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Abstract 

Groundwater contributes an essential water supply to several communities and 

ecosystems in the Truckee River Basin.  Water resource investigations were conducted 

through numerical modeling and comparisons to previous work to assess groundwater 

recharge in the Martis Valley watershed, which is an essential component to the Truckee 

River hydrographic region.  A baseflow analysis was performed to relate annual baseflow 

to streamflow and precipitation.  Results show that changes in groundwater fluctuations 

are driven by changes in precipitation, and baseflow response is affected by previous 

precipitation trends.   It was estimated that baseflow is roughly one-sixth of mean annual 

precipitation.  A novel method for constructing a hydrogeologic framework model was 

developed and applied to an integrated surface water-groundwater hydrologic model, 

GSFLOW, from which groundwater recharge locations and magnitudes were extracted.  

Model results supplemented previous work and provided enhanced conceptualizations of 

surface and groundwater interactions, as well as spatial and temporal recharge trends.  

Results show that the most significant recharge zones are low to mid-elevation stream 

channel and alluvial areas.  During peak snowmelt periods, upper elevation alluvial areas 

also contribute significant recharge.  The findings herein promote a more detailed 

understanding of groundwater recharge characteristics in high elevation, snow dependent, 

alpine catchments. 
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Introduction 

The Truckee River watershed receives a significant portion of its water supply 

from Lake Tahoe outflow and surface and groundwater contributions from the Martis 

Valley basin. Interconnected surface water and groundwater (SW/GW) systems are 

complex and require integrative investigations to understand governing hydrologic 

processes.  Understanding and quantifying interactions between SW/GW on a spatial and 

temporal level is highly desirable, but their co-varying nature makes this difficult at the 

watershed scale.  One process that governs SW/GW interactions is groundwater recharge.  

Groundwater recharge is defined as the infiltration of water beyond the root or soil zone 

that reaches the water table (Healy, 2010).  In the Great Basin, mountain front recharge is 

a large component of total recharge, but physical and climatic heterogeneity within and 

between basins makes recharge estimations site-specific and highly variable on an annual 

time scale.  Measurements of recharge can provide local information, but obtaining direct 

measurements of basin-scale groundwater recharge is beyond the scope of current 

technology.  Previous recharge studies in Martis Valley have employed water budget 

estimation techniques and geochemical analyses.  Model simulations can provide 

important insight into the functioning of hydrologic systems by identifying factors that 

influence recharge (Healy, 2010).  Integrated models simulate interconnected hydrologic 

processes and facilitate the understanding of watershed-scale trends and relationships.   

This research focused on investigating groundwater recharge location, timing, and 

magnitude in the Martis Valley watershed.  A baseflow analysis provided preliminary 

insight into the relationships between precipitation, runoff, baseflow, and their relation to 

recharge.  An integrated groundwater-surface water model, GSFLOW, was used to assess 
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the spatial and temporal distribution of groundwater recharge throughout the Martis 

watershed, and estimate mean annual recharge volumes at basin and sub-basin scales.  

Recharge occurs along the entire elevation profile of Martis Valley, however, specific 

areas of concentrated recharge in Martis Valley remain an open research question.  

Maxey-Eakin based estimates generally assign recharge to the upper elevations where the 

majority of precipitation falls, while the geochemical investigations reviewed in this 

report suggest an opposite spatial trend.  Annual recharge magnitudes were simulated in 

the GSFLOW model as a function of the climatic model drivers, precipitation and 

temperature, as well as hydrogeologic parameters assigned throughout the watershed.  

Results from GSFLOW were compared to previous recharge estimates and geochemical 

interpretations.   
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Martis Valley Watershed 

  
 

Figure 1: The Martis Valley watershed and sub-basins.  The watershed border runs 

northwest along the Sierra Nevada crest, then eastward to capture the northern 

sub-watersheds that drain into Prosser Creek Reservoir, and finally south and west 

along the ridgeline made up of Martis Peak, Brockway Summit, and Mt. Pluto, 

before returning to the Truckee River discharging from Lake Tahoe at Tahoe City. 

 

Lake Tahoe 
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Previous Work 

  Numerous methodologies have been developed to estimate groundwater 

recharge over various spatiotemporal scales.  As previously stated, recharge at a basin-

wide scale is difficult to estimate and nearly impossible to directly measure; therefore, 

hydrologists have typically relied on indirect estimation techniques.  Some commonly 

used techniques include physical and empirical methods, environmental tracers, and 

numerical models (Carling et al., 2012).  Since the 1950s, recharge estimations in the 

Great Basin have largely been based off the empirical relationship developed by Maxey 

and Eakin (1949) that relates groundwater recharge to mean annual precipitation.  This 

technique and its modified versions (Nichols, 2000; Epstein et al., 2010) estimate 

recharge by applying recharge coefficients to precipitation amounts.  This section focuses 

on previous groundwater recharge investigations of Martis Valley and similar watersheds 

that used water budget, geochemical, numerical modeling, and baseflow analysis 

methods. 

  

Water Budgets  

In Martis Valley, past recharge estimations have relied on empirical and water 

balance methods.  Hydro-Search, Inc. (1974) performed the first comprehensive recharge 

study, which was updated in 1980 and again in 1995 as part of the Martis Valley 

Groundwater Management Plan prepared for Truckee Donner Public Utility District 

(TDPUD).  Hydro-Search, Inc. (HSI) used a water budget approach to calculate available 

water within the Martis Valley Groundwater Basin (MVGB), a subset of the Martis 

Valley hydrographic area, delineated in the 1974 HSI study.  To estimate recharge, HSI 
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sectioned the MVGB into 10 zones assumed to contain homogenous hydrologic 

properties.  Recharge was estimated for each zone using an approximation method based 

on infiltration characteristics of the soil and geologic formations, evapotranspiration (ET) 

losses, depth to groundwater, and precipitation amount.  These categories were rated 

based on their recharge capabilities, and a percentage of precipitation termed “recharge 

efficiency” (12.5% - 27%) was assigned to each zone based on these ratings.  Total 

recharge estimated by HSI within the MVGB was approximately 18,179 acre-feet per 

year (ac-ft/yr).  Nimbus Engineers (2001) used the same basin delineations as HSI and 

used the HSI recharge estimations as a framework for their study.  Recharge efficiencies 

were assigned to the ten zones from the HSI report based on slope, aspect, soil, and 

geologic unit.  Parameter-elevation Regressions on Independent Slopes Model (PRISM) 

simulated precipitation data were used, resulting in an additional 6,320 ac-ft/yr of 

precipitation to the MVGB compared to the HSI precipitation data. The Nimbus 

Engineers (2001) report concluded that the basin-wide recharge efficiency is 25.3% and 

annual recharge is 23,744 ac-ft/yr.  Kennedy/Jenks Consultants (2001) published an 

independent assessment of Martis Valley groundwater availability suggesting that the 

earlier studies by HSI (1974, 1980, 1995) and Nimbus Engineers (2001) were 

conservative resulting from the under prediction of groundwater discharge to streams, but 

no recharge estimations were provided in this report.  InterFlow Hydrology, Inc. and 

Cordilleran Hydrology, Inc. (2003) presented measurements of groundwater discharge to 

Truckee River tributary streams in Martis Valley.  This report suggested that recharge 

had been underestimated in previous studies due to limited discharge data and the 

omission of certain watershed areas that contribute to recharge.  The study focused on 
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data collection in tributary streams to refine the previous investigations.  Streamflow 

measurements showed a total of 34,560 ac-ft/yr of groundwater discharge to streams 

tributary to the Truckee River, of which approximately 24,240 ac-ft/yr is contributed by 

high elevation areas, while the remaining 10, 320 ac-ft/yr occurs in lower elevations 

within the MVGB.  Rajagopal et al. (2012) applied the Precipitation Runoff Modeling 

System (PRMS) to estimate recharge in Martis Valley.  The PRMS simulated recharge 

varies from year to year based on precipitation and temperature cycles.  The average 

annual recharge estimate for a 30 year historical period was 32,745 ac-ft/yr.  In the same 

report, a modified Maxey-Eakin method was described and resulted in an estimate of 

35,168 ac-ft/yr of groundwater recharge.  Because the numerical model is surface water 

focused, the influence of low permeability mountain block in rejecting infiltrating water 

is neglected; therefore the spatial distribution of recharge was largely driven by 

precipitation location.  Recharge locations can be simulated more realistically by 

integrated surface water-groundwater modeling and inferred from isotope and dissolved 

gas measurements.  Table 1 presents a summary of previous water budget-based 

groundwater recharge estimations for Martis Valley.  
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Summary of  GW Recharge Estimations in Martis Valley 

Hydrosearch, Inc                          

(1995) 
18,179 ac-ft/yr 

Nimbus Engineers                         

(2001) 
23,744 ac-ft/yr 

Interflow Hydrology and 

Cordilleran Hydrology, Inc        

(2003) 
34,560 ac-ft/yr 

Seshadri et al.                                       

PRMS (2012) 
32,745 ac-ft/yr 

Seshadri et al.                        

Modified Maxey-Eaken (2012) 
35,168 ac-ft/yr 

 

Table 1: Previous estimates of groundwater recharge in Martis Valley groundwater 

basin. 

 

Geochemistry 

 Chemical concentrations and tracers in certain contexts can be used to investigate 

SW/GW interactions, provide quantitative or qualitative estimates of recharge, and 

identify sources and locations of recharge (Healy, 2010).  Observations made by Craig 

(1961) of isotopic values related to their sources (i.e. warm or cold regions) have become 

the basis for isotopic investigations of recharge.  Measurements of stable isotopes 

deuterium (δ
2
H) and oxygen-18 (δ

18
O) provide a tool for characterizing groundwater 

recharge environments (Clark and Fritz, 1997).  Initial isotopic signatures are contained 

in precipitation and allude to temperature at time of deposition, therefore allowing for 

hydrograph separations and recharge source implications.  Several studies have employed 

environmental isotopic analyses to investigate groundwater recharge and discharge and 

the components of streamflow (Fritz et al., 1976; Sklash and Farvolden, 1979; Rodhe, 
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1984; Kennedy et al., 1986; Bottomley et al., 1986; Herrmann et al., 1986; Turner et al., 

1987).  Sklash and Farvolden (1979) presented isotopic-based hydrograph separation 

designating groundwater dominance in storm runoff.  Rhode (1984) studied the relative 

contribution of event water and groundwater to streamflow in several watersheds 

throughout Sweden.  Mixing models based on these isotopic studies categorize 

streamflow into four components: direct deposition on the water channel, overland flow, 

groundwater discharge, and subsurface stormflow, or interflow (Fritz et al., 1976).     

Friedman and Smith (1970) studied deuterium variations in Sierra Nevada precipitation 

to characterize annual winter climate.  Stable isotope research has been applied in snow 

dependent regions to investigate mechanisms, timing, and locations of recharge (Ajami et 

al., 2011; Druhan et al., 2004; Shanley et al., 1995).   

Because baseflow is largely derived from groundwater, stream samples collected 

near the mountain block during baseflow conditions should provide approximate isotope 

values for mountain block recharge.  Thiros and Manning (2001) used stable isotopes and 

dissolved noble gases to differentiate between valley and mountain block recharge in Salt 

Lake Valley, Utah.  Based on isotopic values and recharge temperatures calculated from 

noble gas measurements, the research suggested that the Salt Lake Valley aquifer 

receives significant mountain-block recharge.  The combination of recharge temperatures 

and isotopic ratios allowed Thiros and Manning (2001) to designate two zones of high 

recharge proportions on the east side of the Salt Lake Valley.  Ajami et al. (2011) 

employed an isotopic data-driven method to quantify mountain block recharge rates using 

a recession flow analysis in an Arizona basin.  This research focused on understanding 

recharge dynamics in mountainous catchments in relation to precipitation seasonality and 
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catchment storage characteristics.  Ajami et al. (2011) concluded that winter frontal 

storms provide 50% of annual precipitation, and during dry periods, streamflow is mostly 

derived from groundwater stored in fractured bedrock, which has an isotopic signature 

indicative of winter precipitation.  Wahi et al. (2008) used stable isotopes δ
2
H and δ

18
O to 

investigate recharge seasonality in the Upper San Pedro Basin, Arizona.  The research 

suggested that, although over half the annual precipitation falls in the summer, recharge 

is dominated by winter precipitation.  High summertime evapotranspiration (ET) rates 

and periodic snowmelt that sustains infiltration through the winter were the designated 

causes for wintertime recharge dominance.  Uncertainties in isotopic analyses arise from 

spatial and temporal variability, mixing of new and old water, and isotopic fractionation 

processes. 

Dissolved gases within the hydrologic system are well suited to examine recharge 

processes and groundwater transport in alpine basins (Singleton 2009).  Rademacher et 

al. (2001) and (2005) studied chemical and isotopic fluctuations in the Sagehen 

watershed, just north of Martis Valley, to investigate the chemical evolution of 

groundwater and temporal fluctuations on stream hydrochemistry.  Conclusions 

suggested a mean groundwater residence time of over 15 years, but significant 

groundwater-surface water mixing dynamics on a seasonal scale.  Noble gases (He, Ne, 

Ar, Kr, and Xe) dissolved in groundwater can be used to supplement isotopic 

implications and constrain recharge elevations and rates.  Noble gas solubility depends on 

temperature and pressure, and the conservative nature of the gases allows for estimations 

of water table temperatures at the time of groundwater recharge.  Therefore, 

concentrations of the dissolved noble gases can allude to recharge locations.  Manning 
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and Solomon (2003) derived maximum and minimum recharge temperatures based on 

concentrations of Ne, Ar, Kr, and N2 in spring waters and well samples applied with a 

maximum and minimum elevation above mean sea level.  These methods constrained a 

zone for potential subsurface inflow.  Manning and Caine (2007) used groundwater noble 

gas and temperature data in an alpine watershed in Colorado to map the groundwater 

circulation to a maximum depth of 200 m.   

Noble gas concentrations in groundwater are commonly above equilibrium 

solubility, thus, the amount of additional entrained gas in excess of equilibrium solubility, 

known as ‘excess air’, can be measured.  Excess air amounts are related to infiltration 

rates and/or water table fluctuations.  In the Colorado watershed studied by Manning and 

Caine (2007), high excess air measurements indicated large seasonal fluctuations in the 

water table.  Apparent groundwater ages from 
3
H/

3
He data supported and further 

constrained the noble gas implications.  These analysis techniques aided Manning and 

Caine (2007) in the development of a conceptual model of the complex hydrogeologic 

system.   

Singleton and Moran (2010) conducted a detailed geochemical investigation in 

Squaw Valley, a sub-basin within the Martis Valley watershed.  Based on noble gas 

concentrations and isotopic signatures measured from wells and surface water, three main 

contributions to groundwater flow were suggested: seasonal (shallow) recharge, older 

(deeper) groundwater, and upwelling magmatic fluids.  Nearly all of the samples in this 

study contained detectable amounts of tritium (
3
H), reflecting the presence of 

groundwater less than 50 years old.  Their research also pointed to the presence of 

radiogenic and magmatic helium as indicators of old (>50 yrs) groundwater contribution.  
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Based on these relative age indicators, Singleton and Moran (2010) were able to construct 

a conceptualization of groundwater movement and mixing through the system.  Singleton 

and Moran (2010) compared Squaw Valley excess air values to over 800 samples from 

major groundwater basins in California measured by Cey et al. (2008).  Higher excess air 

concentrations are expected in samples containing water that recharged at high rates 

through bedrock fractures, or has been exposed to drastic water table fluctuations.  The 

Squaw samples fell into the bottom tier of excess air values, indicating negligible 

recharge through fractured bedrock.  The research also mentioned that two wells drilled 

horizontally into bedrock in Squaw Valley had similar excess air concentrations to those 

of which were measured from wells lower in the basin.  This suggests that even at higher 

elevations, shallow recharge occurs slowly in areas where soils cover the competent 

bedrock, maintaining low excess air values.  The results implied that the majority of 

groundwater recharge occurs at or below the mountain front, which was presented as 

evidence for the basin to be sensitive to climate change.  Groundwater ages from this 

work suggest that the top 10-40 m of the valley groundwater aquifer is derived from 

infiltration of snowmelt.  Once the snowmelt surge has passed and groundwater levels 

drop, production wells begin to draw into older water, which Singleton and Moran (2010) 

predicted would occur sooner in the year resulting from a reduced seasonal duration of 

snowpack accumulation and magnitude under future climatic conditions. 

The Martis Creek sub-basin of the Martis watershed has been investigated 

recently using geochemical techniques.  Daniel Segal, a recent graduate student at the 

California State University East Bay and Lawrence Livermore National Laboratory 

(LLNL) under Jean Moran, is currently in the process of publishing his master’s thesis 
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work, which focused on using geochemical data to evaluate recharge processes in Martis 

Valley and sensitivity of the watershed to climate change.  His work is referenced in the 

following sections.  Because of similar research goals, LLNL partnered with Desert 

Research Institute (DRI) in order to share and compare data analyses and model results of 

Maris Valley research.  Raw stable isotope data sampled throughout 2012 was shared by 

LLNL, as well as noble gas and excess air measurements along with analysis and 

interpretations by Segal (2013).  A meeting and series of written communications took 

place to share research and conceptual models of the basin.  The stable isotope data from 

LLNL contained deuterium (δ
2
H) and oxygen-18 (δ

18
O) measurements from 

groundwater, surface water, and snow samples throughout 2012.  The samples were 

gathered by both LLNL and DRI researchers, and laboratory measurements of δ
2
H and 

δ
18

O were conducted at LLNL.   

As previously explained, noble gas concentrations imply temperatures and climate 

characteristics at the time of recharge.  Recharge temperatures were calculated by LLNL 

from water samples taken seasonally through 2012 from ten production wells, two 

irrigation wells and test holes, and three springs in Martis Valley proper, located in the 

Martis Creek sub-basin and the sub-basin directly to the north.  To compute recharge 

temperatures, the measured noble gas concentrations were fit to three fractionation 

models (partial re-equilibration, closed equilibrium, and unfractionated).  Temperatures 

from the model with the highest χ
2
 probability were chosen (Segal, 2013).  These derived 

recharge temperatures were then compared to mean annual air temperatures at sample 

locations to estimate recharge elevations.   
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 Super-saturated noble gases (notably Ne) dissolved in groundwater provide an 

excess air reading that can suggest rates of infiltrating water (Singleton and Moran, 

2010).  In other words, entrainment of air bubbles during unsaturated zone infiltration 

followed by dissolution in the groundwater and conservative transportation can lead to 

measurable concentrations of excess air.  A common way to represent the amount of 

excess air is percent excess Ne (ΔNe) relative to the equilibrium component.  From these 

measurements, deductions can be made about specific transport characteristics, such as 

unsaturated zone flow or fracture flow, as well as relative recharge rates and temperatures 

(Singleton and Moran, 2010).  In Martis Valley, excess air research was undertaken by 

LLNL to investigate spatial distribution of groundwater recharge.  The same excess air 

values (from Cey et al. 2008) used for comparison in Squaw Valley by Singleton and 

Moran (2010) were used as reference for the Martis Valley excess air measurements. 

Calculated recharge temperatures from LLNL were found to be generally within 

the range of mean annual air temperature (MAAT) for the elevation of sample location, 

therefore implying infiltration through a soil zone that sustains MAAT, rather than direct 

snowmelt infiltration to the water table (i.e. fracture flow).  This is interpreted as more 

recharge occurring through alluvial formations in the lower elevations compared to direct 

snowmelt infiltration at higher elevations (Segal, 2013).  A general trend of lower 

recharge temperatures with increasing elevation is suggested (Figure 2 and 3).  Relatively 

high recharge temperatures compared to mean annual air temperatures at the sample 

elevation indicate higher recharge at lower elevations. 
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Figure 2: Noble gas recharge temperatures are similar to MAAT at the sample 

location, indicating recharge below the 2050 m elevation line (the lower 330 m of the 

watershed), where infiltrating water equilibrates with air temperature and is 

reflected in the noble gas concentration of the water sample.   

 

 

Figure 3: Decreasing trend of recharge temperature with increasing elevation. 
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The relatively low excess air values (compared to Cey et al., 2008) from 

groundwater and surface water samples in Martis Valley indicate slower infiltration rates, 

likely through alluvial soils in the unsaturated zone along the valley floor (Segal, 2013).  

Figure 4 shows the excess air values at the sample locations.   

 

 

Figure 4: Excess air values (measured in %Ne excess of solubility) throughout 

Martis Valley fall in the mid to low range compared to measurements from around 

California sampled under the GAMA program (Cey et al., 2008).  The relatively low 

values indicate dominance of slow infiltration through a soil zone (Segal, 2013).  

Some higher values within the valley suggest more rapid recharge rates, or larger 

water table fluctuations.       
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The excess air values are indicative of low recharge rates in upper elevations of 

the watershed, suggesting most recharge occurs within lower elevations.  Because excess 

air measurements indicate conditions under which recharge occurred, high levels can be 

associated with mountain block recharge in the form of fracture flow.  Lower levels of 

excess air are associated with alluvial deposits where recharge occurs slowly with 

minimal gas entrainment (Segal, 2013).  This research suggests insignificant mountain 

block fracture flow in Martis Valley.  The excess air measurements reinforce the low 

elevation recharge dominance implications of the noble gas recharge temperatures.  This 

suggestion, however, contradicts most Maxey-Eakin based spatial recharge estimates that 

are biased toward precipitation locations.  

 Segal (2013) also investigated groundwater flow directions based on geochemical 

mixing ratios.  Groundwater flowing from the east picks up a mantle helium signal, likely 

upwelling from the Polaris fault, and then mixes with the groundwater flowing from the 

west.  The mixing ratios observed allowed for a general estimation of groundwater flow 

directions (Figure 5). 
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Figure 5: From Segal (2013), flow directions inferred from geochemical 

mixing ratios, related to fault derived mantle helium concentrations.  East and west 

groundwater flows are estimated to converge in the central portion of the valley 

before discharging to the Truckee River. 
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Numerical Modeling 

Advancement of computer codes and processing capabilities has allowed 

numerical modeling tools to enhance hydrologic research.  Several recent studies have 

employed integrated modeling techniques to assess water resources (Panday and 

Huyakorn, 2004; Kollet and Maxwell, 2006; Ferguson and Maxwell, 2010; Sulis et al., 

2011).  These models incorporate feedbacks between the land surface, soil, and 

groundwater zones that more realistically simulate interconnected hydrologic processes 

compared to previous compartmentalized models.  Ferguson and Maxwell (2010) used an 

integrated groundwater-surface water model to investigate watershed response to climate 

change in the southern Great Plains.  One control simulation was run based on physical 

data from a single water year, and then three subsequent “perturbed” simulations were 

run to project potential scenarios onto the study area.  The perturbed scenarios were used 

to evaluate sensitivity of the water and energy balance to changes in temperature and 

precipitation.  Recharge and storage losses were sensitive to the perturbed scenarios.  The 

research strongly suggested that the magnitude and seasonality of groundwater feedbacks 

are sensitive to changes in climate, and illustrated how integrated models can expose 

relationships and sensitivities of the water balance.  Huntington and Niswonger (2012) 

used an integrated modeling approach to assess surface water and groundwater 

interactions under projected summertime streamflow scenarios in a snow dependent 

watershed adjacent to Martis Valley.  The integrated modeling software, GSFLOW, was 

used to simulate snowmelt timing, streamflow, storage, evapotranspiration, and 

groundwater recharge and discharge.  The simulations showed that the timing of 

groundwater discharge is inversely related to snowmelt runoff and groundwater recharge, 
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causing summertime flows to deplete even if projected precipitation and recharge 

increase.  The results highlighted the importance of integrated modeling to study 

interconnected SW/GW systems.          

 

Baseflow Analyses 

Snowmelt recession and dry summers cause the baseflow component of the 

Martis Valley watershed to play a large role in streamflow, especially late in the water 

year (summer into fall). Studies have shown groundwater plays a significant role in 

streamflow during both high and low flow periods (Singleton 2009, Liu et al. 2004, 

Rademacher et al., 2005).  The baseflow component of streamflow has commonly been 

assumed to be roughly equivalent to groundwater recharge, and several methods have 

been developed to investigate recharge from streamflow records (Mau and Winter, 1997; 

Rutledge, 1992; Rorabaugh, 1964; Mayboom, 1961).  To investigate vadose zone and 

aquifer storage tendencies and relationships between precipitation and recharge, analyses 

of baseflow periods can be applied to watersheds or sub-watersheds.  Kirchner (2009) 

showed that streamflow data, as a function of storage in a catchment, could be used to 

determine “catchment sensitivity”.  This catchment sensitivity function quantifies change 

in streamflow as a result of changes in catchment storage.  Ajami et al (2011) applied 

Kirchner’s recession curve-derived storage-discharge relationship as a means to quantify 

mountain block recharge rates.  Comparing baseflow quantities to that of precipitation 

provides insight into recharge efficiency and aquifer storage dynamics. 
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Description of Study Area 

Physical setting 

The Martis Valley watershed occupies the northern section of the Tahoe-Truckee 

graben between the Sierra Nevada Range to the west and the Basin and Range Province 

to the east (Sylvester et al. 2007; Schweickert et al. 2011).  This graben consists of the 

region in which both Lake Tahoe and Martis Valley basins are located.  Martis Valley 

proper is located within the Martis Creek sub-basin and parts of adjacent sub-basins to 

the north.  These three sub-basins make up roughly half of the watershed, which contains 

a total of fourteen sub-basins.   The watershed is bisected by the Truckee River running 

out of Lake Tahoe at Tahoe City.  From Lake Tahoe, the Truckee River runs north for 

approximately 22 kilometers where it is fed by several streams flowing out of sub-basins 

on the western side of the river.  Once the river nears the town of Truckee, it curves to the 

east and continues at an east-northeast direction where it acquires dam released flows 

from Donner Lake, Prosser Reservoir, and Martis Creek Reservoir and natural flow from 

small tributaries before it leaves the basin.   

The watershed covers an area of just over 500 km
2
 with a maximum relief of 

roughly 1000 m.  The lowest tiers of the valley sit around 1730 m elevation and the 

highest mountain peaks reach over 2700 m.  Hills rise along the skirts of the valley floor 

and mountains make up the backdrop to the south and east of the valley.  Out of the 

valley and into the Sierra Nevada to the west, several glaciated sub-basins comprise this 

western portion of the study area.  To the north, volcanic dominated sub-drainages run 

into Prosser reservoir, which releases water into the Truckee River shortly before its exit 

from the study area.  
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The basement rock is comprised largely of andesitic and basaltic lava and 

volcaniclastics along with granitic plutons in the western portion.  These bedrock 

formations are largely overlain by less consolidated volcanics and glacial, fluvial, and 

alluvial deposits ranging from fine clay to large boulders (Sylvester et al. 2007).  At the 

higher elevations of the watershed, the mountain block is exposed or covered by thin 

layers of sediment that thicken near streambeds and eventually form the basin fill aquifer 

at the lower elevations, reaching thicknesses of over 200 m on the valley floor.  This 

basin fill unit is interbedded with glacial tills, alluvial sediments, and clayey silt lenses 

(Sylvester et al 2007).   

One major active fault runs through the study area, the Polaris fault, a right lateral 

strike-slip fault running southeast to north-northwest through mainly the eastern portion 

of Martis Valley and extending north beyond the town of Truckee and out of the study 

area.  A recent study suggests the active Polaris fault zone may act as a potential 

impedance to groundwater flow (Bauer et al. 2013); however, based on water level data 

available for this research and numerical results from the flow model, faults were not 

considered substantial groundwater flow barriers.   

 

 

 

Geologic History 

 The oldest rocks in the greater Tahoe-Donner region are Paleozoic sediment 

deposits that were metamorphosed during the intrusion of the Cretaceous Sierra Nevada 

batholith (Sylvester et al. 2012).  These metasediments lay mostly to the west and south 

of the Martis Study area.  The Sierra Nevada intrusive granitic rocks make up a 
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significant portion of the western side of the Martis watershed.  Several volcanic events 

spanned through the Oligocene, Miocene, and Pliocene epochs, with volcanic centers 

reaching as far as central Nevada.  These events formed what is the basement rock of the 

remaining portion of the Martis watershed.  The interlayered volcanics can be categorized 

into their respective events, but for hydrologic investigations, it is more conducive to 

characterize the formations by their hydrogeologic properties.  The volcanic rocks of the  

Martis basin are largely andesitic and basaltic in origin, with some rhyolitic qualities 

(Sylvester et al. 2012).  The consolidated volcanic and granitic formations that make up 

the basement rock are low permeability formations.  The Late Pliocene brought more 

local volcanic events that formed dark basalt lava flows, visible in outcroppings in the 

Martis basin.  Quaternary glaciers caused the majority of deposition on the western half 

of the Martis watershed.  These glacial deposits and carved valleys make up the majority 

of surface topography in this region, and when glacial dams that blocked outflow from 

Lake Tahoe finally broke, large boulders were deposited as far east as Reno (Sylvester et 

al. 2012).  All the alluvial deposits that sit on the surface are less than one million years 

old and remain unlithified (Sylvester et al. 2012).  It is the basin-fill alluvial layers that 

make up the dominating water bearing units of the Martis Valley aquifer. 

 

Hydrographic Setting 

The Martis Valley watershed is representative of many snow dominated regions 

of the semi-arid mountainous west, consisting of large topographic relief and relatively 

impermeable bedrock that causes shallow groundwater flow through alluvial soils.  The 

basement rocks of both Miocene volcanics and Cretaceous-Jurassic plutonic rocks are 
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relatively low permeability and it is assumed that negligible amounts of water infiltrate 

into the bedrock (Rajagopal et al. 2012).  The Miocene-Pliocene and Quaternary basin fill 

sedimentary units include lake, stream, and glacial deposits and make up the main water 

bearing units within the Martis basin.  Low permeability clayey silt lenses extend 

intermittently through the basin fill formations acting as local confining layers.  Lying 

somewhat within and largely below the basin fill sediments are weathered and fractured 

volcanics and granites, termed in this work “weathered bedrock”, and considered to bear 

and transmit some water (Bauer et al. 2013).   

The primary hydrologic feature of the Martis watershed is the Truckee River.  

Major water bodies within the hydrographic area include Donner Lake, Prosser 

Reservoir, and Martis Creek Reservoir.  Donner Lake is naturally dammed by a glacial 

moraine, with additional storage created by a man-made dam.  Its outlet, Donner Creek, 

feeds the Truckee River near central Truckee (town).  Prosser Creek Reservoir collects 

and stores contributions from the northern portion of the watershed.  The outlet of Prosser 

feeds directly into the Truckee River shortly before its exit from the Martis basin.  Martis 

Creek Reservoir collects water from the Martis Creek drainages that originate in the 

mountainous region in the south and southeast of the study area.  Because the 

aforementioned Polaris Fault poses a potential seismic hazard to the Martis Creek 

Reservoir dam, the reservoir is not utilized to its full potential, and fluctuates very little 

acting mainly as a flood control feature (Hunter et al. 2011).   

Stream gages in the watershed are located in the Truckee River near the town of 

Truckee and at the outlet of the basin, and also along the outflows of Donner Lake, 

Prosser Creek Reservoir, Martis Creek Reservoir, and in Squaw Creek in Squaw Valley.  
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Two SNOTEL sites lie within the study area: Truckee #2, located in the center of the 

basin at 1984 m elevation near the Truckee Airport, and Squaw Valley G.c., located in 

the Squaw Valley sub-basin at 2447 m elevation (Figure 6). 

  

Figure 6: Martis watershed with delineated sub-basins, stream networks, 

streamgages, and SNOTEL site locations and names. 

 

Climate and Vegetation 

 The climate of Martis Valley is congruent with that of the greater Lake Tahoe-

Truckee region: warm, dry summers that produce sporadic thunderstorms, and cold, wet 

winters that bring the majority of precipitation to the watershed as snow.  Elevation and 

Truckee #2 

Squaw 
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rain shadow effects significantly influence the spatial variability of temperature and 

precipitation in the basin.  The upper elevations of the southern and western portions of 

the basin receive the most precipitation, typically from Pacific Ocean marine air masses.  

These higher elevations (above 2050 m) receive a mean annual snow water equivalent of 

over 115 cm, while approximately 75 cm falls annually below this level.  Annual peak 

streamflow typically occurs during spring snowmelt, although the hydrograph also 

responds to periodic mid-winter rain on snow events.  The region experiences high 

climate variability, marked by wet and dry periods.  Figures 7a and 7b show the mean 

monthly precipitation distribution recorded at the Truckee #2 and Squaw SNOTEL sites, 

respectively.  Figure 7c shows mean monthly streamflow at the USGS Truckee River 

gage near downtown Truckee.  Based on data from the Truckee #2 SNOTEL Station, 

average temperatures range from highs of 28ºC in July to lows of -9ºC in December and 

January.  Droughts are common in this region of the Sierra Nevada, and tend to last 

longer than the short lived, but more extreme wet periods.  Vegetation ranges from dense 

coniferous forests in the highest and wettest areas of the watershed to open forests mixed 

with grasses, sagebrush, and rabbit brush in the drier, lower elevations. 
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Figure 7: Mean monthly precipitation in centimeters of water recorded at (a) 

Truckee #2 and (b) Squaw SNOTEL sites from 1980-2013. (c) Mean monthly 

streamflow measured in the Truckee River near downtown Truckee by the USGS 

stream gage from 1980-1982 and 1992-2010. 
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Water use 

Because of the semi-arid setting, a highly variable climate, and increased water 

demands from the greater Truckee-Donner and Reno areas, water resources and 

reservoirs are highly managed.  The Truckee-Donner Public Utility District (TDPUD) 

controls thirteen active production wells that provide the greater Truckee area with 

potable water, plus three wells to serve non-potable demands; while the Truckee River 

flows through this region without diversion (Bauer et al. 2013).  The TDPUD reported in 

2010 that the potable water demand of the Truckee area was 6.25 million cubic meters 

per year (5,073 acre-feet per year).  Northstar Community Services District (NCSD) and 

Placer County Water Agency (PCWA) control two production wells each within Martis 

Valley, meant to serve the Northstar recreation operations and the Lahontan Golf Club 

and community, respectively.  The total estimated average water demand for the Martis 

Valley groundwater basin is 11.5 million cubic meters per year (9,341ac-ft/yr) (Bauer et 

al. 2013).  Several private wells are distributed through communities across the basin and 

in outlying home tracts.  The city of Reno and its outlying communities demand much 

more water for municipal, domestic, industrial, and recreational uses.  This water supply 

depends heavily upon the Truckee River and Martis Valley watershed contributions, and 

reservoir management.  Eighty-five percent of Reno’s water supply comes directly from 

the Truckee River, while the Truckee-Donner communities depend completely on 

groundwater in Martis Valley (Bauer et al. 2013).   

Streamflow from Lake Tahoe, Donner Lake, Martis Creek, Prosser Creek, and the 

Little Truckee is controlled by dam operations.  The timing and amount of flow released 

is governed by several court decrees, agreements, and regulations.  The streamflow rates, 
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designated in the Truckee River Agreement of 1935, and termed ‘Floriston Rates’, are 

measured at the Farad, CA USGS gaging station, just before the Truckee River enters 

Nevada.  According to the Truckee River Operations manuscript, mean flow rates at the 

Farad USGS gage must be kept to an average of 500 cubic feet per second (cfs) in the 

summer and 400 cfs in the winter, with some flexibility based on the level of Lake Tahoe 

(Summary Truckee River Operations, 2002).  These rates are designated to support 

irrigation and municipal demands downstream, as well as provide hydroelectric power.   

According to the Truckee Meadows Water Authority (TMWA) 2010-2030 Water 

Resources Plan, there is approximately 175 million cubic meters per year (142,000 ac-

ft/yr) of decreed, storage, and irrigation rights from which annual water supplies can be 

generated.  These resources come from reservoir and groundwater storage, as well as 

surface water supplies, all within the Truckee River Basin.   
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Methods 

 The approach taken to investigate and simulate groundwater recharge in the 

Martis watershed is discussed in the following sections.  Descriptions and methodologies 

of the baseflow analysis, stable isotope investigations, framework grid development, and 

PRMS, MODFLOW, and GSFLOW models, are provided in the following sections. 

 

Baseflow analysis 

Analysis of hydrograph baseflow recession curves can be used to identify the 

parameters of a conceptual catchment storage model (Lamb and Beven, 1997).  A 

recession curve refers to the falling limb of the hydrograph along which no precipitation 

occurs.  Because baseflow is dominated by groundwater, baseflow recessions and 

baseflow periods of the hydrograph can be related to groundwater recharge.  Using data 

from streamflow gages and National Resource Conservation Service (NRCS) SNOTEL 

sites (Figure 6), baseflow periods for the Martis Creek sub-watershed were analyzed to 

form initial relationships between precipitation, streamflow, and baseflow. 

Spatial precipitation data were available from the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) database, which uses point data from 

climate stations, such as SNOTEL sites and cooperating National Weather Service 

(NWS-Coop) stations.  PRISM uses physiographic factors to create a precipitation grid 

over the area of interest based on the nearest data stations.  According to the manuscript 

describing the development of the PRISM database, climate–elevation regression is 

developed from pairs of elevation and climate measurements provided by station data 

(Daly et al., 2008).   Annual precipitation amounts in the Martis Creek sub-watershed 
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were compared to annual streamflow and baseflow of Martis Creek.  Figure 8 shows the 

mean annual precipitation over the entire watershed, based on the PRISM technology.    

 

 

Figure 8: PRISM distributed mean annual precipitation.  Note that the large 

majority falls along the upper elevation mountainous corridor on the western edge 

of the watershed.  Also shown are streamflow gage and precipitation site locations 

used for the Martis Creek baseflow analysis. 

 

Daily average discharge rates were obtained for Martis Creek in cubic feet per 

second (cfs) from October 1, 1980 to September 30, 2011.  It is important to note that the 

Lake Tahoe 

Martis Creek 
Sub-Watershed 

Martis Creek streamgage 
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Truckee #2  
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streamgage in Martis Creek sits just below the dam that creates Martis Creek Reservoir, 

and therefore the streamflow values were naturalized in order to simulate the natural 

streamflow without the dam.  The naturalized data through September 30, 2000 comes 

from a dataset known as TCDATFIL, developed by several stakeholders in the Truckee 

Basin.  These data were designed for the Truckee River Operating Agreement (TROA).  

The naturalization calculation is based on reservoir stage-volume relationships, or 

reservoir water budget estimation.  Blodgett et al. (1984) provides more detailed 

information on streamflow naturalization.  The streamflow values beyond Sep. 30, 2000, 

naturalized by the Federal Water Master’s office, were intermittent.  Thus, only the 

continuous data period from October 1, 1980 through September 30, 2000 was used for 

baseflow analyses.   

From the Martis Creek daily discharge data, a three month baseflow period for 

each year was selected to compute an average daily baseflow.  Because of variation in the 

timing and length of snowmelt, the baseflow period shifted between June and October.  

For example, June 30 to September 30 was chosen as the main three month baseflow 

period for 1981, but the following year, July 15 to October 15 was chosen (Figure 9).  

This method was used in order to gather averages from the lowest flows of the year, 

which are most likely to be completely groundwater derived.  These three month 

averages were then extended for the entire year to estimate annual baseflow volumes.  

Annual baseflow volumes were then compared to annual streamflow and precipitation 

volumes.  The annual baseflow volumes considered are conservative as they do not 

account for any increase in baseflow contribution throughout the year.  This was 

acceptable for initial estimations because the goal of developing baseline relationships 
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between baseflow, streamflow, and precipitation volumes was still attainable from the 

analysis.  Annual fractions of baseflow (Qbase) and streamflow (Q) to precipitation 

(PPT) were computed to quantify the Qbase – Q – PPT relationships over the entire 20 

year period. 

 

 

 

Figure 9: Three annual Martis Creek hydrographs, illustrating variations in 

baseflow period.  1981 shows baseflows spanning from May through October, while 

1983 doesn’t exhibit baseflow levels until late July.  1985 falls in between showing 

baseflows from June through September. 
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Stable Isotope Analysis 

Stable isotopic data from Lawrence Livermore National Laboratory (LLNL) 

included deuterium (δ
2
H) and oxygen-18 (δ

18
O) measurements of groundwater, surface 

water, and snowmelt from Martis Valley throughout 2012.  Stable isotopes can be used to 

identify the source and timing of recharge, and can provide valuable information on 

evaporation rates and flow processes in the unsaturated and saturated zones (Healy, 

2010).  The measured isotopic values were recorded as parts per thousand or permil 

Vienna Standard Mean Ocean Water (‰ VSMOW).  LLNL had not performed any 

preliminary analysis or interpretations of the stable isotope data prior to sharing the data.  

Although one year of data does not allow for an incredibly robust analysis, basic 

comparisons between sample types were still able to be observed.   

Once a snowfall event has taken place, the isotopic signature of this event will 

evolve within the snowpack over time because of isotopic fractionation, or changes in 

isotopic abundance ratios.  Phase changes, evaporation, condensation, freezing, 

sublimation, melting, and some chemical reactions are all associated with isotopic 

fractionation (Leibundgut et al., 2009).  Isotopic fractionation processes, plus a below 

average snowpack in 2012, make the isotopic storm signatures in streamflow samples 

more difficult to interpret; however, they still held a unique enough signal to reveal basic 

processes.   

Preliminary analyses of the isotopic data included observing the surface, 

groundwater, and snow samples over time to detect seasonal fluctuations and form 

relationships between the sample types.  Groundwater was only sampled in the summer, 

however, so a time series was not available.  Stream samples from two separate reaches 
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of Martis Creek were taken throughout 2012, so an annual time series representing 

streamflow was observed.  Snow samples had been taken over the course of the winter 

and spring months at three locations above Martis Valley in order to obtain isotopic 

signatures of the snowmelt, and variations thereof were observed.   

The isotopic data was plotted along a global meteoric water line (GMWL).  

Observing the relative isotopic enrichments along the GMWL provided information on 

seasonal fluctuations and fractionation processes.  Snowmelt isotopic data were observed 

with model simulated snowmelt timing and magnitude to determine the effects of 

snowmelt on isotopic signatures of the snowpack, which are reflected in groundwater and 

stream samples.  Isotopic streamflow data from two forks of Martis Creek were observed 

with model simulated Martis Creek hydrograph after the convergence of the forks to 

determine isotopic fluctuation related to discharge timing and magnitude.        

 

Numerical Modeling 

The Groundwater Surface-Water Flow (GSFLOW) model (Markstrom et al., 

2008) used for this research couples the Precipitation Runoff Modeling System (PRMS) 

(Leavesly et al., 1983) with the Modular Groundwater Flow (MODFLOW) model 

(Harbaugh, 2005), and creates an integrated SW/GW simulation.  Driven by temperature 

and precipitation data, GSFLOW was used to simulate all surface and groundwater 

hydrologic processes within the Martis watershed.  GSFLOW simultaneously accounts 

for climatic conditions, runoff across land surface, variably saturated subsurface flow and 

storage, and connections among terrestrial systems, streams, lakes, wetlands, and 
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groundwater (Huntington and Niswonger, 2012).  Markstrom et al. (2008) and Niswonger 

et al. (2011) provide a complete description of GSFLOW and its theory.   

PRMS is a physical process based, deterministic modeling system developed to 

evaluate watershed response to various climate and land use combinations (Leavesley et 

al., 1983).  PRMS simulates snowpack in terms of water storage and as a dynamic heat 

reservoir (Jeton and Maurer, 2011).  Surface runoff can flow to the four neighboring 

surface grid cells, infiltrate, or flow to a stream.  Preferential, capillary, and gravity 

reservoirs represent the different components of soil storage properties, and control 

whether water will percolate deeper (MODFLOW), flow horizontally to a receiving grid 

cell or stream, or evapotranspire to the atmosphere (Huntington and Niswonger, 2012).  

Groundwater will contribute to soil zone storage if the water table is above the base of the 

soil zone, and will discharge to the surface if groundwater heads are above land surface.  

Potential evapotranspiration (PET) is first derived from vegetation canopy interception-

storage, followed by sublimation and impervious surface evaporation.  

Evapotranspiration (ET) is simulated as a function of PET.  McDonald and Harbaugh 

(1988), Markstrom et al., (2008) and Huntington and Niswonger (2012) provide further 

details on the PET simulations and theory.  Spatial heterogeneity is accounted for by a 

“distributed parameter” representation of spatially varying hydrologic characteristics.  

Model parameterization is based on digital elevation maps and datasets describing soil 

type, land cover, and stream networks.  The varying parameters are numerically 

represented as a collection of hydrologic response units (HRUs).  Water and energy 

balances are computed daily for each HRU.  Martis Valley HRUs are grid based and 
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assumed to contain homogenous hydrologic response characteristics within each grid 

cell. 

Flow below the base of the soil zone was simulated by MODFLOW.  The version 

of MODFLOW used for this application of GSFLOW was MODFLOW-NWT, a Newton 

formulation of MODFLOW-2005 that accurately simulates drying and wetting of 

groundwater cells (Niswonger et al., 2011).  MODFLOW is a finite difference, three-

dimensional groundwater flow model that simulates steady and transient flow in 

irregularly shaped flow systems in which aquifers can be specified as confined, 

unconfined, or a combination of both (McDonald and Harbaugh, 1988; Harbaugh and 

McDonald, 1996; Harbaugh and others, 2000).  Hydraulic conductivities for any layer 

may be heterogeneous and anisotropic and storage coefficients may be heterogeneous.  

Specified head and flux boundaries can be simulated as well as head dependent flux over 

the model boundary that allows water supply to a boundary cell at a rate proportional to 

the current head difference between the source and boundary cell (Harbaugh 2005).  The 

groundwater flow equation is solved using a finite difference approximation.  The flow 

model is subdivided into cells that are assigned medium properties, much like the HRUs 

of PRMS.  The groundwater flow equation is solved iteratively for each active model cell 

according to assigned hydraulic parameters and applied sources and sinks.   

The Martis Valley MODFLOW model is forced by mean annual infiltration 

(PRMS), distributed by the Stream Flow Routing (SFR2) package (Niswonger and 

Prudic, 2005) and Unsaturated Zone Flow (UZF1) package (Niswonger et al., 2006).  

Flow-rate and cumulative-volume balances from each type of inflow and outflow are 

computed at each time step (Harbaugh 2005).  Boundary cells are designated as specified 
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head, constant head, variable head, or no-flow in order to define the boundary conditions.  

Harbaugh (2005), Niswonger et al. (2011), and Huntington and Niswonger (2012) 

provide more information on MODFLOW and its solver packages.             

The work for this thesis focused on the development of a hydrogeologic 

framework model (HFM) upon which the MODFLOW simulation operated.  A 

production well pumping database was also constructed for model input.  HFM grid 

development began with well log evaluations and database construction.  Over 300 well 

logs were obtained from the California Department of Water Resources (DWR), Truckee 

Donner Public Utility District (TDPUD), Placer County Water Agency (PCWA), and the 

Northstar Community Service District (NCSD).  A master well log database was built 

containing all available information from the well logs.  For well logs missing spatial 

information, the centroid of the parcel (if provided) was designated for the well location.  

If the parcel number was also unavailable, a driller’s sketch of the location could 

sometimes be deciphered.  Apart from location, other relevant information for model 

development included depth to bedrock, depth to water, drawdown and specific yield, 

and subsurface geologic data.  To better understand the depth, thicknesses, and extent of 

the geologic formations comprising the basin, a lithologic numbering system was created 

to categorize the subsurface data.  Previously, Brown and Caldwell with Balance 

Hydrologics, Inc. developed a lithologic classification system based off Martis Valley 

well logs and geologic formations (Bauer et al., 2013).  Their classification scheme 

contained six units: 1. glacial outwash 2. alluvium 3. unconsolidated volcanics/sediments 

4. interbedded clays/sediments/gravels 5. consolidated andesite, and 6. granites.  Along 

with Brown and Caldwell’s work, geologic, hydrogeologic, and geophysical 
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investigations (Sylvester et al., 2007; Thodal, 1997; Plume et al., 2009; Hunter et al., 

2011; Bedrosian et al., 2012; Niblach, 1988) were interpreted to develop a modified 

classification scheme for the Martis HFM.   

To maintain a balance between hydrogeologic grid discretization and computing 

efficiency, adjacent geologic formations were classified as one hydrogeologic unit if their 

hydrologic properties were similar.  For example, layers 3 and 4 of the Brown and 

Caldwell units were aggregated into a single layer for the HFM.  For hydrologic 

modeling purposes, geologic details are not as crucial as hydrologic properties.  Thus, 

horizontal and vertical hydraulic conductivites (Kh and Kv, respectively) were applied to 

hydrogeologic units to account for certain geologic influences.  For example, the main 

hydrologic difference between the top two geologic formations in Martis is caused by 

higher clay content in the underlying formation.  These clay lenses are extensive at times 

and can be relatively impermeable to groundwater flow (Sylvester et al., 2007).  The clay 

formations were not specifically mapped in the HFM, but were considered when 

assigning hydraulic conductivity values to the layer.  The final lithologic numbering 

system for the Martis HFM consisted of four units: 1) fine sediments, alluvial deposits, 

gravel, cobbles, and some boulders, with low clay/silt content, and high water bearing 

capabilities, 40 m maximum thickness; 2) fine to coarse sediments; fluvial, glaciofluvial, 

and lacustrine deposits, with pebbles to boulders, intermittent clay/silt lenses, some 

fractured volcanics, and slightly lower water bearing capabilities compared to layer 1, 

200 m maximum thickness; 3) “weathered bedrock” unit with fractured andesites and 

granites, some coarse grained sediments, and low water bearing capabilities, 60 m thick; 
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4) bedrock, very low permeability, considered the confining unit, made up largely of 

competent granite, granodiorite, and andesite, 130 m thick. 

The compiled lithologic data was input into the geologic modeling software, 

Leapfrog (ARANZ Geo, 2010), for preliminary subsurface extrapolation and 

visualization.  The capabilities of Leapfrog were limited to data rich zones, located 

largely in the developed areas of the basin (Figure 10) and were found inadequate for 

extending the HFM into the data-scarce mountain block regions.   

 

 
 

Figure 10: Well locations throughout the Martis watershed, largely consolidated 

near community developments.  Note: not all well logs contained significant 

subsurface information. 
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The Martis watershed is similar to the greater Lake Tahoe area in that drainages in 

the mountain block are overlain by thin stream deposits that gradually thicken with 

decreasing elevation (Plume et al., 2009).  Thus, where well log data was sparse or 

unavailable, manual adjustments were made in GIS.  Alluvial thicknesses for the top two 

layers were designated along streambeds, starting at 5 m thick in the mountain block and 

gradually increasing to the data-based thicknesses of the valley (Figure 11).  This 

maintained layer continuity and promoted more accurate simulations of surface and 

subsurface flow.  In this way, grid block representations of the subsurface geology were a 

combined result of data-driven hydrostratigraphy and conceptual understanding of the 

surface and groundwater systems.   

Model cells were set to a square 300 m spatial resolution over the 500 km
2
 model 

domain.  The grid resolution sufficiently captured elevation distribution within the model 

domain.  Because of the steep, mountainous topography along the edges of the watershed, 

no-flow boundary conditions were assigned to coincide with the watershed divides.  

Development of the model grid depended on conditioning the digital elevation model to 

the model grid scale to ensure proper location of streams and wetlands (Huntington et al., 

2013).  Because the digital elevation model for Martis is 10 m resolution and the model 

grid is 300 m resolution, the elevation grid was “upscaled” to ensure that topographic 

highs and lows were in the correct location on the model grid.  To maintain surface and 

subsurface flow continuity, flow accumulation and flow routing procedures were applied 

in GIS.  These techniques created gridded datasets that could be analyzed (and adjusted if 

needed) to certify that surface runoff maintained a down-slope direction and subsurface 

flow maintained continuity throughout each layer.                     
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Figure 11: HFM grid total alluvium thickness, starting with a minimum of 5 m in 

the high elevation drainages with gradual thickening into sub-basins and the 

principal basin fill aquifer. 

 

The final HFM acts as the basis through which the MODFLOW simulation 

operates and performs its flow calculations.  This framework contains parameters for 

each individual grid cell, including hydrologic and physical properties.  The principal 

goal around HFM development was parsimony, so as to create a model that balanced 

detailed hydrogeologic grid properties with efficient computer processing.   

  

(m) 
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 Recharge Methods 

The GSFLOW simulation calculates recharge and discharge within each 300 x 

300 m cell for each daily time step.  This is calculated in the Unsaturated-Zone Flow 

(UZF1) Package that solves a one-dimensional form of Richards’ equation (Markstrom et 

al., 2008).  The model outputs a file containing basin wide recharge for each daily time 

step.  Total annual recharge was compared to total annual precipitation. Annual averages 

were computed, and annual recharge efficiencies were determined based on recharge – 

precipitation ratios.  Basin wide annual average recharge estimations were calculated 

from the daily values.  In order to observe spatiotemporal fluctuations, mean monthly 

recharge grids were extracted from the model simulation.  Annual averages were 

calculated from the monthly means, and temporal variations were investigated at basin 

and sub-basin scales.  Annual and seasonal fluctuations were observed using GIS.  An 

average annual recharge map was created from annual means over the entire simulation 

period to show spatial recharge trends throughout the Martis watershed.  The watershed 

was subdivided into three elevation-based sections and recharge rates were computed for 

each elevation zone.  Sub-basin contributions were computed from the final recharge 

map, and recharge rates were normalized by sub-basin areas.  Results were compared to 

previous water balance recharge estimations and geochemical implications of recharge 

distribution. 
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Results 

Baseflow Analysis Results 

Results regarding the baseflow, streamflow, and precipitation relationships in the 

Martis Creek sub-watershed are presented in the table and graphs below.  Percentages are 

based on the PRISM precipitation.  The numbers reveal, on average, that streamflow 

makes up roughly half of mean annual precipitation, and baseflow is roughly one-sixth of 

annual precipitation (Table 2).  The PPT-Q-Qbase relationship is easier to visualize 

graphically (Figure 12).   

Year 
Total Streamflow % 

of annual precip 

Baseflow % of 

anunal precip 

1981 29.37 5.37 

1982 61.81 15.06 

1983 80.73 19.50 

1984 81.21 35.25 

1985 51.72 24.89 

1986 85.78 23.51 

1987 34.05 17.15 

1988 25.18 15.26 

1989 34.16 10.98 

1990 27.70 11.50 

1991 19.19 10.93 

1992 15.58 7.72 

1993 61.30 10.94 

1994 16.96 7.14 

1995 62.79 19.51 

1996 42.88 10.09 

1997 87.64 21.23 

1998 52.32 16.67 

1999 72.26 24.07 

2000 48.20 18.74 

Mean 49.54 16.28 
 

Table 2: Mean annual baseflow and streamflow percentages of annual precipitation 

for Martis Creek from 1981-2000.   
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Figure 12: Time series from 1980-2000 of mean annual precipitation, streamflow, 

and baseflow volumes in the Martis Creek sub-watershed, illustrating annual 

fluctuations and responses to precipitation trends. 

 

 As seen in Figure 12, 1981-1983 were high precipitation years.  Streamflow and 

baseflow both respond with increasing flows as expected.  The drop off in precipitation 

that follows is also reflected in the streamflow and baseflow.  However, after two 

relatively dry years (1987 and 1988), baseflow is less responsive to the following 

precipitation and streamflow increase, and remains relatively unresponsive until heavier 

precipitation falls in 1995.  Precipitation in 1984-1985 is as low as that of 1987-1988, but 

streamflow and baseflow in 1984-1985 is much higher than in 1987-1988.  Although 

large fluctuations in precipitation occur from 1996 to 1999, the streamflow and baseflow 

components remain relatively steady.  Baseflow generally fluctuates with streamflow, but 

appears to be less reflective of precipitation after consecutive low precipitation years.  

Both streamflow and baseflow components seem to be less responsive to precipitation 

0

0.5

1

1.5

2

2.5

3

1
9

8
1

1
9

8
2

1
9

8
3

1
9

8
4

1
9

8
5

1
9

8
6

1
9

8
7

1
9

8
8

1
9

8
9

1
9

9
0

1
9

9
1

1
9

9
2

1
9

9
3

1
9

9
4

1
9

9
5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

Fl
o

w
 (

m
3
/d

 *
 1

0
5
) 

Year 

Precipitation Streamflow Baseflow mean precip



45 
 

fluctuations after several years of below average precipitation.  It can be observed that 

during 1991 and 1992, baseflow made up roughly half of streamflow.  This seems to be 

the result of multiple below average precipitation years.  Overall, it is clear that annual 

changes and trends in precipitation drive annual changes in groundwater flux, and 

consecutive high or low precipitation years have residual effect on streamflow and 

baseflow response in years following.   

 

Stable Isotope Results 

Stable Isotope data was investigated to highlight possible recharge sources and 

produce reasonable relationships between precipitation, runoff, groundwater, and 

streamflow.  Even with the sparse data, it is clear that snowmelt has a direct effect on 

streamflow and that groundwater is made up largely of winter precipitation (Figure 13). 

 

 

Figure 13: δ
18

O signatures of surface water, snowmelt, and groundwater over time 

(δ
2
H data showed similar relationships).   
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It can be observed in Figure 13 that during peak runoff in spring months, the 

surface water expresses the most depleted (most negative) values, reflecting snowmelt 

measurements.  Snowmelt samples become more enriched (less negative) thereafter.  A 

progression to more enriched values in streamflow then occurs over the following 

months.  The enriched surface water values in early May and mid-August coincide with 

late snowmelt and rainfall events, respectively. 

Deuterium-oxygen measurements plotted along a global meteoric water line 

(GMWL) display the isotopic signal change and deviation from the global standard, from 

initial precipitation to recharge to discharge over a year (Figure 14).  Winter snow 

samples compared to spring snow samples indicate annual climate tendencies, and can 

help discern streamflow composition.  Isotopic signatures of snow compared to those of 

groundwater show that winter precipitation is the dominating contributor to groundwater 

recharge.  Summer rainstorm events would leave a more enriched isotopic signature that 

is not seen in the groundwater samples.  Surface water samples compared to snow 

samples over the year confirm conceptualizations of the influence of winter precipitation 

on streamflow during spring runoff.  These processes indicated by the isotopic variations 

help verify conceptualizations and can be compared to modeled results in order to cross-

check methods and gain further detail on hydrologic relationships of the system. 
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Figure 14: δ
2
H-δ

18
O along the GMWL (dark solid line) displays snowpack isotopic 

evolution and suggests a stronger sublimation effect over evaporation. 

 

The δ
2
H-δ

18
O plot compares the isotopic samples by type and season (i.e. snow, 

spring).  Snow samples fall to the left, along the middle, and slightly to the right of the 

GMWL.  The groundwater samples fall largely to the right, indicating that fractionation 

is occurring at some point between deposition and groundwater recharge.  One would 

naturally assume evaporation plays a part in this fractionation process, but the 

groundwater samples do not plot along an evaporation-like slope, which would typically 

be higher on the GMWL and trending to the right.  Rather, the GW samples, all taken 
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during the summer, plot directly below the majority of snow samples.  In an isotopic 

analysis of groundwater in south central Nevada, Rose and Davisson (2002) found 

similar results.  They concluded that kinetic isotope fractionation effects occurred as the 

snowpack aged, resulting from vapor loss prior to melting.  This can be more easily 

described as sublimation.  This same phenomenon is likely happening in Martis Valley as 

snow metamorphism takes place while the weather is still too cool for significant melting 

and subsequent evaporation.  These findings offer conceptual insight to tendencies of the 

system and discrete seasonal processes that can effect downstream measurements.  

 

Model Results 

Calibration  

 The calibration procedure requires PRMS and MODFLOW input parameters to be 

adjusted until model simulations equilibrate with measured values (i.e. groundwater 

heads and streamflow).  Model calibration begins by calibrating the transient PRMS and 

steady-state MODFLOW models independently, followed by the GSFLOW integrated 

mode calibration.  Model calibration is a crucial step in the modeling procedure.  The 

Martis Valley model development was a large collaborative effort, and calibration was 

performed by fellow researchers at DRI.  The figures in this section were obtained from 

their work.  The calibration procedure/results will be discussed herein, although details of 

its interworkings lay outside the scope of this thesis project.  

The calibration process is an iterative cycle of parameter adjustments followed by 

comparisons between simulated and measured values.  PRMS calibration occurred as a 

stepwise process, considering annual streamflow, solar radiation, potential ET, and rising 
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and recession hydrograph limbs.  The Martis MODFLOW model utilizes the unsaturated 

zone package (UZF1), streamflow routing package (SFR2), and the lake package (LAK) 

and was driven in steady-state by the average annual PRISM precipitation data from 1980 

to 2012.  Calibration targets for the MODFLOW model were wetland and riparian zones 

(48 cells), head measurements (14 monitoring wells/19 additional static water levels), 

streamflow, and reservoir/lake stage.   

 
Figure 15: Observed vs. simulated mean monthly streamflows from PRMS 

(Huntington et al., 2013).  

 

Figure 15 shows a good fit between simulated and observed mean monthly 

streamflow (1980-2011) for the basin outlet and sub-watersheds from the calibrated 

0

500

1000
Outlet

 

 

Obs

Sim

0

100

200

Donner

0

100

200

Cold

0

200

400
Truckee

S
tr

e
a

m
fl
o

w
 i
n

 c
fs

0

100

200

Squaw

0

200

400

Prosser

J F M A M J J A S O N D
0

50

100
Martis



50 
 

PRMS model.  For MODFLOW calibration, the ratio of mean recharge plus runoff to 

precipitation   
          ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

   
   was adjusted so outflow from Lake Tahoe matched observed 

values.  Hydraulic conductivities (Kh, Kv) were adjusted to match observed groundwater 

levels.  The complex connectivity of the entire system caused assigned K values to be 

highly sensitive and unique.  Calibrated hydraulic conductivities are within the range of 

silty sands and glacial outwash, according to Fetter (2001).  Table 3 shows calibrated 

hydraulic conductivity values for each layer of the HFM.  Figure 16 illustrates the 

goodness of fit between the simulated and observed groundwater heads.   

Layer Kh (m/d) Kv (m/d) 

1 4.20 4.20 

2 3.60 3.60 

3 5.30E-03 5.30E-03 

4 1.00E-03 1.00E-03 

 

Table 3: Calibrated vertical and horizontal hydraulic conductivities for each layer 

of the hydrogeologic framework model.  

 

 
 

Figure 16: Calibrated, steady-state heads at wells and wetland areas show an 

excellent fit to observed values (Huntington et al., 2013). 



51 
 

The GSFLOW integrated model calibration consisted of matching streamflow in 

the Truckee River near the center of the watershed and at the outlet, water body stages in 

Donner Lake and Martis and Prosser Reservoirs, and monitoring well and wetland area 

heads.  Daily discharge from Lake Tahoe, Donner Lake, and Prosser Reservoir are 

assigned to the stream segment immediately downstream of the water body.  Figure 17 

illustrates the goodness of fit between observed and simulated streamflow of the Truckee 

River at the gage near Truckee, CA from 2000 to 2010.    

 

   
 

Figure 17: Observed vs. simulated streamflow for the Truckee River at Truckee, CA 

 

Sensitivity analysis  

Wetland locations were used to constrain the steady state calibration.  Aquifer 

hydraulic conductivity (K) was tightly constrained, as illustrated by the sensitivity 

analyses shown in Figures 18 and 19.  Spatial distributions of heads within 1 m of land 

surface were displayed for different horizontal and vertical K values scaled by a factor of 

10.  When decreased by a factor of 10, it is evident that the model over estimates head 

elevations (Figure 18a).  When increased by a factor of 10, the model clearly under 
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estimated head elevations and did not simulate heads near known surface water areas 

(Figure 18b).  The calibrated K distribution provides the most accurate representation of 

groundwater head levels (Figure 18c).  Groundwater recharge sensitivity to changes of 

horizontal and vertical Ks was also observed.  Figure 19 displays simulated recharge over 

a 2 year period with varying K values.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Spatial distribution of groundwater heads within 1 m of land surface shown in 

red where calibrated hydraulic conductivity values were (a) decreased by a factor of 10 and 

(b) increased by a factor of 10 for all layers. Optimally calibrated values (c) display heads 

that coincide with known near-surface water levels.  

a b 

c 
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Figure 19: Recharge over two water years, given increases (Kinc) and decreases 

(Kdec) in horizontal and vertical K by a factor of ten.  Recharge trends of the 

calibrated model are denoted by Kcalib. 

 

 Total daily groundwater recharge rates in Figure 19 did not increase 

proportionately to the increase in hydraulic conductivity.  Contrastingly, the low K 

distribution (red line in Figure 19) showed highest recharge rates along the climbing limb 

of recharge periods, while the high K distribution caused the lowest recharge rates during 

these periods.  The medium K distribution, or the calibrated values of K, were only 

observed to cause slightly higher recharge rates during baseflow periods (July – Nov 

1981, Figure 19), and otherwise generally maintained rates between the high and low K 

distributions.        

 

Groundwater Flow Directions  

After model calibration and sensitivity analyses, groundwater head elevations 

were extracted from the steady state-model for each hydrogeologic layer.  The Martis 
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Valley head gradients generally mimicked topography, which is typical for mountainous 

watersheds.  Contour lines of head elevations were created in GIS and used to determine 

the horizontal component of flow; groundwater flow directions are perpendicular to the 

head contours (Fetter, 2001).  The general flow directions for the Martis watershed were 

inferred from a 50 m interval contour map derived from the simulated heads (Figure 20).  

Temporal groundwater head fluctuations within the upper two layers were observed, so 

layer 3 (weathered bedrock) was used to derive the contours.  Layer 3 also provides 

continuous head measurements across the model domain, unlike layers 1 and 2, which are 

spatially discontinuous.   

 

 

 

 

 

 

 

 

   

 

   

 
 

 

 

Figure 20:  General groundwater flow directions inferred from simulated head 

elevations in layer 3.  Groundwater gradients typically mimic topography.  
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Based on the flow lines inferred from the head elevation contours, groundwater 

from the northern section of the watershed moves south and east before discharging to the 

Truckee River and leaving the basin.  Groundwater originating in the sub-basins along 

the south-western portion of the watershed flows directly east towards the north trending 

Truckee River.  The south side of the watershed shows groundwater converging into the 

Martis Creek sub-basin where it is directed north towards the Truckee River once in the 

main valley.  The eastern slopes direct the groundwater northwest where it likely mixes 

with groundwater from the south and west before discharging into the river.  The results 

from the steady state GSFLOW modeled heads are consistent with the conceptual model 

of groundwater flow. 

 

Model-Stable Isotope Comparison 

Modeled simulations were coupled with isotopic measurements from 2012 to 

investigate relationships between snowmelt and streamflow and evaluate model-

geochemistry compatibility.  As previously discussed, isotopic ratios evolve as the 

snowpack undergoes physical and chemical changes, causing isotope fractionation.  This 

is generally seen as lighter (more depleted) isotopes sublimate, melt, and evaporate from 

the snowpack, causing the remaining snow to become isotopically heavier (more 

enriched) over time.  Under this premise, it can be expected that snow samples will yield 

enriched (less negative) isotopic measurements after significant snowmelt has taken 

place.  Snowmelt trends can be observed in the isotopic data from the Martis Creek 

snowmelt in Figure 21.   



56 
 

 

Figure 21:  Time series of deuterium evolution as snowmelt occurs from three sites 

within the Martis Creek sub-watershed.  The snowmelt displayed from the top of 

the chart is simulated by the model at the three locations of isotopic sampling. 

 

The snowmelt hydrograph presented in Figure 21 was generated from the 

GSFLOW model and represents snowmelt magnitude over time from the grid cell 

corresponding to each sample site.  The majority of melt occurs after the end of March, 

wherein the measurements become isotopically heavier (the final samples), as expected.  

Isotopic depletion of the samples in April, before the post-snowmelt enrichment trend, is 

an unexpected result.   

Once snowmelt reaches the stream channels as overland flow, hydrographs will 

increase to reflect this melt water pulse.  Stable isotope measurements from two forks of 

Martis Creek were compared to modeled streamflow at the convergence of the two forks 

(Figure 22).   
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Figure 22: The main stem of Martis Creek δ
18

O represented by red diamonds and 

the east stem δ
18

O represented by the green triangles.  The blue line is the simulated 

hydrograph at the convergence of the main and east forks. 

 

The hydrograph shows peak flows through the month of April, while the isotopic 

values of the stream water show a relative lag before the more negative melt water signal 

appears.  The most depleted signal from the east stem (green triangles in Figure 22) is 

measured in early May, while the most depleted signature in the main stem (red 

diamonds) of Martis Creek does not occur until mid-June, well into the baseflow period.    

 

Groundwater Recharge 

The GSFLOW model simulates groundwater recharge for each grid cell at a daily 

time step by accounting for vertical flow through the unsaturated zone.  One output file of 

the GSFLOW model contains basin wide simulation results for each time step, including 

the UZF recharge values.  These values were compared to the PRISM precipitation to 

observe annual relationships and compute recharge efficiency.  Figure 23 shows that 
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annual recharge variations correlate to annual precipitation trends.  Annual groundwater 

recharge is clearly a function of annual precipitation, yet temporal lags can be observed 

in the response of recharge to precipitation.  For example, the largest precipitation year of 

the simulation period is 1982, whereas the largest recharge spike is not seen until 1983.     

 

 

Figure 23: Annual recharge rates overlaying annual precipitation rates for the 

entire watershed; based on the GSFLOW distribution of precipitation and UZF 

package calculated groundwater recharge. 

 

Recharge estimates rely on indirect measurements, whereas precipitation can be 

measured directly.  Thus, applying a recharge efficiency, computed as the ratio of annual 

recharge to annual precipitation, is an effective tool for quantifying a basin wide 

relationship between precipitation and recharge and estimating the recharge component 

of the water budget when other resources are unavailable.  Figure 24a shows annual 

recharge efficiency variations of the Martis Valley watershed.  Figure 24b displays the 

trend of recharge efficiency with increasing precipitation.  Recharge efficiency does not 

increase with precipitation; rather, it appears to have a slight decreasing trend.  Although 
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recharge rates are clearly a function of precipitation as seen in Figure 23, recharge 

efficiency seems to be driven by different parameters.     

 
 

      

Figure 24a: Values of annual recharge efficiency, or percentage of precipitation that 

becomes recharge.  Mean recharge efficiency is 15.6%. 
      

 

Figure 24b: Trend of recharge efficiency with increasing precipitation.   

 

Mean groundwater recharge rates (m
3
/d) were extracted from the model 

simulation and plotted in GIS for mean annual (Figure 25) and mean monthly (Figure 26) 

rates at each model grid cell.  Visualization of the simulated data allowed for 
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spatiotemporal analysis of recharge at basin and sub-basin scales.  Simulated mean 

annual recharge magnitudes and locations were compared to previous water budget 

recharge estimations and geochemical investigations, respectively.  In the following 

figures, low to high recharge is represented by light orange to blue, respectively.   

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Simulated mean annual groundwater recharge for three water years:  

1990, a below average precipitation year; 1997, an above average water year; and 

2004, an average year.  Recharge zones are light orange to blue.  The black square 

shows the general location of the central Martis Valley groundwater basin area.   

 

The GSFLOW model consistently simulates the highest recharge rates near 

stream channels, and also accentuates recharge in valley areas.  Both of these high 

recharge zones coincide with high water table levels.   Mean annual recharge for 1997, an 

above average precipitation year, emphasizes high recharge throughout stream channel 

and upland alluvial areas, while also displaying significant recharge in areas of central 

Martis Valley (black square).  In contrast, mean annual recharge for 1990, a below 

Mean Annual 

 Recharge (m
3
/day) 

1997 

1990

1988 
2004 
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average precipitation year, shows little upper elevation recharge and highlights only 

stream channel and central valley recharge.  The average water year 2004 emphasizes 

mainly stream channel and Martis Valley recharge, with some upper elevation recharge 

occurring in alluvial valleys of sub-basins. 
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Figure 26: Mean monthly groundwater recharge for water year 1990, illustrating 

seasonal variations in location and magnitude.  Low to high recharge is displayed as 

light orange to blue, respectively.       
 

Mean monthly recharge maps illustrate seasonal fluxes.  Water year 1990 was 

chosen because it was a near average year for precipitation and highlights general annual 

recharge trends seen in the Martis basin.  During the beginning and end of the water year, 

recharge is focused near some stream channels and in central valley areas.  As the water 

year progresses, recharge shifts towards upper elevations during winter months where it 

is limited to stream channels, and then migrates back down slope during spring.  High 

recharge rates are observed in the northern sub-basins during spring, while the trend 

April 1990 May 1990 June 1990 

July 1990 August 1990 September 1990 
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shifts to western sub-basins during summer months.  An interesting result is seen between 

the months of May and June.  May recharge is heaviest throughout the watershed, 

including low elevation areas, while June displays little recharge in the low elevations 

and highlights more mid to upper elevation recharge.  This is not seen in all years, as 

shown in Figure 27, which focuses on the springtime (April-June) recharge fluxes of 

different years. 

  Spring recharge fluctuations in Figure 27 show variable peak recharge months.  

All three years are above average water years.  In 1984, the watershed receives most 

recharge in April, while following May and June show recharge retracting to stream 

channel areas.  The 1996 maps also display heavy recharge in April, and show May and 

June continuing with high recharge rates.  In 2006, recharge peaks in May and carries on 

through June, while very little recharge occurs in April.  These variations clearly 

emphasize recharge processes as highly sensitive to seasonal fluctuations in precipitation 

and temperature.      
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Figure 27: Spring recharge fluxes for three above average precipitation years.  

April 1984 May 1984 June 1984 

April 1996 May 1996 June 1996 

April 2006 May 2006 June 2006 
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Numerical modeling presents the opportunity to estimate groundwater recharge 

locations and magnitudes over a simulation period of several years, therefore eliminating 

seasonal anomalies and illustrating more stable trends.  Figure 28 presents mean annual 

recharge over the entire simulation period (October 1, 1980 – September 30, 2012).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Mean annual recharge in cubic meters per day over the model simulation 

period, highlighting principal recharge zones and relative magnitudes. 
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It is clear in Figure 28 that recharge largely occurs along stream channels and 

valley areas where the water table is nearest to the surface.  To observe and quantify 

recharge as a function of elevation, the watershed was subdivided into three levels: below 

1800 m, 1800 m to 2050 m, and above 2050 m.   The 1800 m contour was chosen to 

represent the extent of the valley floor area and was based on aerial photographs.  The 

mid-range zone (1800 m – 2050 m) was chosen to represent the mountain block-alluvium 

interface, and the portion above 2050 m extends to the watershed boundary and includes 

the upper elevation mountainous region.  Figure 29 displays these elevational watershed 

subdivisions.    

 

Figure 29: Three designated elevation zones: Below 1800m (brownish tint outlined 

in orange), above 1800 m and below 2050 m, (green hue outlined in yellow), and 

above 2050 m, (blue to purple coloring).     
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Recharge volumes were computed for each elevational subdivision, and 

normalized by the section area.  The area below 1800 m contributes approximately 14.8 

million cubic meters annual recharge, areas between 1800 m and 2050 m contribute 37 

million cubic meters annually, and regions above 2050 m contribute 18.5 million cubic 

meters of recharge per year.  These values, along with the normalized rates and recharge 

efficiencies, are given in Table 4. 

 

 
Below 1800 m 1800 m-2050 m Above 2050 m 

Average Recharge 

(m
3
/yr) 

1.48E+07 3.70E+07 1.85E+07 

Area (m
2
) 8.10E+07 2.30E+08 1.80E+08 

Percent Total Area (%) 16.5 46.8 36.7 

Percent Total Recharge 

(%) 
21 53 26 

Normalized Recharge 

Rates (m/yr) 
0.24 0.19 0.13 

Recharge Efficiency (%) 30.3 16.8 9.1 

 

Table 4: Mean annual recharge rates per elevation-based section, along with area 

and percent of total area of each section.  Recharge amounts were divided by the 

section area to compute normalized rates, and recharge efficiency was computed 

based on mean annual precipitation within each portion.   

 

The portion of the watershed below 1800 m, consisting of the principal valley 

floor area, has the highest normalized recharge rate, followed closely by the 1800 m – 

2050 m portion.  These two areas contribute roughly 75% of annual recharge amounts.  

The recharge occurring in the elevations above 2050 m is concentrated along the few 

stream channel and alluvial areas, causing the recharge efficiency to be very low.  Figure 
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30 illustrates the decrease in groundwater recharge as elevation increases.  The highest 

recharge rates occur at the lowest elevations where the water table is nearest to the 

surface.  The mid-range elevations, largely consisting of the mountain block-alluvium 

interface, sustain significant recharge rates.  Beyond 2100 m, into the mountain block, 

recharge rates drop significantly.   

 

 

 

Figure 30: Trend of average recharge rates with increasing elevation.  Mean daily 

recharge rates from the simulation period were averaged over 50 m elevation 

intervals.   Percentages of total recharge are shown for each elevation-based section, 

divided by orange lines.   

 

 

  Total average annual recharge estimated from the GSFLOW model is 70.3 

million cubic meters (57,000 ac-ft) for the entire watershed.  It is clear that the low to 

mid-range elevations contribute the majority of recharge, but the higher elevations do 

contribute recharge where alluvial areas and near-surface water table conditions exist.  To 

further evaluate spatial recharge distribution, recharge within each sub-basin was 
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computed.  Sub-basin recharge contributions were calculated based on the mean annual 

values illustrated in Figure 28.  Figure 31 shows the fourteen sub-basins that make up the 

Martis watershed, and their average annual recharge contributions, along with recharge 

rates normalized by sub-basin area, are presented in Table 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: The fourteen sub-basins of the Martis Valley watershed.   

 

The largest three sub-basins (10, 11, 14), contribute roughly half of the total 

annual recharge.  As seen in Figure 31, these three sub-basins include the downstream 

and largest valley areas in the watershed.  These areas were the main focus of previous 

recharge estimations.  The remaining sub-basins have smaller total areas, less extensive 

stream networks, and smaller alluvial areas to accumulate recharge.  However, significant 
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annual recharge is accumulated from these sub-basin contributions.  Table 5 presents 

each individual sub-basin mean annual recharge contributions.        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: Mean annual recharge from each sub-basin within the Martis watershed.  

Values are listed from smallest to largest, with corresponding sub-basin number.   

Normalized recharge rates were computed by dividing the average recharge by the 

area of the corresponding sub-basin. 

 

 

 

 

 

 

 

 

Average recharge 

(m
3
/yr) 

Sub-basin 

number 

Normalized 

Recharge 

(m/yr) 

3.15E+05 13 7.28E-02 

1.39E+06 12 1.23E-01 

1.82E+06 4 4.72E-02 

2.19E+06 8 1.6E-01 

3.32E+06 9 1.46E-01 

4.31E+06 7 2.08E-01 

5.40E+06 5 1.70E-01 

5.90E+06 1 1.72E-01 

6.05E+06 6 1.75E-01 

6.39E+06 3 1.68E-01 

6.88E+06 2 3.17E-01 

8.34E+06 10 1.89E-01 

1.20E+07 14 1.17E-01 

2.07E+07 11 2.48E-01 
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Discussion 

Previous Work 

Previous water budget based recharge estimations in Martis Valley relied on 

‘recharge efficiency’ coefficients to compute recharge rates from annual precipitation 

amounts.  The water balance equations applied for these estimations required several 

assumptions (i.e. evapotranspiration) and relied on instantaneous streamflow 

measurements.  Thus, estimations of recharge were highly varied.  Hydro-Search Inc. 

(1995) estimated annual recharge of 18,179 ac-ft.  Nimbus Engineers (2001) estimated a 

recharge of 23,744 ac-ft/yr.  Interflow Hydrology and Cordilleran Hydrology, Inc. (2003) 

estimated 34,560 ac-ft annual recharge, and Seshadri et al. (2012) estimated a mean 

annual recharge of 32,745 ac-ft.  These previous investigations estimated recharge for 

several sub-sections of the watershed, assumed to each contain homogenous hydrologic 

properties.  Attempts were made to account for water that was considered to recharge a 

sub-section, but later discharge from a down gradient section.  However, these 

interconnected fluctuations are extremely difficult to measure and/or estimate.  Recharge 

estimations were focused within the “Martis Valley Groundwater Basin” (MVGB) 

designated by Hydro Search Inc. (1974), shown in Figure 32.  The MVGB covers the 

majority of the principal sub-basins, but does not encompass any of the sub-basins to the 

west, causing underestimations.  Based on the GSFLOW estimations, the average 

recharge contributed by the sub-basins that make up the MVGB is approximately 41 

million cubic meters per year (33,000 ac-ft/yr), which is in the range of previous 

estimations.  

 



72 
 

 

Figure 32: Martis watershed and model domain (black line), overlain by the MVGB 

border (red line), designated by Hydro Search, Inc (1974) and used in subsequent 

recharge investigations. 

  

The geochemical techniques applied by LLNL (Singleton and Moran, 2010; 

Segal, 2013) and summarized in this report produced relative spatial variations and 

general conceptualizations regarding the recharge processes in the Squaw Valley and 

Martis Creek sub-watersheds.  The significance of low and mid elevation recharge and 

infiltration through unconsolidated alluvial and valley floor sediments was emphasized.  

These results were based off sampling conducted within available wells and surface water 

sites in each study area.  These spatial estimations of recharge in Martis Valley avoided 

the interconnectivity complications faced by water budget estimations and broadly 

captured final recharge stage within each sub-basin.  These methods were more directly 
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focused on final recharge locations rather than forming section-by-section estimates.  The 

emphasis placed on groundwater recharge occurring below 2050 m elevation has been 

supplemented by findings of this research.  Results from this report allow for 

quantifications of these spatial estimations.        

 

Baseflow Analysis 

Minimal baseflow response to precipitation after consecutive dry years indicates 

that depleted alluvial aquifers must be recharged to a certain level before it is able to 

discharge to streamflow.  High streamflow after consecutive low precipitation years may 

also impede groundwater discharge when stream stage is above the water table.  The 

Martis Valley aquifer appears to require 2-3 consecutive average to above average 

precipitation years for baseflow to respond to precipitation.  In years following 

consecutive below average precipitation years, baseflow is not highly indicative of 

recharge.    

The recharge and streamflow percentages of precipitation calculated for the 

Martis Creek sub-basin represent annual averages, and therefore do not capture variations 

within a shorter (seasonal) period.  The portion of precipitation that was designated as 

baseflow was a close estimation to recharge efficiency calculated from model results.  

This similarity supports both methodologies for evaluating recharge percentage of 

precipitation.   The results highlight the highly variable and sensitive nature of baseflow, 

and thus recharge, in Martis Valley.  
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Stable Isotope Analysis 

The isotopic data available for analysis was sparse and only used for basic 

conceptualizations.  Additional samples throughout the watershed over a longer period of 

time would be necessary to form more quantitative conclusions.  Summer precipitation 

and groundwater samples from each season would strengthen the investigation.  It was 

clear that spring streamflow samples carried the snowmelt isotopic signatures.  Summer 

streamflow contained a heavier isotopic influence.  This is likely a combination of late 

season snowmelt, summer rain events, and lake discharge, all of which carry heavier 

isotopic signals relative to mid-winter precipitation.  Sublimation effects observed from 

the GMWL graph supplemented the preliminary isotopic relationships regarding 

snowpack evolution.           

 

Sensitivity Analysis 

 The effects of varying horizontal and vertical hydraulic conductivities (Kh, Kv) on 

groundwater heads were very clear.  Increasing the K values dropped the groundwater 

levels below many areas of known near-surface and surface water, while decreasing Ks 

distributed groundwater within 1 m and above the surface over several dry areas of the 

watershed.  The analysis confirms the hydraulic conductivities applied to the GSFLOW 

model were reasonable.   

 Groundwater recharge was also sensitive to variations in K values, but less 

intuitively than the head levels.  Less recharge simulated with an increase in K could 

likely be a result of the high K values producing a greater unsaturated zone thickness 

causing attenuation of the infiltrating water.  Accordingly, the lower K distribution 
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caused higher recharge rates during peak snowmelt periods, likely due to thinning of the 

unsaturated zone.  

 

Groundwater Flow Directions 

The flow directions inferred by Segal (2013) are based on geochemical data from 

a single year, whereas the flow directions based on modeled results are inferred from a 

steady-state condition, which represents more average circumstances.  Slight differences 

in the results are inherent to the differing methods.  In both cases, however, groundwater 

flow was found to generally mimic topography.  The two separate methods form similar 

conclusions that solidify conceptualizations of groundwater flow directions, and provide 

a check for each methodology.         

 

Model-Stable Isotope Analysis 

Understanding isotopic evolution of a snowpack is important for sampling from a 

downstream location when attempting to trace the isotopic precipitation signal in 

streamflow, especially if sampling in the spring or summer.  The anomalous isotopic 

depletion of snow samples in April could be attributed to late season precipitation from 

the north pacific (colder, more depleted), causing the samples to be relatively more 

depleted compared to the previous samples, which likely consisted of precipitation from 

the south pacific (warmer, more enriched).  Because the sampling process consisted of 

capturing snowmelt from the bottom of the snowpack, a single event would not usually 

shift the isotopic signatures greatly.  However, late in the season, with little snowpack 

remaining, a cold storm could essentially effect the entire snowmelt signal.  A look into 



76 
 

the weather archives revealed that a cold front in early April did in fact deposit 

significant snowfall.  This is likely the reason for the late winter depletion trend seen at 

all three sampling sites.  Shortly after this anomalous cold event, the weather warmed 

drastically, causing the majority of melting to occur at the highest elevation site 

(Brockway summit), and the final snow samples to reflect the warming trend.       

The temporal lag in a cold isotopic signature in streamflow makes conceptual 

sense as the earliest melt likely originates from lower elevations that carry a more 

enriched (warmer) isotopic signature than that of the higher elevations. It would take 

some time for the coldest signal to reach the valley stream sampling location.  Although 

the measurements of Martis Creek (main) do trend lighter during peak runoff season, it is 

interesting to see the most depleted signal appear so late.  This would suggest a few 

possibilities: 1) A portion of snowmelt infiltrates shallow soils and slowly passes to the 

stream as interflow. 2) Short groundwater flow paths contribute the cold signal of that 

season’s precipitation. 3)  The 2012 isotopic signals of winter precipitation were enriched 

compared to the groundwater background signal, essentially causing the baseflow signal 

to be more depleted than the 2012 runoff.  A combination of these three interpretations is 

possible.  However, since the same observation is not apparent in both forks of Martis 

Creek, and more data is not available, it is difficult to discern the exact cause.      

The stable isotope time series overlain with simulated snowmelt and streamflow 

hydrographs illustrate relationships that enhance the Martis basin conceptual model.  

Snowpack enrichment occurs as the melt season progresses, but precipitation events late 

in the season can affect the snowmelt signature if relative snowpack amounts favor the 

event signal.  Snowmelt runoff is expressed in streamflow, and can potentially be delayed 
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until baseflow conditions, therefore implying interflow and/or short groundwater flow 

paths.  Flow paths and residence times must be considered when estimating recharge and 

calculating water budgets.  These results show that simulated hydrographs compared to 

isotopic time series highlight important processes and illustrate how a numerical model 

can be used to compare and discuss geochemical data. 

 

Recharge  

Annual groundwater recharge for the Martis Valley watershed varies from year to 

year based on annual precipitation cycles and temperature fluctuations.  The modeled 

recharge results are based off GSFLOW model simulations of surface water-groundwater 

interactions throughout the Martis watershed.  Governing flow equations solved on a 300 

x 300 m cell simulate daily recharge and discharge rates.  Recharge varied greatly in time 

and space, and average values were computed for comparison with previous estimates.  

The integrated GSFLOW model more realistically distributed recharge over the model 

domain compared to previous PRMS model simulations of Martis Valley recharge 

(Rajagopal et al., 2012).  PRMS simulations did not account for underlying low-

permeability bedrock causing precipitation to be re-distributed down slope as runoff and 

interflow.  The recharge distribution from the GSFLOW simulation corroborates 

implications from groundwater isotopes and noble gas data (Singleton and Moran, 2010; 

Segal, 2013).              

The measurements of noble gas concentrations and excess air amounts in Martis 

Valley suggest that the groundwater samples were recharged below the 2050 m elevation 

contour of the basin, or within the lower 330 m of the watershed (Segal, 2013).  The 
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GSFLOW model does simulate the majority (75%) of recharge occurring below this 

elevation as well, while much less recharge is simulated in the upper elevation mountain 

block.  The model differs from the geochemical analyses in the emphasis placed on 

recharge from stream channel and alluvial areas in higher elevations.  The geochemical 

analyses from the Squaw Valley sub-basin (Singleton and Moran, 2010) suggested 

similar valley recharge dominance, which is confirmed by the model. 

As previously stated, groundwater recharge is highly variable in time and space.  

Clearly, precipitation is the dominant driver of recharge rates, but distribution and timing 

are functions of temperature, hydrogeology, and possibly antecedent recharge trends from 

previous years.  For example, Figure 26 (page 65) showed variations of spatial recharge 

over the same three month period during similar water years.  Snowmelt timing is likely 

the principal cause of these variations, but fluctuating vadose zone storage could also 

attribute to temporal variations of recharge.   

Previous recharge estimations for the Martis watershed were largely focused on 

the central valley area and surrounding tributary streams to the Truckee River, essentially 

neglecting several significant sub-watershed contributions.  The sub-basin analysis 

reveals that the eastern sub-basins contribute roughly half of total annual groundwater 

recharge.  These contributions are accounted for in the previous recharge estimations.  

Hydrologic modeling inherently contains assumptions, generalizations, and 

uncertainties (i.e. hydrogeologic framework development).  The calibration procedure is 

meant to mitigate potential error, but because so many parameters influence the model, 

other combinations of parameter values could possible yield acceptable calibration results 
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(i.e. non-unique results), and potentially effect recharge results.  A quantitative 

assessment of modeling uncertainties is outside the scope of this research.  

 

Conceptual Model 

The majority of precipitation in the Martis watershed is received as snow in the 

upper elevations; however, the valley floor does receive significant precipitation 

intermittently.  Sublimation and evaporation contribute minor losses to the snowpack, 

while the remaining water permeates shallow soils and interflows over relatively 

impermeable bedrock into down gradient alluvium and stream channels.  A combination 

of interflow and surface runoff flows towards the valley and infiltrates as mountain front 

and valley recharge.  Stream channels contribute recharge, and groundwater discharge 

also occurs along intermittent sections of valley streams and the Truckee River.  Figure 

33 illustrates the conceptualization of precipitation, infiltration, recharge, and discharge 

in Martis Valley.    

In general, the upper elevations of the watershed represent an area of lateral flow 

(surface runoff and interflow).  The interface between mountain block and alluvial fill, in 

the form of stream channels or valley areas, represents the beginning of the recharge 

zone.  The valley represents a combination of both groundwater recharge and discharge.   
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Figure 33:  Conceptual model of the Martis Valley basin, emphasizing precipitation 

in upper elevations, recharge at the mountain front and through the valley floor.  

Discharge is shown to occur near main stream channels and as 

sublimation/evapotranspiration.  Possible flow through bedrock is indicated, but is 

negligible compared to magnitudes of flow within other parts of the system.   

 

 

Recharge source is derived largely from high elevation snowmelt, but occurs in 

lower elevations as it is re-distributed by interflow and stream channels.  Recharged 

water can remain in the system for a variable amount of time, and will eventually 

contribute to streamflow as groundwater discharge over a continuum of time scales.  This 

is a function of recharge location, climatic and hydrologic characteristics of the previous 

and following seasons, and anthropogenic influences such as groundwater pumping.   
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            Convective summer rainstorms are typically characterized as short duration, high 

intensity, regional storms.  This precipitation falls on dry soils and vegetation, and large 

portions can evapotranspire after a thunderstorm has passed.  High deposition rate typical 

in summer showers will cause Hortonian overland flows that create a short storm event 

pulse in the hydrograph.  Remaining water infiltrates into the shallow sub-surface, with 

pulses that are mostly confined to the root zone.  These rain shower events, however, may 

increase storage in the unsaturated zone that later reaches the water table, as recharge.      

Martis Valley contains large alluvial fans on its southern and south-eastern sides, 

fanning down from Mt. Pluto and Brockway Summit.  These fans are braided with 

seasonal drainages that act as conduits for spring snowmelt to the valley floor.  The 

mountain block to the north is not as elevated and the alluvial fans are not as large, but a 

significant amount of groundwater recharge and surface runoff is still contributed by this 

area.  The western side of the watershed consists of several sub-basins that all imitate 

similar recharge processes of the main valley, and eventually contribute to streamflow 

and lower elevation recharge.  The north-eastern side of the basin contains fewer alluvial 

fan-basin fill areas, and mainly acts as the discharge section of the study area, where the 

Truckee River exits the basin. 
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Summary and Conclusions 

 Preliminary conceptualizations of Martis Valley watershed interactions were 

formed in terms of precipitation, recharge, and discharge based on a baseflow analysis.  

The baseflow analyses suggested that roughly one-sixth of precipitation is reflected as 

baseflow, and streamflow and baseflow response to precipitation is affected by trends of 

previous years.  Thus, baseflow measurements are not always reflective of recharge of 

that year.  Stable isotope data from LLNL was analyzed and basic relationships between 

snowmelt, streamflow, and groundwater were observed.  Spring streamflow is largely 

made up of snowmelt, and sublimation effects isotopic evolution of the snowpack.   

A novel technique for hydrogeologic framework grid development was 

formulated that incorporated a combination of data driven hydrostratigraphic 

interpolation and conceptual understanding of the upper elevation drainages and their 

connectivity to the basin fill aquifer.  This methodology ensured flow continuity within 

designated hydrogeologic layers and between model grid cells.  The hydrogeologic 

framework was applied to the GSFLOW model, which couples the PRMS and 

MODFLOW models to run an integrated surface water-groundwater simulation.  

Sensitivity analyses confirmed a calibrated model, and simulated groundwater head 

elevations suggested groundwater flow directions generally mimic topography.  

Simulated hydrographs of snowmelt and streamflow overlaying stable isotope data 

provided observations of snowmelt isotopic evolution and timing, as well as timing and 

expression of snowmelt in valley streamflow.  These results highlight the compatibility of 

hydrologic modeling with geochemical analyses.  
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 Average annual and monthly recharge locations and amounts were determined 

from the GSFLOW simulation.  Annual recharge for the entire watershed was estimated 

to be approximately 57,000 ac-ft, with roughly 75% occurring below 2050 m.  The 

recharge locations confirm the geochemical implications of substantial low elevation 

valley recharge, but also suggest high elevation recharge occurring along stream channel 

and upland valley areas.  Very little recharge occurs in the upper elevation mountain 

block.  Intraseasonal and interseasonal variations were observed, but recharge was 

consistently heaviest in the spring months throughout the watershed, while residual and 

less significant valley and stream channel recharge continued through the water year.  

Average recharge efficiency for areas below 1800 m was estimated to be 30%.  For areas 

between 1800 m and 2050 m, recharge efficiency was calculated to be 17%, and 

estimated to be 9% above 2050 m.  Total annual estimations of groundwater recharge are 

higher than previous methods, but included several sub-watersheds not previously 

considered.     

Groundwater recharge is an essential variable to understand when assessing the 

governing hydrologic processes of a watershed and attempting to predict future scenarios.  

The more limited the water resource within a basin, the more detailed an understanding is 

required for efficient management of the hydrologic system.  The Truckee River Basin is 

limited in its water resources and depends heavily on Martis Valley groundwater 

contributions.  The recharge locations, timing, and magnitudes gathered from this 

research provide interesting details that may be considered by water resource and land 

managers of the Truckee River Basin.   
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