracy and precision using large scale 

climate variability indices. One of the significant desires in daily streamflow prediction in 

today’s world is: recognizing possible indicators and improving their applicability for 

effective water management strategies. In the context, the aim of this study is to assess the 

feasibility of an ensemble streamflow and flood forecasting and early warning system at 

the global scale, built up with a data mining algorithm to investigate the most important 

factors in governing streamflow and decrease the amount of input variables. Therefore, the 

model can evaluate the system performance in its initial stage, where no model parameter 

has been specifically calibrated. 

 

1.1.2 Objectives 

The principal objectives of the current study are as follow: 



10 
 

 
 

a) In the current study application of large data analytics has been evaluated. The daily 

data has been acquired from 1980 to 2018 for 18 parameters in 5 different case study 

across the United State. 

b) Proposing a new ensemble method of data mining using three different data cleaning 

and dimensionality reduction approaches including: Principle Component Analysis 

(PCA) Tensor Flow (TF) and Tensor Flow coupled with k means clustering (TF-K- 

means clustering) for data cleaning. The proposed data preprocessing method is then 

capable of handling the impact of bad data and reducing uncertainty on streamflow 

forecasting. Data are firstly screened through data mining algorithm then fed into a high 

nonlinear deep learning approach, which yields more reliable and accurate forecasting 

results in the presence of missing or corrupted data. Our goal is to confirm the 

consistency of the proposed method in ungauged basins with limited observed data and 

to verify the robustness of the simulation results in different climatic regions. 

c) The produced cleaned subset then will be evaluated through four different feature 

importance algorithms including: K Nearest Neighbor (KNN), Support Vector 

Machine (SVM), Bootstrap aggregating and Random Forest (RandF) for the following 

four-fold: 

1. Presenting a better understanding of the underlying processes that affect the 

streamflow 

2. Reduces Overfitting: Less redundant data means less opportunity to make 

decisions based on noise. 

3. Increasing the prediction performance  

4. Introducing faster and more cost-effective input variables. 
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5. In many cases, in application contexts where the search for the best feature set is 

still an active research topic, the classification accuracy achieved with cleaned 

data sets is often significantly better than with the full data set. 

Data cleaning often leads to insight into the nature and severity of error-generating 

processes. The result can then give methodological feedback to the modeler to improve 

study validity and precision of outcomes. It may be necessary to amend the study 

protocol, regarding design, timing, observer training, data collection, and quality 

control procedures. In extreme cases, it may be necessary to restart the study. 

Programming of data capture, data transformations, and data extractions may need 

revision, and the analysis strategy should be adapted to include robust estimation or to 

do separate analyses with and without remaining outliers and/or with and without 

imputation (Van den Broeck et.al 2005).  

Using large data entry for the modeling approach including the local observed 

information, interannual and seasonal climate variability to see the large-scale climatic 

indices impact on governing streamflow. As this modeling approach is not limited by 

the amount of data entry, it can combine various parameter sets with different 

resolutions. This behavior results in: 

1. Capturing all possible inducing parameters in streamflow generation  

2. It is a promising tool in predicting high flow event (up to 1800 m3/s ). 

3. It is not highly parametrized which in turn reduces the uncertainty in the model 

structure.  
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4. Daily streamflow forecasting is conducted, which is essential for effective 

operations of inflow to a given reservoir requiring active regulation of water 

storage for optimum use of available resources. 

d) Introducing a robust modeling approach for streamflow forecasting called Robust 

Nonlinear Echo State Network (RNESN). RNESN is a modified nonlinear echo state 

network with more accurate forecasting results and less computational time compared 

to Nonlinear Echo State Networks Multivariate Polynomial (NESN-MP) which was 

developed by Bahrami et al. (Bahrami et.al 2018). In RNESN, the reservoir size (hidden 

layer which performs random weigh initialization) is considerably decreased compared 

with NESN-MP to diminish the computation load. The efficiency of the proposed 

method lies on long lead-time daily streamflow forecast up to 50 days which is helpful 

for an early flood warning system.  

e) To perform spatial prediction of flood, we also aim to use a novel ensemble models of 

Bootstrap aggregating as a Meta classifier based on the K-Nearest Neighbor (KNN) 

functions including coarse, cosine, cubic and weighted as base classifiers at Haraz 

watershed in the northern Iranian province of Mazandaran. Ten conditioning flood 

factors and their prediction capability using relief-F attribute evaluation (RFAE) 

method has been established. Models validation will be performed using two statistical 

error-indexes and the area under the curve (AUC). 

f) Another contribution of the present study is evaluating the performance of evidential 

belief functions (EBF) method which is rarely applied for flood analysis, but it has been 

used for other categories of natural disaster such as landslide susceptibility assessment, 

Land subsidence, and to predict groundwater potential zones. The main purpose of this 
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research is to generate a flood susceptibility map using the EBF method, as EBF has 

rarely been used for floods and has shown high accuracy in previous studies involving 

another natural hazard mapping. The results of this method are compared to EBF-LR 

(enter method), EBF-LR (stepwise method), and EBF from LR methods. The results of 

the current study will be useful for land-use planning and management for future flood 

mitigation studies. 

  All the contributions are elaborated in detail and evaluated in different case studies. The 

process is repeated by considering representative basins from different climatic and land 

use scenarios from different regions in the United States and Iran.  
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Organization of the Reaserach: 

❖ In the First chapter a comprehensive introduction focused upon the importance of 

flood and streamflow forecasting has been presented.  

❖ In the second chapter the methods of data mining, machine learning and deep 

learning in daily streamflow forecasting has been investigated.  

❖ In the third chapter the ensemble method of data mining and machine learning in 

flood susceptiblity mapping has been proposed 

❖ In the forth chapter Spatial Flood modeling using remote sensing and GIS with the 

application of evidential belief functions for feature selection has been evaluated.  

❖ In the fifth chapter the comprehensive conclusion regarding daily streamflow 

forecasting and flood spatial mapping has been presented.  

 

 

 

 

 

 

 

 



16 
 

 
 

 

2 Data analytics Integration into Daily Streamflow forecasting  

2.1 Global Ensemble Streamflow Forecasting for Flood Early Warning with 

Application of Large data Analytics and Deep Learning Using Large-Scale 

Climate Variability Indices  

Abstract— Streamflow and flood forecasting can provide important information for 

various applications including optimization of water resource allocations, water quality 

assessment, cost analysis, sustainable design of hydrological infrastructures, improvement 

in agriculture and irrigation practices. Compared to conventional or physically based 

hydrological modelling, which need a large amount of historical data and parameters, the 

recent data-driven statistic hydrological models, require only a limited amount of data, and 

as a result, have received growing attention among researchers due to their high predictive 

performance. This makes them more appropriate for hydrological forecasting in basin-scale 

and data-scarce regions. The generated cleaned data subset will then be evaluated using 

four different feature importance algorithms including: K Nearest Neighbor (KNN), 

Support Vector Machine (SVM), Bootstrap aggregating and Random Forest (R and F). 

Therefore, in this paper the authors propose a data mining approach for feature selection 

and data cleaning followed by a novel data driven method for daily streamflow forecasting. 

In this context, in order to decrease the number of input variables in the modeling process, 

a feature selection approach using ensemble Random Forest and Tensor Flow k means 

clustering has been proposed for the preprocessing phase. Thereafter, a modified Nonlinear 

Echo State Networks Multivariate Polynomial (NESN-MP) named in the current study as 

Robust Nonlinear Echo State Network (RNESN) has been utilized for the forecasting 

phase. The RNESN decreases the size of the reservoir (hidden layer which performs 

random weigh initialization), reduces the computational burden compared with NESN-MP, 

and increases the interactions between the internal states. The model is thus simple and 

user-friendly with better learning ability and more accurate forecasting performance. The 

proposed method does not need complex optimization, parameter tuning, or extensive 
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training process. Furthermore, the model can cope with corrupt and missing data better 

compared to NESN-MP. The method is tested with data provided by the United States 

Geological Survey (USGS), Natural Resource Conservation Service (NRCS), National 

Weather Service Climate Prediction Center (NOAA) and Daymet Data Set from NASA 

through the Earth Science Data and Information System (ESDIS). Each data set includes 

the daily records of the local observed hydrological and large-scale weather/climate 

variability parameters. The efficiency of the proposed method has been evaluated in three 

regions namely Berkshire County (MA), Tuolumne County (CA), and Wasco County 

(OR). These basins were designated based on the wide range of climatic conditions across 

the US that they represent. The simulation results are compared with NESN-MP and 

Adaptive Neuro-Fuzzy Inference System (ANFIS). The results validate the superiority of 

the proposed modeling approach compared to NESN-MP and ANFIS. 
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2.1.1 Introduction 

The number and diversity of water-related challenges such as floods, prolonged 

droughts, glacier dynamics, and economic to population growth are steadily increasing 

(Dehghani et al., 2014). To tackle these challenges, new hydrologic measurements, new 

approaches for modeling hydrological process, and new methods for analyzing 

hydrological data are required (Kirchner, 2006). In the last decades, hydrological models, 

particularly seasonal hydrological forecasting models, have been successively developed p 

to explore solutions for sustainable water management (Song et al., 2015). The models are 

developed to forecast hydrological processes like streamflow up to a few months ahead 

(Sene et al., 2018). Streamflow forecasting is essential in terms of hydroelectric power 

programming, flood mitigation, agricultural and domestic water supplies, and irrigation 

management, which involves dynamic regulation of reservoir storage for optimal use of 

available water resources (Viel et al., 2016). Therefore, developing an optimal streamflow 

forecasting model as a stochastic property of environmental modeling is crucial (Tree-Ring 

Society. et al., 2001). The existing dynamicity, intrinsic complexities, and disordered 

geographies in the spatial and temporal expansion of the streamflow prediction models 

may obstruct the accurate prediction process (Bayazit, 2015). Note that the performance of 

any hydrological model is highly correlated to the set of model parameters. To decrease 

the large uncertainty in the application of hydrological models, all feasible parameter sets 

in the generation of the hydrological process must be considered. There are various 

parameter sets that affect streamflow generation, such as, local micrometeorological 

conditions, soil standard (e.g. soil temperature and soil moisture at different zone), 

SNOTEL (e.g. snow water equivalent, high and low temperature, precipitation increment, 
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and precipitation accumulation), zonal and meridional winds, relative humidity (vapor 

pressure), and atmospheric circulation on snow budget (solar radiation) (Brown et al., 

1996). Note that large-scale climate variability patterns are imperative factors in 

streamflow forecasting that have been usually neglected. The Pacific North American 

pattern (PNA) serves as the main contributor on snow cover variability over North America 

(at higher PNA index there is a lower snow cover). Similarly, the El Niño-Southern 

Oscillation (ENSO) has a significant impact on accumulated snow cover in the Western 

US that changes streamflow level considerably (Rasouli et al., 2011). The impact of ENSO 

on streamflow timing has been widely reported (Kennedy et al., 2009). It results in lower 

winter precipitation for El Niño and higher winter precipitation for La Niña episodes in the 

Pacific Northwest and has the opposite effects in the desert Southwest USA. Consequently, 

in US coastal regions, most of the streamflow comes from early spring snowmelt and 

seasonal high flow events. Furthermore, due to change in atmospheric pressure, the North 

Atlantic Oscillation (NAO) has considerable influence on Arctic Oscillation (AO), 

accumulated snow, and wind patterns across the eastern US that affects streamflow levels 

(Coulibaly et al., 2005). Therefore, streamflow generation patterns have deteriorated due 

to global climate change pattern over the globe.  

Furthermore, uncertainty analysis prior to the model calibration is key to the effective 

implementation of the hydrologic model. The major application of sensitivity analysis is to 

indicate the uncertainties in the input parameters of the model, which could affect model 

performance. There are different optimization algorithms that have been developed and 

can be applied in the hydrologic model. They can be performed with different objective 

functions to calibrate and quantify the uncertainties in the system. The first purpose of this 
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study was to evaluate the model calibration performance and sensitivity of parameters 

using TensorFlow k means clustering and Random Forest algorithm for predicting daily 

streamflow. Thereafter, we proposed a powerful streamflow forecasting engine with 

unique features, while incorporating the interannual and seasonal climate variability 

impacts into streamflow forecasting. 

2.1.1.1 Forecasting Models 

The daily development of hydrology has mainly been formed by the need for solving 

practical problems, such as managing water resources, accurate forecast of flood or drought 

events, and manipulating water supply infrastructure. Hence, many hydrologists are 

developing practical predictive models for operational purposes that are of paramount 

importance for flood risk reduction.  

Although physically-based models have been used widely in the past, their application 

is limited because they suffer from an implicit upscaling principle. Thus, they do not 

extrapolate properly because their underlying premises restrict their applicability to a 

limited range of parameter values. For example, physically based models calibrated on a 

one-time interval often perform poorly on another time interval with different patterns of 

rainfall and runoff. Furthermore, they suffer from some oversimplifying assumptions that 

do not yield accurate forecasting results. In general, physically-based models are highly 

repetitive and preserve repeating themselves throughout their boundary condition (Beven 

and Binley, 1992). Physical models utilize the average of the state variables like water flux, 

volumetric water content, and hydraulic potential over the whole study area, which result 

in obscuring the heterogeneity of the subsurface.  
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Seasonal streamflow forecast models rely on various parameter sets including land 

surface attributes, initial hydrological conditions, soil properties, groundwater, snowpack, 

and the current streamflow. Initial hydrological conditions (IHCs) was the preliminary step 

for the development of the ensemble streamflow prediction approach in the 1970s (Arnal 

et al., 2017). This approach suffers from several issues such as uncertainties associated 

with the process of calibration, complicated model operation, and physical limitations 

(Dettinger et al., 2004). Various statistical, physical, and conceptual models have been 

proposed for streamflow forecasting (Partington et al., 2012). Statistical models such as 

regression-based models do not appropriately indicate the relationship between variables 

(Chua and Wong, 2011). However, conceptual hydrological models (e.g., soil and water 

assessment tool (SWAT)) (Arnold et al., 1998) incorporates mathematical formulations 

with various hydrological processes to enhance the forecasting accuracy (Peng et al., 

2017). Slater et al., (2015) conducted research to forecast streamflow in deterministic and 

probabilistic terms for all initialization months, flow quintiles, and seasons. Their results 

showed relatively accurate streamflow forecasts from low to high flows. However, the 

accuracy of their models is not reliable due to the heterogeneous hydrogeological 

characteristics of the watershed system. Note that large data input, overparameterization, 

high dependency on some necessary values may limit the application of comprehensive 

simulation models (Carquex et al., 2018). Besides, streamflow is influenced by many 

factors such as evapotranspiration, rainfall, atmospheric circulation, and temperature which 

cause nonlinear and time-variable process. Because all the mentioned models assume a 

linear or near linear relationship between the input and output series, in the last two decades 

researchers have focused on alternative data-base predictive methods (Pagano et al., 2009). 
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Artificial intelligence (AI) models have been presented as a soft computing tool 

and data-driven based engine for streamflow forecasting and corresponding floods. These 

models are based on artificial neural networks (ANN) (Asadi et al., 2019), fuzzy network 

sets (Ahmed and Sarma, 2007), genetic programming (Barge et al., 2016), generalized 

regression neural network (GRNN) (Yaseen et al., 2018), support vector machine (SVM) 

(Kisi, 2015), relevance vector machine (RVM) (Xu et al., 2016), and nonparametric 

methods (Bhuiyan et al., 2017). Among these methods, fuzzy network models depend on 

user expertise, while the efficiency of the others depend upon the model structure to infer 

the relationship between the input and output variables. Asadi et al., (2019) demonstrated 

that SVM or empirical mode decomposition support vector machine (EMD-SVM) yields 

the most accurate results compared to autoregressive moving average (ARMA), ANN, and 

multiple linear regression (MLR) (Kalra et al., 2013). However, Lutz et al., (2014) 

indicated that the forecasting accuracy of the annual streamflow throughout the state of 

Utah using ANN and SVM are the same.  

Because ANN models have some drawbacks including over-fitting and under-fitting, 

slow learning speed, the curse of dimensionality, and slow convergence to a local optimum, 

they perform poorly in the processing of complex hydrological phenomena (Duan et al., 

1992). Typically, their disadvantages also : (1) They suffer from increasing complexity 

along with processing time; (2) They need elaborate parameter tuning and optimization 

task; (3) They call for nonconvex optimization to trap in local optima; (4) As complex 

structures of hydrological models with many parameters, the optimization choice of 

parameters is a difficult and time-consuming task; (5) The results obtained from previous 

studies are inconsistent due to the differences in the study areas (by considering small 
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catchment), input datasets, and the selected structures for the models; (6) In the context of 

hydrological modeling, in a larger catchment, there is more heterogeneity, which needs a 

more spatially distributed representation of the area.  

Furthermore, many studies have applied the original streamflow time series as the input 

variables in their forecasting model, which results in missing some features of different 

resolution (Guo et al., 2013). A few studies incorporate the exogenous effects of all other 

hydrological variables such as climate variability or ocean-atmosphere circulation impacts 

on the streamflow fluctuations (Makkeasorn et al., 2009). During the last decade, there is 

growing interest in incorporating atmospheric circulation variability and outputs of 

numerical weather prediction models in streamflow forecasting (Rasouli et al., 2011). Due 

to existing complex weather conditions all over the globe, climate variability has a large 

influence on hydrological processes. In this context, large-scale climate indices should be 

considered in streamflow forecasting for an effective operational strategy [Kashid, 2010]. 

Li et al. [35] investigated the relationship between large-scale ocean-atmosphere patterns, 

which effect the annual maximum flood in the Wangkuai Reservoir watershed in China. 

Based on their results, three main climate variability indices including: North Pacific 

Oscillation (NPO), North Atlantic Oscillation (NAO), and Atlantic Oscillation (AO) are 

major contributors in flood peak generation. Furthermore, Marohasy [34] applied ANN to 

estimate the impact of climate indices in the prediction of rainfall in Australia. They also 

performed an optimization analysis to indicate the best optimal choice of inputs including 

climate indices to deliver improved performance in monthly rainfall forecasting. Kashid et 

al. [31] examined the impact of lagged rainfall, Equatorial Indian Ocean Oscillation 

indices, El Niño Southern Oscillation (ENSO) indices, and longwave radiation on weekly 
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rainfall using genetic programming. They suggested that information about large-scale 

atmospheric circulation patterns can be successfully used for prediction of weekly rainfall. 

Additionally, Mekanik et al. [33] conducted an investigation to predict long-term spring 

rainfall. They used an ANN model integrated with multiple linear regression analysis to 

the inputs of Indian Ocean Dipole (IOD) indices and lagged ENSO. They found that a 

combination of lagged ENSO-IOD indices can improve forecasting accuracy. 

All previous studies offer extrapolative information on large-scale climate conditions under 

complex weather modes. However, the validated climate indices are such an important 

input variable for long-term prediction, they primarily have an inadequate emphasis on 

exploring the relationship between large scale climate indices and streamflow mechanisms. 

As their models cannot incorporate these input variables in combination. In the respect, 

this study aims to recognize highly-influenced climate variability indices along with local 

observed information, and yield a suitable and reliable model which delivers the best 

predictive performance through application of all contributing indices.  

One of the significant goals in Daily streamflow prediction in today’s world is: recognizing 

possible indicators and improving their applicability for effective water management 

strategies [36]  

In this paper, a powerful streamflow forecasting engine with unique features is proposed. 

The forecasting engine is reliable, accurate, and user-friendly. Furthermore, we aim to 

incorporate the interannual, seasonal, and climate variability impacts in different regions 

in the US into streamflow forecasting. 

However , recently, Echo State Networks (ESN) has been presented by Jaeger. The ESN’s 

architecture is divided into two parts: a dynamical reservoir consisting of recurrent 
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topology of nonlinear processing elements (PEs), Otherwise stated "echo states", and a 

readout which is a memoryless linear network. The outputs of internal PEs are imported 

into the readout which reads the reservoir’s output and then will create the network result. 

The most stimulating assets of ESNs is that the training process is only happening in the 

readout while the recurrent topology of the PEs weight is fixed. 

Sacchi et.al 2007, conducted a research to evaluate the ESN performance in the monthly 

water inflow forecasting. In this study the performance of the ESN is compared with 

ANFIS, Self-Organizing Nonlinear Auto- Regressive model with exogenous input 

(SONARx), and the Radial Basis Function (SONARX-RBF) network. The results 

demonstrated that the ESN affords more accurate results for one-step ahead water inflow. 

N. J. de Vos 2012 applied ESN in rainfall-runoff forecasting. The results display that the 

ESN yield better results compared to feedforward networks and old traditional recurrent 

networks. However, the recent studies prized a valuable finding for the application of ESN 

in water flow forecasting, but they all suffer from three important shortcoming: First they 

used just one input variable to predict the output and they thus are highly dependent on the 

water flow accuracy. Second their model also will create outputs from a memoryless linear 

network (readout) which can not capture the high nonlinear behavior in the water flow, and 

third to update the errors they are performing gradient decent algorithm  

In the current study we aim to propose a new architecture of ESN which does not have the 

problem with adapting the system inputs as we consider various input variables. Moreover, 

to count for nonlinearity, the recommended training algorithms in the readout, uses various 

multivariate polynomial state of internal weights. This will also decrease the computational 

complexity and instability in the internal state through fastening the process of training.  

Besides, to eliminate the gradient decent over the time and topology, the new structure of 

ESN applies Recursive Least Square (RLS) approach to update the errors. 

 

2.1.1.2 Uncertainty Analysis  

As an inherent symptom of any modeling task, all hydrologic models suffer from some 

degree of uncertainty with regards to input data, initial or boundary conditions, forcing 
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data, and model structure along with poor knowledge of hydrological process mechanism 

(Doherty and Johnston, 2003). Therefore, model uncertainty is an important issue when 

developing a modeling system (Farmer and Levin, 2018). Many streams in the world do 

not have accurate observed streamflow data or their data are hard to access or even 

corrupted. The National Research Council paying increased attention to minimizing the 

impacts of bad data among investors for uncertainty assessments of hydrologic prediction 

(Saltelli, 2008). Bad data can be produced because of ungauged basins, potentially 

inaccurate measurement, incomplete data collection, uncertain estimates, “fat-fingered” 

data entry, policy concerns, mis-categorization, etc. (Doherty and Johnston, 2003). Given 

the hydrological process complexity, using an adaptation of globalized or regionalized 

uncertainty is optimal. Furthermore, regarding bad data analysis, there are several 

methodological studies for predicting streamflow response in ungauged basins with bad 

data, which utilize deterministic physically based models to calculate streamflow. They are 

based on distributed hydrologic parameters and statistical regionalization using regression 

models to transfer hydrologic information from gauged to ungauged basins. Moreover, the 

distributed hydrologic parameters approach focuses on dispersing errors into measurement, 

parameter and structural uncertainty. The uncertainties are then disseminated toward the 

model output.  

Statistical regionalization is a challenging task in hydrological science (Cybenko, 

1989) due to poor streamflow data, which is normally calibrated. Moreover, the results 

have been usually examined on different basins, while every catchment characteristic 

varies from one case to another. Consequently, there is no universal method for 

regionalization, and the uniqueness of the watersheds and the obscurity of parameters 
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brings major uncertainty in the ungauged basins’ simulations (Samuel et al., 2011). 

International organizations, such as the United Nations Development Program (UNDP) 

and the World Bank, are seeking a precise approach to the development and management 

of freshwater resources.  

Artificial intelligence (AI) methods are popular developments in several hydrological 

areas due to their ability to incorporate a tried-and-true model with no need for prior 

knowledge of the existing functional or nonlinear input-output relationship (Valizadeh et 

al., 2017). Shu and Ouarda, (2008) considered the homogeneous region characteristics to 

find similar hydrological sites for predicting flood quantile in ungauged basins. Chen et al., 

(2010) applied hydrological records of nearby catchments with similar homogenous 

characteristics to predict streamflow of ungauged catchments. They concluded that the 

spatial characteristics and temporal distribution considered in the applied model reflect 

most of the rainfall-runoff behavior in nature. Some researchers also used regression trees 

and model tree ensembles to predict a complete flow-duration curve (FDC) for streams 

(Schnier and Cai, 2014). Senent-Aparicio et al., (2019) combined machine learning with 

the soil and water assessment tool (SWAT) to estimate instantaneous peak flow (IPF) in 

areas where sub-daily observational data are scarce. The results of their study can 

contribute to the superior ability of extreme learning machine (ELM) to estimate IPF, 

thereby reducing uncertainties associated with IPF estimations. 

All previous studies for ungauged estimation have applied the homogeneous nearby 

basin parameters, which give inaccurate results because every catchment is unique in its 

characteristics. Hence, a direct transfer of model parameter values from gauged to 
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ungauged basins may not be appropriate. Thus, there is a need to produce a more accurate 

estimation of daily streamflow for ungauged basins (Buytaert and Beven, 2009). More 

importantly, the limited data accessible for physical parameterization heavily rely on model 

calibration, which sometimes results in parameterization schemes that conflict with the 

physical understanding of the region’s hydrology.  

Several investigations depended on empirical relationships, for example, curve 

numbers and the Hargreaves equation produced for temperate regions (Singh and Goyal, 

2017). These limitations are probably going to bring considerable uncertainty into model 

projections, especially in situations where climatic or environmental conditions vary from 

those experienced in the calibration period. Therefore, most forecasts still reflect 

considerable uncertainty that develops with time and restrains the predictability of 

observed events beyond a lead time of a few weeks. These computationally costly 

developments are not always achievable and modelers have to balance the tradeoff between 

the costs and profits of improving all model aspects (Flato, 2011). The proposed model 

provides a valuable complement to physical models, especially in data-scarce regions with 

little data accessible for model parameterization. It also has powerful performance in 

dealing with bad data due to its high learning capability that yields accurate forecasting. 

2.1.1.3 Feature Selection and Data mining 

Data mining is a ground-breaking technology, developed with database and artificial 

intelligence. It is a processing overture of action of extracting trustworthy, novel, useful 

and understandable patterns from a database. Currently, data mining has been used in 
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business management, production control, electronic commerce, market analysis and 

scientific research and many other fields to explore a wide range of applications.  

Clustering is the process of grouping the data into classes or clusters, so that objects within 

a cluster have high similarity in agreement to one another but are very dissimilar to objects 

in option clusters. A cluster of data objects can be treated collectively at one time as one 

group, and may be considered as a class of data compression. Unlike classification, 

clustering is an effective means for partitioning a set of data into groups based upon data 

similarity and then ascribe labels to the relatively small number of groups. Clustering is an 

unsupervised learning, as it does not rely on predefined classes and class labelled training 

examples. For this reason, clustering is a form of learning by observation, rather than 

learning by examples. As shown in Figure 1, three clusters are formed containing data 

points based upon center position. A cluster having a greater number of points is cluster of 

good quality [2][7]. 

During the current study we perform the feature selection and data mining for classification 

and clustering to aid in solving some issues arising during modeling. The data mining 

algorithm cluster is run and reforms large datasets with little value into a small datasets 

with high value. Smaller input data sets are desirable, because not only do they decrease 

the model complexity, they are also more user friendly. 

With the application of feature selection, we will be able to recognize the most effective 

and meaningful inputs in governing streamflow, because a noisy dataset makes it more 

problematic to realize the patterns. Even if the input data set is not an issue, performing 

feature selection is essential, because unnecessary and redundant inputs can degrade the 
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accuracy of the model. Tolosi et al. (2011) claimed that numerous commonly used 

classification algorithms can produce misleading feature importance rankings if the 

training datasets are comprised of large clusters of correlated features. This can 

misperceive explanation of the model, because large groups of predictive features can be 

pre-screened and even appear unrelated.  

Based upon the distribution of the features in the training dataset, there are many different 

methods, for example, principal component as cluster centroid [as in Huang et al. (2003a)] 

or even several representatives [as in Jäger et al. (2003)] that may produce better results. 

Tolosi et al 2011, indicated that with a high related feature input, classical model selection 

algorithms including Random Forest or Penalized Logistic Regression are unstable.   

 

2.1.1.4 TensorFlow K-means Clustering 

In the context of above study, we proposed Tensor Flow k means clustering algorithm for 

identifying and cleaning interrelated features. In data science, cluster analysis (or 

clustering) is an unsupervised-learning method that can help to understand the nature of 

data by grouping information with similar characteristics. The clusters of data can then be 

used for creating hypotheses on classifying the data set. The k-means algorithm is one of 

the clustering methods that proved to be very effective for the purpose. The k-means 

algorithm starts with the choice of the initial centroids, which are just random guesses of 

the actual centroids in the data. After starting with some guesses for the centroid locations, 

the k-means algorithm then updates those guesses based upon the data. The process is to 

assign each sample a cluster number, representing the centroid it is closest to. After that, 

https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Unsupervised_learning
https://www.altoros.com/blog/evaluating-the-apriori-algorithm-vs-k-means-clustering-for-a-recommendation-engine/
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the centroids are updated to be the means of all samples assigned to that cluster ( Clustering 

and k-means. Retrieved from https://databricks.com/tensorflow/clustering-and-k-means) 

Initially, we performed ensemble Tensor flow k-means clustering to generate a good 

quality dataset (evenly distributed with least amount of missing data) which works as 

follows: 

1. Generate samples from initial centroids 

2. Randomly choose initial centroids 

3. Associate each sample to its nearest centroid 

4. Update each centroid to be the mean of the samples associated to it 

5. Remove outliers which are the values most distant from the range of the values 

allowed for that feature. Their inclusion can lead to a bad fit later while building a 

model.  

 

 Then we applied Random Forest (RF) as a feature importance and classification approach 

to obtain the most effective inputs identified for each region. TF can assign similar weights 

to interrelated features and thus recover model stability and interpretability. Feature 

selection can be reliable when it has been performed on an evenly distributed data, which 

can present the whole data set the best. Because, the data set is high-dimensional with lots 

of missing data, a tensor flow as a data mining algorithm has been conducted to clean the 

missing data and generate an appropriate data set for the task of feature selection.  

 

2.1.1.5 Random Forest 

Random forest is an ensemble learning approach, which uses decision trees as base 

learners. The “ensemble learning” produces various classifiers and combines their results 

by boosting (see, e.g., Shapire et al., 1998) and Bootstrap aggregating Breiman (1996). The 
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base learners in ensemble learning are defined as high variance, low bias models and each 

single base learner acquires a different aspect of data through both row and column 

sampling. For the task of classification, the combination is performed by taking a majority 

vote. Then a specific feature that maximizes information gain (I.G.) or reduction in Gini 

impurity, which is more computationally parsimonious, will split the data. The feature Data 

is then divided amongst its children according to the value of a splitting feature. If the 

feature is categorical, data belonging to each category of splitting feature goes to a separate 

child. In the case of a numerical feature, the best threshold value of the feature (the one 

used to decide in favor of this feature to be used as splitting feature) is used to split data 

into two parts, each going to one child. Scikit-learn’s random forest model has a feature 

importance_ attribute that gives the value of Gini impurity reduction caused by each feature 

across all levels normalized across trees. The only hyperparameter of interest here is the 

number of base learners. A grid search is performed which gives 33 base learners as an 

optimal value. Random forests seldom overfit, usually, they saturate with an increasing 

number of base learners, increasing computational overhead without deteriorating 

performance. 

   The objective of performed feature selection in the current study is three-fold as 

follows: 

1. Increasing the prediction performance  

2. Introducing faster and more cost-effective input variables and reducing overfitting 

as it causes less opportunity to make decisions based upon noisy inputs. 

3. Presenting a better understanding of the underlying process that affect streamflow 
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2.1.2 Contributions 

The principal contributions of the paper are as follow: 

1) A powerful streamflow forecasting engine called robust nonlinear echo state 

network (RNESN) is proposed. RNESN is a modified nonlinear echo state network 

with more accurate forecasting results and less computational time compared to 

NESN-MP. In RNESN, the reservoir size is decreases considerably compared to 

NESN-MP to diminish the computation load. Several nonlinear relations between 

the internal states are added to the read-out in RNESN structure to increase the 

learning capability. Therefore, the interactions of the internal states are increased 

by modifying the readout functions, which results in better learning capability and 

more accurate forecasting. Furthermore, the feedback matrix is removed because it 

has an insignificant impact on forecasting results, which further reduces the 

computational time.  

2) A modified streamflow forecasting engine is developed to minimize the impact of 

bad data on streamflow forecasting. The readout in RNESN is modified to improve 

the performance of the proposed method in dealing with bad data. Multivariable 

polynomial functions of the internal states are added in the readout to increase the 

nonlinear interactions, which yields more reliable and accurate forecasting results 

in the presence of missing or corrupted data. Moreover, the robustness and 

reliability of NRESN are evaluated with limited data. Our goal is to confirm the 

consistency of the proposed method in ungauged basins with limited observed data 

and to verify the robustness of the simulation results in uncertain inputs. 
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3) We aim to incorporate the local observed information, interannual and seasonal 

climate variability impacts into streamflow forecasting in different regions in the 

US. As this modeling approach is not limited to the amount of data entry, it can 

combine various parameter sets with different resolutions. This behavior results in 

capturing all possible inducing parameters on the streamflow generation. This 

model is not limited to a specific region and is applicable to various hydrological 

regions. Furthermore, daily streamflow forecasting is conducted, which is essential 

for effective operations of inflow to a given reservoir that requires active regulation 

of water storage for optimum use of available resources. Unlike similar studies in 

the literature, our forecasting engine presents long-term streamflow forecasting. 

The effectiveness and robustness of the proposed methodology are evaluated. All the 

contributions are elaborated in detail and evaluated in different case studies. The process 

is repeated by considering representative basins from different climatic and land use 

scenarios from different regions in the United States. The simulation results of RNESN are 

compared with those for NESN-MP and ANFIS (Jang, 1993) to validate the proposed 

method. As the ANFIS model reflects inputs with preferences to cope with model 

uncertainties and imprecision, we have been considering this Modeling approach as an 

additional validation approach. 

2.2 Study Area 

Catchment characteristics are descriptors of the landscape, which forms catchment 

behavior by manipulating how catchments store and allocate water among other sources. 

There is a rising recognition that a large sample of catchments can provide intuition that 
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cannot be gained from a small sample (Gupta and Raman, 2014). The large-sample data 

set utilized in this paper provides local observed information and interannual and seasonal 

climate variability (Table 1, Brown et al., 1996; Thornton et al., 2012) . Numerical weather 

forecasts have been provided by the NOAA (National Oceanic and Atmospheric 

Administration) (Hamill et al., 2006). The Niño 3.4 index represents the impact of ENSO 

as it measures the Pacific sea surface temperature (SST) anomalies. Besides the variables 

shown in Table 1, daily index values for PNA, AO, and NAO were also obtained from the 

climate prediction center (CPC) and NOAA. Furthermore, soil standard parameters in 

higher elevations are not usually available. Therefore, to capture all the physiographic and 

local features, streamflow is considered as one of the input data. This in turn indirectly 

incorporates the topographic conditions like slope, steepness, land use practices, plant 

coverage, and snow budget into daily streamflow forecasting. The selected catchments 

have two years of continuous data records from 2016 to 2018 and are also minimally 

impacted by anthropogenic effect  (Newman et al., 2015). Climatic indices were obtained 

from Daymet meteorological forcing data (Addor et al., 2017),  

 which indicate that the annual precipitation cycle is apparently strongest over the Pacific 

coast (high during winter in Cascade area) and California along the Sierra Nevada and is 

also weakest along the Atlantic coast (Addor et al., 2017). The data sets are already 

available to the public to enable users to assess their reliability. To indicate the model 

applicability and ensure its spatial consistency in different climatic regions, three different 

basins distributed across the US are chosen. In Massachusetts basin, Berkshire County as 

the snow-dominant watershed is selected (Case Study 1). In California, we chose 

Tuolumne County as a mixed pluvial-nival (Case Study 2). In Oregon, a basin in Wasco 
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County is chosen as the rain dominate watershed (Case Study 3) shown in Fig. 1. Table 2 

shows a summary of the selected watersheds (USGS.gov). 

 Table 1. The input variables for streamflow prediction modeling 

Variables Description 

Average daily precipitation (mm/day) N15* - Daymet 

Average max daily temperature (C°) Provided by the NOAA 

Average min daily temperature (C°) Provided by the NOAA 

Average daily vapor pressure (Pa) Provided by the NOAA 

Average daily solar radiation (W/m2) Provided by the NOAA 

Average daily streamflow (m3/s) Provided by the USGS 

Average daily precipitable water (m) NRCS-SNOTEL 

Average daily accumulated precipitation (m) NRCS-SNOTEL 

Average daily SWE(m) NRCS-SNOTEL 

Average daily precipitation increment (m) NRCS-SNOTEL 

Average daily soil moisture (%) NRCS-soil standard 

Average daily Soil temperature (%) NRCS-soil standard 

Average daily wind amplitude (m/s) NOAA- GFS 

Average daily relative humidity(%) NOAA- GFS 

NAO NOAA- Clim* 

AO NOAA- Clim* 

PNA NOAA- Clim* 

ENSO-Niño 3.4 index, central equatorial Pacific sea surface 

temperature (SST) anomalies 
NOAA- Clim* 

N15=daily meteorological forcing data from Daymet (Thornton et al., 2012) 

NOAA- GFS =numerical weather forecasts by the NOAA Global Forecasting System (GFS) model (Hamill et al., 2006), NOAA- 

Clim*= NOAA/National Weather Service via ftp://ftp.cpc.ncep.noaa.gov/cwlinks/. (Burn, 2008); NRCS-SNOTEL =Natural Resource 

Conservation Service, Snow Telemetry (SNOTEL e.g. snow water equivalent, high and low temperature, precipitation increment, and 

precipitation accumulation) 
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Table 2. Study area characteristic 

 

Figure 1. Case study regions 

 

Methodology 

 

In the current study we focused upon performing the feature selection and dimensionality 

reduction as it aids to solve some issues arising during modelling. It cleans up the existed 

large amount of dataset with little value to a small amounts of dataset with high value. 

Region 
Berkshire County, 

Massachusetts 

Tuolumne County, 

California 

Wasco County, 

Oregon 

Watershed 

USGS 01333000 Green 

River at Williamstown, 

MA 

USGS 11284400, Big C 

AB Whites Gulch NR 

Groveland CA  

USGS 14096850  

Beaver Creek below Quartz 

Creek, NR Simnasho, OR  
Hydrologic unit code 2020003 18040009 17070306 

Coordinates 

Latitude:  42°42'32", 

Longitude:  73°11'50" 

NAD27 

Latitude: 37°50'31", 

Longitude: 120°11'02" 

NAD27 

Latitude:  44°57'32", 

Longitude: 121°23'35" 

NAD27 

Drainage area (Meter Sq.) 110.34 42.47 375,548,276 

Gage datum (Meter) 
186.85 meter above 

NAVD88 

780.50 meter above 

NGVD29 

688.85 meter above 

NGVD29 

https://waterdata.usgs.gov/ca/nwis/uv/?site_no=11284400&PARAmeter_cd=00065,00060
https://waterdata.usgs.gov/ca/nwis/uv/?site_no=11284400&PARAmeter_cd=00065,00060
https://waterdata.usgs.gov/ca/nwis/uv/?site_no=11284400&PARAmeter_cd=00065,00060
https://waterdata.usgs.gov/ca/nwis/uv/?site_no=11284400&PARAmeter_cd=00065,00060
https://waterdata.usgs.gov/or/nwis/inventory/?site_no=14096850
https://waterdata.usgs.gov/or/nwis/inventory/?site_no=14096850
https://waterdata.usgs.gov/or/nwis/inventory/?site_no=14096850
https://waterdata.usgs.gov/or/nwis/inventory/?site_no=14096850
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Smaller input data set is desirable because not only it decreases the model complexity, it 

is also more user friendly. 

We would be able to recognize the most effective and meaningful inputs in governing 

streamflow because a noisy dataset makes it more problematic to realize the patterns. Even 

if the input data set is not an issue, performing feature selection is essential, because 

unnecessary and redundant inputs can degrade the accuracy of the model. In this study, the 

features were calibrated using the observed daily streamflow data. Initially, we performed 

RF without data cleaning to obtain the most sensitive inputs identified for each region. 

Afterwards, we readjusted the parameters from the first run results then coupled the RF 

with tensor flow to clean up for the missing data. Feature selection can be reliable when it 

has been performed on evenly distributed data, which can present the whole data set the 

best. Because, the data set is high-dimensional with lots of missing data, a tensor flow as a 

data mining algorithm has been conducted to clean the missing data and generate an 

appropriate data set for the task of feature selection.  

2.2.1 Data Cleaning and Dimensionality Reduction 

It has been shown that numerous commonly used classification algorithms can produce 

misleading feature importance rankings if the training datasets comprise large clusters of 

correlated features. This can misperceive explanation of the model, because large groups 

of predictive features can be pre-screened and even appear unrelated.  

Based upon the distribution of the features in the training dataset, there are so many 

different methods, for example, principal component as cluster centroid [as in Huang et al. 
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(2003a)] or even several representatives [as in Jäger et al. (2003)] may produce better 

results.  

Tolosi et al 2011, indicated that with a high related feature input, classical model selection 

algorithms including Random Forest or Penalized Logistic Regression are unstable.   

We proposed Tensor Flow algorithm for identifying and cleaning interrelated features. TF 

can assign similar weights to interrelated features and thus recover model stability and 

interpretability. In the context, we show that the measures of feature relevance 

corresponding to the above-mentioned methods are biased such that the weights of the 

features belonging to groups of correlated features decrease as the sizes of the groups 

increase, which leads to incorrect model interpretation and misleading feature ranking. 

We investigated the Random Forest algorithm to perform feature selection for the 

following reasons: 

1. Presenting a better thoughtful of the underlying process that affect the streamflow 

2. Reduces Overfitting: Less redundant data means less opportunity to make decisions 

based on noise. 

3. Increasing the prediction performance  

4. Introducing faster and more cost-effective input variables 

In the current study, for dimensionality reduction, we studied Principle Component 

Analysis(PCA), Tensor Flow(TF) and Tensor Flow K-means clustering.  The differences 

of three variants (denoted by PCA, TF and TF-Kmeans clustering) has been examined to 

find the subsequent classification accuracy. Based upon these clustering procedures  first a 

mean shift of all subsets such that the mean for each subset becomes 0 has performed.  
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Which results in a subsets comprising min (features, instances) linear combinations of the 

original attributes ((Gansterer and Ecker, n.d.) 

PCA: Each feature of M is normalized by its standard deviation (i. e., z-scored). These 

normalized values are used for computing eigenvalues and eigenvectors (i. e., there is no 

difference between the covariance and the correlation coefficient) and also for the 

computation of the new attributes. 

Table 3.The propose algorithm for PCA, Calculate the M matrix of the desired subset 

 

Input: *PC’s = new attribute of data set 

 

Output: Feature instances as M matrix 

 

performed a mean shift of all features 

Set the mean for each feature equals zero 

Calculate the PCA with min (features, instances) linear combinations of the original  

Return PCA subset 

Compute the eigenvalues and eigenvectors of the covariance matrix of M 

Calculate the Cov (M) 

Multiply M with the eigenvectors of Cov (M). 

 

Return M 

*PC’s = The PCs are (i) linear combinations of the original attributes, (ii) orthogonal to each other, and 

(iii) capture the maximum amount of variation in the data. 

 

TF: TensorFlow is a machine learning library developed by Google and released as open 

source on November 2015 [1]. It provides an interface for expressing and executing 

machine learning algorithms. These algorithms are described by a directed graph composed 

of a set of nodes, which represent the instantiation of an operation and have zero or more 

inputs and zero or more outputs. The graph represents a dataflow computation, with 

extensions for allowing some kinds of nodes to maintain and update persistent state and for 

branching and looping control structures within the graph in a manner similar to Naiad 

[18]. One of the key features of TensorFlow is its ability to run on multiple CPU and other 
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devices, reducing the computation times for complex problems. Additionally, it could use 

CUDA extensions for general-purpose computing on graphics processing units. The library 

is currently used in dozens of commercial Google products such as speech recognition, 

Gmail, Google Photos and Google Search [27]. It is available as a Python API as well as a 

C/C++ API. In this work we used the Python API provided by the SkFlow project, which 

allows building DNN using the interface of Scikit Learn [21]. Specifically, we used a 3 

layers DNN with 5 hidden units per layer. The Adagrad algorithm was used as optimizer. 

In the current paper we used the original Tensoflow prepared by Python library.  

TF-k means clustering: In this paper, we have implemented a centroid selection 

approaches in k-means clustering for improving the recommendation process for 

recommender systems. We have applied these selection approaches along with traditional 

k-means for comparing their performance. The algorithms present the centroid selection 

procedure for k-means clustering. After selecting k seeds, next steps are followed as per 

Algorithm 1, to accomplish k-means clustering ((2017, December 19). Clustering using K-

means algorithm. Retrieved from https://towardsdatascience.com/clustering-using-k-

means-algorithm-81da00f156f6) 
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Table 4.The propose algorithm for TF-k-Means clustering, Choose k users from the dataset, as centroids 

 

Input: U= users in training set; k= total number of clusters; 

 

Output: k centroids = {c1; c2; . . . ; ck} 

 

1: Define desired number of clusters, k with generating random data points with a uniform distribution and assign 

them to a 2D-tensor constant. 

2: Randomly choose initial centroids from the set of data points 

3: Find element-wise subtraction of points and centroids that are 2D tensors. 

4: Expand points and centroids into three dimensions. 

5: Use the broadcasting* feature of subtraction operation, pairs of arrays on an element-by-element basis 

6: Calculate the average pair wise distance between points and centroids and determine the cluster assignments  
 

7: Compare each cluster with a cluster assignments vector  

8: Get points assigned to each cluster, calculate mean values which are refined centroids 

9: Update the centroids variable with the new values. 

9: Return updated centroid values {c1; c2; . . . ; ck} along with the cluster assignments values.  
Algorithm 

*Broadcasting: In the context of data mining, we use some less conventional notation. We allow the 

addition of matrix and a vector, yielding another matrix: C = A + b, where Ci,j = Ai,j + bj. In other words, the 

vector b is added to each row of the matrix. This shorthand eliminates the need to define a matrix with b 

copied into each row before doing the addition. This implicit copying of b to many locations is called 

broadcasting 

 

 

2.2.2 Machine Learning Methods 

For evaluating the classification performance of the reduced feature sets we used four 

different machine learning methods. For detailed information about these methods, the 

reader is referred to the respective references given. 

Experiments were performed with a support vector machine (SVM) based on the sequential 

minimal optimization algorithm using a polynomial kernel with an exponent of 1 

(Platt,1998); a k-nearest neighbors (kNN) classifier using different values of k (1 to 9) 

http://docs.scipy.org/doc/numpy-1.10.1/user/basics.broadcasting.html
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(Cover and Hart, 1995); a Bootstrap aggregating ensemble learner using a pruned decision 

tree as a base learner (Breiman, 1996); a random forest (RandF) classifier using a forest of 

random trees (Breiman, 2004); and K-means clustering (S. Zahra et al. / Information 

Sciences 320 (2015) 156–189), PCA (Jolliffe, 2002) 

2.2.3 Deep Learning Algorithms 

An ESN is a discrete time recurrent neural network. Fig. 2 illustrates an ESN with 𝐾 

input states, 𝑁 internal states, and 𝐿 output states (see Chitsazan et al., 2019 for details). 

 

Figure 2. The topological structure of Echo State Network. Input layer denotes the time series input variables, 

internal state presents a randomly generated weight matrix and the output layer generates the predicted value of 

streamflow 

. 

The internal states 𝒙(𝑡) and the output states 𝒚(𝑡) are calculated in a process as follows: 

After choosing the activation function (f), the recursive least squares (RLS) algorithm is 

utilized to compute U where X is full rank. 

𝒙(𝑡+1)  =  𝐟(𝑉 × 𝒔(𝑡+1) + 𝑊 × 𝒙(𝑡) + 𝑇 × 𝒚(𝑡)) (1) 

𝒚(𝑡+1) = 𝑈 × 𝒙(𝑡+1) (2) 
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𝑈 = ((𝑋𝑇𝑋)−1(𝑋𝑇𝐷))
𝑇
 (3) 

The two types of activation function used in the literature are the logistic function and the 

hyperbolic tangent. The logistic function has the mathematical form:  

𝑓(𝑥) =
𝑒𝑥

1 + 𝑒𝑥
 (4) 

It takes a real-valued number as the input and squashes it between 0 and 1. It aims to 

introduce nonlinearity in the input space where the network learns to capture complicated 

relationships. A large negative number passed through the logistic function approaches 0 

and a large positive number of approaches 1. Due to this property, the logistic function can 

be interpreted as an indicator of the firing rate of the neuron; from not firing at all (0) to 

fully-saturated firing at an assumed maximum frequency. However, logistic activation 

functions have gradually become less popular due to two major drawbacks called killing 

the gradients and nonzero-centered outputs (King and Zeng, 2001).  

The hyperbolic tangent activation function has the mathematical form:  

𝑇𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (5) 

It takes a real-valued number and squashes it between −1 and +1 and saturates at large 

positive and negative values. However, its output is always zero-centered, which helps 

because the neurons in the later layers of the network receive inputs that are zero-centered.  

The activation functions used in this study to translate input signals to output signals is 

the hyperbolic tangent (tanh). The choice of this function is based upon a large range of 

nonlinear positive and negative input data, which can be mapped appropriately by this 

function. With few exceptions, tanh helps the gradient descent converge faster because it 

makes more uniform steps through the feasibility space of the error function. In some cases, 

it helps zero-center the data and avoids zigzagging during gradient descent optimization. 

When the data are not zero centered, gradient descent can only optimize weights of the 

same node in zigzag. One of the potential problems using tanh is a flat error surface near 

the origin. Because the saturation zone occurs (gradient close to zero) at very high values 
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near -1 or 1 and at those high values the gradient/slope will have very small values (Bengio 

et al., 1994).  

As the network updates weights to learn during backpropagation, the changes 

exclusively depend upon the gradients of output. It performs backpropagation to modify 

the weights through gradient descent such that the output is minimized. If that gradient is 

very small, the update in weights is small and thus learning becomes slow. This is known 

as the vanishing gradient, which was a major obstacle to the success of deep learning 

(Hochreiter et al., 2001).  

 

In the current work, to overcome this drawback, multiple different techniques are 

proposed. The 𝑉 matrix is used to transposes the input variables into the data range that the 

activation functions lies in (tanh [-1, 1]). Second, weight initialization (avoid initialization 

with very small weights) to evade early saturation the weights are initialized between [-

1,1] because, if the initial weights are too large, then most neurons will get saturated and 

hence the network will hardly learn, and third using Recursive Least Square (RLS) 

functions to modify errors and train weight function (𝑈 matrix). Because gradient descent 

back propagation error has the problem of vanishing gradient at a higher value of the input, 

the RLS is applied. The training process is explained in detail in Chitsazan et al. (2019).  

NESN-MP is also proposed to decrease the number of internal states considerably 

compared to classical ESN by utilizing a cubic multivariable polynomial. This radically 

diminishes the computational burden. Fig. 3 demonstrates the NESN-MP with a total of 
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2𝑝 + 𝑝2 units (Chitsazan et al., 2019). 

  

 

Figure 3. The topological structure of Nonlinear Echo State Network-Multivariate Polynomial. In this schematic, the 

readout denotes the layer performing multivariate polynomial calculations 

 

In this work, RNESN is proposed. RNESN decreases the number of internal states compared 

to NESN and minimizes the computational burden and maximizes the interaction between 

the internal states. Fig. 4 demonstrates the NESN with a total of 3𝑝 + 3𝑝2 + 𝑝3 units shown 

in Table 2. Furthermore, each unit in the readout may be created by three internal states 

compared to two in NESN-MP (shown in eq. (13) and Table 3). This in turn increases the 

learning capability that yields more accurate forecasting results. 𝑊 is changed from 

⌈
𝑁

𝑝+2
⌉ × ⌈

𝑁

𝑝+2
⌉ in NESN-MP to ⌈

𝑁

𝑝2+3𝑝+3
⌉ × ⌈

𝑁

𝑝2+3𝑝+3
⌉ which ⌈

𝑁

𝑝2+3𝑝+3
⌉ = 𝑝. Additionally, 

𝑉 varies from 𝑁 × 𝐾 to 𝑝 × 𝐾. The weight matrices (𝑊 and 𝑉) are utilized to compute the 

reservoir’s internal states. The following equation is used for updating the vector of internal 

states  

𝒙(𝑡+1) 
= f (𝑊. 𝒙(𝑡) 

+ 𝑉. 𝒔(𝑡+1)) (6) 

and the readout vector is 
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𝒙̅(𝑡+1) = [∑ ∑ ∑ 𝒙𝑖
𝐹

𝑝

𝑘=1

𝒙𝑗
2𝑆𝒙𝑘

3𝑇

𝑝

𝑗=1

𝑝

𝑖=1

, 𝐹 = 0 𝑜𝑟 1, 𝑆 = 0 𝑜𝑟 1, 𝑎𝑛𝑑 𝑇 = 0 𝑜𝑟 1, ] (7) 

where 𝒙2
(𝑡+1)
 

 
= [𝑥1(𝑡+1)

2 , 𝑥2(𝑡+1)

2 , … , 𝑥𝑝(𝑡+1)
2 ], and 𝒙3

(𝑡+1)
 

 
= [𝑥1(𝑡+1)

3 , 𝑥2(𝑡+1)

3 , … , 𝑥𝑝(𝑡+1)
3 ] p is 

the number of internal states ⌈
𝑁

𝑝2+3𝑝+3
⌉, 𝒔 ∈ 𝑅𝐾×1 (input vector), 𝒙 ∈ 𝑅𝑝×1 (internal state 

vector), 𝒙 ∈ 𝑅(𝑝3+3𝑝2+3𝑝)×1 (readout vector), and 𝒚 ∈ 𝑅𝐿×1 (output states).  

Table 5. The number of variables in RNESN. F=First order, S= Second order, T= Third order 

F S T 

Number of units in 

∑ ∑ ∑ 𝒙𝒊
𝑭

𝒑

𝒌=𝟏

𝒙𝒋
𝟐𝑺𝒙𝒌

𝟑𝑻

𝒑

𝒋=𝟏

𝒑

𝒊=𝟏

 

𝟏 1 1 𝑝3 
𝟏 1 0 𝑝2 
𝟏 0 1 𝑝2 
𝟏 0 0 𝑝 
𝟎 1 1 𝑝2 
𝟎 1 0 𝑝 
𝟎 0 1 𝑝 
𝟎 0 0 0 

 

 

Figure 4. The topological structure of Robust Nonlinear Echo State Network. In this schematic, 
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Fig. 5 shows an example to compare the order of metrices in ESN, NESN-P, NESN-MP, 

and RNESN. As can be seen, the number of elements is decreased from 108 in ESN to just 

less than 500 in RNESN. Furthermore, the matrix T is removed in RNESN which improves 

the computational efficiency considerably. 

 

 

Figure 5. An example to compare the order of metrices in ESN, NESN-P, NESN-MP, and RNESN 

 

2.3 Simulation Results 

2.3.1 Data Preprocessing Simulation Results 

For evaluating the classification performance of the preprocessed data sets we used four 

different machine learning methods as shown in the table    . 

Table 6. Classification accuracy (in %) 

 KNN Bootstrap 

aggregating 

RandF SVM 

PCA 81.43 83.21 84.75 80.49 

TF 88.12 87.06 96.59* 86.16 

TF-K means clustering 90.53 89.53 97.98 88.52 

 

The table shows the overall classification accuracy for all performed dimensionality 

reduction and data cleaning algorithms. A very interesting observation from the results is 

that the TF-K means clustering subsets clearly outperform the other created subsets (Figure 

6). 

 

 

ESN

W (10k× 10𝑘)

V (K×10k)

T (10k×L)

NESN-P

W (1k× 1𝑘)

V (K×1k)

T (1k×L)

NESN-MP

W (99 ×
99)

V (K×99)

T (99 ×L)

RNESN

W (22 ×
22)

V (K×22)
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a)PCA-KNN 

 

b)PCA-Bootstrap aggregating 

 
c)PCA-RandF 

 

d)PCA-SVM

 

e)TF-KNN

 

f)TF-Bootstrap aggregating 

 

g)TF-RandF 

 

h)TF-SVM 

 

i)TF-Kmeans-KNN 

 

j)TF-Kmeans-Bootstrap aggregating 
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Figure 6. a to l. The graphs of various performed data mining algorithm in the three different subsets of PCA, TF, 

TF-K means clustering 

 

 

 

We have investigated the relationship between various data mining algorithms (feature 

importance, data cleaning and missing data recovery as well as dimensionality reduction) 

and the resulting classification performance.  

TF-k-means clustering clearly outperforms the other approaches, and also shows 

acceptable classification accuracy in combination with the Random Forest classification 

algorithm.  

 Among the machine learning algorithms investigated, the SVM accuracy was surprisingly 

low with regards to the PCA subsets. Even though SVMs performed very well on TF-k-

means clustering subsets of the original features and it has been commonly reported as a 

accurate feature importance methods, they achieve only the lowest accuracy for the PCA 

subsets. A possible reason might be because of the sensitivity of feature importance 

strategy on the type of performed dataset. In many cases, especially in application contexts 

where the search for the best feature set is still an active research topic, the classification 

accuracy achieved with cleaned data sets is often significantly better than with the full 

uncleaned data set.  

k)TF-Kmeans-RandF 

 

l)TF-Kmeans-SVM 

 



51 
 

 
 

It has also been illustrated that the percentage of the total inconsistency of the data captured 

in the investigated data cleaning approaches is not necessarily associated with the 

subsequent classification accuracy.  

 

Figure 7. Plot of the feature importance for a study area performed by Random Forest (Error bar in %) 

 

As the figure illustrates, the most effective factor in streamflow governing is precipitation 

followed by SWE, soil moisture , NAO, AO, soil temperature and so on. The feature 

importance has been implemented in three case studies and it is clear there are slight 

differences between contributing factors. The only difference is the climate variability 

indices. In case study 1 the most important climate variability indices are NAO, AO and 

PNA respectively, because this region is located in the northeastern US and is affected by 

AO and NAO much more than the other case studies. There is not much difference between 

case study 2 and 3, as they both are under effect of PNA and not much influenced by AO 

and NAO.  
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Based on the outputs of feature importance algorithm, the input factors including: vapor 

pressure, solar radiation, wind amplitude and humidity has not been utilized for the 

forecasting phase. Because their contributing percentage is pretty low it can be ignored as 

it doses not have any significant impact on forecasting accuracy. 

2.3.2 RNESN Simulation Results 

The performance of the proposed RNESN was tested using the data described in 

Section II. Data were split into two disjoint parts, one for training and the other for testing, 

with their lengths indicated as 𝐿𝑡𝑟𝑎𝑖𝑛 and 𝐿𝑡𝑒𝑠𝑡, respectively. The correlation coefficient 

(R), root mean squared error (RMSE), mean absolute error (MAE), Willmott’s index of 

agreement (WI), and Nash-Sutcliffe coefficient (𝐸𝑁𝑆) shown in (8-12) were used to 

evaluate the performance of the proposed methods.  

The correlation coefficient (R) is characterized as the covariance of the variables 

partitioned by the product of their standard deviations. R is expressed as: 

R =
∑ (𝑦(𝑖) − 𝑦̅(𝑖))(𝑦̂(𝑖) − 𝑦̂̅(𝑖))n

𝑖=1

√∑ [𝑦(𝑖) − 𝑦̅(𝑖)]2n
𝑖=1 √∑ [𝑦̂(𝑖) − 𝑦̃(𝑖)]2n

𝑖=1

 (8) 

where 𝑛 is the quantity of samples,  𝒚 are the actual values of output, 𝒚̅ is the average of 𝒚 

over the entire target set, 𝒚̃ is the average of 𝒚̂ over the entire target set, and  𝒚̂ is the 

simulated output values.  

RMSE is presented as: 

RMSE =
1

𝑛𝑚𝑎𝑥 
 √∑ [𝑦(𝑖) − 𝑦̂(𝑖)]2

n

𝑖=1
 (9) 

MAE is defined as  

MAE =
1

𝑛
 ∑ |𝑦(𝑖) − 𝑦̂(𝑖)|

𝑛

𝑖=1

 (10) 

https://en.wikipedia.org/wiki/Covariance
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WI (Willmott, 1981) is calculated as: 

WI = 1 −
∑ (𝑦(𝑖) − 𝑦̂(𝑖))

2n
𝑖=1

∑ (|𝑦(𝑖) − 𝑦̅(𝑖)| + |𝑦̂(𝑖) −  𝑦̅(𝑖)|)2n
𝑖=1

 (11) 

The Nash–Sutcliffe (Moriasi et al., 2007) is defined as: 

𝐸𝑁𝑆 = 1 − (
∑ (𝑦(𝑖) − 𝑦̂(𝑖))

2n
𝑖=1

∑ (𝑦(𝑖) − 𝑦̅(𝑖))
2n

𝑖=1

) (12) 

In this work, the performance of the proposed method was evaluated in the three case 

studies described in Section 2. The forecasting results of RNSEN were compared to those 

of ANFIS and NESN-MP. Furthermore, bad data analysis was conducted to show the 

robustness and stability of the proposed method. Streamflow forecasting is tested for 50 

days ahead (𝐿𝑡𝑟𝑎𝑖𝑛 = 730, 𝐿𝑡𝑒𝑠𝑡 = 50 days).  

To validate the performance of the proposed method, two more scenarios are defined. 

In the first scenario, the performance of the proposed method in the presence of bad data 

is conducted. The input data in the fourth month of the training is increased by 100%. They 

decreased by 10% by the seventh month and increased by 25% the 14th month. It is shown 

that although severe changes in the input data are considered, the forecasting accuracy is 

only insignificantly lowered.  

In the second scenario, the input data for only three months are used for the training 

process. The goal in this scenario is to achieve acceptable forecasting accuracy with far 

fewer data. This in turn decreases the cost and the computational load considerably. This 

is one area where the proposed methodology offers clear advantages. The simulation results 

clearly validate the high learning capability and forecasting accuracy of RNESN in a scarce 

data operation condition. Note that NESN-MP outperforms ANFIS due to its unique 

nonlinear structure. However, RNESN outperforms NESN-MP because it has a more 

complex nonlinear structure. Figs. 6-8 show the simulation results for the three different 

regions, Berkshire County (MA), Tuolumne County (CA), and Wasco County (OR), 

mentioned above.  
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 Figure 8.  Scatter plot of observed and simulated streamflow (m3/s) using RNESN with 13 different input 

variables in case study 1 for testing period (2008-1011), CS= Case Study 
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Figure 9. Scatter plot of observed and simulated streamflow (m3/s) using RNESN with 13 different input variables in 

case study 2 for testing period (2008-1011), CS= Case Study 

 

Figure 10. Scatter plot of observed and simulated streamflow (m3/s) using RNESN with 13 different input variables 

in case study 3 for testing period (2008-1011), CS= Case Study 

 

As clearly observed from the time variation graphs, the forecasts of the proposed 

RNESN model are closer to the corresponding observed streamflows compared with the 

other two models in all three case studies. Considerable under- or over-estimations are seen 

for the ANFIS model. It is evident from the scatterplots that the RNESN has less scattered 

streamflow forecasts and its fit line is closer to the exact line (y = x).  

Table 7.Forecasting results using evaluation indices for the three case studies: R, RMSE, MAE, WI, and ESN  
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Table 7. provides the evaluation indices for the test stage covering 50 days. In case 

study 1, RNESN provides an MAE of 14.8 m3/s which is 52.4% and 74.2% lower than the 

MAE given by NESN-MP and ANFIS, respectively. In the case of ENS, the RNESN gives 

the respective value of 0.96, which is well below the ENS of 0.84 and 0.47 for NESN-MP 

and ANFIS, respectively. This improvement can be seen more clearly in the presence of 

bad data and in sensitivity analysis.  
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Figure 11. Bar chart of Evaluation indices for three case studies using three models: ANFIS, NESN, RNESN 

 

Note that the forecasting accuracy with bad data is not easy attainable due to inaccurate 

measurements or misplaced gauging stations. RNESN impressively outperforms ANFIS 

and NESN-MP in this respect. For example, WI in RNESN varies from 0.99 to 0.95 while 

WI in NESN-MP and ANFIS drops considerably from 0.96 and 0.87 to 0.86 and 0.64 

respectively. As the WI is more sensitive to oscillations in the data, it shows the most 

change in the presence of the bad data. The same situation is expected in the sensitivity 

analysis. In the case of limited data, due to the very high learning capability in both NESN 

and RNESN, they outperform ANFIS. As expected, RNESN provides better forecasting 

results because it has a more complex structure and considers more complicated 

interactions between the internal states. 
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For validating prediction capability and universality of the recommended method with 

various streamflow profiles, five case studies based on the three study areas are conducted 

in different seasons shown in Fig. 9. The simulation results for RNESN outperform those 

for the NESN and ANFIS. The forecasting results may deteriorate if the watershed is snow 

dominate as in Case study 1. The interannual variability of the accumulated snow in the 

watershed causes high flow events. Therefore, possible snowmelts due to rapid temperature 

changes and “rain on snow events” increase the data uncertainty, which affects the training 

process. In Case Study 2, as the watershed is a mixed pluvial-nival, both the rainfall and 

snowmelt are driving variables in the generation of streamflow. Therefore, the streamflow 

is present for almost the whole year while the streamflow value does not change drastically 

compared to snow or rain regions. This in turns provides better forecasting results 

compared to Case Study 1. In Case Study 3, which is a rain dominate watershed, the 

RNESN shows the most accurate agreement with the observed streamflow, because the 

watershed is not influenced by “winter snow cover increase” to affect streamflow. Note 

that this case study is designed for warm seasons in which more evaporation results in low 

streamflow. In such a watershed, there is less accumulated snow in the mountains and that 

yields lower streamflow. As shown in the simulation results, RNESN performs better in 

low streamflow. 

Note that, to validate the model application at the global scale, the modeling process has been 

repeated on five different regions across US and the simulation results are presented in appendix. 

 

2.4 Conclusion 

Hydrological models frequently comprise uncertainties with negative effects on the 

estimated results, and thereby on the model reliability and robustness. The majority of 

published models do not recognize the input data uncertainties and utlize the raw time 

series inputs for modeling approach. In the current study the proposed data mining 

algorithm for data preprocessing which has been performed through ensemble TF-k means 

clustering and RF is capable of  eliminating input uncertainties by missing data recovery 

and data cleaning . The utilized deep learning algorithm (RNESN) for streamflow 
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forecasting is also a high nonlinear approach in prediction of time series data as it considers 

all possible interactions between the internal states of inputs through performing different 

orders of multivariate polynomial. Besides, its training approach minimizes the direct 

impact of each input data on the output, otherwise stated, due to the structure of the 

RNESN, the sensitivity of each input parameter is almost the same as the others because 

the interactions of the input parameters and the internal states are used to train the output 

matrix and the input parameters are not directly involved in the process of training. More 

importantly, the robustness of the model can reduce bias estimates of water availability and 

uncertainty in forecasting of potential future climate changes. The proposed calibration 

process (RLS) enhance the learning capability through reducing variance. Besides, to 

improve the forecasting ability and reducing the computational load, the number of the 

internal states has been significantly decreased through applying modified time series 

analysis in readout. Moreover, the recommended method has a simple structure, far less 

computation, and does not need parameter tuning, optimization task, and complex training. 

Simulation results show the dominance of RNESN over NESN and ANFIS. RNESN 

provides expressively better values that those provided by NESN and ANFIS for R, MAE, 

Wilmott index, RMSE, and Nash–Sutcliffe efficiency.  

The performance of the proposed method is evaluated with bad data or limited data. 

Due to high learning capability and low sensitivity, the simulation results for RNESN 

illustrate the significant improvement in forecasting results in the presence of bad data or 

training with limited data. This in turn validates the robustness and reliability of the model. 

Real data is collected at United States Geological Survey (USGS), Natural Resource 

Conservation Service (NRCS), National Weather Service Climate Prediction Center 

(NOAA) and Daymet Data Set from NASA through the Earth Science Data and 

Information System (ESDIS) to validate these observations. As future work, we aim to 

propose a tradeoff between installing necessitate gauging station and removing useless 

gauging stations. Our current hydrological measurement networks have designed flaws. 

For instance, most rainfall observations are made around cities and steep terrain and 

topography effects are inherently underrepresented. As another example, stream gauges in 

California’s Sierra Nevada mountains are located downstream of dams, making them 
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virtually useless for understanding catchment processes. The proposed method can detect 

and remove costly or inaccurate measurements gauges. Streamflow forecasting can be 

conducted just by the accurate data acquired by the easy maintenance and inexpensive 

gauges.  
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2.5 Daily Streamflow Forecasting Using Nonlinear Echo State Network 

 

ABSTRACT: The prediction of streamflow is an important issue in hydrologic engineering and 

hydropower reservoir management. Several approaches including statistical, physical or conceptual 

models have been investigated to forecast streamflow. Most of the methods assume a linear 

relationship between the input and output series.  However, they ignore the nonlinear information 

hidden in the streamflow series. In this paper, various time series inputs including: day length, 

precipitation, solar radiation, maximum and minimum temperature per day, and vapor pressure 

have been used. An advanced and powerful forecast engine called Nonlinear Echo State Network 

using Multivariable Polynomial (NESN-MP) is used to predict the behaviour of the streamflow. 

The forecasting is conducted under different climatic conditions to indicate the model’s 

applicability. Furthermore, to demonstrate the efficiency of the proposed method, it is compared 

with Adaptive Neuro-Fuzzy Inference System (ANFIS). The results of the new method compare 

favourably with ANFIS. 

 

2.5.1 Introduction 

State estimation and forecasting of streamflow have always been general concerns for 

engineers. State estimation is applied in all energy management systems to identify the 

present operating state of a system [1-2]. Forecasting is also an important and necessary 

aid to planning and planning is the backbone of effective operations. In hydrology, 

streamflow forecasting is vital for water resources engineers, reservoir operators and water 

managers who strive to balance a range of competing objectives to support their decisions 

about hydroelectric power programming, flood mitigation, agricultural and domestic water 

supplies, irrigation management as well as maintenance of environmental flows [3]. 
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Therefore, developing an optimal streamflow forecasting model as a stochastic property of 

environmental modelling is crucial. However, the existing dynamicity, inherent 

complexities and chaotic feature in the temporal and spatial expansion of the model may 

obstruct the accurate and reliable prediction process [4]. 

Different statistical, physical or conceptual models have been evolved to forecast 

streamflow [5]. Statistical models, such as regression-based models [6] are extremely 

simplistic and suffer from a functional form between variables prior to the analysis. 

Therefore, they do not properly account for the relationship between the dependent and 

observed explanatory variables. Physically based numerical models, typically, simulate the 

streamflow generation process through a governing equation employing limited boundary 

conditions, which need precise data input to enable parameter calibration [7]. Conceptual 

hydrological models consider different processes of the hydrological cycle along with 

mathematical formulation to improve the forecasting accuracy [8] such as: the Soil and 

Water Assessment Tool (SWAT) as a semi-distributed conceptual model [9]. Louise J. et 

al 2017 [10] conducted research to forecast streamflow in deterministic and probabilistic 

terms for all initialization months, flow quintiles, and seasons. The result showed a 

relatively accurate streamflow forecasts from low to high flows, but their model could not 

decrease uniformly with initialization time.  

However, taken as a group, the accuracy of these models is not reliable due to 

heterogeneous hydrogeological characteristics within the watershed system in nature with 

respect to time and space. In addition, large data input, large number of parameters, and 

broad range of necessary values may limit the application of comprehensive simulation 
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models [11]. Furthermore, all of these models assume that the relationship between the 

input and output series is linear or at worst near linear. They thus ignore the nonlinear 

information hidden in the streamflow series which result in a poor model performance. 

Furthermore, streamflow is under the influence of many factors such as evapotranspiration, 

rainfall, atmospheric circulation and temperature, and its generation process is nonlinear 

and time-variable. Therefore, in the last two decades, researchers have focused on 

alternative data-base predictive methods. Several studies have been presented on 

developing soft computing tools with Artificial Intelligence (AI) models. Several computer 

models have been recently conducted to forecast streamflow and corresponding runoff. 

Some of these models are based on the Artificial Neural Networks (ANN), fuzzy network 

sets, genetic programming, regression algorithms, support vector machine; and 

nonparametric methods such as K-Nearest Neighbour (KNN) Regression [12-13]. Among 

all mentioned methods, the fuzzy network sets depend on the user expertise, while the 

efficiency of others depends on the model ability to find out the relationship between input 

and output variables. It has been demonstrated that Support Vector Machine (SVM) yields 

the most accurate results compared to Auto Regressive Moving Average (ARMA), ANN, 

and Multiple Linear Regression (MLR) [14], and (something missing?)[12]. On the other 

hand, Shrestha (2014) indicated that the result of annual predicted streamflow using ANN 

and SVM, throughout the State of Utah, are the same [15]. Yong Liu et. al (2016) compared 

the RVM and SVM for long term streamflow forecasting. They found that RVM produces 

better results for annual streamflow forecasting within a specified climatic condition [16]. 

Bharti et al. (2017) indicated that in forecasting process of monthly runoff, ANN results 
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surpasses the Least Square- Support Vector Regression (LS-SVR) results, while LS-SVR 

results exceed ANN results for monthly sediment prediction [17]. 

ANNs are the most popular artificial intelligence (AI) techniques used in variety of 

fields especially in time series forecasting. Successful prediction results of ANN 

application in hydrological process such as rainfall-runoff modelling, streamflow 

prediction, reservoir inflow forecasting, rainfall forecasting, and river sediment modelling 

have been recently published. Although different feedforward neural network models have 

been well documented, the selection basis of these models has thus far received limited 

attention [18-19]. Kerh and Lee (2006) introduced ANNs to predict flood discharge at 

downstream stations with data scarcity, using information at upstream stations of the 

Kaoping River [20]. Their model demonstrated that back-propagation of the ANN model 

performs better than the conventional Muskingum method. Due to chaotic behaviour in 

hydrological time series, one of the most important steps in constructing an ANN model 

for streamflow forecasting is determining the best inputs. Zhao, X. at. al (2017) used the 

Phase Space Reconstruction (PSR) method as an alternative approach to select relevant 

and important input variables for ANN models. They built two different ANN models using 

the time-lagged records of precipitation and temperature. They indicated that ANNs predict 

daily streamflow in the adjacent ungauged basins as accurate as in the gauged basin [21]. 

Zealand et al (1999) used the ANN trained with back-propagation algorithm to predict 

streamflow 1-week-ahead [22].  However, ANN models have some lapses including over-

fitting and under-fitting, slow learning speed, and curse of dimensionality and convergence 

to local minimum. Therefore, in processing of complex hydrological phenomena, they 
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betray a poor performance [23-25]. Typically, their disadvantages include the following 

[26]: 

1. High complexity and long processing time.  

 

2. High dependence on parameter tuning and optimization. 

 

3. The requirement for nonconvex optimization that can yield suboptimal results and 

trap in local optima. 

 

In this paper, NESN-MP has been used as a forecasting engine. The network consists 

of a reservoir including linear internal states and a readout including nonlinear functions 

of the internal state. The nonlinear relations between the internal states increase the 

learning capability, which results in high forecasting accuracy while ensuring that the 

quality of forecasting does not deteriorate significantly with time. Furthermore, the 

performance of the forecasting engine is improved by decreasing the number of internal 

states, and the orders of the weight matrices, which reduces the computational load 

considerably. Furthermore, in all previous research, the results obtained from these studies 

are inconsistent due to difference in study areas, input data sets, and the selected structures 

for each of the models [27]. Many studies have applied the original streamflow time series 

as the input variables in their forecasting model, which results in missing some features of 

different resolution [28]. Using just one resolution component could not reflect the internal 

mechanism of streamflow. Therefore, daily data is preferred, because it is not significantly 

affected by external factors such as meteorological pattern and anthropogenic activities in 

the data [29]. However, research has been conducted on evaluation of annual, seasonal or 
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monthly streamflow for one-time scale condition [25]. Moreover, daily streamflow 

forecasting at different time scales has not been addressed in the literature.   

Based on the outline above, the study in this paper has developed a modified model of 

ANN to forecast daily streamflow based on various time series forcing-data input including 

daily precipitation, precipitation duration, solar radiation, temperature and vapor pressure. 

The remainder of this study is as follows. Section II provides an overview of the NESN. 

Simulation results are given in Section III, and conclusions are summarized in Section IV. 

 

2.5.2 Nonlinear Echo State Network 

This powerful method is simple, effective, with far fewer computations [30]. NESN-

MP provides a total of 2𝑝 + 𝑝2 units; 𝑝 internal states; 𝑝 squares of the internal states; and 

𝑝2 units gained by multiplying the internal states and squares of the internal states. 

Therefore, the order of weight matrices is decreased radically. The weight matrices (𝑊, 𝑇, 

and 𝑉) are then used to calculate the internal states of the reservoir. The vector of internal 

states is updated using  

𝒙(𝑡+1) 
= f (𝑊. 𝒙(𝑡) 

+ 𝑉. 𝒔(𝑡+1) + 𝑇. 𝒚(𝑡)) (1) 

and the readout vector is  

𝒙(𝑡+1) = [𝒙(𝑡+1)
 

 
 , 𝒙2

(𝑡+1)
 

  

 
, ∑ ∑ 𝒙𝑖1

 

(𝑡+1)
. 𝒙2

𝑖2

 

(𝑡+1)

𝑝

𝑖2=1

𝑝

𝑖1=1

] (2) 

where 𝒙2
(𝑡+1)
 

 
= [𝑥1(𝑡+1)

2 , 𝑥2(𝑡+1)

2 , … , 𝑥𝑝(𝑡+1)
2 ], p is the number of internal states ⌈

𝑁

𝑝+2
⌉, 𝒔 ∈

𝑅𝐾×1 is the input vector, 𝒙 ∈ 𝑅𝑝×1 is the internal state vector, 𝒙̅ ∈ 𝑅(𝑝2+2𝑝)×1 is the readout 

vector, and 𝒚 ∈ 𝑅𝐿×1 denotes the output states. 
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Figure 12. Schematic of NESN-MP. 

 

The matrix 𝑊 ∈ 𝑅𝑝×𝑝 defines the internal state interconnections within the reservoir. 

The values in 𝑊  are fixed values generated randomly over a symmetric interval. 

𝑊 = (𝑤𝑖𝑗)
𝑝×𝑝

   ;  𝑤𝑖𝑗 ∈ (−1,1)(𝑖, 𝑗 = 1,2, … , 𝑝) (3) 

Matrix 𝑉 ∈ 𝑅𝑝×𝐾, containing randomly chosen fixed values, defines the connections 

of the input with the internal states of the reservoir.  

𝑉 = (𝑣𝑖𝑗)
𝑝×𝑘

   ; 𝑣𝑖𝑗 ∈ (−1,1)(𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝑘) (4) 

The output feedback matrix, 𝑇  ∈ 𝑅𝑝×𝐿 is 

𝑇 = (𝑡𝑖𝑗)
𝑝×𝐿

   ;  𝑡𝑖𝑗 ∈ (−1,1)(𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝐿) (5) 

The output matrix, 𝑈 ∈ 𝑅𝐿×(𝑝2+2𝑝) is 

𝑈 = (𝑢𝑖𝑗)
𝐿×(𝑝2+2𝑝)

   ;  𝑢𝑖𝑗 ∈ (−1,1)(𝑖 = 1,2, … , 𝐿, 𝑗 = 1,2, … ,2𝑝 + 𝑝2) (6) 

where 𝐾 is the number of inputs, 𝑝 is the number of internal states, and 𝐿 is the number 

of outputs.  
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2.5.3 Simulation Results 

 

The performance of the NESN-MP is tested using climatic observation data (day 

length, precipitation, solar radiation, maximum and minimum temperature per day, and 

vapor pressure) with a time interval of 24 hours used to train and test the proposed methods. 

Each data set is divided into two separate parts for training and testing, with their lengths 

denoted as 𝐿𝑡𝑟𝑎𝑖𝑛 and 𝐿𝑡𝑒𝑠𝑡, respectively. The MSE, root mean squared error (RMSE), 

normalized root-mean-square error (NRMSE), normalized mean-absolute error (NMAE), 

and mean absolute error (MAE) shown in (7-11) were used to evaluate the performance of 

the proposed methods.  

NRMSE is often expressed as a percentage and calculated as  

NRMSE = √
∑ ||𝑦(𝑖) − 𝑦̂(𝑖)||

2𝑛𝑚𝑎𝑥
𝑖=1

∑ ||𝑦(𝑖) − 𝑦̃||
2𝑛𝑚𝑎𝑥

𝑖=1

× 100% (7) 

where ||●|| indicates the Euclidean norm, 𝒚 are the actual output values, 𝑦̃ is the average of 

𝒚 over the whole target set 𝑦 (1), 𝑦 (2), . . . , 𝑦 (𝑛𝑚𝑎𝑥), 𝒚̂ is the predicted output, and 𝑛max is 

the number of sample points. Lower values in NRMSE indicate less residual variance. In 

many cases, especially for smaller samples, the sample range is likely to be affected by the 

size of sample, which would hamper comparisons.  

MSE measures the average of the squares of the errors, which is always non-negative, and 

values closer to zero are better. Taking the square root of MSE yields RMSE, which has 

the same units as the estimated quantity. MSE and RMSE are calculated as  

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Error_(statistics)
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MSE =
1

𝑛𝑚𝑎𝑥 

 ∑ [𝑦(𝑖) − 𝑦̂(𝑖)]2
𝑛𝑚𝑎𝑥

𝑖=1
 (8) 

RMSE =
1

𝑛𝑚𝑎𝑥 

 √∑ [𝑦(𝑖) − 𝑦̂(𝑖)]2
𝑛𝑚𝑎𝑥

𝑖=1
 (9) 

MAE calculates the average magnitude of the errors in a set of predictions without 

considering their direction. It is the average over the test sample of the absolute differences 

between prediction and actual observation where all individual differences have equal 

weight. NMAE normalizes MAE by the range of available rating values. MAE and NMAE 

are defined as  

MAE =
1

𝑛𝑚𝑎𝑥 

 ∑ |𝑦(𝑖) − 𝑦̂(𝑖)|

𝑛𝑚𝑎𝑥

𝑖=1

 

(10) 

NMAE =
1

𝑦𝑚𝑎𝑥 . 𝑛𝑚𝑎𝑥 

∑ |𝑦(𝑖) − 𝑦̂(𝑖)|

𝑛𝑚𝑎𝑥

𝑖=1

 (11) 

where 𝑦max is the maximum value of output. Generally, RMSE and MAE are regularly 

employed in model evaluation studies [26].  
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Figure 13. 67 days prediction in case study in 1995. 

The streamflow forecasting is carried out for 67 days ahead. 𝑙𝑡𝑟𝑎𝑖𝑛 = 200, 𝑙𝑡𝑒𝑠𝑡 = 67 with 

no overlap and with the test data starting immediately after the training data. Fig. 2 shows 

the prediction for 67 days ahead for NESN-MP and ANFIS. NESN-MP provide an MAE 

of 4 for the first 10 days ahead which is significantly below the MAE given by ANFIS. 

This improvement can be seen on the second 10 days more obviously, where MSE and 

MAE in ANFIS results increased considerably while those in the proposed methods remain 

almost constant. The results clearly show that the proposed NESN-MP outperform ANFIS.  
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Figure 14. 67 days prediction in case study in 2005. 

 

To validate the prediction ability and universality of the proposed methods with 

different climatic parameters, 67 days streamflow forecasting in 2005 is shown in Fig. 3. 

It is shown that the NESN-MP provide an MAE of 9 for the first 10 days ahead forecasting 

which is 92.8% below the MAE for ANFIS, respectively. In case of RMSE, NESN-MP 

gives the respective value of 11.21 which are well below the RMSE of 101.2 for ANFIS. 

Table 1 shows the error indices for both methods for different days. 
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Table 8. Error indices for case study 2005. 

 

  Days 1-10 
Days 11-

20 

Days 21-

30 

Days 31-

40 

Days 41-

50 

Days 51-

60 

A
N

F
IS

 

𝐌𝐒𝐄  10235 3437 1665 7600 2347 763 

𝐑𝐌𝐒𝐄  101.2 58.62 40.8 87.18 48.45 27.63 

𝐍𝐌𝐀𝐄% 16.22 10.98 7.84 15.93 8.8 5.55 

𝐍𝐑𝐌𝐒𝐄 % 9.2 5.329 3.7 7.92 4.4 2.51 

𝐌𝐀𝐄  73 49.4 35.3 71.7 39.6 25 

N
E

S
N

-M
P

 

𝐌𝐒𝐄  125 43.2 219 264 94.5 80.8 

𝐑𝐌𝐒𝐄 11.21 6.57 14.8 16.26 9.7 8.98 

𝐍𝐌𝐀𝐄% 2 1.2 2.95 2.7 1.89 1.82 

𝐍𝐑𝐌𝐒𝐄 % 1.02 0.6 1.34 1.47 0.88 0.81 

𝐌𝐀𝐄  9 5.4 13.3 12.2 8.5 8.2 

 

2.5.4 Conclusion 

 

This study presents daily streamflow forecast based on various time series forcing-

data inputs including daily precipitation, precipitation duration, solar radiation, 

temperature and vapor pressure. A novel echo state networks called NESN-MP has been 

used as forecasting engine. The nonlinear relations between the internal states increase the 

learning capability, which results in high forecasting accuracy while ensuring that the 

quality of forecasting does not deteriorate significantly with time. Furthermore, the daily 

values for different parameters which affect the streamflow provide accurate forecasting. 

Simulation results validate the performance of the proposed method and demonstrate its 

superiority over ANFIS. NESN-MP provides significantly lower values than those given 
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by ANFIS for MAE, NMAE, MSE, RMSE, and NRMSE. Future work will compare the 

proposed method with the classical methods. 
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2.6 Bad Data Analysis on Streamflow Forecasting Using Nonlinear Echo State 

Network 

 

  

 

ABSTRACT: A correct estimation of the stream flow is crucial to reduce the consequences of 

flash floods. Hydrologic prediction or simulation, especially in ungauged basins, is 

essential for responsible and sustainable water resource management. In the current study, 

we develop a framework on a study area including twelve gauged watersheds spanning 

across different climatic settings in the US. In this work we will propose a novel approach 

of Nonlinear Echo State Network using Multivariable Polynomial (NESN-MP) to forecast 

daily stream flow in ungauged basin with bad data. This work aims to demonstrate the 

ability of NESN-MP to solve a simulation task in comparison with ANFIS. Publicly 

available climate and US Geological Survey streamflow records are used to train and test 

the model. The model inputs include time-lagged records of precipitation, solar radiation, 

day length, vapor pressure and temperature. Furthermore, recurrent feedback loops allow 

ANN streamflow estimates to be used as model inputs. The successful of these flow 

prediction approach indicates that the NESN-MP can predict streamflow with bad data 

entry as accurately as good data set entry in the basins on which they were trained. 

 

2.6.1 Introduction 

State estimation and forecasting have always been general concerns for engineers. 

State estimation is applied in all energy management systems to identify the present 

operating state of a system [1-2]. Forecasting is also an important and necessary aid to 

planning and planning is the backbone of effective operations. In hydrology, streamflow 
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forecasting is vital for water resources engineers, reservoir operators and water managers 

who strive to balance a range of competing objectives to support their decisions about 

hydroelectric power programming, flood mitigation, agricultural and domestic water 

supplies, irrigation management as well as maintenance of environmental flows. Accurate 

streamflow prediction and developing an optimal streamflow forecasting model, as a 

stochastic property of environmental modelling, is one of the most important component 

of watershed planning and sustainable water resource management [3]. The streamflow is 

under influence of various factors such as evapotranspiration, rainfall, atmospheric 

circulation and temperature which makes its generation process nonlinear and time-

varying. The magnitude and locality of extreme streamflow events due to climate change 

and anthropogenic factors can end up to damaged infrastructure, degraded surface water 

quality, loss of agricultural lands, phosphorus diffusion, and sediment pollutants [4]. 

Therefore, Accurate and timely predictions of high and low streamflow events at either 

gauged or ungauged watershed will provide required information to make strategic 

decisions as following; (1) Ensure sustainable watershed planning; (2) Define the dilution 

potential of catchments; (3) Set ecological streamflow limits; (4) Allocate water resources. 

Due to poor data availability greatly compounds with accurately forecasting daily 

streamflow, water managers must rely on the streamflow estimates from various prediction 

models [5].  There are four different streamflow forecasting models: conceptual, metric, 

physics based, and data-driven. The first three mentioned models assume that the relation 

between the input and output series is linear or even near linear. They thus ignore the 

nonlinear information hidden in the streamflow series. In contrast to these models, data-

driven methods focus on using nonlinear relation between inputs and outputs. However, 
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they have some disadvantages including high complexity along with high processing time 

and high dependence on parameter tuning and optimization [6-7]. 

To overcome these drawbacks, application of the NESN-MP (called NESN in this 

paper) forecasting engine in stream flow forecasting is presented in [8-9]. It has been shown 

that this model works well for the circumstance that there is precise observed stream flow 

data.  However, there are many streams all over the world which do not have accurate 

observed streamflow data, or the data could exist only in a form that is extremely difficult 

to access while some other data should be kept secret due to policy concern which will 

produce bad data. Poor decision being made due to poor data. Therefore, reasonable 

forecasting of any hydrological process is the call of the time and valuable to responsible 

and sustainable water resources management. In fact, the National Research Council has 

noted growing attention to minimize the impacts of bad data among stakeholders for 

uncertainty assessments of hydrologic prediction [10] which can be because of ungauged 

basins, potentially inaccurate measurement, incomplete data collection, uncertain estimate, 

“fat-fingered” data entry, policy concerns, mis-categorization, etc [11]. 

There are some methodological studies for predicting streamflow response in 

ungauged basins with bad data which utilized deterministic physically based models to 

calculate streamflow. They performed based on distributed hydrologic parameters, and 

statistical regionalization which uses regression models to transfer hydrologic information 

from gauged to ungauged basins. The distributed hydrologic parameters approach, focusses 

on dispersing errors into measurement, parameter and structural uncertainty, the produced 

uncertainties are then disseminated toward model output.  The statistical regionalization, 

is a challenging task in hydrological science [12] due to poor streamflow data, which is 
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normally calibrated [13]. Moreover, the obtained results have been usually examined on 

different basins, while every catchment characteristics is different from one case to another 

[14]. Subsequently, there is no universal method for regionalization. While this is a broadly 

accepted procedure, uniqueness of the watersheds and the obscurity of parameters bring 

major uncertainty in the ungauged basins’ simulations. 

As an inherent symptom of any modelling task, all hydrologic models will suffer from 

some degree of uncertainty [15]. Movement away from methods grounded in traditional 

statistics toward conceptual, process-based models has blurred our understanding of model 

uncertainty to the point that most models are considered as almost purely deterministic 

tools [16]. Qamar et. al. [3], use non-parametric distance-based method to assess 

streamflow duration curve in ungauged basins.  Their work acquires a more robust model 

with better global performance even if the extension of the selected model to the whole 

workspace may be less optimal [17]. Given the hydrological process complexity, using an 

adaptation of globalized/ regionalized uncertainty is optimal [18]. 

Some international organizations such as the United Nations Development program 

(UNDP) and World Bank are concerning to generate a precise approach for development, 

and management of freshwater recourses. Artificial intelligence (AI) methods are recent 

developments in several hydrological areas due to their ability to incorporate a tried-and-

true model with no need to prior knowledge of the existing functional or nonlinear 

relationship between input and output [19] One of the most common AI methods to predict 

stream-flows in ungauged catchments is to identify the train model with homogenous 

nearby basins to forecast the stream-flow with different climate input [20]. Shu and Ouarda 

(2008) [21] considered the homogeneous region characteristics to find similar hydrological 

https://www.thesaurus.com/browse/tried-and-true
https://www.thesaurus.com/browse/tried-and-true
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sites for predicting flood quantile at ungauged basins; their result showed that the ANFIS 

approach had more capability compared with the other techniques examined in general, 

however in sites under 1000 m3/s flood quantile, ANN yields better results. Chang Shian 

Chen et al. (2010) [22] tried to employ the available hydrological record of nearby 

catchments with similar homogenous characteristics to estimate ungauged catchments. 

They concluded the temporal distribution and spatial characteristics considered in the 

model, reflect most of the behaviour of rainfall–runoff in nature.  

 A method of random forest models and an ensemble of artificial neural networks, has 

been used to predict several components of streamflow [23]. Some researchers used 

regression trees and model tree ensembles to predict a complete flow-duration curve (FDC) 

for streams, [24]. Senent-Aparicio et al [25] Combined machine learning with Soil and 

Water Assessment Tool (SWAT) to estimate instantaneous peak flow (IPF) in areas where 

sub-daily observational data are scarce. The results of this study can contribute to superior 

ability of extreme learning machine (ELM) to estimate IPF, thereby reducing uncertainties 

associated with IPF estimations. All previous studies for ungauged estimation have applied 

the homogeneous nearby basin parameters which result in inaccurate results Because every 

catchment is unique in its characteristics hence a direct transfer of model parameter values 

from gauged to ungauged basins may not be appropriate. Therefore, there is yet a need to 

produce a more accurate estimation of daily streamflow at ungauged basins [26]. 

However, all These studies granted prized baseline application of machine learning to 

streamflow perdition, their model performance could not be compared due to one unique 

accurate data set used for every individual research. To circumvent the above challenges, 

we focus this paper on developing a novel method on streamflow forecasting with bad data 
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set input. the primary objective of this research is developing a model to yield valuable 

estimation, in (1) problems corrupted by noise (2), complex systems that, may not be 

dittoed, and (3) circumstances where input is incomplete or ambiguous by nature producing 

bad data (Chitsazan et.al, 2018) 

In this proposed method, the model employs the concepts of ANN in an iterative 

procedure to produce bad data set. The generated bad data set derived from original 

accurate data set of the gauged basins, are then applied to develop a new input. 

Subsequently, this new input is used for evaluating the model applicability, which in turn 

is used for generating ensemble simulations in the ungauged basin. To test the generality 

of the method, twelve different watersheds across the United States are considered. While 

all the basins considered in this study were gauged with precise data input, the current study 

assumed some basins to be un-gauged or producing bad data to evaluate the effectiveness 

of the proposed methodology. This algorithm will always converge, with no need to 

stochastic training, and is also applicable to any ungauged basins. Recurrent feedback loops 

are added to this algorithm, allowing future predictions to be based on time-lagged 

predictions not time-lagged measurements. To evaluate the effectiveness of the proposed 

methodology in ungauged basin prediction, we compare our result with ANFIS. The 

process was repeated by considering representative basins from different climatic and land 

use scenarios as ungauged. The results of the study indicated that the ensemble simulations 

in the ungauged basins with NESN were closely matching with the observed streamflow 

and yield better result comparing to ANFIS. The remainder of this study is as follows. 

Section II provides an overview of the NESN. Simulation results and discussion are given 

in Section III, and conclusions are summarized in Section IV. 
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2.6.2 Nonlinear Echo State Network 

In the most of practical circumstances, where the main concern is generating accurate 

predictions with no insight on the internal structure of the process involved, the authors 

believe NESN approaches can provide appropriate and accurate solutions. As it has been 

pointed out in the literature, this novel method is easy, effective, with less computations 

[27]. NESN provides a total of 2𝑝 + 𝑝2 units; 𝑝 internal states; 𝑝 squares of the internal 

states; and 𝑝2 units gained by multiplying the internal states and squares of the internal 

states. This process will minimize the order of weight matrices radically. The weight 

matrices (𝑊, 𝑇, and 𝑉) are then applied to calculate the internal states of the reservoir. The 

vector of internal states is updated using  

𝒙(𝑡+1) 
= f (𝑊. 𝒙(𝑡) 

+ 𝑉. 𝒔(𝑡+1) + 𝑇. 𝒚(𝑡)) (1) 

and the readout vector is  

𝒙(𝑡+1) = [𝒙(𝑡+1)
 

 
 , 𝒙2

(𝑡+1)
 

  

 
, ∑ ∑ 𝒙𝑖1

 

(𝑡+1)
. 𝒙2

𝑖2

 

(𝑡+1)

𝑝

𝑖2=1

𝑝

𝑖1=1

] (2) 

where 𝒙2
(𝑡+1)
 

 
= [𝑥1(𝑡+1)

2 , 𝑥2(𝑡+1)

2 , … , 𝑥𝑝(𝑡+1)
2 ], p is the number of internal states ⌈

𝑁

𝑝+2
⌉, 𝒔 ∈

𝑅𝐾×1 is the input vector, 𝒙 ∈ 𝑅𝑝×1 is the internal state vector, 𝒙̅ ∈ 𝑅(𝑝2+2𝑝)×1 is the readout 

vector, and 𝒚 ∈ 𝑅𝐿×1 denotes the output states. 
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Figure 15. Schematic of NESN. 

 

The matrix 𝑊 ∈ 𝑅𝑝×𝑝 defines the internal state interconnections within the reservoir. The 

values in 𝑊  are fixed values generated randomly over a symmetric interval. 

𝑊 = (𝑤𝑖𝑗)
𝑝×𝑝

   ;  𝑤𝑖𝑗 ∈ (−1,1)(𝑖, 𝑗 = 1,2, … , 𝑝) (3) 

Matrix 𝑉 ∈ 𝑅𝑝×𝐾, containing randomly chosen fixed values, defines the connections of the 

input with the internal states of the reservoir.  

𝑉 = (𝑣𝑖𝑗)
𝑝×𝑘

   ; 𝑣𝑖𝑗 ∈ (−1,1)(𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝑘) (4) 

The output feedback matrix, 𝑇  ∈ 𝑅𝑝×𝐿 is 

𝑇 = (𝑡𝑖𝑗)
𝑝×𝐿

   ;  𝑡𝑖𝑗 ∈ (−1,1)(𝑖 = 1,2, … , 𝑝, 𝑗 = 1,2, … , 𝐿) (5) 

The output matrix, 𝑈 ∈ 𝑅𝐿×(𝑝2+2𝑝) is 

𝑈 = (𝑢𝑖𝑗)
𝐿×(𝑝2+2𝑝)

   ;  𝑢𝑖𝑗 ∈ (−1,1)(𝑖 = 1,2, … , 𝐿, 𝑗 = 1,2, … ,2𝑝 + 𝑝2) (6) 

where 𝐾 is the number of inputs, 𝑝 is the number of internal states, and 𝐿 is the number of 

outputs.  
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2.6.3 Simulation Results 

The performance of the NESN in presence of bad data is tested using climate (day length, 

precipitation, solar radiation, maximum and minimum temperature per day, and vapor 

pressure) and US Geological Survey streamflow data with a time interval of 24 hours used 

to train and test the models. For the purpose of testing and training, each data set has been 

divided into two separate parts with their lengths denoted as 𝐿𝑡𝑟𝑎𝑖𝑛 and 𝐿𝑡𝑒𝑠𝑡, respectively. 

To evaluate the performance of the proposed methods the MSE, root mean squared error 

(RMSE), normalized root-mean-square error (NRMSE), normalized mean-absolute error 

(NMAE), and mean absolute error (MAE) have been compared. The streamflow 

forecasting is carried out for 67 days ahead. 𝑙𝑡𝑟𝑎𝑖𝑛 = 200, 𝑙𝑡𝑒𝑠𝑡 = 30 with no overlap and 

with the test data starting immediately after the training data. Fig. 2 shows the prediction 

for 30 days ahead for NESN and ANFIS without bad data. 

 

Figure 16. Streamflow forecasting without bad data. 

 

To validate the performance of the proposed method in presence of bad data, severe 

changes have been made in the input data. The changes vary between 10% and 100% of 
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the initial values. Fig. 3 and Fig. 4 show the comparison between the streamflow 

forecasting with and without the bad data for NESN and ANFIS respectively. Table 1 also 

shows the error indices for different forecasting results shown in Fig. 3 and Fig. 4.  

It is shown that the NESN provides the MAE of 15 and 20 with and without bad data which 

are 80% and 76.7% below those for ANFIS, respectively. In case of RMSE, NESN gives 

the respective values of 21 and 26 which are well below the RMSE of 115 and 144 for 

ANFIS with and without bad data respectively. It is shown that the bad data provide uneven 

impact on the prediction. Therefore, the changes in the predicted results vary during 

different days.  

 

 

Figure 17. The performance of the NESN in presence of bad data in streamflow forecasting. 
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Figure 18. The performance of the ANFIS in presence of bad data in streamflow forecasting. 

 

Table 9. Error indices for ANFIS and NESN with and without bad data. 

 ANFIS ANFIS-Bad Data NESN NESN-Bad Data 

𝐌𝐒𝐄 13270 20687 449 690 

𝐑𝐌𝐒𝐄 115 144 21 26 

 𝐍𝐑𝐌𝐒𝐄  0.595 0.743 0.110 0.136 

𝐌𝐀𝐄 76 86 15 20 

𝐍𝐌𝐀𝐄 0.067 0.076 0.013 0.018 

 

2.6.4 Conclusion 

This paper addressed the task of predicting daily stream flows with bad data input for 

water resource purposes, comparing NESN to ANFIS. The purpose of this study was 

twofold: (1) we aimed to find an effective ANN procedure able to predict mean daily 

streamflow with bad data input, and (2) we highlighted pros and cons of the two different 

modelling approaches. Results confirm that NESN can stand the comparison with a ANFIS 

procedure, producing good performances if correctly trained and appropriately supplied 

with a good amount of well-chosen information. NESN provides significantly lower values 

than those given by ANFIS for MAE, NMAE, MSE, RMSE, and NRMSE. However this 
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kind of approaches suffer from physical interpretability, they can still be considered as a 

promising tool for predicting stream flow levels, if user is interested in missing data 

recovery and predicting the streamflow level . NESN seem to be a useful option; however, 

if a physical interpretation of the process is needed, then the ungenerous conceptual/ANN 

models would be preferred. Future work will run a sensitivity analysis to explore the most 

important affecting factor on streamflow forecasting in different circumstance of good data 

input and bad data input. 
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2.7 Sensitivity Analysis on Daily Streamflow Forecasting  

 

 

Abstract: The most forecasting methods still reproduce substantial uncertainty that 

increases with time and confines the predictability of observed events beyond a few weeks 

of lead time. Sensitivity analysis (SA) refers to the determination of the contributions every 

uncertain input data to the uncertainty in the outputs and is a fundamental approach to 

identify the most significant and sensitive parameters. It helps us understand complex 

hydrological models particularly for time-consuming distributed flood and streamflow 

forecasting models based on complicated theory with numerous parameters. SA is 

increasingly being used in environmental modelling for a variety of purposes, including 

uncertainty assessment, model calibration, diagnostic evaluation, dominant control 

analysis, and robust decision-making. This paper aims at delivering an introduction to SA 

for non-specialist readers, as well as practical advice with best practice examples from the 

literature. Moreover, as an example, two powerful forecasting engines called Nonlinear 

Echo State Network (NESN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) are 

tested.  It is shown that NESN is a powerful tool in streamflow forecasting which serves as 

a robust engine and does not need complex SA and precise observational data input. The 

SA is conducted under different climatic conditions. The simulation results demonstrate 

the efficiency of the NESN. The simulation results of the NESN compare favourably with 

ANFIS.  
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2.7.1 Introduction 

 

The most hydrological models suffer from uncertainties regarding input data, initial or 

boundary conditions, forcing data and model structure. These uncertainties may be caused 

by bad data entry along with poor knowledge of the hydrological process mechanism. 

Therefore, the model uncertainty is an important issue when developing a modelling 

system [1]. A useful task to overcome these uncertainties and enhance the model accuracy 

is to set the values of the model parameters in which the simulation data closely meet 

observation data. The common approach to achieve this purpose generally called 

Sensitivity Analysis (SA). SA investigates how the variation in the output of a numerical 

model can be attributed to variations of its input [2-4]. Within this broad definition, the 

level of complexity and purposes of SA vary quite significantly depending on the 

modelling domain and the specific application aims. Depending on whether output 

variability is obtained by changing the inputs around a reference value, or across their entire 

feasible space, SA is either referred to as local or global.    

 

In general, SA methods can be broadly categorized into two main classifications, local SA 

and global SA. The difference between these two approaches laid on their characteristics, 

scope and applicability [5]. Partial derivatives or finite differences are used as sensitivity 

indices in the context of local approaches [6]. The local approach does not consider any 

existing interaction between inputs. Because local SA consider model parameters as 

varying inputs and aim at assessing how their uncertainty impacts model performance, i.e. 

how model performance changes when moving away from some optimal or reference 
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parameter set. Therefore, when we estimate the model parameters, irrelevant or insensitive 

parameters must be locked at a fixed value to enable more effective SA. In contrast, Global 

SA applications may consider model parameters and other input factors of the simulation 

procedure, like the model's forcing data or its spatial resolution simultaneously [7]. Global 

SA is used for diverse purposes, like verification, supporting model calibration, diagnostic 

evaluation or simplification [8]; and supporting robust decision-making [9-10]. Besides the 

local and global SA, several SA methods such as qualitative or quantitative methods, 

refined or screening methods have been broadly used in different fields, like economics, 

complex engineering systems, social sciences, and the physics [11-12]. However, there are 

large differences among these methods in terms of their applicability, sampling schemes, 

algorithm structures. Given the extensive range of available SA methods, it is very 

imperative that a practitioner has a clear thoughtful of the appropriate approaches for a 

specific application. These approaches include choosing an efficient SA method, fitting the 

method to existing models, and presenting and construing the results.   In the context, 

different types of sensitivity indices can be applied, ranging from correlation trials between 

inputs and output to statistical properties of the output dispersal. However, analytical 

computation of all these indices is unbearable for the most models, sensitivity indices can 

usually be approximated from a sample of inputs and output evaluations [13]. More 

importantly, the limited data available for physical parameterization of the SA approaches 

required a substantial dependence on model calibration with a large amount of data input 

[14]. This dependence occasionally ended in parameterization schemes that are uneven 

with a physical characteristic of the hydrology of region [15]. Therefore, these limitations 

are expected to present considerable uncertainty into model projections, particularly in 
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situations where climatic or environmental conditions differ from those experienced in the 

calibration period. However, several studies relied on empirical relationships, like curve 

numbers and the Hargreaves equation, which developed for the moderate regions [16], 

there are a few studies from these regions to develop a modelling approach which does not 

rely on complex SA. The complex SA approaches are enabled by the constant progress in 

various area including computing capabilities, a better understanding of the physical 

processes and their relations throughout all compartments of the Earth system and the 

availability and use of more and better observational data which is scarce in the ungauged 

region. The present rapid development has commanded our systems to be ever more data 

hungry, thereby growths in model complexity. These computationally expensive 

developments are not always achievable; hence, model developers must be creative and 

regularly balance the costs and benefits of improving one aspect over another including 

increasing the complexity, different parameter selection or fluctuating the model's 

resolution [17]. However, the Various selection of the parameters will encourage a large 

variety of simulation results; while, considering that the most existing hydrological models 

hold complex structures with a large number of parameters, the optimization choice of 

parameters is a difficult and time-consuming task. Therefore, sensitivity analyses must be 

easily reproducible to be effective in supporting each new model, and the results should 

easily be applied to establish a ‘‘continuous learning process’’ [7]. In other words, a 

sensitivity analysis should be a simple, tractable tool for addressing a complex system. 

 

This is the motivation for the use of NESN-MP [18] (called NESN in this paper) engine in 

streamflow forecasting to guide future developments for accurate daily streamflow 
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prediction and is the basis for this paper [19]. The strategy of the proposed forecasting 

method is to move toward more accurate modelling and forecasting approaches, which 

dose need an accurate data entry, and beyond that, complex data pre- processing and 

Sensitivity Analysis. This paper addressed the robustness of the model proposed by 

Bahrami et.al in which the daily stream flows have been predicted in whether gauged or 

ungauged basins in different climatic and geographic region [20]. The input data consist of 

various time series forcing-data including daily precipitation, precipitation duration, solar 

radiation, temperature and vapor pressure as well as daily streamflow. The nonlinear 

relations between the internal states increase the learning capability, which results in high 

forecasting accuracy while ensuring that the quality of forecasting does not deteriorate 

significantly with time. Our goal is to verify the consistency of the model behaviour and to 

assess the robustness of the simulation results in uncertain inputs or model assumptions. 

 

The proposed forecasting method appears more than ever as a computer programming tool 

to establish priorities in improving accurate predictions. Its application is simple, as such 

it does need an accurate data entry or a large amount of data at the time, and beyond that, 

complex and computationally expensive data pre-processing along with SA. More 

importantly, This novel is a user-friendly model such that the user can run the model 

without prior knowledge about input interaction. This novel model is a powerful and 

valuable tool to support the examination of uncertainty and predictability across spatial and 

temporal scales. It can be used for various applications such as accurate and timely 

predictions of high and low daily streamflow events at either gauged or ungauged 

watershed without using statically regionalization up to 4 months ahead of the lead time. It 
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can provide truthful insights into the potential benefits of efforts to provide a forecasting 

system to managers with prior knowledge of their costs at various activities, including 

finding minimum data standards, determining model structure, creating priorities for 

updating forecasting systems, designing field operations. [21-22].  

 

2.7.2  Nonlinear Echo State Network 

NESN structure is shown in Fig. 1. In NESN, the networks consist of a reservoir including 

linear internal states and a readout including nonlinear functions of the internal state. The 

nonlinear relations between the internal states increase the learning capability, which 

results in high forecasting accuracy while ensuring that the quality of forecasting does not 

deteriorate significantly with time. Furthermore, the performance of the forecasting engine 

is improved by decreasing the number of the internal states, and the orders of the weight 

matrices which reduces the computational load considerably. Moreover, the proposed 

methods have simple design, far less computation, and do not require extensive training, 

parameter tuning, or complex optimization. The formulations are explained in detail in 

[18], and [23]. 
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Figure 19. Schematic of NESN-MP. 

 

2.7.3 Sensitivity Analysis for NESN and ANFIS 

 

The sensitivity analysis for two different areas with NESN and ANFIS is explained in this 

section. Two error indices including the MAE, and RMSE are used to show the sensitivity 

of the forecasting results for the forecasting engines for specific changes in the input data. 

The error indices are shown as following: 

 

RMSE =
1

𝑛𝑚𝑎𝑥 

√∑ [𝑦(𝑖) − 𝑦̂(𝑖)]2
𝑛𝑚𝑎𝑥

𝑖=1
 (1) 

MAE =
1

𝑛𝑚𝑎𝑥 

∑ |𝑦(𝑖) − 𝑦̂(𝑖)|

𝑛𝑚𝑎𝑥

𝑖=1

 

(2) 

where 𝒚 are the actual output values, 𝒚̂ is the predicted output, and 𝑛max is the number of 

sample points. The input data is set for three changes including the real data, 10 % and 

30% of the real data. Table 1 and 2 show the simulations results of sensitivity analysis 
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using ANFIS and NESN for three case studies. As shown in Table 1, the RMSE for case 

study I is calculated as 115 and 21 for ANFIS and NESN respectively. The RMSE for case 

study II and III are also calculated as 98 and 127 for ANFIS and 16 and 11 for NESN 

respectively. The changes in difference parameters including the precipitation, temperature 

and vapor pressure are applied for sensitivity analysis. 

 

It is shown that the NESN outperform ANFIS considerably. In case study I, the RMSE 

changes just by 4 in NESN compared to 51 in ANFIS when there is a 30% change in 

precipitation. The RMSE in second case study, changes just 1 in NESN while it increases 

by 13 in ANFIS when the temperature is increased by 10%. In case study III, as expected, 

NESN shows its robustness during changes while ANFIS could not track the real output in 

significant changes in the input data. The MAE for both forecasting engines are calculated 

based on the different changes in the input data. It is shown that NESN is a powerful tool 

in streamflow forecasting which helps as a robust engine and does not need complex SA 

and accurate observational data input. 
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Table 10. RMSE for sensitivity analysis 

  ANFIS NESN 

  Precipitation Temperature Vapor 

pressure 

Precipitation Temperature Vapor 

pressure 

Case 

Study I 

real 115 115 115 21 21 21 

10% 124 122 117 23 22 22 

30% 166 136 122 25 22 23 

Case 

Study II 

real 98 98 98 16 16 16 

10% 111 126 105 17 15 18 

30% 135 174 117 21 18 19 

Case 

Study III 

real 127 127 127 11 11 11 

10% 145 122 136 12 11 13 

30% 198 101 156 14 12 12 

 

Table 11. MAE for sensitivity analysis 

  ANFIS NESN 

  Precipitation Temperature Vapor 

pressure 

Precipitation Temperature Vapor 

pressure 

Case 

Study I 

real 76 76 76 15 15 15 

10% 81 80 79 17 16 16 

30% 88 82 82 21 17 14 

Case 

Study II 

real 54 54 54 11 11 11 

10% 59 62 59 12 12 11 

30% 72 68 63 14 13 13 

Case 

Study III 

real 83 83 83 18 18 18 

10% 88 87 79 19 16 19 

30% 94 90 78 22 19 21 
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2.7.4 Conclusion and Future Work 

   

Hydrological models regularly comprise uncertainties which have negative effects on the 

estimated results, thereby the model accuracy. Therefore, to acquire more accurate model 

estimates, we better to assess and improve models using different approaches like 

sensitivity analysis (SA), parameter optimization, operative management, design space 

exploration, and uncertainty analysis. 

 In the context, this paper aims to address an introduction on sensitivity analysis for 

streamflow forecasting.  

The strength of the NESN forecasting engine is also evaluated. The robustness and ease of 

operation in NESN method is high and appear even more than ever as a computer 

programming tool to establish priorities in improving Accurate predictions. This user-

friendly modelling approach does need an accurate data entry or large data entry at the 

time, or even computationally and complex expensive Sensitivity Analysis along with data 

pre-processing. the user can apply the model with no need of existing input interaction. 

This model is a valuable and powerful tool to support the uncertainty and predictability in 

various spatial and temporal scales (Shortridge et al., 2015). 

Moreover, this model robustness can contribute to biased estimates of water availability 

and uncertainty in forecasting sensitivity to potential future climate changes. Thorough 

consideration of this accuracy and robustness is important any time that models are used 

for water planning and management, but especially crucial when using this model to 

generate insights about future streamflow levels. By considering its predictive accuracy, 
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error structure, and uncertainties, this method can provide an empirical assessment of 

watershed behavior and generate useful insights for water management and planning. This 

makes them a valuable complement to physical models, particularly in data-scarce regions 

with little data available for model parameterization and warrants additional research into 

their development and application. Accuracy performance indicated that, for this case 

study, the use of more information and data did not improve the prediction performance. 

Our goal is to verify the consistency of the model behaviour and to assess the robustness 

of the simulation results to uncertain inputs or model assumptions. (Shortridge et al., 2015) 

 

The approach utilized through this study is extendable to similar water projects, which 

enable reservoir operators to save water as the major contributor for environmental 

demands, agricultural demands, and hydropower energy production. The developed 

modelling approach, along with accurate daily predicted values with no need for complex, 

expensive and time-consuming SA provided a sound basis for the optimal integrated 

operation of water shed in CONUS and led to minimum evaporation loss by choosing 

appropriate storage volumes in any related reservoirs resulting in minimum total surface 

area, and therefore minimum amount of evaporation. As such, the results would provide 

accurate prediction to model developers; especially those interested in using time series 

and artificial intelligence-based prediction models; those interested in applying intelligent 

models in real environments, particularly policy-makers on water and energy resources. 
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3 A Novel Flood Modelling Method Based On K-Nearest Neighbor Classifier 

Ensembled With Data Mining Algorithm 

 

*For the reference this part of study is based upon a cumulative research which has been done in 

collaboration with authors from other universities as follow: 

Dieu Tien Bui, Himan Shahabi, Khabat Khosravi ,Sepideh Bahrami, Kayvan Ghaderi, Binh Thai 

Pham, Ebrahim Omidvar,"Novel Hybrid Intelligence Approach of Bagging Ensemble Based 

on K-Nearest Neighbor Classifier for Flood Modelling", submitted to Remote sensing 

journal , Submission date: 22-May-2019 04:07AM (UTC+0800), Submission ID: 

1134028179 

 

Abstract 

Determining flood prone areas is one of the most important issues for manager in land and 

disaster managements. We in this study proposed new ensemble models of Bootstrap 

aggregating as a Meta classifier based on the K-Nearest Neighbor (KNN) functions 

including coarse, cosine, cubic and weighted as base classifiers to spatial prediction of 

flood at Haraz watershed in the northern province of Mazandaran, Iran. Although several 

ensemble models have been developed for this region; however, the KNN has not been 

earlier explored for flood ensemble modelling over the world. We first selected 10 

conditioning factors to spatial prediction of floods and then their prediction capability using 

relief-F attribute evaluation (RFAE) method were assessed. Models validation was 

performed using two statistical error-indexes and the area under the curve (AUC). Results 

concluded that the Bootstrap aggregating-cubicKNN ensemble model outperformed the 

other ensemble models. Additionally, this model (AUC=0.800) could more decrease the 

over-fitting and variance problems between the training dataset and eventually well 

enhance the prediction accuracy of cubicKNN model (AUC=0.660). Therefore, the 

Bootstrap aggregating-cubicKNN model can be used as a promising technique for the 

sustainable management of flood prone areas. 
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3.1 Introduction:  

Frequency of flood occurrence is one of the most perilous natural hazard that has increased 

from pats two decade by over 40% due to deforestation, land-use changes, climate change, 

poor watershed management and so on (Hirabayashi et al., 2013; Khosravi et al., 2016a; 

Khosravi et al., 2018b). Flood is defined as overflow of the resulting stream-flow from 

heavy rainfall which finally cover flood plain, and even areas that was not covered by water 

during a normal condition (Kron, 2002). Flood occurrence has a direct and in-direct loses 

and can cause huge damages on life and property including transportation, agricultural 

sector and garden areas, environmental ecosystem, pollution of surface water through 

transfer of chemicals and other hazardous industrial wastes  and can spread all sort of 

epidemic disease (Chapi et al., 2017; Messner,Meyer, 2006; Sarhadi et al., 2012; Yu et al., 

2013). It has been stated that annually more than 20,000 lives all over the world are lost 

(Tien Bui et al., 2018) for instance from 1995 to 2015 approximately 109 million people 

injured by flood while the direct damage was calculated about USD 75 billion per year 

(Alfieri et al., 2017). 

Many Asian countries like Iran do not apart from annual heavy flood. The heavy and 

divesting flood events are happening every year in northern part of Iran where has been 

considered as a flood event hot spot. Various flood events  have been distinguished in the 

two northern province of Mazandaran and Golestan; such as Agh Ghala (2019), Gonbad-
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E-Kavous (2019), Noshahr (2012), Neka (2013), Behshahr (2013), Sari City (2015, 2019). 

Moreover there was a sequence a destructive flood event which happened from March 25 

to April 8, 2019, in Iran and affected more than 12 provinces all over the country. The most 

effective parameter which made the event even more destructive was intense rainfall with 

short duration, poor watershed management and flood warning systems.  

Flood warning systems can use forecasts of flood generated by physically-based models to 

decide about whether floods warnings must be issued to the public or whether previous 

warnings must be retracted. The physically-based models only can predict discharge 

therefore their produced map will still remain as a big challenge and weakness to these 

models (Tehrany et al., 2014). However, it has been shown that geographic Information 

System (GIS) and Remote Sensing (RS) have brought a new insight to the hydrology 

science and they can tackle the challenges of flood mapping. For instance, many different 

data-driven models have been applied to produce the flood susceptibility map such as 

bivariate models of frequency ratio (Khosravi et al., 2016a; Rahmati et al., 2016a), wrights 

of evidence (Tehrany et al., 2014), Shannon entropy (Khosravi et al., 2016b), multivariate 

models including logistic regression (Al-Juaidi et al., 2018; Pradhan, 2010) or Multi-

Criteria Decision-Making (MCDM) such as Analytic Hierarchy Process (AHP) (De 

Brito,Evers, 2015; Kazakis et al., 2015; Rahmati et al., 2016b), Analytic Network Process 

(ANP) (de Brito et al., 2018),Vlse Kriterijuska Optamizacija I Komoromisno Resenje 

(VIKOR) and Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS)(Khosravi et al., 2019). Flood is a highly non-linear process therefore its 

modeling in a watershed scale is complex and can not be predicted using these simple and 
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non-linear models. However there are some other methods such as AHP which are 

nonlinear but their result are not reliable as they  require an expert knowledge which can 

produce high degree of bias and error (Khosravi et al., 2018c).  

Recently various machine learning and data mining algorithms for the flood forecasting  

have been studied. These approaches include: logistic model tree (Chapi et al., 2017), Nave 

bayes tree (NBT) (Khosravi et al., 2018b), support vector machine (SVM) (Khosravi et al., 

2018b) and hybrid of adaptive neuro-fuzzy inference system (ANFIS) with cultural 

algorithm and bees algorithm (Tien Bui et al., 2018) or with imperialistic competitive 

algorithm (ICA) and firefly algorithm (FA) (Bui et al., 2018).  

Although these algorithms showed a reasonable prediction power in the prediction of flood 

susceptibility mapping, but Khosravi et al. (2018c) (Khosravi et al., 2018a) stated that there 

isn’t a universal guideline to evaluate a model performance in different condition. While 

every different model have advantages and disadvantages, in a different condition, 

dissimilar models must be applied and finally the best performance has to be selected for 

the future analysis. Although several ensemble models have been developed to overcome 

this drawbacks, to the best knowledge of authors, the K nearest neighbor (KNN) has not 

been studied yet for flood ensemble modelling. In the present study two new models of 

KNN (Coarse KNN, Cosine KNN, Cubic KNN and Weighted KNN) and Bootstrap 

aggregating tree models and also their hybrid model have been applied. The main 

contribution of the present study is a novel method of KNN, Bootstrap aggregating and 

their hybrid ensemble which have not been investigated so for in the area of natural hazards, 

especially flood modeling.  



101 
 

 
 

3.2 Description of Study Area 

Haraz watershed located in northern part of Iran and in Mazandaran province, has been 

indicated as one of the most hazardous flood prone area as shown in figure 1. It is affected 

by destructive floods at the area of 4015 km2 every year. The watershed Topographic high 

points is between 51 43′to 52 36′E and 35 45 to 36°22 N. It has been located in 

extremely mountainous area where the altitude varies from 328 m to 5595 m. The main 

climate of the study area has been reported as moderate cold climate in fall/winter and  mild 

humid climate in spring/summer. The mean annual rainfall is about 430 mm. The main 

land cover is Mesozoic formation (about 56.4% of the study area) and rangeland shielded 

most of the study area (92%).  
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Figure 20. Floods location map of Haraz Catchment in Iran 

 

3.2.1 Data Acquisition:  

- Flood Inventory Map 

Flood inundation locations in 2004, 2008, and 2012 were recorded using field surveys and 

available documents. A flood inundation inventory map was prepared for the study area 

which includes 201 flood points. This data set was randomly divided into two groups: 

training (70%, 141 flood points) and validation (30%, 60 flood points). In flood 
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susceptibility modelling, both flooded and non-flooded points are needed. According to the 

literature, an equal balance 1:1 (i.e., 201 non-flood points) was considered to select non-

flood points (Rahmati,Pourghasemi, 2017; Tehrany et al., 2014). 

- Flood Conditioning Factors 

However, there are no universal guidelines to select flood-affecting factors, in flood 

susceptibility modelling the different flood conditioning factors should be considred 

(Tehrany et al., 2014). According to the literature, 10 flood conditioning factors were 

selected: altitude, slope, curvature, stream power index (SPI), topographic wetness index 

(TWI), lithology, rainfall, land use, river density, and distance to river (Rahmati et al., 

2016a). A digital elevation model (DEM) of the study area was extracted from the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). All topo-

hydrological factors were produced using the DEM file. Land use and lithology maps of 

the study area were obtained from Iranian Department of Water Resources Management 

(IDWRM). All flood conditioning factors were generated with a spatial resolution of 30 m 

and then were classified according to the previous studies which have done in this study 

area (Bui et al., 2018) (Table 1). 

 

Table 12. Flood database for flood hazard mapping  

Factor 
Variable 

type 
Format Description 

Altitude 
Independent 

variable 
Grid 

Altitude layer was extracted from a digital elevation 

model (DEM) and can characterize topography-

related processes. 
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Slope 
Independent 

variable 
Grid 

Slope layer was produced using the DEM layer. 

Slope plays an important role in hydrological factors 

such as flooding. 

Curvature 
Independent 

variable 
Grid 

Curvature layer was generated based on the DEM 

layer. It can influence on flood inundation situation 

in large scale. 

Stream power 

index (SPI) 

Independent 

variable 
Grid 

SPI factor was created based on topographical data 

which directly reflects the flood potential in a given 

pixel.  

Topographic 

wetness index 

(TWI) 

Independent 

variable 
Grid 

TWI is a topo-hydrological factor which is produced 

based on the DEM layer. It is commonly used for 

describing hydrological behavior and soil 

water/wetness conditions at the catchment scale. 

Lithology 
Independent 

variable 
Grid 

Lithology layer was produced based on geological 

database of the Geological Surveys of Iran (GSI). It 

significantly affects natural disasters. 

Rainfall 
Independent 

variable 
Grid 

Rainfall layer was generated based on 

meteorological databases and it can significantly 

influence on flooding.  

Land use 
Independent 

variable 
Polygon 

Land use layer was extracted the land use map of 

Iran. It can clearly reflect the role of human 

activities to use the land. This factor shows the 

potential of infiltration.  

River density 
Independent 

variable 
Grid 

River density has an important role in exhausting 

surface run-off in watersheds. Therefore, this factor 

has a conceptual relationship with flood inundation. 

Distance to 

river 

Independent 

variable 
Grid 

The distance to river is a common factor to analyze 

the flood potential of each point in a given 

watershed. This factor has useful information related 

to the flood hazard and vulnerability. 
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Flooded 

locations 

Dependent 

variable 
Point 

Flooded points were recorded in this watershed 

using the GPS device. These points include unique 

information regarding flood potential of each pixel. 

 

3.3 Methodology 

3.3.1 K-Nearest Neighbor Pattern Classification (KNN) : 

It is a non-parametric lazy learning algorithm which does not make any assumptions on the 

primary data set. This matters, when modeling hydrological process; such as flood and 

stream flow where there is little or no prior knowledge about the data distribution which 

maketheir generation process highly nonlinear (Bahrami,Wigand; Wettschereck et al., 

1997). As in the real world, most of the existing practical data set does not conform the 

distinctive theoretical assumptions like linear regression models which has been vastly 

used  (Bahrami,Wigand). K-nearest neighbor stores all contributing cases and classify new 

cases based on a similarity measure called distance function. Then the case will be 

classified by a majority votes for its neighbor classes. Thereafter, it would be allocated to 

the greatest common class between the existing K nearest neighbors (Wu et al., 2008). The 

optimal choice of K depends on the metric. However, a general rule of thumb which is 

square root of the number of samples can be applied to choose K value, it makes the 

parameter tuning difficult for diverse applications. The K value depends on the chosen data 

set and won’t be same in various data set even if there is same conceptual model. Based on 

an empirical rule-of-thumb introduced by the "Pattern Classification" book by Dude (Duda 

et al., 2012; Guo et al., 2003), the value of K is equal to the square root of the number of 

occurrences(general rule of thumb). Although there are some other popular methods such 
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as K-fold cross validation (CV) or Leave-one-out cross validation (LOOCV) and 

bootstrapping, the K-Fold Cross Validation is preferred amongst all for the following 

reasons (Liu et al., 2010): 

i. There are typically only a few probable choices of K (e.g. from 3 - 10 or 50 - 100);  

ii. The model performance is slightly intonation  

In this algorithm, the training phase is short and fast. All the training data set are required 

during the testing phase to prevent any task of generalization. However, this causes the 

training phase to be time and memory consuming, it helps to make the decision based on 

the best subset of the entire training data set.  This method has various application in diverse 

problems such as large data classification, pattern recognition, ranking models, 

computational geometry and vision to proteins etc (He,Wang, 2007).  

 This algorithm applies a vector as an input with the k training dataset. Then it uses the 

most common class to classify the k nearest neighbors. During The training phase, the 

neighbors are defined based on their distance from the test dataset and a in the testing phase 

the class of test dataset are determined [4]. Then to identify the best k-NN algorithm 

performance, the number of neighbors (K) can be reformed. There are three k-NN 

classifiers introduced by MATLAB that are categorized based on different distances which 

work as follows (Hu et al., 2016): 

Coarse k-NN: In this method the number of neighbors is 100 and it is defined as the nearest 

neighbor between all other classes.  

Cosine k-NN: In this method the cosine distance metric is defined as a nearest neighbor 

classifier. It is generally used as a metric for measuring distance when the magnitude of 
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the vectors does not matter. The following equation is applied to measure the distance 

between two vectors u and v (Hu et al., 2016):  

                           1 −
𝑢.𝑣

|𝑢|.|𝑣|′
                                                                                               eq-1 

Cubic k-NN: In this method the number of neighbors are 10 and the cubic distance metric 

(Wu et al., 2008) is defined as a nearest neighbor classifier. The following equation is 

applied to measure the distance between two n-dimensional vectors u and v: 

 

                       √∑ |𝑢𝑖 − 𝑣𝑖|𝑛
𝑖=1

3
                                                                                         eq-2 

 

Weighted k-NN: In this method the number of neighbors is 10 and a distance weight is 

defined as a nearest neighbor classifier. The following equation is applied to measure the 

weighted Euclidean distance between two n-dimensional vectors u and v:  

                        √∑ 𝑤𝑖(𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1                                                                                         eq-

3 

Where 0 < 𝑤𝑖  < 1 and ∑ 𝑤𝑖 = 1𝑛
𝑖=1 .  

 

 

3.3.2 Bagged Tree Ensemble Algorithm 

To produce better predictive performance, Ensemble methods applies various decision 

trees instead of employing only one decision tree. This will produce a strong learner as it 

combines the weak learners. Two most common techniques to perform ensemble models 

are (Dietterich, 2000): 
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• Bootstrap aggregating  

• Boosting 

 For producing strong learner, the weak learner’s prediction results will be combined via 

methods as fallows (Bauer,Kohavi, 1999): 

• average/ weighted average 

• higher vote prediction Selection 

Bootstrap aggregating (Bootstrap Aggregation) has been designed to improve the precision 

and constancy of machine learning algorithms used in regression and statistical 

classification.  The task of Bootstrap aggregating is to decrease variance while retaining 

the bias of a decision tree and prevent over-fitting problem. The Bootstrap aggregating 

Tree can randomly generate multiple sets of input data from training samples with 

replacement (Maclin,Opitz, 1997). Then the chosen subset data is used to train the assigned 

trees and will generate various models. Subsequently the average of all the predictions from 

these trees are used to make the final decision with higher robustness degree. In the context, 

the accuracy of a single tree will increase by using multiple copies of the trained subset of 

data.  

Boosting is a useful ensemble model in high bias condition. In this technique, predictors 

are trained sequentially with a simple early training models and then the data are analyzed 

for errors. At every step, the net error is calculated from the prior successive decision tree 

(Maclin,Opitz, 1997). 

In high bias dataset, when an input is not well classified by a hypothesis, its weight is 

amplified so that next hypothesis will classify it properly.  
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The concept of a heuristic originates from the perceptive science domain to make a 

judgment. A design heuristic is a swift that boosts exploration of a various ideas during 

product ideation (e.g. idea generation) to treasure a balance in complicated specific 

instance (train dataset). To find a balance, the averages of various subset selections of 

observations (several thumb rules) are extracted out from the original dataset. 

 In the current study, to categorize the dataset into two probable classes, an algorithm of a 

continues classifiers ( mH ,  m 1, , M=   ) Hm :  Dm  R→  on the domain of a training set 

(Flood collection) D, has been generated. The generated classifiers are then grouped into a 

composite classifier which its resulting prediction is specified as a weighted grouping of 

individual classifier as fallow: 

𝐻(𝑑𝑖) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑚𝐻𝑚(𝑑𝑖))
𝑀

𝑚=1
                                                                                           eq-

4 

The eq-4 describes a voting procedure. By the given function, an example 𝑑𝑖 is classified 

based on the majority of classifiers’ vote (Giacinto,Roli, 2001; Kamali et al., 2014). 

Parameters m ,  m 1, ,  M =   are identified to indicate the impact of more accurate 

classifiers on the final result versus less accurate classifiers. The 𝐻𝑚 are called weak 

classifiers as their accuracy is somehow higher than the accuracy of other random 

classification methods (Waske et al., 2010).  

In the presented study the following Bootstrap aggregating algorithm has been 

experimented (Liu et al., 2014): 

1. Training set D initialization  

2.  Range selection for m = 1, ..., M 
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2.1. Random selection of the set D to create a new set 𝐷𝑚 

2.2. Machine-learning application on the base of 𝐷𝑚to train a classifier Hm :  Dm  R→ . 

3. Creation of composite classifier H from mH ,  m 1, , M=   

3.1. 𝑑𝑖 classification based on 𝑐𝑖 classes, depending on the number of votes gained from 

𝐻𝑚. 

 𝐻(𝑑𝑖,𝑐𝑖) = 𝑠𝑖𝑔𝑛(∑ 𝛼𝑚𝐻𝑚(𝑑𝑖,𝑐𝑖))
𝑀

𝑚=1
                                                                               eq-

5                                     

Note that to achieve a better performance and decrease the classification error, the 𝐻𝑚  

values can be reformed, while 𝛼𝑚 values are persistent. 

 

3.3.3 Flood Factors Selection Using Relief-F Attribute Evaluation (RFAE) 

Technique 

Factor/feature selection in the supervised machine learning algorithms can detect the best 

factors to accurately classify the example of data and also enhance the efficiency of the 

training process (Shirzadi et al., 2018). Indeed, the main aim of the feature selection is to 

enhance learning efficiency of modelling process, robustness of predictive accuracy, 

reducing complexity, noise and over-fitting problems by eliminating the factors that are 

irrelevant or they have no predictive information (Ramaswami,Bhaskaran, 2009). There 

are some methods and techniques for feature selection that all of them are categorized based 

on the distance, information, dependency, consistency and classifier error rate measures 

(Dash,Liu, 1997). In this study we selected a distance based-measure relief, attribute 
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evaluation (RAE) technique, to check the role of conditioning factors on the flood 

classification performance.  

The RAE is one of the distance-based attribute/factor ranking methods which was 

introduced by Kira and Rendell (1992)(Kira,Rendell, 1992), and then it was enhanced by 

(Kononenko, 1994)Kononenko (1994) (Hall,Holmes, 2002)(Hall, and Holmes, 2003). A 

main idea of RAE is to compute the quality of each attribute based on the distance between 

the instance and its nearest neighbors. Firstly, instances in the training dataset were 

randomly selected (Ri in line 3). Then, relief searches for k of its nearest neighbors from 

the same class, and rom each of the different classes, called nearest hit Hj (line 4), and 

nearest miss Mj (C), lines 4 and 6, respectively. The RAE depending on the average values 

of Ri, Hj, and Mj (C) (lines 7, 8 and 9), updates the quality estimation W[A] for all 

attributes. The quality estimation W [A] will be decreased when instances Ri, and Hj have 

different values of the attribute A. as a result, the attribute A will be separated into two 

instances with the same class values which this result is desired. Unlike, if Ri and Mj (C) 

have different values of the attribute A resulting in separating attribute A into two instances 

with different class values. The prior probability for each class of the misses, P (C), is 

calculated based on the training dataset. The P (C) is a symmetric in which it ranges from 

0 and 1 for hits and misses. When the class of hits is missing in the sum, each probability 

weight divided with factor 1- P (class (Ri)). It depicts that the sum of probabilities for 

missing class. This process will be repeated m times. Figure 2 show a pseudo code of relief 

algorithm (Robnik-Šikonja,Kononenko, 2003). 
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 

Algorithm ReliefF

Input: for each training instance a vector of attribute values and the class value

Output: the vector W of estimations of the qualities of attributes

1. set all weights W A : = 0.0;

2. for

i

j

j

 i: = 1 to m do begin

3.      randomly select an instance R ;

4.      find k nearest hits H ;

5.      for each class C class (Ri) do

6.              from class C find k nearest misses M (C);

7. for A:= 1 t



    ( ) ( )i i j

1 ( ) 1

o a do          

( )
8.   W A : = W A  – diff A, R , H /(m.k) + [ diff A, R , M (C) /(m.k);

1 ( ( ))

9.      end;                   

]

  

i

k k

j

j C class R ji

P C

P class R=  =−
  

Figure 2. Pseudo cod of the basic relief-F algorithm 

3.3.4 Evaluation and Comparison 

The performance of a new developed model should be tested and evaluated to ensure the 

performance and to propose the model for other regions (Bui et al., 2018). To check the 

performance of the models there some metrics that all of them are computed based on the 

different between observed and estimated values, defined as a forecasting error (Tien Bui 

et al., 2018). In this study, for this purpose we used of MSE, RMSE and AUC as statistical 

metrics.     
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where 
.estF , .obsF  and n  are flood estimated, flood observed (actual floods) and number of floods 

for modelling process.   

In addition to the MSE and RMSE, we used of ROC and AUC as a standard tool for more validation 

of the prediction capability of the models which has been used in some flood modelling studies 

(Ahmadlou et al., 2018; Bui et al., 2018; Chapi et al., 2017; Shafizadeh-Moghadam et al., 2018). It 

is plotted by two statistical metrics including specificity on the x-axis sensitivity on the y-axis 

(Shirzadi et al., 2019). Specificity and sensitivity are defined as the number of incorrectly and 

correctly floods classified, respectively (Hong et al., 2018). The AUC can be computed as follows: 

TP TN
AUC

M N

+
=

+

å å                                                                                                                                         (3) 

where TP (true positive) and TN (true negative) are the number of flood correctly classified pixels 

as floods and non-flood pixels, respectively. M and N are the number of total flood and non-flood 

pixels, respectively (Shahabi,Hashim, 2015). 
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3.4 Result and Analysis:  

3.4.1 Selection the Most Important Factors for Flood Modelling 

The results of factor selection by RFAE technique were shown in Figure 3. The average 

merit (AM) values ranging between 0.002 and 0.198 indicated all conditioning factors were 

qualified to flood susceptibility modelling (AM > 0). Distance to river with the highest 

average merit (AM = 0.198) was expectantly the most important factor. It is because most 

of flood points in the study area were naturally located beside the river network. It is 

followed by slope (AM = 0.186), curvature (AM = 0.160), drainage density (AM = 0.150), 

elevation (AM = 0.135), TWI (AM = 0.124), lithology (AM = 0.059), rainfall (AM = 

0.053), SPI (AM = 0.043) and land use (AM = 0.002). 

 

Figure 21. Flood important factors selection by relief-F attribute evaluation (RFAE) 

technique  
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3.4.2 Flood Modelling Process 

The intelligence approaches of Bootstrap aggregating tree and modified k-nearest neighbor 

classifiers (Cubic-KNN, Coarse-KNN, Cosine-KNN and Weighted-KNN) were performed 

to flood modelling. The models were trained and tested with the ratio of 70 and 30 percent 

of dataset, respectively. The accuracy criteria's of models were calculated according to 

comparing between the training/test dataset as a target and predicted flood pixels as the 

output. Figurers 4-… shows the targets and outputs, and some accuracy criteria such as 

MSE, RMSE, mean and standard deviation (SD) in the training and test steps. In the 

training step, the MSE of Cubic-KNN, Coarse-KNN, Cosine-KNN, Weighted-KNN and 

Bagg-Tree models was 0.0568, 0.0575, 0.0504, 0.000 and 0.0072, respectively, while the 

RMSE was 0.2383, 0.2399, 0.2244, 0.0000 and 0.0848, respectively. Accordingly, The 

Weighted-KNN had the best performance in the training step (Mean = 0 and SD = 0). In 

the test step, the MSE and RMSE of Cubic-KNN, Coarse-KNN, Cosine-KNN, Weighted-

KNN and Bagg-Tree models were respectively 0.0396 and 0.1989, 0.0682 and 0.2611, 

0.0682 and 0.2611, 0.0568 and 0.2384, and 0.0454 and 0.2132. These results suggested the 

Cubic-KNN as best performed model in the test step (Mean = -0.0324 and SD = 0.1966).  
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 Figure 22. Modelling process using Cubic-KNN:  
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 2 
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Figure 23. Modelling process using Cubic-KNN 

  

A comparative assessment between the proposed models was considered to evaluate the 

accuracy of KNN classifier functions in the modelling process. Table 1 present the optimal 

parameters for the best accuracy of these models. The results indicated that the Cubic-KNN 

model has the highest accuracy value (96.4%), following by the Cosine-KNN (92.8%), 

Weighted-KNN (92.1.4%) and Coarse-KNN (92.1%) models. 

Furthermore, the hybrid models of Bootstrap aggregating Tree based on KNN classifiers 

were built, and their optimal parameters values were obtained based on the highest 

accuracy. Table 2 showed the optimum parameter values of hybrid models. Comparison of 
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the accuracy was showed that the highest accuracy was gained for the hybrid model of 

Bagg Tree-Coarse KNN (98.6%), followed by Bagg Tree -Weighted KNN (97.1%), Bagg 

Tree-Cosine KNN (96.6%) and BaggTree -Cubic KNN (94.3%), respectively. 

Table 13.KNN functions used for spatial prediction of flood in the modeling process 

Title Description 

Classifier Preset Coarse KNN Cosine KNN Cubic KNN Weighted KNN 

Accuracy 92.1% 92.8% 96.4% 92.1% 

Distance metric Euclidean Cosine 
Minkowski 

(cubic) 
metric Euclidean 

Distance weight 
Equal 

Standardize 

Equal 

Standardize 

Equal 

Standardize 

weight Squared 

inverse Standardize 

Number of 

neighbors 
100 10 10 10 

Prediction speed 

(obs/sec) 
~27000 ~22000 ~15000 ~29000 

Time Training 

(Secs) 
0.255 0.282 0.293 0.211 

       

Table 14.BagTree ensemble on KNN and its functions used for spatial prediction of flood 

in the modeling process 
Title Description 

Classifier Preset 
BaggTree-Coarse 

KNN 

BaggTree-

Cosine KNN 

BaggTree -

Cubic KNN 

BaggTree -Weighted 

KNN 

Accuracy 98.6% 96.6% 94.3% 97.1% 

Learner type Decision tree Decision tree Decision tree Decision tree 

Number of learners 30 30 30 30 

Ensemble method Bag Bag Bag Bag 

Prediction speed 

(obs/sec) 
~2200 ~3900 ~5100 ~5800 

Time Training (Secs) 0.375 0.737 0.693 0.761 
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3.4.3 Development of Flood Susceptibility Maps 

The hybrid models were performed for calculation of the flood susceptibility index 

(FSI) which was assigned to all pixels of the study area to create flood susceptibility 

maps. Each pixel of the study area was firstly assigned to a unique FSI; then, these 

indices were exported in Arc GIS 10.3 format and used to provide the final flood 

susceptibility maps. Calculated FSI's were classified in two classes of susceptibility 

including non-flood area and flood area. The flood susceptibility maps of study area 

according to the Bootstrap aggregating Tree Ensemble Based on Modified K-Nearest 

Neighbor Classifiers are shown in Figure 24 a-h. The maps illustrated that flood 

susceptible areas in the basin are located around the river network with lower elevation 

and slope. In comparison to the nearest neighbor models, the hybrid models predicted 

a higher area of basin as flood susceptible, so that, the most portion of study area were 

predicted as flood susceptible by hybrid Bagged Tree-Cubic KNN model (Figure 24-

b).  
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Figure 24. Flood susceptibility maps in the basin extracted from Cubic-KNN (a), Bagg 

Tree-Cubic KNN (b), Coarse-KNN (c), Bagg Tree-Coarse-KNN (d), Cosine-KNN (e), 

Bagg Tree-Cosine-KNN (f), Weighted-KNN (g), and Bagg Tree-Weighted-KNN (h) 

3.4.4 Evaluation and Comparison 

The performance of new hybrid of Bootstrap aggregating Tree based on KNN models in 

prediction of flood susceptibility were compared with KNN models using area under 

receiver operating characteristic (AUROC) curve. Figure 25 presented the ROC curves 

which were produced based on datasets of flood susceptibility maps in training and test 

steps. The result of ROC curves for KNN classifiers shows the Coarse-KNN model is the 

most suitable model in training and test steps with AUC of 0.795 and 0.790, respectively, 

 1 
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following by the Weighted-KNN (AUC = 0.719 and 0.710), Cosine-KNN (AUC = 0.692 

and 0.690), and  

 

the Cubic-KNN (AUC = 0.662 and 0.660) model, respectively (Figures25- a & b). The 

validation of hybrid models by ROC revealed that Bagg Tree-Cubic KNN model had 

highest performance in both of training and test steps with the AUC of 0.811 and 0.800, 

respectively. It is followed by Bagg Tree-Coarse KNN (AUC = 0.762 and 0.740), Bagg 

Tree-Weighted KNN (AUC = 0.722 and 0.710), and Bagg Tree-Cosine KNN (AUC = 

0.659 and 0.640), respectively (Figures 25  c & d). Therefore, the hybrid models had higher 

performance comparing to KNN classifier models. Thus, the Bagg Tree-Cubic KNN can 

be used as a desirable approach to flood susceptibility modelling. According to 

classification of (Kantardzic, 2011)Kantardzic (2011) the Bagg Tree-Cubic KNN model 

showed good performance, while the others performed moderate. 
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Figure 25. flood models evaluation using AUC: (a) KNN-individual classifiers by training 

dataset, (b) KNN-individual classifiers by validation dataset, (c) BaggTree-KNN 

ensembles by training dataset, and (d) BaggTree-KNN ensembles by validation dataset 
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3.5 Discussion and Conclusion  

Flood mapping is a useful tool provided conductive information for decision-makers and 

hazard disaster management in flood-prone areas. In the modelling process by machine 

learning algorithms, there is still a challenge to specify an algorithm/classifier with 

maximum attainable accuracy for a given dataset due to data complexity (Fernández-

Delgado et al., 2014). On the other hand, due to learner’s limitation and also data limitation 

some classifiers should be tested and evaluated for achieving a reliable result. Therefore, 

developing a new model with a high prediction accuracy based on the training dataset in 

each study area is the main goal of researchers. Basically, in this research, we proposed a 

new intelligent hybrid model (BaggTree -Cubic KNN) for modeling flood, which is a 

combination of Bootstrap aggregating ensemble technique and the four functions of KNN 

classifier. The model was tested at Haraz watershed, the Mazandaran province, Iran. Ten 

flood conditioning factors, including slope angle, elevation, curvature, stream power index 

(SPI), topographic wetness index (TWI), land use, rainfall, drainage density and distance 

to the river were selected for flood modelling. The information gain ratio (IGR) was used 

to optimize the most important conditioning factors for the flood model. The result of IGR 

showed that all the factors were significant in the model training; however, distance to a 

river was the most important factor, followed by slope, curvature. The obtained result is in 

agreement with (Ahmadlou et al., 2018; Bui et al., 2018; Khosravi et al., 2018b; 

Shafizadeh-Moghadam et al., 2018). On the other hand, most of floods in the study area 

taken place during the heavy rainfall and as a result of overbanking the rivers. This process 

leads to inundation the areas adjacent the rivers, flood plains, during the heavy rainfall 

where are distinguished in the prepared flood susceptibility maps. 
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The KNN as one of the most attended neighborhood classifiers belong to the weak 

classifiers in which they are very simple and highly efficient in some fields of studies 

(Hassanat, 2014). It is remarkable that memory requirement and time complexity are the 

main limitations of performance ability of KNN classier that they completely depends on 

every example in the training set (Hassanat et al., 2014). To tackle these limitations and 

enhancing the performance of KNN, we used of Bootstrap aggregating Meta classifier. The 

combination of the Bootstrap aggregating ensemble technique and the KNN classifier can 

provide a solution to build a flood model. It has been shown that, the area under the receiver 

operating characteristic curve (AUC=0.800) value of the proposed BaggTree -CubicKNN 

model has the best performance. It could significantly enhance the prediction accuracy of 

CubicKNN classifier as a base classifier. Chapi et al., (2017) tested and evaluated the 

Bootstrap aggregating ensemble to improve the power prediction of logistic model tree 

(LMT) classifier as a new proposed model, Bootstrap aggregating-LMT, for flood mapping 

also at Haraz watershed. Their result concluded that the Bootstrap aggregating well 

enhanced the power prediction of base classifier, LMT, during the flood modelling. 

General speaking, the ensemble model can outperform the basic classifier because the 

ensemble model integrates the advantage of each classifier (Tien Bui et al. 2016; Shirzadi 

et al. 2018; Dou et al. 2019). The novel proposed model is a better alternative for flood 

model, thus, it is recommended as an appropriate method for flood hazard disaster 

management.  

Assessing flood model is a complex procedure, which is linked with various uncertainties. 

Whereas machine learning approaches are able to proficiently handle this uncertainty 

problem, which requires historical flood spatial distribution inventory maps. The proposed 
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ML model can enable decision-makers for a less-expensive early field survey of the district 

they are meant to cope with high reliability. Thus, the achievement of this research could 

assist the managers to recognize the flood-prone zones in watershed more accurately. After 

the assessment of the frequent susceptible areas, decision-managers could prepare more 

accurate and more useful data related to these regions (such as rainfall and river data) using 

proposed models to produce accurate flood maps for mitigating further damage. The 

produced flood maps are fundamental for further analyses, like hazard and risk disaster 

management and mapping. The model can be used in other parts of the world. 
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Area Under the Curve (AUC) was calculated to obtain accuracy of the flood susceptibility 

maps prepared by success rates (the training data) and prediction rates (validation 

data). The AUC results indicated that the EBF, EBF from LR, EBF-LR (enter), and EBF-

LR (stepwise) success rates were 94.61%, 67.94%, 86.45%, and 56.31%, respectively, and 

the prediction rates were 94.55%, 66.41%, 83.19%, and 52.98%. The results showed that 

the EBF model had the highest accuracy in predicting the flood susceptibility map, in which 

14% of the total areas were located in high and very high susceptibility classes and 62% 

were located in low and very low susceptibility classes. These results can be used for the 

planning and management of areas vulnerable to floods in order to prevent flood-induced 

damage; the results may also be useful for natural disaster assessment. 

 

 

4.1 Introduction 

A natural disaster is a major adverse event resulting from natural processes of the earth 

including floods, hurricanes, tornadoes, volcanic eruptions, earthquakes,  tsunamis etc. A 

natural disaster can cause loss of life or property damage and typically leaves some 

economic damage in its wake, the severity of which depends on the affected 

population's resilience, or ability to recover and also on the infrastructure available. Among 

natural disasters, flooding is considered to be one of the most devastating (Youssef et al. 

2011), and an accurate assessment of its risks is hampered by a lack of data and knowledge 

about flood losses at different scales (Grahn and Nyberg 2017). During the course of a 

heavy rainfall event, the amount of flow discharge in a river will increase rapidly and the 

water level will exude from its normal bed, covering the flood plain and the surrounding 

https://en.wikipedia.org/wiki/Disaster
https://en.wikipedia.org/wiki/Natural_hazard
https://en.wikipedia.org/wiki/Flood
https://en.wikipedia.org/wiki/Hurricane
https://en.wikipedia.org/wiki/Tornado
https://en.wikipedia.org/wiki/Volcanic_eruption
https://en.wikipedia.org/wiki/Volcanic_eruption
https://en.wikipedia.org/wiki/Tsunami
https://en.wikipedia.org/wiki/Resilience_(ecology)


http://www3.irna.ir/fa/NewsPrint.aspx?ID=214943
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Hydrologists have used several models to prepare flooding maps, but many of these models 

are data intensive or their calibration is difficult; however, some of the models are needed 

to understand of the physical processes within the catchment (Varoonchotikul 2003). 

In recent years, a lot of statistical and probabilistic models have been tested to prepare flood 

susceptibility maps (Lee et al. 2012; Levy et al. 2007). Geographic Information System 

(GIS) has been used as an effective tool for spatial analysis and data manipulation, because 

of its ability to handle large amounts of spatial data (Oh and Pradhan 2011); the 

combination of statistical and probabilistic models with Remote Sensing (RS) and GIS has 

been widely used by different researchers (Tien Bui et al. 2018b; Youssef et al. 2011)Also, 

some scientists and researchers have studied natural disasters, specifically FSM, with the 

help of RS and GIS, using different models such as Decision-Tree (DT) (Khosravi et al. 

2018b; Tehrany et al. 2013), Support Vector Machine (SVM) (Tehrany et al. 2015a; 

Tehrany et al. 2015b),  Frequency Ratio (FR) (Khosravi et al. 2016a; Rahmati et al. 2016a), 

Evidential Belief Function (EBF) (Althuwaynee et al. 2012; Nampak et al. 2014; Tien Bui 

et al. 2018c), EBF-AHP (Analytical Hierarchy Process) (Althuwaynee et al. 2014), 

Logistic Regression (LR) (Pradhan 2010), Shannon’s entropy and weights-of-evidence 

(Haghizadeh et al. 2017), Artificial Neural Networks (ANN) (Haghizadeh et al. 2017), 

AHP (Haghizadeh et al. 2017; Rahmati et al. 2016b), Random Forest (Chapi et al. 2017; 

Rahmati and Pourghasemi 2017), and Adaptive Neuro-Fuzzy Inference System (ANFIS) 

(Ahmadlou et al. 2018; Termeh et al. 2018).  

Khosravi et al. (2018a) stated that (1) every model has some advantages and disadvantages, 

(2) model performance depends on the data, accuracy and model structure and (3) there 

isn’t a universal guideline specifying which model should be applied in any given scenario, 

http://jme.shahroodut.ac.ir/pdf_163_afc5e5735a9cd7f0c86cb32b8f0017b2.html
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therefore several models should be applied and the best of them used for further analysis. 

According to the literature, many machine learning and data mining algorithms have 

recently been applied in the field of natural hazards assessment, but there is no consensus 

among researchers with regard to which model is best. Some research shows that bivariate 

statistical models demonstrate better predictive power than both machine learning and data 

mining algorithms (Rahmati and Pourghasemi 2017); this is due to the fact that machine 

learning and data mining algorithms are more complex and require an expert to perform 

accurate simulations, thus, bivariate models, which are very simple to run with similar or 

sometimes better predictive power, can be used as adequate substitutes.  

At present, the EBF method is rarely applied for flood analysis, but it has been used for 

other categories of natural disaster such as landslide susceptibility assessment 

(Althuwaynee et al. 2014; Jaafari et al. 2019; Pham et al. 2019), Land subsidence (Pradhan 

et al. 2014; Tien Bui et al. 2018d), and to predict groundwater potential zones (Chen et al. 

2019a; Nampak et al. 2014). 

The main purpose of this research is to generate a flood susceptibility map using the EBF 

method, as EBF has rarely been used for floods and has shown high accuracy in previous 

studies involving other natural hazard mapping. The results of this method are compared 

to EBF-LR (enter method), EBF-LR (stepwise method), and EBF from LR methods. In 

general, river flooding is a common natural disaster in the southern Caspian Sea, especially 

in Haraz catchment (Sadeghi-Pouya et al. 2017); the results of the current study will be 

useful for land-use planning and management for future flood mitigation in the Haraz 

Watershed.  
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Figure 26. Flood location map with hill-shaded map of Haraz Catchment, Iran 

 

4.3 Methodology 

4.3.1  Data Used 

4.3.1.1 Flood Inventory Map 

In order to estimate the incidence of future floods in the study area, it is essential to analyze 

the occurrence of previous floods (Manandhar et al. 2010). The accuracy of historical flood 

data has a profound influence on the legitimacy of predictive flood-potential mapping 

(Merz et al. 2007). In this study, the flood inventory map was prepared based on the data 

from flood events occurring in years 2004, 2008, and 2012 (Mazandaran Regional Water 

Organization); this data was obtained using historical documentation analysis, aerial 
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Figure 27. Flood in Surkh Rod and Mahmoud Abad, on April 12, 2015 (a), flood in Neka 

on September 12, 2012 (b), flood in Behshahr on September 16, 2013 (c). 

 

 

 

4.3.1.2  Multi-Collinearity Diagnosis 

After determining the flood conditioning factors, it is important to consider potential 

problems associated with multi-collinearity between independent variables (Pourghasemi 

and Beheshtirad 2015). If multi-collinearity in the regression equation is high, it means that 
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4.3.1.5  Water Related Factors  

Factors such as topographic wetness index (TWI) and stream power index (SPI) were 

prepared using DEM in the SAGA-GIS 2.8 software. TWI is the accumulation of flow at 

any location in the catchment, with consideration for downstream flow trends due to 

gravity (Gokceoglu et al. 2005). Equation 1 was proposed by Moore et al. (1991) to 

calculate the TWI: 

 )tan/ln( SATWI =                                                                                                          (1) 

where AS is the specific area of catchment in m2/m of the catchment and β is the slope angle 

in degrees. The TWI map is shown in Fig. 3d. Fig. 3e shows the SPI, which is the 

measurement of the erosive power of water flow, which is shown in Equation 2 (Moore et 

al. 1991): 

)tan( = SASPI                                                                                                               (2) 

To provide the layer of distance from the river, the digital map of the river was edited using 

the multi-ring buffer command in ArcGIS10.1; this layer was subsequently divided into 

six classes: 500, 1,000, 1,500, 2,000, 2,500, and > 2,500 m (Fig. 3f). Distance from river 

(or distance of measurement points from the river) has a major role in the distribution and 

magnitude of floods in the area (Glenn et al. 2012). In the northern part of Iran – as a result 

of insufficient infiltration and percolation due to changes in soil characteristics, vegetation 

coverage, and ground surface slope – these high-intensity rainfall events generate large 

amounts of runoff in the vicinity of the nearby river, causing catastrophic flood events in 

the areas downstream with lower topographic gradients (Kia et al. 2012). 
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Twenty years of rainfall data (1991-2011) from 17 stations inside and outside of the area 

was used to generate an annual rainfall map. Several interpolation methods such as kriging 

(simple and ordinary), inverse distance weighting (IDW) with power of 1 to 5, radial 

function with kernel functions of completely regularized spline, and spline with tension 

were compared to find the best method for mapping the rainfall data. The simple kriging 

method was selected as the best method because it produced the lowest Root Mean Square 

Error (RMSE) and Mean Absolute Error (MAE) (Khosravi et al. 2016a,b). The rainfall 

map of the study area was ultimately divided into nine classes (Tehrany et al. 2014a) (Fig. 

3g). 
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Figure 28.  Flood conditioning factors of the study area: a. Altitude, b. Slope angle (In degree) , c. plan 

curvature, d. topographic wetness index (TWI), e. Stream power index (SPI), f. distance from river, g. 

rainfall, h. geology, i. land-use, j. NDVI 
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4.3.1.6 Physical Factors 

In general, geology plays a major role in flood susceptibility due to the variable sensitivity 

of lithological units. Areas with hard and resistant rocks as well as highly-permeable soils 

have low channel densities (Çelik et al. 2012; Srivastava et al. 2014). The geology layer in 

GIS shape file format was obtained from the Mazandaran Regional Water Organization, 

and was originally prepared by the Geological Survey Department in Iran. The geologic 

composition of Haraz Catchment consists of 38.85% Cenozoic, 56.41% Mesozoic, and 

4.73% Paleozoic Era. Finally, the geological map of the study area was classified into three 

groups (Bui et al. 2018; Khosravi et al. 2016a,b) and is presented in Fig. 3h and Table 1. 
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carried out using EBF, EBF from LR, EBF-LR (Enter) and EBF-LR (Stepwise) methods. 

Preparation of a flood susceptibility map is composed of four main steps: 1) Collecting 

data and creating a spatial database for conditioning factors associated with flood 

occurrences, 2) determining the relationship between conditioning factors and flood 

locations, 3) preparing flood susceptibility maps using different algorithms, and 4) 

validating the results using success rate and prediction rate curves and visual interpretation. 

The methodology of this research is presented as a flowchart in Fig. 29. 

 

Figure 29. Methodological flow chart adopted in this research for Haraz Catchment.             
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4.4.1 Evidential Belief Function (EBF) Model 

The EBF model is based on the Dempster-Shafer Theory of Evidence (Dempster 1969; 

Shafer 1976). To use this model, first the layer of the conditioning factors should be 

transformed into evidential data layers, then it can be integrated using the knowledge of 

the spatial relationship between the flood occurrences and factors influencing the flooding 

to generate a predictive Flood Susceptibility Index map (FSI). One of the advantages of 

this model is that both the predicted flood and flooding zone outputs exist within the same 

degree of uncertainty (Park 2011). The EBF model is composed of four functions, namely: 

Bel (degree of Belief), Dis (degree of Disbelief), Unc (degree of Uncertainty) and Pls 

(degree of Plausibility) (Althuwaynee et al. 2012; Carranza and Hale 2003). Four maps of 

Bel, Dis, Pls, and Unc were used for the assessment of ten factors influencing flooding. 

Each map shows the probability of flood occurrences. The integration of all the factors 

shows the level of prediction accuracy. EBF model was performed using the following 

steps (Chen et al. 2019b). Equations 5 and 6 show how to achieve results of Bel as below: 

)4(                           )]()(/()()(/[)](/)([/)( LNANEijLNEijNLNEijLNDNTp −−== ����  

(5)                                                                                                   ))(/)( EijTpEijTpBel =   

where, N (L∩Eij) is the number of flood pixels in each class; N (L) is the total number of 

floods; N (Eij) is the number of pixels of each class; N (A) is the total pixels; N and D are 

the proportion of flood event areas and proportion of non-flood areas, respectively. 

Similarly, Dis values are also obtained by equations 7 and 8 as below: 

(6)    )]()(/()()()(/[)](/))()(](/)( LNANEijNLNANLNEijLNLNHKEijpT −−−−== ��  
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(12)                                                                                                ...22110 nn xbxbxbbZ ++++=
 

The general equation of a LR model is as follows: 

(13)                                                             ...)
1

ln()( 22110 nn xbxbxbb
p

p
pLogitY ++++=

−
==  

Where Y is the probability of flooding, bn (i = 0,1, ..., n) is estimated coefficients from 

sample data, n is the number of independent variables, and Xn (i = 0,1, ..., n) is independent 

variables. Using a LR model individually may be insufficient due to the fact that this model 

lacks the capacity to classify the weight for each factor (Tehrany et al. 2014a)); therefore, 

EBF and LR models were combined together to assess the probability of flooding events 

in the study area. 

 

4.4.3 Validation of the Models 

Validation of provided maps is an essential step in the development and identification of 

prone areas, as well as in the determination of map quality (Pourghasemi et al. 2012); 

without validated maps the models and their results will have no scientific significance 

(Chung and Fabbri 2003; Nampak et al. 2014). In this study, the receiver operating 

characteristics (ROC) curve was used for validation of the models. The area under the ROC 

curve (AUC) was used for the evaluation and quantitative comparisons. 
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4.5 Results 

4.5.1 Multi-Collinearity Diagnosis 

According to Table 3, the smallest tolerance and the largest VIF were 0.300 and 3.331, 

respectively; this indicates that there is no multi-collinearity between independent factors 

in the study area. 

Table 16.Spatial relationship among conditioning factors and flooding occurrence extracted by 

EBF method 

Factor Class 
No. of pixels 

in domain 

Percentage of 

domain 

No. of 

floods 

Percentage of 

floods 
Bel Dis Unc Pls 

Altitude(m) 

328-350 112 0.02 0 0.00 0.000 0.108 0.892 0.892 

350-400 242 0.04 0 0.00 0.000 0.108 0.892 0.892 

400-450 466 0.08 2 1.32 0.255 0.107 0.638 0.893 

450-500 651 0.11 5 3.31 0.458 0.104 0.438 0.896 

500-1000 11230 1.98 46 30.46 0.243 0.077 0.680 0.923 

1000-2000 78535 13.82 43 28.48 0.032 0.090 0.878 0.910 

2000-3000 282516 49.70 55 36.42 0.012 0.136 0.852 0.864 

3000-4000 188954 33.24 0 0.00 0.000 0.162 0.838 0.838 

>4000 5722 1.01 0 0.00 0.000 0.109 0.891 0.891 

Slope angle 

0-5 21626 3.80 45 29.80 0.577 0.138 0.285 0.862 

5-10 43417 7.63 45 29.80 0.287 0.144 0.569 0.856 

10-15 73134 12.86 23 15.23 0.087 0.184 0.729 0.816 

15-25 203899 35.87 25 16.55 0.034 0.246 0.720 0.754 

>25 226352 39.82 13 8.60 0.016 0.288 0.696 0.712 

Plan Curvature 

(100/m) 

Convex 231228 40.67 23 15.23 0.116 0.469 0.414 0.531 

Flat 118098 20.77 44 29.13 0.436 0.294 0.271 0.706 

Concave 219102 38.54 84 55.62 0.448 0.237 0.315 0.763 

TWI 

1.8-2 72186 12.70 3 1.99 0.007 0.123 0.869 0.877 

2-3 143920 25.32 4 2.65 0.005 0.143 0.852 0.857 

3-4 135369 23.81 9 5.96 0.012 0.136 0.853 0.864 

4-5 95640 16.83 28 18.54 0.051 0.108 0.841 0.892 

5-6 60717 10.68 40 26.49 0.115 0.090 0.794 0.910 

6-7 36029 6.34 39 25.83 0.189 0.087 0.724 0.913 

7-8 17387 3.06 18 11.92 0.181 0.100 0.719 0.900 

8-10 4945 0.87 8 5.30 0.283 0.105 0.612 0.895 

10-12 2235 0.39 2 1.32 0.156 0.109 0.735 0.891 

SPI 

o-10 24 0.00 0 0.00 0.000 0.115 0.885 0.885 

1,50 84 0.01 0 0.00 0.000 0.115 0.885 0.885 

50-100 293 0.05 0 0.00 0.000 0.115 0.885 0.885 

100-500 3330 0.59 0 0.00 0.000 0.116 0.884 0.884 

500-1000 5494 0.97 3 1.99 0.462 0.114 0.424 0.886 

1000-2000 15970 2.81 1 0.66 0.053 0.118 0.829 0.882 

2000-5000 63050 11.09 8 5.30 0.107 0.123 0.770 0.877 

5000-10000 101088 17.78 11 7.28 0.092 0.130 0.778 0.870 

> 10000 379095 66.69 128 84.77 0.286 0.053 0.662 0.947 

Distance from 

river (m) 

0-500 53685 9.44 128 84.76 0.869 0.025 0.106 0.975 

500-1000 50645 8.90 9 5.96 0.065 0.156 0.779 0.844 

1000-1500 49097 8.63 5 3.31 0.037 0.160 0.803 0.840 

1500-2000 47719 8.39 2 1.32 0.015 0.163 0.822 0.837 

2000-2500 48645 8.55 1 0.66 0.007 0.164 0.828 0.836 

>2500 318637 56.05 6 3.97 0.007 0.331 0.662 0.669 
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Rainfall 

(mm) 

183-267 2193 0.39 4 2.65 0.339 0.108 0.553 0.892 

267-329 9739 1.71 26 17.22 0.497 0.093 0.410 0.907 

329-375 91375 16.08 35 23.18 0.071 0.101 0.828 0.899 

375-409 190890 33.58 62 41.06 0.060 0.098 0.842 0.902 

409-434 170953 30.07 19 12.58 0.021 0.138 0.841 0.862 

434-468 72862 12.82 5 3.31 0.013 0.123 0.865 0.877 

468-514 11300 1.99 0 0.00 0.000 0.113 0.887 0.887 

514-576 12721 2.24 0 0.00 0.000 0.113 0.887 0.887 

>576 6395 1.13 0 0.00 0.000 0.112 0.888 0.888 

Lithology 

Cenozoic 218690 38.47 55 36.42 0.200 0.173 0.627 0.827 

Mesozoic 317901 55.93 87 57.62 0.218 0.161 0.621 0.839 

Paleozoic 26641 4.69 9 5.96 0.269 0.165 0.566 0.835 

Landuse 

Rangeland 52 2.40 132 87.42 0.016 0.210 0.773 0.790 

Bare land 526843 92.68 9 5.96 0.144 0.116 0.740 0.884 

forest 4043 0.71 5 3.31 0.010 0.126 0.865 0.874 

orchard 33421 5.88 0 0.00 0.138 0.122 0.739 0.878 

residential 759 0.13 1 0.66 0.049 0.122 0.829 0.878 

irrigation 1312 0.23 0 0.00 0.000 0.123 0.877 0.877 

water body 2004 0.35 4 2.65 0.664 0.119 0.216 0.881 

NDVI 

-0.69- -0.35 5057 0.89 5 3.31 0.199 0.096 0.705 0.904 

-0.34- -0.18 11625 2.05 7 4.64 0.121 0.096 0.783 0.904 

-0.17- -0.13 28452 5.01 17 11.26 0.120 0.092 0.788 0.908 

-0.12- -0.08 188356 33.14 15 9.93 0.016 0.133 0.851 0.867 

-0.07- -0.03 177441 31.22 32 21.19 0.036 0.113 0.851 0.887 

-0.02-0.05 27652 4.86 22 14.57 0.160 0.089 0.751 0.911 

0.06-0.18 26985 4.75 15 9.93 0.112 0.093 0.795 0.907 

0.19-0.33 28897 5.08 20 13.25 0.139 0.090 0.770 0.910 

0.34-0.47 38542 6.78 16 10.60 0.084 0.095 0.822 0.905 

0.48-0.73 35421 6.23 2 1.32 0.011 0.104 0.885 0.896 

 

Table 17.The B coefficients and multi-collinearity diagnosis index for independent variables in the LR 

model 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients t Sig. 
Collinearity Statistics 

B SE Beta Tolerance VIF 

Constant 0.130 0.191  0.679 0.489   

Altitude (m) 0.00 0.00 -0.300 -6.030 0.00 0.300 3.331 

Slope angle -0.005 0.002 -0.125 -2.731 0.007 0.353 2.833 

Plan curvature (100/m) -0.074 0.028 -0.082 -2.691 0.008 0.806 1.240 

TWI 0.191 0.026 0.346 7.324 0.00 0.332 3.016 

SPI -5.612E-8 0.00 -0.025 -0.799 0.425 0.774 1.293 

Distance from river (m) 0.00 0.00 -0.321 -7.228 0.00 0.377 2.656 

Rainfall (mm) 0.00 0.00 0.023 0.716 0.474 0.714 1.401 

Lithology 0.002 0.01 0.047 1.612 0.108 0.876 1.142 

Landuse -0.004 0.012  -0.011 -0.349 0.727 0.784 1.275 

NDVI 0.105 0.086 0.038 1.218 0.224 0.779 1.284 
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4.5.2  Flood Susceptibility Mapping Using EBF Model 

The EBF Model was used to determine the level of correlation between the flood 

occurrences and floods factors (Table 2). The results of this model show the impact of the 

class’s weight of each factor on a flood event.  

Analysis of elevation illustated that flooding occurs at lower elevations as in the classes of 

3,000-4,000 m and > 4,000 m, no flood occurred. The first two classes on the slope angle 

map have the highest number of flood points (most likely to experience flooding), i.e. areas 

with low slope and altitude are more susceptible to flooding. Results of the plan curvature 

analysis showed that the greatest impact was represented by the concave curvature, 

followed by the flat curve, which represented high impacts, and finally that of the convex 

curvature which represented a small impact.  

The TWI factor has a positive correlation with flood occurrence, which indicates a higher 

probability of flooding. The effect of SPI classes on the probability of flooding was also 

studied; with an increase in the SPI value, the number of recorded points increases and thus 

the possibility of flooding also increases. The highest flooding probability is related to the 

class 500 to 1,000. Distance from the river is one of the most important factors in mapping 

areas vulnerable to flooding (Tehrany et al. 2013). Results of distance from the river and 

flooding data showed that areas farther away from the river have lower risk of flooding; in 

fact, 85% of the flood events were placed in the first class or 0-500 m (Bel value equals to 

0.869). According to the EBF method, the highest possibility of a flood occurrence is 

related to the class of 267-309 mm of rainfall. The geology of the study catchment consists 

of three classes of Mesozoic, Cenozoic, and Paleozoic Era. Almost 57%, 37% and 6% of 

floods were occurred in Mesozoic, Cenozoic and Paleozoic. With regard to the relationship 
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Figure 30. Integrated results of EBF model: (a) belief, (b) disbelief, (c) uncertainty, (d) 

plausibility 
 

 

4.5.3 Flood Susceptibility Mapping Using LR Model 

In this study, two methods of “enter” and “stepwise” have been used in a LR model. In the 

enter method, ten conditioning factors of altitude, slope angle, plan curvature, TWI, SPI, 

distance from river, rainfall, lithology, land-use, and NDVI were assumed with coefficients 

of -0.004, -0.162, -0.638, 3.32, 0.00, 0.002, -0.003, 0.10, -0.362 and -0.453, respectively. 

In the stepwise method, the conditioning factors that have a significant impact on flooding 
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were selected; these factors are: slope angle, distance from river, altitude, and TWI with 

coefficients of -0.141, -0.002, -0.004 and 3.402 and degrees of significance of 0.021, 0.00, 

0.00 and 0.00, respectively (Table 4). Negative weight values for LR coefficients indicate 

that the flooding events are negatively related to the independent variables (Tehrany et al. 

2014a). After running the LR model and obtaining the coefficients, each coefficient was 

multiplied by the corresponding conditioning factor in order to find the z-value, as shown 

below: 

 

(15)                                                                                               1.02 NDVI)453.0(                  

landuse)362.0(lithology)1.0(rainfall)003.0(river) from distance002.0(                  

SPI)0(TWI)32.3(curvature)638.0(slope)162.0(altitude)004.0()(

+−

+−++−+

+++−+−+−=enterZ
 

(16)     2.19- river) from distance002.0(TWI)402.3(slope)141.0(altitude)004.0()( −++−+−=stepwiseZ  

Table 18. Conditioning factors coefficients of LR method 

Method Factors B 

Enter 

 

Altitude (m) -0.004 

Slope angle -0.162 

Plan curvature (100/m) -0.638 

TWI 3.320 

SPI 0.00 

Distance from river(m) 0.002 

Rainfall (mm) -0.003 

Lithology 0.10 

Landuse -0.362 

NDVI -0.453 

Constant 1.025 

Forward (Stepwise) 

Altitude (m) -0.004 

Slope -0.141 

TWI 3.402 

Distance from river (m) -0.002 

Constant -2.196 
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4.5.4 Flood Susceptibility Mapping Using EBF-LR And EBF From LR Model 

The results of the LR model (stepwise) showed that slope, distance from the river, altitude 

and TWI (with significance values equal to 0.021, 0.00, 0.00 and 0.00, respectively) are 

the most important factors Influencing flood occurrence. The difference in -2log likelihood 

(-2LL) was considered as the indicator of effectively improving on the null model (Table 

5). Nagelkerke's and Cox/Snell’s R-squared tests were used to measure the model’s 

efficacy. A better model has a higher Nagelkerke's and Cox / Snell's R-square 

(Althuwaynee et al. 2014). Finally, equations 21 and 22 for the EBF-LR (enter and 

stepwise) hybrid model were entered into the raster calculator of ArcGIS10.1 and 

implemented as follows (Figs. 6 (b-c)): 

 

(17)                                                    1.025)NDVI45.0()landuse362.0(                                    

)lithology1.0( )rainfall003.0()river from distance002.0()SPI0(                                    

)TWI32.3()63.0()slope162.0()altitude004.0().( EBF

+−+−+

+−++

++−+−+−=−

EBFlEBF

EBFlEBFlEBFlEBFl

EBFlEBFlEBFl curvatureEnterLREBFZ

 

(18)                                                      196.2)river from distance002.0(                                         

)TWI402.3()slope141.0()altitude004.0().( EBF

−−

++−+−=−

EBFl

EBFlEBFlStepwiseLREBFZ

                                                               

(19)                                                                    
1

).(
)LR.-(EBF

)LR.-(EBF 

enterz

enterz

e

e
PenterLREBFFSM

+
==−  

(20)                                                      
 1

).(
e)LR.stepwis-(EBF

e)LR.stepwis-(EBF 

Z

Z

e

e
PstepwiseLREBFFSM

+
==−                                                                             

Based on four factors affecting flooding obtained by the LR model, the EBF model was re-

run and the final map was produced which is shown in Fig 6d. Parameters with no 

significant values were deleted from the EBF model. 

 

(21)               )TWI()river  from   distance()slope()(altitudeLR) from EBF( BelBelBelBel +++=FSM   
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4.5.5 Validation of The Flood Susceptibility Maps and Their Comparison 

In this study, 70% of the chosen flood locations were used for model training and the 

remaining 30% were used for model validation. Using success-rate and prediction-rate 

curves, the results of flood susceptibility maps were compared with existent flood positions 

(Chung and Fabbri 2003) and the accuracy of four FSMs was evaluated. Fig. 7(a-b) shows 

the success-rate and prediction rate curves for four FSMs. As it can be seen, the EBF model 

has the largest AUC (94.61%) and the EBF-LR (stepwise) model has the lowest AUC 

(56.31%). Due to the fact that the training points of the model were used for the success-

rate, this approach may not be an appropriate method for assessing the predictive ability of 

the model (Bui et al. 2012a; Nampak et al. 2014; Pradhan 2013). AUC for prediction rate 

indicates how well the model predicts the flood (Brenning 2005; Bui et al. 2011; Chung 

and Fabbri 2003). The prediction rate was evaluated using the 30% of points that were not 

used in the training model, i.e. the 30% used for model validation. This method shows the 

predictive capability of the model (Maier and Dandy 2000). The AUC of the prediction 

rate for models of EBF, EBF from LR, EBF-LR (Enter), and EBF-LR (Stepwise) were 

94.55, 66.41, 83.19, and 52.98%, respectively. For example, the AUC of 0.9455, which is 

for the EBF model, shows a predicting accuracy of 94.55%; hence, the most accurate 

prediction of the flood susceptibility map was the EBF model. Conversely, the lowest 

predictive accuracy was related to the EBF-LR (Stepwise). Ultimately, the EBF, EBF from 

LR, and EBF-LR (Enter) models displayed acceptable accuracy in predicting the final map.  
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Figure 31. Flood Susceptibility Index using (a) EBF, (b) EBF-LR (Enter), (C) EBF-LR (Stepwise), (d) 

EBF from LR 

4.6 Discussion 

Analysis of elevation maps as well as the position of flood points revealed that flooding 

usually occurs at lower elevations. It also indicates that the frequency of recorded flooding 

events decreased from lower elevation classes towards higher classes as floods occurs in a 

flat, lower elevation and lower slope areas where water can get together. Also, as TWI 

shows the wetness, thus the areas with high TWI have a saturated soil, and therefore the 

potential of flood is higher for these areas. The river and its surrounding areas maintain 

higher flood susceptibility than any other region, and the river flood risk would be 

theoretically reduced by moving away from the river. Rainfall volume and EBF values 
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showed a decrease trend; this may be due to the fact that rainfall usually increases at higher 

altitudes although the risk of flooding significantly decreases. This results are according to 

the result of Khosravi et al (2016a,b; 2018), Tien Bui (2018a,b). In terms of land use 

villages close to Haraz River, agricultural areas, such as citrus orchards, and areas with a 

low topographic gradient are more susceptible to flooding. The results show that most 

points recorded in the rangeland are close to the registered residential area and gardens, 

therefore, a single flood event may turn to a fatal natural hazard, causing catastrophic 

financial damage as well as claiming human lives. Such devastation has been one of the 

leading causes of death and economic distress in Haraz Catchment, according to annual 

reports by authorities. 

According to Park (2010), the main limitation of the EBF method is that if a flood event 

did not happen in a represented class, the Bel results would be equal to zero; in this case, 

the Dis would also be zero, and the case Unc or uncertainty values would be equal to 1. 

Wally (1987) stated that if the observations had complete information about the study area, 

we would expect that Pls-Bel is equal to zero (in this case Bel is called Bayesian belief 

function) (Walley 1987), confirming that the two maps of Bel and Pls should have the same 

results (Althuwaynee et al. 2012). The results of this study are consistent with Carranza 

and Hale (2002); Althuwaynee et al. (2014); Bui et al. (2012b); Carranza et al. (2008); 

Nampak et al. (2014). According to the results of Nampak et al. (2014), the main advantage 

of Dempster-Shafer theory is that the application of an EBF model not only provides the 

predictive maps of desired areas, but also provides the predictive degree of uncertainty. 

Result showed that the greater number of inputs parameter can enhance the result of 

modeling, which is in according to result of Donati and Turrini (2002) explained that a 
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greater number of parameters would likely result in improved model accuracy, and in fact 

the high accuracy of the EBF model resulting from this study was in line with those of 

Nampak et al. (2014); Pourghasemi and Beheshtirad (2014) and rahmati and Pourghasemi 

(2017).  

Results from the achieved maps showed that the areas nearest to the Haraz River where the 

slope is low, curvature is flat, altitude is low, and TWI is high, are completely susceptible 

to flooding, so, our findings are in agreement with Tehrany et al. (2013), Khosravi et al. 

(2016a,b;2018). Results from the current study could be eminently useful in the pursuit to 

prevent and protect from flooding hazards and damage. By avoiding the construction of 

homes, villas, or industries in susceptible zones, and by employing both structural and non-

structural approaches for future flood mitigation, the enduring damage and devastation 

caused by floods can be greatly reduced. 

Recommendations for future research include a comprehensive study involving an 

assessment of the accuracy and simplicity of assorted bivariate, multivariate, machine 

learning, data mining, and multi criteria decision making models and also their coupled for 

improved flood predictive power.  
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Figure 32.The success and prediction rate curves for flooding map; (a) success rate and (b) 

prediction rate. 

 

Figure 33. A histogram showing  the percentage of flood zones that fall into the various classes of 

four models  

 

4.7  Conclusion 

The main goal of this study was to assess the performance of an EBF model that is rarely 

used for the development of flood susceptibility maps. In order to determine the accuracy 

of the EBF model individually and in combination with a LR model, the two models were 

combined. The LR model was implemented using independent variables that were 

weighted and reclassified by the EBF model. Based on the coefficients obtained from the 
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LR model, the TWI parameter had the highest weight and impact on flooding. The 

relationship between factors affecting flooding and the final maps generated by the models 

indicated that most flooding events occur in areas where the topography is more flattened. 

The flooding maps resulting from the current study illustrate that most flooding in Haraz 

Catchment occurs in the areas directly adjacent to the river, which are most often 

characterized by low slope, concave curvature, or flat conformation. Because of the steep, 

mountainous areas in Haraz Catchment, frequent rapid runoffs occur and water flows down 

toward the Haraz River causing flash flooding in areas where the topography permits. Most 

residential and agricultural territories within this catchment are located in areas with low 

slope and flat constitutions, which are susceptible to flooding. 

According to the success rate and prediction rate curves, the highest accuracy belonged to 

the EBF model, which exhibited 94.61% for success rate and 94.5% for prediction rate. 

The developed EBF model had an accuracy of 66.41% based on significant parameters 

from the LR model (EBF from LR), and the difference between the two models was 28.5%. 

Based on the expressed curves, the accuracy of the EBF-LR Enter and Stepwise models 

were 83.19% and 52.98%, respectively; the difference between these two models was 

30.21%. The lowest accuracy belonged to the EBF-LR (Stepwise) model, which 

represented the weakness or failure of this method to determine the flood prone areas. 

These results suggest that considering significant parameters such as altitude, slope, TWI, 

and distance from the river alone in flooding occurrence, may not be enough to adequately 

validate the model. The occurrence of a natural hazard, like flooding, is very complex and 

cannot be predicted with high accuracy when limited parameters are being considered in 

model development. According to the flood susceptibility map resulting from the EBF 
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model, 14% of the total area was located in the high and very-high susceptibility classes 

while 62% of the area was located within the low and very low susceptibility classes. It’s 

recommended that researchers and stakeholders identify flood-prone areas in additional 

catchments using the EBF model, which is simple with high accuracy . 

The results of this research also indicate that the impact of factors’ classes is more 

important and more effective on the natural hazards assessment and mapping than weights 

of layers. In general, the developed model can be used as a tool for decision making by 

management agencies such as the Department of Water and Natural Resources. The results 

and insights gained from this modeling effort can provide an improved understanding of 

flood susceptibility and will improve the process by which researchers identify areas prone 

to flood hazards. In addition, the results of such a model are beneficial and necessary for 

flood warning and preventing damage in future floods, specifically in the northern areas of 

Iran. For future study, it’s recommended that researchers focus on the flood prone areas in 

order to identify best management practices and to implement structural and non-structural 

methods for potential damage reduction.   
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5 Comprehensive Conclusion 

Hydrological models frequently comprise uncertainties with negative effects on the 

estimated results, thereby on the model accuracy. To attain more accurate model estimates, 

it is definitely better to evaluate and improve models using different approaches like 

parameter optimization, operative management, and design space exploration. Developing 

a model that is compatible with the nonadditive and nonlinear character of the hydrological 

process is very essential in hydrology. The most recent models do not recognize the 

spatiotemporal heterogeneity of hydrological phenomena’s and they have lots of 

assumptions which consider hydrological process as a linear system. 

In this context, the unique characteristic of the ensemble machine learning, and data 

mining algorithm can overcome this downside. Because these methods can perform: 

1- Missing data recovery and data cleaning 

2- Feature importance analysis, Sensitivity analysis and uncertainty analysis 

3- Highly nonlinear prediction 

4- High accurate forecasting 

All proposed machine learning algorithm in this study are low bias and low variance 

as they have highly accurate predictive performance and they have been evaluated on 

different preprocessed data set. These models can consider all possible interactions 

between the input parameters which account for nonlinear behavior of any hydrological 

phenomena like streamflow and flood. More importantly, the robustness of these model 

can contribute to bias estimates of water availability and uncertainty in forecasting of 

potential future climate changes.  
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   In this research, two new ensemble machines learning and data mining algorithms have 

been proposed: NESN-MP and RNESN coupled with twelve different ensemble data 

mining algorithms including: PCA, TF, TF-K-means clustering for data cleaning and KNN, 

Bootstrap aggregating, SVM and RandF for feature selection have been investigated. These 

models were tested in three different regions across US: Berkshire County (MA), 

Tuolumne County (CA), and Wasco County (OR). The method was tested with data 

provided by the United States Geological Survey (USGS), Natural Resource Conservation 

Service (NRCS), National Weather Service Climate Prediction Center (NOAA) and 

Daymet Data Set from NASA through the Earth Science Data and Information System 

(ESDIS). Each data set includes the daily records of the local observed hydrological and 

large-scale weather/climate variability parameters.  

  The propose RENESN and NESN-MP streamflow modeling approach can incorporate a 

clustered large data entry as input. This characteristic will decrease the prediction 

uncertainty related to input parameters and it will increase the model reliability as it is 

capable of applying all contributing factor in governing streamflow. So generally potential 

advantage of the model can be recognized as fallows;  

1- The accurate forecasting of meteorological anomalies like precipitation which has 

large uncertainty in the measurement process. 

2- The quantification of existing natural reservoir of snowpack; as the result agreed in 

the western United States, it is no surprise that precipitation is winter dominant and 

a large portion (by some accounts more than 70%) of streamflow there originates 

from melting snow and thus streamflow is largest during April–June. This will 
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make western water resources managers highly dependent on wintertime snow 

surveys to venture water availability in the coming spring and summer. 

3-  A third possible contributor of streamflow forecast is information about current 

state of soil moisture. We tested our result in different months of the year in the 

western US to indicate relative importance of soil moisture initialization when other 

seasons are considered. In warmer season, even large fraction of the streamflow 

occurs during the other three seasons, the streamflow variability is noticeable, 

suggesting that the dominant impact of soil moisture initialization in these seasons 

is important.  The possible reason might be dryness of the top soil which makes 

incident water at the surface, either snowmelt or precipitation, infiltrate and then 

evaporate back rather than run off into streams; a wet soil, on the other hand, may 

boost greater streamflow and a more efficient filling of reservoirs during the season. 

4- A very interesting observation from the results of data mining algorithms is that 

TF-k-means clustering subsets clearly outperform the other created subsets, and 

also show acceptable classification accuracy of 96.58 % in combination with 

Random Forest classification algorithm.  Among the machine learning algorithms 

investigated, the SVM accuracy was surprisingly low on the PCA subsets about 

80.49%. Even though SVMs perform very well on TF-k-means clustering subsets 

of the original features and it has been commonly reported as an accurate feature 

importance methods, they achieve only the lowest accuracy for the PCA subsets. A 

possible reason might be because of the sensitivity of feature importance strategy 

on the type of performed dataset. In many cases, where the search for the best 

feature set is still an active research topic, the classification accuracy achieved with 
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cleaned data sets is often significantly better than with the full data set. In 

application contexts where feature sets are already well established, the differences 

between diverse dimensionality reduction strategies are much smaller. 

5- The feature importance methods indicated that the most effective factor in 

governing streamflow is Precipitation fallowed by SWE, soil moisture , NAO, AO, 

soil temperature and so on. There is slightly different between feature importance 

percentage among three case studies and the only difference lies is climate 

variability indices. In case study 1 the most important climate variability indices 

are NAO, AO and PNA respectively, because this region locates in North East US 

and is Cleary affected by AO and NAO much more than  the other case studies. 

There is not much difference in in case study 2 and 3, as they both are under effect 

of PNA and not much influenced by AO and NAO.  

6- For the best feature subset selection the factors including: vapor pressure, solar 

radiation, wind amplitude and humidity has not been utilized for the forecasting 

phase. Because their contributing percentage is low and can be neglected as it does 

not have any significant impact on the forecasting accuracy. 

7- The utilized deep learning algorithm (RNESN) for streamflow forecasting is also a 

high nonlinear approach in prediction of time series data as it considers all possible 

interactions between the internal states of inputs through performing different 

orders of multivariate polynomial. In the case of ENS, the RNESN gives the 

respective value of 0.96, which is well below the ENS of 0.84 and 0.47 for NESN-

MP and ANFIS, respectively. 
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8-  The performed training approach in RNESN, minimizes the direct impact of each 

input data on the output, otherwise stated, due to the structure of the RNESN, the 

sensitivity of each input parameter is almost the same as the others because the 

interactions of the input parameters and the internal states are used to train the 

output matrix and the input parameters are not directly involved in the process of 

training. 

9-  The proposed calibration process (RLS) enhance the learning capability through 

reducing variance. Besides, to improve the forecasting ability and reducing the 

computational load, the number of the internal states has been significantly 

decreased through applying modified time series analysis in readout.  

10- The recommended method has a simple structure, far less computation, and does 

not need parameter tuning, optimization task, and complex training. Simulation 

results show the dominance of RNESN over NESN and ANFIS. 

In this research, two new ensemble machine learning algorithms for flood susceptibility 

mapping has been introduced : EBF-LR a new intelligent hybrid model (BaggTree -Cubic 

KNN) for modeling flood. These models were tested at the Haraz watershed, the 

Mazandaran province, Iran. Ten flood conditioning factors, including slope angle, 

elevation, curvature, stream power index (SPI), topographic wetness index (TWI), land 

use, rainfall, drainage density and distance to the river were selected for flood modelling. 

The information gain ratio (IGR) was used to optimize the most important conditioning 

factors for the flood model.  

The potential advantage of the model can be recognized as follows;  
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1- The result of IGR showed that all the factors were significant in the model training; 

however, distance to a river was the most important factor, followed by slope, 

curvature.  

2- The most of floods in the study area taken place during the heavy rainfall and due 

to overbanking the rivers. This process leads to inundation the areas adjacent the 

rivers, flood plains, during the heavy rainfall where are distinguished in the 

prepared flood susceptibility maps.  

3- There are several agricultural fields near the rivers whose their tillage practices is 

causing heavy sedimentation and making river less storage capacity for holding 

streamflow which cause easy over banking. Therefore, the water manger can use 

the result of the current study to modify the agricultural practices.  

4- Because the distance to the river was the most effective factor on flooding in the 

studied area, the decision makers have to be more concerned about cropping 

practices and widening streams. Because when the discharge becomes too high, the 

stream widens its channel by overtopping its banks and flooding the low-lying areas 

surrounding the stream. This process are a major part of the erosional process, 

working in conjunction with weathering and mass wasting.  

5- The Receiver Operating Characteristic curve was drawn and the Area Under the 

Curve (AUC) was calculated to obtain accuracy of the flood susceptibility maps 

prepared by success rates (the training data) and prediction rates (validation 

data). The AUC results indicated that the EBF, EBF from LR, EBF-LR (enter), 

and EBF-LR (stepwise) success rates were 94.61%, 67.94%, 86.45%, and 56.31%, 

respectively, and the prediction rates were 94.55%, 66.41%, 83.19%, and 52.98%. 
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The results showed that the EBF model had the highest accuracy in predicting the 

flood susceptibility map, in which 14% of the total areas were located in high and 

very high susceptibility classes and 62% were located in low and very low 

susceptibility classes.  

The KNN as one of the most utilized neighborhood classifiers belongs to the weak 

classifiers in which they are very simple and highly efficient in some fields of studies 

(Hassanat, 2014). It is remarkable that memory requirement and time complexity are the 

main limitations of performance ability of KNN classifier and they are completely 

dependent upon every example in the training set (Hassanat et al., 2014).  

In the context, potential advantage of this model can be recognized as fallows;  

1- To enhance the performance of KNN, we used of Bootstrap aggregating Meta 

classifier. The combination of the Bootstrap aggregating ensemble technique and the 

KNN classifier can provide a solution to build a flood model. It has been shown that, 

the area under the receiver operating characteristic curve (AUC=0.800) value of the 

proposed BaggTree -CubicKNN model has the best performance. 

2- The proposed model could significantly enhance the prediction accuracy of 

CubicKNN classifier as a base classifier. General speaking, the ensemble model can 

outperform the basic classifier because the ensemble model integrates the advantage 

of each classifier (Tien Bui et al. 2016; Shirzadi et al. 2018; Dou et al. 2019). 

3- Additionally, this model (AUC=0.800) could greatly decrease the over-fitting and 

variance problems between the training datasets and eventually enhance the prediction 

accuracy of cubicKNN model (AUC=0.660). 
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4- The results of these research also indicate that the impact of factors’ classes is more 

important and more effective on the natural hazards assessment and mapping than 

weights of layers.  

5- The proposed ML model can enable decision-makers for a less-expensive early field 

survey of the district they are meant to cope with high reliability. Thus, the 

achievement of this research could assist the managers to recognize the flood-prone 

zones in watershed more accurately. After the assessment of the frequent susceptible 

areas, decision-managers could prepare more accurate and more useful data related to 

these regions (such as rainfall and river data) using proposed models to produce 

accurate flood maps for mitigating further damage. 

In general, despite the alluring prospect of Machine learning forecasting methods, they 

are often criticized by hydrologists for the lack of physical hydrologic meanings and poor 

robustness. In this context, all three proposed modeling approach will work only in case of 

mainly operational purposes not with regards to the theoretical revelation of the 

hydrological process.  Therefore, one must define the exact objective of the modeling task 

to get the right answer for the right reason. For instance, one might just need methods that 

predict stream flows, groundwater levels, flood susceptibility or water quality with enough 

accuracy for the task at hand. At this point, the main objective is developing an optimal 

accurate model with the correct input parameters. However, if a physical interpretation of 

the process is needed, then the parsimonious conceptual/ANN models would be preferred 

as a Neural Network black box nature will not explore interpretation of the results. This 

makes them a valued complement to physical models, mainly in data-scarce regions for 
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model parameterization and warrants additional research into their development and 

application. 

Therefore, in any case our first aim was to examine the accurate predictability of daily 

streamflow and flood susceptibility and then improving the performance of operational 

streamflow and flood forecast model, for which the optimization of bias and model 

robustness were a concern.  

The developed modelling approaches used in our study do not rely on complex calibration 

to observed anomalies or complex, expensive and time-consuming data preprocessing; it 

relies instead exclusively on the integration of antecedent meteorological and observed 

cleaned data at the large scale. This study thus provides the sound basis that such large-

scale, cleaned data entry models may prove useful predictions at a basin-scale, in 

coincidence with existing operational approaches that rely on calibrated, statistics-based 

approaches.  

For the limitation of the present study, as the cross-validation techniques may not diagnose 

the serious model deficiencies, in follow-up research, one could also enhance the 

introduced algorithms’ model performance by incorporating data analysis to find the 

relationship of interest from both the observational data and the simulation data, and then 

compare them against one another. The other limitation belongs to neglecting the time 

variability in stream routing. In the current modeling approach, we did not consider the 

length of time needed to deliver a grid cell’s stream water to a gauge station. 
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5.1 Future Work 

This work won’t be the end of a journey but counts as a new beginning to start of the further 

research including the following.  

• Integrating numerical analysis into coastal zone flood modeling. 

•  Data analytics improvements 

• Improving Urban flood management in middle eastern countries by incorporating 

adjusted streamflow from dams with higher-resolution terrain [].  

• Combining flood forecasts with transportation models by integrating location 

information, and merging them with other boundary conditions, like transportation. 

This helps to priority check and recovery after disaster while will expand 

evacuation planning and first respond placement.  

Therefore, it is highly recommended to apply a hybrid modeling approach (e.g. data-driven 

models with physically-based/conceptual models and/or empirical relationships between 

high flows and influencing factors) for more accurate forecasting of high flow events. 

For the future work we aim to apply the proposed modeling approaches to a different flood 

event in various catchments. As we evaluate the performance of machine Learning in the 

small watershed in Northern part of Iran, one might investigate the application of the 

proposed approaches to a large flood event in a large catchment to validate the model 

applicability in terms of infrequent flood events in multiple regions. 

As a future recommendation, for a better modeling task in the hydrological process, data 

restrictions especially for soil standard should be lightened somewhat by new measurement 
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technologies, or by new hydrologic observatory networks or even through the 

mathematically incorporation of signals or satellite retrievals into the land modeling 

environment. However, these newly investments in hydrologic measurement infrastructure 

are likely to be expensive, and hydrologists will need to make an undoubted case for them. 

Surprisingly, as the new proposed method indicated a good performance in data scarce 

region, there might be a tradeoff between installing necessitate gauging station and 

removing useless gauging station where their data will not make a big change in the future 

forecasting 

With all these developments we are on the edge of a new era in flood plain mapping. 

Imagine by these advancements, there might be a phone routing apps that track possibly 

inundated roads and can inform users of their daily routs from home to office and helps for 

risk mitigation plans. 
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7 Appendix 

To indicate the model applicability and ensure its spatial consistency in different climatic 

regions, five different basins distributed across the US are chosen. In Massachusetts basin, 

Berkshire County as the snow-dominant watershed is selected (Case Study 1). In 

California, we chose Tuolumne County as a mixed pluvial-nival (Case Study 2). In Oregon 

basins, Wasco County is chosen as the rain dominate watershed (Case Study 3). In Texas, 

we use Denton County as a Rain dominated (Case Study 4) and in Missouri we chose St. 

Louis County (Case Study 5). Table 1-a shows a summary of the selected watersheds 

(USGS.gov). 

 

Table a-1. the catchment characteristics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Region 
Berkshire County, 

Massachusetts 

Tuolumne County, 

California 

Wasco County, 

Oregon 

Denton County 

Texas 

St. Louis County 

Missouri 

Watershed 

USGS 01333000 Green 

River at Williamstown, 

MA 

USGS 11284400, 

Big C AB Whites 

Gulch NR 

Groveland CA  

USGS 14096850  

Beaver Creek below 

Quartz Creek, NR 

Simnasho, OR  

 

USGS 08051135 Elm Fk 

Trinity Rv at Greenbelt nr 

Pilot Point, TX 

 
 

 

USGS 06935965 

Missouri River at St. 

Charles, MO 

 

Hydrologic unit code 2020003 18040009 17070306 12030103 10300200 

Coordinates 

Latitude:  42°42'32", 

Longitude:  73°11'50" 

NAD27 

Latitude: 37°50'31", 

Longitude: 

120°11'02" NAD27 

Latitude:  44°57'32", 

Longitude: 121°23'35" 

NAD27 

Latitude:33°20'59" 

  Longitude:97°02'08"   

 NAD83 

Latitude:38°47'19.9" 

Longitude:90°28'14.6"   

 NAD83 

 

Drainage area (Meter 

Sq.) 
110.34  42.47 375,548,276 

179,700,000 135,700,000 

Gage datum (Meter) 
186.85 meter above 

NAVD88 

780.50 meter above 

NGVD29 

688.85 meter above 

NGVD29 

158.801 meters 

above   NGVD29 

125 meters 

above   NAVD88 
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7.1 Simulation Results 

The table a-2 provides the evaluation indices for the test stage covering 50 days for 5 

different regions. 

 

Table a-2. Forecasting results using evaluation indices for the three case studies: R, RMSE, MAE, WI, and ESN  
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Figure a-1. statistic indices comparison for 5 different case studies (whole data set) 



196 
 

 
 

 

 

Figure a-2. statistic indices comparison for 5 different case studies (limited data) 
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Figure a-3. statistic indices comparison for 5 different case studies (bad data) 

 

As the Results show the model accuracy dose not deteriorate at the global scale and the 

proposed RNESN can be applied in different topographic region with various watershed 

characteristic. 


