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Abstract 
 
Radiologists must classify and interpret medical images on the basis of visual 

inspection. We examined how an observer’s visual sensitivity and perception 

might change as they view and thus adapt to the characteristic properties of 

radiological scans. Measurements were focused on the effects of adaptation to 

images of normal mammograms, and were tested primarily in observers who 

were not trained radiologists. Mammograms have steeper power spectra (slopes 

of ~-3) than natural images (~-2) and thus are physically blurry.  Adapting to 

them produced shifts in the perceived spectrum of filtered noise consistent with 

adaptation to blur, even though this adaptation does not lead to measurable 

changes in the contrast sensitivity function. Strong aftereffects in the appearance 

of the images were also found when observers judged the perceived texture of 

the images. For example, tissue density in mammograms is routinely classified 

and ranges from “dense” to “fatty.” Adaptation to dense images caused an 

intermediate image to appear more fatty and vice versa. Our results thus suggest 

that observers can selectively adapt to the properties of radiological images, and 

this could potentially be an important factor in the perception and learning of 

radiological images. In a further study we explored whether adaptation could 

enhance visual inspection of radiological images, specifically to aid observers in 

identifying abnormalities by adapting out or discounting the expected visual 

characteristics of the background. Observers searched for simulated lesions 

(Gaussian targets) added at random locations in the images.  Prior adaptation to 
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the images allowed the targets to be located more quickly, and this performance 

gain was selective for the tissue type and thus the visual texture defining the 

background. These improvements in visual search provide a novel demonstration 

of the advantages of spatial pattern adaptation within contexts that closely mimic 

routine visual tasks and settings. Finally, we explored the neural correlates of 

these adaptation aftereffects by measuring ERP’s while observers adapted to the 

different textural properties of the mammogram images (dense or fatty). There 

was no significant difference of adapt condition in the component waveforms 

when tasked with categorizing the scans based upon their density classifications. 

In contrast, there was a significant effect of adaptation when observers were 

signaling target presence or absence. This significant difference was 

characterized by an enhancement of the neural response at early timepoints in 

occipital areas. Additionally, following adaptation we observed a divergence in 

the target present and absent waveforms at approximately 370 ms post-stimulus 

onset in frontal recording sites. These results suggest that target detection 

involves a form of the P300 component. Taken together these studies represent 

the first comprehensive analysis of the influence of adaption on the critically 

important visual judgments involved in interpreting and inspecting medical 

images.  
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I. Introduction 

A wealth of evidence suggests that visual perception is adapted over both 

long and short timescales to be optimized for coding information about the 

natural visual environment. At long durations, the natural world has characteristic 

properties, and these properties are thought to have shaped the evolution of 

visual mechanisms so that they can efficiently represent the content of images in 

order to support important tasks such as finding, recognizing, and interpreting the 

objects and scenes before us (Simoncelli & Olshausen, 2001). At short 

timescales, the statistics of scenes vary from one environment to the next, and 

processes of adaptation are thought to adjust to these variations to match visual 

coding for the current context (M. A. Webster, 2011a). In this work, I have 

explored the consequences of these short-term adaptation processes when 

observers must make important visual judgments within “unnatural” 

environments. Increasingly, humans are exposed to novel visual worlds created 

by our technology (e.g. video games) or accessed through technology (e.g. 

remote sensing). How does the visual system adapt to these new worlds, and 

what are the implications of this adaptation for how and how well we can see? In 

this work, I explore these questions by exploring the effects of adaptation on 

perception within a specific environment – in an observer inspecting medical 

images. 

Radiologists spend hours at a time examining medical images and making 

crucial diagnostic decisions about them. Despite advances in assistive 

technologies such as computer-aided detection algorithms, the evaluation and 
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interpretation of medical images still relies ultimately on visual inspection by 

humans, and thus remains fundamentally constrained by the perceptual and 

cognitive capacities of the observer (E. A. Krupinski, 2011). For example, the 

evaluation of medical images depends upon subjective visual judgments and 

approximately 30-40% of false negative errors in clinical radiology are thought to 

be perceptual (Gale, 19884; Kundel, 2004; Manning, Gale, & Krupinski, 2005). 

Many studies have investigated the visual processes that impact visual 

judgments about medical images including factors influencing detection and 

discrimination of patterns (Burgess, Jacobson, & Judy, 2001; Burgess, Li, & 

Abbey, 1997), the properties of visual search and salience (Drew, Evans, Vo, 

Jacobson, & Wolfe, 2013; M. P. Eckstein, 2011; Evans, Birdwell, & Wolfe, 2013), 

and the role of perceptual learning and expertise (Snowden, Davies, & Roling, 

2000). Common to each of these studies has been the attempt to understand 

how standard visual processes and constraints are manifest in the context of the 

specific stimulus statistics characterizing medical images (Bochud, Abbey, & 

Eckstein, 1999; M.P. Eckstein, Abbey, & Bochud, 2000).  

In these studies, I explore the role of a further well-known perceptual 

process that is intimately linked to the visual structure defining the image – visual 

adaptation. The sensitivity and response properties of the visual system are 

constantly adjusted through adaptation to match visual coding to the attributes of 

the stimuli we are currently viewing (C. W. Clifford et al., 2007; Kohn, 2007; M. A. 

Webster, 2011a). Here I ask whether these adjustments occur for attributes of 

medical images in ways that could influence how such images are perceived and 
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classified. Specifically, I have explored the effects of adaptation on the 

perception of mammogram images. The following provides a general overview of 

this work. 

 

Adaptation and the perception of medical images 

Visual coding is constantly modulated by adaptation processes that adjust 

sensitivity according to the stimuli to which observers are currently exposed (C. 

W. Clifford et al., 2007; Kohn, 2007; M. A. Webster, 2011b). These changes can 

profoundly affect the appearance of images, illustrated by many classical 

perceptual aftereffects (Thompson & Burr, 2009; M. A. Webster, 2011b). For 

example, the perceived color, shape or direction of motion can be strongly biased 

by exposure to a different stimulus (e.g. a gray field appears reddish after 

adapting to a green field, and a circular ellipse appears stretched vertically after 

adapting to a horizontally elongated ellipse). Moreover, aftereffects are invoked 

by patterns we typically encounter in natural viewing conditions (Bex, Solomon, & 

Dakin, 2009; M. A. Webster & Miyahara, 1997) and extend to higher-level and 

ecologically important visual judgments, resulting for example in changes in the 

perception of a face (M. A. Webster & MacLeod, 2011) or the perceived spatial 

layout of a scene (Greene & Oliva, 2010) . Importantly, natural viewing conditions 

can affect the observer’s state of adaptation, and changes in surroundings or 

viewing conditions thus result in changes in these states. Furthermore, the 

natural environment has characteristic statistical properties for which the visual 

system may be routinely adapted (Field, 1987; Field & Brady, 1997; Tolhurst, 
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Tadmor, & Chao, 1992) This raises the question of how well visual coding can 

adjust to and operate within environments with unnatural statistics.  

Medical images provide an ideal context for probing the processes and 

consequences of visual adaptation because these images have well defined 

properties that differ from the statistics of natural images. For instance the power 

spectra (the amount of energy present in the frequency components) of medical 

images is typically steeper than natural spectra (Burgess et al., 2001). This 

reduction in amplitude at higher spatial frequencies results in the image 

appearing blurrier in appearance relative to images that have natural spectra. 

Furthermore, previous studies have demonstrated that images with steeper 

power spectra than that of natural stimuli induce rapid and strong blur 

aftereffects. Thus, simply viewing medical images could induce adaptation 

effects that could influence their appearance. Again, radiologists can spend 

prolonged periods inspecting images to make diagnostic decisions, and thus this 

exposure is likely to lead to pronounced adaptation. 

 

Density Classification 

Radiologists not only inspect mammograms for lesions and tumors, they 

also classify the images based upon their textural properties. The BI-RADS 

Density classification system is used to rate the breast tissue on a scale from 

fatty to dense ((ACR), 1998). A rating of fatty implies the tissue is composed 

entirely of fat, and is characterized by a striated appearance (Figure 1, bottom 

row). A rating of dense instead signifies the presence of fibroglandular tissue, 
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and corresponds to 

an image that 

appears cloudier in 

nature (Figure 1, top 

row). Dense tissue 

significantly lowers 

the sensitivity of a 

mammogram (Hersh 

& Marla, 2004) often due to obscuring lesion detection (Boyd, 2011). Moreover, 

these classifications are important because they are related to the potential 

prevalence of cancer. For example tissue density has been correlated with four 

to six times greater incidence of breast cancer (Boyd et al., 2007) and women 

who were administered Tamoxifen (a prescription drug that changes breast 

density) and showed a marked reduction in density revealed a 63% decrease in 

the risk of breast cancer (Boyd, 2011). Complications can arise when visually 

inspecting the image and rendering a decision based upon inspection, 

suggesting perception plays a significant role when making diagnostic decisions 

(E. A. Krupinski, 2011). Thus whether an image appears dense or fatty has 

important implications for patient health and for subsequent diagnostic tests. 

 

Amplitude Spectra of Medical Images and Blur Perception 

As stated earlier, mammogram images have different image statistics than 

that of natural scenes, specifically natural images generally have a shallower 

Figure 1. Examples of image sections from mammograms 
classified as dense or fatty. 
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(Figure 2, dashed line) power spectra than that of medical images (Figure 2, solid 

line) (Burgess et al., 2001).This reduction in amplitude at high spatial frequencies 

is similar to image blur (Field & Brady, 1997), which is known to induce rapid and 

strong adaptation (Elliott, Georgeson, & Webster, 2011; Vera-Diaz, Woods, & 

Peli, 2010; M. A. Webster, Georgeson, & Webster, 2002). This is demonstrated 

by the finding that viewing a blurred image for a short duration causes a focused 

image to appear over-sharpened or vice versa (Webster, Georgeson et al. 2002; 

Vera-Diaz, Woods et al. 2010; Elliott, Georgeson et al. 2011). Moreover, 

prolonged exposure to blurred or sharpened images resulted in the images 

appearing better 

focused over time 

suggesting adaptation 

functions to maintain the 

perception of focus 

despite changes in the 

environment or observer 

(Elliott et al., 2011).   

Adaptation not   

only affects the 

perceived blur of 

images, but can also 

alter threshold sensitivity 

Figure 2. Amplitude spectra of natural images (dashed 
line) vs. medical images (solid line). Medical images have 
a reduction in amplitude at high spatial frequencies 
causing them to appear “blurrier” than natural images. 
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to spatial patterns. These thresholds are typically measured by the contrast 

sensitivity function (CSF), which plots the sensitivity to contrast as a function of 

spatial frequency. The CSF is a standard metric for characterizing spatial 

vision(De Valois & De Valois, 1990) and for predicting visual performance in 

medical image perception (Burgess et al., 2001). Adaptation to the characteristic 

properties of natural images (more energy at low-to-medium spatial frequencies) 

results in a sensitivity loss to low-to-medium spatial frequencies, altering the 

shape of the contrast sensitivity function (CSF) (Bex et al., 2009; M. A. Webster 

& Miyahara, 1997). Adaptation also reduces the perceived suprathreshold 

contrasts at low frequencies compared to higher frequencies (M. A. Webster & 

Miyahara, 1997). It remains unclear how these contrast changes are related to 

changes in the perception of image focus, or how selective the adaptation is for 

the specific amplitude spectrum of the adapting images. For example, Webster 

and Miyahara (1997) found little difference in the shape of the CSF following 

adaptation to images with natural vs. more blurred spectra (M. A. Webster & 

Miyahara, 1997), even though these images differ markedly in the blur 

aftereffects they induce (M. A. Webster et al., 2002).  

 

Adaptation and visual search in mammograms 

Ultimately radiologists are faced with the challenging task of searching for 

lesions and tumors within the breast tissue, and locating these abnormalities has 

obvious health consequences. There has been an extensive amount of research 

investigating the manner in which radiologists search medical images and in 
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efforts to improve detection accuracy and efficiency. Many studies have shown 

that radiologists are able to rapidly extract a great deal of information from these 

images (Drew et al., 2013; E.A . Krupinski, 1996; Kundel & Follette, 1972; Kundel 

& Nodine, 1975; Kundel, Nodine, Krupinski, & Mello-Thomas, 2008; 

Mugglestone, Gale, Cowley, & Wilson, 1995). The initial inspection of the images 

gives rise to a global impression which then acts as a filter to direct attention to 

areas of further interest (Kundel, Nodine, Thickman, & Toto, 1987; Swensson, 

1980). Importantly, this initial stage enables radiologists to compare the image 

under inspection to prior knowledge of normal structures within the image. When 

given a short duration (200 ms) to inspect chest radiographs, radiologists 

performed surprisingly well, with approximately a 70% correct response rate 

(Kundel & Nodine, 1975). This brief presentation allows for only one initial eye 

fixation, revealing that radiologists rapidly extract a great deal of information from 

the image in parallel, and are able to make diagnostic decisions based upon this 

initial representation. This was also observed when radiologists were tasked with 

inspecting mammogram images (Mugglestone et al., 1995) with approximately 

67% of the locations containing cancers being located within 1 sec (Kundel et al., 

2008). The ability to be able to make a diagnostic decision based upon a rapid 

global impression is likely due to the expert radiologist comparing the image 

under inspection to that of an internal representation of what is expected (normal) 

in the image and what is abnormal. This is supported by changes in search 

patterns through experience and training (Kundel & Follette, 1972) and further 

evidenced by the fact that experienced readers detect targets more quickly (E.A . 
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Krupinski, 1996) and more accurately than those of less experienced readers 

(Donovan & Litchfield, 2013; Snowden et al., 2000). Furthermore, novices 

improved through training, indicating detection of targets can be enhanced 

through sensory learning processes (Snowden et al., 2000). Despite this if target 

prevalence is low(Gur et al., 2004), which is the case in routine mammography 

screenings, observers error rates increase (Horowitz, Kenner, & Wolfe, 2005; 

Wolfe et al., 2007). This is due to the fact that rare targets are often missed 

because participants do not expect them in a large portion of the images. Thus 

satisfaction of search, the amount of time given to inspecting the image prior to 

moving to the next scan, is reached more quickly than tasks with increased 

prevalence of targets (Horowitz et al., 2005; Wolfe et al., 2007). Thus, 

understanding ways in which to optimize visual inspection of radiological scans is 

a continuing avenue of research.  

Although a great deal of research has been devoted to investigating the 

visual factors influencing search within medical images, little to none has 

explored the role of adaptation and visual search within mammograms. Visual 

adaptation influences not only the appearance of images, but visual performance 

– how accurately or quickly observers can make judgments or detect information 

within the images. Adaptation has been shown to improve discrimination tasks 

across a wide range of stimuli including, but not limited to, orientation, speed 

judgments, tilt and contrast (Abbonizio, Langley, & Clifford, 2002; C. W. G. 

Clifford, Wyatt, Arnold, Smith, & Wenderoth, 2001; Kristjánsson, 2011). Many of 

these studies investigated enhancements in threshold discrimination tasks, but 
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have not looked at improvements in a suprathreshold task such as visual search. 

McDermott and colleagues (McDermott, Malkoc, Mulligan, & Webster, 2010) 

investigated if adaptation could increase the salience of chromatic targets relative 

to a chromatic background. They found that observers were better able to detect 

novel colored targets following adaptation to a background color distribution, 

suggesting adaptation affects the salience of the target relative to the 

background. Additionally, adaptation improved accuracy and decreased reaction 

times when searching for Gabor targets within a set of distracters (Wissig, 

Patterson, & Kohn, 2013). These studies reveal adaptation may function to 

highlight salient targets or novel structure within an environment by decreasing 

the sensitivity to the prevailing background structure. 

 

Neural correlates of adaptation and medical image perception 

A whole field of research has explored the neural mechanisms mediating 

perceptual judgments, including the temporal dynamics of scene and object 

recognition. Understanding these dynamics has allowed researchers to dissect 

when and where in the visual processing stream recognition is occurring. In 

particular, utilizing electroencephalogram (EEG) readings of the cortex, 

investigators have been able to tease apart how computations are performed in 

the visual processing stream. A large body of evidence suggests that recognition 

of natural scenes is a fast, feed-forward process (Anokhin et al., 2006; Antal, 

Kéri, Kovács, Janka, & Benedek, 2000; Antal et al., 2001; Thorpe, Fize, & Marlot, 

1996). These studies investigated individuals’ ability to recognize an animal in a 
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natural scene context and correctly respond whether or not an animal (target) 

was present.  

Thorpe and colleagues (Thorpe et al., 1996) found that participants were 

remarkably good at this task, responding correctly 94% of the time, despite 

images being displayed for only 20 ms. Utilizing event-related potentials (ERPs) 

and a go/no-go task; where observers were to respond just to target presence 

(animal in the image), they observed a divergence in the average waveforms at 

approximately 150 ms. This divergence was characterized by a greater negative 

(N1) component in the frontal recording sites on the no-go trials in which the 

animal was not present, interpreted as inhibitive control (Thorpe et al., 1996). 

Subsequent studies observed a similar pattern of results, a greater early negative 

divergence in the average waveform for non-animal trials. However, this pattern 

was not specific to frontal regions, but included temporal and parietal recording 

sites as well (Antal et al., 2000; Antal et al., 2001). Importantly, in the 

aforementioned studies (Antal et al., 2000; Antal et al., 2001) the behavioral 

paradigm was not a go/no-go task. Instead, participants had to make a 

behavioral response to both target present and target-absent images. Thus these 

results support the previous findings that the divergence in waveforms is not due 

to unbalanced motor demands, but due to the task demands (target presence). 

Moreover, this early negativity was observed in trials in which the target was a 

vehicle rather than an animal, suggesting the divergence at approximately 150 

ms is not due to a specific stimulus category (animal or vehicle), but rather the 

presence or absence of a target in the image (VanRullen & Thorpe, 2001).  
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Such studies have led to the general belief that feed-forward processes 

contribute to the ability to rapidly recognize and correctly categorize scenes 

based upon their content. However, more recent work has shown that feedback 

from other areas may also contribute to this response. For instance, Liu and 

colleagues used intracerebral recordings from epileptic patients to investigate the 

temporal dynamics, within hundreds of milliseconds, involved when performing 

object categorization tasks (Liu, Agam, Madsen, & Kreiman, 2009). They 

observed object category responses as early as 100ms following stimulus 

presentation. Further support for rapid, early, category recognition was shown 

when participants made saccades towards the image containing a target within 

120-130 ms following stimulus presentation (Kirchner & Thorpe, 2006). Both of 

these studies suggest that encoding specific characteristics fundamental in 

scene recognition can occur very rapidly and early in the visual processing 

stream. Moreover, top-down biasing toward features that are present in the target 

image may create a template to select for low-level stimulus properties 

necessary to enable rapid categorization (Delorme, Rousselet, Macé, & Fabre-

Thorpe, 2004; Johnson & Olshausen, 2003), yet further processing may be 

necessary to have a more detailed representation of the scene (Mace, Joubert, 

Nespoulous, & Fabre-Thorpe, 2009; Rousselet, Macé, Thorpe, & Fabre-Thorpe, 

2007). The early negative component could also reflect postsensory processing 

and be related to a higher level decision process (Johnson & Olshausen, 2005). 

Thus, the early negativity previously observed at approximately 150 ms may be 
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due both to early feed-forward processes as well as feedback from higher levels 

in the visual processing stream.  

A number of previous studies have explored the effects of prior adaptation 

on ERP’s, and have generally found that adaptation tends to reduce the 

response amplitude (Kloth & Schweinberger, 2010; Kovács et al., 2006; 

Niedeggen & Wist, 1998; Schweinberger, Kloth, & Jenkins, 2007). This 

attenuation of the waveform has been observed across many stimulus 

dimensions including, but not limited to motion, eye gaze direction, faces, and 

body parts. Specifically, adaptation to motion causes a reduction in the amplitude 

of the N2 component (negativity at 150-200 ms), suggesting decreased neuronal 

firing and thus reduced sensitivity to motion following prolonged viewing 

(reviewed in: (Niedeggen & Wist, 1998).  Other researchers have found a 

sizeable reduction in observers’ amplitude and an increase in the latency of the 

N170 component following adaptation to facial and hand stimuli(Kovács et al., 

2006). These effects were category-specific such that adaptation to cross-

category dimensions (adapt to hand stimuli and test on facial stimuli and vice 

versa) did not influence the electrophysiological response.  

Similar patterns of attenuation of the N170 component were also observed 

after participants adapted to different directions of eye gaze(Schweinberger et 

al., 2007). However, in a more recent study (Kloth & Schweinberger, 2010) 

investigating the neural basis of eye gaze adaptation, it was discovered that the 

N170 was not susceptible to changes in direction of eye gaze following 

adaptation, but rather the component was instead sensitive to changes in facial 
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categories. Further inspection of the waveform revealed that in later components 

(~250-350 ms), amplitude was reduced when eye gaze was the same direction 

as the adapt condition. 

This latency reflects a special signal in the ERP known as the P300 - a 

positive deflection that occurs at about 300 ms that is a signature of a “surprising” 

or unexpected event (Review paper: (Paller, McCarthy, Roessler, Allison, & 

Wood, 1992; Picton, 1992; Polich & Kok, 1995)). The positive deflection 

increases in amplitude as the probability of stimulus presentation decreases, and 

is thus termed the “oddball” response because the response covaries with the 

infrequency of stimulus presentation. Few studies have used ERP’s to 

investigate how and where in the processing stream visual decisions about 

medical images are occurring, or how they are impacted by prior adaptation. 

However, in a recent study by Hope and colleagues (2013), a larger P300 was 

observed in response to images containing targets (simulated tumors) compared 

to images without targets (Hope et al., 2013). 

 

Specific Aims 

In this dissertation I describe a series of experiments aimed at exploring the 

effects of adaptation on the perception of medical images. The results of these 

studies are presented in the following four chapters. 

Chapter II investigates how visual adaptation influences the appearance of 

mammogram images, specifically with regard to how they are normally classified. 
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In particular, I explore whether adaptation to the characteristic textures defining 

dense or fatty images affects the perception of the images as dense or fatty.*  

Chapter III examines how adaptation to the characteristic, steeper amplitude 

spectra of medical images alters the perception of image blur and spatial contrast 

sensitivity. These experiments also explore the relationship between blur 

perception and the CSF. 

Chapter IV tests whether adaptation to the characteristic structure of medical 

images facilitates the detection of novel or uncharacteristic structures in the 

images. Specifically, these experiments test whether adaptation improves the 

ability to search for and locate simulated tumors within the images, and whether 

these improvements are specific to the class of images (dense vs. fatty) that 

observers are inspecting and thus adapted to. 

Finally, Chapter V explores neural correlates of these adaptation effects by 

measuring ERP’s while observers adapt to mammograms and make visual 

judgments about them. These experiments parallel the behavioral measurements 

by testing for electrophysiological signatures of different types of images or for 

classifying or identifying targets within them. 

Together these studies represent the first comprehensive analysis of the 

influence of a ubiquitous sensory process – adaptation – on the critically 

important visual judgments involved in interpreting and diagnosing medical 

images. In the final chapter I discuss future directions and implications of this 

work for medical image perception. 
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* This chapter was previously published in an open access article distributed 

under the terms of the Creative Commons Attribution License, which permits 

unrestricted use, distribution and reproduction in any medium, provided the 

original source and author are credited (Copyright © 2013 Kompaniez et al.). 

Citation: Kompaniez E, Abbey CK, Boone JM, Webster MA (2013) Adaptation 

Aftereffects in the Perception of Radiological Images. PLoS ONE 8(10): e76175. 

doi:10.1371/journal.pone.0076175 
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II. Adaptation aftereffects in the perception of radiological 
images 
 

 In the current study we examined whether the textural differences that 

distinguish dense or fatty images could be biased by prior adaptation to dense or  

fatty mammograms. As an initial test of this question, we have focused on 

demonstrating the existence and magnitude of visual adaptation to these textural 

properties of mammography images, using tasks to assess adaptation that are 

straightforward and based on standard experimental paradigms in visual 

perception.  Our focus was also on understanding adaptation to special 

properties of the image rather than within special populations of observers, and 

for this reason, we used subjects that are trained for each task, but do not have 

medical training.  Radiologists are highly trained to make an absolute judgment 

to classify an individual image in terms of how dense or fatty it appears. For our 

untrained observers this would not be possible, so we instead adopted a 

procedure in which they were only required to make a relative judgment about 

which of two presented images appeared more dense or fatty. This allowed us to 

assess both the extent and form of any possible aftereffects. Our results suggest 

that there can in fact be profound and rapid aftereffects to the structural 

properties of medical images, and these have potential implications both for 

medical image perception and more generally for characterizing how perceptual 

judgments within unique visual environments might be impacted by routine 

processes of sensory adaptation.                                                                                                      
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Materials and Methods 

Observers: 

Six observers with corrected-to-normal acuity participated in different subsets of 

experiments.  The observers included authors EK and MW (labeled S4 and S6 in 

figures) and 4 students who were naïve to the purpose of the study. Participation 

was with written informed consent and followed protocols approved by the 

University of Nevada, Reno Social Behavioral Institutional Review Board (Office 

of human research protection). 

 

Apparatus and stimuli: 

Stimuli were presented on a calibrated and gamma-corrected Sony 500 PS 

monitor controlled by a Cambridge Research Systems VSG graphics card. The 

images were displayed on a gray background on the monitor with the same 

chromaticity and mean luminance (~37 cd/m2). 

The stimuli consisted of randomly selected sections taken from a 

database of normal mammograms (Chen, Abbey, Nosratieh, Lindfors, & Boone, 

2012) previously classified with BI-RADS Density scores of “fatty” vs. “dense” 

(values of 1 or 4), again corresponding to differences in the relative quantities of 

fat vs. fibroglandular tissue. The sections corresponded to 256 by 256 pixels in 

the original 2560 by 3328 images, and were constrained to be fully within the 

breast region of the image. The 8-bit pixel values were rescaled so that the 

average luminance (37 cd/m2) and rms contrast (.38) was constant across all 

images. Sets of these images taken from mammograms classified as dense or 
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fatty served as the adapting stimuli. For test stimuli, we further created an array 

of images that varied in finely graded steps between the dense and fatty 

originals. This was done by averaging the pixel levels from a pair of fatty and 

dense images, varying the relative weighting to form 101 images spanning the 

range. An image of +50 corresponded to the original dense image and an image 

of -50 corresponded to the original fatty image, while image 0 corresponded to an 

equal mixture of the two (Figure 3). As with the adapting stimuli all test images 

had the same mean luminance and contrast.  

 

Procedure: 

Stimuli were viewed binocularly in a darkened room from 124 cm. At this distance 

the images subtended 4 deg (~1 arcmin per pixel), and were displayed within 

fields centered 2.2 deg on the left or right of a central black fixation cross. 

Specific experiments varied in whether the adaptation was to a single image or 

sets of images and whether the adapting images were shown in one field or both, 

as described below. In all cases, observers initially adapted for 60 sec to fatty or 

dense images, with the adapting field counterbalanced between the left and right 

sides. Baseline measurements were also taken following adaptation to a uniform 

field. The adapting stimuli filled the 4-deg displayed window (which was 228 x 

228 pixels), but their position within it was randomly jittered every 100 ms over a 

 range of +16 pixels to avoid local light adaptation.  
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Following adaptation, a probe image was presented in the adapting 

field(s), and had a level chosen from different points along the fatty-dense array. 

A matching image with variable level was shown in the opposite field. The probe 

and match images were displayed simultaneously for 250 ms, and were 

preceded and followed by a 100 ms gray field. The participants made a 2-

alternative response to indicate whether the match image appeared “too fatty” or 

“too dense” relative to the probe. (The stimulus directions corresponding to these 

responses could be learned quickly from whether the chosen response caused 

the two images to converge or diverge in appearance.) Subsequent test stimuli 

were shown interleaved with 4 sec periods of readaptation, with the array level of 

the match stimulus varied in a staircase (i.e. an array step toward the dense 

image if the response was “too fatty” or vice versa). The experiment terminated 

after 10 reversals of the staircase, and the level at which the two test images 

appeared to match (i.e. when the two alternative responses were equally likely) 

was estimated from the mean of the final 6 reversals. Observers made 4 or more 

repeated measurements for each adapt and test condition in counterbalanced 

Figure 3. An example of the test stimulus array formed by different weighted averages 
of a dense and fatty image. 
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order, with a different pair of dense/fatty exemplars on each run. The reported 

results are based on the average of these settings.  

 

Results 

Figure 4 provides a simple demonstration of the basic textural aftereffects 

induced by the dense and fatty images. (A video demonstration is included as 

supplemental material.) The top pair of images is again two sections from original 

mammograms classified as dense (left) or fatty (right). The bottom pair is the 

same on the left and right and was formed by averaging the two top images. 

Fixating the cross between the top images for several seconds should induce 

adaptation to the dense or fatty texture within each field. If fixation is quickly 

shifted to the lower cross, then the physically identical pair may briefly appear 

different – the right image should appear more dense than the left. Consistent 

with most adaptation aftereffects, the perceptual change is a “negative 

aftereffect” because the test image appears less like the adapting image, and 

results because the adaptation selectively reduces sensitivity to the adapting 

image (Thompson & Burr, 2009). 

 To quantify the perceptual shifts, in the first experiment we adapted to 

both a dense and fatty image in the separate fields as in Figure 4, and then 

asked observers to adjust the pair of test images with the staircase procedure 

until they appeared the same. This turned out to be an easy task for observers 

and also had the advantage that the rms contrast between the two fields 

remained constant, so that the aftereffects could not be attributed to a simple 
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aftereffect of apparent contrast. The procedure also had the advantage that it 

provided a sensitive probe of any perceptual shift, since the two test fields should 

be biased by adaptation 

in opposite ways, 

amplifying the 

appearance difference. 

To measure this 

difference, the levels of 

the two test images were 

yoked to vary 

symmetrically around the 

50% average, and 

observers judged 

whether the right image 

was more dense or more 

fatty. That is, a “too fatty” 

response caused the 

next displayed pair to be more dense on the right but more fatty on the left.   

Figure 5 shows the average settings for 4 observers. Under neutral 

adaptation (to a gray screen), the settings approximate a physical match. 

However, after adapting to fatty images on the left (and dense on the right), the 

test image on the right appeared too fatty, so that the perceived point of equality 

was strongly shifted to denser images on the right (and more fatty on the left).  

Figure 4. A demonstration of aftereffects induced by 
adaptation to dense or fatty images. Stare at the cross 
between the top pair of dense (left) and fatty (right) images 
for 30 sec and then quickly shift gaze to the cross between 
the bottom images. These are an average of the two top 
images, and are physically the same on the left and right 
(but mirror reversed). However, after adapting the right 
image should briefly appear more dense. 
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Figure 5. Aftereffects measured with opposite adapting images (dense vs. fatty) 
displayed in the left and right fields. Each panel shows for one observer the 
array level of the image on the right that appeared to match the image on the 
left. Test images were yoked so that when the image was, for example, 40 on 
the right it was paired with a -40 image on the left. Bars show the mean settings 
+1 standard error, when there were no adapting images (left), when the dense 
image was on the right and fatty on the left (middle), or when the positions were 
reversed (right). Horizontal lines indicate significant differences in the settings for 
the 3 conditions. 
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Not surprisingly, strong complementary aftereffects also occurred when 

the locations of the two adaptors were switched.  Thus in both cases physical 

differences had to be introduced between the two test images in order to null out 

the perceptual differences resulting from the adaptation. These aftereffects were 

significant both relative to neutral adaptation and between the two alternate 

locations of the adaptors. (For the mean settings across observers, neutral vs.  

dense t(6) = -3.37, p = .008; neutral vs. fatty t(6) = 9.65, p < .0001; dense vs. 

fatty t(6) = 6.40, p = .0003).  

To further assess the form of the aftereffect, in the second experiment we 

modified the task so that the adaptation was presented only on the left or right, 

and so that the probe shown in the adapting field had a constant level. This 

allowed us to more directly characterize how the appearance of different probe 

levels were altered by the dense or fatty adaptor since the matching stimulus was 

no longer also altered by the adaptation (to the extent that the adaptation is 

specific to the retinal location stimulated, consistent with the opposite aftereffects 

seen in Figure 5). Figure 6 shows the settings for two observers who matched 

intermediate probe levels ranging from -30 (80% fatty) to +30 (80% dense). 

Again, the neutral adapt settings roughly follow the physical match (positive 

diagonal). After adapting to the fatty images, all of the probe levels appear more 

dense and thus were equated with a matching level that was physically more 

dense. Conversely, dense adaptors instead shifted the appearance toward more 

fatty images, though the magnitude of the aftereffect in the dense case appears 

weaker. Settings for both observers revealed a highly significant main effect of 
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the adapt condition on the image appearance (S1 F(2,45) = 29.5, p<.001; S2 

F(2,45) = 58.3, p<.001). However, they differed in whether there was an 

interaction between the adapt condition and test level (S1 F(8,45) = 1.94, p=.077; 

S2 F(8, 45), p = .011). 

As noted in Methods, the position of the adapt image was jittered during 

presentation to prevent aftereffects from local light adaptation to the bright and 

dark regions of the image. However, we next evaluated whether these 

aftereffects reflected adaptation to the specific pattern of the individual 

mammogram, or whether they could be also be induced by the dense and fatty 

textural attributes of the image regardless of which images were carrying those 

attributes. For this, aftereffects were again assessed for a range of probe levels, 

but the single adapting image was replaced with a series of dense or fatty 

Figure 6 . Aftereffects on different levels of blended fatty vs. dense textures. Curves 
show the stimulus levels that matched different levels of the test probe before 
adapting (squares) or after adapting to the fatty (triangles) or dense image (circles). 
The solid diagonal line corresponds to a physical match. The 2 panels are for 2 
observers. 
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exemplars which were different from the image pair used to construct the test 

array. Settings for two observers are shown in Figure 7, and are similar to the 

results found for the single adapting images. There is again a significant main 

effect of the adapt condition (S1 F(2, 45) = 21.7, p<.001; S2 F(2, 45) = 10.7, p < 

.001) that is stronger for the fatty adaptors and did not interact with the probe 

level (S1 F(8, 45) = 1.53, p = .18; S2 F(8, 45) = .35, p = .94). The similar effects 

in this case suggest that adaptation can in fact adjust to the actual textural 

properties defining the dense or fatty images, and that these aftereffects can 

transfer from one mammogram image to another. 

As a further test of the stimulus properties responsible for the measured 

aftereffects, we explored the specific role of the power and phase spectra of the 

Figure 7. Transfer of the aftereffects across different images. Adaptation was to a 
sequence of dense or fatty images that differed from the images used to construct the 
test arrays. Curves show the stimulus levels that matched different levels of the test 
probe before adapting (squares) or after adapting to the fatty (triangles) or dense 
image (circles). The solid diagonal line corresponds to a physical match. The 2 panels 
are for 2 observers. 
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images. The perceptual differences between most natural images are largely 

carried by the differences in phase spectra (Piotrowski & Campbell, 1982), 

though differences in the amplitude spectra can also strongly influence which 

image is perceived (Tadmor & Tolhurst, 1993). As noted in the introduction, 

medical images have steeper power spectra (with power decreasing with 

increasing spatial frequency roughly as p ~ f-3) than typical natural images (p ~   

f-2) (Burgess et al., 2001), and changes in the amplitude spectrum can be a 

powerful stimulus for spatial adaptation (M. A. Webster et al., 2002).  The slopes 

of the power spectra are similar for the fatty and dense images (which had 

average spectra of f-2.87 sd = .039 and f-2.80 sd = .145 respectively), but this 

reflects the spectrum averaged across all orientations, and images with the same 

slope but different anisotropies (e.g. with astigmatic blur) can also lead to strong 

and selective blur aftereffects (L. Sawides et al., 2010). We directly tested the 

relative influence of the amplitude and phase spectra on the adaptation by pitting 

them against each other. Figure 8 shows a pair of dense and fatty sections after 

swapping the phase spectra between the images while retaining the power 

spectrum of each image. The identity of each more closely follows the phase 

spectrum. We used these swapped images to similarly test whether the direction 

of the textural aftereffect followed the power or the phase spectrum. This 

experiment used the same procedures and images as in the double-adapt 

paradigm of Figure 5, except that the adapt image pairs were replaced with the 

hybrid images as in Figure 8. Consistent with the perceptual differences, the sign 

of the aftereffects remained tied to the phase spectrum for 3 observers (with no 
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significant aftereffect either way for a fourth observer), again suggesting that it is 

primarily an adaptation to the textural attributes of the images (Figure 9). In the 

preceding conditions the adapting images were always dense or fatty and thus at 

the extremes of the image array, while the probe images were at intermediate 

levels. The results 

were consistent with adaptation to either mammogram type causing test images 

to appear less like the image the observer was previously adapted to (though 

again these aftereffects 

were weaker for the 

dense adaptors). 

However, what happens 

to the appearance of the 

adapting image itself? 

Does its perceived 

texture change or do we 

simply become less 

sensitive to that texture? 

These questions have 

been of general 

importance to evaluate 

the nature of the 

perceptual changes 

resulting from adaptation (Rhodes et al., 2005; M. A. Webster & MacLeod, 2011). 

Figure 8. Examples of image pairs before or after swapping 
the power spectra. The top pair shows the original images, 
while the bottom pair has the power spectrum from the 
image above it but the phase spectrum of the second 
original. 
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For some dimensions (e.g. color) the stimulus appears weaker (e.g. less 

saturated) with prolonged viewing, consistent with a more global renormalization 

of the response so that the adapt stimulus appears more neutral (e.g. gray). For 

other attributes (e.g. size) the adapt level does not appear to change while both  

Figure 9. Aftereffects for the phase-swapped images. Aftereffects were tested as 
in Figure 5.  Bars show the mean settings +1 standard error, when there were no 
prior adapting images (left), when the image with the fatty phase and dense 
power was on the left and the image with the dense phase and fatty power was 
on the right (middle), or when the positions were reversed (right). Horizontal lines 
indicate significant differences in the settings for the 3 conditions. 
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higher or lower levels appear biased away from the adapting level, consistent 

with a more local sensitivity change around the adapting level. To examine this, 

we modified the experiment so that the probe image now equaled the adapting 

image, and so that the effects were assessed not only for the original dense and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Changes in the appearance of the adapting image. Curves plot the 
matches made to different test levels before (gray line) or after (connected 
circles) adapting to the same level. Thin solid lines plot the linear regression 
lines. Thick solid line corresponds to the physical match. Panels plot the results 
for 3 observers. 
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fatty images but also for intermediate adapting levels. If the adapt image was not 

altered in appearance, then no aftereffects should have been observed under 

this condition. Instead, the matches were again strongly biased (Figure 10). 

Specifically, adaptation to denser images caused them to appear less dense, and 

adaptation to fatty images caused them to appear less fatty. In the results this is 

indicated by the reduction in the slope of the match settings for the different 

adapt levels (since these levels now appear more similar or intermediate), and 

these slope changes were significant (e.g. for the mean settings across 

observers F(1,50) = 5.015, p = .030). Notably, for two of the three observers, the 

appearance biases were not centered on the balanced average of the fatty and 

dense images but were instead biased toward moderately denser images (so 

that these moderately denser images were thus closer to the “neutral” point for 

the arbitrary texture dimension defining the stimulus array). This is again 

consistent with a weaker aftereffect for the dense images since by this criterion 

they differed less from the neutral stimulus and thus had a lower effective 

“contrast” along the dimension. 

 

Discussion 

In summary, we have shown that brief exposures to different categories of 

mammogram images can lead to robust aftereffects in the appearance of the 

images. This has both general implications for adaptation and texture perception, 

and specific implications for the potential influence of adaptation on the visual 

perception of medical images. We consider these in turn. 
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As noted at the outset, the visual system can selectively adapt to a wide 

array of image properties from simple features to high-level attributes, and these 

adjustments can lead to very salient changes in appearance. The fact that 

adaptation could occur for properties of medical images is thus not surprising. 

However, it is important as a further illustration that adaptation can be manifest 

for the types of images and visual tasks that at least some observers are 

routinely exposed to, and thus as an example of the pervasive influence of 

adaptation on our perception (M. A. Webster, 2011a). Our results show that 

strong aftereffects can be induced by the differences that distinguish fatty vs. 

dense images, and suggest that these reflect the textural differences between 

the two image classes. Specifically, the aftereffects could not be accounted for by 

differences in contrast (which was nominally equated in the images) or power 

spectra (which were similar across the images and which did not predict the 

aftereffects; Figure 9).  Instead, they followed the phase spectrum of the images, 

which also predicted the images’ appearance. Moreover, similar aftereffects 

occurred when observers were adapted to fatty or dense exemplars that were not 

the same images used in the test array (Figure 7). This indicates that the 

aftereffects could be induced by the spatial structure defining the dense or fatty 

categories separately from the identity of a specific image.  

Aftereffects on the appearance of visual texture have been demonstrated 

previously. For example, the perceived density of a dot texture can be biased by 

prior adaptation to a field with sparse or cluttered elements (F. H. Durgin, 2008; 

F. H. Durgin & Proffitt, 1996). These density aftereffects occur for artificial and 
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naturalistic textures, and as we found cannot be accounted for by differences in 

power spectra (F.H. Durgin & Huk, 1997). A recent study also found adaptation 

to the “regularity” of textures (e.g. arrays of elements with uniform or random 

spacing)(Ouhnana, Bell, Morgan. M.J., Solomon, & Kingdom, 2013). Similarly, 

surface properties such as whether a material appears glossy or matte can be 

strongly biased by adaptation to the image statistics tied to these perceived 

attributes (Motoyoshi, Nishida, Sharan, & Adelson, 2007). However, the effects of 

adaptation on texture perception are not well understood. One surprising finding 

with the images we studied is that the perceived texture of the adapting image 

itself changed with exposure – both fatty and dense images appeared less fatty 

or dense following adaptation (Figure 10).This is reminiscent of the perceptual 

changes that occur for attributes like color or facial configurations, which look 

less “saturated” with adaptation (M. A. Webster & MacLeod, 2011). These have 

typically been accounted for by assuming that the underlying response changes 

occur within visual mechanisms that are broadly tuned for the stimulus 

dimension, and potentially as part of a norm-based code in which the stimulus is 

represented by how it differs from the norm (Rhodes et al., 2005; M. A. Webster 

& MacLeod, 2011). By such accounts the aftereffects reflect a renormalization of 

the coding dimension so that the adapting level appears more neutral. Obviously, 

it is unclear what the actual visual coding dimensions are that underlie our ability 

to discriminate an arbitrary stimulus variation like fatty vs. dense images. 

However, whatever they are, they intriguingly behave as if they have a coding 

norm, and moreover adaptation can be used as a potential tool for defining this 
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norm. In particular, the image level that does not change in appearance with 

adaptation is a plausible candidate for the neutral point in the continuum, since 

this is presumably the stimulus level to which the visual system is already 

adapted and thus “in balance” for (M. A. Webster & Leonard, 2008). In Figure 10, 

this corresponds to the point at which the pre- and post-adapt settings intersect. 

As noted, these are biased toward denser images (relative to the stimulus 

averages we created), and consistent with this, dense images also appeared to 

be less effective as adaptors. This predicts that image textures that are classified 

as dense might effectively be less “saturated” and thus possibly less visually 

salient than fatty textures, again because they are closer to the neutral point. 

Before discussing potential implications of these aftereffects for the visual 

evaluation of medical images, several limitations of our study should be noted. 

First, as noted in the Introduction we did not test radiologists but instead 

untrained observers. There is no reason to think that observers are less 

susceptible to adapt to images that they have more familiarity with, and in fact 

the converse is possible. Yet as discussed below, the dynamics or form of the 

aftereffects could be affected by extensive experience. Second, our stimuli were 

hybrids formed by blending actual images, and may not suitably capture the 

properties of images that are rated as intermediate on the BI-RADS scale. Also, 

because our observers could not use this scale, it remains to be seen whether 

the adaptation could be strong enough to significantly alter the classification of 

the image. Finally, the adapting procedure we used was designed to generate 

strong and stable states of adaptation for specific properties of the images, and is 
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very different from the sequence of stimulus exposures that might occur during a 

radiological reading. Thus the degree to which adaptation might impact 

performance in an actual screening remains to be explored. 

Nevertheless, our results show that observers can strongly adapt to 

characteristics that distinguish mammogram images, and thus suggest that 

pattern-selective adaptation is potentially a significant but previously 

unrecognized factor affecting the perception and interpretation of medical 

images. In the simplest scenario, the aftereffects predict that the current image 

may tend to look less like the images viewed previously, giving rise to potential 

order effects in how images are evaluated. Moreover, our findings also point to 

the potential for changes in the perception of the current image itself depending 

on the duration of the inspection. Again, whether these turn out to play a 

measurable role in actual radiological settings is a question for future research, 

but could be explored by varying the sequence and timing of the image sets.   

There may also be positive consequences of adaptation. The functional 

benefits of pattern adaptation have remained difficult to demonstrate (C. W. 

Clifford et al., 2007; Kohn, 2007; M. A. Webster, 2011a). One prevalent account 

is that adaptation might enhance discrimination of stimuli similar to the adaptor 

by centering neural responses at the adapting level, though evidence for this is 

limited. Another account is that it allows the visual system to predict and thus 

discount the expected properties of the environment so that neural and 

perceptual resources can be devoted to unexpected properties.  Interestingly, 

this in some ways mirrors the task confronting the radiologist, who must search 
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the image to identify anomalous features. There is in fact some evidence that 

adaptation can enhance the salience of statistical outliers in stimulus distributions 

(McDermott et al., 2010; Wissig et al., 2013), and thus could in theory aid the 

radiologist by making rarer features in the image more perceptually conspicuous. 

Finally, the context of medical image perception provides unique 

opportunities for exploring a number of unanswered questions about the nature 

of visual adaptation. Again, this is because the images themselves have 

“unnatural” but well characterized statistics and because radiologists have very 

extensive exposure to them. This allows for examining unresolved issues such 

how adaptation interacts with other experience-dependent processes such as 

perceptual learning (Harris, Gliksberg, & Sagi, 2012) or visual expertise, and how 

the processes of adaptation operate over much longer timescales than are 

normally possible in the lab. Recent studies have suggested that the dynamics of 

adaptation extend over multiple durations (Bao & Engel, 2012; Belmore & 

Shevell, 2010; Delahunt, Webster, Ma, & Werner, 2004; Kording, Tenenbaum, & 

Shadmehr, 2007; Neitz, Carroll, Yamauchi, Neitz, & Williams, 2002; Vul, Krizay, 

& MacLeod, 2008), and that even the form of the response changes might vary 

with the length of exposure (Kwon, Legge, Fang, Cheong, & He, 2009). A further 

possibility is that the visual system might exhibit context-dependent adaptation so 

that it can store and rapidly engage different response states appropriate for 

different environments (Yehezkel, Sagi, Sterkin, Belkin, & Polat, 2010). That is, 

an observer like a radiologist may be able to perceptually adjust more quickly to 

a context they have previously encountered.  Because radiologists have had very 
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long-term exposure to types of images that untrained observers rarely see, 

measurements of the nature of their own adaptation to medical images could 

also help reveal functional consequences of adaptation that are generally hidden 

in typical experimental paradigms or populations, either because the 

performance benefits require long adapting periods to emerge or because they 

are hidden in studies of natural images because observers are already expert 

(and thus there is no “untrained” group for comparison) (M.A. Webster & 

Juricevic, 2013).   

III. Adaptation to the amplitude spectra of medical images 

As previously emphasized, radiological images often have visual 

properties that are distinct from natural images and which could impact visual 

performance. One well-known difference is in their amplitude spectrum, which 

plots the amount of contrast at different scales or spatial frequencies in the 

images. Natural images have a characteristic amplitude spectrum in which 

contrast varies inversely with spatial frequency, or as 1/f (e.g. so that contrast is 

halved each time the frequency doubles). On a log-amplitude vs. log-frequency 

plot this relationship results in a line with a slope of -1. Images like mammograms 

instead have a steeper spectrum (Burgess et al., 2001), in which energy falls off 

more rapidly as frequency increases. Typically this follows a function like 1/f1.5 or 

a line with a slope of 1.5 on a log-log plot. (This structure is also often 

characterized in terms of the power spectrum, which is the square of the 
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amplitude spectrum. Thus natural images tend to have a power spectrum of -2, 

while mammograms are closer to -3 (Burgess et al., 2001; Burgess et al., 1997). 

Visually, a steeper power spectrum corresponds to less visible fine detail 

and thus the images appear more blurred. Blur is a fundamental and highly 

salient attribute of image quality, and a property of images that the visual system 

readily adapts to (Elliott et al., 2011; E Kompaniez, Sawides, Marcos, & Webster, 

2013; Lucie Sawides, de Gracia, Dorronsoro, Webster, & Marcos, 2011; Vera-

Diaz et al., 2010; M. A. Webster et al., 2002; Yehezkel et al., 2010). This predicts 

that the physical blur in medical images should induce strong changes in the 

state of blur adaptation. In the following experiments, these blur aftereffects are 

assessed when observers are adapted to mammograms, and are examined in 

two ways. First, we investigate whether adaptation to mammograms alters the 

perceived blur in images. Second, we investigate how the adaptation affects the 

spatial sensitivity of the visual system. This sensitivity is characterized by the 

contrast sensitivity function (CSF), which measures the contrast threshold for 

detecting a stimulus as a function of its spatial frequency. The CSF is a standard 

tool for predicting visibility and performance with images including medical 

images. Thus how the CSF might change with adaptation is important for 

evaluating the consequences of adaptation for medical image perception. 

 

Materials and Methods 

Observers: 
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Five observers with corrected-to-normal acuity participated in different subsets of 

experiments.  The observers included authors EK and 4 students who were 

naïve to the purpose of the study. Participation was with written informed consent 

and followed protocols approved by the University of Nevada, Reno Social 

Behavioral Institutional Review Board. 

 

Apparatus and stimuli: 

Stimuli were presented on a calibrated and gamma-corrected Sony 500 PS 

monitor controlled by a Cambridge Research Systems VSG graphics card. The 

images were displayed on a gray background on the monitor with the same 

chromaticity and mean luminance (~37 cd/m2). 

The stimuli consisted of randomly selected sections taken from a 

database of normal mammograms (Chen et al., 2012) previously classified with 

BI-RADS Density scores of “fatty” vs. “dense” (values of 1 or 4), again 

corresponding to differences in the relative quantities of fat vs. fibroglandular 

tissue. The sections corresponded to 256 by 256 pixels within the original 2560 

by 3328 images, and were constrained to be fully within the breast region of the 

image. The 8-bit pixel values were rescaled so that the average luminance (37 

cd/m2) and rms contrast (.38) was constant across all images. In the 

suprathreshold task we examined adaptation to variations in the slope of the 

amplitude spectra, similar to the study of blur aftereffects by Webster et al. 

(2002) (M. A. Webster et al., 2002). The adapting stimuli (Figure 11) consisted of 

the original mammogram image (e.g. with a slope of ~-1.4) and four versions of 
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the images filtered to have shallower slopes (-1.25, -1, -.75, and -.5). Note again 

that -1 corresponded to a “natural” or perceptually focused slope while shallower 

slopes correspond to images that in most natural images would appear overly 

sharpened. For test stimuli, we created an array of images that varied the level of 

blur/sharp in finely graded steps to create an array that consisted of 

mammogram images filtered to be more blurry or sharp relative to the original 

scan. Both the adapt and test images were created by multiplying the original 

amplitude at each frequency (f) by fα, with α varied from -0.5 to +0.5 to form 101 

images spanning the range. As with the adapting stimuli all test images had the 

same mean luminance and contrast.  

 

Procedure: 

1. Suprathreshold Matches 

Stimuli were viewed binocularly in a darkened room from 124 cm. At this 

distance the images subtended 4 deg (~1 arcmin per pixel), and were displayed 

within fields centered 2.2 deg on the left or right of a central black fixation cross. 

In all cases, observers initially adapted for 60 sec to both the original 

mammogram image and to those filtered to have shallower slopes displayed in 

separate fields, with the adapting field counterbalanced between the left and right 

sides. Baseline measurements were also taken following adaptation to a uniform 

gray field. The adapting stimuli filled the 4-deg displayed window (which was 228 

x 228 pixels), but their position within it was randomly jittered every 100 ms over 

a range of +16 pixels to avoid local light adaptation.  
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Judging when a noise-like image like a mammogram appears in focus is a 

perceptually difficult task, since it requires comparing the image to some internal 

reference for subjective focus for an image that does not have distinct structure 

or features such as well-defined edges.  To test for blur aftereffects, we instead 

used a relative judgment in which observers adapted to both a blurred and 

sharpened image in the separate fields as shown in Figure 11, and then adjust a 

pair of test images using a staircase procedure until they appeared the same. As 

discussed in the previous chapter, this design had the advantage that the rms 

contrast between the two fields remained constant, so that the aftereffects could 

not be attributed to a simple aftereffect of apparent contrast. The procedure also 

had the advantage that it provided a sensitive probe of any perceptual shift, since 

the two test fields should be biased by adaptation in opposite ways, amplifying 

the appearance difference. To measure this difference, the levels of the two test 

images were yoked to vary symmetrically around the setting corresponding to a 

slope of -1 and thus focused in appearance (match level 0). Participants judged 

whether the right image was more blurred or sharp relative to the left image. That 

Figure 11. Adapting stimuli consisting of the original mammogram image and 
mammogram images filtered to have shallower slopes and thus appear sharper relative 
to the original image.  
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is, a “blurred” response caused the next displayed pair to be more sharpened on 

the right but more blurred on the left. (The stimulus directions corresponding to 

these responses could be learned quickly from whether the chosen response 

caused the two images to converge or diverge in appearance.)   

The test images were displayed simultaneously for 250 ms, and were 

preceded and followed by a 100 ms gray field. Subsequent test stimuli were 

shown interleaved with 4 sec periods of readaptation. The experiment terminated 

after 10 reversals of the staircase, and the level at which the two test images 

appeared to match (i.e. when the two alternative responses were equally likely) 

was estimated from the mean of the final 6 reversals. Observers made 4 or more 

repeated measurements for each adapt and test condition in counterbalanced 

order, with a different pair of blurred/sharpened exemplars on each run. The 

reported results are based on the average of these settings.  

 

2. Contrast Thresholds 

To examine how adaptation influenced contrast thresholds, stimuli were 

viewed binocularly in a darkened room from 200 cm. At this distance the images 

subtended 5 deg and were displayed in the center of the screen. Observers 

initially adapted for 120 seconds to an array of images drawn from one of three 

sets: the original dense mammogram images, the same images filtered to slope 

of ~-1, or a gray field (used to measure threshold contrast sensitivity prior to 

adaptation). The adapting images were cycled every 250 ms to avoid local light 

adaptation. After the initial adaptation period there was a 250 ms interstimulus 
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interval (ISI), a test grating of fixed frequency was displayed for 500 ms, and the 

participant signaled with a button press whether the grating was oriented at either 

45 deg or 135 deg. This was followed by a 250 ms ISI and then a readaptation 

period of 4 sec. Contrast was varied in a 3-down 1-up staircase with the run 

terminated after 11 reversals. Thresholds were calculated from the mean of the 

final 8 reversals. Grating spatial frequency remained constant during a run and 

ranged from 0.5 to 16 c/deg in one-octave steps across runs. Four runs were 

repeated for each adapting condition, and  the reported results are based on the 

average of these settings.  

 

Results 

1. Suprathreshold Matches 

Figure 12 and 13 show average settings for 5 participants. The figures plot for 

each adaptation condition (dense or fatty) the change in perceived blur/focus 

arising after prolonged viewing of the original scans. When adapting to a gray 

screen (baseline condition), observers’ settings were perceptually focused. Thus 

with no adaptation to dense (fatty) images observers were able to accurately 

judge the level of focus within the filtered mammograms. However, after adapting 

to the original dense image on the left and a sharpened version of the image on 

the right, the subsequent test images on the right appeared too blurred and on 

the left too sharp. Thus, the perceived point of equality was biased toward 

sharpened settings on the left and vice versa on the right. The graphs plot the 
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difference that 

needed to be 

introduced in the 

left image to null 

out the perceptual 

differences 

introduced 

following 

adaptation.   

For the 

dense images, 

settings were 

significantly 

biased in the 

sharpened 

direction 

compared to the neutral (gray field) adaptation (F(2, 20) = 6.124, p < .01). The 

shifts were in the same direction for the fatty images, though in this case the 

differences were not significant, possibly because observers were less reliable in 

making the relative blur judgments with the fatty images.  

 

 

 

Figure 12. Aftereffects for the filtered mammogram images 
(original unfiltered vs. filtered) displayed in the left and right fields. 
Each bar shows the array level of the image on the right that 
appeared to match the image on the left (original dense image). 
Test images were yoked so that when the image was, for 
example, 40 on the right it was paired with a -40 image on the left. 
Bars show the mean settings +1 standard error. Horizontal lines 
indicate significant differences in the settings of the filtered images 
relative to baseline (no adapt) condition. 
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2. Contrast 

Thresholds 

Figure 14 

shows how 

adaptation to the 

mammogram 

images instead 

affected threshold 

contrast 

sensitivity. Gray 

squares plot the 

CSF for neutral 

(gray field) 

adaptation, while 

filled circles represent the CSF following adaptation to mammogram images and 

filled triangles  represent the CSF following adaptation to the filtered scans with a 

slope of – 1 (perceptually focused). The CSF shows typical bandpass tuning with 

peak sensitivity under neutral adaptation to ~2 – 4 c/deg. In contrast, adaptation 

to both the original mammograms and those filtered to a 1/f spectrum show a 

selective loss in sensitivity at low to medium spatial frequencies. As a result, the 

CSF more clearly peaks at ~ 4 c/deg, and sensitivity to higher frequencies 

remained largely unaffected by the adaptation. For the mean settings across 

Figure 13. Aftereffects for the filtered mammogram images. 
Aftereffects were tested as in Figure 12.  Bars show the mean 
settings +1 standard error, after adapting to fatty images.  
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observers there was a main effect of spatial frequency (F(5, 20) = 5.161, p = 

.003, and a 

significant effect 

of adaptation 

condition, F(2, 8) 

= 5.178, p = .036).    

 

Discussion 

 Our results 

reveal that 

adaptation to the 

characteristic 

amplitude spectra 

of mammogram 

images induces 

characteristic 

changes in 

suprathreshold blur perception and in threshold contrast sensitivity. We consider 

each of these effects in turn and then consider how the two aftereffects are 

related. 

Blur aftereffects of the kind we observed have now been widely studied 

and occur both when images themselves are blurred or when blur is introduced 

by the optical aberrations of the eye (Elliott, Georgeson & Webster, 2011, Vera-

Figure 14. Average CSF following neutral (gray field) adaptation 
(light gray squares), adaptation to the original mammogram scans 
(dark gray circles) and adaptation to mammogram images filtered 
to have a slope of -1 (black triangles). For the mean settings 
across observers: main effect of spatial frequency F(5, 20) = 
5.161, p = .003 and a significant effect of adaptation condition, 
F(2, 8) = 5.178, p = .036. 
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Diaz, Woods & Peli, 2010, Webster, Georgeson & Webster, 2002; George & 

Rosenfield, 2004, Mon-Williams, Tresilian, Strang, Kochhar & Wann, 1998, 

Pesudovs & Brennan, 1993, Rajeev & Metha, 2010, Rosenfield & Gilmartin, 

1999; Sawides, Marcos, Ravikumar, Thibos, Bradley & Webster, 2010, Yehezkel, 

Sagi, Sterkin, Belkin & Polat, 2010). In fact it is likely that this adaptation 

functions to calibrate spatial vision and subjective image focus by discounting the 

retinal image blur induced by the eye’s optics (Elliott et al., 2011 (Artal, Chen, 

Fernandez, Singer, Manzanera & Williams, 2004, Sawides, de Gracia, 

Dorronsoro, Webster & Marcos, 2011a, Sawides, de Gracia, Dorronsoro, 

Webster & Marcos, 2011b). In most situations it is the characteristics of the 

observer that is the primary source of blur – i.e. their optical errors. Again, this is 

because the world typically has constrained spatial statistics such that the 

amplitude spectra of most scenes fall as roughly 1/f (Field & Brady, 1997) (and 

because the optical quality of eyes by comparison varies markedly). Our results 

with mammograms illustrate an important case where the environmental 

variations are large enough to alter the state of blur adaptation. That is, the 

“unnatural” visual world that mammograms present through their steepened 

amplitude spectra is sufficient to recalibrate spatial vision so that the perception 

of blur and image focus is significantly altered. 

Our results also parallel previous findings in showing that adaptation to 

images with the biased spectra characteristic of natural images alters the CSF by 

selectively reducing sensitivity to lower spatial frequencies (Bex et al., 2009; 

Sharpee et al., 2006; M. A. Webster & Miyahara, 1997). Again, this is important 
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because the CSF is widely used to predict visibility and visual performance, and 

well recognized that it is important to use a measure of the CSF that is 

appropriate for the viewing conditions of the observer. For example, the CSF 

varies widely with factors such as mean luminance, temporal frequency, or 

location in the visual field(De Valois & De Valois, 1990). The present results 

confirm that another significant factor is the observer’s state of contrast 

adaptation.  

Interestingly, both our measurements and previous studies have found 

that the effects of adaptation on CSF are not strongly dependent on the precise 

slope of the adapting spectra. In particular, as also reported by Webster and 

Miyahara (1997), the threshold changes were virtually identical whether 

observers were adapted to a spectral slope of -1 or -1.5, and it was only for 

larger deviations that substantially different CSFs may emerge (M. A. Webster & 

Miyahara, 1997). In this regard, the visual world of mammograms is not unnatural 

– for it appears to induce similar adaptation states. 

But how can adaptation to different spectral slopes alter the appearance of 

fine detail in the image (blur aftereffects) when it does not seem to alter the 

sensitivity to fine detail (as measured by the contrast sensitivity function)? The 

answer to this question is complex but is likely to reflect the complex relationship 

between threshold sensitivity and suprathreshold appearance. The actual basis 

of blur perception in the visual system is in fact poorly understood - it is not clear 

whether blur is coded as feature that is present in images (e.g. the fuzziness of 

edges) vs. one that is absent (e.g. inability to see expected details). In the former 
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case, it is also unknown whether the attribute of blur is coded as an explicit 

image feature or implicitly by the pattern of energy across different spatial scales. 

What our results do support is evidence that subjective judgments of focus and 

how these are adapted cannot be predicted from the thresholds limiting spatial 

vision, even though these thresholds do predict blur discrimination (Watson & 

Ahumada, 2011). There are several arguments for these differences (M. 

Webster, Mizokami, Svec, & Elliott, 2006). However, among the most telling that 

our results demonstrate, is that adapting to an image that is physically in focus 

induces a large change in the CSF by selectively reducing sensitivity to lower 

frequencies, but does not cause images themselves to appear sharper.  

Regardless of the basis for these different aftereffects, we have shown 

that they are manifest in predictable ways in the medical images that radiologists 

are routinely exposed to. Thus again this suggests that adaptation is an 

important factor in understanding the how medical images are perceived. 

IV. Adaptation and visual search in medical images 

Radiologists face the visually challenging task of searching for 

diagnostically important information  within medical images. Often this involves 

detecting anomalies or suspicious features within images that have complex and 

noisy background characteristics. Moreover, these characteristics often reflect 

unnatural image statistics that are therefore themselves “anomolous” relative to 

the normal visual diet of an observer. Visual training for medical image diagnosis 

is obviously fundamentally important for developing the requisite skills for reading 
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and interprenting the images. In this study, we investigated a form of short-term 

“learning” based on visual adaptation. One functional account of adaptation is 

that it serves to highlight the salience of novel stimulus properties by discounting 

or reducing the salience of ambient or expected properties of the images. In 

support of this, recent studies have found that prior adaptation to a set of colors 

(McDermott et al., 2010) or orientations (Kohn, 2007) can increase the efficiency 

of searching for a novel color or orientation.  

In the current study, we investigated if adaptation could enhance the 

salience of a target in medical images, such as searching for a lesion or tumor in 

radiological scans. As our previous findings revealed, adaptation to medical 

images produces robust and rapid aftereffects in the perceived texture of 

mammogram images (E. Kompaniez, Abbey, Boone, & Webster, 2013). Here we 

investigate whether this adaptation also influences the ability to detect 

information within the mammograms. Gaussian targets simulating lesions were 

added to the images, and a visual search task was used to examine whether the 

salience of these targets could be enhanced by prior adaptation to the 

mammogram scans. The results of these studies suggest that visual salience 

and search efficiency can be heightened when observers are first adapted to the 

backgrounds they are searching on, perhaps because this adaptation allows 

observers to more effectively suppress the structure of the background.  
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Materials and Methods 

Observers: 

Ten observers with corrected-to-normal acuity participated in the 

experiments.  The observers included authors EK and MW and 8 students who 

were naïve to the purpose of the study. Participation was with written informed 

consent and followed protocols approved by the university’s Institutional Review 

Board. 

 

Apparatus and stimuli:  

Stimuli were presented on a calibrated and gamma-corrected Sony 500 PS 

monitor controlled by a Cambridge Research Systems VSG graphics card. The 

stimuli consisted of randomly selected sections taken from a database of normal 

Figure 15. Random sections taken from within previously classified mammogram 
images with simulated lesion added (test stimuli).  
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mammograms previously classified with BIRADS Density scores of “fatty” vs. 

“dense,” again corresponding to differences in the relative quantities of fat vs. 

fibroglandular tissue. The sections corresponded to 800 by 600 pixels in the 

original 2560 by 3328 images, and were constrained to be fully within the breast 

region of the image; see Figure 15. Sets of these images taken from 

mammograms classified as dense or fatty served as the adapting stimuli. For the 

test stimuli, we used similar random sections taken from previously classified 

mammograms. These were all taken from different images than the adapt 

images, and consisted of 20 images from mammograms classified as dense and 

20 images classified as fatty. For each, targets were added to simulate the 

presence of a lesion. These corresponded to incremental Gaussian spots (sd = 

.18 deg), superimposed by adding the spot’s luminance to the background 

(Figure 15). The location of the target was chosen randomly with the constraint 

that it did not fall within the .55 deg to the left or right of the center of the 

background and thus could be readily localized to the left or right side of the 

image. Finally, target contrast was varied in separate images over 5 levels so 

that detection varied from easy to difficult (Figure 16).  

 

Procedure:  

Observers viewed the display binocularly in a darkened room from a distance of 

260 cm, at which the screen subtended 6.6 by 8.75 deg. In the pre-adapt  

conditions, observers initially adapted to a uniform gray field for 30 seconds 
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followed by the visual search task. In the adapt conditions, the search task was 

instead preceded by adaptation for 5 minutes to fatty or dense images. In both 

the pre-adapt and adapt conditions there was warning signaled by a tone 5 

seconds prior to the presentation of the test stimuli. The adapting stimuli filled the 

monitor screen, and cycled randomly through 10 samples at a rate of 250 ms per 

image to ensure that participants were adapting to the characteristic texture of 

the mammograms rather than to a single image. During the search task, a test 

image was randomly selected from either the dense or fatty set, and onset 

presentation of the image was accompanied by a tone. Observers used a button 

press to respond as quickly as possible whether the target fell on the left or right 

side of the monitor screen. A separate button was also available to respond if 

Figure 16. Examples of different test stimuli with varying target contrasts (circled). 
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they could not find the target. The test image remained on the screen until a 

response was made. This was then followed by 4 sec readapt period to the gray 

screen or adapting images, followed by the presentation of the next test image. 

The program terminated after participants had made 8 repeated settings on each 

image. To avoid learning the repeated test images or target locations, the test 

stimuli were shown either in their original orientation, mirrored along the 

horizontal or vertical axes, or rotated 180 deg (with 2 repetitions of each variant).  

Results are based on the average settings of the ten subjects, and included all 

trials in which the target 

location was identified 

correctly. 

Results 

 Reaction times 

varied widely across 

images. Again this is as 

expected, since the 

target contrast was 

intentionally varied over 

a wide range to vary the 

difficulty of the task. To 

quantify the effect of 

contrast, for each test we 

Figure 17. Variation of mean reaction times across images 
can be partly accounted for by measuring the local 
contrast by comparing the relative luminance of the target 
and local surround (r= .63, p < .01).   
 



55 
 

calculated the local contrast by comparing the relative luminance of the target 

and the local surround. Figure 17 shows that this measure of local contrast can 

partly capture the differences in search times across the different images (r = .63, 

p <.01).  

The remaining 

figures illustrate the 

effects of adaptation on 

the search times. Figure 

18 compares the search 

times before or after 

adapting to the dense 

adapting set.  Adaptation 

to the dense images 

consistently improved 

detection when 

searching for targets in 

dense images (light gray circles), but not fatty (black squares). That is, search 

times were faster for the same image after adapting than before adapting for the 

dense images but not the fatty images. This was verified by a sign test 

comparing the pre- and post-adapt reaction times (Z = 3.8, p < .0001 for dense; Z 

= .22, p = .413 for fatty). Similar effects were also found when analyzing the 

results only for the 8 naïve observers (Z= 2.91, p =.0013 for dense; Z =.92,         

Figure 18. Adaptation to dense images consistently 
improves detection when searching within dense images, 
but not fatty, Z = 3.8, p < .0001. 
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p =.1796 for fatty). Notably, overall accuracy did not differ across the conditions 

(Figure 19). Thus, the improvements in search times for the dense images did 

not reflect a speed-accuracy trade-off, suggesting that they instead reflect actual 

changes in search efficiency.  

Figure 20 plots comparable results for the condition where observers 

instead adapted to the fatty 

image set. This led to similar 

results, in that observers’ 

search times were reduced 

following adaptation for fatty 

images, but not dense, (Z = 

2.91, p =.0013 for fatty; Z = 

3.35, p = .0002 for fatty 

when authors EK and MW 

were excluded). Again this 

reduction in reaction time 

was not due to a speed-

accuracy trade-off (Figure 19).  

In both cases the reaction times improved only when the test backgrounds 

and adapt backgrounds were drawn from the same class of images. Thus the 

effects of the adaptation were not a general but instead selective for the specific 

characteristics that distinguish the dense and fatty image. This is based on 

comparisons of each aftereffect relative to the pre-adapt baseline. However, as a 

Figure 19. Adaptation to fatty and dense images did not 
cause a significant change in accuracy compared to the 
neutral (gray field) adapt. 
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further test of this 

selectivity, we also 

directly compare the 

search times for the 

dense or fatty test 

images when observers 

were adapted to either 

the dense or fatty images 

(Figure 21). Again, this 

analysis confirmed that 

adaptation selectively 

facilitated detection of 

the simulated tumors 

when searching on the same image type as the adapt condition, (dense:  Z = 

3.35, p =.0002; fatty: Z = 2.46, p = .006) (Figure 21). 

 

Discussion 

Our results demonstrate that prior exposure to dense or fatty images 

facilitates search for target “lesions” embedded in mammogram images. 

Moreover, this enhancement is specific to the adapting image type (dense or 

fatty) and thus reflects selective performance improvements rather than simple 

generic learning. This selectivity is consistent with the selectivity we observed 

previously in the appearance of the mammograms after adaptation (Chapter II). 

Figure 20. Adaptation to fatty images consistently 
improves detection when searching within fatty images, but 
not dense, Z = 2.91, p = .0013. 
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There we showed that adapting to the dense (or fatty) images causes an 

intermediate image to appear more fatty (or dense). Thus the adaptation itself 

must be selective for the textural properties that differentiate the two classes of 

mammograms. 

But why should this selective adaptation impact visual search? As noted in 

the introduction, one putative role for sensory adaptation is to discount expected 

properties of the world in order to enhance or draw attention to more novel 

properties. In fact, we previously also observed aftereffects consistent with this 

account in the appearance of the images. Specifically, adaptation to the dense or 

fatty images caused the adapting images themselves to appear less fatty or less 

dense over time. This suggests that the textural characteristics of the 

backgrounds became less distinct or more neutral in appearance with prolonged 

viewing, consistent with a renormalization of perception with adaptation. Similar 

normalization effects have been observed across multiple stimulus domains, 

including color (M. A. Webster, 2011a), blur (Elliott et al., 2011), and faces 

(Rhodes et al., 2005; M. A. Webster & MacLeod, 2011). 

If this “desensitization” affects the background more than the target, then a 

consequence of the adaptation is that it will increase the effective signal to noise 

ratio of the target, and thus enhance its salience. Again, effects of this kind have 

been observed previously when adapting to fairly simple stimulus dimensions 

such as a distribution of colors (McDermott et al., 2010) or arrays of oriented 

elements (Wissig et al., 2013). They have also been predicted from analyses in 

which images are processed to simulate the perceptual consequences of very 
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long-term adaptation to specific environments (M. A. Webster, 2011a). Here we 

have shown that these effects can potentially also arise over very short 

timescales within the naturalistic and ecologically relevant task of an individual 

inspecting a mammogram. The decreased sensitivity to static or ongoing features 

of the world may draw one’s attention to environmental stimuli that differ from the 

norm, thus highlighting novel properties within the visual scene. At a 

physiological level, visual performance may be optimized by reducing neuronal 

firing to the unchanging characteristic properties of the visual scene while 

increasing the firing rate 

to novel properties or 

changes in the 

environment. 

In images with 

well-defined properties 

such as distributions of 

colors or orientations, it 

is straightforward to 

define in what ways a 

target is novel from the 

background. However, 

with more complex and 

naturalistic patterns it 

less obvious, and in particular, we cannot quantify how the Gaussian target 

Figure 21. Search within each image type is enhanced 
after adapting to the same image type, dense: Z = 3.35,    
p = .0002; fatty: Z = 2.46, p = .006. 
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differs from the dense or fatty background. However, our results are consistent 

with adaptation acting selectivity on the textural characteristics of the 

backgrounds relative to the targets.  

 Our results have a number of practical implications for visual inspection of 

medical images. Radiologists have very diverse techniques when searching 

within and classifying mammograms images, and there is relatively little 

standardization of inspection protocols. Moreover, in general each image is 

examined n an arbitrary order. The present results suggest that this order could 

potentially influence their state of adaptation, and thus impact their ability to 

classify or find information in the images. For instance, if they are looking at a 

dense scan and then switch to a fatty image, this could bias their classification of 

the current image under inspection. Moreover, our study suggests depending on 

which images they have viewed in the immediate past, the radiologist may be in 

either a better or a less optimized state of adaptation to detect tumors or lesions 

within the tissue shown in the current image. This suggests that ordering images 

by their density type could potentially increase search efficiency, which might in 

turn reduce fatigue. Finally, to the extent that the nature of these adaptation 

effects and the relevant visual structure of radiological images could be 

appropriately modeled, it should in principle be possible to develop image 

processing models to simulate how medical images should appear to observers 

after they are adapted (in the same way that these models have been developed 

to simulate the consequences of theoretically optimal color adaptation; (M. A. 

Webster, 2011a). That is, mammogram images could be “pre-adapted” so that 
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they are optimized for the visual system of the radiologist, removing the time and 

effort required for the radiologist to instead adapt to the image.  

 

V. Neural Correlates of texture adaptation and visual search in 

mammogram images 

As noted above, the process of adaptation influenced the judgements of 

perceived texture as well as performance in a target detection task suggesting 

adaptation may play a significant role in their interpretation. However, the neural 

correlates of these adaptation infleunces on image recognition are largely 

unknown in general and even less is known within the context of medical images. 

The current study was designed to determine neural correlates of the behviorally 

measured aftereffects. Using EEG, we were able to explore the timecourse of 

these visual afterffects and identify neural signatures of these adaptation effects. 

First, we investigated neural dynamics of classifying mammogram images, based 

upon their textural properties (fatty vs. dense) and the influence of adaptation 

upon the neural response. Second, we examined the impact of adaptation upon 

the neural response between images that contain a simulated tumor vs. normal 

images (no “tumor”). These studies elucidated when adaptation is occurring 

during visual processing and its effect on classifcation and target detection when 

inspecting mammogram images.  
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Materials and Methods 

Observers: 

Eight observers with corrected-to-normal acuity participated in the experiments.   

The observers included author EK and 7 students who were naïve to the purpose 

of the study. Prior to participation, observers provided written informed consent 

according to the standards of the university’s Institutional Review Board. 

Procedure: 

1. Neural correlates of texture adaptation in mammograms 

 All stimuli were presented using the Psychophysics Toolbox (Brainard, 

1997) for MATLAB (Mathworks Inc., Natick, MA). The images were displayed on 

a Mitsubishi Diamond Pro 2070SB monitor (22 inches, 1024 × 768) with a refresh 

rate of 85 Hz. Behavioral responses were recorded via a keyboard press. Stimuli 

consisted of randomly selected sections taken from a database of normal 

mammograms (Chen et al., 2012) previously classified with a BI-RADS Density 

score of fatty or dense. The sections consisted of 256 × 256 pixel sections in the 

original 2560 by 3328 images and were constrained to be fully within the breast 

region of the image. The 8-bit pixel values were rescaled so that the average 

luminance (37 cd/m2) and rms contrast (.38) were constant across all images. 

155 images from each category (dense and fatty) were used resulting in 310 total 

images. Observers initially adapted for 60 seconds (s) to a dynamic array of 

either dense or fatty images, each randomly displayed for 250 ms, in order to 

avoid local light adaptation. The adapting sequence and test images were 
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separated by a 2 s uniform gray screen (19 cd/m2) and subsequent test stimuli 

were interleaved with 4-6 s random periods of readaptation. The test images 

were each randomly displayed for 30 ms, and the participant indicated via a 

button-press whether the image was dense or fatty. Between each test image, a 

blank gray screen containing only a fixation point was presented for a random 

inter-trial interval of 600-900 ms. The trial sequence is shown in Figure 22. 

  

 

 

2. Neural correlates of adaptation and target detection in mammograms 

Participants completed a behavioral task where observers responded with 

a button-press if there was a target present or absent in the image, while EEG 

was recorded. The stimuli consisted of randomly selected sections, identical to 

the procedure described above. There was a total of 300 images with an equal 

number of dense images without targets and dense images with simulated 

tumors added randomly within the tissue. Simulated lesions were created using 

Figure 22. Stimuli and trial sequence. ISI represents the interstimulus interval between 
the adapting array and test stimuli. Observers either adapted to A. a dynamic dense 
array or B. a dynamic fatty array of images and then were tasked with signaling with a 
button press if the test image was dense (D) or fatty (F). 
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Gaussian spots (SD = .18º), superimposed at random locations in the test stimuli 

by adding luminance to the background. Target contrast varied over 5 levels so 

that detection varied from easy to difficult. All other methods were identical to 

those listed above. 

Following the initial test examining the average waveform difference 

following adaptation when searching for “tumors” embedded in dense tissue, we 

investigated how adaptation to dense or fatty images would influence search 

within both dense and fatty scans. The task was the same as described in 1 

(Figure 22), except that participants instead indicated target presence or absence 

in dense and fatty images (150 dense and 150 fatty). Additionally, there were 5% 

catch trials in which the observer responded to target absence and these were 

randomly displayed amongst the images with targets.  

 

EEG data acquisition 

Continuous EEG was recorded using NetStation 4.5.1 from a 256-channel 

HydroCel Geodesic Sensor Net (Figure 23) via a Net Amps 300 amplifier 

(Electrical Geodesics Inc., Eugene, OR) at a sampling rate of 1000 Hz. Onset 

event-related potentials (ERP’s) were recorded at each electrode site and EEG 

epochs were time locked to stimulus onset beginning 100 ms prior to the start of 

each test image and continuing until 800 ms following the stimulus presentation. 

These recordings were taken from the continuous recording stream and the 

artifact-free sections were averaged across subject based upon their image 

category (dense or fatty, target presence or absence). All 256 channels of 
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continuous EEG were first order high-pass filtered at 0.3 Hz and then low-pass 

filtered at 30 Hz using a finite impulse response (FIR) filter. For all experiments, 

the continuous EEG was segmented by trial type (adapt dense or fatty or target) 

and time locked to the onset of each image. The first 500ms was discarded to 

exclude the visual evoked potential (VEP) to flicker onset in the estimation of 

averaged amplitudes. Artifact rejection routines were applied to the segmented 

EEG data to identify segments containing common artifacts. Channels were 

identified as containing artifacts if the segment contained amplitude values 

exceeding 200 µV (microvolts). Additionally, segments containing eye blinks with 

amplitude values greater than 140 µV were rejected prior to further analysis. 

Finally, segments containing eye movements with amplitude values greater than 

55 µV were discarded.  

After artifact detection routines were applied to the segmented EEG, data 

from bad channels were interpolated from surrounding electrode sites. For all 

experiments, data segments from each trial were then averaged separately for 

each participant. The averaged data was then re-referenced to the average 

reference channel (Cz). Finally, baseline correction was performed on the 

averaged, re-referenced data using the 100 milliseconds prior to stimulus onset 

as the defined baseline period.   

 

Analysis: 

Performance was evaluated based upon accuracy and response speed (reaction 

time, RT), for each subject and task condition (dense or fatty, target present or 
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absent). Only correct trials were included in the analysis excluding all incorrect 

responses. To assess differences between the obtained ERP curves for the 

 dense trials vs. the fatty trials (target presence vs. absent trials) we used 

a similar method to Rugg et al. (Rugg, Doyle, & Wells, 1995). To investigate if 

there was a differential effect present between the two waveforms, a criterion of 

at least 15 consecutive significant t-values in the 1000 Hz time sample was 

applied when performing a point-by-point comparison on the subtraction 

Figure 23. Hydrocel Geodesic Sensor Net, dotted red circle designates scalp electrodes 
of interest, electrodes that fall outside the circumference of the circle include areas 
covering the neck and face. 
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waveforms between the trial conditions. This analysis was performed at specific 

electrode sites of interest (Oz, O1, O2, Pz, P4, P3, P7 and Fz). In addition, a 

topographic analysis was conducted to investigate the influence of adaptation on 

distribution of activity across the scalp. The benefit of this analysis is that rather 

than restricting the data manipulation to single electrode sites (as in the study by 

Rugg et al.), changes in the activity can be observed across the entire scalp at all 

time points during the trial duration.   

 The statistical analyses for topographical maps were conducted offline in 

MATLAB. Paired sample t-tests were conducted on every electrode and time 

point during the trial (1000 Hz) duration at each electrode per condition (dense 

vs. fatty, or target present vs. absent). We were specifically interested in 

examining how the adapt condition (dense or fatty) would influence the overall 

pattern of activity across the scalp distribution while viewing the same or different 

image types. In addition, we examined effects of adaptation on target present 

and target absent images for both image categories. P-values obtained from the 

t-tests were thresholded at p < .05 for each electrode and time point and 

imported back into NetStation to visualize significant differences in activity 

between conditions. Using this method, we were able to determine specific time 

windows of interest to be used for further analysis. This manipulation allowed us 

to isolate waveform components of interest across various regions of the scalp 

(frontal, parietal, occipital and temporal).  
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Results 

1. Neural correlates of texture adaptation in mammograms 

Behavioral Effects 

We were interested in further elucidating how adaptation to dense or fatty 

images influenced subsequent classification of dense or fatty images. We 

hypothesized that adaptation to fatty (dense) images would result in more 

efficient 

categorization of 

fatty (dense) 

scans. We 

conducted a sign 

test comparing 

reaction times 

post-adaptation to 

dense and fatty 

scans when 

categorizing the 

textural properties 

of the images. 

There was no 

significant effect of adaptation (Figure 24, fatty images: Z = -5.94, p = .999; 

dense images: Z = 1.29, p =.099). This suggests that when given only a short 

Figure 24. Adaptation to dense and fatty images does not 
consistently improve classification of subsequent fatty (plotted 
black squares) or dense scans (plotted gray circles). (fatty images: 
Z = -5.94, p = .9999; dense images: z = 1.29, p =.0993.) 
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duration to view the images (30 ms), adaptation to the different textural 

properties does not influence how quickly subsequent images are classified.  

EEG Results  

Concurrently, we were interested in how adaptation to the textural 

properties of the mammogram scans would alter the difference waveforms when 

categorizing fatty or dense scans. As discussed in the analysis section above, we 

subjectively evaluated significant timepoints of interest between the adapt 

conditions (fatty or dense). We then quantified the mean of the significant 

electrodes for timepoints of interest to create an average waveform for the 

different significant components. As can be seen in Figure 25 (top), there was no 

significant difference between adapt condition when categorizing fatty images at 

occipital or frontal sites during any timepoints of interest following post-stimulus 

onset (Figure 25., top, panel a: average t = -.3910, average p = .6069, df = 8; 

panel b: average t = .2185, average p = .6741, df = 8; panel c: average t = 

1.7241, average p = .1796, df = 8). Plotted in the lower panels are the difference 

waveforms between the adapt conditions, clearly revealing non-significant 

differences. Topographic activations during the timepoints of interest reveal 

similar non-significant patterns between the adapt conditions (Figure 25, bottom 

row). Moreover, we see similar patterns when observers instead categorized 

dense images, Figure 26, top (panel a: average t = .7066, average p = .5301, df 

= 8; panel b: average t = -1.4974, average p = .2304, df = 8; panel c: average t = 

.5169, average p = .6290, df = 8). This mirrors the behavioral results in that  
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Figure 25. There were no significant effects of adaptation on subsequent categorization of fatty 
images.  Average waveforms for electrode sites of interest, labeled in upper left corner of panels a. 
– c., for trial duration. Top panels plot the average waveforms when categorizing fatty images and 
lower panels plot the difference waveform between the two conditions. Red lines depict the average 
waveform following adaptation to fatty scans and blue lines show the average waveform following 
adaptation to dense images. Topographic activations during the timepoints of interest (listed next to 
the topographic maps) are plotted at the bottom displaying the differential activations, corresponding 
to the difference waveforms (plotted in green). (Fatty Images: panel a: average t = -.3910, average 
p = .6069, df = 8; panel b: average t = .2185, average p = .6741, df = 8; panel c: average t = 1.7241, 
average p = .1796, df = 8).   
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Figure 26. There were no significant effects of adaptation on subsequent categorization of dense 
images.  Average waveforms for electrode sites of interest, labeled in upper left corner of panels 
a. – c., for trial duration. Top panels plot the average waveforms when categorizing dense images 
and lower panels plot the difference waveform between the two conditions. Red lines depict the 
average waveform following adaptation to fatty scans and blue lines show the average waveform 
following adaptation to dense images. Topographic activations during the timepoints of interest 
(listed next to the topographic maps) are plotted at the bottom displaying the differential 
activations, corresponding to the difference waveforms (plotted in green). (Dense images: panel a: 
average t = .7066, average p = .5301, df = 8; panel b: average t = -1.4974, average p = .2304, df 
= 8; panel c: average t = .5169, average p = .6290, df = 8). 
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adaptation did not cause significant differences between the two waveforms 

when categorizing fatty or dense images (Figure 25 and 26).  

 

2. Neural correlates of adaptation and target detection in mammograms 

Behavioral Effects 

 Initially, we aimed at investigating the effect of adaptation on target 

detection when searching within dense scans. We were interested in how 

adaptation to dense images would influence reaction times when inspecting 

images for 

simulated tumors. 

We hypothesized 

that adaptation to 

dense scans would 

result in more 

efficient search. 

We conducted a 

sign test 

comparing reaction 

times for images’ 

containing targets 

and those without  

targets both prior to 

Figure 27. Adaptation to dense images consistently improves 
search efficiency for simulated lesions (plotted gray circles) 
within scans and correct rejection of images not containing 
targets (plotted black squares). (targets: Z = 4.55, p < .0001; 
no targets: z = 4.65, p < .0001.) 
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and following adaptation. There was a significant effect of adaptation (targets: Z 

= 4.55, p < .0001; no targets: Z = 4.65, p < .0001) (Figure 27). This suggests that 

adaptation facilitates more efficient search for simulated lesions such that 

observers were faster to identify lesions or correctly reject scans lacking 

“tumors”.   

 

EEG Results  

Simultaneously we explored the effect of adaptation on the activity of the 

topographic distribution.  As described above, we examined regions of interest 

(i.e., frontal and occipital recording sites) during significant timepoints. Thus, in 

our first comparison we examined the difference in waveforms between the 

target present and target absent trials prior to adaptation (Figure 28). There was 

no significant difference between the average waveforms (Figure 28, top, panel 

a: average t = -.3448, average p = .7431, df = 6; panel b: average t = .4668, 

average p = .6521, df = 6). 

Importantly, we were interested in how adaptation would characteristically 

alter the target and non-target waveforms (Figure 29).  As shown in Figure 28, 

prior to adaptation there was little to no significant difference between target 

present and target absent trials. However, this was not the case following 

adaptation (Figure 29, top, panel b). Average waveforms began to diverge 

approximately 370 ms post-stimulus onset, with greater activation in the frontal 

electrode sites for target trials compared to target absent images (Figure 29, top 

(panel a: average t = -.3442, average p = .7429, df = 6; panel b: average t =  
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Figure 28. There was no significant difference between images containing target and those without 
targets prior to adaptation. Average waveforms for electrode sites of interest, labeled in top panels a. – 
b., for trial duration. Top panels plot the average waveforms when searching for targets in dense 
images prior to adaptation and lower panels plot the difference waveform between the two conditions. 
Red lines depict the average waveform for images containing simulated tumors, blue lines show the 
average waveform for scans without targets and green lines plot the difference waveform between 
these two conditions. Topographic activations during the timepoints of interest (listed next to the 
topographic maps) are plotted in the bottom row displaying the differential activations, corresponding to 
the difference waveforms (plotted in green). Pre- adapt: panel a: average t = -.3448, average p = 
.7431, df = 6; panel b: average t = .4668, average p = .6521, df = 6).  
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Figure 29. Following adaptation there was a significant difference between target present vs target 
absent trials, particularly at later timepoints in frontal regions, panel b.  Average waveforms for 
electrode sites of interest, labeled in top panels a. – b., for trial duration. Top panels plot the average 
waveforms when searching for targets in dense images postadaptation and lower panels plot the 
difference waveform between the two conditions. Red lines depict the average waveform for images 
containing simulated tumors, blue lines show the average waveform for scans without targets and 
green lines plot the difference waveform between these two conditions. Topographic activations during 
the timepoints of interest (listed next to the topographic maps) are plotted in the bottom row displaying 
the differential activations, corresponding to the difference waveforms (plotted in green). (panel a: 
average t = -.3442, average p = .7429, df = 6; panel b: average t = 5.8202, average p = .0020, df = 6). 
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5.8202, average p = .0020, df = 6). This suggests that adaptation increased later 

frontal activity when searching for simulated tumors within medical scans.  

 Finally, we investigated how adapt condition (dense or fatty) would 

influence search on subsequent dense or fatty images. This experiment closely 

mirrored the behavioral search study discussed in Chapter IV. We hypothesized 

that adaptation to fatty (dense) scans would decrease reaction time and increase 

neural activation 

when searching in 

the fatty (dense) 

images. We 

conducted a sign 

test comparing 

reaction times for 

dense and fatty 

images’ containing 

targets following 

adaptation to either 

an array of dense 

or fatty images. 

There was a 

significant effect of 

adaptation for fatty images, but not dense (fatty: Z = 6.45, p < .0001; dense: Z =  

-2.19, p = .9909) (Figure 30). This suggests that adaptation to fatty  

 Figure 30. Search within fatty images is enhanced after adapting 
to the same image type, fatty: Z = 6.45, p < .0001; however, 
search efficiency in dense images is not affected by adapting to 
the same image type, dense: Z = -2.19, p = .9909. 
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images significantly facilitates more efficient search on subsequent fatty images.   

EEG Results  

In order to characterize how this manifests neurally we performed a similar 

topographic analysis as above. Importantly, the manipulation of interest was 

adapt condition (fatty or dense). We compared the average waveforms for fatty 

trials following adaption to fatty and dense images (Figure 31). We did an 

identical comparison for dense scans (Figure 32). For fatty trials there was a 

significant effect of adaptation to the fatty array relative to the dense during early 

and late occipital electrode sites (Figure 31, top, panel a-b). (Figure 31, top 

(panel a: average t = -3.4179, average p = .0223, df = 6; panel b: average t =-

2.9979, average p = .0323, df = 6). However, there was not a significant 

influence of adaptation to dense scans when then searching upon subsequent 

dense images (Figure 32, top, panel a-b). (Figure 32, top (panel a: average t = -

1.2568, average p = .3560, df = 6; panel b: average t =-1.2888, average p = 

.2768, df = 6).  

 

Discussion  

 Our results demonstrate that adaptation to the properties of mammograms 

can significantly alter not only response times, but also modulate neural activity. 

Previous ERP studies have demonstrated that adaptation occurs at multiple 

stages and areas in the visual cortex recruiting both feedforward and feedback 

mechanisms (Niedeggen & Wist, 1998).  Specifically, atteuation of the response 

in early cortical areas is indicative of adaptation to the low level properties of the 
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adapting stimulus. Where adaptation to more complex stimuli such as faces is 

relfected at later latencies in the ERP (Kovács et al., 2006). Moreover, adaptation 

has generally been characterized by an attenuation of the neural response, such 

that adaptation functions to decrease neuronal resources devoted to unchanging 

stimuli, thus facilitating the detection and processing of novel stimuli (Kloth & 

Schweinberger, 2010; Schweinberger et al., 2007). Behavioral research has 

shown that adaptation to the surface properties of images is at least partially 

resolved at early areas in the visual processing stream (e.g. LGN and V1; 

(Motoyoshi et al., 2007).  More recent work has implicated separate, parallel 

pathways involved in the perception of form and texture (Cant & Goodale, 2007; 

Cant, Large, McCail, & Goodale, 2008). These different properties activate 

distinct areas of the occipito-temporal cortex, with texture differentially activating 

the collateral sulcus (CoS), while form information is projected to the lateral 

occiptial area (LOC) (Cant, Arnott, & Goodale, 2009). Taken together these 

results suggest that texture adaptation is resolved at multiple levels in the visual 

processing stream and is an essential property used to recognize scenes and 

objects.  

Radiologists classify mammogram images based upon their textural 

properties using the BI-RADS Desnity classification system to categorize the 

breast tissue on a scale from fatty to dense ((ACR), 1998). These tissue 

classifications are characterized by distinct differences in the appearance of their 

textural properties, with fatty tissue being striated in appearance and dense 

tissue cloudier in nature. Due to our previous findings showing robust adaptation 
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to these textural propetries, fatty and dense, and other work on texture 

adaptation we hypothesized that prolonged viewing of the images would result in 

an attentuation of the neural response in occipital areas. Moreover, we predicted 

a similar pattern in the target detection task except that we postulated an 

increase in the magnitude of activation in frontal regions in the later waveform 

components.   

Adaptation to the textural properties of mammogram images did not 

significantly alter subsequent categorization of fatty or dense scans (Figure 24). 

This contradicts our previous findings revealing that adaptation to dense images 

resulted in all images appearing more fatty and vice versa (Chapter II). 

Importantly, these studies did not measure response time to categorize the 

images. Due to the fact that we did not see a measureable effect of adaptation it 

is difficult to say if our paradigm was efficient in producing these previously 

observed effects.  Moreover, in the present experiment reaction time may not 

have been a sensitive measure when investigating the influence of adaptation on 

the categorization task. Further evidence that adaptation did not significantly 

affect categorization of subsequent images is shown by the topographical 

analysis (Figure 25 and 26). Similar to the behavioral findings adaptation to the 

same image type as classification did not significantly alter the component 

waveforms of interest.  
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Figure 31. There was a significant increase in the scalp distributions activity following adaptation to 
fatty images when searching on the same image type (Figure 31, top, panels a-b). Average 
waveforms for electrode sites of interest, labeled in top panels a. – b., for trial duration. Top panels 
plot the average waveforms for fatty trials. Red lines depict the average waveform for trials after 
adapting to a fatty array, blue lines instead show the average waveform for trials following adaptation 
to dense scans and green lines plot the difference waveform between these two conditions. 
Topographic activations during the timepoints of interest (listed next to the topographic maps) are 
plotted in the bottom row displaying the differential activations, corresponding to the difference 
waveforms (plotted in green). (fatty: panel a: average t = -3.4179, average p = .0223, df = 6; panel b: 
average t = -2.9979, average p = .0322, df = 6) 
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Figure 32. There was not a significant increase in the scalp distributions activity following adaptation to 
dense images when searching on the same image type (Figure 32, top, panels a-b). Average 
waveforms for electrode sites of interest, labeled in top panels a. – b., for trial duration. Top panels plot 
the average waveforms for dense trials. Red lines depict the average waveform for trials after adapting 
to a fatty array, blue lines instead show the average waveform for trials following adaptation to dense 
scans and green lines plot the difference waveform between these two conditions. Topographic 
activations during the timepoints of interest (listed next to the topographic maps) are plotted in the 
bottom row displaying the differential activations, corresponding to the difference waveforms (plotted in 
green). (dense: panel c: average t = -1.2568, average p = .3560, df = 6; panel d: average t = -1.2888, 
average p = .2768, df = 6) 
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In contrast, viewing the radiological scans facilitated search efficiency 

when signaling target presence and absence (Figure 27). Our present findings 

suggest adaptation modulates the late onset divergence in target present vs.  

absent waveforms in frontal regions at approximately 370 ms. This modulation is 

characterized by a significant increase in the distribution of scalp activity 

suggesting greater neuronal contributions devoted to target detection. 

Specifically, observers were able to more quickly decide if the images contained 

an abnormality (target) or not. We propose that target detection involves a form 

of the P300 component reflected by the late divergence in the waveforms present 

at 370 ms post-stimulus onset (Figure 29, panel b). Previous studies have shown 

similar findings, in which target presence was accompanied by an increase in the 

amplitude of P300 component relative to stimuli without targets (Hope et al., 

2013). Interestingly, this was one of the only studies to explore the 

electrophysiological correlates of target detection in medical images. It is 

important to note we were interested in the effect of adaptation on the neural 

response, whereas the former experiment addressed modulations of the ERP 

waveform dependent upon target presence or absence. Contrary to their results 

we did not observe a significant increase in the P300 component based solely on 

the introduction of a “tumor” into the image. This could possibly be attributed to 

paradigm and stimuli differences. Specifically, the simulated lesions that were 

introduced into their images were large is size and added to the images directly 

in the center of the scan. In contrast our images had smaller sized “tumors” (1 

deg) added at random locations within the scans.  
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Moreover, adaptation increases early neural responses regardless of 

target presence or absence (Figure 29, panels a-b and c-d). Our present findings 

mirror a previous study demonstrating that adaptation to facial stimuli caused an 

enhancement in the neural response at the early P1 component (Kloth & 

Schweinberger, 2010). Previous research has shown an attenuation of the neural 

response following adaptation, suggesting that adaptation functions to decrease 

neuronal resources devoted to the unchanging scene thereby increasing the 

salience of infrequent stimuli and enhancing the magnitude of the response 

(Kloth & Schweinberger, 2010; Schweinberger et al., 2007). Contrary to these 

previous findings, our results reveal increased magnitude of the response 

following adaptation. One possibility is that this conflicting result was due to 

increased attentional allocation for locating potential targets following adaptation. 

Previous research has demonstrated that attending to stimulus features can 

significantly modulate the waveform (for review:(Coull, 1998). Specifically, 

attentional mechanisms increase the amplitude of early components such as the 

P100 and N100 which is indicative of recruiting greater neuronal resources. The 

P100 is thought to reduce noise, while the N100 acts to increase the response to 

the attended stimuli. Moreover, attention has been shown to increase the neural 

activity in later components such as the P300 (for review:(Coull, 1998). These 

findings may provide an explanation as to why our results are inconsistent with 

previous reports. In these studies, participants were not tasked with signaling 

target detection or absence. Thus, adaptation may function to suppress 

processing of the background image, while increasing the response to the target 



84 
 

or to resources devoted to correctly rejecting images without targets. Further 

support for this is reflected in the increase in the amplitude of the waveform 

following adaptation. Future investigations will be necessary to determine if this is 

the case for the results presented here.  

Prolonged exposure to fatty images resulted in decreased reaction times 

when searching on the same image type (fatty). This was not the case when 

inspecting dense images for targets (Figure 32). This is in contrast to our 

previous findings showing increased search efficiency when searching on the 

same image type as adapt, for both dense and fatty images (Chapter IV). It could 

be that observers did not adapt to density, and thus detection of the “tumors” was 

not facilitated post adaptation. Indeed, observers reported after adapting to fatty 

images they felt as if targets were easier to detect but did not report that 

adaptation to dense images aided in locating the targets more efficiently.  

Additionally, the topographical analysis revealed increased activity for fatty trials 

following adaptation to fatty scans in comparison to dense (Figure 31 and 32). 

These results could suggest increased search efficiency when inspecting fatty 

scans for targets.  

Taken together these results have implications regarding inspection in a 

radiological environment. For instance, radiologists report having diverse search 

routines, often reporting that they inspect and classify scans in an arbitrary order 

rather than by density type. Our results suggest that prior exposure to the image 

type (dense or fatty) one is inspecting for lesions or tumors could better facilitate 

detection. This could contribute to not only a reduction in the time devoted to 
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each scan, but consequently reduce fatigue. Moreover, this is the only known 

study to investigate the electrophysiological correlates of medical image 

adaptation. Importantly, these studies were conducted using untrained naïve 

observers and expertly trained radiologists may show different patterns of 

neuronal activation than untrained participants. This could provide further insight 

into how expertise modulates the magnitude of the waveforms as well as the 

influence of adaptation.   

   

VI. General Discussion 

 The present research explored the role of adaptation and medical image 

perception. Little to no research has investigated how the process of visual 

adaptation may influence observers’ visual sensitivity and perception of 

radiological scans. Moreover, radiologists are tasked with classifying and 

diagnosing medical images based upon subjective visual inspection. Critically, 

this evaluation process is ultimately constrained by the perceptual and cognitive 

capabilities of the observer (E. A. Krupinski, 2011).  Due to the fact that 

radiologists can spend hours at a time inspecting mammogram images this 

process seems likely to lead to pronounced adaptation.  Importantly, medical 

images are classified by their textural properties using the BI-RADS Density 

classification system on a scale from fatty to dense ((ACR), 1998). These 

classifications are important because they have been correlated with potential 

prevalence of cancer (Boyd et al., 2007). Ultimately radiologists are tasked with 

inspecting images for abnormalities and this task has important health 
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consequences. The goal of this dissertation was to investigate the influence of 

adaptation on the classification and inspection of mammogram images.  

Summary of Findings 
 

The goal of the first experiment (Chapter II) was to investigate how visual 

adaptation influences the appearance of medical images, particularly the textural 

properties that are used to classify them. Our results revealed that simply viewing 

the different textural properties used to categorize medical images strongly 

biased subsequent image classification. Moreover, prolonged exposure to dense 

(fatty) images not only resulted in the following images appearing more fatty 

(dense), but the adapting image itself appeared less dense over time. These 

findings are analogous to previous studies investigating adaptation to color and 

facial characteristics, which showed that exposure to these stimulus properties 

resulted in the adapting image appearing less distinct and more neutral over time 

(M. A. Webster & MacLeod, 2011).  This supports a form of renormalization of 

coding to the textural properties of the mammogram images, possibly to highlight 

changes from the current stimulus dimension (dense or fatty) (Rhodes et al., 

2005; M. A. Webster & MacLeod, 2011).  

In experiment 2 (Chapter III), we investigated how adaptation to the 

unique statistical properties of the images would influence the perception of blur 

and contrast sensitivity. Specifically, radiological images have a steeper 

amplitude spectra than that of natural images, causing them to appear blurrier in 

appearance (Burgess et al., 2001; Field & Brady, 1997). Observers strongly 
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adapted to the characteristic properties of the radiological scans, resulting in the 

expected blur aftereffects. Viewing of the original mammogram images caused 

focused images to appear over-sharpened following adaptation. These results 

suggest that observers adapt not only to the textural properties of the scans, but 

also the characteristic statistical properties of the images.  

These previous findings showed that participants strongly adapted to the 

properties of mammogram images and this affected the appearance of 

subsequent scans. Experiment 3 (Chapter IV) aimed at exploring if adaptation to 

the structure of the medical images would influence detection of simulated 

tumors within the scans. Adaptation to the different textural properties of the 

scans enhanced detection of novel targets within the images. Moreover, 

adaptation to a particular image type, dense or fatty, enhanced search upon the 

same image type. For example, if an individual was previously adapted to a fatty 

(dense) array of images, reaction time was reduced when searching on fatty 

(dense) images, but not dense (fatty). As discussed above, these results suggest 

adaptation may function to discount properties of the unchanging background 

scene in order to enhance detection of novel, uncharacteristic features within the 

image.  

Our last study (Chapter V) explored where in the visual processing stream 

these visual aftereffects are manifesting. By utilizing ERP’s while observers were 

adapting to the mammogram scans we were able to test for electrophysiological 

signatures involved in the classification and detection of targets within the 

images. Interestingly, adaptation produced non-significant differences in the 
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component waveforms when categorizing the images based upon their textural 

properties. However, when participants were instead tasked with signaling the 

presence or absence of a target, prolonged exposure to the medical images 

significantly affected the magnitude of the neural response. Specifically, 

adaptation increased the amplitude of the response in early and late occipital 

areas. This is consistent with previous studies demonstrating an increase in the 

P300 component when inspecting mammogram images for simulated tumors 

(Hope et al., 2013). Moreover, the coding of texture has been shown to occur in 

occipito-temporal cortex and thus, adaptation in these areas seems likely (Cant & 

Goodale, 2007; Cant et al., 2008). Unlike previous ERP studies adaptation did 

not attenuate the component waveforms response in earlier visual areas (Kloth & 

Schweinberger, 2010; Schweinberger et al., 2007). Our results suggest that 

adaptation may function to allocate greater attentional resources in order to 

perform the detection task. We hypothesize that by recruiting greater neuronal 

resources the observer is better able to detect abnormalities within the scan (for 

review:(Coull, 1998).  

 

Implications and Future Directions 

The primary goal of this dissertation was to provide a comprehensive 

analysis of the influence of adaptation on the visually important task of inspecting 

and diagnosing radiological images. Interestingly, radiologists use diverse 

techniques when inspecting and classifying medical images. Specifically, they 

report viewing the images in an arbitrary order based largely upon the order they 



89 
 

are received in. Our findings have implications regarding the influence of ordering 

effects on their current state of adaptation. Our results revealed strong and rapid 

adaptation to the textural properties of the mammograms, thus viewing them in 

an arbitrary order may influence subsequent categorization of the next scan. For 

example, if presently viewing a fatty scan and then switch to inspecting a dense 

scan, this could potentially bias their classification of the current image. 

Moreover, we showed that prolonged exposure to an image resulted in the 

adapting image appearing less distinct over time. This form of renormalization of 

coding dimension to the current stimulus under inspection has potential 

implications for optimizing visual inspection of the images.   

Adaptation to a specific image type (dense or fatty) facilitated detection of 

targets when searching on the same image type as the adapt. Thus, adaptation 

may function to optimize performance by discounting the unchanging background 

characteristics of the scans and highlight novel features, or abnormalities within 

the scans. These results suggest that viewing mammogram images by density 

classification may not only facilitate correct categorization, but more importantly 

enhance detection of novel features within the images. Moreover, previous 

research has demonstrated that radiologists are able to rapidly and accurately 

diagnose images containing abnormalities (Drew et al., 2013; E.A . Krupinski, 

1996; Kundel & Follette, 1972; Kundel & Nodine, 1975; Kundel et al., 2008; 

Mugglestone et al., 1995). This suggests radiologists are able to compare the 

current image under inspection to an internal template of what is normal or 

expected within the images, enabling the radiologist to direct their attention to 
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areas of interest (Kundel et al., 1987; Swensson, 1980). Our results suggest that 

adaptation may facilitate this process by enabling readers to more efficiently 

direct attention to areas containing abnormalities. Thus, as discussed above, 

viewing images based upon density type may enhance the inspection process by 

reducing the amount of time that needs to be devoted to each image, 

consequently reducing the amount of fatigue radiologists encounter during this 

process.  

It is important to note that our studies used naïve, untrained participants. 

Thus future work has yet to explore how the effects of adaptation manifest in an 

actual medical environment. We aim to explore these studies with expertly 

trained radiologists. It is possible that radiologists have a different pattern of 

adaptation than untrained observers. For instance, radiologists may have the 

ability to switch into an adapted state quicker when inspecting mammogram 

images, similar to the way in which individuals are able to rapidly adjust to their 

visual correction. Moreover, it would be interesting to investigate the influence of 

adaptation while individuals are being trained to be radiologists. Much as search 

improves through training (Snowden et al., 2000), adaptation may functionally 

change as individuals become experts in the field. These are questions we hope 

to explore in the future, providing a better understanding of not only the role of 

adaptation in a medical environment, but also how expertise is influenced by 

adaptation.  
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