
University of Nevada, Reno

Deep Convolutional Neural Networks for Multilabel

Prediction Using RGBD Data

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in

Computer Science

by

Liesl Wigand

Dr. Monica Nicolescu / Thesis Advisor

May 2014

We recommend that the thesis

prepared under our supervision by

LIESL WIGAND

entitled

Deep Convolutional Neural Networks for Multilabel

Prediction Using RGBD Data

be accepted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

Monica Nicolescu, Advisor

Mircea Nicolescu, Committee Member

Murat Yuksel, Graduate School Representative

Marsha H. Read, Ph. D., Dean, Graduate School

 May, 2014

THE GRADUATE SCHOOL

i

Deep Convolutional Neural Networks for Multilabel

Prediction Using RGBD Data

by

Liesl Wigand

Submitted to the Department of Computer Science and Engineering
on May 18, 2014, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

Robotics relies heavily on the system’s ability to perceive the world around the robot
accurately and quickly. In a narrow setting as in manufacturing this goal is relatively
simple. To make robotics feasible in more dynamic settings we must handle more
objects, more attributes, and events that may be out of the scope of what a system
has been exposed to previously. To this end, the present work focuses on automatic
feature formation from RGB-D data, using deep convolutional neural networks, in
order to recognize, not only objects but also attributes which are more applicable
across objects, including those objects which have not been seen previously. Progress
is shown in relation to more standard systems and near real-time classification of
multiple targets is achieved.

Thesis Supervisor: Monica Nicolescu
Title: Associate Professor

ii

Acknowledgments

Thank you very much to my advisor and committee, as well as my labmates.

iii

Contents

1 Introduction 1

1.1 Motivations . 1

1.1.1 Attributes and Concepts . 2

1.1.2 Multilabel vs Multiclass . 4

1.1.3 Data Representation . 4

1.1.4 Features . 5

1.1.5 Classifiers . 6

1.2 Contributions and Goals . 6

2 Related Work 8

2.1 Attribute Recognition . 8

2.2 Machine Learning . 9

2.2.1 Feature Extraction . 9

2.2.2 Support Vector Machines . 10

2.2.3 Neural Networks . 11

2.2.4 SVM vs NN . 15

2.2.5 Multiclass and Multilabel Learning 16

2.2.6 Tricks for Neural Networks . 19

2.3 Computer Vision Techniques . 22

2.3.1 Features for Data Representation 22

2.3.2 Object Detection . 24

2.4 Speed: Cuda and OpenCL . 25

iv

3 Isomap and Support Vector Machines 27

3.1 Approach . 27

3.1.1 Single Class Classifier . 27

3.1.2 Unknown and Contradictory labels 28

3.2 Implementation . 30

3.2.1 Feature Extraction . 32

3.2.2 Learning Word-Feature Relations 33

3.3 Results . 34

3.3.1 Feature Extraction Results . 37

3.3.2 Word-Feature Learning Results 37

3.4 Discussion and Further Work . 39

3.5 Summary . 41

4 Model Parameters and Neural Networks 42

4.1 Approach . 42

4.2 Implementation . 44

4.3 Results . 44

4.4 Discussion and Further Work . 47

4.5 Summary . 48

5 Convolutional Networks with Video 51

5.1 Approach . 51

5.1.1 Use of Depth Data . 53

5.2 Implementation . 53

5.3 Results . 56

5.3.1 Use of Depth . 57

5.3.2 Mean Subtraction . 60

5.3.3 Speed . 63

5.3.4 Object Detection . 64

5.4 Discussion and Further Work . 66

v

5.5 Summary . 67

6 Multilabel Convolutional Neural Network 68

6.1 Approach . 69

6.2 Implementation . 69

6.3 Results . 72

6.4 Discussion and Further Work . 74

6.5 Summary . 75

7 Discussion and Future Work 76

7.1 Data . 76

7.1.1 RGBD Dataset . 77

7.1.2 NYU Depth Dataset . 77

7.2 Use of Depth Data . 77

7.3 Convolutional Networks . 78

7.4 Multiple Label Prediction . 79

7.5 Improved Speed . 80

7.6 Automatic Structure Determination 81

7.7 Libraries . 81

7.7.1 Kinect, Primesense and OpenNI 82

7.7.2 Scikit Learn . 82

7.7.3 Cuda-Convnet . 83

7.7.4 Caffe and Decaf . 83

7.7.5 Theano . 84

7.8 Summary . 84

8 Conclusion 85

A Terms 87

B Figures 90

vi

C Tables 92

vii

List of Figures

2-1 Neural Network [51] . 11

2-2 Neural Network [18] . 12

2-3 Convolution: First and second show initial convolution steps; final is

the end result. [10] . 13

2-4 Convolutional Neural Network [10] 14

3-1 Training and Testing Process . 30

3-2 Example synthetic images. 31

3-3 Example masked Kinect images from the RGB-D database. 32

5-1 Example of movement through a convolutional network. For simplicity,

only a single image and filter for each layer is shown, applied to only

a single location. In practice each convolutional layer would contain

around a hundred filters which would be applied across the image.

The fully connected layer flattens the data into the resulting label

predictions, and is often a logistic regression layer. 54

5-2 The error on training and testing sets. Training iteration along the

bottom, percent error along the side. 57

5-3 Comparison of error rates during learning using no depth data, depth

data which is unscaled, depth scaled up, and color scaled down. . . . 58

viii

5-4 An example of the system running on an image. Patches are taken

from across the image and predicted separately, then recombined into

the complete image again. Where patches overlap, the most common

prediction is used as the final prediction. This case shows many false

positives. 59

5-5 An example of the system running on an image. Patches are taken

from across the image and predicted separately, then recombined into

the complete image again. Where patches overlap, the most common

prediction is used as the final prediction. This case has perfect predic-

tion. 60

5-6 An example of the system running on an image. Patches are taken

from across the image and predicted separately, then recombined into

the complete image again. Where patches overlap, the most common

prediction is used as the final prediction. Notebooks may be often

misclassified because of their flat shape: the cropped regions around

the notebook include pieces of the turntable. Water bottles may also

have poor classification because they are largely clear, though this is

purely speculation. 61

5-7 The error on training and testing sets. Training iteration along the

bottom, percent error along the side. This network was trained with

color scaled up to suit the depth data. 62

5-8 Comparison of filters learned without and with mean subtraction. Grey

filters essentially contribute no features, and have learned nothing. . 63

5-9 An example of the system running on an image. Patches are taken

from across the image and predicted separately, then recombined into

the complete image again. Where patches overlap, the most common

prediction is used as the final prediction. For further examples, see

Appendix B. 65

B-1 Training and Testing Process . 91

ix

List of Tables

3.1 List of what techniques were used with what parameters varied. . . . 35

3.2 Generated Data Results: 128 total samples, permitted error of 0.2,

degree 3, radial basis kernel. 37

3.3 Generated Data Results with many unknowns: 128 total samples, per-

mitted error of 0.2, degree 3, radial basis kernel. 37

3.4 Generated Data Results: 128 total samples, permitted error of 0.2,

degree 3, radial basis kernel. 39

3.5 Real Data Results: 128 total samples, permitted error of 0.3, degree 3,

radial basis kernel. 39

4.1 List of what techniques were used with what parameters varied. . . . 45

4.2 Kinect Data Results for One Class SVM Black, with Isomap set to 2

neighbors and 100 dimensions. 49

4.3 Kinect Data Results NuSVC RBF Kernel 49

4.4 Kinect Data Results NuSVC Polynomial Kernel 50

5.1 List of what processes were varied. 56

5.2 Time Taken to Process a Frame . 64

5.3 Summary of Results . 66

6.1 List of what processes were varied. 71

6.2 Results For Imagenet size and CIFAR size Networks, with depth data 72

x

6.3 A sample run of training the ImageNet scale network of color and

depth. 72

6.4 Summary of results . 74

C.1 Generated Data Results: One Class SVM, Error Permitted 0.2, Degree

3, Kernel: radial . 92

C.2 Generated Data Results with many unknowns: One Class SVM, Error

Permitted 0.2, Degree 3, Kernel: radial 93

C.3 Generated Data Results: 128 total samples, One Class SVM, permitted

error of 0.2, degree 3, radial basis kernel. 93

C.4 Real Data Results: 128 total samples, One Class SVM, permitted error

of 0.3, degree 3, radial basis kernel. 93

C.5 Kinect Data Results NuSVC RBF Kernel for black. Nu is gradually

increased. 94

C.6 Kinect Data Results NuSVC Polynomial Kernel for “black”. Nu and

Degree are varied. 94

C.7 Kinect Data Results One Class SVM for “blue”. 95

C.8 Kinect Data Results One Class SVM for “dark”. 95

C.9 Kinect Data Results One Class SVM for “green”. 96

C.10 Best Kinect Data Results One Class SVM 96

1

Chapter 1

Introduction

For robotic systems to be feasible outside of controlled settings, they need a more

advanced understanding of the world, and a level of adaptability to new situations

that does not currently exist. The distant goal of a truly autonomous system, seems

ever more possible as techniques in vision, machine learning and artificial intelligence

continue to develop.

In particular, the use of combinations of neural networks and other learning models

have shown state of the art performance in document classification, scene segmenta-

tion, and image retrieval. Unfortunately, there are still limitations to these techniques

that require further study.

The goal of this work is object and attribute recognition. We make use of fea-

ture extraction techniques such as Isomap, and classifiers like convolutional neural

networks and support vector machines in different combinations with cross-validated

parameter settings to predict objects and attributes of objects.

1.1 Motivations

The majority of robots in the world today are employed in factories and similar

environments, where they work in a closed and carefully structured environment, with

little variation. Removing robots from this environment introduces the complications

2

of a complex dynamic environment. Where a robot in a factory may never need to

move more than a few feet, a robot working in a home may need to travel from room

to room in a variety of house plans. When a robot welds a seam on a car that sits on

a conveyor belt, it does not need to identify the car in different positions or in motion

the way a robot in a hospital would need to when interacting with a patient. The

factory robot may see the exact same product every day, while a robot in a school

may see and work with any number of books, papers, students, and activities. To do

well in these situations a robot should be able to learn primitive concepts, which can

be extended and related to new situations.

This is by no means simple. Recognizing a single object can be difficult. Change

the background, the lighting, the size, and an object may become impossible to

recognize. People are presented with these issues everyday, and while their abilities

are not perfect, they still outperform machines. Creating a single system that solves

all these problems is a long term goal; this work focuses on smaller problems which

contribute to a complete solution.

The following sections discuss particular goals and difficulties which are addressed

in the approaches described in later chapters. The main goal is to identify object

attributes, such as smooth, red, or round. This problem leads directly to a need

for multiclass and multilabel prediction, as well as a search for data and features in

the data which can better represent attributes. As a result, the entire pipeline of

the learning process is investigated for potential improvements: data formats, pre-

processing, feature extraction, and classification.

1.1.1 Attributes and Concepts

Concept learning is the central problem of machine learning. The problems of de-

tecting objects, recognizing people, and identifying their pose all rely on finding an

abstract concept based on features extracted from observations. These observations

must be used to develop a model that generalizes the characteristics of the concept.

In practice concept learning is difficult. Concepts may be activities, objects, or at-

3

tributes. They may be associated with things that can be seen or otherwise sensed,

or done. Often the information is incomplete or noisy. To simplify this problem we

focus on objects, types of objects, or their attributes.

Systems that recognize objects may be able to survive in narrow settings, learning

the specific tools they need to use. In more dynamic settings, psychological research

has shown that humans make use of attributes and uses of objects when finding,

identifying and describing them, and it has been shown that computer systems can

do the same [4, 20]. When a person needs to point out a specific object they may say

“the red mug” or more generally “it is flat and round, with brown stripes.” These

attributes are then useful in locating unknown objects, or objects which are similar

to others as in the case of several different cups or plates. These references are useful

across different objects, and may be used to describe an object which has never been

seen before, allowing the system to locate an object without knowing what it is, as

long as the system can recognize attributes.

Attribute recognition is an active area of study, and has been shown to enhance

object recognition, but continues to perform poorly compared to direct object recog-

nition due to issues of overlapping classes and labels which disagree. For example,

while two people may agree that an object is a mug, one may say it is orange, an-

other red, and they may describe it as a large brightly colored mug or as something

for drinking from. Conflicting labels are often ignored based on the assumption that

with sufficiently many examples, there will be a majority which agree.

Attribute learning has the same problems as any classification problem, but these

issues arise sooner and more frequently. Essentially an object may only be described as

one or two objects, such as “vehicle,” “car,” and “sedan,” which are either synonyms

or exist in a hierarchy. The same object may have dozens, or hundreds of attributes

related to color, size, shape, quality, or material, and none of these may have anything

to do with what the object is (a car may be any color). The problem is immediately

broader, requiring more examples and better coverage of the attribute in the training

data. Conflicts between these labels are also more likely when attributes blend and

4

exist in scales and ranges, as in the case of colors and sizes. Reds mix with purples

and oranges; large may only be large in a comparison; some features change with

perspective and setting.

1.1.2 Multilabel vs Multiclass

Successful work has been done to prepare robots for diverse settings, where many

classes are present. Systems exist that can accurately classify images into hundreds

of different classes [45]. However, these systems require large amounts of data, and

generally assume independent classes and single class membership. For example, most

datasets for objects provide a single unique identifier for a given image, so that if an

object is labeled as car it is unlikely that vehicle or automobile are also available

labels in the set. As mentioned above, attribute classifiers cannot generally make this

assumption.

These systems also do not allow separation of objects from their contributing

features. For example, a system may have seen a red book and a blue ball, and could

not predict a red ball, but more generally, if it had seen a red book and a blue book it

would learn to discount color completely and ignore it except when determining the

shape of the object. To avoid losing this information, attributes are a valuable class

of labels.

Multiclass prediction is prediction which allows a sample to belong to one of some

number of classes which could be either two or possibly thousands. Multilabel, or

multitask prediction allows a set of labels to apply to the sample. The simplest way of

implementing both of these is to treat the labels separately, implementing a classifier

per label. This approach and more complicated methods are explored in this thesis.

1.1.3 Data Representation

The richest source of information for the system is often visual, although this is also

the most complex. Video from a camera provides information in 2D, across color

5

channels, and through time, all of which can contain information that is valuable

separately and in combination. The attributes which people use to describe objects

are usually visual, and so the data which this work relies on is image data, with text

labels. We also use depth data as collected by Kinect cameras, and show its influence

on learning.

Generally, text is treated as individual words or groups of words, that is, unigrams,

bigrams, trigrams, etc. In this case we only use unigrams as labels and ignore sentence

structure and words which have no substantial meaning (stop words). The images are

considered directly, except where pre-processing is mentioned. Generally images are

either transformed into a different color space, such as YUV or HSV, and the values

are sometimes normalized [47]. These changes can substantially change the features

and predictions that result from later steps, but vary in usefulness depending on the

methods and application. For example YUV can be especially useful when recognizing

skin tones.

1.1.4 Features

The training data may be in a format that is ready for immediate classification, as

when the data is a simple vector of numbers, but often the data is too complex, as

in the case of video. There may be extra information that doesn’t matter, or the

data may be so complicated that algorithms cannot process it. For example, images

are, of course, multidimensional, and classification systems can usually only handle

“flat” feature vectors. There is also a great deal of noise, in the form of background,

clutter, and slight variations in the image that have little or no influence on the final

prediction of a label. Feature extraction and selection process the data by removing

unimportant information and compressing the portion of the data which represents

the most or best information. Often these features in images are intended to be

invariant to rotations, translations, and scaling, so that they may be found anywhere

in a scene and still recognized. This is discussed further in the next chapter.

6

1.1.5 Classifiers

As mentioned above, classifiers can predict single classes, multiple classes, or several

classes at a time. Classifiers use functions to map data to labels. This is a supervised

learning approach, where labels for each sample are provided and used to adjust the

model. Unsupervised learning involves clustering the data, or otherwise improving

the model of the data without known labels. The complexity of the classifier should

be adjusted to suit the data in order to avoid either over generalizing or over-fitting,

which result in poor performance. Classifiers can also include some sort of feature

extraction, as in the case of Neural Networks. Several types of classifiers are used in

this work, and unsupervised techniques are touched on briefly.

1.2 Contributions and Goals

The final goal is a system that uses RGB-D data to identify objects and their at-

tributes in near real time. To accomplish this goal, the problem was broken down

into smaller systems, and protoypes were developed. Initially we began with a system

to predict multiple labels using separate classifiers, beginning with multiple classes

of objects, then including attributes as well. This system used Isomap to create fea-

tures, and a separate SVM classifier for each label, and was used on generated simple

images, and real color images taken from the Kinect camera (not including depth).

The next system used convolutional neural networks in order to improve 2D feature

learning, and depth data was added. Camera streaming was used during testing,

and prediction approached real time. The final version focused on attributes and the

multilabel problem.

The next chapter presents background and related work. Chapters 3 to 7 describe

the systems implemented to predict attributes and their performance. Chapter 3

describes the initial test system which makes use of Isomap and Support Vector Ma-

chines to predict labels for both generated and real data. Chapter 4 updates the first

project, adding additional types of feature extraction, classifiers and preprocessing,

7

as well as a more complete parameter search. Neural Networks are used in Chapter 5

for multiclass object prediction on video streams. Chapter 6 presents a system that

attempts to predict multiple labels at once using a single convolutional neural net-

work. Results across systems are discussed in Chapter 7. The final chapters contain

future work and conclusions.

8

Chapter 2

Related Work

Real-time recognition, whether of objects, faces or attributes, is essential to continuing

artificial intelligence and robotics work. Contributing to this work, are techniques

from computer vision and general machine learning, with constraints added by the

robotics system. Usually this means any technique is feasible if it can be made fast,

which is not easy. It may also include memory constraints if the system must run

entirely on a single robotic platform. Here, it is assumed that communication between

several machines removes any memory limit.

The following sections discuss algorithms which were used and similar systems

that use these algorithms or which attempt to solves the same problems.

2.1 Attribute Recognition

Studies specific to the issue of attribute recognition are unusual. Recently a paper was

presented which predicts three classes of attributes, color, material, and shape, from

the RGB-D dataset [46]. They assumed that there was only one of each of these labels

per object, so if an object was two colors, they only accepted the more prominent

color. They show object identification based on the three attributes, obtaining 85

to 97% accuracy. Another system uses the PubFig dataset of labeled faces of public

figures to identify attributes such as skin and hair color, as well as lighting [32].

9

This system achieved around 80 to 88% accuracy on most facial features, including

attributes like Masculine, White, Young, Smiling, and Chubby. Both of these systems

narrowed the scope of the problem. The first limits the attributes to be of a certain

type, and only one per type allowed for an object. The second focuses only on human

faces.

2.2 Machine Learning

Machine learning involves the construction of systems that can learn from data. Su-

pervised systems require labeled data and attempt to find the relation between the

input data and the resulting label, while unsupervised methods learn from unlabeled

data by clustering, or otherwise finding structure. The data may be presented directly

to the learning system or preprocessed, often by feature extraction. In this work, the

focus is on data representation and supervised learning techniques, where the data is

presented as images and paired with sets of English labels.

2.2.1 Feature Extraction

Feature representation is an important part of the learning process. Some classifiers

are run directly on the training data, but often the quality of the system is improved

by selecting and creating better representations of the data before the classifier. Fea-

ture selection is the process of dropping features that are unimportant or redundant,

while feature extraction often involves reducing the dimensionality of the data by

compressing the information with a constraint on how much data is lost, or how

useful the remaining data is. This provides a simpler problem to the classifier, by

providing less or lower dimensional data to learn from as well as more relevant data.

The processes of feature selection and extraction may be performed with knowl-

edge of the prediction problem or without. For example, if the goal is to predict the

color of a shape, knowledge about the current accuracy given a set of features can

be used to select those features. The shape won’t matter to a prediction of red, but

10

pixel values within the shape will. However creating the features can require expert

knowledge of the application and finding good combinations of features can be time

consuming. There are automatic techniques that attempt to measure the amount

of information in the data and preserve certain aspects of it. Principal Component

Analysis [25], Independent Component Analysis [22], and Isomap [48] are all examples

of this type of feature extraction.

Isomap is meant to create a limited set of features from a larger feature space

by preserving geodesic distance between samples [48]. This means that points of

data that are close together in the original space are close together in the new space.

Isomap can be seen as a type of kernel Principal Component Analysis, with the

geodesic distances as a kernel. The number of resulting dimensions must be chosen,

either automatically based on training error or a measure of data loss, or chosen by

a user. If this value is too small or large then the resulting space is inaccurate, and

information is lost or poorly represented. This representation can also be poor if the

data was noisy to begin with.

Another feature extraction technique which is used in this system is a type of

codebook feature creation [7]. This method collects overlapping patches from an

image and uses K-Means Clustering to create a set of template patches. Then a

vector of k true or false values is created, where each of the entries indicates that

a given type of image patch was seen in the image. The choice between these two

methods becomes a trade-off between time and space, although for simple data both

may reduce to comparable dimensions.

2.2.2 Support Vector Machines

After features are extracted or without such processing, a classifier is used to model

the data. Support Vector Machines are maximum margin classifiers that construct a

set of hyperplanes to divide the classes [8]. The original space is mapped into a higher

or infinite dimensional space in order to make it simpler to separate, and computations

are simplified by using the kernel trick to map data into an inner product space,

11

without having to explicitly calculate the mapping. The learning algorithm would

use inner products on data in the higher dimensional space, but instead can find them

in the original space with kernel functions.

Support Vector Machines have a special version for single class problems that

are meant for outlier detection. If a dataset has only positive examples, or very few

negative examples this version creates hyperplanes around the positive data instead

of between classes. As a result a margin (how far out to place this boundary) becomes

an important parameter. In practice one-class problems are difficult since they require

much better coverage of the positive class. That is, if the positive class extends farther

than the samples indicate, many false negatives result, and if the negatives do overlap

with the positives, prediction fails. If at all possible, negative samples should be used,

at the very least to aid in selection of the margin.

2.2.3 Neural Networks

Figure 2-1: Neural Network [51]

Neural Networks are models made of sets of neu-

rons connected in one or more layers, through

which inputs are passed to produce outputs.

They were devised in the 40’s, but have not seen

much use until very recently due to their com-

plexity and the difficulty of training [35].

There are many types of neural networks

which vary in depth, shape, what connections are

permitted between nodes and layers, activation

functions and training methods. In its simplest form, a single neuron takes one input

and produces one output. More generally it takes some number of inputs and pro-

duces an output which may contribute to one or more nodes in the next layer. This

is seen in Equation 2.1.

y = σ(W · x+ b) (2.1)

12

Figure 2-2: Neural Network [18]

This function is shown graphically in Figure 2-2, where x is the input vector,

y is the output, W is a matrix of weights, b is a bias term and σ is a non-linear

function such as Sigmoid or hyperbolic tangent. Groups of these neurons are then

linked together to form larger networks.

Autoencoders

Autoencoders are a special type of unsupervised neural network which learn a com-

pressed representation of the input. They do this by having an encoding and decoding

layer, or several sets of such layers. The encoding layers are smaller than the input

dimension, forcing a compression, and which is then reversed by the decoding layers.

Autoencoders are trained by comparing the input to the output, that is, the decoded

values should be the same or as close as possible to the un-encoded values. For clas-

sification, the decoder is removed, and the output of the decoder is used as input to

either a final network layer or other type of classifier which is then trained using the

labeled data.

Denoising Autoencoders have been shown to be more robust to noise, and improve

generalization by adding random noise to the training data. This can be thought of as

13

similar to bootstrapping, and drop-out in other networks. A convolutional denoising

autoencoder has been presented recently [34] and shown to have competitive results

on MNIST [31] and CIFAR [27].

Convolutional Neural Networks

Figure 2-3: Convolution: First and sec-
ond show initial convolution steps; final
is the end result. [10]

Convolutional Neural Networks are designed

to work with images by using 2D convolu-

tions for one or more layers. Given a sim-

ple 2D filter, also called a kernel or con-

volution matrix, it is applied to an image

patch by multiplying each value in the fil-

ter by the corresponding pixel value, then

adding these values together to produce a

pixel value in the next layer. The size of

the output depends on the size and shape

of the image and filter, as well as whether

it is applied in overlapping positions or with

padding around the edges.

Shown in Figure 2-3 is a simple convo-

lution, with no padding, and some overlap.

Padding refers to adding zero valued pixels

around the edges so that the convolution can

run over the edge, while overlap indicates

that the filter overlaps by some amount with

the previous filter position.

In a convolutional neural network, a

node becomes a convolutional operation,

where the weight matrix is a collection of

kernels which are applied to each of the in-

14

Figure 2-4: Convolutional Neural Network [10]

put layers. In Equation 2.2, hkij is the resulting hidden representation of the data at

point i, j after a convolution with filter k. Shown in Figure 2-4 are two layers in such

a network.

hkij = tanh((W k ∗ x)ij + bk) (2.2)

In a color image this means a single convolutional node would be an x by y

by 3 kernel which would be applied to each position in the image with additional

parameters indicating how much overlap and padding in order to produce a new

image of a different dimensionality, where each pixel represents several nearby pixels

from the previous layer. Parameters for this system include padding, overlap, size of

the filters, which are assumed to be square, the number of these convolution nodes,

and whether we consider the channels as separate or connected. Connected channels

means that the system sums across channels or share weights across them, or each

can be treated as a separate network. These networks are generally much larger than

standard networks, especially since the more complicated the data the more filters

are needed to represent it.

15

Convolutional networks have been used recently on ImageNet, CIFAR, and MNIST,

and in combination with other classifiers to reach state-of-the-art performance. A

large GPU implementation of pure convolutional networks was used in the ILSVRC-

2012 competition and achieved top-5 test error rate of 15.3% [28]. Top-5 error rate

is the percent of test cases where the correct solution was not in the top five ranked

predictions. Following the competition, alterations were made to the network struc-

ture and several other reported improvements and extensions [13, 24]. A very recent

work extended the system to perform localization and detection of objects [45]. These

implementations are the inspiration for much of the current work.

2.2.4 SVM vs NN

SVMs perform as well as Neural Networks on a variety of classification problems,

although SVMs perform better than neural networks if these networks are not care-

fully tuned [6, 36]. An unfortunate problem with neural networks is the number of

hyper-parameters that must be selected: the number of hidden layers, the number

of nodes within each layer, the choice of non-linear function, to be applied at these

nodes, and the cost function as well as types of regularization and learning rate.

Several papers have shown that when these parameters are adjusted carefully, neural

networks, especially deep networks, outperform SVMs [2]. Some works have used

both, either combining the classifications of both models, or using neural networks as

feature extractors that feed into SVMs, which get better performance in some cases

then either on its own [21, 49].

There are limitations to each, and problems which are handled better by one or

the other. SVMs train faster than Neural Networks and may require less data, but

if a problem is complex, an SVM will be slower than a comparable Neural Network

when making predictions.

16

2.2.5 Multiclass and Multilabel Learning

An important issue being pursued for many applications is multitask or multilabel

learning. In the simplest classifiers, there are two classes, and the result is True, the

sample is of the class, or False the sample is not of the class. A step up from that is

Multiclass learning, which allows more classes, such as apples, oranges, and bananas,

where it is assumed that every class seen is exactly one of these. Multilabel learning,

as will be mentioned throughout this work, attempts to classify a sample into several

classes, such as apple, fruit, round, and red. This complicates the system as discussed

previously in 1.1.2.

There are techniques for handling this, but they generally simplify the problem

by assuming independence of the labels, or they perform poorly when compared to

other classifiers for multiclass or single class problems. The easiest way to handle the

problem is to have a separate classifier for each label, but this loses any information

that may be gained from other labels. There are several works that use neural net-

works with multilabel output and cost functions, which are relevant to the current

work.

For those classifiers which attempt to predict multiple classes at once, special loss

functions and measures of accuracy are used. Traditionally, for neural networks this

involves Hamming loss, softmax loss, or ranking loss. Accuracy may be given per

class, averaged across all classes, or counted as “all or nothing,” which gives no credit

to samples that are labeled partially correctly. In most cases it is better to give partial

credit, and to use precision, recall, negative rate and F1 score as well to reveal issues

related to unbalanced data and over-fitting. Many papers reference accuracy alone,

but if there is uneven representation of classes, or negatives and positives of each

class, then other scores reveal issues.

Hamming Loss is shown in Equation 2.3. This loss has been popular, and gives

value to predictions which are partly correct, by counting those predictions which are

not correct using xor and averaging across the classes. However, this has been shown

to be less useful then other loss functions and inconsistent for certain problems and

17

types of learning [14, 17, 15].

H(xi, yi) =
1

|D|

|D|∑
i=1

xor(xi, yi)

|L|
(2.3)

where

|D| is the number of samples

|L| is the number of labels

yi is the ground truth vector

xi is the prediction vector

Softmax loss is just like traditional softmax, except that more then just the top

prediction is accepted. As seen in Equation 2.4, softmax produces probabilities for

each class, which sum to one. This is not a good technique for multilabel prediciton:

the more labels are present, the smaller all the probabilities become. However, it has

been shown to work nearly as well as ranking loss, which is currently one of the best

multilabel loss functions [15].

pij =
efj(xi)∑C
k=1 e

fk(xi)

J = − 1

n

n∑
i

c+∑
j

1

c+
log(pij)

(2.4)

where

pij is the probability of class j given sample xi

fj(xi) is the predicted value for class j at sample xi

C is the number of classes

c+ are the positive labels

Ranking loss, and Weighted Approximate Ranking Pairwise loss, shown in Equa-

tion 2.5, and 2.6 have been shown to perform slightly better than softmax, although

18

none achieve very high precision and recall, with the best results being 20 per class

precision, and 50 per class recall, with much higher accuracy of 80 to 90% [15].

Ranking loss is more difficult to use with neural networks since the loss is not directly

differentiable. Instead sub-gradients must be used to approximate the gradient at

discontinuous points.

J =
n∑
i

c+∑
j

c−∑
k

max(0, 1− fj(xi) + fk(xi)))) (2.5)

where

n is the number of samples

fj(xi) is the predicted value for class j at sample xi

c− are the negative labels

c+ are the positive labels

J =
n∑
i

c+∑
j

c−∑
k

L(rj)max(0, 1− fj(xi) + fk(xi))))

L(rj) =
r∑

j=1

αj with α1 ≥ α2 ≥ ... ≥ 0

rj =

⌊
c− 1

s

⌋
(2.6)

where

n is the number of samples

fj(xi) is the predicted value for class j at sample xi

c− are the negative labels

c+ are the positive labels

rj is the rank for class j

s is the number of times we sampled for negative labels

19

To measure the quality of prediction, it is useful to use both per class and across

class measures, especially for unbalanced data where some classes are better repre-

sented in the data than others. There are several versions of precision and recall used

for multilabel problems, and we use the form in 2.7, as well as F1 score to evaluate our

system. Overall precision and recall, as shown in 2.8 are also used. Other methods of

multilabel prediction were considered, but not implemented, and will be mentioned

in section 7.4.

precision =
1

c

c∑
i

N c
i

Np
i

recall =
1

c

c∑
i

N c
i

N g
i

F1 =
2 ∗ precision ∗ recall
precision+ recall

(2.7)

where

c is the number of classes

N c
i is the number of correctly labeled samples for class i (true positives)

Np
i is the number of predictions for class i (true positives + false positives)

N g
i is the number of ground truth labels for class i (true positives + false negatives)

precisiono =

∑c
i N

c
i∑c

i N
p
i

recallo =

∑c
i N

c
i∑c

i N
g
i

(2.8)

2.2.6 Tricks for Neural Networks

There are several useful additions to neural networks which aid in performance. Gen-

erally neural networks are set to have many parameters, more than are needed to

20

represent the data, which would produce over-fitting, but regularization is added to

limit this effect. They also require a large amount of data which can be very difficult

to gather, so there are methods of simulating additional data.

There are several standard ways to prevent over-fitting in Neural Networks. The

first involves using L1 or L2 regularization, where the L1 or L2 norm of the parameters

of the network are added to the cost function. The L1 norm is generally better for

very small amounts of data, while L2 performs better on more data, and also on

rotationally invariant data. It is best to use a combination and set the coefficients

with cross-validation.

L1 =
n∑

i=0

|parami|

L2 =
n∑

i=0

(parami)
2

cost = loss+ λ1 ∗ L1 + λ2 ∗ L2

(2.9)

where

parami is the ith parameter of the model

loss is the loss function

λ1 and λ2 are weights on the regularization terms

cost is the final regularized cost

Early stopping can also prevent over-fitting, by stopping training as errors in-

crease. Generally during training, the error decreases. However this decrease is not

smooth, it may decrease for a while, then increase, then decrease, while the overall

effect is a decrease. Early stopping attempts to detect whether the error is decreasing

overall or not, and stops training if it seems to be increasing instead. There are sev-

eral versions of early stopping which rely on slightly different measures of the change

in error. This work makes use of GL and PQ early stopping, described below. For

21

more information see [41].

Eopt(t) = min
t′≤t

Eva(t
′)

GL(t) = 100 ∗
(
Eva(t)

Eopt(t)
− 1

) (2.10)

where

GL is the generalization loss at epoch t

Eva(t) is the error on the validation set at epoch t

Eopt(t) is the best error up to epoch t

Stop when GL is greater than some α

Pk(t) = 1000 ∗

(∑t
t′=t−k+1Etr(t

′)

k ∗mint
t′=t−k+1Etr(t′)

− 1

)

PQ =
GL(t)

Pk(t)

(2.11)

where

Etr(t) is the training error during epoch t

k is some number of past epochs

Pk(t) is how much larger the average training error was than the minimum error

PQ is how much generalization loss over training progress

Networks can also be made more robust by adding noise to the data (see au-

toencoders) or by random drop-out of values in the network [19]. Dropout, and

DropConnect are techniques that randomly drop either activations or weights in a

network. They simulate an averaging of networks, by in a sense training a single net-

work to represent many architectures: each network with dropped values represents

a version of the full network where the dropped values are either dropped nodes or

22

connections in the graph.

To get the best behavior from neural networks, combinations of the above tricks

are necessary.

2.3 Computer Vision Techniques

Computer vision and machine learning have significant overlap, especially when dis-

cussing recognition approaches. Here several techniques which have been specially

applied to and developed for vision are discussed. The main difference between vision

and other machine learning, is the need to represent 2 and 3 dimensional data. Local

regions in an image can be transformed into a feature, or the system can act on the

pixels directly, but the location of a value and nearby values in an image provide

useful information which should not be ignored.

In simpler classification problems the data may be represented by a few numbers

which are totally independent, as in the price of a house relating to the number of

bedrooms, bathrooms, and floors. In an image, each location contains a set of colors

(or possibly luminance, hue, alpha, or depth) and these values are related to those

nearby. That is, an object will take up a two or three dimensional space in the image,

and the values within this region should be associated in the features we use to classify

our image.

There are established ways to do this, as well as several that show it is possible

to ignore the structure of the data entirely and still make progress. In this work,

feature descriptors are not used in an attempt to find better representations of our

relevant features automatically. The methods for feature extraction are discussed in

the following section.

2.3.1 Features for Data Representation

Often classifiers do not perform adequate processing of the data which is presented.

They assume that the presented features are no more or less than what is necessary

23

to produce a model of the data. The data presented with a problem is often noisy,

not always relevant, often correlated, and otherwise unfit to be directly presented

to classifiers. As a result, most classifiers are preceded by some feature creation

or selection which transform the data into what is meant to be a simpler, or more

accurate representation of the problem. Within vision and more general machine

learning, there are many approaches to this process.

Codebooks

In the simplest case, each value in the data is treated independently, and presented

to the classifier directly. This means flattening the image and presenting each value

from each channel in one large vector. This is not used, but suppose smaller regions

are flattened. The smaller vectors now present information relevant to their location

and the entire image. One method based on this idea relies on codebooks to represent

these flattened regions. Codebooks are sets of features where the vector representing

data is a set of true and false values indicating which “codes” occurred in the data,

while the codes are either selected, learned, or both. For example, these codes could be

standard features mentioned below, or those extracted using dimensionality reduction.

As discussed later, the first portion of this thesis makes use of a codebook of

clustered types of image patches which are found based on unlabeled training data

in an unsupervised manner. This was a useful compromise which allowed the use of

2D features and a classifier meant for flat data.

Receptive Regions

Most classifiers are designed to take one dimensional vectors of features or data, and

are not easily adapted to handling two or three dimensional image data. This is why

feature extraction is often separately used to transform the data, not only into a more

general or shorter representation, but also to limit the dimensionality so it can be

processed by standard predictors.

Traditional methods in computer vision rely on feature descriptors to represent

24

the image. These include HOG, SIFT, and SURF descriptors. SIFT is usually used

for alignment or image stitching, but has also been used for object recognition [33, 26].

HOG feature descriptors are generally used in a sliding window for object detection

and recognition [9]. These features have been used effectively in pedestrian detection,

object recognition, and scene classification. [40] presents an incremental approach

using these features to learn the set of features necessary for visual classification;

whenever the system has difficulty classifying an image, it seeks new features that

are capable of helping differentiate between the multiple classes. Several classes of

features relevant to images are discussed in greater detail below. Our system does

not make use of them due to choices discussed in later sections.

Convolutional Neural Networks get around the issue of representing local infor-

mation by acting as both feature extractors and classifiers. Standard networks also

extract features, but for image processing, convolutional networks are, as mentioned

in the previous sections, meant for 2 and 3 dimensional data, having receptive regions

which scan the image and respond to learned patterns. A well structured neural net-

work learns a representation of images, usually displaying edge, texture, and color

detection in the first layer, and more complicated filters in deeper layers. This net-

work style has shown great success on image classification problems, and has the

added advantage of being implemented on the GPU, which helps with system speed.

There have been many papers released in the past decade on the use of neural

networks as both feature extractors and classifiers. [30] uses support vector machines

(SVMs) and convolutional nets together to characterize objects in variable conditions

of illumination and from multiple viewpoints. [52] demonstrates how a hierarchical

neural network evolves structures invariant to features such as color and orientation,

consistent with physiological findings.

2.3.2 Object Detection

Object detection in vision is the process of finding an object within a frame. If we

remove the assumption that an object is the main content of an image, then we need

25

to account for the presence of other objects or more generally background which we

want the system to ignore. As was discussed in Section 1.1.1, the attributes of an

object may apply to regions of the object rather than the entire surface. The result

is that detection of objects and their attributes is important to identifying where an

object may be and if attributes contribute to the same object or several, to a portion

of an object or the entire thing. This work implements a simplistic detection system

which works reasonably well, and a similar system described in a recent paper uses a

network to predict the bounding box of objects [45].

2.4 Speed: Cuda and OpenCL

Robotics draws on the above fields as well as others, but the focus of this work is

on learning of visual features. To include a prediction system as part of a robotic

setup, it is necessary to be careful with time and space taken by the system. It

is the case in previous work that much of the processing takes place on a separate

machine connected to the robot through a network. It is assumed here that the use

of this setup will continue, and place few limits on the space that the system takes

up. However, the speed of predictions should be as fast as possible.

To improve speed of classification, many current systems use parallel implemen-

tations. If there are separate classifiers, each one may run at the same time. In the

case of a neural network, there are GPU implementations. There are several libraries

available that make use of the GPU and other optimizations, and of course CUDA

or OpenCL may be used to write GPU kernels directly.

Theano provides a python based system for creating highly optimized code which

is compiled into C++ for the GPU [3]. It is the most general system available for

building neural networks. Several research labs have produced narrower implementa-

tions of networks on the GPU, including Cuda-Convnet [28], Decaf and Caffe [13, 24],

and Overfeat [45], each with their own framework for neural networks. There have

been no comparisons of these implementations when used on identical networks.

26

Krizhevsky’s implementation, convnet, is the most flexible, but relies on python

for the initial processing, which can be slow. Decaf and Caffe are based on convnet,

but add some additional types of layers, with Decaf written in python and C++, and

Caffe as a pure C++ implementation. Overfeat provides only the pre-trained version

of a convolutional network trained on the ImageNet dataset, although additional

features may be forthcoming.

The issue with GPU systems then becomes the time required to transfer data to

the GPU, as well as the specific optimizations that depend on the design of the card,

such as how much memory it has, how many processors and the appropriate way

to break up networks, data, and processes among these resources. When designing

neural networks to be run on the GPU, memory can quickly become an issue. Training

is often better when performed on larger batches of images, but GPUs have limited

space for storing both the network and the data. The larger the data, the larger

the network needed to represent it, and the more memory will be needed for both.

Trade offs between size and speed continue, and several systems scale down data

and batch size which also reduces the size of the required network. In spite of these

complications, results are encouraging.

27

Chapter 3

Isomap and Support Vector

Machines

The initial prototype was designed to show the feasibility of predicting attributes

rather than objects, especially when provided with mainly positive examples. Before

using either a specialized feature extraction technique or classifiers that were meant

for multiple labels, a standard feature extraction technique and set of classifiers were

used. This shows the behavior of a standard system on both generated and collected

images, and provides a comparison for further methods. The following prototype was

developed in Python. This chapter is structured as follows: first the issues this project

addresses are discussed, as well as the issues which emerged during development.

Then the implementation and results are shown, and followed by analysis. Finally

extensions and alterations are described.

3.1 Approach

3.1.1 Single Class Classifier

Using a single classifier for a single label, we can learn to predict yes or no. This is

true of both an object and an attribute: so long as the label is something we can see,

28

it is feasible to learn it based on images and labels for the images. Thus, if we have

many apple images, we could design a system learn to predict if an image contains

an apple or not. If our label is an attribute, such as red, we may also learn to predict

this. In both cases there may be issues with breadth of samples (colors, shapes, sizes

of apples; shades of red).

Let us now assume that we want to predict more than a single class at a time.

We may see apples or bananas ; we may see red or blue. There is also a chance that

we will see neither. This can also be handled either by having a separate classifier

for each label, or by using a multiclass classifier. But now let us assume that we

have the objects mug and cup, and the attributes flat and smooth. In both cases we

may now have overlapping classes. This means we may decide that a mug is a type

of cup, or that if a thing is flat it is also smooth. If using separate classifiers this is

still possible. Each classifier worries about its own label, and any gain we might have

by considering relations among the labels is ignored. That is, if something is flat, it

may also always be smooth, but this correlation is not used. Multilabel classifiers can

work on this problem, but are often much less accurate then single class classifiers or

multiclass classifiers which assume a single output is likely.

If the best classifiers are those which have many internal parameters which adapt

to the data and take time to train, such as neural networks, we would rather not have

a separate classifier per label. However, this is a good place to begin, in order to see

the trade-offs between multiclass and single class classifiers.

3.1.2 Unknown and Contradictory labels

Another issue in classification problems is the acceptability of the ground truth labels.

In the narrow case, a set of images may be labeled from a small set of labels; that

is, a list of possible labels is given, and the labeling is done for each of the samples

completely. In this case, completely means that for every possible label, each samples

has a true or false value; it is or is not each label, and this value is never unknown. As

soon as the labels are changed from objects to attributes we increase the possibilities.

29

For a given image the labels red and orange may both be applied. The object may

have a red part, and an orange part, or it may be one solid color which may be red or

orange. Attributes may apply to the whole object or just a portion. An object may

be shiny, but the feature that makes the object appear shiny may be a tiny bright

spot on the surface to one side.

This issue may also occur in object labeling, (for example boat, ship, and vessel,)

but isn’t seen as often, partly because these labels may be collapsed into a single label

to eliminate the problem, and partly because object labels generally apply to a whole

thing rather then being broken down into parts. There have, however, been some

systems which identify objects based on sub-objects, such as using wheel, window,

and door to identify a car. These systems rely on detecting sub-objects first, which

is a technique visited in Section 5.

If the data is collected in a less structured way, for example when using online

sources such as Flickr, then the labels could be anything: sometimes related to what

is seen in the image, sometimes related to the mood or thoughts of the person who

posted it. These are crowdsourced datasets. In these situations, the assumption is

made that the majority of the labels do refer to the contents of the image. The

incorrect, or minority labels will be either manually filtered out with rules provided

by programmers or will not have a great influence on the model during learning since

a slight movement away from the optimum may occur, but will be corrected when

better examples are seen. This still means that the values of many labels are unknown

for a given image. A picture may just happen to be labeled as a coat instead of a

jacket, and it cannot be assumed that it is or is not a jacket. How these unknowns

are handled has a huge influence on the quality of the predictions: while dropping

unknown samples is the safe course, every dropped example is less training data for

the system. A better goal is a system that is robust enough to learn what it can from

known labels, without being heavily influenced by unknowns or incorrect labels.

In the first prototype developed, the unknowns are left out, and the classifiers are

provided with only positive examples to discover whether it is better to assume that

30

Figure 3-1: Training and Testing Process

the unlabeled data is negative, or not. In the next prototype, these examples are

counted as negatives. A method to label these unknowns is briefly explored in this

project, but was too inaccurate at this point to be used.

3.2 Implementation

For this implementation, Isomap [48] and Codebooks [7] were each used for feature

extraction and compared. Features provided by both methods were then fed into a

One-Class Support Vector Machine, one per class to perform classification. This com-

31

bination showed that certain attributes were well-learned, but also reveals a number

of difficulties related to the complexity of the data.

The systems were trained on two sets of data, (generated and real,) each split into

multiple training and validation groups, and performance is evaluated on the unseen

validation data using precision, recall and F1 scores.

Figure 3-2: Example synthetic im-
ages.

The format of the datasets used for training

was based on the eventual goal of learning from

video and audio. Audio is not used, since this

is a complex problem on its own, but there are

resources available to transform audio of speech

into text, or to use the split audio words as labels

directly. The generated images are just shapes

in primary colors in a variety of locations and

positions on plain white backgrounds, which were

all of 500 by 500 pixel resolution. This set is also

used in greyscale to investigate the quality of non-

color predictions when unnecessary information is removed. The other set consists of

RGB images captured with a Kinect camera, some of which were collected within the

lab where the system will be used. The rest are from the RGB-D dataset [29]. The

Kinect has a resolution of 640 by 480. None of these had attribute labels originally,

although there were object labels in the case of the RGBD dataset. A sample of the

generated data can be seen in 3-2, while the Kinect data can be seen in Figure 3-3.

For this experiment the background was masked. The images were annotated in

complete, positive, English sentences. These sentences are provided by humans and

vary in complexity and length, although constraints on positive statements do limit

their content. Generally these sentences include words describing the shape, position

and colors of an object. The positive constraint was added to avoid the complexities

of parsing sentences into positive and negative attributes, which is, as with audio, a

separate and not fully solved problem. There are systems which specialize in this, and

32

the system could be extended with their use. For example, a sentence may be “The

shape is red” but not “The shape isn’t square.” There are separate files containing

negative labels, but a side question studied in this work is the influence of removing

negative examples, or having limited negative examples.

Figure 3-3: Example masked
Kinect images from the RGB-D
database.

As discussed earlier, labels can be unknown or

contradictory. This is even worse when negative

labels are not known. While it would be sim-

ple to assume that an object labeled “red” is not

“blue,” this assumption cannot be made. Even

when providing strict rules for labeling, there will

be mistakes made by human users, and disagree-

ments between them. Unfortunately this is a part

of the problem which is being solved: the ability

to adapt to these variations and to be correct.

While giving good, clean data to the system will improve performance, ensuring

these features of the data is almost impossible without eliminating samples which

may still aid in learning. It is assumed that these labels are not subjective, and any

disagreements will occur so rarely as to have a minimal influence on learning.

A data collection system was implemented that collected the data using the Point

Cloud Library [5]. It uses a depth filter followed by a RANSAC-type planar segmenter

to remove the table beneath the object. The removed values are set to white for color

and a depth of zero, which is used by the Kinect to indicate unknowns or out of range

values. In later prototypes the Kinect data is not masked.

3.2.1 Feature Extraction

This step uses Isomap and an image patch codebook to reduce the training data

feature space from several hundred thousand raw pixel values to around a hundred

features. The version of Isomap used is provided in Scikit Learn, a Numpy and Scipy

based library for machine learning [39]. The codebook method is described in 2.2.1.

33

This technique uses K-Means clustering on the patches taken from throughout the

training images to create template patches which become the codes for the feature

vector. These template patches result in simple edge, pattern, and color templates.

For complicated learning problems k has to be very large, this is supported by the

results presented here. This method is generally faster than Isomap, but reduces

dimensionality less, as discussed in section 3.3. Isomap, in this case was a better

choice for the data, although it requires more memory and time, since the standard

implementation’s memory usage grows with the number of examples, and requires

comparing every pair. Codebooks may be useful on larger datasets, where speed and

space are more important than final dimensionality.

3.2.2 Learning Word-Feature Relations

The feature vectors from either method are used as input to the One Class Support

Vector Machine for each word. The labels are created by stripping out punctuation

from the sentences and transforming to lower case. Had more complicated parsing

been used, then these features would add useful information, such as the difference

between “Titanic” the proper noun and “titanic” the adjective, or “its” versus “it’s.”

It is assumed that the vocabulary for this dataset is narrow enough that many of

these problems are avoided, and that many of these will be removed as un-learnable

labels or stop words. Stop words are those which contribute little or no information

in sentences, such as a, the, is, and and. These are removed both by using a short list

of such words, and by removing any words which occur in less then 5% of samples,

or more than 95%. These labels are unlikely to be learned either because they apply

to everything, such as thing, or to almost nothing, as in the case of vertically.

This approach of using each word as a potential independent label is a “bag of

words” method. Many words change meaning in context, which suggests that pairs

(bigrams) or triples (trigrams) of words would be more useful to find correlation

of features. This would, again raise the complexity of learning and the size of the

problem significantly while providing additional useful information. For now these

34

are not used.

For each word, such as red, every image associated with this label is assumed

to contain red. These images were split into training and validation sets, with the

majority of the data in training. The validation set is used to check the performance of

the trained classifiers on data that was not used for training, to verify generalization.

Multiple such divisions are created and shuffled to be in a random order. This is

done because some training sets result in better or worse classifiers, and even the

order in which examples are presented can influence performance. Thus, averaging

across several possible splits provides more accurate measure of general performance.

Each of the training images is used to train a red classifier. Since the labels were

collected from “positive” statements, negatives were not assumed or provided. This

is why a One Class SVM is used. As mentioned previously, these classifiers do not

perform as well as the standard classifiers do, especially when provided with little

training data. Providing negative labels is not as easy as taking the complement of

the positive labels, or even as simple as asking the audience to label what an object

isn’t. This will be discussed further in Section 3.3.

The One-Class SVM allows for the parameters of kernel choice, training error

bound, and degree of the kernel. These parameters were set according to a small grid

search. The best across classifiers was of degree 3, and error of 0.3, with radial basis

functions, although it would be better to set these on a per class basis.

3.3 Results

The system was tested on 128 generated images of oval, circles, rectangles, triangles

and squares in red, blue, green, yellow, purple, orange, brown, and black. There were

134 real objects in the Kinect data, each of which had a dozen images from different

angles. This data was, as mentioned before, split into positive training cases, and

several positive and unknown validation cases. The validation sets contained objects

and features that were not seen before, in order to show not just generalization from

35

Table 3.1: List of what techniques were used with what parameters varied.

Technique Application Parameters

Background Removal
simplifies data;
preprocessing

Scaling
Normalization axes to scale across
preprocessing

Isomap
Dimensionality Reduction; number of dimensions;

Feature Extraction number of neighbors

Codebooks
Dimensionality Reduction; size of patch;

Feature Extraction size of overlap;
number of patches

One Class SVM
Classification; kernel type;

Outlier Detection; degree of kernel;
bound on error

one image to another of the same object, but also generalization of a feature from

one object to another.

For validation purposes, negative labels were used. These labels were provided for

cases where it was clear that the label was negative, but could not be provided for

all words, as many were ambiguous, such as several which may or may not describe

a learnable feature as in the phrases several shades, several sides, several corners,

and several buttons. This again, reveals the ambiguous and contradictory nature of

the labels. To provide positive labels, sentences were collected. Each image was

presented to a human user, and they were asked to describe the object in short,

positive sentences. These sentences were required to describe what the object was,

focusing on color, shape, texture, and position, without referencing objects which are

not in the image, and without listing traits the object does not have. Thus “The

red cube is on the left” is permitted, while “the cube is not blue like the ball” is not

allowed. To provide negative labels, the list of positives was provided, and used to

create the negatives for each image. This labeling proved difficult to make for labels

such as sharp, which could refer to the resolution, the edges, the brightness, the flavor

or any number of other qualities which may or may not be learned. As such, the final

list of negatives included the words which were definite and inarguable. For example,

36

a white hat without any other color would be labeled as negative for every other color

label, while rarer labels such as side or edge could not be added to either list since

it could be used to describe the hat in certain situations, but not in general. The

positive labels, tended to be obvious, and easy to agree on. It is possible to improve

upon the negative labels provided in this dataset, but in the long-term the problem

of conflicting labels will need to be dealt with as part of the learning procedure,

rather than by forcing structure on the data. To make a truly robust system that is

intended to interact with people in a dynamic setting, it should be able to handle the

disagreements between people, and shades of meaning.

As a result of this ambiguity, partially labeled data was used to update the ground

truth. That is, experiments were run where the system was allowed to update the

labels of unknown data with labels if the known accuracy of the predictor was rea-

sonably high. Unfortunately this did not result in a marked increase in performance,

since the examples which were added to training in this way were those most similar

to those already seen. If the threshold for accuracy was varied more, it may be that

generalization would improve, but this was not studied further.

The dictionary resulting after filtering the sentences of “stop” words was 91 words

for the generated data, and 195 words for the Kinect data. Of these words, 60%

were nouns and adjectives, which were expected to be learned, while the rest may or

may not result in useful classifiers. These other words were left in as a comparison

for the others, and to identify if the system could automatically remove words which

cannot be learned based on performance. The system was implemented in a memory

limited version which avoid loading data until necessary, and clears it as soon as it is

no longer needed, and a memory unlimited trainer which loads everything needed at

once. Training takes roughly forty minutes without memory limits, and an hour and

a half with memory limits.

37

Table 3.2: Generated Data Results: 128 total samples, permitted error of 0.2, degree
3, radial basis kernel.

Word Samples Precision Recall F1
yellow 22 1.0 0.45 0.62
four 26 1.0 0.5 0.66
black 37 1.0 0.62 0.76
circle 37 1.0 0.54 0.70

triangle 38 1.0 0.52 0.68
square 21 1.0 0.33 0.5
blue 18 1.0 0.5 0.66
red 17 1.0 0.64 0.78

Table 3.3: Generated Data Results with many unknowns: 128 total samples, permit-
ted error of 0.2, degree 3, radial basis kernel.

Word Samples Precision Recall F1
three 24 1.0 0.66 0.8
top 19 1.0 0.63 0.77
oval 27 1.0 0.55 0.71
right 19 1.0 0.47 0.64

corners 46 0.96 0.56 0.71
round 34 1.0 0.55 0.71
upper 16 1.0 0.5 0.66
shape 77 1.0 0.74 0.85

3.3.1 Feature Extraction Results

After several values of k were tried, Isomap was given a limit of 100 dimensions to

reduce to based both on performance and memory limits. The generated data was

reduced from 750,000 features of raw color data to 75 features. This is essential,

since the SVM performs well on high dimension data, but only when the number of

samples exceeds the number of dimensions. Raising the number of features beyond

this may better represent the Kinect data, but may also reduce performance of the

SVM, unless further examples are collected as well.

3.3.2 Word-Feature Learning Results

The results for the synthetic data reveal that words referring to color, location and

shape were well-learned in this simple system. Many other words were removed out-

38

right due to poor representation, and even those which remained had very few sam-

ples. Partial results are presented in Table 3.2 and Table 3.3, where the first table

contains results for a subset of the data, while the second contains further examples

which performed well in spite of having few positive samples. For example, many

images were labeled as corners and these were predicted well for squares, rectangles

and triangles, as well as reported negative on circles and ovals, but due to the number

of unlabeled images, these results may not be generalizing as well as they seem to

be, and so should be verified by further testing. Unlabeled data predictions are not

used when calculating the precision, recall, and F1 scores, although these provided

interesting minimum and maximum results when assumed to be either correct or

incorrect.

Varying the allowed error improved performance of some labels and worsened

performance of others as shown in Table 3.4, which reveals that further gains may

be made by actively learning the parameters of the model. The error was increased

to 0.3 from 0.2, which improved results for words such as four and square which are

likely correlated, but resulted in worse performance on others such as red.

The Kinect data did not perform as well, most likely because it covers a broader,

more complex space. This data contained a wider range of colors, had variations

in coloring across objects and more complicated objects, as well as having many

more labels, which were less well represented. Many of the labels only occurred in

relation to a single object, which while providing fair prediction on that item, will

not be generalized to others, and may be correlated with any of that single object’s

features, and so is associated with the object as a whole. For example, shiny might

only be associated with a flashlight, and so will never be predicted for another item,

and will be associated with the entire flashlight, rather than any color or lighting

specific aspect. Colors continued to perform well, but other features are too sparsely

represented to be trusted. Shape was no longer quite as prominent in the vocabulary,

since the shapes were far more complex combinations of simpler shapes. Shape words

were more general, as in round or flat. Location was also less present, since almost

39

Table 3.4: Generated Data Results: 128 total samples, permitted error of 0.2, degree
3, radial basis kernel.

Word Samples Precision Recall F1
yellow 22 1.0 0.36 0.53
four 26 1.0 0.57 0.73
black 37 1.0 0.56 0.72
circle 37 1.0 0.62 0.76

triangle 38 1.0 0.52 0.68
square 21 1.0 0.66 0.8
blue 18 1.0 0.33 0.5
red 17 1.0 0.41 0.58

Table 3.5: Real Data Results: 128 total samples, permitted error of 0.3, degree 3,
radial basis kernel.

Word Samples Precision Recall F1
yellow 22 1.0 0.64 0.78
black 34 1.0 0.64 0.78
blue 35 1.0 0.74 0.85

purple 10 1.0 0.6 0.75
red 60 0.83 0.73 0.77

white 36 1.0 0.58 0.73

all of the objects appeared in the center in the RGB-D dataset, so left, right, top, and

bottom did not appear.

A much larger dataset is necessary for real data, and it may be valuable to collect

images for certain vocabularies in order to narrow the field of possibilities, since

adding any data will also broaden the vocabulary. The color results for real data are

shown in Table 3.5.

These results were published in ICINCO 2013 [50].

3.4 Discussion and Further Work

This project revealed the difficulties surrounding the labeling task, including ambigu-

ous labels, unknowns, and negatives. It also revealed the complexities introduced

40

by even simple real-world scenes, and the scale of the problem. Given hundreds of

thousands of training images, all at least partially labeled, these problems may disap-

pear, in the sense that contradicting labels will be overwhelmed by a majority which

agree, and lack of negatives is less of a problem when a class is well represented by

the training data. However, collecting such large amounts of data accurately is an

issue. Even using methods like bootstrapping or using images labeled on the Internet

can introduce an undesirable amount of error, in the first case because your initial

dataset must still have fair coverage of the data space, and in the second because

many more of these labels are likely to be incorrect, and the images will vary in

setting, resolution, and quality.

Small gains may be made with a broader parameter search for Isomap and the

SVMs, and with parameters specific to each label in the case of SVMs. However, this

will not solve the existing problems with these methods.

It is possible that Isomap poorly represents the features, or only represents certain

features well. It has been shown to take up more time and space than other methods,

and is not robust to noise. This analysis leads to the goal of an improved feature

extraction procedure which adapts to the problem with training as well, and hopefully

which is more memory efficient, which will improve features, as well as make it possible

to work with more data.

The problem seen for most of the data is a high false negative rate. This means

the bounds created by the one class SVM are too tight, cutting out examples that are

too close to the boundary, usually because they were not well represented in training,

or because the degree and error of the classifiers were too small. Generally negatives

are well labeled since they are far from the space the positives lie in. It would be

beneficial to use even a few negative examples, and a one class classifier not be used

in order to learn a more reasonable boundary that relies on more data.

More data would certainly aid in learning, and more samples are added for the

experiments in the following chapter. It may also be advisable to limit the vocabulary

further and verify the completeness of labeling with respect to these select labels,

41

rather then allowing for variation and unknowns.

Memory use quickly became an issue, and in order to add more data, it is necessary

to investigate online techniques, and other ways of loading data in smaller sets during

training and validation.

3.5 Summary

This chapter presented an initial prototype for attribute prediction in images which

relies on Isomap and a separate One Class SVM for each label. The data for the

prototype was simplified by background removal, and the sentences contained only

positive statements. It was shown that this system is capable of recognizing colors,

shapes and location in generated data, and colors and shapes in real data taken from

a Kinect camera. While these result are fair, attaining an F1 score from .7 to .9 for

the best represented labels, improved results are needed, especially on the real data

which performed poorly compared to the generated data. This protoype possesses

the capability to predict certain attributes well, and indicates the potential of this

system if results can be improved by use of additional data, and improved feature

extraction and classification. The results from this chapter were in the proceedings

of ICINCO 2013 [50].

42

Chapter 4

Model Parameters and Neural

Networks

After results were collected from the Isomap and SVM system, it was determined that

more data should be collected, and that improved feature extraction be pursued. It

was also a goal to find methods that would allow a portion of our data to be loaded

and trained one at a time, to avoid filling up memory. In order to handle limited or

incompletely labeled data, it was also useful to find techniques that were partially

unsupervised to make best use of all samples. Since there are constraints on both

time and space, limiting the number of classifiers is a goal, which is why multiclass

and multilabel systems are explored as well as single class, although in this prototype

they are not used as such. More complete parameter searches were also made for each

of the techniques. Negative examples were also added to training of the classifiers

which permit them.

4.1 Approach

This phase broadens the Isomap and SVM approach and adds additional feature

extractors and classifiers to the system. A framework that provided three formats for

the data, a choice of feature extractors and classifiers, and a selection of parameters for

43

each of these was developed. Data may be scaled across different axis and values, for

example across pixels, across a color, or within a given location. Additional samples

may be bootstrapped either by small transforms, blurring or reflection, and may

be presented to the extractors and classifiers as flat vectors, patches, or as the raw

images. The feature extractors that were used include Isomap, Convolutional Neural

Networks, and Denoising Autoencoders. Classifiers include One Class SVMs, and

Nu SVC, which are variations on Support Vector Machines, as well as Convolutional

Neural Networks and Denoising Autoencoders, which can also be used for feature

extraction.

In the initial test, Isomap and one class SVMs were used as in the previous Chap-

ter. A separate classifier is trained for each label, and a grid search of parameters is

performed per classifier to find the best combination of settings for each label. This

was done to show the improvements to be had by carefully setting the parameters of

the system.

In the second test, Isomap was used, this time in combination with a Nu SVC. Nu

SVC is a version of nonlinear support vector machines which uses the Nu parameter

to put a limit on the number of support vectors. Positive and negative examples

were used for training. This is done to see the value of using even a very limited

number of negative examples to train a multiclass SVM rather than a one class SVM.

Parameters were searched and set per classifier, with a classifier per label.

In the final tests, autoencoding and convolutional neural networks are used. Au-

toencoders are a type of neural network which provide an unsupervised way to use

data which is partially labeled or unlabeled, which allows for use of data which before

was simply dropped from training [16]. They are also able to handle more variation

in the data. Networks have batch training, which makes them easier to train with

limited memory, although the networks themselves may take up more space than

other methods. Convolutional Autoencoders are also intended to work on images,

and should perform better than flat networks. Both Convolutional Autoencoders and

standard Convolutional Neural Networks were implemented and used as joint feature

44

extractors and classifiers.

4.2 Implementation

A framework was developed which allowed the selection of different feature extractors

and classifiers, as well as different data pre-processing. Isomap, CodeBooks, Convo-

lutional Neural Networks, and Autoencoding Convolutional Neural Networks were

made available as feature extractors, as well as a number of others which were not

used for these experiments. One class SVMs and the standard Support Vector Clas-

sifier with Nu parameter, as well as the two types of neural networks were available

as classifiers. Combinations of these were tested, with narrow grid searches of their

parameters on both the synthetic and Kinect data. Theano was used to implement

the neural networks with the guidance of the Deep Learning Tutorials provided at

deeplearning.net [3]. Theano provides a system for defining mathematical expressions,

including those that define neural networks, which are then compiled into optimized

code for either the CPU or GPU. It provides functions useful for deep learning, such as

gradient calculation for parameters within an arbitrary function such as the function

describing the neural network. Codebooks were implemented in python according to

[7]. The other classifiers, feature extractors and scaling were provided by Scikit Learn

modules [39].

4.3 Results

The one class SVM gained some in performance with a more complete parameter

search. Shown below in Table 4.2 are the results for the word “black” with Isomap

set to use the two nearest neighbors and reduce to 100 dimensions. As can be seen,

the F1 measure and accuracy have both increased when the degree was decreased

from the previous best. Similar improvements were found for other labels. Further

examples follow. For further results see Appendix C.

45

Table 4.1: List of what techniques were used with what parameters varied.

Technique Application Parameters

Masking
simplifies data;

removes background;
preprocessing

Scaling
Normalization axes to scale across
preprocessing

Isomap
Dimension Reduction; number of dimensions;

Feature Extraction number of neighbors

Codebooks
Dimension Reduction; size of patch;

Feature Extraction size of overlap;
number of patches

One Class SVM
Classification; kernel type;

Outlier Detection; degree of kernel;
bound on error

NuSVC
Classification; kernel type;

degree of kernel;
bound on error

CNN

Classification; number of layers;
Feature Extraction number of filters;

size of filters;
size of overlap;

momentum;
learning rate;

batch size;
etc

Autoencoder
Classification; see CNN;

Feature Extraction

46

Table 4.3 and 4.4 show the initial results of using Isomap with a non-linear SVC

per class. Nu is the NuSVC permitted training error. Table 4.3 shows results using

radial basis functions and Table 4.4 polynomial kernels. The parameters of each

SVM are varied on a per class basis, and this shows that, as determined in the

earlier project, performance can be improved by changing these carefully per class.

Unbalanced classes and lack of training data continue to be an issue. Labels which

had very few examples or very many examples have been removed because the learned

behavior was to predict all zero or all one. This effect can be handled by adding more

examples, removing examples, or by weighting the examples with prior probabilities,

but in this case it is used to eliminate labels which cannot be learned from the dataset.

These poorly learned labels are found by the behavior of the accuracy and F1

score in both training and validation. Over-fitting is shown as very high accuracy,

and a very small F1 score, or good performance on training with poor performance

on testing. Overall the results are better for more classes with the addition of the

negative examples, extra hyper-parameter searches and some additional data, but

several labels are better modeled with a One Class SVM than with a binary classifier

which uses negative examples.

The lack of variation in the data, as well as the correspondence of certain labels

can be seen in these values. The fact that the one degree SVM performs so well

for most cases may mean that these labels are simple to identify but are more likely

to be the result of a very narrow representation in the data. For example, box and

cereal only occurred on cereal boxes and so their scores are exactly the same due to

the narrow set of objects in the data. Had there been additional objects, such as

Kleenex box, or cereal bowl the results would vary more, and it is likely that they

would be worse. There are also words like side which was mostly used with square

or box shapes, but also occasionally used to describe objects which varied in color,

shape or pattern as in “The cap has a picture on one side” or which describe position

such as “The box is lying on its side.” This classifier successfully marks most boxes

as side but does not generally identify the rarer uses. Select examples of a complete

47

grid search are shown in Appendix C.

The initial use of convolutional neural networks showed a tendency to overfit as

well as respond poorly to unbalanced data. The network would initially do fairly

well, and then quickly move to predicting the most common class only. This is at

least partly due to the data which is unbalanced, and contains mainly negative and

unknown examples. This may be one of the situations where a multiclass classifier

would do better, since there is better representation across all classes then for each

class. To clarify, if each class is represented by a fifth of the samples, but the classifier

is only predicting a single class, then it appears the positive case occurs a fifth of the

time, which can skew prediction. However, if the classifier is aware of other classes

it is usually designed to better use this information. It is also likely that additional

extensions to the network are needed. Straight implementation of a neural network

without special additions produces fair results on the most simple data, such as

MNIST, but when applied to more complicated data, additional regularization is

needed. This means adding preprocessing, or the methods discussed in Section 2.2.6.

On a side note, there were certain combinations of parameters that caused feature

extractors or classifiers to produce NaN or Inf values. This is not likely to be either an

error in the data or the library, both of which are tested, but rather a set of parameters

which cannot be used to represent the data, and cause the feature extraction to fail

to represent the data well. This was not further investigated, but should be kept in

mind during further experiments.

4.4 Discussion and Further Work

This extension to the initial project showed improved performance, and the variety

of performance that could be attained with proper hyper-parameter search. Results

improved across classes with Isomap and standard SVMs. However, space became

a serious issue, and data had to be loaded in batches. It was also time consuming

to train separate classifiers for each word, and to find the best classifiers in a larger

48

parameter space on a per word basis. Proper search of parameters involved, for

example, setting two parameters for isomap, one can be set two ways, the other four

ways, three for support vector machines, which can be set two, four and five ways

respectively. Each combination is trained for each word, with seventy-five words for

generated data, and perhaps ten different cross-validation groups. This means 2 ∗ 4

possible settings for Isomap and 4∗2∗5 possible settings for the SVMs, or 320 possible

combinations that should be tried for each word, ten times, for a total of 240, 000

separate training iterations. One of the largest contributions to this number is the

per word training, which leads to the pursuit of multiclass and multilabel classifiers

in the next chapters.

4.5 Summary

This chapter described extensions to the previous system, including a larger parameter

search and the addition of several other feature extraction and classification meth-

ods. These included convolutional neural networks and standard multiclass support

vector machines. Results from the previous chapter were improved by altering the

parameters of both Isomap and the One Class SVM. Several labels showed improved

performance when classified by the standard SVM, while others were better modeled

by the One Class SVM.

The neural networks implemented here failed to model the data, though this is

likely due to the very limited set of parameters that were tested and the lack of

regularization. Such extensions are likely to greatly improve the performance of the

networks.

49

Table 4.2: Kinect Data Results for One Class SVM Black, with Isomap set to 2
neighbors and 100 dimensions.

Kernel Error Degree Accuracy Precision Recall Specificity F1
RBF 0.2 2 0.95 1.0 0.80 1.0 0.89
RBF 0.2 3 0.95 1.0 0.80 1.0 0.89
RBF 0.2 4 0.95 1.0 0.80 1.0 0.89
RBF 0.3 2 0.79 1.0 0.20 1.0 0.33
RBF 0.3 3 0.79 1.0 0.20 1.0 0.33
RBF 0.3 4 0.79 1.0 0.20 1.0 0.33
RBF 0.4 2 0.89 1.0 0.60 1.0 0.75
RBF 0.4 3 0.89 1.0 0.60 1.0 0.75
RBF 0.4 4 0.89 1.0 0.60 1.0 0.75
RBF 0.5 2 0.73 0.0 0.0 1.0 0.0
RBF 0.5 3 0.73 0.0 0.0 1.0 0.0
RBF 0.5 4 0.73 0.0 0.0 1.0 0.0

POLY 0.1 1 0.83 0.65 0.74 0.86 0.69
POLY 0.1 2 0.52 0.34 0.86 0.39 0.48
POLY 0.1 3 0.62 0.39 0.74 0.58 0.51

Table 4.3: Kinect Data Results NuSVC RBF Kernel

Word Nu Precision Recall F1
black 0.2/0.4 0.54 0.68 0.60
blue 0.1 0.57 0.71 0.63

bottom 0.4 1.0 0.77 0.87
box 0.3/0.5 1.0 0.7 0.82

cereal 0.3/0.5 1.0 0.7 0.82
green 0.3 0.9 0.82 0.86
grey 0.2 1.0 0.64 0.78
light 0.1 1.0 0.58 0.74

orange 0.2/0.3 0.59 0.67 0.63
red 0.3 0.73 0.78 0.75

round 0.4 1.0 0.64 0.78
side 0.1 1.0 0.65 0.79

silver 0.1/0.2/0.3 1.0 0.72 0.84
stripe 0.2 1.0 0.62 0.76
top 0.4 1.0 0.68 0.81

white 0.1 0.56 0.69 0.62
writing 0.2/0.4 1.0 0.67 0.8
yellow 0.1/0.5 0.39 0.64 0.48

50

Table 4.4: Kinect Data Results NuSVC Polynomial Kernel

Word Degree Nu Precision Recall F1
black 1 0.3 0.95 0.68 0.79
blue 1/1 0.2/0.3 1.0 0.61 0.76

bottom 1/1/1 0.2/0.4/0.5 1.0 0.62 0.76
box 1/1 0.2/0.3 1.0 0.65 0.79

cereal 1/1 0.2/0.3 1.0 0.65 0.79
green 3 0.4 1.0 0.55 0.71
grey 1/1 0.2/0.3 1.0 0.6 0.75
light 1/1 0.2/0.3 1.0 0.63 0.77

orange 2 0.5 1.0 0.67 0.8
red 1 0.2 0.84 0.65 0.74

round 4 0.1 1.0 0.55 0.71
side 1 0.3 1.0 0.6 0.75

silver 1 0.3 1.0 0.61 0.76
stripe 3/1 0.1/0.5 1.0 0.62 0.76
top 1 0.2 1.0 0.68 0.81

white 1 0.2 0.88 0.72 0.79
writing 2 0.3 1.0 0.6 0.75
yellow 1 0.2 1.0 0.52 0.68

51

Chapter 5

Convolutional Networks with

Video

The goal of the system described in this chapter is to provide classification of objects

in video, rather than investigate attributes. The system also shows the viability and

difficulties involved in streaming entirely unlabeled data from a camera into a neural

network. This is an initial test of multiclass classifiers, before multilabel classifiers

are used. In this setup, it was necessary to either assume that classes do not overlap,

or to cut down the labels to only include non-overlapping classes. In this case object

prediction was selected, since attribute classes overlap heavily. Other approaches

would include using only the most apparent attribute of a type, for example the most

present color. This was not considered, since it is a subjective decision. During both

training and testing, the complete image was split into patches at several scales to

locate known objects in the image. For this experiment a NONE class was added to

account for patches where no object was visible.

5.1 Approach

A number of papers drew attention to Neural Networks, especially Convolutional

Neural Networks, as noted in Section 2.2.3. Neural Networks may be used for fea-

52

ture extraction, or for both extraction and classification. They can be used with a

combination of unsupervised and supervised learning. For example, many unlabeled

examples may be used to initialize weights in the network, and then labeled examples

are used to fine-tune the output. Parts of networks may also be combined to create

networks. For example, a complete network trained on a large database, can have

the final classification layers removed, and instead be retrained on a similar, possibly

smaller, dataset, and result in better classification then a network trained only on the

small dataset. Neural Networks can also be trained in batch mode, which means not

all of the training data must reside in memory at once, and larger datasets can be

used more easily. While neural networks are more difficult to use then other methods,

they have been shown to have state-of-the-art performance.

Since this system is intended to run on camera data, locating different objects

(and later attributes) was important. Generally neural network classifiers are run on

an entire image where the assumption is that objects are large enough to be seen and

take up most of the image. There have been networks recently which are capable

of producing bounding boxes as well [45]. For this prototype, we handle localization

by applying the network to patches of the image. That is, when given an image we

create a sliding window at several scales and run it across the image, producing a

set of overlapping patches that represent the entire image. We keep track of where

these patches came from, and present them to the image. Upon their return, they

are recombined into the total image, producing final votes for a single label for each

pixel. This is only applied to object recognition, and changes would have to be made

for attribute prediction, for example, instead of taking the maximum label, all labels

would be kept since more than one can apply at any location.

For both training and testing, only Kinect data was used. Other then scaling,

no preprocessing was performed. Unlike in the previous chapters, the background is

not removed. Roughly a fifth of each of objects in the RGBD dataset is included in

training and testing here, as well as a dozen of each of the objects collected separately

for these experiments.

53

5.1.1 Use of Depth Data

Objects, for the most part are visible, but their attributes may be abstract concepts,

invisible to the camera. While it may be possible to “see” the shape of an object

based on color variation alone, to give the system an additional advantage when

dealing with words like round and bumpy, and discriminate between the textures and

color patterns that replicate them, the system uses depth data.

Depth data as collected by a Kinect or primesense camera, is a 2D array of distance

values, one for each pixel. This data introduces an additional dimension to the input,

and may require scaling or normalization depending on the learning method used.

Generally, the depth is in meters or millimeters, and stored as 16 bit floats, ranging

from 0 to 10,000 in the case of millimeters. An important limitation of these specific

cameras is that they fail to capture transparent or mesh materials. They also have

a limited range, and lights directed at the camera can cause depth readings of zero,

which is the default “unknown” depth value.

Depth on its own is an interesting classification problem. Our goal was not to focus

on depth, but to see if it contributed to our learning without special alterations. The

only special processing that was applied to the depth data was scaling for networks

where the size of the depth data were likely to overwhelm the color data. While the

initial weights for these values are separately learned, deeper layers rely on both color

and depth. It may be possible that weights are learned which do not respond poorly

to the difference in scale, so both scaled and unscaled depth networks were trained.

5.2 Implementation

For this experiment, Cuda-Convnet was used [28]. Convnet is a convolutional neural

network framework developed for a Kaggle competition which challenged users to

achieve the best top-1 and top-5 scores on the ImageNet dataset [11]. ImageNet is a

database of around 14,000,000 images collected from across the web, sorted into 1000

synsets (synonym sets). Convnet provides the layer formats that helped provide the

54

F
ig

u
re

5-
1:

E
x
am

p
le

of
m

ov
em

en
t

th
ro

u
gh

a
co

n
vo

lu
ti

on
al

n
et

w
or

k
.

F
or

si
m

p
li
ci

ty
,

on
ly

a
si

n
gl

e
im

ag
e

an
d

fi
lt

er
fo

r
ea

ch
la

ye
r

is
sh

ow
n
,

ap
p
li
ed

to
on

ly
a

si
n
gl

e
lo

ca
ti

on
.

In
p
ra

ct
ic

e
ea

ch
co

n
vo

lu
ti

on
al

la
ye

r
w

ou
ld

co
n
ta

in
ar

ou
n
d

a
h
u
n
d
re

d
fi
lt

er
s

w
h
ic

h
w

ou
ld

b
e

ap
p
li
ed

ac
ro

ss
th

e
im

ag
e.

T
h
e

fu
ll
y

co
n
n
ec

te
d

la
ye

r
fl
at

te
n
s

th
e

d
at

a
in

to
th

e
re

su
lt

in
g

la
b

el
p
re

d
ic

ti
on

s,
an

d
is

of
te

n
a

lo
gi

st
ic

re
gr

es
si

on
la

ye
r.

55

best performance on ImageNet, which are likely to provide similar benefits on other

image datasets, with adjustments.

For the addition of camera use, a combination of OpenCV and OpenNI was used.

OpenNI provides support for both Kinect and Primesense cameras, which were used

in order to determine to usefulness of depth data. There are some issues at this time,

with later versions of OpenNI not including the Kinect drivers. It is also now the

case that OpenNI itself will no longer be available, so an alternative will be needed

for later projects. The Primesense and Kinect cameras provide the same resolution of

RGB and depth data, which can both be streamed and registered together. OpenNI

provides a C++ interface and a very basic python interface as well. The cameras

provide 30 frames per second.

As a starting point for network settings, CIFAR [27] and ImageNet [11] networks

are used as provided by the Cuda-Convnet library. The settings are then varied

slightly to find better performance. The CIFAR network is made of three convolu-

tional layers followed by a fully connected layer. Each convolutional layer is followed

by a max-pool layer, which down-samples the input by replacing a small region with

the maximum value in that region. Each of the convolutional layers also use rectified

linear units as activation functions. These “relu” neurons output the max of the input

and zero, and improve training speed, as discussed in Krizhevsky’s Imagenet paper

[28]. The ImageNet networks contain five convolutional layers followed by two fully

connected layers. The first three convolutional layers are followed by max-pooling.

Each of these default networks are provided with Cuda-Convnet. Slight changes were

made to the size of the filters to improve behavior on the Kinect resolution. This

meant doubling the sizes of the first and second layer filters. The learning rate was

also decreased, since a large learning rate led to NaN values as output.

To locate the objects within the image, a sliding window is used to produce patches

at several resolutions. These patches are then scaled to a final resolution and presented

to the network which can only accept one size of image. After prediction these patches

are used to construct a final prediction for each pixel.

56

Table 5.1: List of what processes were varied.

Tests
multiclass object recognition
with depth vs without depth

raw depth vs scaled down vs color scaled up
small network vs large network

varied sizes of patches
varied scales of input to network

with mean subtraction vs without mean subtraction

5.3 Results

Cuda-Convnet is built to optimize overall accuracy, and does not allow easy access

to more interesting values. In this case, accuracy values are collected across classes.

Shown in Figure 5-2 is the error at each testing iteration as calculated on the test set.

In a perfect world, this graph would be smooth. Much of this jitter is due to very

small training batches which do not capture the scope of the data. Thus, each batch

moves the model towards a better representation of those samples, but away from

samples which belong to the next batch. Batch size was limited by the size of the

images and memory available on the GPU, which had to contain the entire network

as well as the training data.

Gradually, performance does improve, but with huge fluctuations. Towards the

end the error rate increases, which is normal behavior as overfitting begins. In the

initial setup, early stopping was not used, so training continued until the system

was manually stopped. After this error curve was observed, generalization loss and

progress quotient early stopping were implemented to automatically find a fair point

to stop training, as described in Section 2.2.6.

Multiple scales of patches were used for training and testing, which were all

rescaled to the same size for the network to run on them. Mean subtraction worked

best when the mean was found across patches and subtracted from patches, though

this may be merely an effect of the size of the dataset: less data means a better

mean is found across patches then across images because the patches vary more then

57

Figure 5-2: The error on training and testing sets. Training iteration along the
bottom, percent error along the side.

a single region of the image. Basically, 10 images produces several hundred patches,

which are in a sense, a larger dataset.

Patches worked best when reasonably large, although this may be influenced by

the scale of the objects and their distance. In the case of this dataset, patch size of 96

pixels did well, even when scaled down to 48 pixels for the network. Smaller patches

did not do well when scaled up, though they did reasonably well if left the same scale.

The filters that resulted from this scaling appeared blurred. Other recent papers have

indicated that scale does not matter, at least not when created artificially [12]. The

largest resolution seems to be the only one that has influence. However this may not

apply to collecting the data at different distances.

5.3.1 Use of Depth

The same network was trained without depth, with depth, with depth scaled down

to match the color range, and with color scaled up to match the depth range. The

58

(a) Error rate with no depth. (b) Error rate with unscaled depth.

(c) Depth scaled down to color range. (d) Color scaled up to depth range.

Figure 5-3: Comparison of error rates during learning using no depth data, depth
data which is unscaled, depth scaled up, and color scaled down.

error rates of the first three epochs of training for these three are shown in Figure 5-3.

Including the depth results in almost no performance increase at this point. There

is a slight improvement of only a few percent. Towards the end of training this may

become more significant. If attributes were separated, it may be clear whether depth

contributes to certain labels and not others, such as flat and round but not red.

Seen in 5-7 is the error rate resulting from training a CIFAR based network on

color and depth data where the color data was scaled up to match the depth data.

The performance reaches roughly 80% accuracy on the training set, varying from

over 90% to below 70%, with higher accuracy on the testing set due to presence of

additional background patches which are easily classified as NONE. In training, these

59

(a) Prediction for label cereal box. (b) Prediction for label NONE.

(c) Prediction for label notebook. (d) Prediction for label calculator.

(e) Prediction for label keyboard.

Figure 5-4: An example of the system running on an image. Patches are taken
from across the image and predicted separately, then recombined into the complete
image again. Where patches overlap, the most common prediction is used as the final
prediction. This case shows many false positives.

60

(a) Prediction for label NONE. (b) Prediction for label marker.

Figure 5-5: An example of the system running on an image. Patches are taken
from across the image and predicted separately, then recombined into the complete
image again. Where patches overlap, the most common prediction is used as the final
prediction. This case has perfect prediction.

background patches are limited to avoid this misleading boost in performance, and

the skew that additional background training causes. The fluctuations, as mentioned

above, are likely due to the network shifting between representations which are better

for some data, but not others. It could be that some of these labels cannot be well

learned, whether this is because they are not visible or poorly represented. If this

is not the case, it is likely that the network is underfitting, which can be improved

by adding additional filters and nodes to the network so that it can learn additional

features to represent the data.

To test the underfitting effect, the Imagenet network was used. The larger network

was trained on the same data. However, this resulted in worse performance. It is

likely that a network slightly larger than the CIFAR network improves performance,

while the ImageNet network, which was meant to classify 1000 classes, and trained

on millions of images, is too large for this dataset.

5.3.2 Mean Subtraction

Several technical papers mentioned mean subtraction as an important preprocessing

step, and a quick comparison showed the value of this step. Calculating the mean

61

(a) Prediction for label notebook. (b) Prediction for label water.

(c) Prediction for label NONE. (d) Prediction for label soda.

Figure 5-6: An example of the system running on an image. Patches are taken
from across the image and predicted separately, then recombined into the complete
image again. Where patches overlap, the most common prediction is used as the final
prediction. Notebooks may be often misclassified because of their flat shape: the
cropped regions around the notebook include pieces of the turntable. Water bottles
may also have poor classification because they are largely clear, though this is purely
speculation.

62

Figure 5-7: The error on training and testing sets. Training iteration along the
bottom, percent error along the side. This network was trained with color scaled up
to suit the depth data.

of the the data and subtracting this from each image prior to training, and testing

resulted in much better performance. This is a simple type of normalization. Figure

5-8 shows a comparison between filters learned with and without mean subtraction

on the CIFAR dataset. Since our system actually ran on patches of image data across

the images, tests were run with either the mean as calculated across the image, or

across patches.

It was found the subtraction of the mean per patch resulted in better performance,

though this may be due to the size of the training set, and the repeated background

in the RGBD dataset. For example, most of the images from the RGBD dataset are

of an object in the center, on a turntable, with the same background. Thus the only

place where values varied was in the center where the object changed. Stacking the

patches from across the image together created a much more reasonable mean and

normalization.

63

(a) No mean subtraction.

(b) Mean subtraction.

Figure 5-8: Comparison of filters learned without and with mean subtraction. Grey
filters essentially contribute no features, and have learned nothing.

5.3.3 Speed

This implementation resulted in a framework which could classify patches at three

frames per second. This is unfortunately not fast enough to be considered truly real-

time. Analysis of the run-time of the experiment showed that processing of each

patch took the most time. Were these processing steps moved to the GPU as well,

then the process may be considerably faster.

The breakdown of times is shown in 5.2. In this particular run, the mean was

subtracted on a per patch basis, which is why the second step takes almost no time.

Since the patches were treated as separate inputs to the network, the mean was cal-

culated across patches and subtracted from patches. This showed better performance

than subtracting the mean of the full images from the full images. However, this

also increases the amount of time taken. If mean subtraction and drop-out across

the full image, both take less time, but performance decreases. Reshaping must be

performed: this is the step that formats each image as a flattened C order vector,

which is how the data must be moved onto the GPU, rather than as a 3D vector.

Each of the Cuda kernels is designed to run on these flattened vectors. The more

patches there are the longer this step takes.

64

Table 5.2: Time Taken to Process a Frame

Step Process Time (s)
1 Scaling 9.798e-2
2 Removing Mean (full) 2.86e-6
3 Creating Patches 2.200e-1
4 Removing Mean (patches) 1.642e-1
5 Reshaping Data 3.277e-0

5.3.4 Object Detection

During detection of objects in the image, the system was able to quickly locate some

items. However, the false positive rate remains high. While much of the background

is identified as NONE, and certain objects are well recognized, such as keyboard, and

water bottle, there are also false positives where portions of background are recognized,

for example, portions of the table are often classified as notebook and binder. It is

possible that the influence of the depth data is confusing flat objects, but this has

not been investigated.

Accuracy across classes for the multiclass convolutional neural network is as good

as the support vector machines, and only a single network was needed. However, per

class accuracy varied. This was not immediately apparent, since the cuda-convnet

framework was designed to present only the accuracy and negative log probability on

a given batch. When the program was run, it was clear that again, well-represented

classes performed better which is to be expected, but rare classes were being overfit.

Also, while behavior on the held-out dataset was fair, when run on input form the

camera it became clear that more examples taken from the environment where the

system was run would be needed. This is seen as good performance on samples from

the RGBD dataset, and worse performance on the additional samples and camera

input.

A portion of this is due to varied lighting. Krizhevsky [28] presents a possible

addition to handle this issue. PCA is performed on pixel values, and additional train-

ing samples are created by adding multiples of the principal components, effectively

simulating varied lighting. However, this method may only work correctly for object

65

(a) Portion of the image classified as cell
phone.

(b) Prediction for label NONE.

(c) Prediction for label notebook.

Figure 5-9: An example of the system running on an image. Patches are taken
from across the image and predicted separately, then recombined into the complete
image again. Where patches overlap, the most common prediction is used as the final
prediction. For further examples, see Appendix B.

66

Table 5.3: Summary of Results

Results
mutliclass prediction has good accuracy (80-95%)

depth makes little difference
scaling of depth and color make little difference
small networks perform better on this problem

larger patches performed better
scaling patches up decreases performance
mean subtraction improves performance

mean found across patches increases performance

recognition, where the object’s identity is not entirely dependant on color and light-

ing. In the case of attributes, especially color and brightness, this could actually add

poor examples to the dataset.

5.4 Discussion and Further Work

After observing the results of the Cuda-Convnet framework, it was decided that

further tweaks were needed to handle unbalanced data and prevent overfitting. This

would include finding alternative cost functions, regularization terms, adding features

by increasing the number of filters in the network, and weighting the samples which

occur rarely, or attempting to balance the data.

Depth data appears to have little effect on training. This may be because depth

information is not useful to most labels, and so makes a small impact. The network

may learn to ignore this information if it cannot quickly learn from it. It may help

to have a separate network altogether for the depth data since it is so different from

the color data. The effect of depth data on specific labels should also be further

investigated.

In spite of the lower performance when compared to separate SVM classifiers, the

improvements over the Theano implementation of neural networks were encouraging,

and the advantage of training a single network rather than a set favors further devel-

opment. It is still likely that the failures of the system are due to poor data; the lack

of varied lighting, and the need for additional examples from the setting where the

67

system is to be used. To discover the source of the variance in performance, measures

taken per class should be made using precision, recall and F1 score to better find the

specific examples which fail, and possible fixes.

Speed was fair, but until performance is improved it should not be a major goal. If

improved accuracy per class, and better F1 and false negative rates can be achieved,

then additional steps may be taken to improve speed. For example, portions of the

processing were done prior to transfer to the GPU, specifically the creation of patches

of the image. This step is very similar to convolution itself, the different being that

instead of applying a network to the entire image, it would be applied to each patch of

the image. This would speed up all the steps beyond creation of patches in Table 5.2,

although they would have to be adapted to either run correctly prior to patch creation,

or be applied on the GPU again.

5.5 Summary

This chapter described a system which uses convolutional neural networks to locate

objects in images streamed from a camera. This was done by applying the network

on patches from across the image. The use of depth data made little difference in

performance regardless of scaling, although this may only show that this dataset

does not rely depth to differentiate labels. Mean subtraction worked best when done

across the patches rather than the image, and was essential to learning. Results were

improved by the use of early stopping, which ensured the model was stopped if error

began to increase. Size of patches was best when the patches were larger, and worst

if they were small and then scaled up. The best networks achieved 92% accuracy

across classes.

68

Chapter 6

Multilabel Convolutional Neural

Network

For the final system in this thesis, the attribute prediction problem was revisited. It

was a goal to retain the single neural network, or attempt to, but now the system

had to allow for samples to belong to multiple classes at a time. As discussed in

Section 2.2.5, this is a more difficult problem. Work was also done to improve general

performance and prevent overfitting as seen in the previous chapter. Most classifiers

allow for multiclass prediction, rather than multilabel. It is also the case for neural

networks that the best loss functions are not differentiable, and so sub-gradients must

be used instead. As with multiclass prediction, it is more difficult to quantify perfor-

mance, since performance across classes may not capture the fact that some classes

are well learned. Added to this is the issue that a given sample belongs to some

number of classes, and credit should be given in a performance measure for getting

some of these correct. It becomes much more difficult to handle unbalanced data,

since adding examples for any class adds to other classes as well, and if a sample is

not labeled for all classes, it is a more complex unknown, and the choice of including

it or not is more difficult since it is useful to some classes, but may contribute to

poor learning of others. As learned from the previous Cuda-Convnet based system,

special attention was paid to additional regularization, and improvements for net-

69

work behavior. A new library was used called Caffe, which added several types of

neurons, and showed slightly improved performance over Convnet. Caffe also offers

an entirely C++ codebase, which would hopefully be more efficient in both time and

space. Unfortunately, Caffe has a much more strict format, which made changes and

extensions difficult.

6.1 Approach

Convolutional neural networks of several shapes and depths are used again, based

on Imagenet and CIFAR networks. To alter these structures for multilabel data,

additional output was permitted and the final layer and cost functions had to be

exchanged to those which produce values per class. As discussed in the related works

chapter, there are several multilabel cost functions. Only the simplest, Softmax, was

used, until sub-gradients can be implemented for the others.

The remaining samples from the RGBD dataset were added along with a few dozen

images taken of other objects in the lab. These were labeled semi-automatically,

with several being labeled manually and these labels being propagated across the

objects where possible. This may be a source of some error, similar to the mislabeled

crowdsource datasets discussed in 3.1.2. The addition of this data may in fact decrease

performance, as discussed in the results below.

6.2 Implementation

As mentioned above, the Caffe system was used. Caffe uses Google’s protocol buffers

to represent data and networks, Google-glog for logging of output and errors, and

Intel’s MKL to improve CPU performance. Their default data is loaded from a

levelDB, which is not a standard database, and only built for fast in-order access.

This system is much more complicated then Cuda-Convnet, and more difficult to

make changes to. This was not clear initially.

70

While their network was closer to accepting multilabel input then Convnet, there

were still several functions which assumed a single label was true, especially in the

final layers that calculate cost and accuracy. Changes were made to the initial and

final layer definitions, and to the protocol buffer datum type to allow for multiple

labels, and an extra channel of depth data, which forces the data value into float

type, where the standard type is byte strings. Crop values were also added so that

the system could take multiple sub-regions of each image without losing the object.

No localization or detection was performed, only prediction of the center of each

sample for all labels.

As in the previous chapter, the networks are set to CIFAR and ImageNet sizes,

then varied. Also, early stopping, and measures for precision, recall and F1 score had

to be added, including per class. Even these fail to completely capture performance,

and additional measure were also investigated, including specificity, an average of

precision, recall and specificity, and Matthew’s Correlation Coefficient to find what

failures each of these accounted for and what they failed to capture.

Currently a number of the features in Decaf, the Python version of this library, are

not available in Caffe, the C++ version. While the network layers and activations are

complete, and drop-out is included, only weight decay is available as regularization. It

is likely that additional forms of regularization, multilabel data, and additional cost

functions will be added to the main library eventually, but they are not currently

included. There is an active community adding to the library, and it may continue

to improve with time.

Softmax was used as the loss function, and it produces probabilities across all

classes rather than values of 0 and 1. To find the ground truth probability from the

labels, each label is divided by the total positive labels for that sample, so that all

the positives share a maximum value, and the negatives share the minimum, which

should always be zero. For further information see [15]. If the network trains well,

then all the predictions should fall at nearly the maximum or the minimum. To allow

for some error, a threshold can be used instead of probability match. When prediction

71

Table 6.1: List of what processes were varied.

Tests
with depth vs without depth

small network vs large network
multilabel prediction of attributes

is done on unlabeled samples, a threshold must be used.

This threshold will depend upon the number of true labels, which is unknown dur-

ing prediction. It was decided that a threshold would be calculated at each prediction

based on the predicted values. The maximum and minimum were found, and used

to find a cutoff value which was subtracted from the maximum to create a threshold.

Predictions that were close to the maximum are considered positive predictions while

lower values are considered negative. This should force all of the “true” labels towards

the maximum value, and all of the “false” labels towards the minimum, although it

does not enforce a strict boundary. This evaluation produces fair results, although

additional study should be done on how this effects learning.

cutoff = (maxY −minY)/2.0 (6.1)

where

if Yi >= max(Y)− cutoff : Ci == 1.0

else Ci == 0.0

Y is the set of predicted probabilities.

Ci is the class i prediction.

Yi is the class i probability.

72

Table 6.2: Results For Imagenet size and CIFAR size Networks, with depth data

Size Depth Accuracy Precision Recall Specificity Max F1
ImageNet no depth .9329 .2659 .4061 .1781 .3214
ImageNet depth .9617 .4885 .9770 .05486 .6513

CIFAR no depth .9626 .4912 .9657 .3251 .6512
CIFAR depth .9631 .3239 .2383 .8398 .2485

Table 6.3: A sample run of training the ImageNet scale network of color and depth.

Iteration Accuracy Precision Recall Specificity Max F1
2000 .9616 .4773 .9885 .0000 .6437
4000 .9617 .4885 .9770 .0549 .6513
6000 .9620 .5662 .2701 .8088 .3657
8000 .9619 .5354 .1590 .8725 .2452

6.3 Results

The multilabel results were expected to be worse then the separate classifiers, and

they were. Similar to the results seen in [15], accuracy is fair, above 80%, and

usually above 90%., while precision and recall are lower. These results are shown in

Table 6.2. Since this prototype uses different data, no direct comparison can be made

between the scores. Per class Precision and recall reached .96 and.48 respectively,

contributing to an F1 score of .65. However, it should be noted that this network

also has a specificity of .05, meaning the network predicted many labels well, but

also produced many false positives and few true negatives. Thus labels were often

predicted for samples which they did not apply to. The second best F1 score for the

same run, shown in Table 6.3, has a much higher specificity of .80, but also a much

lower F1 score of .36. The ImageNet size networks, in this case, performed better

than the CIFAR size networks, which makes sense since these networks were expected

to learn more complicated multilabel prediction on full-scale images rather than on

patches.

Overfitting was observed in this training set as well. This is seen in high and low

F1 scores, specifically when the system predicts all true, all false, or all correct for

any label. When a common class is always predicted True it appears as a very high

73

recall, a reasonably high precision, and a reasonably high F1 score. The failure is only

shown in the True Negative or Specificity measure. The reverse, an uncommon class

which is always predicted as false, appears as an undefined Precision, with zero recall,

and zero F1 measure. This appears more likely as training goes on, when either the

positive or negative examples overwhelm the opposing examples. This is not shown

in the averages, but was revealed by measures for each class.

Early stopping was added to the network and set to watch the average F1 score

rather than the accuracy. This is not advisable, and was implemented here not to

improve results but to cut training short. Since the loss function is not tied to the

F1 score, the training does not directly improve F1 score, only accuracy. As training

continues, the accuracy increases, but the F1 score in this case tended to increase then

decrease as the accuracy forced the specificity up and precision and recall down. This

happens because negative samples in the data out number the positive examples,

leading to better prediction when negatives are predicted. With binary classifiers,

this can be fixed by presenting the same number of positive and negative examples,

but when each sample has multiple labels, a positive sample for one label may add

several negatives and positives for other labels. Most likely weighting contribution

of samples to each label will be more productive, adding greater weight to the value

back-propagated through a rare label.

As well as testing multilabel performance, the reason for moving away from sep-

arate classifiers for each label was the time and memory necessary to train such

systems. Training for both systems took several days, though part of this is due to

parameter searches which may be done more efficiently for both separate and multil-

abel classifiers using better parameter search techniques, as discussed in Section 7.3.

However, memory was much more efficient in the neural network in spite of the size

and number of parameters.

While it can be seen in the table that the networks which used depth data per-

formed better than those which did not, this should not be relied upon. The networks

which did not use depth data produced NaN values more often, which cut training

74

Table 6.4: Summary of results

Results
depth data had more reliable behavior

large networks performed better
multilabel prediction had worse performance then separate classifiers

short. This is likely due to a poor learning rate, but was not changed since the

networks were to be kept as similar as possible for comparison. Were this value

changed, the network may have produced better results, but comparison would still

be in doubt. It is interesting to note that without depth data, the smaller networks

performed much better, but with depth data the larger networks performed better.

6.4 Discussion and Further Work

Caffe was difficult to work with. A number of assumptions made by the library

made the addition of multilabel data and measures difficult. Correctly installing the

MKL dependency, which requires a license, was difficult on most systems. However,

the library is a work in progress, and MKL is being removed as a dependency and

replaced with open-source alternatives. There are also continuing improvements and

extensions, including several types of regularization which are applied per layer rather

then across the entire network.

A serious issue with levelDBs, the initial data format provided for by Caffe, is

that they are not very compact, and are not meant for random access. In order

to correctly perform cross validation, the data should be shuffled and presented in

different orders. This is not possible with the levelDB format, which is iterative.

With large datasets, levelDB does not provide a compact format for storage. Both

of these issues recommend for another data storage format. Another future addition

to Caffe is other data layers which read other formats, although these only exist on

their development branch and are incomplete at the moment.

An intriguing option for improving classification is grouping labels together into

smaller multilabel classifiers. Learning features together across all images allows the

75

extractor to take advantage of all of the information in the dataset, but it may also

mean much larger feature extractors, and sets of features. Separating the extraction

techniques means learning just the features necessary for a single label, but this wastes

space, since many labels rely on the same features, and certain features will only be

found if they are needed to discriminate between classes. It is likely that clustering

the labels in some way into medium sized multilabel classifiers will allow for a gain

in space and accuracy between these two extremes. Perhaps a clustering based on

which filters contribute to labels would be best.

Incorporating the F1, MCC or another measure of performance into the loss would

likely improve results across classes. Also, since these measures are made necessary

by unbalanced data which is not easily fixed in the multilabel case, weights may be

useful when applied to each class, increasing the influence of rare labels. This was

implemented but not fully tested.

6.5 Summary

The chapter presented a multilabel convolutional neural network system which pre-

dicts multiple attributes and objects for each sample. Performance was not as good

as separate classifiers, and both systems took several days to train but the network

took up less memory during training. While accuracy of over 96% across classes is

achieved, and an F1 score of .65, these values do not reflect the specificity or true

negative rate, which is much lower. It is suggested that an improved loss function

which better represents true performance on all labels should be used.

76

Chapter 7

Discussion and Future Work

While results and possible changes were discussed at the end of each chapter, this

chapter reviews these results and suggests improvements. Reasonable attribute pre-

diction measured by both accuracy and F1 score was attained using multiple systems

which included Isomap, SVMs, and neural networks. However, these result were found

on a small dataset, and while work was done to ensure these measures were not overly

optimistic, further evaluation should be done, especially with respect to the utility

of depth information. Neural networks are being developed with better methods

of training, techniques for selecting hyper-parameters, and faster implementations,

which may be used in the future.

7.1 Data

Arguably, the training data will always be difficult for this problem owing to the

complexity of human language, and the world. As more samples are added, the

problem will be more difficult. To test systems, the language may be simplified, and

images may be carefully prepared, but eventually the system should be able to handle

any labels, and complex scenes. Recommendations for simplifying the data include

using a smaller, more specific vocabulary, and ensuring full-labeling of samples with

this vocabulary. The images could be simplified as mentioned in the first project, by

77

masking. More complicated data would include cluttered scenes and more complex

language that may require parsing.

Collecting additional data and labeling it specifically for this problem at several

different difficulties may be important to improving results. Labeling may be done

more efficiently with Mechanical Turk [23]. The following data resources may also be

useful.

7.1.1 RGBD Dataset

This dataset is, of course, already used. There is a chance that it will be broadened

in the future, and there are other groups using it, who may contribute labels that

would be useful. For example a very recent paper attempted to use this data for

attributes, but their labels were not provided [46]. However, as shown in the previous

chapter, this dataset is repetitive and may damage performance if used incorrectly.

As a starting point it is useful, though it may be better suited to other problems.

7.1.2 NYU Depth Dataset

Other data that is provided with both color and depth is provided by NYU [37].

This dataset is intended for scene classification and segmentation. It is much more

cluttered then the RGB-D dataset, however, it may be useful to pull out portions of

images for training. For example, if the system uses patches of images, instead of the

entire image, or if it can learn from multiple sizes of images, then the portion of the

image that is labeled “chair,”, “stapler,” or “book” may be used for training. This

still adds a layer of difficulty and complexity to the data, but in the long-term may

be useful.

7.2 Use of Depth Data

Depth data does not have a significant impact on the attributes represented in the

current dataset. This may be merely a property of the dataset: the labels learned

78

here may could be determined by color data alone, not because they refer to color,

but because they are only used to refer to an object which can be labeled by color

alone. For example a box may be a blue cube with flat sides and straight edges, and

while we would expect the depth data to contribute to the labels flat and cube, if the

cube is the only blue object, the system would learn to predict cube for anything blue.

While this is an extreme case, it is quite possible in such a small dataset that depth is

not important to differentiating between labels when those labels are not represented

by many objects.

7.3 Convolutional Networks

While the first attempt at using convolutional neural networks showed poor perfor-

mance due to overfitting, later attempts showed competitive results, producing better

accuracy, precision and recall scores. Although networks are complex and require ad-

ditional tuning in the form of both hyper-parameter setting and regularization, they

offer more control and improved behavior, and may prove to be better able to handle

the even larger datasets necessary to continue attribute learning.

Convolutional Neural Networks show promising power as both feature extractors

and classifiers, although a continuing problem is choice of hyper-parameters and over-

fitting. These parameters are still often set by hand. Although applying grid search,

random search, or Bayesian Optimization [44] would help select these, it would still

be a time consuming process. The necessity of extensions like regularization, and

early-stopping, which are often missing from the current libraries, imply that it is

more effective to implement the networks in a system such as Theano then to rely

on these existing frameworks. As an alternative to multilabel prediction it would

be interesting to replace the classification layers of networks with SVMs, as done in

several works mentioned in Section 2.2.4, which showed improved performance.

Several recent neural networks have split the network and reused portions of net-

works for different tasks. As mentioned earlier, a network was used purely for feature

79

extraction before being fed into standard classifiers, or into several other networks

which were meant to perform significantly different predictions, such as object classes,

and locations of objects [45, 13]. Such division of networks may help in this problem.

For example, the same large network may be used for feature extraction where most of

the time and memory are spent, and the final layers may be separated to improve final

classification. Different compositions of classifiers, and divisions of either attributes,

objects, or stages of the pipeline should be explored.

7.4 Multiple Label Prediction

Separate classifiers performed nearly as well as the neural networks, but the feature

extraction techniques required large amounts of time and space to find fair repre-

sentations of the data. While it is likely that more labels, and broader data would

decrease performance, it is also likely that more can be done to improve multilabel

prediction. Both types of classifiers produced poor results on the unbalanced cases,

and balancing these classes by bootstrapping improved results to some extent in the

case of the single label classifiers.

Use of the more complex multilabel Weighted Approximate Ranking Pairwise loss

for multilabel neural networks may improve performance, although the comparison

made between softmax and WARP showed only a very slight increase in performance.

It would also be useful to monitor precision, recall, and specificity since these three

capture both forms of biased overfitting, while accuracy does not, and it may be

possible to incorporate these into a loss function.

A compromise between the extremes of one classifier and one for each label should

be explored, by combining similar labels. The labels could be clustered into synonym

groups as is done in the ImageNet dataset, or it may be possible to cluster them based

on their learned representation in a network.

For example, if a classifier is a neural network, then the prediction is the result

of the input image moving through a directed graph, and learning is performed by

80

moving errors backwards through this graph. The result is nodes within this structure

develop to recognize specific features. For example, some specialize in edges, others

in colors. Labels for color would learn features that react strongly to components

of their color, and weakly, or not at all to components of other colors. Traveling

backwards through this structure can determine which portions contribute most to a

label and how they contribute. It is likely that labels that are visually similar would

have similar activations in the network, such as red and orange sharing features. This

could be used to cluster similar labels, and separate them into classifiers which could

be made more compact and specialized.

Another method of multilabel prediction which is also used to set hyper-parameters

is cokriging, a multi-output version of Gaussian Process prediction. A Gaussian Pro-

cess is a collection of random variables, subsets of which, have a joint distribution.

Kriging is Gaussian Process regression, and cokriging is the multiple output form.

It predicts a variable Z auto-correlation and cross-correlation with other variables.

This process is used in geostatistical analysis, but has been shown to be useful in

setting hyper-parameters in neural networks, but can also be used to make multilabel

predictions directly [1]. This method is computationally intensive, but may be worth

looking at in more depth.

7.5 Improved Speed

To obtain the fastest possible classification performance, a hand written parallel,

pipelined GPU implementation and specially designed hardware would both be needed.

Without knowing the exact structure of a good classifier, general purpose code frame-

works and hardware must be used to reach reasonable performance and explore pos-

sible systems. To improve the speed of any system used here, the best option is to

implement it in CUDA for the specific GPU intended to be used. This of course

means understanding GPU structure and the CUDA software development kit, and

the algorithm which is being implemented.

81

There are many libraries that provide implementations of learning algorithms, but

as seen here, they may be meant for a narrower problem, or missing features that

are needed for a problem. As a starting point, libraries are a good way to get initial

results and estimates of behavior, but they generally are not meant to be fast. Some

do provide reasonable speed, but these will not be as fast as one created for a specific

system or problem.

For each of the systems discussed here, only a single computer with a single GPU

was used. As mentioned above, if the system is split into several classifiers it would be

possible to distribute the system across several machines, placing a subset of classifiers

on each machine, or a medium size network on each GPU, and combining the final

results. This may speed up the entire system, although the communication between

machines may also add time.

7.6 Automatic Structure Determination

Many of the issues seen relate to incorrectly assuming a much simpler structure and

being unable to determine the true structure of relations between labels. Without

manually selecting labels which we know to be independent, we cannot avoid this

problem. To automatically recognize similarity between labels, or a hierarchy we

need to be able to recognize those labels in the first place. A possible future goal is

to use the learned classifiers to recognize the relations between labels which were not

carefully chosen. This way a person might use whatever words they want to describe

an object, and a robot could in time discover the synonyms or contributing attributes

based on the visual relationships.

7.7 Libraries

Many different outside resources were used in this work, and often problems were

discovered with each. This section recommends each and describes important limi-

82

tations of each of the systems which may or may not be remedied in later versions.

While it may be necessary to implement new algorithms with no base code, it is not

recommended.

7.7.1 Kinect, Primesense and OpenNI

The Kinect and the related Primesense camera are both small cheap cameras which

produce both color and depth information. Neither works in sunlight. The Kinect, as

provided by Microsoft, has associated tools in Windows, but is also available through

PCL and OpenNI [38, 43]. More recently, both systems have dropped Kinect support

due to licensing and driver issue, so only previous version support the Kinect. The

Primesense camera is essentially the same, and while it costs more, still works with

the current version of OpenNI. Neither OpenNI or PCL were difficult to work with,

and in this simple system very few of their provided features were needed. OpenNI,

unfortunately, has been purchased and removed from the web. While the system

continues to be available in some repositories, the official version and support are no

longer available. There may be additional open source systems released in the future,

but at the moment the camera system used here will not be easy to reproduce.

7.7.2 Scikit Learn

Scikit Learn provides a huge variety of learning algorithms, as well as frameworks

for creating validation sets, performing grid search, and evaluating performance [39].

They also provide useful tutorials, discussion of choice of techniques, and links to the

papers that describe each technique. The one area they do not currently provide for

is Neural Networks, though they have added Restricted Boltzmann Machines, and

intend to add more. There is also little attention paid to speed.

83

7.7.3 Cuda-Convnet

This framework provides a reasonable CUDA implementation of network layers, as

well as a simple way to alter network descriptions. They provide a reasonable collec-

tion of node types, layer types, and allow tuning of parameters [28]. The layer types

include fully connected, softmax, convolutional, pooling, logistic regression and sum

of squares. This system provides compressed checkpoint saving, which is extremely

useful when training large nets which take many hours or days to train. They rely on

the concept of a data provider, which must be written by the user, which makes it

easy to plug in data from any file type, or from a camera. Change made to the layers

and costs require change in the CUDA code, which can be intimidating. It can be

used to build non-convolutional networks, but does not support autoencoders. Un-

fortunately, it does not provide any early stopping methods. Early stopping is used

to prevent a neural network from spending too long in training, causing the network

to overfit to the training data. For further details, see [41]. It also relies on python

wrappers to prepare the data, which can be slow when tasked with flattening 50,000

images to be sent to the GPU.

7.7.4 Caffe and Decaf

Decaf was presented as a feature extractor, and relied on python wrapper and a net-

work structure nearly identical to that of convnet’s ImageNet Challenge [13]. Caffe,

however, is being actively developed as an all C++ implementation, with the wrappers

as optional extensions provided for python and Matlab [24]. It contains more types

of neurons and layers, and is intended to run quickly. Caffe provides for construc-

tion of standard networks and convolutional networks. It is not currently intended

for support of autoencoders, but they are being added soon. However, it is not as

flexible as Convnet, and has a more complex structure. While it is possible to add

types of data input, it is more difficult, and the provided data format makes use of

multiple shuffles of the data difficult. It also does not provide early stopping, or other

84

performance measures besides accuracy.

7.7.5 Theano

Theano is the most flexible system, providing the user with the ability to quickly

define layers, nodes and training for any type of neural network [3]. It provides

for defining the entire network, and the data, without the restrictions that exist in

the other libraries. It can be difficult to follow, but is as flexible as necessary to

define networks, backpropagation, regularization and early-stopping, and also has

good documentation online, as well as tutorials. It is written in python, but this may

not be much of a constraint on speed if implemented well. Theano deserves further

investigation and use.

7.8 Summary

This chapter discussed the results of each of the prototypes presented in this thesis.

While the best results were obtained from single classifiers which were trained for

each label, the memory usage of the multiclass and multilabel neural networks was

much lower, and the results have potential for improvement. Depth data did not

contribute greatly to learning on this dataset, but may prove useful in larger more

complex datasets. Of the libraries used, Theano is recommended for further use,

while the others need further development before they are considered again.

Multilabel classification may be improved with better cost functions, while general

neural network performance may be improved with better data, further regulariza-

tion, and better hyper-parameter setting. These changes should improve the results

presented in previous chapters.

85

Chapter 8

Conclusion

This thesis has shown that attributes can be predicted reasonably well with several

different techniques. While not all attributes are predicted well, those which fail

are poorly represented in the data, or are not visible, and so impossible to learn

from image data. Several different systems were created and used to explore possible

data representations and classification techniques. The behavior varied, but each

showed the ability on both generated and real data to predict labels drawn from

descriptive sentences which include colors, shapes, and locations. The results led to

recommendations for changes in the structure of the classifiers, presentation of the

data and the use of certain types of feature extractors and classifiers.

This thesis shows the ability of several systems to predict attributes on a small

RGBD dataset. Similar systems limit the learnable attributes to be disjoint, or from

a much smaller space, while this system allows for multiple labels from the same

classes, such as multiple colors or multiple shapes. While the performance is best

with separate classifiers for each label, it is also shown that reasonable results can be

attained with more compact multiclass and multilabel systems, which may then be

improved upon.

The use of negative examples was shown to improve results in some cases, while

others performed well when provided with only positive examples. Normalization of

the input data proved to be a necessary step, either with standard scaling, mean

86

subtraction, or whitening. Depth data was somewhat useful in predicting certain

labels, although it can also increase training time and complexity of the classifier, as

in the case of neural networks which must be increased in size, both to accommodate

the extra channel, and to learn additional features specific to the depth.

Speed of a simplified prediction system is shown to be near real time, and may

be improved in several ways. More complicated systems, such as the multilabel

prediction system, should not significantly decrease this speed. There is a limit on

how fast the system may perform, in part due to the time required to transfer data

to the GPU, though this can be partially masked with pipelining.

Additional work must be done to improve the performance, and it is quite likely

that better data and altered loss functions are necessary, especially for multilabel pre-

diction. To simplify the discovery of good structures for neural networks, automated

search of hyperparameters should be investigated.

While it is clear that prediction of attributes is more difficult than object recog-

nition, the techniques used here show good performance, and changes for further

gains are possible. As the data presented becomes more complicated, in the sense of

more attributes and more cluttered images, additional improvements and extensions

to the system will be necessary. When these techniques are improved in predictive

power, speed, and space, they become more feasible on mobile systems that function

in complicated settings, bringing the system closer to achieving real autonomy.

87

Appendix A

Terms

Attribute A label describing an object rather then naming the object. These include

colors, shapes and positions. This is not the same as feature.

Autoencoder A type of unsupervised learning, which can reduce dimensionality. A

network where the inner layers are smaller then the input and output. They

are trained to learn the identity, creating encoding and decoding layers in the

network.

Classification Prediction of category labels.

Cokriging A specific subtopic in Gaussian Processes that handles multitask learning.

See Gaussian Process citation.

Convolution A convolution is an integral that expresses the amount of overlap of

one function g as it is shifted over another function f. It therefore “blends” one

function with another. In the case of neural networks, this is a 2D function.

Feature A piece of data representing a sample, this could be an image, a pixel, a

color value, or a learned value created by feature extraction. This is not the

same as attribute.

Feature Extraction The process of reformatting data by dimensionality reduction

88

with a goal to maintain some measure of information. Techniques include, PCA,

ICA, and Isomap.

Gaussian Process A collection of random variables, any finite number of which

have a joint Gaussian distribution. Generally used to represent hyper-parameters,

but has applications in multitask learning as well. May have limitations based

on the number of outputs. See citation for better information: [42]

Ground Truth The known label(s) for a sample.

Isomap Isomap is a manifold learning technique for dimensionality reduction, which

projects the data into a smaller dimensional space while preserving geodesic

distance.

Kriging Gaussian Process prediction or regression, specifically in geostatistics.

Multiclass, multi-class This refers to classifiers which are meant to predict one of

a number of classes (two or more). This may be used to describe multilabel

problems as well in other literature, but in this work we use it for multiple

classes, but only one expected true label.

Multilabel, multi-label This refers to classifiers which are meant to predict one

or more of a number of classes. In other works, it may either mean multiclass

or multitask, which is endlessly confusing. See multiclass and multitask for

confusion.

Multitask, multi-task This term is used in literature to refer to systems that pre-

dict multiple targets. Again, this may refer to a problem that expects one

positive prediction or several at a time. See multiclass and multilabel.

Neural Network (Artificial Neural Network) Any of the family of artificial net-

works a computer system modeled on the human brain and nervous system.

Generally, shown as layered directed graphs with weighted edges and functions

applied at nodes, which move from some input to output. These include ANN,

89

Perceptrons, Restricted Boltzmann Machines, Autoencoders, and Convolutional

Networks.

Prediction Models continuous values, predicts unknown or missing values.

Support Vector Machine A maximum margin classifier that finds sets of hyper-

planes in higher dimensional space to separate classes. The data is projected

into higher dimensional inner product space, and calculations in this space are

avoided by the kernel trick.

90

Appendix B

Figures

91

Figure B-1: Training and Testing Process

92

Appendix C

Tables

Table C.1: Generated Data Results: One Class SVM, Error Permitted 0.2, Degree 3,
Kernel: radial

Word Unknowns Precision Recall F1
yellow 22 1.0 0.45 0.62
four 26 1.0 0.5 0.66
black 37 1.0 0.62 0.76
circle 37 1.0 0.54 0.70

triangle 38 1.0 0.52 0.68
square 21 1.0 0.33 0.5
blue 18 1.0 0.5 0.66
red 17 1.0 0.64 0.78

93

Table C.2: Generated Data Results with many unknowns: One Class SVM, Error
Permitted 0.2, Degree 3, Kernel: radial

Word Unknowns Samples (128 Total) Precision Recall F1
three 14 24 1.0 0.66 0.8
top 71 19 1.0 0.63 0.77
oval 67 27 1.0 0.55 0.71
right 66 19 1.0 0.47 0.64

corners 18 46 0.96 0.56 0.71
round 32 34 1.0 0.55 0.71
upper 77 16 1.0 0.5 0.66
shape 51 77 1.0 0.74 0.85

Table C.3: Generated Data Results: 128 total samples, One Class SVM, permitted
error of 0.2, degree 3, radial basis kernel.

Word Samples Precision Recall F1
yellow 22 1.0 0.36 0.53
four 26 1.0 0.57 0.73
black 37 1.0 0.56 0.72
circle 37 1.0 0.62 0.76

triangle 38 1.0 0.52 0.68
square 21 1.0 0.66 0.8
blue 18 1.0 0.33 0.5
red 17 1.0 0.41 0.58

Table C.4: Real Data Results: 128 total samples, One Class SVM, permitted error
of 0.3, degree 3, radial basis kernel.

Word Samples Precision Recall F1
yellow 22 1.0 0.64 0.78
black 34 1.0 0.64 0.78
blue 35 1.0 0.74 0.85

purple 10 1.0 0.6 0.75
red 60 0.83 0.73 0.77

white 36 1.0 0.58 0.73

94

Table C.5: Kinect Data Results NuSVC RBF Kernel for black. Nu is gradually
increased.

Nu Precision Recall F1
0.1 0.49 0.55 0.52
0.2 0.54 0.68 0.60
0.3 0.45 0.48 0.47
0.4 0.54 0.68 0.60
0.5 0.48 0.48 0.48

Table C.6: Kinect Data Results NuSVC Polynomial Kernel for “black”. Nu and
Degree are varied.

Degree Nu Precision Recall F1
2 0.1 1.0 0.55 0.71
3 0.1 1.0 0.48 0.65
4 0.1 1.0 0.45 0.62
1 0.2 0.95 0.65 0.77
2 0.2 1.0 0.45 0.62
3 0.2 1.0 0.45 0.62
4 0.2 1.0 0.45 0.62
1 0.3 0.95 0.68 0.79
2 0.3 1.0 0.52 0.68
3 0.3 1.0 0.48 0.65
4 0.3 1.0 0.39 0.56
1 0.4 0.95 0.58 0.72
2 0.4 1.0 0.52 0.68
3 0.4 1.0 0.35 0.52
4 0.4 1.0 0.48 0.65
1 0.5 1.0 0.52 0.68
2 0.5 1.0 0.35 0.52
3 0.5 1.0 0.39 0.56
4 0.5 1.0 0.42 0.59

95

Table C.7: Kinect Data Results One Class SVM for “blue”.

Kernel Error Degree Accuracy Precision Recall Specificty F1
RBF 0.2 2 0.97 1.0 0.86 1.0 0.92
RBF 0.2 3 0.97 1.0 0.86 1.0 0.92
RBF 0.2 4 0.97 1.0 0.86 1.0 0.92
RBF 0.3 2 0.82 1.0 0.14 1.0 0.25
RBF 0.3 3 0.82 1.0 0.14 1.0 0.25
RBF 0.3 4 0.82 1.0 0.14 1.0 0.25
RBF 0.4 2 0.94 1.0 0.71 1.0 0.83
RBF 0.4 3 0.94 1.0 0.71 1.0 0.83
RBF 0.4 4 0.94 1.0 0.71 1.0 0.83
RBF 0.5 2 0.79 0.0 0.0 1.0 0.0
RBF 0.5 3 0.79 0.0 0.0 1.0 0.0
RBF 0.5 4 0.79 0.0 0.0 1.0 0.0

POLY 0.1 1 0.7 0.4 0.86 0.65 0.55
POLY 0.1 2 0.55 0.28 0.71 0.5 0.4
POLY 0.1 3 0.73 0.43 0.75 0.73 0.55

Table C.8: Kinect Data Results One Class SVM for “dark”.

Kernel Error Degree Accuracy Precision Recall Specificty F1
RBF 0.2 2 0.8 1.0 0.8 0.0 0.89
RBF 0.2 3 0.8 1.0 0.8 0.0 0.89
RBF 0.2 4 0.8 1.0 0.8 0.0 0.89
RBF 0.3 2 0.2 1.0 0.2 0.0 0.33
RBF 0.3 3 0.2 1.0 0.2 0.0 0.33
RBF 0.3 4 0.2 1.0 0.2 0.0 0.33
RBF 0.4 2 0.6 1.0 0.6 0.0 0.75
RBF 0.4 3 0.6 1.0 0.6 0.0 0.75
RBF 0.4 4 0.6 1.0 0.6 0.0 0.75
RBF 0.5 2 0.12 1.0 0.12 0.0 0.21
RBF 0.5 3 0.12 1.0 0.12 0.0 0.21
RBF 0.5 4 0.12 1.0 0.12 0.0 0.21
PLY 0.1 1 0.92 1.0 0.92 0.0 0.96
PLY 0.1 2 0.92 1.0 0.92 0.0 0.96
PLY 0.1 3 0.88 1.0 0.88 0.0 0.94

96

Table C.9: Kinect Data Results One Class SVM for “green”.

Kernel Error Degree Accuracy Precision Recall Specificty F1
RBF 0.2 2 0.97 1.0 0.81 1.0 0.89
RBF 0.2 3 0.97 1.0 0.81 1.0 0.89
RBF 0.2 4 0.97 1.0 0.81 1.0 0.89
RBF 0.3 2 0.87 1.0 0.19 1.0 0.32
RBF 0.3 3 0.87 1.0 0.19 1.0 0.32
RBF 0.3 4 0.87 1.0 0.19 1.0 0.32
RBF 0.4 2 0.94 1.0 0.62 1.0 0.76
RBF 0.4 3 0.94 1.0 0.62 1.0 0.76
RBF 0.4 4 0.94 1.0 0.62 1.0 0.76
RBF 0.5 2 0.83 0.0 0.0 1.0 0.0
RBF 0.5 3 0.83 0.0 0.0 1.0 0.0
RBF 0.5 4 0.83 0.0 0.0 1.0 0.0
PLY 0.1 1 0.81 0.46 0.86 0.8 0.6
PLY 0.1 2 0.62 0.27 0.76 0.59 0.4

Table C.10: Best Kinect Data Results One Class SVM

Word Kernel Error Degree Acc. Precision Recall Spec. F1
black RBF 0.2 2 0.95 1.0 0.8 1.0 0.89
blue RBF 0.2 2 0.97 1.0 0.86 1.0 0.92
box PLY 0.1 1 0.91 1.0 0.91 0.0 0.95
dark PLY 0.1 1 0.92 1.0 0.92 0.0 0.96
green RBF 0.2 2 0.97 1.0 0.81 1.0 0.89
grey PLY 0.1 1 0.92 1.0 0.92 0.0 0.96
light PLY 0.1 2 0.93 1.0 0.93 0.0 0.97

orange RBF 0.2 4 0.98 1.0 0.81 1.0 0.90
red RBF 0.2 2 0.9 1.0 0.8 1.0 0.89

round PLY 0.1 2 0.83 1.0 0.83 0.0 0.90
silver RBF 0.2 3 0.89 1.0 0.86 0.0 0.94
stripe POLY 0.1 2 0.87 1.0 0.87 0.0 0.93
white RBF 0.2 4 0.94 1.0 0.8 1.0 0.89

writing PLY 0.1 3 0.94 1.0 0.83 1.0 0.91
yellow RBF 0.2 3 0.96 1.0 0.85 1.0 0.92

97

Bibliography

[1] Bert Bakker and Tom Heskes. Model clustering for neural network ensembles.
Springer Lecture Notes in Computer Science, LNCS 2415:p. 383 f, 2002.

[2] Yoshua Bengio and Yann Lecun. Scaling Learning Algorithms towards AI. MIT
Press, 2007.

[3] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan
Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua
Bengio. Theano: a CPU and GPU math expression compiler. In Proceedings
of the Python for Scientific Computing Conference (SciPy), June 2010. Oral
Presentation.

[4] Paul Bloom. How Children Learn the Meaning of Words. MIT Press, 2002.

[5] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In
IEEE International Robotics and Automation (ICRA), May 2011.

[6] Evgeny Byvatov, Uli Fechner, Jens Sadowski, and Gisbert Schneider. Com-
parison of support vector machine and artificial neural network systems for
drug/nondrug classification. Journal of Chemical Information and Computer
Sciences, 43(6):1882–1889, 2003.

[7] Adam Coates, Honglak Lee, and Andrew Y. Ng. An analysis of single-layer
networks in unsupervised feature learning. In Advances in Neural Information
Processing Systems, 2010.

[8] Corinna Cortes and Vladimir Vapnik. Support-vector networks. In Machine
Learning, pages 273–297, 1995.

[9] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human de-
tection. In Cordelia Schmid, Stefano Soatto, and Carlo Tomasi, editors, Interna-
tional Conference on Computer Vision & Pattern Recognition, volume 2, pages
886–893, INRIA Rhône-Alpes, ZIRST-655, av. de l’Europe, Montbonnot-38334,
June 2005.

[10] LISA lab Deep Learning: Copyright 2008-2010. Convolutional neural networks
(lenet), 2010.

98

[11] Jia Deng, Wei Dong, Richard Socher, Li jia Li, Kai Li, and Li Fei-fei. Imagenet:
A large-scale hierarchical image database. In In CVPR, 2009.

[12] Sander Dieleman. My solution for the galaxy zoo challenge.
http://benanne.github.io/2014/04/05/galaxy-zoo.html.

[13] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric
Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for
generic visual recognition. arXiv preprint arXiv:1310.1531, 2013.

[14] Wei Gao and Zhi-Hua Zhou. On the consistency of multi-label learning. In
Sham M. Kakade and Ulrike von Luxburg, editors, COLT, volume 19 of JMLR
Proceedings, pages 341–358. JMLR.org, 2011.

[15] Yunchao Gong, Yangqing Jia, Thomas Leung, Alexander Toshev, and Sergey
Ioffe. Deep convolutional ranking for multilabel image annotation. CoRR,
abs/1312.4894, 2013.

[16] Ian J. Goodfellow. Technical report: Multidimensional, downsampled convolu-
tion for autoencoders. Technical report, Université de Montréal, 2010.

[17] Rafal Grodzicki, Jacek Mandziuk, and Lipo Wang. Improved multilabel clas-
sification with neural networks. In Gnter Rudolph, Thomas Jansen, Simon M.
Lucas, Carlo Poloni, and Nicola Beume, editors, PPSN, volume 5199 of Lecture
Notes in Computer Science, pages 409–416. Springer, 2008.

[18] hiit. Multilayer perceptrons, 2001.

[19] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Improving neural networks by preventing co-adaptation of
feature detectors. CoRR, abs/1207.0580, 2012.

[20] Jessica Horst, Lisa Oakes, and Kelly Madole. What does it look like and what can
it do? category structure influences how infants categorize. Child Development,
76(3):614–631, May/June 2005.

[21] Fu Jie Huang and Y. LeCun. Large-scale learning with svm and convolutional
for generic object categorization. In Computer Vision and Pattern Recognition,
2006 IEEE Computer Society Conference on, volume 1, pages 284–291, June.

[22] A Hyvrinen and E Oja. Independent component analysis: algorithms and ap-
plications. Neural Networks: The Official Journal of the International Neural
Network Society, 13(4-5):411–430, june 2000. PMID: 10946390.

[23] Panagiotis G. Ipeirotis. Analyzing the amazon mechanical turk marketplace.
XRDS, 17(2):16–21, December 2010.

99

[24] Yangqing Jia. Caffe: An open source convolutional architecture for fast feature
embedding, 2013.

[25] I.T. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.

[26] Rigas Kouskouridas, Efthimios Badekas, and Antonios Gasteratos. Simultaneous
visual object recognition and position estimation using sift. In Ming Xie, Youlun
Xiong, Caihua Xiong, Honghai Liu, and Zhencheng Hu, editors, ICIRA, volume
5928 of Lecture Notes in Computer Science, pages 866–875. Springer, 2009.

[27] Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, 2009.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, 2012.

[29] Kevin Lai, Liefeng Bo, Xaiofeng Ren, and Dieter Fox. Rgb-d (kinect) object
database. http://www.cs.washington.edu/rgbd-dataset/index.html, 2012.

[30] Kevin Lai, Liefeng Bo, Xiaofeng Ren, and Dieter Fox. A large-scale hierarchical
multi-view rgb-d object dataset. In ICRA, pages 1817–1824. IEEE, 2011.

[31] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010.

[32] Shaoxin Li, Shiguang Shan, and Xilin Chen. Relative forest for attribute predic-
tion. In ACCV’12 Proceedings of the 11th Asian conference on Computer Vision
- Volume Part I, 2013.

[33] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int.
J. Comput. Vision, 60(2):91–110, November 2004.

[34] Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. Stacked
convolutional auto-encoders for hierarchical feature extraction. In International
Conference on Artificial Neural Networks, 2011.

[35] Warren S. McCulloch and Walter Pitts. Neurocomputing: Foundations of re-
search. chapter A Logical Calculus of the Ideas Immanent in Nervous Activity,
pages 15–27. MIT Press, Cambridge, MA, USA, 1988.

[36] S. Mukkamala, G. Janoski, and A. Sung. Intrusion detection using neural net-
works and support vector machines. In Neural Networks, 2002. IJCNN ’02.
Proceedings of the 2002 International Joint Conference on, volume 2, pages 1702
–1707, 2002.

[37] Pushmeet Kohli Nathan Silberman, Derek Hoiem and Rob Fergus. Indoor seg-
mentation and support inference from rgbd images. In ECCV, 2012.

100

[38] OpenNI organization. OpenNI User Guide. OpenNI organization, November
2010.

[39] F. Pedregosa, G. Varoquaux, A. Granfort, V. Michel, B. Thirion, O. Grisel,
Blondel M., P. Prettenhoffer, and et. al. Scikit-learn: machine learning in python.
Journal of Machine Learning Research, 12:2825–283, 2011.

[40] Justus Piater and Roderic Grupen. Constructive feature learning and the devel-
opment of visual expertise. In Proc., Intl. Conf. on Machine Learning, Stanford,
CA, June 29 – July 2 2000. Morgan Kaufmann.

[41] Lutz Prechelt. Early stopping - but when? In Neural Networks: Tricks of the
Trade, volume 1524 of LNCS, chapter 2, pages 55–69. Springer-Verlag, 1997.

[42] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[43] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library (pcl). In
International Conference on Robotics and Automation, Shanghai, China, 2011
2011.

[44] Louise Scott, Lucila Carvalho, D. Ross Jeffery, and John D’Ambra. An evaluation
of the spearmint approach to software process modelling. In Vincenzo Ambriola,
editor, EWSPT, volume 2077 of Lecture Notes in Computer Science, pages 77–89.
Springer, 2001.

[45] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and
Yann LeCun. Overfeat: Integrated recognition, localization and detection using
convolutional networks. CoRR, abs/1312.6229, 2013.

[46] Yuyin Sun, Liefeng Bo, and Dieter Fox. Attribute based object identification. In
ICRA, pages 2096–2103. IEEE, 2013.

[47] R. Tamburo. Rgb image color space transformations. 12 2010.

[48] J. B. Tenebaum, V. de Silva, and J. C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290:2319–1323, 2000.

[49] D Thukaram, H P Khincha, and V H Pakka. Artificial neural network and sup-
port vector machine approach for locating faults in radial distribution systems.
IEEE Transactions on Power Delivery, 20(2):710–721, April 2005.

[50] Liesl Wigand, Monica N. Nicolescu, and Mircea Nicolescu. A developmental
approach to concept learning. In Jean-Louis Ferrier, Oleg Yu. Gusikhin, Kurosh
Madani, and Jurek Z. Sasiadek, editors, ICINCO (2), pages 337–344. SciTePress,
2013.

101

[51] Wikipedia. Colored neural network.svg — Wikipedia, the free encyclopedia,
2004. [Online; accessed 22-July-2004].

[52] Konrad Kording Wolfgang Einhauser, Christoph Kayser and Peter Konig. Learn-
ing multiple feature representations from natural image sequences. In Proc., Intl.
Conf. on Artificial Neural Networks, 2002.

