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Abstract 

 Students in grades 6-8 often struggle with learning expressions, equations, and 

functions (NCTM, 2011).  This study investigated what sense sixth-grade students make 

when solving algebra tasks presented in a whole class teaching experiment (Lamberg & 

Middleton, 2009; Middleton, Gorard, Taylor, & Bannan-Ritland, 2008; Steffe & 

Thompson, 2000) using design research (Cobb, 2000; Cobb, Confrey, diSessa, Lehrer, & 

Schauble, 2003; Cobb & Yackel, 1996; Gravemeijer, 1994). 

 The teaching episodes were video recorded and all student work was documented 

and analyzed.  The teaching experiment was an iterative process conducted in three 

phases.  Data collection and analysis was a parallel process with prospective analysis 

occurring throughout the teaching experiment and retrospective analysis occurring after 

the teaching experiment.   

 This research developed theories about the students’ learning process in algebra, 

as well as techniques designed to support their learning.  The instructional unit that was 

used in this study was developed with the goal of promoting student learning of the 

algebra tasks and was modified to further student understanding of the tasks.  The 

realized learning trajectory for extending arithmetic to algebraic expressions, solving 

one-variable equations, and representing functions was also documented. 
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CHAPTER I: INTRODUCTION AND STATEMENT OF THE PROBLEM 

 Algebra, in its most simple form, is a branch of mathematics that generalizes 

arithmetic by using a symbolic language, substituting letters for numbers.  This area of 

mathematics has been of interest in human problem solving research for several decades 

(Kieran, 1989).  Traditionally, in the United States, the teaching of algebra consists of 

two or more courses that students begin in secondary school and often repeat in a 

remedial math course in post-secondary school (Kaput, 1995).  This repetition occurs for 

some post-secondary students because they do not have a deep understanding of algebra.  

Moreover, only a small percentage of students that repeat algebra attain proficiency when 

they take the class again (Finkelstein, Fong, Tiffany-Morales, Shields, & Huang, 2012).  

The preliminary topics in school algebra usually consist of variables, simplification of 

algebraic expressions, equations in one unknown, and equation solving (Kieran, 1989). 

 In general, traditional approaches to teaching algebra begin by devoting time to 

learning skills and procedures before applying them to problems (French, 2002).  

Procedural algebra, or the “drill” approach, involves incremental steps and trains students 

using redundant practice of similar problems.  This stems from a prevailing tradition 

present in algebra where the teacher introduces students to a new topic by demonstrating 

it using an example, and then students practice similar problems using the same 

procedure introduced by the worked example (French, 2002).  As a result, students in 

grades 6-8 often struggle with learning expressions, equations, and functions (NCTM, 

2011) because students are learning a procedure for solving problems, and not 

conceptually understanding why the procedure works.   
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 A position statement from the National Council of Teachers of Mathematics 

(NCTM, 2008) asserted that algebra is more than a set of procedures for manipulating 

symbols.  According to Kirshner (1993), the drill approach “trains students in non-

reflective competence” (p. 3).  Alternatively, the other approach is to begin with the 

problem, identify and learn the necessary skills and procedures needed to solve it, then 

think through and make sense of the problem (Hiebert & Lefevre, 1986; Star, 2000).  

Although procedural algebra drills provide students with a systematic way to solve 

mathematical problems, a broader conceptual understanding of algebra is necessary to 

develop algebraic thinking (Kamol & Har, 2010).  It is possible to thoroughly integrate 

rules, procedures, algorithms, sense making, and meaningful problems into the algebra 

learning process (Friedlander & Arcavi, 2012).  This broader conception of algebra, 

rather than skillfully using algebraic procedures, helps students make connections, 

generalize, and represent relationships. 

Problem Statement and Research Question 

 Learning mathematics with understanding means that students have conceptual, 

factual, and procedural knowledge (Bransford, Brown, & Cocking, 2000).  Conceptual, 

factual, and procedural knowledge are not independent; they are interwoven.  The 

National Research Council (NRC, 2001) contends that mathematical proficiency is 

achieved through the interdependent components: conceptual understanding, procedural 

fluency, strategic competence, adaptive reasoning, and productive disposition (p. 117).  

Mathematical thinking and learning requires that students understand not only what they 

are doing, but also why they are doing it.  The Common Core State Standards (CCSS) for 

Mathematics (National Governor’s Association/Council of Chief State School Officers 
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[NGA/CCSSO], 2010) emphasize that learning in mathematics should take into account a 

balanced combination of procedure and understanding.  Students that understand 

mathematics should not rely on only procedural knowledge, but conceptual knowledge as 

well.  Moreover, students’ learning about the context of the mathematics, as well as the 

relationships between operations, numbers, and symbols, is crucial. 

Rationale and Significance 

 The Common Core State Standards for Expressions and Equations state that 

students in grade 6 should learn to (a) apply and extend previous understandings of 

arithmetic to algebraic expressions, (b) reason about and solve one-variable equations and 

inequalities, and (c) represent and analyze quantitative relationships between dependent 

and independent variables (NGA/CCSSO, 2010).  Kaput (1999) described the 

understanding of algebra as a “rich web of connections” (p. 4) that involve five 

interrelated forms of thinking: (a) generalizing arithmetic to algebra, (b) using symbols in 

a meaningful way, (c) study of structure, (d) study of patterns and functions, and (e) 

mathematical modeling and combining the first four forms.  Clearly, students need more 

than a procedural understanding of algebra in order to participate in these forms of 

algebraic thinking.  However, the five interrelated forms of algebraic thinking are not 

well represented in classrooms where traditional algebra is taught (Banerjee & 

Subramaniam, 2011; Drijvers, Goddijn, & Kindt, 2011; Kaput, 2000).  Recognizing that 

students taught traditional algebra face many difficulties with learning algebra due to lack 

of exposure to the five interrelated forms of algebraic thinking, this study aimed to 

develop a teaching approach that helps beginning students conceptually understand 

algebra. 
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 A whole class teaching experiment (Lamberg & Middleton, 2009; Middleton, 

Gorard, Taylor, & Bannan-Ritland, 2008; Steffe & Thompson, 2000) on algebra using 

design research (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003; Cobb, 2000; Cobb & 

Yackel, 1996; Gravemeijer, 1994) was conducted.  The teaching experiment occurred in 

a sixth-grade classroom.  The idea for this teaching experiment came out of discussions 

with the classroom teacher, the teacher-researcher, and a mathematics education 

professor.  This study was motivated by the researcher’s desire to help students gain an 

in-depth understanding of beginning algebra, taking into account that increased 

understanding of how students make sense of beginning algebra might not only generate 

theory on how students learn algebra, but also advance curriculum development, pre-

service teacher preparation, and in-service teacher professional development.  The 

students that participated in this study had never formally been introduced to variables or 

algebra.  The instructional unit that was used in this study was researcher-developed with 

the goal of promoting student learning of the algebra tasks.  It was modified to further 

student understanding of the tasks, based on how students interacted with the tasks in the 

unit.       

 The purpose of this study was to document and understand how sixth-grade 

students think mathematically when presented with algebra tasks in a teaching 

experiment.  The following questions guided this study: how do sixth-grade students 

think mathematically when solving arithmetic and algebra tasks in a whole class teaching 

experiment and what are the means of supporting and organizing student learning of 

algebra? 
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Summary 

 Chapter one is an introduction to the study that includes an overview of the 

background of the study and also the need to better understand how beginning algebra 

students make sense of algebra tasks.  The five interrelated forms of algebraic thinking 

are presented as a framework that was used in this study for development of an 

instructional unit.  Motivation and rationale for the exploration into how students make 

sense of algebra tasks are also discussed.     

 Chapter two is a review of literature that examines prior research in the learning 

and teaching of mathematics.  This review informed the curriculum and tasks in the 

teaching experiment, designed to explore how to support sixth-grade students’ 

understanding of algebra as outlined in the Common Core State Standards for 

Mathematics (NGA/CCSSO, 2010).  Specifically, the researcher created a hypothetical 

learning trajectory (Simon, 1995) and investigated the realized learning trajectory 

(Lamberg & Middleton, 2009) that emerged as a result of the instructional unit.  

Additionally, the researcher intended to understand what strategies and mathematical 

reasoning practices students used to make sense of the algebra tasks.  

 The first section in chapter two is a review of the research on how students learn 

mathematics and how to support learning in mathematics.  The next section summarizes 

what beginning students should know and be able to do in algebra and how students learn 

algebra.  Then, a review of hypothetical learning trajectories and curriculum development 

is discussed.  This review of literature also includes the theories of social constructivism 

and community of learning as they relate to learning in mathematics.  Chapter two 
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concludes with a discussion on the need for continued research on how students make 

sense of beginning algebra tasks and includes the research goals for this study. 

 Chapter three provides the methods for data collection and analysis in the 

teaching experiment.  It also describes the frameworks that were used to analyze and 

interpret the data.  Chapter three concludes with a discussion of objectivity, reliability, 

and validity in design research. 

 Chapter four presents the research findings.  This chapter begins with an 

introduction of the context of the classroom community.  Next, the realized whole class 

learning trajectory is described in detail, including students’ understanding of the algebra 

tasks, examples of student work, and the role of the tasks in supporting student learning.  

The results of the pretest and posttest analysis are also provided.  Chapter four continues 

with findings that illustrate how students made connections from arithmetic to algebra 

and how students viewed the relationship between a variable as a known value and a 

variable as an unknown value.  Chapter four concludes with a visualization of how the 

lesson plans in the instrucitonal unit were modified during and after the teaching 

experiment.   

 Chapter five presents the conclusions on learning and teaching mathematics from 

the teaching experiment using design research.  This chapter also discusses the practical 

and theoretical relevance of the results of the teaching experiment.  Additionally, chapter 

five suggests that the realized learning trajectory be the revised hypothetical learning 

trajectory for future research.      
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CHAPTER II: REVIEW OF LITERATURE 

 This section describes the current research on learning and teaching mathematics 

from the perspective of a social situation in the classroom or the classroom microculture 

(Cobb, 1999).  The purpose of this review is not only to examine how students learn to 

think mathematically, but also to examine how students engage in algebraic thinking.  

This review synthesizes the research on how students learn mathematics within a 

classroom setting and was used to inform the instructional unit.  This unit was used in the 

teaching experiment and was designed to support student learning in algebra. 

 First, a general review of the research on how students learn mathematics and 

how to support learning in mathematics is provided.  The next section considers what 

beginning students should know and be able to do in algebra and how students learn 

algebra.  Additionally, a review of hypothetical learning trajectories and curriculum 

development is discussed.  This review of literature also discusses the theory of collective 

mathematical development defined as classroom mathematical practices that are 

established by the classroom community (Cobb, 1999).  This chapter concludes with a 

discussion on the need for continued research on how students make sense of beginning 

algebra tasks and includes the research goals for this study.    

Learning Mathematics 

 It is important to understand mathematical thinking and learning in order to 

develop a curriculum that supports student learning in algebra.  Learning takes place in 

the context of the classroom and the student experiences learning mathematics by 

interactions with the teacher, students, and content (Gee, 2007).  The way in which 

students experience mathematics within the classroom setting, the content that they learn, 
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and the curriculum that is used shapes the learning that takes place (Elsaleh, 2010).  

Traditionally, in mathematics, the curriculum materials are viewed as the main policy 

foundation that improves instruction and learning on a large scale (Stein & Kaufman, 

2010).  However, the nature of teachers’ instruction combined with how the curriculum is 

implemented in a mathematics classroom is actually the factor that influences what 

student learning takes place (Brown, 2009).  Stein and Kaufman (2010) provided 

evidence that no direct causal relationship exists between curriculum and student learning 

in mathematics; rather, there is a connection between student learning and how a teacher 

instructs students using the curriculum.   

 A curriculum contains tasks that provide opportunities for learning.  Curriculum 

influences student learning based on how the teacher chooses to incorporate the 

curriculum and the opportunities presented within the curriculum.  These interactions 

with teachers, students, and content occur within the classroom community that is made 

up of students and the teacher (Cobb, 1999).  The factors that influence mathematical 

learning are embedded within the mathematical practices established by the classroom 

community in which members of the community explain and justify solutions, focusing 

“on the taken-as-shared ways of reasoning, arguing, and symbolizing established while 

discussing particular mathematical ideas” (Cobb, 1999, p. 9).  Therefore, classroom 

mathematical practices depict changes in whole class mathematical thinking, but also 

consider individual students’ understanding.   

 Students in the classroom are part of the “culture of mathematical learning,” or 

“semiotic domain” (Gee, 2007, p. 24).  A semiotic domain is “grounded in a group of 

people who have cognitive and social interests and help uphold a set of standards and 
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norms” (Gee, 2008, p. 137).  In other words, individuals within a semiotic domain have 

their own associated way of thinking and interacting.  Figure 1 presents a framework for 

a community of learning where mathematical thinking takes place.  This framework takes 

into account that mathematical thinking occurs through interactions among teachers, 

students, and content.  A community of learning must exist in a mathematics classroom 

for students to engage in mathematical thinking.  The next section explains this 

framework in detail. 

Figure 1.  Mathematical thinking occurs when interactions and discussion, using the 
design grammar of the affinity group, between teachers, students, and content exist.  The 
affinity group is within the semiotic domain of mathematical learning (adapted from Gee, 
2004). 
 

Figure 1.  Framework for a Community of Learning 

Semiotic Domain: 
Culture of 
Mathematical 
Learning 

Affinity Group 

Design Grammar 

Interactions with teacher, students, content 

Mathematical Thinking 

Community of Learning 
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Learning and Thinking in Mathematics 

   Mathematical thinking is a state of mind in which the thinker has a conceptual 

understanding of the mathematics and has become part of the community of mathematics.  

The authors of Adding It Up contend that all students have the ability to learn to think 

mathematically (NRC, 2001).  Devlin (2012) defines mathematical thinking as: 

 Mathematical thinking is more than being able to do arithmetic or solve algebra 

 problems.  In fact, it is possible to think like a mathematician and do fairly poorly 

 when it comes to balancing your checkbook.  Mathematical thinking is a whole 

 way of looking at things, of stripping them down to their numerical, structural, or 

 logical essentials, and  of analyzing the underlying patterns.  Moreover, it involves 

 adopting the identity of a mathematical thinker. (pp. 59-61, emphasis in the 

 original) 

A “semiotic domain” (Gee, 2004) within the community of learning mathematics 

is the culture that is established through interactions among community members.  In 

order to be completely a part of a semiotic domain, a person must join an “affinity group” 

and know the “design grammar” used in the domain that allows communication about 

information, values, and ideas that are specific to the domain (Gee, 2004, 2007).  In a 

classroom setting, the students that belong to the community of mathematical learning 

have their own way of communicating and interacting with each other, the teacher, and 

the content.  Members of the semiotic domain that build a relationship based on a shared 

interest form an affinity group.  In other words, affinity groups are the small groups that 

make up a larger community (Gee, 2004).  For instance, consider the community of 

snowboarding in which separate affinity groups exist.  Three snowboarding affinity 
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groups are free ride snowboarders, free style snowboarders, and free carve snowboarders.  

Each group of snowboarders requires a specific type of equipment and gear and has its 

own set of fans and competitions.  Although many people snowboard, they are not part of 

an affinity group until they have the equipment and style and can communicate using 

vocabulary specific to snowboarding with the other members of the group.  This 

communication requires knowledge of the design grammar of the affinity group.  In 

particular, the affinity group of free style snowboarders uses specific design grammar that 

includes distinct terminology such as half pipes, tabletop jumps, rail slides, spines, hips, 

and quarter pipes (terrain park attractions).  Free ride snowboarders and free carve 

snowboarders may not know the design grammar of free style snowboarders and vice 

versa. 

 Semiotic domains in the community of mathematical learning are composed of 

content, academic level, or interest-specific affinity groups that communicate through the 

language specific to the mathematics topic area.  It is problematic when students are not 

mastering the semiotic domain in school mathematics.  Instead, they are learning a series 

of skills and details without learning the design grammar, and thus, are not able to join an 

affinity group associated with the domain.  Mathematical thinkers must understand how 

meaning is constructed by the design grammar of mathematics.  In other words, to think 

mathematically, a person must be able to understand and communicate in the domain of 

mathematics, and not just memorize facts or repeat details without knowing the meaning 

of the design grammar.   

 Communication.  Gee’s (2004) theory of semiotic domains, the Common Core 

State Standards (CCSS) for Mathematics (NGA/CCSSO, 2010), and the National Council 
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of Teachers of Mathematics Standards (NCTM, 2000) emphasized communication as 

essential for how students should learn mathematics (Lamberg, 2013).  Communication 

occurs through student-student interactions, student-teacher interactions, and student-

content interactions.  Eisenhart (1988) suggested that mathematical learning is both a 

process of constructing meaning as an individual as well as a process of acculturation of 

mathematical meanings in society.  This implies that students learn mathematics 

individually but also by interacting with others.  Cobb, Yackel, and Wood (1992) 

described communication as a process where learning occurs during social interaction, 

which is a circular sequence of events.  In other words, learning as social interaction is 

not a linear process; it is messy and complex.  Moreover, the theory of social 

constructivism (Vygotsky, 1978) reflects this perspective where the central tenet is that 

learners construct their own understanding by participating in meaningful shared 

discourse.  Vygotsky (1978) wrote, “Every function in the child’s cultural development 

appears twice: first, on the social level, and later, on the individual level”.  This theory 

takes into account the critical role of the social nature of language and culture in student 

learning. 
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Figure 2.  The continuum of the zone of proximal development shows that students learn 
more through social interaction.  Social interaction leads to the acculturation of 
mathematical meanings through the use of design grammar (Gee, 2004; 2007).  Group 
mathematical learning forms an affinity group that leads back to the Zone of Proximal 
Development (Vygotsky, 1978).  
 
 Additionally, Vygotsky’s (1978) Zone of Proximal Development (ZPD) is based 

on the idea that students are limited in what they can learn independently and that more 

can be learned with guidance of teachers or collaboration with others (Carlile & Jordan, 

2005).  In a community of mathematical learning, students learn the design grammar of 

an affinity group through interactions with teachers, students, and content.  The design 

grammar in a mathematics classroom is the shared meaning of mathematical conventions 

and vocabulary that students and teachers develop through their experiences and 

discussions.  Knowledge of the design grammar allows for mathematical discourse and 

the opportunity for learning to occur.  These interactions, which are largely accomplished 

through discussion, make up the ZPD.  Figure 2 depicts the ZPD and how it relates to the 

process of constructing meaning by becoming part of an affinity group and using design 

grammar. 
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 Upon entering the ZPD, students learn through social interaction.  This interaction 

leads to acculturation of mathematical meanings in society through the knowledge of the 

design grammar associated with the semiotic domain.  Once students engage in group 

mathematical learning, by participating in the culture and communicating using design 

grammar, they are part of the affinity group.  In an ideal learning community, this cycle 

continues and contributes to the construction of new knowledge (Steinbring, 2005).  

 In education, the culture of mathematical learning consists of an affinity group 

that practices the language and symbols, or design grammar, of this community.  A 

person will not be able to become a competent mathematical thinker without joining the 

semiotic domain, or culture, of mathematical learning.  In addition, Gee (2004) and 

Devlin (2012) concurred that entering a semiotic domain does not imply becoming an 

expert in that particular discipline, rather it implies achieving competency by interacting 

in the discipline associated with that domain. 

Teaching to Support Learning in Mathematics 

 Teaching mathematics is a complex endeavor because mathematics involves a 

language, a way of thinking, a specific skill set, and a multitude of knowledge.  Effective 

math teachers must be able to support the learning of their students by helping them 

reflect on their thinking, identify mistakes, and improve strategies.  Horizon Research, 

Inc. (Weiss, Pasley, Smith, Banilower, & Heck, 2003) conducted a study that examined 

mathematics and science education in the United States.  This study considered the main 

objectives of math education as helping students learn important mathematical concepts 

and deepening students’ abilities to successfully engage in the mathematical process.  

After an in-depth analysis of lessons, Weiss, Pasley, Smith, Banilower, and Heck (2003) 
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identified five factors that distinguish effective lessons from ineffective lessons.  

Effective lessons: (a) engage students with the mathematics content, (b) create an 

environment conducive to learning, (c) ensure access for all students, (d) use questioning 

to monitor and promote understanding, and (e) help students make sense of the 

mathematics content (p. 39).  Within the semiotic domain of mathematical learning, the 

supportive learning community begins with teachers that cultivate this environment that 

facilitates effective mathematics lessons.     

 How students learn mathematics is directly affected by experiences in 

mathematics classrooms, and these experiences are created by and depend on the 

teaching of mathematics.  Pedagogy influences the scope and nature of the mathematics 

that the students learn (Schoenfeld, 1992).  Therefore, the teacher needs to select 

worthwhile mathematical tasks and involve students in discussion (NCTM, 2000).  

Furthermore, teachers must be able to understand what their students already know in 

order to connect new mathematical knowledge to their previous knowledge (NRC, 2001).  

This requires teachers to have a strong foundation in mathematics content, curriculum, 

and pedagogy (Ball & Bass, 2000).  To teach mathematics effectively, teachers need to 

know the big mathematical themes and be able to present these as interconnected topics 

(Ma, 2010).  Additionally, teachers should realize that many ways to teach and learn 

mathematics exist and they should incorporate a variety of methods into their pedagogy 

(Sheffield & Cruikshank, 2001).  Teachers should augment their teaching beyond the 

textbook, continually reflect and improve, and be aware of how students are learning 

mathematics (Ma, 2010; NCTM, 2000; Sheffield & Cruikshank, 2001).  Moreover, 

teachers should recognize that curriculum is not a static document to be implemented; 
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rather, it is a toolbox with tasks and lessons to be selected and adjusted by the teacher to 

support student learning.       

 Teaching mathematics is a complex process that should be viewed as more than 

an extensive list of topics.  The Principles and Standards for School Mathematics 

(NCTM, 2000) articulated six principles that should be “deeply intertwined with school 

mathematics” (NCTM, 2000, p. 12).  The six principles for school mathematics are: (a) 

Equity, (b) Curriculum, (c) Teaching, (d) Learning, (e) Assessment, and (f) Technology.  

Thus, the teaching of mathematics is an intricate system that must consider multiple 

details linking content, student learning, environment, and equity.  Figure 3 displays the 

complex network of teaching mathematics.   
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Figure 3.  Network of Teaching Mathematics 

 

Figure 3.  Teaching mathematics is a complex network that involves student learning, 
equity, environment, and content.      
 
 Content.  Mathematically proficient students are able to skillfully compute, 

apply, understand, reason, and engage in mathematics (NRC, 2001).  The NCTM (2000) 

identified the content strands that students at each grade level should learn: numbers and 

operations, algebra, geometry, measurement, and data analysis and probability.  The 

CCSS in Mathematics contains content standards similar to the NCTM Standards; 

however, the CCSS also provides progressions, specific to each grade level, in which the 

content should be learned (NGA/CCSSO, 2010).    
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 Learning trajectories.  A hypothetical learning trajectory (HLT) (Simon, 1995) is 

a model of student learning that consists of the goal for students’ learning, the tasks that 

will be used to promote students’ learning, and hypotheses about the process of this 

learning.  The National Research Council (NRC, 2007) defined learning progressions as 

“successively more sophisticated ways of thinking about a topic that can follow one 

another as children learn about and investigate a topic” (p. 214).  Moreover, the CCSS in 

Mathematics (NGA/CCSSO, 2010) stated that the standards emerged from, “research-

based learning progressions detailing what is known today about how students’ 

mathematical knowledge, skill, and understanding develop over time” (p. 4).  

Reconceptualizing a mathematics concept to lead to student learning and understanding is 

challenging (Simon & Tzur, 2004).  For instance, development of a HLT requires the 

teacher or teacher-researcher to have a solid understanding of the mathematics content 

and the current knowledge of the students in order to make hypotheses about the process 

of student learning and to select learning tasks based on these hypotheses. 

 Middleton et al. (2008) described the notion that research in education is similar 

to the process of design in engineering except that the products in education research are 

learning environments (Scardamalia & Bereiter, 2006).  These enterprises are similar in 

that engineers and education researchers must continually keep the outcomes of a 

prototype product in mind (Lamberg & Middleton, 2009).  These outcomes in education 

are the hypothetical learning trajectories that specify crucial understandings of the 

content and map out tasks that hypothetically move students to deeper understandings of 

the content.  Moreover, the “function structure” of a system is a hypothesized model that 

designates the important components of a system and how they relate and interact 
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(Lamberg & Middleton, 2009, p. 243).  Thus, the primary function structure in education 

research is the system that aims to advance the goal of learning (Scardamalia & Bereiter, 

2006).    

 A hypothetical learning trajectory must be developed, tested, and refined to 

produce a realized learning trajectory (RLT) (Lamberg & Middleton, 2009).  The RLT 

results from the HLT and shows what actually happened in the education research.  The 

RLT explains what occurred in the research with respect to the goal of promoting 

learning, why it happened, and how it happened.  Once a RLT is established, it can then 

become the HLT and be retested and redeveloped to find a new and improved RLT.  In 

other words, the realized learning trajectory represents a replacement of the original 

hypothetical model (Steffe & Thompson, 2000). 

 Curriculum.  A quality curriculum is essential to support student learning in 

mathematics because it determines what mathematical ideas and content students will 

have the opportunity to learn.  Curriculum needs to encompass both content and 

opportunities for reflection and assessment.  A curriculum is coherent if it leads to the 

development of big mathematical ideas by linking content, focusing on important 

mathematics, and articulating across grade levels (NCTM, 2000).  For example, students 

should learn that mathematics is more than unrelated and disconnected topics; rather, it is 

a highly organized body of knowledge.  Moreover, the NRC (2001, 2005) established that 

the teaching and learning of mathematics should emphasize problem solving and sense 

making rather than isolated procedures and skills.  Thus, curriculum must contain 

challenging content and assessment opportunities, as well as connections among 

mathematical ideas throughout grade levels.      
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 Curriculum is developed around essential mathematical content goals, linked 

throughout each grade level.  Ernest (1998) argued that complete understanding of the 

objectives of mathematics education is not feasible without taking into consideration the 

philosophy of mathematics.  In order to answer the question, “what is the purpose of 

teaching and learning mathematics” (Ernest, 2004, p. 17), teachers, researchers, and 

curriculum planners must explore the role that mathematics plays in society (White-

Fredette, 2010).  Standards-based curricula reflect the views of the NCTM (2000) 

standards and embody a constructivist philosophy of student learning. 

 Constructivism advocates for students to construct their own knowledge by 

reorganizing, integrating, and assimilating new procedures and concepts into their 

existing knowledge (Chomsky, 1968; Piaget, 1954), and social constructivism asserts that 

learning mathematics is something that people do, instead of something that people attain 

(Forman, 2003).  Social constructivism in mathematics education emphasizes 

communication and participation in a mathematical learning community (Cobb, Yackel, 

& Wood, 1992).  In order to reflect the role of mathematics in society, curriculum must 

take into account how mathematics is used in the real world and why it is important to 

learn mathematics.     

 According to The NCTM (2000), mathematics education consists of two types of 

curricula: traditional curricula and standards-based curricula.  Traditional curricula, 

which are teacher-centered, emphasize mathematical procedures more than conceptual 

understanding.  Standards-based curricula, which are student-centered, emphasize 

conceptual understanding, problem solving, and connections among mathematical topics.  

Textbooks are central in current mathematics education and, therefore, The NCTM 
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(2000) calls for the use of textbooks that incorporate meaningful and interesting tasks, 

while the CCSS (NGA/CCSSO, 2010) asserts that curriculum designers should strive to 

connect mathematical practices to mathematical content in order to teach students how to 

be mathematically proficient.  Integration of mathematical content with mathematical 

practices in curriculum will produce a foundation for mathematical thinking and learning.   

 Environment.  In an environment conducive to learning mathematics, the teacher 

plays a vital role.  The teacher not only needs to use interesting and engaging 

mathematics problems, but also encourage discussion and provide representations of 

multiple methods, support conceptual understanding, and encourage mathematical 

thinking (Picone-Zocchia & Martin-Kniep, 2008).  The NRC (2001) contended that 

students must develop a “productive disposition” toward mathematics and believe that 

they are capable of learning and using mathematics (p. 131).  Teachers that have a 

productive disposition are confident doers of mathematics and encourage and support 

their students.  Students that are learning in a positive environment should feel 

comfortable expressing their mathematical approaches and engaging in problem solving.  

Moreover, mathematics teaching should not focus entirely on the content, but should 

consider the interactions that occur among teachers, students, and content as well (Cohen 

& Ball, 1999).  These valuable interactions set the stage for productive mathematical 

thinking and learning, as well as expose mathematical misconceptions. 

 Teachers can create an environment conducive to learning by providing students 

with problems that can generate many solutions.  Students’ justifications for their 

responses can be used as a basis for the content of the lesson.  Teachers that encourage 

students to volunteer and explain their solutions create a positive environment in which 
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students feel comfortable describing their mathematical thinking, even if the discussion 

exposes errors (Czarnocha & Maj, 2008).   

 Equity.  Ensuring access to mathematical learning for all students requires high 

expectations and strong support for all students (NCTM, 2000).  High expectations mean 

that teachers provide mathematics problems that are challenging and unfamiliar.  The 

problems should slightly exceed a student’s skill level, so that they do not become routine 

(Picone-Zocchia & Martin-Kniep, 2008).  Equity requires high expectations, 

accommodation of differences, and high quality instructional programs for all students.  

The NCTM (2000) clarified that equity does not mean that all students should receive the 

same instruction; rather, it calls for “reasonable and appropriate accommodations as 

needed” to support the learning of each student (p. 12).  In other words, all students 

should be provided access to mathematics teaching that is responsive to their prior 

knowledge, intellectual strengths, and personal interests (NCTM, 2000).  Moreover, the 

equity principle makes clear that all students can learn mathematics, have the opportunity 

to use technology to enhance their learning of mathematics, and receive support from the 

teacher as well as the curriculum so that they have the opportunity to excel. 

 Technology.  In learning mathematics, calculators and computers are essential 

because they allow students to explore and solve problems that might otherwise be 

inaccessible or would be overly tedious.  In addition, with the use of technology, students 

can examine visual representations of abstract mathematics.  These representations aid 

student learning by generating visualizations of mathematics that students are unable or 

unwilling to create (NCTM, 2000).  Moreover, technology can help students learn 

mathematics by providing access to more examples and dynamic representations.  
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Geogebra is an example of an interactive algebra, geometry, and calculus tool that 

students use to construct geometric figures and explore conjectures through the use of 

algebra (Hohenwarter & Borcherds, 2012).    

 The CCSS (NGA/CCSSO, 2010) expected mathematically proficient students to 

use appropriate tools strategically.  These tools include technology such as calculators, 

spreadsheets, computer algebra systems, statistical packages, and dynamic software.  

Students should learn that technology can help them visualize and explore different types 

of mathematics and they should know which technology is appropriate.  The NCTM 

(2000) standards and the CCSS (NGA/CCSSO, 2010) contended that technological tools 

support student learning by deepening their understanding of mathematical concepts.  

Additionally, touch screen technology might potentially allow students to engage in 

relational thinking because mathematical expressions can be moved as virtual physical 

objects (Ottmar & Landy, 2012). 

 Student learning.  It is important for students to have a balance of factual, 

procedural, and conceptual knowledge to learn mathematics (NGA/CCSSO, 2010).  

Moreover, learning mathematics with understanding requires that students have 

knowledge of the relationships among numbers, symbols, and operations, as well as the 

context.  Students can be given the opportunity to learn mathematics in context in a 

variety of ways.  Inoue and Buczynski (2011) promoted the use of open-ended questions 

because they can incorporate contextualized, interesting situations that require both 

conceptual and procedural mathematics.  Open-ended questions can have multiple 

approaches and solutions that require students to engage in mathematical thinking.  

Contextual approaches to learning mathematics fall between problem solving and 
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procedural approaches.  Picone-Zocchia and Martin-Kniep (2008) recommended that a 

contextual problem be introduced after students have learned the skills and procedures 

necessary to solve the problem.  In the problem solving approach, a problem is 

introduced before skills and procedures to create a rationale for the mathematical content.  

 Help students make sense of the mathematics content.  Within the NCTM 

Standards are the process standards that consist of problem solving, reasoning and proof, 

communication, connections, and representation (NCTM, 2000).  The purpose of the 

standards for mathematical practice are to make sense of problems and persevere in 

solving them, reason abstractly and quantitatively, construct viable arguments and 

critique the reasoning of others, model with mathematics, use appropriate tools 

strategically, attend to precision, look for and make use of structure, and look for and 

express regularity in repeated reasoning (NCTM, 2000; NRC, 2001).  Although there are 

various systems for classifying and organizing the body of mathematics, a consensus 

among the mathematical teaching community exists on the attributes associated with 

successful mathematical thinkers (Picone-Zocchia & Martin-Kniep, 2008).  Students that 

can effectively think mathematically know the meaning of mathematical symbols, 

representations, and procedures, and can comprehend mathematical concepts, operations, 

and relations (Picone-Zocchia & Martin-Kniep, 2008). 

 Helping students make sense of the mathematics content means that students are 

learning with understanding.  Learning with understanding is more powerful than merely 

memorizing (NRC, 2001).  Memorizing algorithms and rules does not foster 

understanding of mathematics because memorization does not produce connections or 

meaning.  Rowan and Bourne (2001) recommended that students should be encouraged 
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to build their “math power” (p. 3).  To build math power, students create and use 

procedures that they can relate to and understand.  In other words, students construct their 

own meaning of mathematical problems and the teacher guides this learning through 

insightful questions and discussion. 

 Students that have learned mathematics through constructing their own 

knowledge develop a conceptual understanding of mathematics.  Students with a 

conceptual understanding of mathematics value the importance and context in which 

mathematics is useful and have the ability to connect new ideas to previous knowledge 

(NRC, 2001).  Conceptual knowledge can be achieved by constructing connections 

among pieces of information or by creating relationships between existing knowledge 

and new information (Hiebert & Lefevre, 1986).  Although students need conceptual 

understanding to make sense of mathematics content, they should also have a procedural 

understanding of mathematics.  Procedural understanding includes knowing the formal 

language or system of mathematics.  Procedural knowledge is associated with having a 

sequential nature as opposed to a relational nature (Hiebert & Lefevre, 1986).  According 

to The NCTM (2000), in order for students to learn mathematics with understanding, they 

not only need to acquire procedural, computational skills, but also the ability to build new 

knowledge from prior knowledge.  Moreover, students should understand that 

mathematical ideas are important, interrelated, and useful.  In addition, students should be 

taught to connect procedures with conceptual knowledge so that the procedures are 

learned with meaning and that mathematics is more than a list of objectives. 

 Furthermore, students learn mathematics by attending to structure and thinking 

relationally.  Although thinking about mathematical relations is implicit in correct 
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computations, relational thinking allows thinking about these relations to become more 

explicit.  Relational thinking occurs when a student studies two or more mathematical 

ideas and analyzes these ideas by the examination of connections among them (Molina, 

Castro, & Ambrose, 2005).  This type of thinking is developed by guiding students to 

attend to how operations and numbers are related in a mathematical statement.  

Understanding relations among mathematical concepts is essential when learning 

mathematics (Hiebert & Carpenter, 1992).  In relational thinking, understanding 

relationships among symbols is more important than arriving at the correct answer 

(Molina et al., 2005).  Additionally, students can engage in relational thinking by treating 

mathematical equations and expressions as physical objects that can be moved according 

to mathematical rules (Ottmar & Landy, 2012). 

  Use questioning to monitor and promote understanding.  In learning 

mathematics, teachers and students should be asking questions.  Although teachers 

should be asking questions to support different types of learning, they should also be 

listening to students’ questions to understand students’ thinking.  Questions can be 

categorized as convergent or divergent.  Convergent questions seek specific and correct 

answers, while divergent questions are generally open-ended and encourage critical 

thinking (Duron, Limbach, & Waugh, 2005).  In Bloom’s Taxonomy, convergent 

questions align with lower levels of knowledge, comprehension, and application, while 

divergent questions align with higher levels of analysis, synthesis, and evaluation 

(Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956).  For example, a convergent 

mathematics question might ask for the definition or formula of slope of a line, and a 

divergent question might ask for a justification or description of why that is the definition 
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or formula of slope of a line.  Divergent questions foster student-centered discussion and 

support critical thinking (Duron et al., 2005).  By using questioning, teachers and 

students engage in discussion that provides them with the opportunity to participate in the 

community of mathematical learning.     

 Questioning also allows the teacher to discover the students’ knowledge base and 

extend their knowledge by fostering learning of new ideas and understandings.  Research 

posits that higher order, divergent, questions increase learning among students (Cotton, 

2001; Walsh & Sattes, 2005).  Fusco (2012) contends that teacher questioning has the 

greatest impact on student learning because it urges students to extend their thinking. 

 Moreover, teachers can support student learning in mathematics by listening to 

students’ questions and helping students become better questioners (Boaler, 2002).  

Students’ questions not only reveal how they are thinking about a problem, but also 

uncover any misconceptions or insights.  Students should have plenty of opportunities 

and be prompted to formulate and ask different types of questions.  Students will become 

familiar with different types of questions as long as the teacher is incorporating a variety 

of questioning techniques and encouraging discussion (Duron et al., 2005).  

 Assessment.  Assessment in mathematics refers to students’ understanding, skill, 

and disposition toward mathematics.  The NCTM (1995) presented six assessment 

standards for assessing students’ understanding of concepts and procedures, enhancing 

mathematics learning, promoting equity, being an open process, promoting valid 

inferences, and being a coherent process (NCTM, 2000).  These standards addressed the 

need for assessment to be intertwined in the routine of a classroom.  Moreover, 

assessment should be ongoing and influence instructional decisions (Even, 2005).  
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Assessment informs the daily instructional decisions made by the teacher by monitoring 

students’ progress, evaluating students’ achievement, and making misconceptions known 

(Davis, 1996; NCTM, 1995).  Student learning is assessed not only to inform the teacher 

(and others), but also to guide the students’ learning (Even, 2005).  Assessment supports 

teaching and learning by providing information about students’ growth and development 

in their understanding of mathematics.  

Conclusions on Teaching and Learning Mathematics 

 It is essential that students learn how to think mathematically by being engaged in 

interactions with the teacher, other students, and the mathematical content.  Thinking 

mathematically embraces more than just doing mathematics; it is a way of thinking.  This 

skill is necessary in the modern world and can be practiced by participating in Gee’s 

(2004) notion of a semiotic domain that contains an affinity group that applies a specific 

design grammar for communication among the group.  Mathematical thinking can be 

thought of as a state of mind that is realized by joining a mathematical thinking 

community.   

 To support student learning in mathematics, teachers must focus on mathematical 

thinking and reasoning (NCTM, 2000).  This focus begins with writing effective lessons 

that engage students, create a learning environment, are equitable, promote 

understanding, and help students understand the content.  Moreover, teachers must adjust 

and utilize curriculum to promote student learning in mathematics.   

Learning Algebra 

 A wide variety of perspectives on the goals and approaches to algebra education 

exist (Drijvers, Goddijn, & Kindt, 2011).  This worldwide discussion includes questions 
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about how algebra should be taught, the integration of technology into algebra education, 

and the nature of school algebra (e.g., abstract, procedural, empirical, etc.).  Debates, 

called “Math Wars”, are taking place in many countries and are centered on the goals, 

approaches, and achievements in mathematics education (Klein, 2007; Schoenfeld, 

2004), including the relationship between conceptual understanding and procedural skills 

in the teaching and learning of algebra (Drijvers et al., 2011).  According to the National 

Math Panel, students’ conceptual understanding and procedural understanding of algebra 

are intertwined (U.S. Department of Education, 2007), thus eliminating a central 

argument in the Math Wars: the importance of conceptual understanding versus 

procedural understanding in algebra. 

A Brief History of Algebra   

 Algebra can be characterized simply; it has to do with numbers and structures 

(Drijvers et al., 2011).  For example, x + 2 = 5 is an algebraic activity, whereas 3 + 2 = 5 

is an arithmetic activity.  The former example has structure in that subtracting 2 from 

both sides of the equal sign can find the unknown quantity.  In fact, the Persian 

mathematician, Al-Khwarizmi (830), considered to be one of the fathers of algebra, 

defined “al-jabr” as a method in which we can eliminate subtractions by adding the same 

quantity to each side of the equation (Pickover, 2009).  His algebra book, Kitab al-

mukhtasar fi hisab al-jabr wa’l-muqabala (The Compendious Book on Calculation by 

Completion and Balancing, 830) was the first book written on the systematic solutions to 

linear and quadratic equations (Pickover, 2009).  For instance, x2 = 4x – 3x2 can be 

simplified to 4x2 = 4x by adding 3x2 to both sides of the equation.  Al-Khwarizmi (830) 

also described the method of “al-muqabala”, gathering like terms on the same side of the 
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equation (Pickover, 2009).  These techniques allowed people to simplify, or break down, 

complicated mathematical problems into smaller steps.  Students continue to learn these 

ancient techniques, as well as extensions of these methods when working with algebraic 

expressions and equations.   

 Years before Al-Khwarizmi introduced his systematic solution of algebraic 

equations, Diophantus (250), a Greek mathematician (the other father of algebra), 

introduced the syncopated stage of algebra in his book Arithmetica (Pickover, 2009).  In 

the syncopated style of writing equations, abbreviations are used instead of the full 

words.  Diophantus is credited with introducing specific and consistent algebraic 

notations as well as treating fractions as numbers (Pickover, 2009).  Therefore, he did not 

require that there be a whole number solution to an algebraic equation; he also accepted 

rational number solutions. 

 Generally, the historical development of algebra occurred in three overlapping 

stages: (a) the rhetorical stage, (b) the syncopated stage, and (c) the symbolic stage (Katz, 

2006).  During the rhetorical stage of algebra, all statements and arguments were verbal 

or written without any symbols.  For instance, rhetorical algebra problems were similar to 

present day word problems.  This stage began with the ancient Egyptians in 1650 BC and 

continued through 1500 AD European Algebra (Boyer, 1991; Kline, 1972).  During the 

rhetorical stage, teaching algebra consisted of teaching by example and provided little 

reason or explanations for the given outcomes (Baumgart, 1989). 

 As already noted, Diophantus, a Greek mathematician, introduced some 

symbolism to algebra during the syncopated stage.  Although this stage had been 

introduced, the rhetorical stage was more common for many more centuries.  Traces of 
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symbolic algebra began in the ancient Hindu civilization (800 BC), but became fully 

sophisticated in René Descartes’ La Géométrie in 1637 (Pickover, 2009).  In La 

Géométrie, Descartes demonstrated how geometric shapes and figures could be studied 

using algebraic representations.  Moreover, Descartes proposed teaching algebra and 

geometry as one subject, a debate that is ongoing among mathematics educators.  In the 

symbolic stage, mathematicians were deliberately using symbols to write algebraic 

sentences, as opposed to their incidental use, and before the formal manipulation of the 

symbols had been established according to algebraic rules (Katz, 2006). 

 The new math.  A major period in the history of algebra in the United States 

involved the “New Math” era, which began in the 1950s and continued through the 1960s 

(Klein, 2003).  The New Math period emerged as a result of disagreements between 

mathematicians and psychologists about procedural instruction and conceptual 

understanding in mathematics education (Bossé, 1995).  Algebra in the New Math 

curricula focused on mathematical structure, formalisms, and abstract proof with minimal 

regard to basic skills or real-world applications.  This curricula was subject to public 

criticism due in part to the reality that many teachers did not have the mathematical 

knowledge required to teach the rigorous content; moreover, the curricula were so 

theoretical in nature that it was deemed unnecessary because it did not relate to students’ 

experiences (Klein, 2003).  By the early 1970s, the National Science Foundation 

discontinued funding for these types of curricula; thus terminating the New Math. 

Meanings of Algebra  

 Presently, a distinction exists between what algebra means for mathematicians 

and what algebra means in school (Drijvers et al., 2011).  For mathematicians, algebra is 
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considered abstract and based on mathematical proof, and includes such vocabulary as 

groups, rings, and fields.  However, algebra as taught in school is associated with 

symbolic rules and repetition, along with real-world applications.   

Algebraic Thinking 

 The NCTM (2000) Principles and Standards for School Mathematics asserts that 

all students should learn algebra.  The NCTM (2000) views algebra as a curriculum 

strand beginning in prekindergarten and the Common Core State Standards (CCSS) for 

Mathematics places emphasis on algebra and algebraic thinking beginning in 

kindergarten (NGA/CCSSO, 2010).  By including algebra and algebraic thinking 

throughout the school curriculum, students have a solid understanding and foundation as 

they prepare for more advanced mathematics.  Although The NCTM (2000) and the 

NGA/CCSSO (2010) recommend introducing algebraic topics in the early grades, the 

standards for grades 6-8 focus concentrated attention on algebra.  The NCTM (2000) 

Algebra Standard states that students should be able to (a) understand patterns, relations, 

and functions, (b) represent and analyze mathematical situations and structures using 

algebraic symbols, (c) use mathematical models to represent and understand quantitative 

relationships, and (d) analyze change in various contexts (p. 222).  These standards are 

found throughout the continuum from Kindergarten through twelfth-grade.     

 Forms of algebraic thinking.  Algebraic thinking begins in Prekindergarten with 

recognizing and duplicating patterns with numbers (NCTM, 2006).  It continues 

throughout high school with the central topics of generalizing and understanding patterns, 

studying change, and the concept of function (Van de Walle, Karp, & Bay-Williams, 

2010).  Therefore, many aspects of algebraic thinking are present.  Kaput’s (1999) five 
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interrelated forms of thinking form a network that contains: (a) Generalizing Arithmetic 

to Algebra, (b) using symbols in a meaningful way, (c) study of structure, (d) study of 

patterns and functions, and (e) mathematical modeling and combining the first four 

forms.  Figure 4 is adapted from Kaput’s (1999) Five Aspects of Algebra and 

demonstrates that algebraic thinking has two levels within the five domains of algebra. 

 
Figure 4.  Framework for Five Forms of Algebraic Thinking 

Figure 4.  Network that displays the two levels of algebraic thinking and their relatedness 
to Kaput’s (1999) five forms of algebraic thinking.  
 
 Level 1 occurs when students generalize arithmetic to algebra and develop the 

ability to use symbols in a meaningful way.  Once students have become proficient in 

Level 1, they naturally move to Level 2, where they begin to study the structure of 

algebraic expressions and equations and study patterns and functions in algebra.  

Mathematical modeling permeates Levels 1 and 2 (Kaput, 1999).  The five forms are 
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related and interconnected and should be learned throughout elementary, middle, and 

high school.  Although algebra is a separate subject that is taught during the middle 

grades, algebraic thinking is embedded in all areas of mathematics (Van de Walle et al., 

2011).  In the next sections, the Framework for Five Forms of Algebraic Thinking 

(Kaput, 1999) will be used to discuss how students learn algebra and what students need 

to know and be able to do in the middle grades.   

Framework for Five Forms of Algebraic Thinking 

 Level 1: Generalization of arithmetic to algebra.  Arithmetic involves 

computations with specific numbers, whereas algebra generalizes mathematical concepts 

and introduces abstraction.  Students of arithmetic are concerned with the numerical 

value of the computation and students of algebra are concerned with applying 

mathematical laws and operations correctly to find all solutions.  Algebra generalizes to 

arithmetic to find all solutions to a particular equation.  Generalizing about the behaviors 

and properties of operations involves noticing patterns and regularities that are 

fundamental to arithmetic and algebra (Russell, Schifter, & Bastable, 2011).  The 

example below provides an arithmetic problem that can be generalized to an algebraic 

problem. 

Figure 5.  The Generalization of Arithmetic to Algebra 

 

Arithmetic Algebra 
Check that:  (1-2) (1+2+22 +23 +24) = 1− 
25 

Check that: (1-x) (1+x+x2 + … +xn) = 
1−xn+1 

Figure 5.  An example from Wu (2009) demonstrating the generalization of arithmetic 
to algebra. 
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 To generalize from arithmetic to algebra, students must be able to think 

algebraically or abstractly.  Kaput (2008) defined algebraic thinking as building, 

expressing, and justifying mathematical relationships.  Algebraic thinking promotes 

awareness of implicit knowledge and this awareness reinforces understanding of the 

operations and patterns that can later be generalized to algebra. 

 Historically, the transition from arithmetic to algebra is difficult for students 

(Kieran & Chalouh, 1993; Knuth, 2000; Lee & Wheeler, 1989).  One reason for this 

could be that their knowledge of the two subjects is not connected.  For example, students 

learning algebra must move from arithmetic problems to symbolic representations of 

relationships with variables (Moseley & Brenner, 2009), requiring students to adapt their 

prior knowledge to new experiences.  This requires the integration of symbols used in 

arithmetic (e.g., +, -, x, •, ÷, and =) to be used in the transition to algebra with variable 

expressions.  Moseley and Brenner (2009) define this integration process using “the 

arithmetic schema” and “the algebraic schema” (p. 5).  The arithmetic schema is defined 

as knowledge that is centered on procedures and relations among known quantities and 

algebraic schema is knowledge that is focused on operations and strategies applied to 

known and unknown quantities (Moseley & Brenner, 2009).   

 An example of the arithmetic schema.  The arithmetic schema requires the 

quantities to be known and operations are applied to find a numerical answer.  For 

instance, a bag contains 30 blue marbles and 10 green marbles.  Find the total number of 

marbles in the bag.  This example requires the computation of 30 + 10 (Figure 6).  

Students solve this by addition and solely focus on the answer as opposed to the process 

(Booth, 1989).   
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 An example of the algebraic schema.  The algebraic schema requires awareness 

of the processes of operations involving numerals and variables.  For example, a bag 

contains a total of 40 marbles with 12 more blue marbles than green marbles.  Find the 

number of green marbles and the number of blue marbles in the bag.  In this problem, the 

number of each color of marbles is not numerically known and must be represented using 

variables (Figure 6).  Solving this problem requires students to have a conceptual 

understanding of the problem, use variable equations and expressions, and apply 

processes of operations. 

Figure 6.  Arithmetic and Algebraic Schema Marble Examples 

Arithmetic Schema Algebraic Schema 
A bag contains 30 blue marbles and 10 
green marbles.  Find the total number of 
marbles in the bag. 

A bag contains a total of 40 marbles with 
12 more blue marbles than green marbles.  
Find the number of green marbles and the 
number of blue marbles in the bag. 

30 blue marbles 
10 green marbles 
total marbles = 30 + 10 = 40 

b = blue marbles 
g = green marbles 
total marbles = 40 
b = 12 + g 
b + g = 40 
Substitute b = 12 + g into b + g = 40 for b 
12 + g + g = 40 
Solve for g 
12 + 2g = 40 
2g = 28 
g = 14 
Substitute g = 14 into b = 12 + g to find b 
b = 12 + 14 = 26 
b = 26 
g = 14 

Figure 6.  The arithmetic schema focuses on computation, which this example 
demonstrates is simply addition or counting.  The algebraic schema focuses on 
processes and conceptual understanding.  Notice the use of variables to represent 
quantities in the algebraic schema; without variables, students would have to guess and 
check repeatedly to find the solution.  The algebraic schema allows for solving the 
problem, even if the total number of marbles was unknown.   
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 From arithmetic to algebra.  Herscovics and Linchevski (1994) contended that 

beginning algebra students proceed from thinking arithmetically to thinking algebraically 

by thinking about and discussing numerical relations using everyday language and 

eventually representing these relations with variables.  This transition involves using 

letters to represent numbers and knowledge of the mathematical operations and method 

symbolized by numbers and letters or variables (Kieran & Chalouh, 1993).  In other 

words, algebraic thinking considers the method and process, whereas arithmetic thinking 

is focused on computation.  Blanton (2008) illustrated a variety of ways arithmetic can be 

generalized to algebra that include (a) designing meaningful computation problems that 

lead to generalizations about operations and properties, (b) making known quantities 

unknown, (c) varying known quantities, and (d) building an algebraic view of equality (p. 

29). 

 Computation problems that lead to algebraic generalizations.  All properties in 

arithmetic can extend to algebra.  These properties are true for all real numbers, and thus, 

students should explore the properties using natural numbers, whole numbers, integers, 

rational numbers, and eventually variables.  Algebraic thinking occurs when students 

describe arithmetic properties using everyday language and eventually represent these 

properties using symbolic expressions.  Figure 7 (adapted from Blanton, 2008, p. 15) 

describes how to design meaningful computation problems that lead to generalizations of 

operations and properties (note that a, b, and c represent any real number). 
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Figure 7.  Meaningful Computation Problems That Lead to Algebraic Generalizations 

Property Arithmetic  In Language Algebra 
Commutative 
Property of 
Addition 

2 + 3 = 3 + 2 “We can add 
numbers in any 
order.” 

a +b = b + a 

Commutative 
Property of 
Multiplication 

2 • 3 = 3 • 2 “We can 
multiply 
numbers in any 
order.” 

ab = ba 

Association 
Property of 
Addition 

(2 + 3) + 4 = 2 + (3 + 4) “We can group 
numbers in a 
sum any way 
we want and 
still get the 
same answer.”  
 
“We can add 
the first two 
numbers first 
and then the 
last number, or 
we can add the 
last two 
numbers first 
and then the 
first number, 
and get the 
same answer.” 

(a + b) + c = a +( b +c) 

Associative 
Property of 
Multiplication 

(2 • 3) • 4 = 2 • (3 • 4) “We can group 
numbers in a 
product any 
way we want 
and still get the 
same answer.”  
 
“We can 
multiply the 
first two 
numbers first 
and then the 
last number, or 
we can 
multiply the 
last two 

(a • b) • c = a • ( b • c) 
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numbers first 
and then the 
first number, 
and get the 
same answer.” 

Distributive 
Property 

2(4 + 3) = 2 • 4 + 2 • 3 
 

2(4 - 3) = 2 • 4 - 2 • 3 
 

“Multiplying a 
number is the 
same as 
multiplying its 
addends by the 
number, then 
adding the 
products.” 

a(b + c) = ab + ac 
 

a(b – c) = ab - ac 

Additive 
Identity 
Property 

2 + 0 = 2 “If we add 0 to 
any number, 
we will get the 
same number.” 

a + 0 = a 

Multiplicative 
Identity 

2 • 1 = 2 “If we multiply 
1 to any 
number, we 
will get the 
same number.” 

a • 1 = a 

Additive 
Inverse 
Property 

2 + (-2) = 0 “If we add 
inverses/opposi
tes of the same 
number then 
we get 0.”  

a + (-a) = 0 

Multiplicative 
Inverse 
Property 

2 • (1/2) = 1 “If we multiply 
inverses then 
we get 1.” 

a • (1/a) = 1 

Zero Property 3 • 0 = 0 “Anytime we 
multiply a 
number by 0, 
we get 0.” 

a • 0 = 0 

Figure 7.  Properties of mathematics on the set of real numbers in arithmetic, language, 
and algebra. 
  

 Making known quantities unknown.  Blanton (2008) recommended that students 

solve problems that contain unknown values.  For instance, an arithmetic problem with 

known quantities can be rewritten to include unknown quantities.  In the next example 

(Figure 8), an arithmetic problem is rewritten as an algebra problem. 
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Figure 8.  Algebraic Representation of an Arithmetic Problem 

Arithmetic Algebra 
“If Ann has $5 and Joe has $8 more than 
Ann, how much money does Joe have?” 

“If Ann has some money and Joe has $8 
more than Ann, how much money does 
Joe have?” 

Figure 8.  Arithmetic to Algebra Example 
 

 In the arithmetic problem, students simply find that they must add 8 + 5 to 

determine the amount of money that Joe has.  In the algebra problem, students must be 

able to represent the unknown amount of money using symbols.  To guide student 

thinking, teachers might ask questions about the information provided in the problem and 

the value they need to find.  Students should also be prompted to compare the amount of 

money that Ann has to the amount of money that Joe has.  With guidance, students will 

be able to represent the money that Joe has as a + 8, where a represents the amount of 

money that Ann has.  By introducing symbols in this way, students naturally develop 

algebraic thinking.       

 Varying known quantities.  Variables have many different possible definitions.  

May and Van Engen (1959) stated, “Roughly speaking, a variable is a symbol for which 

one substitutes names for some objects, usually a number in algebra” (p. 70).  By varying 

a quantity in an arithmetic problem, students begin to learn the notion of “variable”.  The 

next example (Figure 9, adapted from Blanton & Kaput, 2003) shows how to vary a 

quantity in arithmetic to allow students to explore patterns, relationships, and variables. 
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Figure 9.  Varying a Quantity in Arithmetic to Explore Algebra 

Arithmetic Algebra 
“I want to buy a tee shirt that costs $14.  I 
have $8 saved already.  How much more 
money do I need to earn to buy the shirt?” 

“Suppose the tee shirt costs $15.  If I have 
$8 saved already, write a number sentence 
that describes how much more money I 
need to buy the tee shirt.  What if the shirt 
costs $16? $17? Write number sentences 
for each of these cases.  If P stands for the 
price of any tee shirt I want to buy, write a 
number sentence using P that describes 
how much more money I need to buy the 
tee shirt.” 

Figure 9.  An example that shows how to vary a quantity in arithmetic to allow students 
to explore patterns, relationships, and variables. 
 

 In the arithmetic problem, students can write the solution using an unknown 

quantity as 8 + x = 14 or 14 – 8 = x where x is the amount of money needed to buy the tee 

shirt.  However, the algebra problem produces a series of number sentences as follows: 

14 – 8 = 6 

15 – 8 = 7 

16 – 8 = 8 

17 – 8 = 9 

By examining these number sentences, students can identify which part varies (the total 

cost of the tee shirt).  Then, students can translate to an algebraic equation that expresses 

how much more money is needed to buy the shirt, P – 8 = x, where P is the price of any 

shirt and x is the amount of money needed to buy the shirt.  Any arithmetic problem can 

be rewritten to include unknown quantities.  This type of thinking is much more powerful 

than solving a single number sentence (Blanton, 2008).   
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 Building an algebraic view of equality.  Students view the equal sign in arithmetic 

as an action symbol, meaning that they should compute something on the left of the equal 

sign and place the answer on the right of the equal sign (Carpenter, Franke, & Levi, 

2003).  Students obtain this misconception of the equal sign through repeatedly 

performing computations.  Thus, many students fail to see the role of the equal sign as 

indication of a relationship between two quantities (Blanton, 2008).  The next example 

shows how to help students learn the algebraic role of the equal sign (Figure 10). 

Figure 10.  Algebraic Role of the Equal Sign 

Arithmetic Algebra 
Find the sum of 10 and 5. 
10 + 5 = ____ 
 

Express the number 15 as a sum of two 
numbers. 
15 = a + b 
 

Figure 10.  An example that shows how to help students see the role of the equal sign 
as a relationship between two quantities. 
 

 In the arithmetic example, students are computing a sum.  However, in the 

algebraic example, students will find a variety of pairs of numbers that add to 15.  From 

this list of sums, students will learn that 1 + 14 = 8 + 7 means that the equal sign is 

expressing a relationship of equality between both sides of the equation.  Moreover, this 

type of problem can be extended to include the commutative property (e.g., 5 + 6 = 6 + 

5).   

 Level 1: Using symbols in a meaningful way.  Algebra is composed of its own 

standardized body of symbols, signs, and rules that govern the language of algebra.  In 

other words, algebra has its own grammar and syntax that allows one to formulate 

algebraic ideas clearly and compactly (Drijvers et al., 2011).  Although this symbolic 
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language is very powerful, it is also detached and formal in relation to the actual context 

of a problem.  Algebraic language represents algebraic ideas using an abstract system.     

 Decontextualizing a problem.  The CCSS for Mathematical Practice state that 

mathematically proficient students should develop skills to reason abstractly and 

quantitatively (NGA/CCSSO, 2010).  Furthermore, students need to not only have the 

ability to decontextualize a problem and illustrate it symbolically, but also contextualize a 

symbolic representation and understand its referents.  The NCTM (2000) recommended 

that students in grades 6-8 explore relationships among symbolic expressions and graphs 

and also use symbolic algebra to represent situations and solve problems.  Consider the 

following example:  

The area of a rectangular garden is 20 ft2 and the length of the garden is 8 ft more 

than the width.  Find the dimensions of the garden. 

 To decontextualize this problem, students need to know that the area of a 

rectangle is given by A = lw, and that the area of the garden is 20 ft2, so 20 = lw.  

Furthermore, the length l is 4 ft more than the width w.  Thus, l = w + 8.  So, the symbolic 

representation of this algebra problem is:  

20 = (w + 8)(w). 

To contextualize this algebraic depiction, students should be able to describe each part of 

the equation, and also consider the units involved.  The symbolic language of algebra is 

more than the memorization of rules; it involves the ability to model mathematical 

situations with symbols, understand the manipulation of these symbols, and have a 

fundamental understanding of the concept of variables and algebraic structures (Kieran, 

1996).  
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 Learning variables with meaning.  Learning the meaning behind symbols and 

variables is essential for students to become proficient in algebra.  Students cannot 

understand how to solve an algebra equation without knowing the meaning of the equal 

sign and variables (Van de Walle et al., 2011).  Kaput (1995) found that many students 

view algebra as “little more than many different types of rules about how to write and 

rewrite strings of letters and numerals, rules that must be remembered for the next quiz or 

test” (p. 4).  Thus, students must find meaning in algebra not only to understand why they 

are solving algebraic equations, but also what situations these equations represent.   

 Research on algebra shows that algebra students have difficulty interpreting 

letters as variables and studies have focused on how students learn to represent values 

using variables (National Research Council [NRC], 2001).  Once students learn to work 

with variables without thinking about the numbers that the variable might represent, they 

have achieved manipulation of “opaque formalisms” (Kaput, 1995, p. 8).  Variables can 

be thought of as unknown values or as changing, varying quantities.  Students need a 

deep understanding of both variables as unknown values and changing quantities in order 

to learn algebra.   

  Learning variables as unknown values.  By the middle grades, students should be 

familiar with finding missing values and open mathematical sentences where a blank 

square or underline represents the unknown value, but they may not have connected the 

missing value with the word “variable” (Van de Walle, et al., 2011).  Students can begin 

to learn about variables by using a variety of symbols and letters to represent unknown 

quantities.  According to Carpenter, Franke, and Levi (2003), students must learn the 
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mathematician’s rule where the same symbol or letter in an equation must represent the 

same number every place it occurs.  For example, in the number sentence: 

___ + ___ + 2 = ___ + 5 + 1 

The ___ must be the number 4 every time. 

 In addition to learning variables as placeholders, story problems can introduce 

variables by representing a specific unknown.  A simple example could be: 

 Jane’s bookcase contains 17 books.  She takes some books to school and the 

bookcase is  left with 12 books.  How many books did Jane take? 

Although this story problem can be solved without using variables or algebra, students 

can express it using symbols as: b + 12 = 17.  By placing the variables in context, 

students develop a better understanding of their meaning (Van de Walle et al., 2011). 

 Learning variables as changing quantities.  In many cases, variables can 

represent more than one value.  However, students have difficulty with this notion 

because they have only learned that a variable represents a particular number, as in the 

previous examples.  Usiskin (1988) identified the differences between two conceptions of 

variables: (a) variables as unknowns or constants and (b) variables as varying quantities 

(p. 10).  Variables as unknowns or constants are used in algebraic equations where the 

main goal is to simplify or solve.  Variables as varying quantities are seen in equations 

where variables are arguments.  For instance, in a linear equation y = 3x + 1, both x and y 

are the arguments and can represent any values that make the equality true.  In other 

words, the ordered pair (x, y) can be any x and y values that that lie on the line and, thus, 

are a solution to y = 3x + 1.  Some mathematics educators think that algebra should be 
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introduced through the use of variables as changing quantities instead of variables as 

unknowns (Fey & Good, 1985; Usiskin, 1988).    

 Learning the equal sign with meaning.  In arithmetic, the equal sign is used to 

indicate the process of computation, whereas in algebra, the equal sign represents 

equivalence between two expressions (Carpenter et al., 2003; Molina et al., 2005).  In 

general, all the computation in addition takes place on the left of the equal sign, for 

example, 15 + 5 = ___.  This leads students to think that the equal sign is a signal to 

compute and does not require a broad understanding of the meaning of equality (Molina 

et al., 2005).  Davis (1984) and Falkner, Levi, and Carpenter (1999) recommended using 

open number sentences and true/false number sentences to promote understanding of the 

equal sign and relational thinking.  Mann (2004) suggested teaching the equal sign as a 

balance between two sides of the equation. 

 Relational thinking and the equal sign.  Carpenter, Levi, Franke, and Zeringue 

(2005) defined relational thinking as focusing on the properties and ways of thinking 

about operations, rather than focusing exclusively on the procedure to calculate the 

correct answer.  In algebra, students need to learn that the equal sign is a relation (Kieran 

et al., 1993; Matz, 1982) and this can be achieved by using open number sentences.  For 

example, Van de Walle et al. (2011) explained that relational thinking could be nurtured 

by exploring true/false and open sentences similar to the examples in Figure 11. 
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Figure 11.  Relational Thinking Examples 

True/False Open Sentences 
24 – 6 = 20 – 2 
5 • 12 = 30 • 2 
9 + 14 = 31 – 8 

32 + ___ = 41 + 5 
6 + 6 + 7 = ___ - 5  
 

Figure 11.  True/false and open sentence examples that demonstrate the equal sign as a 
relationship between quantities, not as an operand. 
 

 Relational thinking is implicit when students can solve the previous examples; 

however, discussion about why a math sentence is true or false or how students found the 

answer to an open number sentence makes relational thinking more explicit (Molina et 

al., 2005).  Moreover, Molina, Castro, and Ambrose (2005) found that asking students to 

write their own open sentences greatly contributed to students’ understanding of the equal 

sign in algebra. 

 Balance and the equal sign.  Conceptualizing the equal sign as a balance scale, 

where the two expressions of either side of the equal sign have the same value, attaches 

meaning to the equal sign.  Mann (2004) contended that students need to transition from 

thinking that the equal sign indicates, “the answer is”, to the equal sign indicates, “is the 

same as”, before they begin learning algebra.  Students in elementary school should be 

helped to understand that the equal sign symbolizes balance and equivalence.  A balance 

scale will assist students with developing the meaning of the equal sign by using objects, 

numbers, and, eventually, can be extended to variables (Figure 12).  By having students 

check their answers, they will verify that both sides of the scale have an equal value.  In 

the next example, both sides of the scale are equal to 9.  The scale reinforces that two 

sides of an equation are equivalent, which means that they must remain balanced. 
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Figure 12.  Balance Scale Example 

 

Figure 12.  The balance scale example gives meaning to the equal sign in that both sides 
must be the same value.  In order for a scale to remain balanced, both sides must be 
equal.  
 
 Level 2: Study of structure.  The study of algebraic structure is an extension of 

the study of the structure of the number system (Greeno, 1991).  Learning the number 

system requires knowledge of the properties of real numbers (previously discussed in the 

“From arithmetic to algebra section” of this paper p. 10) and this structure can be 
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extended to variables, and thus, algebra.  Furthermore, a powerful way to promote 

algebraic thinking involves attempting to justify conjectures derived from the real 

number system (Van de Walle et al., 2011).  At the elementary level, justification of 

conjectures usually involves the use of examples; however, students benefit from the 

challenge to prove that a conjecture is always true because this exercise engages students 

in mathematical thinking (Carpenter et al., 2003).   

 Successful students of algebra should be able to describe the structure of 

equations and expressions, but are generally unable to do so (Davis, 1984; Kirshner, 

1989).  Algebraic structure can be considered in terms of the shape or order of an 

expression or equation (Novotná & Hoch, 2008).  The logical structures in algebra can be 

classified as (a) the surface structure, (b) the systemic structure, and (c) the visual 

structure.  According to Kaput (2000), learning the structures of algebra enriches 

understanding, provides frameworks for computations, and contributes to the 

mathematical foundation necessary for higher-level mathematics. 

 Meanings of structural algebra.  Researchers define the term structure differently 

and it can mean different things to different people (e.g., Dreyfus & Eisenberg, 1996; 

Hoch & Dreyfus, 2004).  For example, algebraic structure can be considered in terms of 

the shape and order of an expression or equation (Novotná & Hoch, 2008), whereas 

structure sense can be considered to be an extension of number sense, an intuition for 

numbers such as seeing when an answer is incorrect or instinctively choosing a correct 

answer (Greeno, 1991).  Moreover, algebraic structure can be classified into three 

categories: (a) surface structure, (b) systemic structure, and (c) visual structure. 
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 Surface structure.  The surface structure of an algebraic expression or equation 

has to do with its visual structure and not the symbols representing the unknown quantity.  

For instance, the surface structure of 2(m + 1) + 3 = 6 is an alternate representation of the 

surface structure of 2x + 3 = 6.  The Algebra Learning Project (Wagner, Rachlin, & 

Jensen, 1984) found that students have difficulty with manipulating multi-term 

expressions as a single unit and thus do not recognize the surface structure (Kieran, 

1989).  In order to learn algebra proficiently, students should learn the similarities and 

differences in the surface structures of equations or expressions.  Furthermore, studies 

that have focused on students’ knowledge of “parsing”, the syntactic analysis of 

expressions or equations, have found that students have difficulty identifying the surface 

structure on expressions involving several combinations of operations on numbers and 

variables (Davis, 1979; Davis, Jockusch, & McKnight, 1978; Greeno, 1982; Matz, 1980). 

 Syntactic analysis in algebra involves breaking down expressions or equations to 

understand each part (e.g., term, operation, property, etc.) and their relatedness.  

Thompson and Thompson’s (1987) study incorporated expression trees on a computer 

screen that helped students recognize the surface structure of algebraic expressions and 

equations.  By using a computer program called “EXPRESSIONS”, students were able to 

explicitly model the intrinsic structure of expressions, which pushed them to think about 

the equation’s structure.  Results of this study indicated that attention to structure is 

important for student learning in algebra (Thompson & Thompson, 1987).   

 Systemic structure.  The systemic structure of an algebraic equation refers to the 

equivalence of the left-hand and right-hand sides of an algebraic equation (Kieran, 1989).  

In arithmetic, students are expected to generalize that 5 + 3 = 8 can be expressed as 8 – 3 
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= 5.  A study conducted with 12-year old algebra students concluded that they had 

difficulty recognizing the systemic structure of algebraic equations (Kieran, 1984).  For 

example, they could not generalize that x + 3 = 8 can be expressed as 3 = 8 – x.  This 

misconception leads back to developing the meaning of the equal sign.  Learning the 

systemic structure of algebraic equations involves knowledge of properties that are used 

to “balance” both sides of the equation such as the addition property of equality and the 

multiplication property of equality (i.e., if a = b, then a + c = b + c and ac = bc).  The 

process of solving equations relies on knowledge of systemic structure and that the equal 

sign is a relation between the two sides of an equation.   

 Visual structure.  Kirshner and Awtry (2004) elaborated on the systemic structure 

of equations by introducing “visual salience in algebra” (p. 229).  Many rules in algebra 

are visually salient, meaning that the right-hand and left-hand sides of equations are 

naturally related (Kirshner & Awtry, 2004).  For instance, a visually salient algebraic rule 

is x(y + z) = xy + xz.  This rule is visually salient because the right-hand side of the 

equation visually follows from the left-hand side of the equation.  A non-visually salient 

rule is x2 – y2 = (x – y)(x + y) because the right-hand side of the equation is not visually 

obvious from the left-hand side of the equation. 

 A visually salient rule has an immediate connection between both sides of the 

equation (Kirshner & Awtry, 2004).  Students learning algebra become confused because 

some rules are visually salient and some are not.  Learning the visual structure of algebra 

engages students in thinking about the structure, or organization, when simplifying an 

algebraic expression or solving an equation (Kirshner, 1993).  One way to learn the visual 

structure is to provide students with structural models of expressions, equations, and 
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solution processes.  This approach to learning algebra begins with undefined symbols and 

explicit rules, similar to axioms in geometry, and meaning is constructed logically by the 

methods used (Kirshner, 1993).  

 Level 2: Study of patterns and functions. 

 Patterns and formulas in algebra.  Algebra can be used as a tool to predict 

mathematical patterns.  These patterns are frequently introduced through the use of 

activities that involve geometric and numerical patterns (NRC, 2001).  An example from 

Adding it Up (2001) follows: 

 Triangular numbers can be built with dots.  The first four triangular numbers are 

 1, 3, 6, and 10.  Predict the number of dots in the 20th triangle and give a rule for 

 predicting the  number of dots in any triangle. (p. 277) 

In this example, the algebra of patterns is involved to predict the number of dots in 

subsequent triangles.  After finding this pattern, it is possible to generalize the pattern 

into a formula.  Therefore, algebra not only concerns investigating, identifying, and 

formulating patterns, but also examines the underlying algebraic structures (Drijvers et 

al., 2011).  Moreover, formulas represent these patterns and structures in algebra.       

 The Principles and Standards (NCTM, 2000) and the CCSS (NGA/CCSSO, 

2010) support that students should be able to identify and explain patterns in algebra and 

be able to generalize such patterns with tables, graphs, and symbolic rules.  Once students 

identify a pattern, they should be able to make use of the structure to form an expression 

or equation that models the pattern.  By predicting patterns and emphasizing 

generalization, students can develop the skills not only to recognize and identify 
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structure, but also to appreciate algebraic expressions as common statements (NRC, 

2001).   

 Literal equations.  In addition to using formulas to model situations and patterns 

in algebra, they can also be used to manipulate literal equations.  Literal equations 

contain more than one variable and are introduced in algebra to study the deductive 

process of solving for a particular variable (NGA/CCSSO, 2010).  For example, the 

perimeter of a rectangle is given by the formula P = 2l + 2w, where l is the length and w 

is the width of the rectangle.  This formula can be rearranged to solve for either l or w.  

For example, the l = (P – 2w)/2.  This process involves the logical analysis of the original 

formula and the application of algebraic techniques to rearrange the formula.  Scholars 

contend that formulas are a powerful technique to describe structure and explain patterns 

(Drijvers et al., 2011; Ernest, 2004; Van Amerom, 2003).   

 Functions.  The algebra of functions is primarily concerned with the dependent 

relationships between variables (Drijvers et al., 2011).  In the middle grades, students 

should understand that a function is a rule that assigns to each input exactly one output 

(NGA/CCSSO, 2010).  For example, the slope-intercept equation y = 2x + 5 is a linear 

function whose graph is a straight line.  This describes a line with slope 2 and y-intercept 

5.  Moreover, for each input value x, exactly one output exists for the value y.  In addition 

to knowing the definition of a function, students should also be able to use graphs of 

functions and analyze the nature of changes (NCTM, 2000).  The CCSS (NGA/CCSSO, 

2010) also states that students should know how to qualitatively describe the functional 

relationship between two quantities through the analysis of a graph.  For instance, 

students should know how to describe where the function is increasing and decreasing, 
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whether the function is linear or nonlinear, and the values of the function at certain points 

using function tables and graphs. 

 Function notation.  Students in the middle grades should also know how to use 

function notation (NGA/CCSSO, 2010).  For example, if f is a function and x is in the 

domain of f, then f(x) denotes the output of f with x as the input.  Then, the graph of f is 

given by the equation y = f(x).  In first year algebra, function notation is new to most 

students and can be confusing since f has become the parameter, instead of the argument 

x (Usiskin, 1988).  However, students must learn function notation since it is used 

extensively in advanced mathematics and computer science. 

 Patterns as functions.  Patterns are visible in every area of mathematics and part 

of thinking algebraically is identifying and describing patterns.  In algebra, students study 

patterns of relationships and functions.  The algebra of patterns is about investigating, 

identifying and formulating similarities relating to general patterns (Drijvers et al., 2011).  

Thompson’s (1994) perspective of learning mathematics maintains that concepts emerge 

over time and are related to previous concepts.  Thus, to learn functions, students must 

already have knowledge of expressions, variables, arithmetic operations, and quantity.  

Students learn the concept of function in phases that contain different representations and 

components of functions (Markovits, Eylon, & Bruckheimer, 1986).  Figure 13 (adapted 

from Markovits et al., 1986) displays the components of a function and how functions are 

presented in different forms. 
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Figure 13.  Function Representation and Function Components 
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Figure 13.  The function representations can be verbal, arrow diagrams, algebraic, or 
graphical.  The function components include domain, range, and rules (adapted from 
Markovits et al., 1986). 
 
 
 
 



56 

Figure 14.  Function Representation Examples 

 
 
Figure 14.  These examples show four representations of the function for the perimeter of 
a square.   
 
 When learning functions, students learn that functions have three components: the 

domain, the range, and the rule.  Next, students learn that a function can be represented in 

different ways such as verbally, in an arrow diagram, algebraically, and graphically (see 

Figure 14).  Once students learn these forms, they learn how to translate among the 

different representations.  For example, students learn that a linear equation is a function 

and a line on a coordinate plane can also represent this linear function.  Essentially, a 



57 

student learns functions by understanding the representations and components of a 

function and how they are related (Markovits et al., 1986).   

 Mathematical modeling. 

 Empirical algebra.  Empirical approaches to algebra include relating the 

symbolic systems to real-world situations, graphs and tables, or arithmetic patterns 

(Kirshner, 2001).  This approach to simplifying algebraic expressions and solving 

equations places the emphasis on learning the referential meanings of algebra, not merely 

on the manipulation of symbols with no purpose (Booth, 1989).  Therefore, mathematical 

modeling (see Figure 15) involves the conversion of a word problem, written or verbal, to 

an equation, inequality, or system (NGA/CCSSO, 2010). 

Figure 15.  Example for Modeling with Mathematics 

Words Equation 
Susan is two years older than her 
brother, Bob.  The sum of their 
ages is 8.  How old is Bob and 
how old is Susan. 

Susan’s age S and Bob’s age B 
Susan is two years older than Bob: S = B + 2 
Sum of their ages is 8: S + B = 8 or B + 2 + B = 8 
Solve for B: B + 2 + B = 8 
                    2B + 2 = 8 
                    2B = 8 
                      B = 4 
Find S: S = B + 2 = 4 + 2 = 6 
Bob is 4 years old and Susan is 6 years old. 

Figure 15.  An example that shows how mathematical modeling involves the conversion 
of the word problem to algebra. 
 
 Linear programming provides many examples that use equations and inequalities 

to model real-world situations and their restrictions.  A typical linear programming 

problem determines the maximum profit for some situation, taking into account the 

limitations of materials and labor.  In middle school algebra, students solve simple linear 

programming problems that generally involve modeling the situation with inequalities in 
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two variables and graphing the inequalities on the (x, y) plane to find the feasible region, 

or the area on the graph where the shading intersects (see Figure 16). 

Figure 16.  Feasible Region 

 

Figure 16.  The feasible region is in dark blue for the system of inequalities 
.
 

  

 Although linear programming problems offer applications for inequalities, 

mathematical modeling also occurs through other types of practical applications that are 

useful in students’ everyday lives.  The NCTM (2000) suggests that modeling in the 

middle grades involve representing real-world situations symbolically and through the 

use of linear functions, while also beginning the exploration of some nonlinear functions.  

Moreover, students in middle school should know how to use algebraic models to 

understand quantitative relationships.  Translating word problems into algebra often 

involves creating equations and inequalities and then finding the value of one or more 

variables.  Thus, learning how to solve equations and inequalities becomes an essential 

component of algebra. 

 Mathematical modeling is present throughout Level 1 and Level 2 of the algebraic 

thinking framework and many view mathematical modeling as the main objective of 
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algebra (Izsák, 2003; Kaput, 1999; Schoenfeld, 1992; Usiskin, 1988).  Mathematical 

modeling is the process of taking a real world situation and attempting to represent it with 

mathematics or “mathematize it” (Kaput, 1999, p. 17).  Mathematical modeling is not 

referring to using manipulatives as an example of the mathematics, but rather, simulating 

real phenomena with equations.  Students learn to model real situations using 

mathematics by thinking about situations that contain multiple and connected 

representations.  Placing an algebra problem in context helps students make sense of the 

mathematics and supports conceptual understanding of these abstract representations 

(Earnest & Baiti, 2008).  Mathematical modeling is learned through the generalization of 

arithmetic to algebra, using symbols in a meaningful way, studying structure, and 

studying patterns and functions.   

The Organization of the Common Core Standards for Algebra 

 In the CCSS for Mathematics Content (NGA/CCSSO, 2010), the strand for 

operations and algebraic thinking is present from grades K-5.  In grades 6-8, algebraic 

thinking exists throughout the strand for expressions and equations as well as the strand 

for functions (NGA/CCSSO, 2010).  Figure 17 (adapted from Illustrative Mathematics, 

2011) shows the progression of the algebra content standards from grades K-8. 

 



60 

Figure 17.  Progression of Algebra Common Core Content Standards Grades K-8 

 
Figure 17.  In the progression of the Algebra Common Core Content Standards for 
Grades K-8, operations and algebraic thinking are taught in grades K-5, expressions and 
equations are taught in grades 6-8, and functions are introduced in grade 8. 
 
 Specific algebra content standards are outlined in the CCSS for eighth grade 

algebra and high school algebra (NGA/CCSSO, 2010).  Algebra content can be divided 

into five strands as shown in Figure 18 (adapted from Illustrative Mathematics, 2011).  

The function strand contains three additional sub-strands that are found throughout 

algebra.  Moreover, Figure 18 is a summary of the CCSS for eighth grade and high 

school level algebra content. 
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Figure 18.  Common Core Content Standards Summary for Algebra 

 
Figure 18.  Algebra contains five strands: seeing structure in expressions, arithmetic with 
polynomials and rational expressions, creating equations, reasoning with equations and 
inequalities, and functions.  The function strand has three subsections: interpreting 
functions, building functions, and linear, quadratic, and exponential models.  
 
Conclusions on Learning Algebra 

 Algebra does not have a simple definition and algebra in elementary school 

differs considerably from algebra in college (Usiskin, 1988).  Algebra in an elementary 

classroom involves examples and questions that support the development of students’ 

algebraic thinking.  Algebraic thinking is developed through good questions that press 

students to articulate their mathematical understanding (Blanton, 2008).  Moreover, 

French (2002) contends that, “Algebra is a very economical language: making sense of an 

expression, a step in an argument or a complete argument is very dependent on a deep 

understanding of all the component parts as well as the overall logic of the argument” (p. 

190).  This thinking can be expanded through different approaches to teaching algebra 
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such as connecting algebra to arithmetic, procedural algebra, relational algebra, empirical 

algebra, and structural algebra.   

 Learning algebra occurs simultaneously with learning to think mathematically.  

Learning algebra involves generalization, the use of symbols, the study of algebraic 

structure, the study of patterns and functions, and mathematical modeling.  These five 

themes form a framework for algebraic thinking in which understanding is intensified 

through the use of real world context.  Algebra is not just symbol manipulation—it is a 

broad, rich mathematical topic that all students can learn through the framework for 

algebraic thinking.  

 The early stages of learning algebra are critical in that students build relational 

understanding and the ability to apply ideas to a variety of new situations (French, 2002). 

Algebraic thinking incorporates fluency with procedures and skills, as well as 

understanding and applying ideas to the real world.  Moreover, students who are 

engaging in algebraic thinking are able to see meaning and purpose in the algebra that 

they are doing.    

Summary and Critique of Research 

 Understanding how to better support the learning of beginning students in algebra 

involves having knowledge on how students learn mathematics, especially algebra, as 

well as the implications for curriculum development and teaching mathematics.  Algebra 

is inherently complex; however, algebra contains many formal, structural aspects (Kaput, 

1995).  Gaining the ability to identify the building blocks of a structure is a useful 

technique in algebra (Cuoco, Goldenberg, & Mark, 1996).  An abstract algebraic 

expression can be made simple by breaking it into a combination of simple objects.  
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Thus, the literature implies that successful students are generally able to describe the 

structure of the symbolic language of algebra (Kirshner, 1993).  However, a need exists 

for further research on how beginning algebra students develop a structural understanding 

of algebra through learning the structure of arithmetic expressions (Banerjee & 

Subramaniam, 2005). 

 The review of the literature indicated that there was no clear and concise 

definition of algebraic thinking.  Specifically, little is known about children’s ability to 

advance from arithmetic to algebra and use algebraic notation (Carraher, Schliemann, 

Brizuela, & Earnest, 2006).  Research suggests that algebra can be integrated into 

arithmetic and arithmetic can be modified to include algebra, through generalizing the 

properties of real numbers (Moseley & Brenner, 2009).  Researchers contend (Darley, 

2009; Ketterlin-Geller, Jungjohann, Chard, & Baker, 2007; Usiskin & Bell, 1983) that it 

is impossible to learn arithmetic without dealing implicitly or explicitly with variables.  

Students’ knowledge of how to translate and generalize from arithmetic to algebra helps 

support mathematical thinking.  It is possible to integrate algebra and arithmetic, but 

early algebra education is not thoroughly described in the literature.    

 Students must have a strong understanding of the symbols that they are using in 

order to meaningfully engage in algebra.  In addition, students need to understand that 

variables can be quantities, and that the quantities can vary, rather than simply knowing 

that variables are unknown values.  Moreover, students need a solid understanding of the 

equal sign to be successful in algebra.  They must learn that an equation is an equal 

relation between two expressions.  Having a relational understanding of the equal sign is 

important for success in algebra; however, limited research exists on how to explicitly 
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develop students’ knowledge of the equal sign (Knuth, Stevens, McNeil, & Alibali, 

2006). 

 The study investigated how sixth-grade students understand extending arithmetic 

to algebraic expressions and solving one-variable equations through tasks presented in a 

teaching experiment.  The research study informs the development of an instructional 

unit to support sixth-grade students’ understanding of algebra as outlined in the Common 

Core State Standards for Mathematics (NGA/CCSSO, 2010).  The following research 

questions guided this study:  

1. How do sixth-grade students think mathematically when solving arithmetic and 

algebra tasks in the classroom teaching experiment? 

 What is the whole class learning trajectory that emerges? 

2. What are the means of supporting and organizing student learning of algebra? 

 What is the role of the tasks in supporting learning? 

 What design decisions are made to modify the tasks in the instructional 

unit and why? 

 The next chapter describes the research methodology, including a rationale for the 

research approach, a description of the research sample, the methods of data collection, 

the analysis and synthesis of data, issues of trustworthiness, and limitations of the study.  

It concludes with a brief overview of the study.   
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CHAPTER III: METHOD  

Rationale for Design Research 

 This study investigated how students learn algebra through a whole class teaching 

experiment using design research.  The design research approach (Cobb, Confrey, 

diSessa, Lehrer, & Schauble, 2003; Collins, Joseph, & Bielaczyc, 2004; Kelly, 2003) was 

used to investigate how students learn in a whole class setting and documented the 

realized learning trajectory and the mechanisms for supporting learning.  The framework 

of design research allows researchers to observe as well as intervene throughout the study 

process.  It involves engineering learning environments; systematically studying what 

takes place, and making adjustments to the curriculum (Cobb et al., 2003; Collins et al., 

2004; Kelly, 2003).  The overarching objective of design research is to develop a better 

understanding of the learning ecology (Gravemeijer & Cobb, 2006).  A learning ecology 

in mathematics involves the interactions among teachers, students, content, and 

curriculum and how these relations affect teaching and learning.  Furthermore, design 

researchers develop theories about the learning process, as well as techniques designed to 

support learning (Cobb et al., 2003).  Design research methodology was employed to 

study and understand the means of supporting and organizing student learning of algebra 

through tasks presented in a teaching experiment. 

The Research Sample 

 Students from a sixth-grade classroom in an urban elementary school in a western 

state participated in the study.  The sample included a total of 22 predominately Latino(a) 

students, ages 11 to 12.  There were 11 female students and 11 male students.  The 



66 

majority of the students were from lower to middle socioeconomic backgrounds.  

Students sat in groups of four assigned by the teacher.     

Table 1.  Research Participant Summary (N = 22) 

Student Ethnicity Gender Group 
MH1F Latino Male F 
MH2F Latino Male F 
FH3F Latina Female F 
FC4F Caucasian Female F 
MH11 Latino Male 1 
MH21 Latino Male 1 
MH12 Latino Male 2 
MH22 Latino Male 2 
MH32 Latino Male 2 
FH42 Latina Female 2 
MH13 Latino Male 3 
MH23 Latino Male 3 
FH33 Latina Female 3 
FH43 Latina Female 3 
MT14 Tongan Male 4 
MH24 Latino Male 4 
FH34 Latina Female 4 
FH44 Latina Female 4 
FH15 Latina Female 5 
FH25 Latina Female 5 
FH35 Latina Female 5 
FH45 Latina Female 5 

Note.  Student, ethnicity, gender, and group 

 The teacher that participated in this study had a master’s degree in education and 

had taught fifth and sixth grades for two years.  She regularly participates in professional 

development sessions in the school district and is trained in the Common Core State 

Standards for Mathematical Content and Practices.  The teacher was chosen because she 

has a close working relationship with the lead researcher and wanted to learn new 

methods of teaching algebra.  The research team consisted of the lead researcher, Diana 

Moss (Mathematics Education Doctoral Student and Former Middle Grades Teacher) and 
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the faculty researcher, Teruni Lamberg (Mathematics Education Professor and Former 

Primary School Teacher).  There were two others who operated the video cameras. 

Treatments     

 The lead researcher developed the instructional unit (Appendix A) based on a 

review of research on how students learn algebra and mathematics to address the sixth-

grade CCSS for Expressions and Equations (NGA/CCSSO, 2010).  The researcher 

received feedback from the classroom teacher and the faculty researcher as the unit was 

being developed.  This instructional unit (Appendix A) initially served as the hypothetical 

learning trajectory (Simon, 1995).  The context of Soccer was used to help students think 

about the meaning of expressions, equations, and functions.  Soccer was chosen to relate 

mathematical concepts to a real-world context that interested the students in this class.  

The teaching experiment was conducted over four weeks through a design research 

approach.  The lesson times ranged from an hour to an hour and a half and took place 

during regular math instruction time.  Each day, the lesson was modified based on teacher 

feedback and analysis of data and student work.  The lead researcher communicated with 

the research team and the classroom teacher before, during, and after each lesson in order 

to make modifications for subsequent lessons.     

Design of this Study 

 This section provides the methodological framework and a detailed description of 

the five phases of data collection and analysis in this teaching experiment.  Additionally, 

the interpretive framework used to analyze the data is presented. 
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Methodological Framework   

 A teaching experiment is a type of design research.  The primary purpose of a 

teaching experiment is for researchers to personally observe students’ learning and 

reasoning (Steffe & Thompson, 2000).  Moreover, a teaching experiment forms the core 

of classroom design research (Gravemeijer, 2004) and is conducted in a small or large 

learning setting over a variable amount of time.  For example, this type of study can 

occur over just a few hours or an entire academic year.  The participants usually include a 

teacher-researcher, a group of students, and an observer-researcher (Steffe & Thompson, 

2000).  Unless the official teacher becomes completely involved in the research process, 

the teacher-researcher assumes the role of the teacher during the experiment (Molina, 

Castro, & Castro, 2007).  The researchers interact with and become part of the 

environment in which they are studying, permitting relationships to form among 

researchers, teachers, and students.  This situation is distinct to many other forms of 

research because very few boundaries exist between the researchers and other 

participants.     

 Teaching experiments analyze student learning by repeating the process of 

developing and testing instructional activities.  According to Steffe and Thompson 

(2000), the purpose of a teaching experiment in mathematics is to explore and explain 

students’ learning process and mathematical activity throughout this process.  Confrey 

and Lachance (2000) describe a teaching experiment as a planned teaching intervention 

that takes place in a classroom during a period of academic instruction.  The framework 

of a teaching experiment has not been established formally because its actual structure 

varies within each context and student response guides the researchers (Steffe & 
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Thompson, 2000).  However, a teaching experiment that uses design research must 

involve an iterative process (see Figure 20).  Moreover, throughout the experiment, 

researchers must constantly be evaluating and questioning the underlying meaning of 

students’ learning and behavior, which informs the next modification of the intervention 

and, thus, the next iteration in the design process.  Figure 19 (adapted from Middleton et 

al., 2008) shows a logic model of a teaching experiment using design research that 

framed this study.   

Figure 19.  Model of a Teaching Experiment Using Design Research 

 
Figure 19.  A theoretical model and an actual model are embedded in the model of a 
teaching experiment using design research.  The theoretical model begins with the HLT, 
which leads to the intended learning, which informs the intervention.  The actual model 
begins with the actual learning that takes place and the realized learning trajectory is 
based on the actual learning.  These sub-models are connected through generating, 
testing, and modifying the intervention and through building theory.  (adapted from 
Middleton et al., 2008) 
 
 Iterative design.  Iterative design is an essential component of design research, 

and therefore, of teaching experiments that employ design research.  In a teaching 

experiment, the recurrent cycle of developing and testing instructional activities, 
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designing teaching interventions, collecting and analyzing data, and making adjustments 

in the design is the iterative process.  A study that aims to analyze student learning begins 

with making an experimental model that leads to a HLT.  The preliminary model is based 

on the researchers’ theoretical assumptions and previous experience (Molina et al., 2007).  

In this teaching experiment, the hypothetical learning trajectory was based on the CCSS 

for Expressions and Equations (NGA/CCSSO, 2010), which is the progression from 

expressions to equations to functions (see Appendix A).  Moreover, in a teaching 

experiment using design research, the teacher-researcher interacts with the students, as a 

teacher normally would in a classroom, and the researchers collect data.  Then, these data 

inform the research by either confirming or rejecting the initial hypotheses about student 

learning.  The process continues and eventually leads to a final model that has been 

adjusted and refined to obtain an optimal product.  During this cycle, the researchers not 

only intend to investigate if the model performs as expected, but also are willing to 

redesign and fine-tune the model based on their observations (Confrey, 2006; Steffe & 

Thompson, 2000).  Appendix A contains the initial model of the instructional unit and 

Appendix B contains the fine-tuned and redesigned model of the instructional unit.  The 

iterative process of design research is shown in Figure 20 (adapted from Middleton et al., 

2008). 
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Figure 20.  The Iterative Process of Design Research 

 
Figure 20.  The iterative process of design research is shown as a circular system that 
begins with the identification of the research problem.  A hypothesis, question, or theory 
is developed that addresses the research problem.  This leads to the design of a testable 
solution that informs the artifact or intervention.  The solution is tested, and adjustments 
are made in the design and model.  Lastly, the solution is implemented, which leads to 
transportability of the model and theory-building. (adapted from Middleton et al., 2008)  
 
 The methodological framework of a teaching experiment using design research 

(Middleton et al., 2008; Lamberg & Middleton, 2009) was used in this study to inform 

the development of an instructional unit to support sixth grade students understanding of 

algebra.  This model begins with a theoretical model, expressions to equations to 

functions, of a hypothetical learning trajectory and ends with a realized model that 

emerges as a result of the instructional unit.   
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Interpretive Framework   

 Cobb, Stephan, McClain, and Gravemeijer (2001) offer a methodology for the 

analysis of collective learning of a classroom community.  This methodology takes into 

account the evolution of classroom mathematical practices.  Cobb et al. (2001) described 

classroom mathematical practices as “taken-as-shared ways of reasoning, arguing, and 

symbolizing established while discussing particular mathematical ideas” (p. 126).  This 

approach to analyzing data is interpretive in that it takes into account both the social 

perspective (the meanings the class is making as a whole) and the psychological 

perspective (the meanings and interpretations of individual students as they participate in 

the classroom community).  The following figure (Figure 21) provides the interpretive 

framework that is adapted from the Lamberg (2001) framework.  The framework outlines 

the type of data that was collected and how the data was collected, triangulated, and 

analyzed.  The framework takes into account sense making that takes place through 

activity within the context.  The arrows on the framework represent the affordances and 

constraints that take place.   
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Figure 21.  Interpretive Framework 

 
Figure 21.  An Interpretive Framework (adapted from Lamberg, 2001) for the analysis of 
sense making of algebra tasks by examining the layers of activity within the classroom 
context with respect to students’ interpretation of the algebra tasks in the instructional 
unit.    
 

 The following section summarizes in detail the methods and procedures used in 

each phase of the data collection and analysis. 

Data Collection and Analysis 

 The researcher used a variety of data sources in order to analyze this teaching 

experiment using design research.  Any source that related to the broader phenomena 

being studied in the experiment was collected (Cobb et al., 2003).  Multiple sources of 

data allowed for retrospective analysis once the study was complete, as well as iterative 

analysis throughout the study.  Data sources included field notes (Maxwell, 2005), video 
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recordings, and documentation of anything that occurred in the classroom such as 

students’ work and researchers’ reflections.  The researchers and teacher had regular and 

ongoing discussions about the in-class interventions and interpretations of the data.  

These discussions were important because they enhanced the quality of the study and 

research process.  This teaching experiment was an iterative process conducted in three 

phases.  The first phase consisted of observation and pretest.  The second phase consisted 

of teach/reflect/plan, interview, and prospective analysis.  The third phase consisted of 

posttest and retrospective analysis.  Data collection and analysis was a parallel process 

with prospective analysis occurring throughout the teaching experiment and retrospective 

analysis occurring after the teaching experiment (see Figure 22). 

Figure 22.  Phases of Data Collection and Analysis 

 
Figure 22.  The iterative process of data collection and analysis in the teaching 
experiment. 
 
 Phase 1.  Phase 1 of the data collection and analysis consisted of two parts: 

observe and pretest.  These parts were intended to help the researcher design the 

hypothetical learning trajectory, interventions, and instructional unit. 
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 Observe.  Exploratory observations occurred in the weeks prior to the teaching 

experiment.  The researcher took field notes (Maxwell, 2005) of what occurred in the 

classroom and anything that she thought informed the teaching experiment.  Moreover, 

this phase allowed the researcher to observe the classroom social norms during whole 

class discussions and small group activity (Cobb et al., 1996).  The researcher also was 

able to observe the teacher’s role in the classroom and the classroom layout.  These 

observations were intended to provide the researcher with a context in which to situate 

the hypothetical learning trajectory with regards to students’ level of algebraic thinking.   

 Pretest.  A pretest was given to all the students on the first day of the teaching 

experiment.  The pretest was designed to determine students’ prior knowledge of 

extending arithmetic to algebraic expressions and solving one-variable equations.  The 

analysis occurred directly after the students took the pretest.  The tests were 

dichotomously scored based on correctness.  If the answer to a problem on the pretest 

was correct, then the student received one point and if the answer to a problem on the 

pretest was incorrect, then the student received zero points.  The total points possible on 

the pretest was 20.  Thus, if a student missed five points, then his or her score was 15/20 

or 75%.  The objective of the pretest was to examine the problem types that students were 

able to solve and to inform the researcher of students’ existing mathematical knowledge, 

misconceptions, and strategies, which were taken into account when creating the 

hypothetical learning trajectory and instructional unit.    

 Phase 2.  Phase 2 of the data collection and analysis involved three parts: 

teach/reflect/plan, interviews/discussion, and prospective analysis.  During phase 2, the 

actual teaching experiment took place.  The research team planned each lesson in the 
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instructional unit, the teacher taught the lessons, and interviews and prospective analysis 

informed succeeding lessons.  The researcher followed a detailed protocol for data 

collection and analysis (Appendix C) and this cycle continued throughout the teaching of 

the instructional unit and lasted four weeks.  The data collected in phase 2 included video 

of the teaching sessions, video of the student discussions and comments, video and field 

notes of the teacher/researcher debriefing interviews, lesson plans, and student work (See 

Figure 22).   

 Teach/Reflect/Plan.  The teach/reflect/plan part of phase 2 included making 

decisions about the teaching approaches, the types of activities and tasks, and the order 

and ways that would address the objectives of the research (Molina et al., 2007).  In this 

teaching experiment, the objective was to investigate the means of supporting and 

organizing student learning of algebra.  These decisions about planning the teaching 

episodes occurred only after completing a thorough review of literature in mathematics 

education related to algebra. 

Interviews.  The teacher and researcher had debriefing interview sessions after 

each teaching episode.  The teacher and researcher also had a final debriefing interview 

session after the instructional unit was complete.  During these interviews, the teacher 

and researcher used the Lesson Reflection Protocol (see Appendix D) to guide their 

discussions.  The researcher took field notes and the sessions were recorded on video. 

 Prospective analysis.  Data analysis was performed during two periods of the 

research process: throughout the study and after the teaching experiment had been 

completed.  The early analyses of data were performed after each teaching episode.  

These prospective analyses informed the modifications of the interventions during future 
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teaching episodes and facilitated creation and revision of hypotheses and conjectures 

(Molina et al., 2007). 

 Data sources collected during this phase included video recordings of the teaching 

sessions, video of student discussions and comments, video recordings and field notes of 

student interviews and discussions, video recordings and field notes of teacher/researcher 

debriefing interview sessions, lesson plans, and student work.  The following figure 

describes in detail how each source was collected.  

Figure 23.  Data Sources Collected in Phase 2 

Video – Teaching Sessions 
 All teaching sessions were recorded using two video cameras. 
 Camera 1 was in the front of the room and focused on the teacher and the board at 

the front of the room to capture what was being written or modeled on the board.  
Camera 1 was zoomed in. 

 Camera 2 was in the back of the group and captured the conversation that was 
occurring.  Camera 2 was zoomed out.    

Video – Student Discussions and Comments 
 During whole class discussions, Camera 1 was in the front of the room and was 

zoomed in on the written work.  This camera focused on the teacher and students as 
they wrote and discussed.  Camera 2 was zoomed out and in the back of the group 
and captured the conversation that occurred. 

 During small group discussions, Camera 1 focused on the group interaction.  
Camera 2 focused on capturing a cross section of conversations taking place with 
other small groups who consented to be video recorded.  The purpose was to 
capture different ways students thought about a particular problem.  

Video/ Field Notes – Teacher/Researcher Debriefing Interview Sessions 
 The researcher and teacher debriefed after each teaching session and debriefed 

during a final session after the instructional unit was complete.   
 The researcher and teacher used the Lesson Reflection Protocol Questions 

(Appendix D) to guide their discussions. 
 Camera 1 recorded these sessions and the researcher took field notes. 

Lesson Plans 
 Lesson plans were collected and modified throughout the teaching experiment.  

Field notes were taken on the lesson plans. 
Student Work 

 All written student work was collected each day after the teaching session. 
Figure 23.  A description of the data sources collected in phase 2 of the teaching 
experiment. 
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 The prospective analysis of the data occurred every day after each teaching 

episode.  During this analysis, the lead researcher made a checklist to document student 

learning and made typed logs in separate documents of class learning, misconceptions, 

the key mechanisms for shifts in student thinking, changes made to the lesson plans, and 

teacher interviews.  Then, these logs were analyzed and condensed, using the interpretive 

framework (Figure 21), which created snapshots of each day that documented what 

occurred during each teaching episode.  The following figure shows an example of the 

process of analysis for a single teaching episode that occurred on Day 4.   

Figure 24.  Day 4 Example of Analysis 

Checklist based on Student Work 

 
 

Logs based on Data Sources 
Class Learning Log: 9/12/13 
 In small groups, students were able to count the number of hexagons and pentagons on a 

soccer ball and represent hexagon with h and pentagon with p.  Some students were able to 
write an equation representing the number of hexagons on a soccer ball.  They needed more 
time to do the rest of the lesson.   

 Some students do not understand that h is just one hexagon and not all the hexagons.  The 
students are beginning to see that equation means the same on both sides.  They understand 
the difference between expression and equation. 
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 To reinforce like terms, we will finish this lesson tomorrow and do the worksheet.  We will 
also work on multiplication by teaching the cost of soccer ball lesson to show that 2x means 2 
• x.  Students that come up to the board and show their work need to ask classmates if they 
have any questions.   

 Need to clarify that the variable is the number of objects.  (not number of sides of hexagon) 
Misconceptions: 9/12/13 

 Misconception Remedy 
Like Terms 10h + 12p = 32 Teach like terms again using 

fruit. 
 h + p = hp  Again, more on like terms 

tomorrow. 
 h = hexagons instead of h = 1 

hexagon 
Some understood that h is 
representing one hexagon.  
Clarify tomorrow 

 10h • 2h = 20h Teach multiplication   
Key Mechanisms for Shifts in Student Thinking: 9/12/13 
 What does the variable represent? 1 hexagon or all the hexagons? 
 Does the variable represent the number of sides of a hexagon? 
 One student thought that the variable represented 6 since a hexagon has 6 sides. 
 
 What do both sides of the equation represent?  Are they the same? 
 Keep reiterating that the variable is not just a random letter.  It means something. 
 
 How can you show 20h in other ways?  (Such as 5h + 15h = 20h) 
 Can we write this as 20h = 5h + 15h 
 
 It is important to keep showing the equal relationship between both sides of the equation. 
Lesson Log: 9/12/13 
 The lesson went longer than expected.  We did not get to defining like and unlike terms. 
 Keeping the lesson the same, but splitting it over two classes. 
 It took the students a long time to figure out how to represent hexagon and pentagon with a 

variable. 
 If there is time, then we will also do the price of a soccer ball lesson tomorrow, but most 

likely we will just do like and unlike terms. 
Teacher Log: 9/12/13 
 The lesson went well. 
 She thinks the unit is going to take double the time. (I think pacing is okay) 
 Teacher thinks it is going to take a lot longer. 
 Took coaxing to get students to figure out answer 
 Misconceptions: idea of 20 + h means 20h (penguins + hexagons) 
 Teacher thinks students understood hexagon means 1 hexagon 
 Do the pentagons as a review 
 Students knew multiplication better than addition and subtraction 
 Seems like they get multiplication 
 We will define like and unlike terms tomorrow.   
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Interpretive Framework Used for Analysis 

 
 
 
 
 
Snapshot of the Teaching Episode on Day 4 

 
 Figure 24.  This is an example of the student learning checklist, class learning log, 
misconceptions, key mechanisms for shifts in student thinking, the lesson log, and the 
teacher log for Day 4.  These logs were condensed using the Interpretive Framework and 
resulted in the Snapshot of the Teaching Episode on Day 4.              
 

Sense Making (Students’ 
interpretation of the 
algebra tasks in the 
instructional unit) 

Activity (speech and communication with peers or 
teachers using language or symbols, 
interactions with curriculum and representational 
tools) 

Context (physical, social: teacher role, classroom practices) 
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 Phase 3.  Phase 3 of the data collection and analysis consists of the posttest and 

retrospective analysis.   

 Posttest.  The posttest was administered to the whole class and was exactly the 

same as the pretest.  The analysis occurred directly after the students took the posttest.  

The tests were dichotomously scored based on correctness.  The objective of the posttest 

was to determine individual growth of students in the whole class with regard to 

extending arithmetic to algebraic expressions and solving one-variable equations.   

 Retrospective analysis.  The final analysis was retrospective in that it included 

analysis of all the data collected during the teaching experiment.  The product of this 

analysis was a historical explanation that details the pattern that emerged from the 

teaching experiment (Cobb et al., 2003).  This pattern might be reproduced in other 

teaching experiments.  Additionally, by conducting retrospective analysis of the data, a 

theory developed that is informed by the observations of student learning and instruction 

during the experiment.  Moreover, this final analysis is an honest account of what 

occurred during the teaching experiment (Cobb et al., 2003).    

 The qualitative data generated by this study was voluminous (Patton, 1980).  The 

retrospective analysis consisted of formal analysis of the video recordings, student work, 

and field notes.  An adaptation of the Data Analysis Spiral (Creswell, 2007) was used to 

analyze the qualitative data.  Creswell (2007) describes this process as “moving in 

analytic circles rather than using a fixed linear approach” (p. 150).  Figure 25 shows an 

adapted version of Creswell’s (2007) Data Analysis Spiral for a teaching experiment 

using design research. 
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Figure 25.  The Retrospective Data Analysis Loops 

 
Figure 25.  The Data Analysis Loops (adapted from Creswell, 2007) for retrospective 
analysis of qualitative data from a teaching experiment using design research.   
 
 After the instructional unit was complete, the data collection during phases 1, 2, 

and 3 is also complete.  The Data Managing is the first ring in the spiral analysis.  The 

researcher organized the data (see Figure 23) after each teaching episode into file folders 

and computer files.  During this loop, the researcher also converted the data to plain text, 

the correct format for computer analysis.  For instance, the researcher transcribed the 

video recordings using the computer program HyperTRANSCRIBE, which automatically 

exported the text to plain text.  Additionally, during this cycle, the researcher organized 

all student work into folders that are labeled by date and lesson plan topic. 

Data Managing 

Reading and Memoing 

Describing, Classifying, and Interpreting 

Representing and Visualizing 

Data Collection/ Phase 1, 2, and 3 

Explanation/ Theory/Account 
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 The Reading and Memoing ring allowed the researcher to get a sense of the data 

as a whole, before breaking it into themes (Agar, 1980).  Creswell (2007) recommends 

writing memos, key ideas or concepts that occur to the reader, in the margins of field 

notes or transcripts.  Writing memos with the research questions in mind helped the 

researcher to reflect on the study as a whole.  After reading and memoing, the natural 

process of the spiral continues to the Describing, Classifying, and Interpreting ring.  This 

loop involves coding and categorizing the data into themes as outlined by Creswell 

(2007).  Themes in this teaching experiment emerged from the data where sense making 

by the students was afforded or constrained by the activity or the context.  Because this 

analysis was purely qualitative, the researcher was engaged in interpreting the data and 

learned from the data (Lincoln & Guba, 1985).   

 The last loop of the analysis is the presentation of the data.  Creswell (2007) 

describes this final phase as “a packaging of what was found in text, tabular, or figure 

form” (p. 154).  In this design research study, the product of the analysis is an honest 

account of what occurred during the teaching experiment and a presentation of a theory 

of learning that emerged from the data (Cobb et al., 2003).  Moreover, the refined and 

tested hypothetical learning trajectory became the realized learning trajectory.    

 The quantitative data in this teaching experiment consisted of the pretest and the 

posttest.  The pretest and posttest each contained twenty questions and were scored 

dichotomously (1/0) based on exactness.  One point was given for the correct answer and 

zero points for an incorrect answer.  The means of the pretest and posttest were analyzed 

using a one-tailed dependent t-test.  This test compared the two means to see if one mean 

was significantly greater than the other mean (Field, 2009).  Additionally, statistics are 
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reported to show the pre and posttest scores for each individual student.  Results are 

included in a chart.         

Objectivity, Reliability, and Validity in Design Research 

 Objectivity, reliability, and validity are required for design research to be a 

scientifically accepted research method.  However, these qualities in design research are 

controlled differently than in experimental research design (Barab & Kirshner, 2001).  

Unlike traditional empirical research, the goal of design research is to generate new and 

useful theories (Edelson, 2002).  Therefore, objectivity, reliability, and validity of the 

results in design research cannot be described in the same way as in the traditional 

empirical approach.   

Objectivity 

 Objectivity is concerned with the trustworthiness of the analyses (Cobb & 

Gravemeijer, 2008).  In order for this credibility to be achieved, the collection and 

analysis of data will be systematic and open to criticism by other researchers.  Design 

researchers are in a different position than experimental researchers in that they try to 

promote objectivity while simultaneously facilitating the interventions.  The Design-

Based Research Collective (DBRC, 2003) noted that “design-based researchers regularly 

find themselves in the dual intellectual roles of advocate and critic” (p. 7).  Thus, the 

design researchers will triangulate (Maxwell, 2005) multiple sources and types of data to 

reduce the risk that the conclusions of the retrospective analysis reflect systemic biases.  

The data set generated in a design study will include video interviews, video recordings 

of classroom discussions, copies of students’ work, lesson plans, and field notes.  

Triangulating the data and using a constant comparison method of analysis (Glaser & 
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Strauss, 1967) will serve as justification for the final results.  Additionally, claims are 

justified by reviewing the phases of analysis, including backtracking to the original 

sources of data (Cobb & Gravemeijer, 2008).     

Reliability 

 A teaching experiment using design research involves many decisions by the 

teacher-researcher, observer-researcher, and other members of the design team.  Because 

each learning setting is unique, exact replication of an entire design research study is 

almost impossible.  Instead, to promote reliability of the findings, repetition of the 

analyses occurred within a single design experiment across cycles (DBRC, 2003).  

Additionally, the researchers triangulated multiple data sources.   

Validity 

 The iterative cycle and collaborative nature of design research over time ensured 

that the results are valid.  In other words, the nature of a design-based research approach 

allows for increased alignment of theory, design, practice, and measurement (DBRC, 

2003).  Messick (1992) argued that the consequential validity of a claim is based on the 

changes that it produces in a given system.  In this design research, these changes are 

considered to be evidence in support of validity (Barab & Squire, 2004).  Thus, the 

instances of student learning triggered by a model in a teaching experiment are 

considered evidence of the validity of the results.                  

Summary 

 A teaching experiment using design research was conducted in a sixth-grade 

class.  This chapter described the data collection and analysis that was used to inform the 

development of an instructional unit to support sixth-grade students understanding of 
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algebra as outlined in the CCSS (NGA/CCSSO, 2010).  Moreover, this chapter presented 

the frameworks that were used in this study.  The findings from this teaching experiment 

are presented in the next chapter.  
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CHAPTER IV: RESEARCH FINDINGS 

 This chapter describes the results from the whole class teaching experiment with 

regards to the realized learning trajectory that emerged.  This chapter addresses the 

following research questions:  

1. How do sixth grade students think mathematically when solving arithmetic and 

algebra tasks in the classroom teaching experiment? 

 What is the whole class learning trajectory that emerges? 

2. What are the means of supporting and organizing student learning of algebra? 

 What is the role of the tasks in supporting learning? 

 What design decisions are made to modify the tasks in the instructional 

unit and why? 

 In the first section of this chapter, a description of the context of the classroom 

community is provided.  The realized learning trajectory is presented and briefly 

discussed in the second section.  The chapter also contains a theory of learning with an 

example of how student thinking developed through making mathematical connections 

and the results of the one-tailed dependent t-test.  Next, a detailed explanation of how the 

realized whole class learning trajectory developed is given.  Examples of the tasks and 

how the tasks supported student learning and mathematical thinking are provided 

throughout the chapter.  The conclusion of the chapter is a presentation of how the lesson 

plans in the instructional unit were modified to support and organize student learning of 

algebra.   
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Context of the Classroom Community 

 The teaching experiment took place in a sixth grade classroom where 

mathematics lessons occurred once a day for four weeks.  The lesson times were 

consistent, occurring on Monday and Thursday from 10:15 – 11:15 a.m. and Tuesday, 

Wednesday, and Friday from 12:00 to 1:30 p.m.  For the majority of the lessons, students 

worked at their desks, arranged in groups of four.  Each group, including the focus group, 

was assigned a country name that represented a team participating in the 2014 World 

Cup.   

 The CCSS for Expressions and Equations (NGA/CCSSO, 2010) was the 

foundation for the original instructional unit (Version 1 in Appendix A) designed for this 

teaching experiment.  This hypothetical learning trajectory was based on the review of 

research and includes the following lesson sequence: expressions, equations, and 

functions.  The final version (Final Version in Appendix B) of the instructional unit 

consists of tasks for small group discussion, whole group discussion, and individual work 

that occurred at the beginning or the end of the lesson.  During whole class discussions, 

students volunteered to go to the front of the classroom and explain their work.  The 

students and teacher used both the document camera and the board at the front of the 

classroom to present their work.  While volunteers presented, the other students asked 

questions and agreed or disagreed with the presenter.  This generated whole class 

discussion.  The lessons also allowed for small group discussions in which students 

shared their thinking with their groups and tried to clarify misconceptions.  The lesson 

modifications and the transformation of the instructional unit are presented in detail at the 

end of this chapter.  
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 The role of the teacher consisted of facilitating discussion and clarifying 

misconceptions.  When students worked in small groups or individually, the teacher 

walked around the room and interacted with them, asking questions to help students 

clarify their own thinking.  The teacher understood that the instructional unit was a tool 

for teaching and that she could adapt it as needed based on student understanding of the 

tasks.  During the teaching experiment, the researcher and teacher collaborated daily and 

weekly to evaluate and revise the sequence of topics in the unit.  These revisions were 

based on the analysis of student learning that took place during the teaching experiment. 

Realized Learning Trajectory 

 The whole class realized learning trajectory emerged around student 

understanding of the meaning of the variable in various contexts of expressions, 

equations, and functions (Figure 25).  In the first part of this section, a description of the 

overall realized learning trajectory that emerged is given.  The following sections will 

provide a detailed explanation of each interpretation of the idea of variable.  
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Figure 26.  Realized Learning Trajectory 

 

Figure 26.  This is a depiction of the realized learning trajectory that emerged as a result 
of the teaching experiment.  The class interpretation of variable evolved as they studied 
expressions, equations, and functions, the sequence of the instructional unit. 
   
 The students’ interpretation of variable evolved as they explored the meaning of 

expressions and how the meaning of an expression is linked to the meaning of equation.  

This initial changing interpretation of a variable became the critical foundation for 

students to later understand how a variable was interpreted in a function.  Figure 27 

shows how the changing meaning of variables emerged from the lesson sequence of 

expressions, equations, and functions how these interpretations of variables were present 

in misconceptions and errors in the students’ written work.   
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Figure 27.  The Lesson Sequence, Learning Trajectory, and Sample Misconceptions 

 
A sample of misconceptions and errors from student work for:  
Variable as Label h = hexagons  

bm  for blue marbles 
3a + 4a + 7b = 14f   
3 apples + 4 apples + 7 bananas 
= 14 fruits 

The implication is that the 
students are labeling 
objects with variables. 

Variable as Changing 
Quantity 

Modeling “The Cost of 5 balls 
with an expression that can be 
used at different soccer ball 
shops”, the student wrote: 5 = 
d. 

The implication is that this 
is modeling the number of 
balls (using a known value) 
and not the cost of each 
ball (a changing quantity) 
and so this student does not 
understand that the cost is a 
changing quantity and the 
expression should be 5d. 

Variable as Known 
Value 

Given 4c + 3f for c = 2 and f = 
5, student wrote:  
4•c(2) = 8 and 3•f(5) = 15 then 
8+15 = 23 

The implication is that the 
student does not understand 
that the variable no longer 
needs to be written once 
the value of the variable is 
known. 

Variable as Unknown 
Value 

Given the equation 21 = 7u, 
student subtracted 7 from both 
sides to get u = 14. 

The implication is that the 
student was attempting to 
solve for the unknown 
variable but used the wrong 
operation and needs to 
understand that 7u means 

Expressions 

Equations 

Functions 

Variable as Label 

Variable as Known Value 

Independent and Dependent 
Variable 

Variable as Changing Quantity 

Variable as Unknown Value 
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7• u. 
Independent and 
Dependent Variable 

When asked to write an 
equation for a given situation 
that included an independent 
and dependent variable, the 
student wrote: 
 5x + 20, instead of y = 5x + 20.  

The implication is that the 
student does not understand 
that there is an independent 
and dependent variable 
because this is an 
expression and not an 
equation with an input and 
output. 

Figure 27.  The changing meanings of a variable emerged through the hypothetical 
learning trajectory of expressions, equations, and functions and were present in the 
student misconceptions and errors. 
 
 Within this sequence of three phases, students’ mathematical thinking revealed 

five meanings of variable: variable as label, variable as changing quantity, variable as 

known value, variable as unknown value, and independent and dependent variable.  As 

the meanings of variable became more refined, the type of thinking moved from additive 

to multiplicative and the depth of understanding moved from concrete to abstract (Figure 

26).     

 Although the instructional unit was based on the progression from expressions to 

equations to functions, the sixth-grade students were not fully able to understand 

expressions, equations, and functions until the meaning of a variable was made explicit.  

For example, students learned that variables could be labels, changing quantities, known 

values, unknown values, and independent or dependent.  The following sections describe 

and provide examples of each interpretation of variable, forms of student reasoning, key 

mechanisms that shifted student mathematical thinking, and types of thinking.   

 Variable as label.  Students first learned variables as a way of labeling certain 

known quantities or for keeping a record of a specific quantity (Figure 28).  By learning a 
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variable as a label, students demonstrated algebraic thinking in that they were able to 

understand that a quantity could be labeled with a variable.         

Figure 28.  Summary of Variable as Label     

Figure 28.  Conditions, focus of classroom activity, forms of reasoning, key mechanisms 
that shifted student thinking, and types of thinking observed as students learned variable 
as a label. 
 
 Quantity is known.  Students reasoned that a variable is a label for a known 

quantity.  For example, students began using variables to label a category.  Specifically, 

students were asked to find the total of two groups, boys and girls, by writing an 

algebraic expression or equation (Figure 29). 

 

Changing Concept 
of Variable 

Conditions Focus of Classroom 
Activity 

Forms of 
Reasoning 

Key Mechanisms 
that Shifted 

Student Thinking 

Type of Thinking 

1. 
Variable as Label 

 Quantity is known 

 Using a variable to  
 keep a record of a  
 specific quantity 

Finding the total of two 
groups by writing an 
expression or an 
equation. 

adults + children = 
Total 

a + c = T 

Using a sum of like 
and unlike terms to 
find the total amount. 
8 red M&Ms + 4 blue 

M&Ms 
8r + 4b 

Abbreviating the 
name of a group 
with the first letter 
of the word. 

Using a letter to 
represent one object 
or one group with 
the same 
classification. 

Asking students to 
share different 
representations of 
the expression. 
adults + kids = total 

a + k = t 
2 adults + 5 kids 

2a + 5k 

Directing students 
to come up with a 
more efficient way 
to represent the 
same expression. 

r + r + r + r + r = 
2r + 3r = 

5r 

Circling sign, 
coefficient, and 
variable to combine 
like terms. 

Additive 
Finding the Total 

r + r = 2r 

Multiplicative 
5 • r  

where r = 1 

Algebraic 
Generalizing 
Arithmetic to 

Algebra 

Expressions and 
Equations 

Expression as a 
sum of like and 

unlike terms 

Equation as 
computing a total 
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Figure 29.  Student Work Example 1 (Variable as Label) 

Figure 29.  Two examples of student work that show that students interpreted variables 
as labels. 
 
 Student Work Example 1 contains two different examples of student thinking 

where the variable is a label.  The example on the left shows that the student labeled 2 

boys with B and 3 girls with G.  In the example on the right, the student labeled 5 boys 

with B and 5 girls with G.  Both students in this example used a variable as a label for 

boys and a different variable as a label for girls where the variable is a naming specific 

quantity.   

Figure 30. Student Work Example 2 (Variable as a Label) 

 

Figure 30.  An example of student work that shows how a student labeled an item with a 
variable. 
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 Student Work Example 2 (Figure 30) is another example of how a student labeled 

songs with the variable s.  The variable in this example is used to label songs where 27s 

is interpreted as 27 songs and 18s is interpreted as 18 songs.  These examples 

demonstrate how students used variables as labels to replace a specific category and also 

show that students were thinking additively and algebraically.  Additive thinking 

occurred because students were adding to find the total and the variable replaced the 

known group or named a specific amount.  These examples also show that students were 

thinking arithmetically and moving towards algebraic thinking by replacing a known 

quantity with a variable as a label.   

 Keeping a record.  The next example shows the second case in which students 

used a variable as a label to keep a record of a certain item or object.   



96 

Figure 31.  Student Work Example 3 (Variable as Label) 

 

Figure 31.  In these examples, students used a variable to label one object. 
 
 The purpose of the variables in Student Work Example 3 (Figure 31) is to label 

colors or certain shapes.  For instance, 7r means “7 red” where the variable r labels the 

color red.  In another activity, students recorded that a soccer ball has 20 hexagons, and 

wrote an h to label and replace the word hexagon.     

Teacher:  A is going to write what she has. 

A:   I have 16 h's plus 4 h's and that equals 20 

Teacher:  20 what? 

A:   20 h's 

Teacher:  Which represents?  What does h mean? 

A:   hexagons 
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Teacher:  Why did you write it 20 times?  How many hexagons are on the  
  soccer  ball? 
 
A:   20  

Teacher:  If I write a single h, what does that represent? 

A:   1 hexagon 

Teacher:  So to show 20 hexagons we write? 

A:   20h 

The h is labeling 1 hexagon, so 20h means 20 hexagons.  In these examples students were 

thinking both arithmetically by finding a total, and also multiplicatively because they 

were beginning to grasp the concept of 20h as 20 • h where h is one hexagon.    

 Expressions and equations with variable as label.  Throughout the instructional 

unit, students learned about expressions and equations.  In this stage, variable as label, 

students understood that an expression is a sum of like and unlike terms and viewed an 

equation as finding the total amount (Figures 32 and 33).   
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Figure 32.  Variable as Label and Expressions 

Figure 32.  An example of student work where an expression as a sum of like and unlike 
terms. 
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Figure 33.  Variable as Label and Equations 

 
Figure 33.  An example of student work in which an equation computes the total. 
 
 Students viewed the equal sign to mean “compute” and not as “the same on both 

sides.”  The variables in both examples are labels of objects, known quantities, or specific 

categories.  During this phase, student thinking evolved from arithmetic to algebraic and 

students transitioned from additive to multiplicative thinking.  However, the idea of 

variable as a label was present and students needed to view variables as changing 

quantities.  The next section describes student thinking about a variable as a changing 

quantity.   

 Variable as changing quantity.  After interpreting a variable as a label, students 

understood how to add and subtract like terms, two or more terms that have the same 

variable raised to the same exponent.  However, the idea of a variable as a changing 
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quantity was unclear because, thus far, students had been given a known value and a 

variable was assigned to that value.  A variable as a changing quantity was presented to 

students within the context of the cost of an item (Figure 34).   

Figure 34.  Summary of Variable as Changing Quantity 

 
Figure 34.  Conditions, focus of classroom activity, forms of reasoning, key mechanisms 
that shifted student thinking, and types of thinking observed as students learned variable 
as a changing quantity. 
 
 Changing values.  Students began thinking that a variable could be a changing 

quantity after writing an expression for the cost of a specific quantity of cupcakes (Figure 

35). 

Changing Concept of 
Variable 

Conditions Focus of 
Classroom 

Activity 

Forms of 
Reasoning 

Key Mechanisms 
that Shifted 

Student Thinking 

Type of Thinking 

2. 
Variable as Changing 

Quantity 

 Variable represents 
 changing values of  
 a specific quantity 

Writing an 
expression that can 
be used to find the 
total cost. 

4c + s 
where 4c is the 

cost of 4 packages 
of 6 cupcakes and 
s is the cost of a 
single cupcake 

Symbolizing the 
price with a 
variable and 
acknowledging that 
this price may 
change. 

c is the cost of a 
package of 6 

cupcakes 

Suggesting to 
students that the 
expression is a 
formula that can be 
used at any store. 

Multiplicative 
4 • c  

where c is a 
changing quantity 

Algebraic 
Using symbols in 
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Figure 35.  Student Work Example 4 (Variable as Changing Quantity) 

 
Figure 35.  Student work that shows how students began to interpret a variable as a 
changing quantity. 
 
 In Student Work Example 4, students tried to make sense of letting the variables 

be different or changing values.  The context of price was important in that students 

already understood that prices change at different stores.   

L:   In the cupcake problem, the variable was the cost of the cupcakes. 

Teacher:  Good.  Anyone else want to add to that? 

I:   A quantity was assigned to the variable. 

Teacher:  Good.  We have a letter or symbol that represents a quantity.  
  What about this quantity though?  Remember when we are talking  
  about the cupcakes? 
 
Class:   The cost 
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Teacher:  We had different stores.  A quantity that can what? 

Class:   Change 

Teacher:  Good. A quantity that can change.   

J:   At every single store the cost changed. 

At this point, students were thinking multiplicatively because they knew that 4p is 4 • p.  

Students’ algebraic thinking consisted of using symbols in a meaningful way to write a 

formula.  Also, it is important to note that students were unsure of how to write an 

algebraic expression, but understood how to write a formula (Figure 36). 

Teacher:  So, can I use this formula at any store? 

C:   Yes, as long as you are buying cupcakes.  If you are buying  
  cupcakes, then you need the price of the 6 pack of cupcakes and  
  the price of a single cupcake. 
 
Teacher:  Okay, anyone have anything to add to that? Or anything different? 

M:   I disagree because some stores might not have packs of six. 

Teacher:  Anything different? 

G:   I say you can because you are going to have to buy the exact same  
  thing.  You are going to have to buy 1 cupcake and 4 packages of  
  six but it will just be a different cost. 

     



103 

 
Figure 36.  Student Work Example 5 (Variable as Changing Quantity) 

 
Figure 36.  Student work that shows how students wrote an algebraic expression and how 
they interpreted a variable as a changing quantity. 
  
The word formula was common to the everyday language used in their classroom and, 

therefore, students were able to transition to writing a formula with variables to 

recognizing that a formula can also be called an “expression”.             

 Expressions and equations with variable as changing quantity.  As students 

learned that a variable could be a changing quantity, they transitioned from viewing an 

expression as combining like and unlike terms, to an expression that models the cost of a 

known quantity (Figure 37).   
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Figure 37.  Expressions and Variable as Changing Quantity 

 
Figure 37.  These examples of student work show that students used an expression to 
model the cost of a known quantity. 
 
 In Figure 37, the coefficients in the expressions are representing the known 

quantity and the variable is representing the price.  For example, in 3D, the coefficient, 3, 

represents three Diadora balls, and the variable, D, represents the cost of one Diadora 

ball.  Thus, 3D represents the total cost of three Diadora balls.  Students thought about 

variables and coefficients in a similar fashion in equations; however, they continued to 

see an equation as computing the total amount.  As students interpreted that a variable 

could be a changing quantity, they continued to view the equal sign as equivalent to a 

compute sign (Figure 38). 



105 

Figure 38.  Equations and Variable as Changing Quantity 

 
Figure 38.  These examples of student work show how students used an equation to 
compute the total cost of a known quantity.  In these examples, students interpret an 
equation as the total of an arithmetic or algebraic problem. 
 
 Variable as known value.  Students’ understanding of a variable as a changing 

quantity and a variable as a known value occurred simultaneously.  For example, students 

viewed variables as changing quantities and were immediately able to substitute known 

values for the variables (Figure 39).  Specifically, students were given the price for one 

package of 6 cupcakes and for a single cupcake at three different grocery stores and were 

asked to find the total cost of 24 cupcakes by substituting the known values for the 

variables into the predetermined expression, 4c + s, where c is the price of one package of 

6 cupcakes and s is the price of a single cupcake.  
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Figure 39.  Summary of Variable as Known Value 

 
Figure 39.  Conditions, focus of classroom activity, forms of reasoning, key mechanisms 
that shifted student thinking, and types of thinking observed as students learned variable 
as a known value. 
  
 Known value.  In order for a variable to be a known value, the value for the 

variable must be given and this known value must be substituted for the variable.  Figure 

39 shows how students thought about substituting the known value for the variable by 

drawing arrows.  Additionally, students were thinking multiplicatively.  For example, 

they understood that 7u means 7 • u and once a value is substituted for u, it must be 

multiplied by 7.    
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Figure 40.  Student Work Example 6 (Variable as Known Value) 

 
Figure 40.  This student work shows that students interpreted variables as known values 
because the value for each variable was given. 
 
 The idea of “plug and chug” solidified student thinking about substituting a 

known value for a variable.  Before students learned plug and chug, they did not 

understand that the variable in an expression was completely replaced by the known 

value.   

Teacher:  So some of us are getting it and some aren't.  We will keep   
  practicing.  When I have 4s what does that mean what do I do? 
 
J:   Don't you multiply it? 

Teacher:  Who agrees with J?  Do we multiply?  4s means 4 times s? 

Most raise their hand 

Teacher:  Raise your hand if you think its something else.  Those of you who 
  didn't raise your hands, are you unsure?  
 
B:   Yes 

Teacher:  Now what do I do for s? 

S:   The s stands for 1 isn't it? 

Teacher:  That is when the variable is by itself.  If I now know that it is  
  this… 
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J:   It would be 4 times 2 dollars and 50 cents. 

Teacher:  4 times 2 dollars and 50 cents.  Do you remember what this is  
  called? 
 
Class:   Plug and Chug 

Teacher:  Plug and chug means plug in what you are given and then chug out 
  your answer. 

 
In this discussion about plug and chug, the students were thinking multiplicatively 

because they agreed that 4s means 4 • s.  Additionally, Student J concluded that the 

variable is a known value because the price, $4.50, is given in the problem context.  

Further, written cues, such as drawing arrows or erasing the variable and immediately 

replacing it with a quantity, in conjunction with the verbalization of plug and chug, 

assisted students with learning replacement of a variable with a known value (Figure 41).   
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Figure 41.  Student Work Example 7 (Variable as Known Value) 

      
Figure 41.  This example shows arrows as written cues that allowed students to visualize 
substitution of a value for a variable.  
 
 Students also struggled with the idea that once values were substituted for the 

variables, the terms could be combined.  For example, students understood that unlike 

terms could not be added or subtracted; however, they struggled with the idea that once a 

known value was substituted for the variable, the terms became quantities, and like terms, 

that could be combined. It was critical to create rules for the students to clarify that 

although the original expression might have unlike terms that cannot be added or 

subtracted, once values are substituted for the variables, simplification of the expression 
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by combining like terms became possible.  Figure 42 shows the rules created by the 

teacher to support the students’ learning of variable as a known value.   

Figure 42.  Rules for Variable as Known Value 

 
Figure 42.  The teacher wrote these rules for algebra to assist students with learning the 
variable as a known value. 
 
 Expressions and equations with the variable as a known value.  Students 

continued to think additively, multiplicatively, and algebraically during this stage of the 

instructional unit.  Additive thinking occurred as students substituted the known values 

into an expression and then were able to combine the like terms.  Multiplicative thinking 

was present as students substituted the known value for the variable in an expression, 

such as 4p, where the coefficient must be multiplied by the known value of the variable.  

At this point, students were naturally thinking algebraically because meaningful 

substitution of known values for variables took place to simplify an expression.  

Moreover, students began with concrete mathematical situations and were able to 

transition the problem into abstract expressions or equations.  For instance, students 
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modeled the cost of a 6 pack of cupcakes and a single cupcake with an algebraic 

expression and then were able to find the total cost using given prices for the packages of 

cupcakes.  Once students learned that a variable could be a known value, they viewed an 

expression as an instrument for substitution (Figure 43).  An equation simply became the 

final computation after the plug and chug was complete (Figure 44).   

Figure 43.  Expressions and the Variable as Known Value 

 

Figure 43.  An example of student work that shows using an expression to substitute 
values for variables. 
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Figure 44.  Equations and Variable as Known  

 
Figure 44.  These examples demonstrate that students viewed an equation as the final 
computation of an expression. 
 
 Variable as unknown value.  Students transitioned from viewing the variable as 

a known value to the variable as an unknown value.  In this situation, students had to find 

the value of the variable by solving for the unknown.  Figure 45 provides a summary of 

the variable as an unknown value.  At this point, students were able to make connections 

between variable as a label, variable as a changing quantity, variable as a known value, 

and variable as an unknown value, demonstrating relational thinking by understanding 

the relationship between these ideas of variables.   
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Figure 45.  Summary of Variable as Unknown Value 

 
Figure 45.  Conditions, focus of classroom activity, forms of reasoning, key mechanisms 
that shifted student thinking, and types of thinking observed as students learned variable 
as an unknown value. 
  
 To fully understand the variable as an unknown value, students had to realize that 

the value of the variable was not provided.  In other words, it was necessary to solve for 

or isolate the variable to solve the equation (Figure 46 and Figure 47).  The following 

discussion demonstrates how the teacher presented and the class interpreted when a 

variable was an unknown value. 
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Teacher:  What is the third definition for variable? 

L:   An unknown variable 

Teacher:  Anyone want to add or change that definition?  I, what did we talk  
  about when it came to x? We have 6 + x = 9.  What do we have to  
  do? 
 
I:   Solve. 

Teacher:  Solve for the unknown x.  Who else wants to add to that? 
  The third definition is a letter or symbol that represents an   
  unknown.  That example is 6 + x = 9 and x = ?  Do we know what  
  x is. 
 
J:   Yes. You subtract 6 from 9 and get 3. 

Teacher:  When we first see this do we know what x is? 

Class:   No. 

Teacher:  Just looking at the problem, we don't know what x is so we need to 
  solve for x or solve for the variable.  Unknown variable. 
 

The teacher explained to the students that a variable is unknown if the value for the 

variable is not given.  In other words, students understood that if they had to solve for the 

variable, then it was an “unknown variable”.  If they did not have to solve for the 

variable, meaning that the value for the variable was provided, then the variable was 

interpreted as a “known variable”.  
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Figure 46.  Student Work Example 8 (Variable as Unknown Value) 

 
Figure 46.  This example shows how a student solved for the unknown variable. 
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Figure 47.  Student Work Example 9 (Variable as Unknown Value) 

 
Figure 47.  Examples of how students solved the same equation by isolating the unknown 
variable that represents the cost of the ball. 
 
 In Figure 47, the two examples of student work show how students modeled the 

cost of the ball in an algebraic equation.  In order to write the algebraic expressions, 

students had to know that the cost of the ball is represented by a variable that has an 

unknown value.  Further, in both examples, after writing an algebraic equation, the 

students had to solve for the unknown value of the variable.   

 Balancing a scale.  As students learned that a variable could be an unknown 

value, they also began to see the equal sign as “the same on both sides” or “balanced”.  

Figure 48 is a photo of an interactive pan scale with different color shapes.  This 
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visualization not only made students think about balance, but also forced them to think of 

opposite operations for solving equations and isolating a variable.   

Figure 48.  Scale and the Variable as Unknown Value 

 
Figure 48.  A pan scale with different color shapes (retrieved from Illuminations, 2013) 
used to demonstrate the equality of both sides of an equation.  
 
Moreover, the teacher made the idea of balance and equal explicit to the students by 

engaging students in the following discussion about balance and equality.   

Teacher:  What is this? 

J:   scale 

Teacher:  What do we use scales for? 

G:   To measure 

Teacher:  What is the goal? 

O:   For it to be equal. 
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Teacher:  What is another word for that? 

I:   Balanced 

Teacher:  Balanced.  Good.  I have four shapes up there.  A square, circle,  
  triangle, and diamond.  If I have a red square on this side.  How do  
  I make it balanced? 
 
Class:   Put a red square on the other side. 

Teacher:  If I add a blue circle or two blue circles, what do I have to do to the 
  other side? 
 
Class:   Two blue circles. 

Teacher:  If I add a yellow diamond and another purple triangle, and another  
  triangle, and a circle. 
 
Class:   Yellow diamond, purple triangle, purple triangle, and circle. 

J:   It's so easy. 

Teacher:  This shows that when we have a scale you want to make sure it is  
  balanced.  That is going to be the same concept when it comes to  
  this third definition of variable.  If I am given a problem like 13 =  
  x - 1, according to this rule, what do I have to do?  Raise your  
  hands. 
 
J:   Solve for the unknown variable. 

Teacher:  Solve for the unknown variable or solve for x.  And I wrote x 
 because on the standardized test most of the time the variable will 
 be x.  When I do this, I want to think of the scale and remember 
 that both sides are balanced.  

 
Once students visualized the scale, they were able to solve for an unknown variable by 

balancing an equation (Figure 49).  At this point, students were thinking algebraically by 

studying the structure of an equation and knowing that both sides must have the same 

value.  For example, by viewing the equation in Figure 49 as two sides of a balanced pan 

scale, students interpreted the equal sign to mean that both sides must be the same or 
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have equal numerical value.  More specifically, students realized that the variable, a, 

must have the value of 8 in order for both sides of the scale to have the same value of 13.       

Figure 49.  Student Work Example 10 (Variable as Unknown Value) 

 
Figure 49.  An example that shows how a student used visualizing a scale to balance an 
equation.   
 
 Opposite operations.  Moreover, students learned that the opposite of addition is 

subtraction and the opposite of subtraction is addition.  Equations are balanced using 

opposite operations (Figure 50).  In this example, a student explained how she subtracted 

5 from both sides of the equation since subtraction is the opposite of addition to solve for 

the unknown variable.   

Figure 50.  Student Work Example 11 (Variable as Unknown Value) 

 
Figure 50.  An example that shows how a student used opposite operations to solve for 
the unknown value of the variable. 
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The whole class discussion below also encompasses how students understood using 

opposite operations. 

 
Teacher:  Let's start with 18 + x = 24.  I have 18 plus x equals 24.  I want to  
  do the  opposite of whatever symbol this is.  Do I have a symbol in 
  front of it?  
 
  (pointing to x) 
 
Class:   No. 

Teacher:  What does that mean? 

Class:   Positive. 

Teacher:  So what is my opposite operation? 

Class:   Negative 

Teacher:  Negative or subtraction.  So whatever I do to one side I have to…  

Class:   do to the other 

Teacher:  Alright, so then that leaves me with 18 minus 18 

Class:   Zero 

Teacher writes out how to subtract 18 from 24 using regrouping. 

Teacher:  That leaves me with x equals … 

Class:   x equals 6 

Teacher:  Now I am going to plug it into my original problem and see if I got 
  it right. 18 + 6 = 24.  What is 18 + 6? 
 
Class:   24 

Teacher:  24 equals 24 

In this discussion, students used the terms positive and negative to describe opposite 

operations.  They also knew that negative is interpreted as subtraction and positive is 
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interpreted as addition.  Moreover, they realized that whatever operation is applied to one 

side of an equation, it also must be applied to the other side.     

 When solving for the unknown, students also identified the Addition Property of 

Equality or the Multiplication Property of Equality.  This is shown in Figure 51 where AP 

is the Addition Property of Equality and MP is the Multiplication Property of Equality.   

Figure 51.  Student Work Example 12 (Variable as Unknown Value) 

 
Figure 51.  This is an example that demonstrates how a student solved an equation by 
identifying the Addition Property of Equality (AP) or the Multiplication Property of 
Equality (MP). 
 
 The use of reciprocals when solving for the unknown value of the variable was 

challenging for students.  The class discussed the reciprocal of a number and tried to 

make sense of what it means.   

O:   One fourth c equals five. I multiplied 1/4 by 20 and got 5. 

S:   How did you get 20? 

O:   It takes 1/4 to equal 1.   

Teacher:  Are you looking for a specific word we learned yesterday? 

Class:   Reciprocal. 

Teacher:  What is a reciprocal? 

C:   When you change the fraction around? 

Teacher:  And what goes where? 
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C:   The numerator goes on the denominator and the denominator goes  
  on the  numerator. 
 
Teacher:  Good, so can you use the reciprocal to find your answer in problem 
  number 2? 
 
Class:   Yes. 

Teacher:  Yes, right, so what are you doing with that reciprocal? 

O:   4 wholes. 

Teacher:  The reciprocal is 4 wholes.  What did you do to the other side of  
  the equal sign? 
 
O:   Multiplied it. 

Teacher:  By what? Did you multiply 1/4 by 4/1? 

O:   No 

Teacher:  Did you just know that 1/4 of 20 was 5? 

O:   Yes 

Teacher:  Does anyone have a different way of solving it?  He's right. 

C:   First, I found the reciprocal of 1/4 is 4 and then I did the magic  
  trick and I multiplied them and got 20 and got 20 is equal to c. 
 

The last line shows that Student C understood that using a reciprocal is a “magic trick” 

because multiplying by the reciprocal eliminates the fraction.  However, Student O was 

still solving for the unknown, but not understanding that he is using a reciprocal; only 

that 1/4 of 20 is 5.  

 In the next example of student work (Figure 52), a student solved the equation 

correctly by using a reciprocal.  Moreover, the student wrote two equivalent equations, 
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 and , which demonstrated her understanding that multiplication and 

division are opposite operations. 

Figure 52.  Student Work Example 13 (Variable as Unknown Value) 

 Figure 52.  This student used the reciprocal, which demonstrated her understanding of 
opposite operations and equivalent equations. 
 
 Distributive property.  Students also had to understand the Distributive Property 

in order to solve equations for the unknown value of the variable.  A snapshot of how 

students made sense of this property is given in the following figures (Figure 53, Figure 

54, and Figure 55).  In addition, students discussed the Distributive Property.  Student E 

was able to factor out the n to explain the Distributive Property to his peers.   

C:   If we knew what n was then we could multiply it by 150. 

Teacher:  Okay so what is an equivalent equation to this? 

Class:  n times 150 

F:   60n + 90n  

Teacher:  Okay, so that is 150n.  What do the 60 and 90 represent? 

F:   The cost of backpacks and sleeping bags. 

Teacher:  Alright. Good.  How else can we write that thinking of the   
  distributive  property?  Talk in your groups.  I want to see the  
  distributive property. 
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Students talk in groups 

E:  n and then inside the little parenthesis, it could be 90 + 60, so you could 
 multiply the number of people by each of those and then add them up. 
 Want me to show you?  Like n and then in parenthesis 90 + 60, so n would 
 have to multiply by 90 and by 60.  The numbers that we get right here, we 
 just have to multiply it. 
 

The student work (Figure 52) shows more examples of how the students were making 

sense of the Distributive Property.   

Figure 53.  Example of Distributive Property 

 
Figure 53.  This example shows how students drew arrows to make sense of the 
Distributive Property. 
 
 Again, students used arrows to show the “distribute” step.  It is also important to 

note here that students engaged in additive, multiplicative, and algebraic thinking when 

using the Distributive Property.  Additionally, students came to the conclusion that it was 
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not necessary to use the Distributive Property if no variables were present in the given 

expression (Figure 54).   

Figure 54.  Student Work Example 14 (Variable as Unknown Value) 

 
Figure 54.  These student work examples show students’ use of the Distributive Property. 
 
 The student work in Figure 55 shows that the student was able to break down an 

expression by using the Distributive Property and arrive at an equivalent expression.     
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Figure 55.  Student Work Example 15 (Variable as Unknown Value) 

 
Figure 55.  This example shows how a student broke down the expression by using the 
Distributive Property.  She also demonstrated her understanding of how the expressions 
are equivalent by drawing arrows to the same quantities.      
 
 Expressions and equations with the variable as an unknown value.  As students 

interpreted the variable as an unknown value, they transitioned from viewing the equal 

sign as a compute operation to seeing an equal sign as meaning the same on both sides.  

At this point in the unit, students understood that an equation means that both sides are 

equal or of the same quantity (Figure 56). 
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Figure 56.  Equations as an Equality Relationship 

 
Figure 56.  Initially, students understood the meaning of the equal sign to be computing.  
This example demonstrates that students now understood that the equal sign means that 
both sides are the same or equal.   
 
 Students also saw an equation as both sides are balanced.  This helped students 

see that the same had to be done on both sides to keep the equation balanced (Figure 57).   

Figure 57.  Equations as a Balanced Relationship 

 
Figure 57.  This example demonstrates how and why a student balanced an equation.  At 
this point, students no longer needed a scale to visualize balance. 
 
 Equations were also seen as equivalent expressions.  Thus, the expression on the 

right side of the equal sign must represent the same quantity as the expression on the left 

of the equal sign (Figure 58). 
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Figure 58.  Equation as Equivalent Expressions 

 
Figure 58.  These examples show that students understood that an expression on the right 
of the equal sign represented the same quantity or an equivalent expression to the 
expression on the left of the equal sign.   
 
 Independent and dependent variable.  Up until this point in the instructional 

unit, students understood that a variable could be a label or object, a changing quantity, a 

known value, or an unknown value.  The following whole class discussion demonstrates 

how students had interpreted variables up to this point in the instructional unit. 

Teacher:  What was the first definition that we ever learned for variable? 

J:   A letter or symbol that represents a quantity. 

C:   A variable is a symbol or a letter that you use to represent the thing 
  that you are adding. 
 
L:   A letter or symbol that represents an object. 
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Students were introduced to independent and dependent variables by writing a formula 

for the perimeter of a square.  This activity forced students to relate two variables in one 

equation.  Learning independent and dependent variables promoted relational thinking in 

that students had to see the relationship between these variables to learn functions.  

Figure 59 shows the progression of how students came to understand the meaning of 

independent and dependent variables.   

Figure 59.  Summary of Independent and Dependent Variable 

 
Figure 59.  Conditions, focus of classroom activity, forms of reasoning, key mechanisms 
that shifted student thinking, and types of thinking observed as students learned variables 
as independent and dependent.  
 
 The following is a whole class discussion that occurred after students had time to 

work and think in small groups about writing a formula for the perimeter of a square.  

This discussion continues to demonstrate that students understood equivalent expressions 

and that students were thinking additively, multiplicatively, and algebraically.   
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Teacher:  What is one of the equations you came up with? 

J:   4s = p 

C:   n times 4 equals p 

E:   a + a + a + a equals p 

M:   Also known as 4a 

U:   4d equals p 

L:   4x equals p 

F:   4y equals p 

Teacher:  Are there any others that are not up here? 

D:   b times 4 equals p 

Teacher:  Are there any others without just changing the variables? 

I:   2x + 2x = p 

G:   3a + a = p 

Teacher:  So, what are all of these equations? 

A:   Equivalent equations 

Teacher:  What does equivalent mean? 

Class:   equal 

Teacher:  Equal or the same. 4s = p is called a function.  It has input and  
  output  values.  What that means is that I can input a number here  
  and then get an output here.  If I input, I can input any number and  
  get an output.  The plug and chug. 
 

 Arrow diagram.  Students had to learn a variable as a changing quantity, a 

variable as a known value, and a variable as an unknown value to understand independent 

and dependent variables.  For example, they had to be able to plug and chug the known 
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input value to find the output value in a function.  Moreover, students had to know that a 

variable could be a changing quantity and that a relationship exists between the 

independent and dependent variable (Figure 60).  Students had also become comfortable 

using the language of the mathematics, such as input and domain and output and range.   

Figure 60.  Student Work Example 16 (Independent and Dependent Variable) 

 
Figure 60.  Examples of student work that show their understanding of functions.  The 
arrow diagram contains the inputs and outputs for the perimeter of a square example.  
 
 Verbal function to algebraic function.  Students continued to learn that there are 

different ways to represent the same function.  A function could be represented as an 

arrow diagram, with the inputs and outputs, a verbal function, and an algebraic function.  

Also, students were able to graph the ordered pairs formed by the values of the 

independent and dependent variables (Figure 61).  
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Figure 61.  Student Work Example 17 (Independent and Dependent Variable) 

 
Figure 61.  An example of student work where a function is represented verbally, in an 
arrow diagram, algebraically, and graphically. 
 
 Expressions and equations with independent and dependent variables.  Students 

continued to think of an equation as the same on both sides and balanced.  However, 

students now began to see an equation as relating two variables, independent and 

dependent (Figure 62). 
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Figure 62.  Student Work Example 18 (Independent and Dependent Variable) 

 
Figure 62.  Examples of student work that demonstrate how students related a function, 
arrow diagram, graph, and equation. 
 
 It was essential that students knew how to work with the different types of 

variables in order to understand functions.  Also, students used additive, multiplicative, 

and algebraic thinking to generalize the relationship between a function, arrow diagram, 

and graph.  Students also had to understand that the two sides of an equation had to have 

the same value and this helped them to realize that a relationship exists between 

independent and dependent variables.   

Pretest and Posttest Results 

 Among sixth grade students participating in the algebra teaching experiment (N = 

22), there was a statistically significant difference in the mean score of the pretest (M = 

6.09, SD = 2.35) and the mean score on the posttest (M = 14.27, SD = 3.56), t(21) = -

12.72, p < .001, r =.94.  Therefore, the null hypothesis that there was no difference in the 

scores on the pretest and the posttest is rejected.  Further, the effect size value (r = .94) 
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suggests a high practical significance.  Figure 63 displays the individual student scores on 

the pretest and the posttest.   

Figure 63.  Student Pre and Post Test Scores 
 

 
Figure 63.  A graph displaying the results of the pretest and posttest scores for each 
student that participated in the teaching experiment.   
 

Making Connections 

Arithmetic to Algebra 

 Many tasks in the instructional unit forced students initially to think arithmetically 

to evolve to thinking algebraically.  For instance, when learning about equivalent 

equations, it was easier for students to relate to an arithmetic situation.  Once students 

realized this relationship between arithmetic and algebra, they were able to transition to 

algebra by substituting a variable for a known value (Figure 64).  
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Figure 64.  Student Work Example 19 (Arithmetic to Algebra) 

 
Figure 64.  An example generated by the whole class of the transition from thinking 
arithmetically to thinking algebraically.  

Knowing the Value of the Variable versus Finding the Value of the Variable 

 As students progressed through the learning trajectory, they discovered that a 

relationship existed between knowing the value of the variable and finding the value of 

the variable.  This relationship involved the variable as a known value and the variable as 

an unknown value (Figure 65).  Once students understood this relationship, they were 

able to check their answers by substituting a known value for the variable in the original 

equation.  
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Figure 65.  Relationship between Variable as Known Value and Variable as Unknown 
Value 

 

Figure 65.  This figure demonstrates the relationship between finding the value of the 
variable and knowing the value of the variable.   

Supporting and Organizing Student Learning 

Modifications Made to All Lessons in the Instructional Unit   

 The tasks in the instructional unit were modified and reorganized based on student 

learning.  The following figure (Figure 66) shows a visual representation of how a lesson 

was transformed throughout and after the unit.  Version 1 is an outline of the lesson.  

Version 2 shows the same lesson with examples.  Version 3 is similar to Version 2, 

except the big ideas, small group discussion, and whole group discussion are made 

explicit for the teacher.  The final version of this lesson was completed after the final 
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lesson in the instructional unit was taught.  This lesson, and every lesson in the final 

version of the unit (see Appendix B), contains possible misconceptions and remedies, 

whole class discussions, questions to guide student thinking, small group discussions, the 

process to shift student thinking, and the big ideas intended to evolve from the whole 

class discussion.   

Figure 66.  Lesson Plan Transformation

 

Figure 66.  A visual representation of how the lesson plans transformed throughout the 
instructional unit.   

Documentation of Modifications to Individual Lessons in the Instructional Unit  

 Although every lesson in general was modified to support student learning 

through discussions, daily decisions were also made to modify the mathematical tasks in 

the instructional unit.  These decisions were logged in a table that documented a given 

teaching episode in terms of mathematical meaning, errors and misconceptions, activity 

Version 1 

Version 2 Version 3 

Final Version 
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that led to misconceptions, context of small group discussions, context of whole group 

discussions, the role of the teacher and teacher conceptions, and reasons for modifications 

in the lessons.  Figure 67 shows an example of lesson logging for teaching episodes on 

Day 5 and Day 6. 

Figure 67.  Documentation of a Lesson Log Example 

 
Figure 67.  An example of how the teaching episodes on Days 5 and 6 were documented.  
These logs are a snapshot of each lesson and demonstrate how the tasks were modified to 
support learning. 
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Organizing Student Learning 

 In addition to logging the events of each teaching episode, the researcher also 

used a checklist to show student learning over time.  The researcher and teacher 

examined each student’s written work to record student learning of the algebra topics.  

Figure 68 is the checklist that shows the learning over two days of the teaching 

experiment.  Throughout the teaching experiment, topics were added each day to this 

checklist and written work was analyzed for correctness in order for the teacher and the 

researcher to understand not only which students did not understand a particular topic, 

but also to show the learning of the whole class.           

Figure 68.  Checklist for Organization of Student Learning 

Figure 68.  This checklist shows student learning over Day 2 and Day 3 of the teaching 
experiment.  An “x” means that the student completed the task relating to the topic 
correctly, an “a” means that the student was absent, and a “blank” means that the student 
did not yet understand the topic.   
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Summary  

 This chapter began by providing a context of the setting in which the teaching 

experiment took place.  The first portion of this chapter answered the first research 

question by detailing the whole class realized learning trajectory that emerged through 

the design research study.  The second portion of this chapter provided an analysis of the 

means of supporting and organizing student learning of algebra, including explanations of 

the role of the tasks in supporting learning and what design decisions were made to 

modify the tasks in the instructional unit.   
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CHAPTER V: CONCLUSIONS AND DISCUSSION 

 This study contributes to the research on understanding how to support the 

learning of beginning students in algebra by providing implications for student learning, 

teaching, and curriculum development in mathematics.  The product of the analysis was a 

historical explanation that detailed the pattern that emerged from the teaching experiment 

(Cobb et al., 2003).  The practical and theoretical relevance of the results are discussed in 

the following sections. 

Practical Relevance    

 In this teaching experiment, a learning trajectory evolved based on the students’ 

changing interpretations of a variable.  This learning trajectory has practical implications 

for student learning, teaching, and curriculum development.  The learning trajectory, 

including the conditions, the focus of the classroom activity, the forms of reasoning, the 

key mechanisms that shifted student thinking, and the type of thinking are presented in 

Figure 69. 

Figure 69.  Learning Trajectory for Beginning Algebra  

1.  Variable as Label 
Conditions   Quantity is known 

 Using a variable to keep a record of a specific quantity 
Focus of 
Classroom 
Activity 

 Finding the total of two groups by writing an expression or an 
equation 

adults + children = Total 
a + c = T 

 Using a sum of like and unlike terms to find the total amount 
8 red M&Ms + 4 blue M&Ms 

8r + 4b 
Forms of 
Reasoning 

 Abbreviating the name of a group with the first letter of the 
word 

 Using a letter to represent one object or one group with the 
same classification 

Key  Asking students to share different representations of the 
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Key 
Mechanisms 
that Shifted 
Student 
Thinking 

 Asking students to share different representations of the 
expression 

adults + kids = total 
a + k = t 

2 adults + 5 kids 
2a + 5k 

 Directing students to come up with a more efficient way to 
represent the same expression 

r + r + r + r + r = 
2r + 3r = 

5r 
 Circling sign, coefficient, and variable to combine like terms 

Type of 
Thinking 

 Additive 
Finding the Total 

r + r = 2r 
 Multiplicative 

5 • r 
where r = 1 

 Algebraic 
Generalizing Arithmetic to Algebra 

 Expressions and Equations 
Expression as a sum of like and unlike terms 

Equation as computing a total 
2.  Variable as Changing Quantity 

Conditions   Variable represents changing values of a specific quantity 
Focus of 
Classroom 
Activity 

 Writing an expression that can be used to find the total cost 
4c + s 

where 4c is the cost of 4 packages of 6 cupcakes and s is the cost of 
a single cupcake 

Forms of 
Reasoning 

 Symbolizing the price with a variable and acknowledging that 
this price may change 

c is the cost of a package of 6 cupcakes 
Key 
Mechanisms 
that Shifted 
Student 
Thinking 

 Suggesting to students that the expression is a formula that can 
be used at any store  

Type of 
Thinking 

 Multiplicative 
4 • c 

where c is a changing quantity 
 Algebraic 

Using symbols in a Meaningful Way to model a formula 
 Expressions and Equations 

Expression as modeling the cost of a known quantity 
Equation as computing the total cost 

3.  Variable as Known Value 
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Conditions   Value for variable is given 
 Known value can be substituted for the changing quantity 

Focus of 
Classroom 
Activity 

 Providing the price of an item at different stores and asking 
students to find the total cost using the expression. 

At Walmart, one package of six cupcakes is $6 and a single cupcake 
is $1. 

At Safeway, one package of six cupcakes is $8 and a single cupcake 
is $2. 

At Raley’s, one package of six cupcakes is $7 and a single cupcake 
is $1. 

Forms of 
Reasoning 

 Substituting a given value for the variable 
 Understanding that the coefficient is multiplied by the value of 

the variable 
4c means 4 • c 

Key 
Mechanisms 
that Shifted 
Student 
Thinking 

 Developing the rule of “plug and chug” where once you plug in 
the value, the variable disappears and terms can be combined 

4c + s for 
c = 6 and s = 1 

4(6) + 1 = 24 + 1 = 25 
Type of 
Thinking 

 Multiplicative 
4c means 4 • c 

 Additive 
After plug and chug, combine by adding or subtracting 

 Algebraic 
Using symbols in a Meaningful Way to evaluate an expression 
 Expressions and Equations 

Using an expression to substitute values for variables 
An equation is the final computation of the total of the expression 

4.  Variable as Unknown Value 
Conditions   Must solve for the unknown 

 Unknown variable must be isolated 
Focus of 
Classroom 
Activity 

 Balancing a scale to solve equations and Algebra Touch App for 
isolating the variable. 

t + 2  =  6 
 Using the area of a rectangle formula to find the width. 

A = lw 
if A is 18 and l is 6, find w. 

 Learning distributive property where the variable is number of 
family members and cost is known. 

Let n be the number of family members.  Every member of the 
family needs to buy a backpack that costs $90 and a sleeping bag 

that costs $60. 
1.  Total Cost = n(90 + 60) 
2.  Total Cost = 90n + 60n 

Forms of  Using opposite operations to solve an equation. 
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Forms of 
Reasoning 

 Using opposite operations to solve an equation. 
 The scale must be balanced. 
 The equal sign means that both sides have the same value. 
 Identifying when to use AP and when to use MP. 
AP is Addition Property of Equality and MP is Multiplication 

Property of Equality. 
 

Key 
Mechanisms 
that Shifted 
Student 
Thinking 

 “Making moves” to isolate the variable 
t + 2 = 6 
-2 = -2 
t = 4 

Subtracting 2 is making “one move” to isolate t. 
 Plug and chug can be used to check the answer to an equation 

t + 2 = 6, so 
t = 4 

Check: 4 + 2 = 6 
6 = 6 

 Distributive property is necessary for simplifying an algebraic 
expression into an equivalent expression 

2(x – 3) = 2x – 6 
 In arithmetic, distributive property is not necessary, but 

produces equivalent expressions 
2(3 + 4) = 2(7) = 14 but this is also: 
2(3 + 4) = 2(3) + 2(4) = 6 + 8 = 14 

Type of 
Thinking 

 Additive 
90n + 60n = 150n 

 Multiplicative 
150n means 150 • n 

 Algebraic 
Study of Structure where the equal sign means “the same as” 
 Expressions and Equations 

Equation is the same quantity on both sides 
Equation as balanced 

Equation is seen as equivalent expressions 
5.  Independent and Dependent Variable 

Conditions   A relationship exists between the independent and dependent 
variable 

 If the input is known, the output can be found 
 If the output is known, the input can be found  

Focus of 
Classroom 
Activity 

 Examining the formula for the perimeter of a square. 
P = 4s 

 Modeling a situation with a function using an arrow diagram, 
algebraic function, and graph. 

You are saving money in your piggy bank.  You already have $20 
and you get $5 everyday for doing your chores.  How much will you 

have in your piggy bank after d days? 
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Figure 69.  A learning trajectory that details the changing concept of variable and how 
students learned the CCSS for Expressions and Equations (NGA/CCSSO, 2010).     
 
Implications for Student Learning 

 The progression of learning a variable as a label, a variable as a changing 

quantity, a variable as a known value, a variable as an unknown value, and independent 

and dependent variables was intertwined with learning expressions, equations, and 

functions.  As students learned to work with variables as labels, they no longer thought 

about the numbers that the variable might represent and, thus, achieved manipulation of 

opaque formalisms (Kaput, 1995).  Moreover, a transition from additive to multiplicative 

thinking existed as the interpretation of a variable changed from a variable as a label to a 

variable as a changing quantity.   

 Initially, students viewed the equal sign as an action symbol, meaning that they 

should compute something on the left of the equal sign and place the answer on the right 

of the equal sign (Carpenter, Franke, & Levi, 2003).  The learning trajectory documents 

Forms of 
Reasoning 

 Using a verbal phrase for the formula 
 Writing the formula 

y = 5d + 20 
 Using an arrow diagram 
 Graphing the ordered pairs 

Key 
Mechanisms 
that Shifted 
Student 
Thinking 

 Picking any number for x and plugging this into the equation 
gives a point on the line. 

 The arrow diagram gives the points on the line. 
 Functions can be represented as equations, arrow diagrams, and 

graphs. 
Type of 
Thinking 

 Algebraic 
Studying the patterns through the formula and the Domain and 

Range 
 Functional 

Building and generalizing the relationship between the function as 
a formula, arrow diagram, and graph. 

 Expressions and Equations 
Equation is seen as the same on both sides and balanced 

An equation relates two variables 
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that student understanding of the equal sign as a relationship between two quantities 

(Blanton, 2008) occurred as they interpreted a variable as an unknown value.  This 

finding concurs with Van de Walle et al. (2011) in that students cannot understand how to 

solve an algebra equation without knowing the meaning of the equal sign and variables. 

 Additionally, this study supports previous research (Drijvers et al., 2011; 

Markovits et al., 1986) indicating that students learn functions by understanding the 

representations and components of a function and how they are related.  The learning of 

functions took place after a conceptual understanding of a variable as a label, a variable 

as a changing quantity, a variable as a known value, and a variable as an unknown value 

was present because understanding independent and dependent variables and, thus, 

functions involves these first four ideas of variables.  Therefore, the results of this study 

contribute to the theory that student learning of algebra should be introduced through the 

use of variables not only as changing quantities and unknowns (Fey & Good, 1985; 

Usiskin, 1988), but also as labels, known values, and independent and dependent. 

 The learning trajectory for beginning algebra (Figure 69) contains the type of 

thinking that occurred during each conception of a variable.  Similar to Kieran’s (1989) 

findings, students understood the variable as an unknown value and solving an equation 

by using the systemic structure, the equivalence of the left-hand and right-hand sides of 

an algebraic equation.  Using the systemic structure involved relational thinking in that 

students knew the properties and ways of thinking about operations (Carpenter, Levi, 

Franke, & Zeringue, 2005) and, also, that the equal sign represents equivalence between 

two expressions (Carpenter et al., 2003; Molina et al., 2005).  In this learning trajectory, 

visual salience of algebra, the immediate connection between both sides of an equation 
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(Kirshner & Awtry, 2004), is present during the interpretation of a variable as a label and 

combining like terms, where students were thinking additively.  This visual structure was 

also evident as students learned the distributive property where the left-hand side of the 

equation follows visually from the right-hand side of the equation. 

Implications for Teaching 

 During this study, the teacher implemented, and the curriculum was structured, in 

such a way that encouraged discussions and established a classroom community of 

mathematical thinking and learning in which students felt comfortable sharing 

mathematical ideas (Cobb, Yackel, & Wood, 1992).  Additionally, the learning trajectory 

contains teaching intentions for algebra in the key mechanisms that shifted student 

thinking.  These key mechanisms are important for teaching in that each mechanism has 

to develop before the next phase in the trajectory can occur.  The key mechanisms 

represent essential, small elements of comprehension that, when realized, shift student 

thinking from an initial understanding to making sense of the algebra task.  By using the 

learning trajectory for beginning algebra and focusing on the key mechanisms that shifted 

student thinking, teachers can anticipate these instances of learning and plan and modify 

lessons accordingly.   

 Although objectives for teachers of what students are expected to learn are 

provided in the CCSS for Mathematics (NGA/CCSSO, 2010), teachers need to know the 

big mathematical themes and be able to present these as interconnected topics (Ma, 

2010).  In this teaching experiment, the big mathematical themes were expressions, 

equations, and functions, similar to the headings in CCSS for Expressions and Equations 

(NGA/CCSSO, 2010).  However, the findings of this study suggest that this sequence is 
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embedded within the progression of the changing concept of a variable.  Blanton (2008) 

and Blanton and Kaput (2003) recommended teaching beginning algebra by making 

known quantities unknown and varying known quantities.  The findings of this study 

propose teaching expressions and equations by beginning with the concept of a variable 

as a label and continuing through a variable as a changing quantity, a variable as a known 

value, and a variable as an unknown value, concluding with functions in conjunction with 

independent and dependent variables.                         

Implications for Curriculum Development 

 The instructional unit (Appendix B) used in this study shaped the learning that 

took place (Elsaleh, 2010) and contains student misconceptions that are intended to 

inform teachers in anticipation of teaching each lesson.  The focus of the classroom 

activities and example tasks are provided within each concept of a variable in the learning 

trajectory for beginning algebra (Figure 69).  These activities can be modified in future 

teaching episodes based on student learning.  For example, the tasks given in the learning 

trajectory can be used in algebra curriculum development as a guideline that generates 

additional problems to promote the key mechanisms that shift student thinking.  These 

classroom activities and tasks, along with the forms of reasoning, convey a progressively 

more sophisticated understanding of expressions, equations, and functions transpired 

through the embedded conceptions of a variable.   

 The instructional unit leads to the development of big mathematical ideas by 

linking content and focusing on important mathematics (NCTM, 2000).  Since algebraic 

thinking is developed through good questions that press students to articulate their 

mathematical understanding (Blanton, 2008), the curriculum developed in this teaching 
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experiment was modified to make the big ideas, questions to guide student thinking, and 

the process to shift student thinking explicit.  The curriculum makes the big ideas explicit 

to give advanced notice of the main objectives of each lesson and to guide the teacher 

toward these goals.  Further, the instructional unit shaped the learning that took place 

(Elsaleh, 2010) in that it was based on small group and whole class discussions.  Each 

lesson contained a context that gave students a means for discussion and a purpose for 

doing the mathematics.  Thus, by following this curriculum, the students learned algebra 

by engaging with the content in the instructional unit and by social interaction with their 

teacher and peers.                  

Theoretical Relevance 

 This teaching experiment employed design research, which aims to develop 

empirically grounded theories through the study of the learning process as well as how to 

support that process (diSessa & Cobb, 2004; Gravemeijer, 1994).  In this study, the 

learning theory that emerged was the variable schema for learning beginning algebra.  

The implications of this learning trajectory are discussed in the following section.  In 

addition to this theory, an alternate perspective on Kaput’s (1999) five forms of algebraic 

thinking is introduced. 

Implications of the Variable Schema  

 The sixth grade CCSS for Expressions and Equations (NGA/CCSSO, 2010) are 

organized through the progression of expressions, equations (and inequalities), and 

functions.  Initially, the instructional unit developed for this teaching experiment was also 

based on expressions, equations, and functions.  However, as the unit progressed, it 

became clear that students’ interpretations of variables governed their collective learning 
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of the algebra tasks presented in the unit.  This schema is as follows: variable as label, 

variable as changing quantity, variable as known value, variable as unknown value, and 

independent and dependent variable.  Figure 70 is a representation of how the CCSS for 

Expressions and Equations (NGA/CSSO, 2010) evolved during the teaching experiment. 

Figure 70.  Evolution of the CCSS for Expressions and Equations 

 
Figure 70.  The evolution of learning expressions, equations, and functions as outlined in 
the CCSS (NGA/CSSO, 2010) with the inclusion of the variable schema for learning 
beginning algebra.  
 
 The variable schema for learning beginning algebra should be explored further to 

better understand how students interpret different meanings of variables and how these 

interpretations contribute to their learning of expressions, equations, and functions.  

Moreover, it might be beneficial for in-service and pre-service teacher trainings to 
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include these ideas of variables and how this schema is related to the expression, 

equation, and function progression of the CCSS (NGA/CSSO, 2010). 

New Perspective of the Framework for Algebraic Thinking 

 The five forms of algebraic thinking (Kaput, 1999) were present during the 

teaching experiment.  These forms of algebraic thinking did not transpire in two levels 

(as in Figure 4); alternatively, the learning of expressions and equations emerged from 

the process of mathematical modeling through the meaningful use of symbols.  Figure 71 

introduces this new perspective for a framework for algebraic thinking. 

Figure 71.  New Framework for Algebraic Thinking 

 

Figure 71.  A new, alternate, framework for algebraic thinking that is built around the 
meaningful use of symbols and stems from the process of mathematical modeling. 
 
 The basis of this new framework for algebraic thinking is the meaningful use of 

symbols, manifesting from the process of mathematical modeling.  Students modeled real 
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situations using mathematics by placing an algebra problem in context and this helped 

them make sense of the mathematics and supported conceptual understanding of these 

abstract representations (Earnest & Baiti, 2008).  In this framework, generalization of 

arithmetic to algebra, expressions and equations, the study of structure, and the study of 

patterns and functions emerge from the process of mathematical modeling and formalize 

over time (depicted by the arrows in Figure 71), beginning with the generalization of 

arithmetic to algebra and concluding with the study of patterns and functions.  Algebraic 

thinking is not linear, occurring in separate levels; rather generalization of arithmetic to 

algebra, expressions and equations, the study of structure, and the study of patterns and 

functions result from the process of mathematical modeling through the meaningful use 

of symbols.   

 The new framework for algebraic thinking (Figure 71) should be explored with 

different populations of students to determine how and if these forms of algebraic 

thinking are present.  Furthermore, research should be conducted on algebra curricula that 

incorporate these forms of algebraic thinking, and the training of in-service and pre-

service teachers should be studied to determine if and how these trainings incorporate the 

content knowledge necessary to teach algebra.  Finally, future teaching experiments 

should use the revised learning trajectory as a hypothetical learning trajectory. 
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Appendix A 

Expressions and Equations 
Version 1 

 
Expressions and Equations 

Summary:  
In this unit, students will learn about algebraic expressions.  Students will learn to view an 
algebraic expression as an object and not simply a computation.  An expression is a 
mathematical statement or sentence that expresses calculations with numbers and variables.  A 
variable is a letter that represents a number and can be a changing quantity.  Students will learn 
to write, evaluate, and simplify expressions.  They will also learn how to represent real world 
situations with an algebraic expression and begin to understand that expressions written in 
different forms can be equivalent expressions.  Students will learn how to solve algebraic 
equations by using the addition law and multiplication law.  Students will learn to view the 
equal sign as an equivalence operation and not as an operation to compute.  Students will learn 
the process of solving for a single variable in an equation by using relational thinking.    
Connections to Prerequisite Knowledge: 
 Numerical expressions 
 Using letters to represent an unknown in a word problem 
 Using whole number exponents to express powers of 10 
 Calculating numerical expressions using order of operations 
 Generating a relationship between an input number, the rule, and an output number 
Connections to Subsequent Learning: 
 Expressions that include numbers and variables 
 Variables as changing and unknown quantities  
 Using whole number exponents in numerical expressions 
 Using order of operations to simplify algebraic expressions 
 Use their understanding of solving equations and equivalence to solve problems using formulas and 

graphs 
Common Core State Standards for Mathematics: 
Apply previous understandings of arithmetic to algebraic expressions 
 6.EE.A1: Write and evaluate numerical expressions involving whole-number exponents. 
 6.EE.A2: Write, read and evaluate expressions in which letters stand for numbers. 

a. Write expressions that record operations with numbers and with letters standing or 
numbers.  For example, express the calculation “Subtract y from 5” as 5 – y. 

b. Identify parts of an expression using mathematical terms (sum, term, product, factor, 
quotient, coefficient); view one or more parts of an expression as a single entity.  For 
example, describe the expression 2(8 + 7) as a product of two factors; view (8 + 7) as both 
a single entity and a sum of two terms. 

c. Evaluate expressions at specific values of their variables.  Include expressions that arise 
from formulas used in real-world problems.  Perform arithmetic operations, including those 
involving whole-number exponents, in the conventional order when there are no 
parentheses to specify a particular order (Order of Operations).  For example, use the 
formulas V = s3 and A = 6s2 to find the volume and surface area of a cube with sides of 
length s = ½. 

 6.EE.A3: Apply the properties of operations to generate equivalent expressions.  For example, apply 
the distributive property to the expression 3(2 + x) to produce the equivalent expression 6 + 3x; 
apply the distributive property to the expression 24x + 18y to produce the equivalent expression 
6(4x + 3y); apply properties of operations to y + y + y to produce the equivalent expression 3y. 
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 6.EE.A.4: Identify when two expressions are equivalent (i.e., when the two expressions name the 
same number regardless of which value is substituted into them).  For example, the expressions y + 
y + y and 3y are equivalent because they name the same number regardless of which number y 
stands for.   

Reason about and solve one-variable equations  
 6.EE.B.5: Understand solving an equation as a process of answering a question: which values from 

a specified set, if any, make the equation or inequality true? Use and explain substitution in order to 
determine whether a given number in a specified set makes an equation or inequality true. 

 6.EE.B.6: Use variables to represent numbers and write expressions when solving a real-world or 
mathematical problem; understand that a variable can represent an unknown number, or, depending 
on the purpose at hand, any number in a specified set. 

 6.EE.B.7: Solve real-world mathematical problems by writing and solving equations of the form x + 
p = q and px = q for cases in which p, q and x are all nonnegative  

 rational numbers. 
Represent and analyze quantitative relationships between dependent and independent 
variables 
 6.EE.C.9: Use variables to represent two quantities in a real-world problem that change in 

relationship to one another; write an equation to express one quantity, thought of as the dependent 
variable, in terms of the other quantity, thought of as the independent variable.  Analyze the 
relationship between the dependent and independent variables using graphs and tables, and relate 
these to the equation.  For example, in a problem involving motion at constant speed, list and graph 
ordered pairs of distances and times, and write the equation d = 65t to represent the relationship 
between distance and time. 

Common Core State Standards for Mathematics: 
Mathematical practice 
 MP1.  Make sense of problems and persevere in solving them. 
 MP2.  Reason abstractly and quantitatively. 
 MP3.  Construct viable arguments and critique the reasoning of others. 
 MP4.  Model with mathematics. 
 MP5.  Use appropriate tools strategically. 
 MP6.  Attend to precision. 
 MP7.  Look for and make use of structure. 
 MP8.  Look for and express regularity in repeated reasoning. 
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Lesson 1: Expressions versus Equations 

 
Overview/Rationale:  Comparison of what the equal sign means in arithmetic and what 
the equal sign means in algebra.  In arithmetic, the equal sign means “compute” and in 
algebra the equal sign is a relation of equality between the two sides.  Hold a class 
discussion to come up with examples of what the equal sign is and its different 
meanings.  Does an expression have an equal sign?  Students understanding of the equal 
sign as an equal relationship is essential for developing an understanding of how to 
solve algebraic equations. 
Goals:  
 Students will develop an understanding of the equal sign as an equality relationship, 

rather than a computation. 
 Students will learn that an algebraic expression does not contain an equal sign and 

an algebraic equation contains an equal sign.  
Assessment:   
 Pre-assessment: A whole class discussion where the teacher asks students to 

describe the difference between an expression and an equation. 
 Post-assessment: Student math journals. 
The Lesson:  The teacher will begin the lesson by writing an expression and an equation 
on the board (no variables).  A whole class discussion will take place where the teacher 
asks the following questions: 
How is this expression different from this equation? 
What does the equal sign mean in the equation? 
The teacher will write another expression, 2 + 5, and equation, 2 + 5 = __ + 3, on the 
board.  Students will be asked to complete the two problems in their math journals and 
discuss their answers with their group.  The students will have five to ten minutes to 
discuss in their groups and one person from each group will share their findings, writing 
on the eInstruction tablet. 
Materials: 
 Student math journals 
 pencils 
 eInstruction tablet 
Time: 1 hour 
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Lesson 2: Variables and Like Terms 

 
Overview/Rationale:  Introduce through a whole class discussion the different meanings 
of the word “variable”.  Make a class concept map that brainstorms different ideas about 
variables.  Include real-life examples, graphing examples, and variables as unknown 
examples.  Focus on integrating arithmetic in the discussion (2 + 3 = x and thus, x = 5).  
The whole class will come up with the meaning of “like terms” and why like terms are 
important.  What do like terms look like?  What can you do with like terms?  Variables 
are used throughout mathematics, as well as, other subjects to describe unknown 
numbers and changing quantities.  It is essential that students understand variables and 
like terms to succeed in algebra and future math courses. 
Goals:  
 Students will develop an understanding of variables in mathematics. 
 Students will learn that like terms can be added and subtracted. 
Assessment:   
 Pre-assessment: A whole class concept map. 
 Post-assessment: Student math journals. 
The Lesson:  The teacher will begin the lesson by making a concept map using the word 
“variable” on the board.  The students will come up with their own ideas and definitions 
of variable.  The teacher will lead a discussion about how variables can stand for a 
mystery number.  She will focus on integrating arithmetic and algebra (ex. 3 + 6 = x and 
thus, x = 9).  In their math journals, students will write their own definition of variable 
and three mathematical examples.  Once the students have a solid understanding of 
variables, the teacher will write a sentence on the board, “Three apples + Nine apples =  
Twelve apples.”  The teacher will ask the students to discuss in their groups why this is 
a true statement and how to write it using variables.  One student from each group will 
write their variable equation on the board and the equations will be compared.  (3a + 9a 
= 12a).  This will lead into a discussion about like terms.  Students will be given 
problems in their math journals for adding and subtracting like terms. 
Materials: 
 Student math journals 
 pencils 
 eInstruction tablet 
Time: 2 hours 
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Lesson 3: Making Known Quantities Unknown  

 
Overview/Rationale:  In this lesson, students will generalize from arithmetic to algebra.  
They will begin by working on an arithmetic word problem.  Then, students will be 
presented with an algebraic problem that is similar to the arithmetic problem, except 
with unknown quantities.  Students will work in small groups and discuss how to go 
about solving the problem.  Students must be able to represent unknown quantities using 
symbols, rather than working out simple computation problems.   
Goals:  
 Students will develop an understanding of variables as representing unknown 

quantities. 
 Students will think about word problems algebraically. 
Assessment:   
 Pre-assessment: Arithmetic word problem and algebraic word problem 
 Post-assessment: Student math journals. 
The Lesson: The teacher will write an arithmetic problem on the board and ask students 
to discuss in their groups to solve the problem. (“If Ann has $5 and Joe has $8 more 
than Ann, how much money does Joe have?”).  Then, she will write an algebraic 
problem on the board and ask the students to discuss the problem. (“If Ann has some 
money and Joe has $8 more than Ann, how much money does Joe have?”).  The teacher 
will lead a whole group discussion by asking: 
 How are these questions similar? 
 How are they different? 
 What is the first question asking? 
 What is the second question asking? 
 Can you write an equation for the first question? 
 Can you write an equation for the second question? 
In their math journals, students will complete an activity that makes known quantities 
unknown. 
Materials: 
 Student math journals 
 pencils 
 eInstruction tablet 
Time: 2 hours 
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Lesson 4: Varying Known Quantities  

 
Overview/Rationale:  This lesson shows students that variables can vary, and are not just 
an unknown quantity.  Students will see how to vary a quantity in arithmetic to explore 
patterns, relationships, and variables.  This lesson will be done as a whole class 
exploration and the students will come up with the shared meanings of how to do the 
algebra problem.  This lesson provides students with the opportunity to symbolize their 
thinking and build an understanding of unknown and varying quantities. 
Goals:  
 Students will develop an understanding of variables as representing varying 

quantities and not just unknown quantities. 
 Students will think about word problems algebraically. 
 Students will learn to think beyond arithmetic and generalize quantities. 
Assessment:   
 Pre-assessment: Arithmetic word problem and algebraic word problem 
 Post-assessment: Student math journals. 
The Lesson: The teacher will write an arithmetic problem on the board and ask students 
to discuss in their groups to solve the problem. “I want to buy a tee shirt that costs $14.  
I have $8 saved already.  How much more money do I need to earn to buy the shirt?”).  
Then, she will write an algebraic problem on the board and ask the students to discuss 
the problem.  (“Suppose the tee shirt costs $15.  If I have $8 saved already, write a 
number sentence that describes how much more money I need to buy the tee shirt.  What 
if the shirt costs $16? $17?  Write number sentences for each of these cases.  If P stands 
for the price of any tee shirt I want to buy, write a number sentence using P that 
describes how much more money I need to buy the tee shirt.”).  The teacher will lead a 
whole group discussion by asking: 
 How are these questions similar? 
 How are they different? 
 What is the first question asking? 
 What is the second question asking? 
 Can you write an equation for the first question? 
 Can you write an equation for the second question? 
In their math journals, students will complete an activity that varies known quantities. 
Materials: 
 Student math journals 
 pencils 
 eInstruction tablet 
Time: 2 hours 
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Lesson 5: Algebraic Role of the Equal Sign  

 
Overview/Rationale:  This lesson will help students see the role of the equal sign as a 
relationship between two quantities.  Students may already have the misconception 
that that the equal sign is for performing computations.  In this lesson, students will 
find a variety of pairs of numbers that add to 15.  Students will have small group 
discussion about how many pairs exist and what they are.  Then, the whole class will 
write an algebraic equation showing this sum.  It is important for students to develop 
an algebraic view of equality for future math courses. 
Goals:  
 Students will learn that the equal sign is a relation between two quantities. 
 Students will begin expand their knowledge of variables by writing algebraic 

equations.  
Assessment:   
 Pre-assessment: Finding pairs of numbers that add to 15 and generalizing to 

variables. 
 Post-assessment: Student math journals. 
The Lesson: The teacher will ask each group of students to come up with a variety of 
pairs of numbers that add to 21.  (Each group will be given a different sum).  Students 
will be asked to discuss why each pair of numbers adds to 21.  For example, 1 + 20 = 
2 + 19 = 3 + 18, etc.  Once students have a variety of correct pairs of numbers that 
add to 21, the teacher will ask them to write the same equation using variables.  For 
example, a student may say that x = 1 and y = 20, so x + y = 21.  Students will work 
on problems that develop an algebraic role of the equal sign in their math journals.  
(Ex.  Finding missing numbers.) 
Materials: 
 Student math journals 
 pencils 
 eInstruction tablet 
Time: 1 hour 
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Lesson 6: Learning the Equal Sign with Meaning  

 
Overview/Rationale:  In this lesson, the students will be introduced to solving 
equations.  To help students engage in relational thinking, true/false and open number 
sentence examples will be used.  These examples show that the equal sign is a 
relationship between two quantities and not only an operand.  Students will be asked 
to write their own open sentences and will describe them to other students in small 
groups.   
Goals:  
 Students will learn that the equal sign is a relation between two quantities. 
 Students will learn that the equal sign is a relationship between two quantities and 

not only an operand.  
 Students will write their own open sentences. 
Assessment:   
 Pre-assessment: True/false and open number sentences. 
 Post-assessment: Student math journals. 
The Lesson: The teacher will begin the lesson by writing true/false and open number 
sentences on the board.  For example, true/false (5 + 0 = 5, 6 = 3 + 3, 24 – 6 = 19, 9 + 
14 = 31 – 8) and open number sentences (32 + ___ = 41 + 5, 6 + 6 + 7 = ___ - 5).  
Students will discuss in their groups how to solve these true/false sentences and open 
number sentences.  Once students have a good understanding of these number 
sentences, each group will write their own true/false number sentences and open 
number sentences and the other groups will solve them using whole class discussions 
and the eInstruction tablet.  Students will play the unknown card game.  In their math 
journals, students write three true/false number sentences and solve them and three 
open number sentences and solve them, explaining their reasoning. 
Materials: 
 Student math journals 
 pencils 
 eInstruction tablet 
Time: 2 hours 
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Lesson 7: Learning Variables with Meaning 

 
Overview/Rationale:  In this lesson, students will learn the mathematician’s rule 
where the same symbol or letter in an equation represents the same number every 
place it occurs.  For example, in the number sentence  

___ + ___ + 2 = ___ + 5 + 1 
The ___ must be the number 4 every time.  Students will expand their learning of the 
variable as a placeholder by modeling the following example with algebra: Jane’s 
bookcase contains 17 books.  She takes some books to school and the bookcase is left 
with 12 books.  How many books did Jane take?  This lesson places the variables in 
context, and thus, gives the variables meaning.   
Goals:  
 Students will learn the mathematician’s rule where the same symbol or letter in an 

equation represents the same number every place it occurs. 
 Students will learn that variables can represent a real life situation and thus, 

variables have meaning.  
 Students will expand their knowledge about open number sentences and equality. 
Assessment:   
 Pre-assessment: Open number sentence with mathematician’s rule. 
 Post-assessment: Student math journals. 
The Lesson: The teacher will begin the lesson by writing an open number sentence on 
the board with more than one blank.  The answer for each blank will be the same 
number.  Students will solve for the blank by discussing what they are doing with 
their group.  Once each group has come up with an answer, one student from each 
group will write the answer on the board and explain their group’s reasoning.  The 
teacher will write another open number sentence on the board and again ask students 
to solve for the blank in their groups.  Then, the teacher will write an algebraic 
equation on the board, using a variable, and ask students if this is the same as the 
blanks.  In a whole class discussion, the students and teacher will explore combining 
like terms and solving for the variable.  Students will work on modeling situations 
with open number sentences and solving for the blank/variable in their journals.  
Materials: 
 Student math journals 
 pencils 
 eInstruction tablet 
Time: 2 hours 
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Lesson 8: Learning Variables as Changing Quantities 

 
Overview/Rationale:  This lesson will introduce the students to the graph of a line and 
will give them the equation of the line.  Students will discover that a point on the line 
makes the quantities on each side of the equation equal.  For example, the graph and 
equation of the line will be given for y = 3x + 1.  By finding different ordered pairs 
that work in the equation, the students will see that variables can be changing 
quantities. 
Goals:  
 Students will learn that equations can have more than one variable.                                                                                                               
 Students will learn that a point (x, y) on a line makes the equation y = mx + b true 

and a point not on the line makes the equation y = mx + b false. 
 Students will learn that variables can be changing quantities. 
Assessment:   
 Pre-assessment: Picking points on a line and substituting the points on the line 

into the equation of the line. 
 Post-assessment: Student math journals. 
The Lesson: The teacher will draw a line on a graph and introduce students to the 
equation of the line.  Then, the teacher will ask each group to pick a point on the line 
and substitute the point (x,y) into the equation and see if it makes a true statement.  
One student from each group will present their answer and explain why it makes the 
equation true.  A whole class discussion will be held that focuses on the equation of 
the line and variables as changing quantities.  Students will work together on line, 
equation, and point problems in their math journals. 
Materials: 
 Student math journals 
 pencils 
 eInstruction tablet 
Time: 1 hour 
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Lesson 9: Balance and the Equal Sign 

 
Overview/Rationale:  This lesson will help students conceptualize the equal sign as a 
balance scale, where the two expressions on either side of the equal sign have the 
same value.  This visual conceptualization will attach meaning to the equal sign.  
Students will transition from thinking the equal sign indicates “the answer is” to the 
equal sign indicates “the same as.”  The AlgebraTouch app will be used to during this 
lesson.  Once students understand solving equations on the app, they will work with 
Hands-On Algebra.  This lesson will expand on the last lesson and students will use 
the manipulatives similar to Hands-On Algebra.  In order for a scale to remain 
balanced, both sides must be equal.  
Goals:  
 Students will expand their knowledge of the equal sign and equality.                                                                                                               
 Students will learn that equations must remain balanced. 
 Students will begin to learn the process of solving an equation for the variable. 
Assessment:   
 Pre-assessment: A whole class discussion about balance and visualizing equations 

on the AlgebraTouch App. 
 Post-assessment: Student math journals. 
The Lesson: The teacher will begin the lesson by having students come up with their 
own definition of balance.  The discussion will expand to balancing equations.  
Students will work in their groups on solving simply algebraic equations on the 
AlgebraTouch App.  Students will be asked to write their own equations and solve for 
the variable.  Each group will write an equation and the other groups will solve the 
equation on the board with explanations.  The teacher will show students how to use 
Hands-On Algebra and students will work on problems in their groups.  In math 
journals, students will solve algebraic equations.   
Materials: 
 Student math journals 
 pencils 
 eInstruction tablet 
 AlgebraTouch App 
 iPads 
 Hands-On Algebra 
Time: 4 hours 
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Lesson 10: Decontextualize a Problem 

 
Overview/Rationale:  The whole class will have a discussion about the following 
problem and how to solve the problem: The perimenter of a garden is 20 ft and the 
length of the garden is 8 ft more than the width.   Find the dimensions of the 
garden.  To decontextualize this problem, students will learn that the perimeter of a 
rectangle is given by A = 2l + 2w and will express the length in terms of the width to 
model this problem.  Once the whole group comes up with the symbolic 
representation, students will describe each part of the equation and consider the units.  
This is contextualizing the algebraic equation. 
Goals:  
 Students will connect their previous knowledge of solving equations with writing 

equations.                                                                                                               
 Students will represent real life situations with algebra. 
Assessment:   
 Pre-assessment: A whole class discussion about solving the area problem 
 Post-assessment: Student math journals. 
The Lesson: The teacher will begin by presenting the area problem on the board and 
students will discuss how they would go about solving the problem.  A whole class 
discussion will be held where the teacher asks how to represent length and how to 
represent width and how to represent perimeter.  Once the whole group comes up 
with the symbolic representation, the students will have small group discussions 
about how to solve the problem and the units in the problem.  The teacher will ask 
students for their ideas about what numbers to substitute for each variable and how to 
go about finding the perimeter.  The whole class will solve the equation together.  In 
their math journals, students will be given a similar area problem and asked to write 
the steps about how they would solve for the dimensions. 
Materials: 
 Student math journals 
 pencils 
 eInstruction tablet 
Time: 2 hours 
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Lesson 11: Systems Structure of Algebraic Equations (Equivalence of LHS and RHS) 
 
Overview/Rationale:  In arithmetic, students generalize that 5 + 3 = 8 can be 
expressed as 8 – 3 = 5.  This lesson will deepen students understanding of the 
meaning of the equal sign by looking at the systemic structure of algebraic equations.  
For instance, generalizing that x + 3 = 8 can be expressed as 3 = 8 – x.  During this 
lesson, the addition property of equality and the multiplication property of equality 
will be reinforced (i.e. if a = b, then a + c = b + c and ac = bc).   
Goals:  
 Students will expand their knowledge about equivalence and the equal sign.                                                                                                               
 Students will learn how to write equivalent algebraic equations. 
 Students will continue to learn about the addition property of equality and the 

multiplication property of equality. 
Assessment:   
 Pre-assessment: Writing an equivalent numerical equation. 
 Post-assessment: Student math journals. 
The Lesson: The teacher will write an arithmetic equation on the board and ask 
students to write an arithmetic equation that is equivalent to the one on the board.  
Once students have discussed their answers in their group, explaining why their 
equation is equivalent to the equation on the board, the teacher will write an algebraic 
equation on the board and ask students to write an equivalent equation.  Students will 
share their equations with each other and decide if they are actually equivalent 
equations.  Students will solve the equations for the variable and discuss why they get 
the same answer or not for the variables in the equations.  Students will complete an 
activity in their math journals in which they write equivalent equations. 
Materials: 
 Student math journals 
 pencils 
 eInstruction tablet 
Time: 3 hours 
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Lesson 12: Patterns 

 
Overview/Rationale:  Students will begin to notice and describe patterns after seeing 
pictorial representations on the board.  Then, they will create their own growing 
pattern using pattern blocks.  They will keep track of each figure, the number of 
blocks added, and the total number of blocks.  Using this information, students will 
predict what the 10th figure will look like and how many blocks will be needed to 
build it.  This lesson will lead into writing a rule, or function, for the number of 
blocks in each figure.  
Goals:  
 Students will learn about patterns. 
 Students will learn that a pattern can be represented by algebra. 
 Students will learn that a function can be a rule for a pattern. 
Assessment:   
 Pre-assessment: Noticing patterns. 
 Post-assessment: Student math journals. 
The Lesson: The teacher will display pictorial representations of patterns on the board 
and ask students to discuss what they see.  A whole class discussion will be held 
about what a pattern is and how to represent a pattern using algebra.  Students will 
work on representing patterns using numbers and eventually algebra.  For example, a 
pattern may be, x, x^2, x^3, x^4, etc.  Each group of students will make their own 
pictorial pattern that can be represented using numbers and variables.  The groups 
will exchange pictures and write the rule for each pattern.  In their math journals, 
students will complete a pattern activity. 
Materials: 
 Student math journals 
 pencils 
 eInstruction tablet 
Time: 2 hours 
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Lesson 13: Functions/ Dependent and Independent Variables 

 
Overview/Rationale:  Students will learn that functions have three components: the 
domain, the range, and the rule.  Students will learn that a function can be represented 
in different ways such as verbally, in an arrow diagram, algebraically, and 
graphically.   
Goals:  
 Students will learn about functions. 
 Students will learn that a function can be represented verbally, in an arrow 

diagram, algebraically, and graphically. 
 Students will learn about dependent and independent variables. 
 Students will learn domain and range. 
Assessment:   
 Pre-assessment: Noticing patterns. 
 Post-assessment: Student math journals. 
The Lesson: The teacher will write a verbal function on the board (The perimeter of a 
square is the sum of the sides.)  Students will come up with an algebraic 
representation of this statement.  Then, each group will share what they came up with 
(P = s + s + s + s or P = 4s).  Then, students will be asked to find P for different 
values for the sides of the square.  Students will be introduced to the arrow diagram 
and will be asked to plot the points and graph the line.  Each group will be given a 
similar problem and asked to represent using the four forms for a function.  Each 
group will present their functions on chart paper.  Students will do a similar activity 
in their math journals. 
Materials: 
 Student math journals 
 pencils 
 eInstruction tablet 
 Chart Paper 
Time: 3 hours 
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Appendix C 

Data and Collection To-Do List 

 
1.  Documentation 

 Photograph chart paper, date, number, and organize in file 
 Create log, using a table, of actual lesson and how it was adjusted and what 

happened during the lesson. 
 
2.  Teacher Log 

 Create log, using a table, of teacher recommendations. 
 
3.  Student Learning Checklist 

 Analyze student written work and create checklist 
 Objective of lesson on the top of the checklist and check off student if written 

work shows grasping of this topic 
 
4.  Class Learning Log 

 What students understood, what students had difficulty with, and the next steps 
 
5.  Lesson Log 

 What	  actually	  happened	  in	  the	  lesson,	  how	  did	  the	  lesson	  change,	  and	  why	  
 Next	  steps	  

 
6.  Fieldnotes and Transcripts 

 Type transcript of video and make observational notes in italics (Analysis of this 
can occur at a deeper level after the study) 

 
7.  Key Mechanisms for Shifts in Student Thinking Log 

 Document shifts in student thinking about the lesson objectives 
 
8.  Misconceptions 

 Keep	  track	  of	  misconceptions	  and	  errors	  from	  student	  work	  and	  ways	  to	  
remedy	  these	  misconceptions.	  

 
9.  Revise the lessons and begin revising whole curriculum 

 Look	  at	  tomorrow’s	  lesson	  plan	  and	  identify	  what	  key	  ideas	  and	  potential	  
shifts,	  modify	  the	  lesson	  based	  on	  what	  happened	  in	  previous	  lesson	  

 Give	  the	  lesson	  to	  the	  teacher	  
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Appendix D 

Teacher 
Lesson Reflection Protocol 

 
 

Debriefing Interview after each Teaching Episode and after the Instructional Unit 
 

1. What are some ways that you have noticed children learning Algebra? 
 

2. In general, what do you do to teach Algebra? What curriculum do you use? What 
are some strengths and weaknesses? 
 

3. What do you look for as evidence as student learning? 
 

4. What are some design features should be included in the algebra curriculum? 
 

5. How do you think the lesson/unit went? 

6. What went well in the lesson/unit?  Explain why you think it went well. 

7. If you taught this lesson/unit again, what would you do differently? 

8. Based on your experience as a teacher, were the students learning?  How do you 

know? 

9. What do you plan to teach tomorrow and how will the lesson be adjusted based on 

today’s lesson? 

10. Describe anything else that you would like to add about this lesson/unit.    

 

 

 

 

 

 


