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Abstract 
 

In the foreseeable future, global energy demand is expected to rapidly increase as a result 

of the swelling population and higher standards of living.  Current energy generation and 

transportation methods predominantly involve the combustion of non-renewable fossil 

fuels, and greenhouse gas emissions from these processes have been shown to contribute 

to global climate change and to be detrimental to human and environmental health.  To 

satisfy future energy needs and to reduce greenhouse gas emissions, the advancement of 

renewable energy generation and electric vehicles is important.  The proliferation of 

intermittent renewable energy sources (such as solar and wind) and electric vehicles 

depends upon reliable, high-capacity energy storage to serve the practical needs of 

society.  The present-day lithium-ion battery offers excellent qualities for this purpose; 

however, improvements in the capacity and cost-effectiveness of these batteries are 

needed for further growth. 

 

As an anode material, silicon has exceptionally high theoretical capacity and is an earth-

abundant, low-cost option.  However, silicon also suffers from poor conductivity and 

long-term stability, prompting many studies to investigate the use of additive materials to 

mitigate these issues.   This thesis focuses on the improvement of silicon anode 

performance by using a nanoparticulate copper additive to increase material conductivity 

and an inexpensive, industry-compatible anode fabrication process.  Three main 

fabrication processes were explored using differing materials and heat treatment 

techniques for comparison.  Anodes were tested using CR2032 type coin cells.  The final 
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anodes with the most-improved characteristics were fabricated using a high-temperature 

heating step for the anode material, and an additional batch was formed to test the 

viability of the copper additive functioning as a full substitute for carbon black, which is 

the traditional choice of conductive additive for electrode materials.  Anodes materials 

were characterized using a variety of techniques including scanning electron microscopy 

(SEM), electron dispersive spectroscopy (EDS), inductively coupled plasma optical 

emission spectrometry (ICP-OES), Raman spectroscopy, and X-ray diffraction (XRD) to 

evaluate surface qualities and material content.  Electrochemical techniques including 

electrochemical impedance spectroscopy (EIS) and charge/discharge cycling were also 

used to determine the conductivity and functional behavior of the anode materials.   

 

Anodes from the final experimental study achieved initial capacities of 309 mAg
-1

 and 

957 mAg
-1

 for the silicon-only control and silicon with copper additive anodes, 

respectively, demonstrating an over 300% increase in specific capacity.  Si-Cu (NC) 

anodes also showed superior performance over control anodes with an initial capacity of 

775 mAg
-1

.  For all three anodes, high efficiencies of over 96% were achieved for the 

testing duration of 100 cycles and reached near or over 99% in final cycles.  Results also 

show a significant decrease in the resistance of anodes with copper additive, contributing 

to the improved performance of these anodes.  
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Chapter 1:  Introduction 
 

1.1  Global Energy Requirements 

1.1.1  Energy Consumption 

According to the U.S. Energy Information Administration, global energy consumption 

reached 575 quadrillion British thermal units (Btu) in 2015, and the value is predicted to 

increase by 28% (736 quadrillion Btu) by 2040 [1].  Energy consumption continues to 

increase rapidly due to two main factors: population growth and higher standards of 

living.  World population stabilization is improbable for this century in the absence of a 

concerted effort [2], and energy consumption is proportional to the increased demand for 

higher living standards.  As the population gains access to higher quality resources and 

technologies, more energy is required to fuel these needs.  Due to the relationship 

between these two factors, the energy needed to sustain both increasing trends will 

require exponential growth in energy generation to meet future demand. 

 

Currently, global energy demand is predominantly fulfilled using nonrenewable fossil 

fuels.  From the World Energy Council 2016 Summary, 85% of global energy 

consumption in 2015 derived from a fossil fuel sources: this includes oil, natural gas, and 

coal [3].  Because fossil fuel sources are finite in supply, alternative energy sources will 

ultimately be necessary to sustain the expected increase in energy demand.  Also of 

concern is that the extensive usage of fossil fuels has already increased global 

atmospheric levels of greenhouse gases and other pollutants, resulting in climate change.  

The adverse effects of climate change are well documented and manifest in many forms 
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including global temperatures increasing, oceanic warming and acidification, global sea 

level rising, and natural disaster exacerbation [4].  Excessive greenhouse gas emissions 

pose substantial risks to human health; the direct consequences of emissions are increased 

risk of respiratory illnesses and cancer while an indirect consequence of climate change is 

an increase in mortality from natural disasters such as intense droughts, floods, storms, 

and wildfires [5, 6].  In addition to anticipated fossil fuel shortages in the future, these 

issues have prompted global initiatives to reduce fossil fuel consumption. 

 

1.1.2  Renewable Energy 

To meet future energy requirements and to reduce greenhouse gas emissions, substantial 

progress has been made in developing effective renewable energy technologies.  

Renewable energy sources, such as wind, solar, hydro, geothermal, and biomass, are 

advantageous over fossil fuels due to their essentially infinite supply and reduced 

environmental impact [7].  Technologies utilizing wind and solar sources are of special 

interest as they generate no appreciable emissions during operation throughout their 

lifetime.  Though these technologies have existed in some form for centuries, modern 

renewable energy sources make-up only a small fraction of global energy generation at 

approximately 10% [3, 8].  Recent interest has stimulated notable growth in the field: 

between 2005 and 2015, total global energy generated from renewable sources increased 

by 1.75% [3].  Though hydropower and biomass are the largest contributors of power in 

the category by a wide margin, both wind and solar energy have shown exponential 

growth trends for energy generation within the past ten years [8].  Wind turbines and 

solar photovoltaic (PV) systems in particular have declined drastically in cost as higher-
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performing materials have become commercially available and financial incentives have 

been offered for installations. 

 

Despite this growth, wind and solar energy generation methods are hampered by their 

intermittent nature.  Fluctuations in energy availability from these sources prevent them 

from becoming viable stand-alone energy options as grid connection or other backup 

generation methods remain necessary when wind or sun exposure is insufficient  

Intermittency of energy generation also creates issues in overloading the existing power 

grid and adds difficulty in forecasting energy needs [9].  Though goals of increasing 

renewable energy generation are crucial to reduce greenhouse gas emissions, solutions 

must be developed in tandem to mitigate the instability of these technologies.  The 

implementation of energy storage systems is widely regarded as an effective means to 

address this issue. 

 

 

1.2  Energy Storage 

1.2.1  Forms of Energy Storage 

Energy storage systems are imperative for the progression of intermittent renewable 

energy technologies such as wind and solar.  Energy storage provides a means to save the 

excess energy generated during favorable conditions for later use and thus stabilizes the 

energy supply.  Many of the main forms of energy storage include pumped hydro, 

compressed air, flywheel, superconducting magnetic, supercapacitor, hydrogen, thermal, 
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and battery energy storage [10].  Pumped hydro is the most common energy storage form, 

constituting approximately 99% of all global grid-connected electricity storage; 

compressed air storage using underground caverns or large tanks is the next highest [10, 

11].  However, both of these energy storage methods have specific geological and spatial 

requirements, limiting where they can be installed.  The contributions of other energy 

storage technologies are expected to increase as more regions invest in energy storage 

and as their development continues. 

 

All of these options span different stages of development from research to deployment to 

maturity, and each form offers unique advantages for specific applications [12].  Figure 1 

shows a visual comparison between the various energy storage technologies with respect 

to system power ratings, level of readiness for deployment, and efficiency; the image is 

an amalgamation of figures in literature [11, 13, 14]. 
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Fig. 1:  Energy storage form comparison.  The figure is an amalgamation of similar 

figures to compare the system power ratings, level of readiness for deployment, and 

efficiency of top energy storage technologies. 

 

 

As shown, technologies in the battery category have the ability to power a wide range of 

applications including grid load support.  Many types of batteries are sufficiently 

established that they are either already successfully installed or considered mature 

enough to be ready for greater deployment [14].  This concept of “readiness” is crucial as 

studies show that large-scale reductions in greenhouse gas emissions need to occur in the 

next 10-15 years to prevent severe climate change consequences [15].  For this reason, 

batteries are a highly attractive solution due to their maturity and low installation time.  
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The implementation of low-cost yet high-energy battery systems is a top strategy to 

achieve energy goals. 

 

1.2.2  Batteries 

The battery category encompasses many different forms of batteries of various chemical 

compositions. Batteries can be either primary (non-rechargeable) or secondary 

(rechargeable), and energy storage applications require the latter to store and deliver 

energy on demand.  Several types of secondary batteries have proven successful over the 

years: lead acid, nickel-cadmium (Ni-Cd), nickel-metal-hydride (NiMH), sodium-sulfur 

(NaS), and lithium-ion (Li-ion).  Flow batteries are also gaining popularity for large-scale 

storage applications.  Batteries range widely in their compositions and attributes, 

rendering some more fit for certain applications than others.  Table 1 shows a 

summarized comparison of the main types of battery candidates for energy storage [16-

18]. 
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Table 1: Comparison of attributes of main battery types for energy storage. 

 Flow 
Lead 

Acid 
Ni-Cd NiMH NaS Li-ion 

Anode Various Pb Cd MH Na C 

Cathode Various PbO2 NiOOH NiOOH S Li(MO2) 

Electrolyte 
Various 

(aq) 

H2SO4 

(aq) 

KOH  

(aq) 

KOH 

 (aq) 
Solid Organic 

Nominal 

Voltage (V) 
~ 1.5 2.0 1.2 1.2 2.0 4.0 

Operating 

Temp. (ºC) 
0 to 50 -40 to 60 -20 to 70 -20 to 65 300 to 350 -20 to 50 

Energy 

Density 
Low Low Moderate Moderate High High 

Mobility Low Moderate Moderate High Low High 

Hazardous Moderate High High Low Moderate Low 

Efficiency ~ 70-85% ~ 90% ~ 60-70% ~ 70-90% ~ 75-86% ~ 99% 

Cost Moderate Low Moderate Moderate High High 

Year 

Developed 
~ 1970 ~ 1800 ~ 1950 ~ 1990 ~ 1960 ~ 1990 

 

Flow batteries have considerable advantages for large-scale energy storage.  Because they 

are stationary and require spacious areas, flow batteries are well served for grid-tied 

application; however, their high operational maintenance and expensive membranes 

present challenges [19].  Lead acid batteries are the most mature battery option, and they 

have reliably served in vehicle and backup electricity applications.  Low specific energy 
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and relatively short service lifetime prevent the use of lead acid batteries in many 

applications, and toxicity is of concern.  Ni-Cd batteries are also highly toxic, causing 

their use to decline despite their high specific energy [18].  NiMH batteries have 

excellent advantages in safety and performance, and they serve as a popular choice for 

hybrid electric vehicles.  But the low operating voltage of NiMH batteries are 

unsatisfactory for 100% electric vehicles, and memory effects have proven problematic 

for some applications [18].  One of the most promising new battery types for grid support 

is the NaS battery in terms of energy storage capabilities and economic merit [20].  NaS 

has exceptional advantages in energy density, lifetime, and low maintenance needs, but 

the high operational temperature can cause safety concerns and prevents its use in mobile 

applications [10].  Lastly, Li-ion batteries are attractive for a variety of applications due 

to their light weight, low toxicity, and outstanding energy density.  Most Li-ion batteries 

show favorable results in lifecycle assessments due to their long lifetime and high 

efficiency, though a lack of commercial-scale recycling will need to be addressed in the 

coming years [21].  Despite other disadvantages such as potential flammability and cost, 

Li-ion batteries remain one of the most versatile and high-performing battery options for 

both stationary and mobile applications. 

 

1.2.3  Batteries for Electric Vehicles 

The electricity generation sector is the common target for action to reduce greenhouse 

gas emissions, but other contributing sectors need to be held accountable also.  In the 

United States, the transportation sector uses approximately 30% of the nation’s total 

energy, and at least 91% of this energy is derived from fossil fuels [22, 23].  Though 



9 
 

solutions such carpool incentives, public transit development, alternative fuel blends, and 

more efficient vehicle designs are all viable options to reduce emissions, they suffer from 

short-term perspective.  Unstable population growth and uncertain fossil fuel reserves 

necessitate a more long-term solution that addresses the root issue: the fuel source.  

Fortunately, recent advances in technology have enabled electric-powered vehicles (EVs) 

to become a more practical and economically viable option. 

 

Preventing the global consequences of climate change is the goal often cited by electric 

vehicle proponents.  But one of the greatest benefits of electric vehicles is their positive 

effect on local air quality.  Conventional vehicles emit airborne pollutants such as sulfur 

dioxide, nitrous dioxide, volatile organic compounds, and other harmful particulates in 

addition to greenhouse gases.  These pollutants are known to be linked to increased risks 

of respiratory illness, heart disease, and cancer and can concentrate at the local level [24].  

Electric vehicles are therefore an attractive option to combat air quality issues as they 

have no emissions for operation.  Areas with congested traffic patterns would be able to 

see appreciable differences in local air quality with electric vehicles substituting 

conventional fossil fuel vehicles, and billions of dollars in health care cost savings would 

result [25]. 

 

But currently, the high price and limited miles-per-charge of the average EV makes it 

difficult to compete with conventional vehicles.  When predicting the growth of the EV 

market, most economic analyses show that the greatest influence is the cost of the battery 

[15].  Though the EV has proven to be competitive in terms of safety, practicality, and 
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performance capabilities, the key development for EV market growth is an overall 

decrease in battery costs and increase in battery energy density.  Battery costs have 

decreased steadily in recent years: as of 2015, the costs (in USD/kWh) are approximately 

one third of the costs from 2008 [26].  However, battery costs from 2015 will need to 

further decrease by half, and battery energy density will need to increase by nearly 45%, 

to meet 2022 industry goals [26]. 

 

Though EVs have zero tailpipe emissions, the total greenhouse gas emissions savings of 

EVs are dependent on the energy generation methods used to fabricate and charge vehicle 

batteries [27, 28].  Charging the batteries of electric vehicles requires electricity currently 

supplied by the electric grid, which continues to use primarily fossil fuels for energy 

generation.  With this in mind, literature remains undecided on whether electric vehicles 

actually generate more or less indirect emissions in their lifetime than conventional 

vehicles.  Reports show both drastic reductions in emissions [28, 29] and a net increase in 

emissions [30] depending upon local energy generation methods, charging time of day, 

and other key variables.  Thus batteries contribute to the EV market twofold: battery 

development increases the functionality and economic viability of the vehicles directly, 

and it indirectly reduces vehicle lifecycle emissions by bolstering renewable energy 

generation. 

 

The preferred battery for EVs is the Li-ion battery for two main reasons: it is lightweight 

and has high energy density.  The drivable range of the EV is dependent upon these two 

requirements, making the Li-ion battery the best candidate for the application [29].  
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Further development of Li-ion batteries is needed to address several concerns including 

cost, safety, capacity, and lifetime, yet manufacturers already heavily rely on these 

batteries due to their current performance capabilities. 

 

 

1.3  Lithium-ion Batteries 

1.3.1  Functionality 

Since its initial development in the 1970s and subsequent commercialization in 1991 by 

Sony Corporation, the Li-ion battery has become widely integrated into modern society 

[31].  Most electronic devices such as cameras, cellular phones, computers, and other 

gadgets have a secondary Li-ion battery as a power supply.  Other markets such as EVs 

and energy generation are also using larger stacks or blocks of connected Li-ion batteries 

in recent years. 

 

Batteries are comprised of three main components: two electrodes (anode and cathode) 

and an electrolyte.  The electrodes store the chemical energy of the battery which can be 

used as electrical energy for an application. The cell hosts a chemical reduction-oxidation 

reaction specific to the chemistries of the electrodes: the anode functions as the reductant, 

and the cathode is the oxidant for the charge reaction.  In a standard Li-ion battery, 

Equation 1 shows the reaction at the cathode during charging of the cell.  Equation 2 

shows the reaction during discharge.  In the equations, the term MO2 stands for any metal 

oxide used as the active material of the cathode.  A variety of lithium transition metal 
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oxides can be used as the active material such as LiCoO2, LiMn2O4, and LiFePO4.  

LiCoO2 was developed by Goodenough and Mizushima.  Other layered-structured 

materials such as LiNiMnCoO2 and LiNiCoAlO2 are also widely used [16]. 

 

(charge)  LiMO2  → Li1-xMO2 + x Li
+
 + x e

-
 (1) 

  

(discharge)  Li1-xMO2 + x Li
+
 + x e

-
  → LiMO2 (2) 

 

 

Equation 3 shows the reaction at the anode during charging of the cell, and Equation 4 

shows the reaction during discharge.  The term A stands for the active material of the 

anode, which is commonly replaced with symbols for graphite or for silicon. 

 

(charge)  A + y Li
+
 + y e

-
  →  LiyA (3) 

  

(discharge)  LiyA  →  A + y Li
+
 + y e

-
 (4) 

 

 

The third component, the electrolyte, facilitates the movement of the ionic components 

for the reaction between the two electrodes.  In Li-ion batteries, an ion-permeable 

separator soaked in the electrolyte solution is also included between the two electrodes to 

prevent direct electrode contact.  The most common electrolyte choice for Li-ion cells is 

a solution of lithium salt and organic liquid; however, other options include lithium salts 

in nonorganic liquids, fused lithium salts, and ionically conductive materials such as 

polymers and ceramics [32].  The electrolyte also contributes to the formation of a stable 

passivating layer on the surface of each electrode.  This layer, the solid-electrolyte-

interphase (SEI), is formed during the first charge of the cell as the organic solvent of the 

electrolyte decomposes on the electrode surface [32].  Initially speculated as a hindrance 
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to the cell, the SEI layer is now understood to function as a protective, electrically 

insulating layer on the electrode while remaining permeable for ion transport [33]. 

 

Li-ion battery functionality is unique because it involves the ‘intercalation’ of Li ions for 

the cell reaction.  When the cell is charging, Li ions shuttle from the cathode, through the 

permeable separator, and to the anode where they intercalate into the layered material.  

The phenomenon is reversed during the discharging of the cell.  The intercalation of the 

Li ions occurs quickly and reversibly; the reaction is also attractive because there are no 

recrystallization or phase changes that occur, only Li-ion insertion and desertion in the 

active materials [32].  Figure 2 includes a diagram outlining the functionality of a Li-ion 

cell; the directional movement of the Li
+
 ions and electrons is shown in relation to the 

cell components. 
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Fig. 2:  Diagram illustrating the functionality of a Li-ion cell under charge and discharge 

conditions.  The directional movement of the Li ions, electrons, and current is shown. 

 

 

For a fundamental understanding of the overall cell functionality, the main 

thermodynamic and kinetic principles that govern the electrochemical reactions are 

included. Equation 5 is obtained by relating the maximum work of the cell to the change 

in free energy per one mole of the reaction.  The maximum energy that the cell can 

supply can be calculated from the thermodynamic relationship  

 

ΔG  =  - n F Ecell (5) 

 

 

where ΔG is the Gibbs free energy of the reaction, n is the number of moles transferred in 

the reaction, F is the Faraday constant, and Ecell is the cell potential as calculated from the 
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electrode potentials of each half reaction for the cell.  Since a “cell” can also be 

represented by a half-reaction and a standard hydrogen electrode, the relationship in 

Equation 5 can be applied using electrode potentials.  The resulting equation, the Nernst 

equation, shows the relationship between the electrode potential of a half reaction, its 

standard electrode potential, and the activities of the reaction species [34, 35].  The 

Nernst equation is shown in Equation 6 

 

E  =  E
θ
 + (R T / n F)[ ln(aox / ared)] (6) 

 

 

where E is the electrode potential of the half reaction, Eθ is the standard electrode 

potential relative to the standard hydrogen electrode, R is the universal gas constant, T is 

the temperature, aox is the activity of the oxidizing species, and ared is the activity of the 

reducing species.  Using basic thermodynamic principles, the electrode kinetics can be 

derived and yield the Butler-Volmer equation as shown by Equation 7.  The net current of 

the electrode is related to the cathodic and anodic contributions from the reaction as 

defined by 

 

i  = io [exp(-αc n F η / R T) – exp(αa n F η / R T)] (7) 

 

 

where i is the net current of the anode and cathode, io is the exchange current, αc is the 

cathodic transfer coefficient, αa is the anodic transfer coefficient, and η is the 

overpotential.  The overpotential is defined as the difference in potential between the 

thermodynamically calculated value and the experimental value.  The overpotential of the 

cell can also be related to the basic definition of power as shown in Equations 8 and 9.  
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With secondary cells, the equations can apply for either charging or discharging 

conditions of the cell.  

 

P  =  I × V 
 

(8) 

V  =  Voc + η 

 

 

(9) 

In the equations, P is the charging/discharging power of the cell, I is the 

charging/discharging current, V is the charging/discharging voltage, and Voc is the open 

circuit voltage [36].  A number of different variables can affect the overpotential of the 

cell, including the cell internal resistance.  The cell resistance can be calculated with the 

following summation   

 

Rcell  =  Re + Rct (10) 

 

 

where Rel is the resistance across the electrolyte and Rct is the sum of resistances across 

the electrode and SEI layer.   Another important aspect of performance for secondary 

batteries is the Coulombic efficiency of the cell as shown in Equation 11.  This parameter 

shows the relationship between the charge and discharge capacities of the cell, indicating 

how much stored charge is recovered for the cycle. 

 

Coulombic efficiency  =  (Qdis / Qch) × 100% (11) 

 

 

From the equation, Qdis is the discharge capacity of the cell and Qch is the charge capacity 

of the cell.  Capacity refers to the amount of charge provided by the cell, and the specific 

capacity is generally provided in literature in units of mAhg
-1

.  Here, the mass includes 

only the mass of the active materials, excluding the current collector foil mass. 
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For manufacturing, these components are packaged in different forms such as coin cell, 

cylindrical cell, pouch cell, or prismatic cell depending upon the size and power 

requirements of the battery.  Most commercial Li-ion battery electrodes are fabricated 

using the same process: slurry mixtures of the anode and cathode materials are cast onto 

copper and aluminum current collector foils, respectively.  The slurry mixtures consist of 

the active material (commonly graphite for the anode and a lithium-metal-oxide for the 

cathode), a conductive additive (typically carbon), and a binding agent (for adherence to 

the foil) dissolved in a solvent.  From the coated foils, electrodes are cut to fit the size of 

the designated battery.  As lithium is highly reactive when exposed to water even in 

atmospheric concentrations, Li-ion batteries are assembled under anhydrous conditions 

and with non-aqueous electrolytes.  The coin cell configuration is small and involves a 

simple assembly process, making it a popular choice in research applications.  Two 

additional components, spacers and springs, are used in coin cell assembly to ensure even 

contact for the anode-separator-cathode stack.  Figure 3 illustrates the basic structure of a 

Li-ion battery in a CR2032-type coin cell configuration with its labeled components as 

modified from a diagram by MTI Corporation [37]. 
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Fig. 3:  Basic structure of a CR2032-type coin cell with labeled components.  Cathode, 

anode, and separator can vary in composition and appearance. 

 

 

Once assembled, coin cells can be tested using charge and discharge cycling equipment 

to determine important performance characteristics of the cell such as cycle completion 

time, charge and discharge capacities, and efficiency.   

 

1.3.2  Research 

There are three major markets that depend on the improvement of batteries, particularly 

the Li-ion battery: (1) portable devices, (2) electric vehicles, and (3) energy generation.  

Though new forms of batteries show great promise for energy storage applications, 

industry will continue to invest in Li-ion batteries for the near future due to their 

advantageous properties as previously described [38].  However, the improvement of the 

Li-ion battery remains an important topic in research.  Further improvements in Li-ion 

batteries can enable the advancement of important new technologies in each of the 
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aforementioned fields, particularly electric vehicles and renewable energy methods [31, 

39].   

 

Specifically, the development of high capacity yet low-cost electrode materials remains a 

high priority for researchers to fulfill greater energy storage needs [31, 40].  There is also 

significant pressure for new electrode material research to be conscientious of 

environmental effects and to exhibit sustainable processing techniques [41].  With these 

qualifications in mind, there are a limited number of compounds that can be practically 

utilized.  Research into the viability of new cathode materials is extremely active, but 

special attention to anode development using silicon has become prominent in literature. 

 

 

1.4  Silicon-Based Anodes 

1.4.1  Silicon Anodes 

The majority of commercial Li-ion battery manufacturers use graphite (C) as the anode 

material.  Graphite has many desirable characteristics, and its ability to facilitate the 

intercalation of Li ions allows the material to have low volume expansion (< 7%) when 

lithiated and delithiated [42].  Low volume expansion helps to preserve the integrity of 

the electrode and preserve the SEI layer.  However, graphite suffers from low theoretical 

capacity (~ 372 mAhg
-1

), and this proves problematic for meeting increasing energy 

demands [43]. 
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One of the most expansively studied anode materials is silicon, and it continues to be a 

compelling choice due to its high theoretical capacity (~ 4200 mAhg
-1

) and proven 

functionality [43, 44]. Silicon also shines as a sustainable material option due to its 

general natural abundance and non-toxicity [43, 45, 46].  However, several unfavorable 

characteristics of silicon prevent the material from becoming more prominently utilized. 

The characteristic that provides silicon with such high capacity also causes one of its 

greatest flaws.  Unlike graphite, silicon participates in an alloying reaction with lithium 

rather than intercalation.  This allows silicon to accommodate an uncommonly large 

stoichiometric ratio of lithium, but it also results in high volume expansion of the 

material (> 300%) [42].  The expansion stresses the structure of the material, leading to 

internal cracking and destruction of the SEI layer.  Literature indicates that using nano-

sized silicon particles and structures can enhance the stress resiliency of the anode, but 

decomposition eventually prevails over long-term cycling [47].  The large volume 

changes upon lithiation/delithiation of the anode and overall poor capacity retention have 

hindered the commercial viability of predominantly silicon based anodes [45, 48, 49].  

Some commercial manufacturers, such as Panasonic, have begun incorporating a 

percentage of silicon in their graphite anode to improve capacity [50].  Partial substitution 

of graphite can help boost performance, but the ultimate goal of full replacement is still 

widely sought-after.   

 

Another prominent issue that plagues the silicon anode is the low electrical conductivity 

of silicon (resistivity of 2.3 × 10
3
 Ωm, 20ºC).  Though silicon has high theoretical 

capacity, poor electrical conductivity limits the actual capacity to substantially lower 
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values [51].  Initial electrical conductivity is also further worsened with the lithiation 

expansion of the material over cycling [47, 52].  Because the advancement of practical 

silicon anodes depends upon overcoming these limitations, much of silicon anode 

research involves slight modification of either the anode surface or the silicon structure.  

To increase the cycling stability and the electrical conductivity of silicon anodes, 

numerous techniques involving additive materials have been tested throughout literature 

as described in the following section.   

 

1.4.2  Carbon Additives 

The most common approach to mitigate issues of stability and conductivity is to 

supplement silicon with a form of carbon.  Conductive carbon is commonly used in 

industry as a conductive additive for both anode and cathode slurry mixtures.  However, 

conductive carbon black does not contribute to the capacity of the anode, so adding 

carbon black is typically restrained to small weight percentages [53].  Many new efforts 

in improving silicon anodes have focused on the minimization or total elimination of 

carbon black in the anode material to maximize capacity.  For example, a study 

conducted by Zhang et al. used reduced graphene oxide as a conductive additive to a 

standard silicon slurry [53].  Carbon black content was reduced by over 50% and 

supplemented by one weight percent of the graphene additive; results showed improved 

capacity retention for cells with the additive over those with only carbon black.  Multiple 

studies also utilize strategies involving graphene, showing higher capacities and 

improved conductive networking throughout the material with varying degrees of success 
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[54, 55].  Though impressive, these strategies are currently limited by the complex and 

expensive processes needed to produce graphene at a large scale. 

 

Many studies have utilized creative means to form silicon/carbon structures including 

carbon coated silicon [56-58] and silicon/carbon embedded frameworks [59].  One study 

by Liu et al. showed that carbon-coated silicon particle anodes reach capacities as high at 

1000 mAhg
-1

 and are sustained for over 50 cycles at a cycling rate of 300 mAg
-1

 [58].  

Variations of silicon/carbon composites are also prevalent in literature with successful 

results [60-62].  These composites have shown immense promise for accommodating the 

expansion of silicon upon lithiation and improving conductivity [63].  Some composites 

were formed using relatively facile methods such as ball milling, but the majority 

involved more complex energy-intensive processes [63].  Silicon/carbon materials are 

successful on their own, and they are often also used as a foundational material to which 

other components, such as transition metals, can be added. 

 

1.4.3  Transition Metal Additives 

Though silicon/carbon integration methods have proven successful in demonstrating 

increased capacity, positive results have also been achieved with the addition of metallic 

components.  The addition of different transition metals such as silver, tin, and 

germanium has been shown to enhance the performance of silicon-based anodes [64-66].  

One such study by Zhong et al. demonstrated how tin nanoparticles function as a 

successful conductive additive [65].  Tin nanoparticles were introduced to a silicon-based 

slurry via small weight percentages of tin dichloride, and results showed improved 
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capacities of over 1100 mAhg
-1

 when cycled at 280 mAg
-1

 and over 50% reduction in the 

resistivity of the anodes.  Tin has shown to be a popular material in anode literature due 

to its good conductivity (resistivity of 1.09 × 10
-7

 Ωm, 20ºC), lithiation capacity, and 

general nontoxicity [67, 68].  

 

There is extensive research investigating silicon/metal composite materials [63].  Many 

of these reports showed that increased capacities of over 1000 mAhg
-1

 can be achieved 

using a variety of methods to combine silicon and transition metals [63]. Metal 

frameworks, such as the nickel scaffold described in Zhang et al., have also shown 

success in accommodating the expansion of silicon and increasing conductivity of the 

anode [69].  But research in metal additives must be conscientious of the abundance and 

cost of materials in addition to the fabrication processes.  Positive results have also been 

shown from using copper in a variety of strategies with silicon anodes. 

 

1.4.4  Copper Additives 

The benefits of using copper additives in silicon-based anodes are well documented. 

Copper is well-known for having one of the highest electrical conductivities (resistivity 

of 1.68 × 10
-8

 Ωm, 20ºC), and it has been studied in forms such as arrays [70, 71], 

coatings [72, 73], and depositions [74, 75] with silicon.  Copper coatings have been 

fabricated by coating the silicon anode surface with a thin layer of copper [72] and by 

coating the individual silicon particles in copper [73]; both methods demonstrated 

significant enhancement of the capacity and stability in comparison to silicon control 

anodes.  Joyce et al. investigated the prospect of using a copper coating to function as 
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both the conductive additive and the binding agent for a silicon anode, and the cycling 

results proved comparable for approximately 40 cycles [76].  

 

Silicon/copper composites have also been synthesized and yield promising results in 

improving performance [77-80].  In the study by Cheng et al., silicon/carbon/copper 

composite materials were formed using varying amounts of copper acetate combined 

with silicon [77].  The report showed how a 2.2 weight percent addition of copper in the 

anode material yielded an improved capacity (990 mAhg
-1

) and conductivity.  This report 

exhibited that even small weight percentages of additive can effect considerable change, 

and this has become an important theme in many projects.  In several reports, the 

compound Cu3Si was observed to form following the heat treatment step, and it was 

shown to be an effective contributor to improved stability as it can have a buffering effect 

to combat the silicon volume expansion [75, 77, 81-84].  Reports also indicate that, in 

addition to limiting the degradation effects caused by volume expansion, the addition of 

Cu3Si increases the overall conductivity of the material [85, 86].  The high electrical 

conductivity of Cu3Si facilitates improved electronic connection between particles in the 

anode material and thus contributes to the improved performance of silicon-based anode 

materials [81, 87].   

 

Cu3Si has been explored as a viable material for a variety of applications, especially for 

battery and solar cell technologies; knowledge of the material properties of the material 

has also progressed considerably from research.  The silicon-copper phase diagram 
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indicating the properties of the material in relation to temperature is shown in Fig. 4, and 

the three regions for the η, η’, and η” Cu3Si phases are illustrated.   

 

 
Fig. 4:  The equilibrium phase diagram for the Si-Cu system is shown in the range of 65 

to 90 atomic percent copper content.  The enlargement illustrates the regions for the  

η, η’, and η” Cu3Si phases [88]. 

 

 

The Cu3Si η phase corresponds to very high temperature (above 558ºC ) heat treatment 

process as utilized in several examples of anode fabrication in literature; the Cu3Si η” 

phase is shown to be stable below 467ºC and thus at room temperature.  In the structural 

analysis of Cu3Si published by Solberg, the formation of Cu3Si particles via the heating 

and subsequent cooling of dislocation-free silicon and copper additive is described [89].  

Though η phase particles may have been grown using high temperatures, their probable 

phase transformation to the lower-temperature η” phase is assumed and well supported in 

literature [90].  In silicon anode research using copper additives, reports often indicate the 
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presence of both copper particles and Cu3Si.  Though the copper may be integrated into 

the silicon based structure of the anode at the time of anode fabrication, copper can be 

expected to either relocate or precipitate as Cu3Si over time because copper has poor 

solubility in silicon at room temperature [91, 92].  Eventually, copper can manifest at 

defect sites, grain boundaries, or the surface of the sample, or it can form the stable Cu3Si 

phase.   

 

In a study conducted by Kim et al., the effects of copper additive into silicon-carbon 

anode material were investigated [87].  Copper was deposited on silicon particles, and the 

subsequent material was mixed and heated to 900ºC for two hours.  Results confirmed the 

formation of Cu3Si, and the composite material was shown to have Cu3Si adhered to Cu 

and Si particles in a homogeneous distribution.  A report by Yoon et al. also 

demonstrated this configuration by showing the adherence of Cu3Si layers on silicon core 

particles with metallic Cu particles randomly dispersed throughout [83].  The report also 

showed the continued adherence of the Cu3Si after electrochemical testing, demonstrating 

that the material was stable during charge/discharge cycling.  This adherence is important 

as previous studies have shown that the detachment of additive materials (such as copper) 

from the silicon particles results in poor long-term cycling [93].  Though Cu3Si has 

shown to improve the conductivity and stability of silicon-based anodes, studies have 

also shown that Cu3Si is electrochemically inactive during the lithiation and delithiation 

processes of cycle testing [82, 83, 87].  
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Also from the study conducted by Kim et al., specifically CuCl2 was used as a precursor 

material in the silicon-based mixture to form the Si-Cu3Si-Cu composite material, and the 

CuCl2 to Si ratio was high at 2.683:1 [87]. An initial discharge capacity of 680 mAhg
-1

 

was attained for the this material during cycle testing at a low constant current of 50 

mAhg
-1

 [87].  The report asserts that most copper reacted with silicon to form Cu3Si due 

to the very high diffusivity of copper in solid state reactions [87, 94].  Due to its proven 

benefits in providing stability to the anode material and its ease of formation, the addition 

of Cu3Si is relatively common in literature and remains an important, popular topic. 

 

Copper has also been studied as a nanoparticle additive for anode materials [78, 95, 96], 

and it is advantageous that the small particle size allows for thorough integration into the 

silicon anode structure.   The work conducted by Fang et al. demonstrated a one-step 

process of directly adding copper nanoparticles to a standard silicon slurry [78].  The 

nanoparticles showed excellent dispersion in the silicon structure, and the cycling 

performance of cells with added copper were improved over a purely silicon-based 

control.  However, the anodes suffered from poor capacity retentions of under 45% for all 

samples with the copper additive during cycle testing [78].  Though reports have 

achieved different levels of success in maintaining high capacity during cycling, all have 

shown that copper additives substantially improve performance when compared to 

control samples. 

 

Though successful in increasing anode capacity and cycling stability, many of these 

studies involved varying degrees of complexity that would be difficult to accommodate at 
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the industry scale.  Most studies also included numerous process steps that add time and 

cost.  Though copper proves to be an advantageous conductive additive, further research 

is needed to find a more commercially-compatible methodology for its utilization.  The 

Li-ion battery market already struggles in cost-competitiveness, making simplistic and 

economic solutions all the more necessary. 

 

1.4.5  Current State of Research 

Few energy storage options can compete with Li-ion batteries for applications that 

require portability, high energy density, and longer-lasting discharge duration.  However, 

improvements in cost and in performance capabilities remain necessary for Li-ion 

batteries to satisfy the increasing energy requirements of new technologies.  Silicon-

based materials are a highly desirable replacement for conventional graphite-based 

materials for anodes in Li-ion batteries due to silicon’s more favorable electrochemical 

properties.  Although numerous strategies to help address the functional issues that hinder 

silicon-based anodes have been explored throughout the past decade, strategies thus far 

commonly involve complex or cost-intensive processes.    

 

The motivation for this study derives from the concept of using a copper component to 

lessen the undesirable functional attributes of silicon as an anode.  Though previously 

mentioned strategies have shown progress in this goal, the focus of this study was to 

utilize a more straightforward and economic method for the anode fabrication process. As 

Li-ion battery fabrication facilities swell in production size, simplicity and cost 

effectiveness of potential solutions are of significant interest and have a greater likelihood 
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for success in industry [97].  This study investigated the one-step addition of copper 

nanoparticles via CuCl2 to a silicon-based anode mixture using benchtop-scale versions 

of industrywide techniques for electrode fabrication. An experimental batch of anodes 

made with CuCl2 as a substitute for conductive carbon was also assessed to determine the 

viability of using exclusively silicon with CuCl2 as the active material.  Chapter 2 of this 

report details the experimental process and equipment used to fabricate, characterize, and 

electrochemically test the anode materials.  The chapter also includes the preliminary 

approaches that were tested in order to optimize the final fabrication process.  Chapter 3 

presents and discusses the results obtained from this study.  Chapters 4 and 5 summarize 

the main conclusions and recommendations for future research, respectively, elucidated 

from the results of this study. 
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Chapter 2: Experimental 
 

2.1  Sample Preparation 

This section details all procedures and equipment used in fabricating the experimental 

silicon-based anodes.  Though the fundamental method remained unchanged throughout 

the study as a whole, several processes evolved over time with the adoption of new 

techniques and materials.  This project involved three main experimental procedures 

(low-temperature, initial high-temperature, and final high-temperature) that are outlined 

in the following sub-sections. 

 

2.1.1  Low-Temperature Anodes 

The initial slurry mixtures for silicon-based anodes with copper additive were fabricated 

with a procedure modified from the general preparation techniques and slurry 

composition reported by Cetinkaya et al. [98].  The following chemicals were procured: 

silicon nanopowder (Si, <100 nm, 98% purity, Sigma-Aldrich), polyvinylidene fluoride 

(PVDF, MTI), carbon black Super P (CB, 99% purity, Alfa Aesar), and copper dichloride 

(CuCl2, Sigma-Aldrich).  The CuCl2 crystals were milled into a fine powder using a small 

mortar and pestle for several minutes.  Table 2 compiles this information and shows the 

amounts of material used in the slurry mixtures. 
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Table 2: Materials and quantities for low-temperature anode study. 

Material Abbreviation Details Manufacturer Amount 

Silicon Si 

<100 nm 

powder 

98% purity 

Sigma-Aldrich 375 mg 

Polyvinylidene 

fluoride 
PVDF powder MTI 75 mg 

Carbon black  

(Super P) 
CB 

powder 

99% purity 
Alfa Aesar 50 mg 

Copper dichloride 

(dihydrate) 
CuCl2•2H2O 

crystals 

99+% 
Sigma-Aldrich 10 mg 

 

 

The materials were dry mixed and then dissolved in n-methyl-2-pyrrolidone (NMP, MTI) 

to form a homogeneous slurry using a magnetic stirrer at room temperature for one hour.  

The control batch consisted of all ingredients except CuCl2, and this batch was denoted as 

“Si-only” for results.  The second batch included the CuCl2 and was denoted as “Si-Cu” 

for results.  An additional test was conducted to determine if further reducing the particle 

size of the dry material would result in a more homogeneous slurry and improve anode 

performance.  For this test, the dry materials were milled in a planetary ball mill (MTI) as 

shown in Fig. 5 for 30 minutes prior to mixing with NMP.  Alumina milling jars and 

media were used for this step. 
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Fig. 5:  MTI Planetary ball mill used to reduce the particle size of dry material.   

The ball mill was operated for 30 minutes. 

 

After mixing, slurries were cast onto a strip of copper current collector foil.  Foils were 

adhered to a clean, glass surface using ethanol and were wiped clean.  Each slurry was 

then cast onto separate foil strips using a Mayer rod.  A good casting was characterized 

by smooth, even application of material free from large grains or bubbles.  Figure 6 

shows a sample casting.  Coated foils were then allowed two hours to air dry before heat 

treatment in the vacuum oven at 120 ºC for 12 hours.  The vacuum oven (MTI) is shown 

in Fig. 7. 
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Fig. 6:  Image of a typical slurry cast using a Mayer rod onto a copper current collector 

foil.  Application of the slurry should be smooth and without large grains or bubbles.  

This method was used throughout all studies. 
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Fig. 7:  MTI vacuum oven used for low temperature heat treatment of the coated foils.  

Foils were heated at 120ºC for 12 hours. 

 

 

Then, anode discs of 1.3 cm diameter were punched from the foils using a handheld disc 

punch.  A typical anode was measured to have approximately 0.08 mm thickness (foil 

included) and 0.3 mg cm
-2

 material loading (foil not included).  Anode discs were then 

used to fabricate coin cells as detailed in Section 2.1.3. 

 

2.1.2  Initial High-Temperature Anodes 

After examining the results from testing the low-temperature anodes (results described in 

Chapter 3), further review of the literature was conducted to find alternative anode 

fabrication methods.  Many literature studies included a higher temperature heat 

treatment step in their processes, and this note prompted the next study of high-
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temperature anodes for this project.  The preparation techniques and slurry composition 

were adapted from those used by Zhong et al. [65].  Materials remained consistent from 

the previous study except the following alterations: the previous PVDF binder and 

solvent materials were substituted with polyvinylpyrrolidone (PVP, Sigma-Aldrich) and 

ethanol, respectively.  Table 3 shows the adjusted materials list used for this study. 

 

Table 3: Materials and quantities for initial high-temperature anode study. 

Material Abbreviation Details Manufacturer Amount 

Silicon Si 

<100 nm 

powder 

98% purity 

Sigma-Aldrich 200 mg 

Polyvinylpyrrolidone PVP powder Sigma-Aldrich 720 mg 

Carbon black  

(Super P) 
CB 

powder 

99% purity 
Alfa Aesar 20 mg 

Copper dichloride 

(dihydrate) 
CuCl2•2H2O 

crystals 

99+% 
Sigma-Aldrich 20 mg 

 

 

Materials were dry mixed and dissolved in ethanol to form a homogeneous slurry using a 

magnetic stirrer at room temperature for one hour.  The methods of the two separate 

batches and denotations from the previous study were repeated.  Following mixing, 

slurries were cast onto copper foil using the previous method.  The films were allowed 

two hours to air-dry; foil coatings with ethanol-based slurries were subject to curling over 

during the drying process as shown in Fig. 8.  To combat this, weights such as glass 

slides were placed on opposite ends of the foil.  After drying, the coated foils were 

annealed under argon at 700 °C for 15 minutes in the tube furnace (MTI) shown in Fig. 9.  
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To maintain the flatness of the foils while in the tube furnace, a simple graphite stage was 

made and used throughout the following experiments. 

 

 
Fig. 8: Image of coated foil curling over and held in place with a glass slide.   

Ethanol-based slurries exhibited curling during the drying process. 
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Fig. 9:  MTI tube furnace used for high temperature heat treatment of the coated foils.  

Foils were annealed under argon for 700°C for 15 minutes.  A graphite stage was made to 

keep the foils flat while inside the tube. 

 

 

Anode discs of 1.3 cm diameter were punched from the foils and were measured to have 

approximately 0.07 mm thickness (foil included) and 0.4 mg cm
-2

 material loading (foil 

not included).  Anodes were used to assemble coin cells and were characterized using the 

methods detailed in Section 2.1.3. 

 

2.1.3  Final High-Temperature Anodes 

To achieve improved integration of the copper additive and overall homogeneity of the 

slurry mixture, CuCl2 with smaller particle sizing became a necessity.  Copper dichloride 

anhydrous powder (99.995% purity, Beantown Chemical) was purchased and used 

throughout the remainder of experimentation.  Figure 10 illustrates the visual differences 
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between the two CuCl2 materials.  Table 4 includes the adjusted materials list for the final 

high-temperature anode study.  

 

 
Fig. 10:  Image showing the two CuCl2 materials.  The smaller grains of the CuCl2 on the 

right did not require an additional milling step and mixed more  

homogeneously in the slurry. 

 

 

 

Table 4: Materials and quantities for final high-temperature anode study. 

Material Abbreviation Details Manufacturer Amount 

Silicon Si 

<100 nm 

powder 

98% purity 

Sigma-Aldrich 200 mg 

Polyvinylpyrrolidone PVP powder Sigma-Aldrich 720 mg 

Carbon black  

(Super P) 
CB 

powder 

99% purity 
Alfa Aesar 20 mg 

Copper dichloride 

anhydrous 
CuCl2 

powder 

99.995% 

purity 

Beantown 

Chemical 
20 mg 

 

 

 

CuCl2 • 2H2O 

(original) 

CuCl2 

(new) 
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Methods from the previous high-temperature study were replicated.  The control batch 

followed this procedure with the omission of the CuCl2 and was denoted as “Si only”.  

The procedure was replicated for a second batch with the addition of 20 mg copper 

dichloride, denoted as “Si-Cu”. A third batch was then made without CB and with 20 mg 

copper dichloride, denoted as “Si-Cu (NC)” where “NC” corresponds to “no conductive 

carbon”.  This third batch was added to determine whether CuCl2 would be a sufficient 

conductive additive to replace CB altogether.  Following heat treatment, anode discs were 

punched from the foils in the same fashion. 

 

For certain characterization methods, interference from the copper current collector foil 

prevented the accurate analysis of the copper content in the annealed materials.  For this 

reason, a thin layer of each of the three sample slurries was also spread onto tantalum foil 

coupons. The coated coupons were allowed to air-dry for two hours, and then they were 

placed in the tube furnace to anneal under argon at 700°C for 15 minutes. Once cooled, 

the annealed coatings were removed from the tantalum platforms for characterization. 

 

For electrochemical testing, the punched anode discs were used to fabricate CR2032-type 

coin cells.  Cell separators were made from Celgard tri-layer PP/PE/PP membrane with 

25 μm thickness (MTI), and separator discs were prepared using the disc punch shown in 

Fig. 11.  Both anode and separator discs were then transferred to an argon-filled glove 

box for coin cell assembly. The glove box was maintained with water and oxygen at less 

than 1.0 ppm, and an image of the box is shown in Fig. 12.  CR20232 coin cell casings, 

springs, and spacers for this study were procured from MTI.   
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Fig. 11: MTI disc punch for preparing separator discs from sheets of Celgard tri-layer 

PP/PE/PP membrane.  Discs of 18 mm diameter were used. 
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Fig. 12: Glove box used for coin cell assembly.  Glove box conditions were maintained 

with water and oxygen content less than 1.0 ppm. 

 

 

Inside the glove box, 1.3 cm diameter discs of lithium foil (Alfa Aesar) were punched to 

function as the cell counter and reference electrode.  The electrolyte was a solution of 

1.0M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC) and diethyl 

carbonate (DEC) with a 1:1 volume ratio (Sigma-Aldrich). Prior to coin cell assembly, 

separators were soaked in electrolyte solution for approximately 20 minutes. Coin cells 

were assembled in the order shown in Fig. 3 from Chapter 1.  Once assembled, coin cells 

were sealed with an electric crimper (MTI) as shown in Fig. 13, cleaned of excess 

electrolyte, and labeled for testing. 
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Fig. 13:  MTI electric crimper housed inside the glove box.  Following  

assembly by hand, coin cells were crimped to seal contents. 

 

 

Coin cells were removed from the glove box and electrochemically tested.  Following 

testing, successful coin cells were returned into the glove box for disassembly in order to 

qualitatively assess the effects of testing on the anode surfaces.  The electric crimper was 

fitted with its de-crimping components to open the coin cells, and the anodes were gently 

extracted.  Figure 14 shows a disassembled coin cell with labeled components aligned in 

assembly order.   
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Fig. 14: De-crimped coin cell after electrochemical testing with  

labeled components in assembly order. 

 
 

Anodes were washed in EC/DEC solvent to remove excess electrolyte from the coated 

surfaces per the post-mortem analysis protocol described in Waldmann et al. [99].  Care 

was taken not to scrape the delicate active material from the disc during the procedure.  

Washed anodes were allowed at least one week to dry undisturbed in the glove box 

before characterization.  During transportation to the characterization equipment, the 

anodes were kept in containers under argon for as long as possible.  The post-testing 

anodes were sputter-coated with gold prior to characterization to prevent further damage 

from exposure to atmosphere and the characterization process. 

 

 

 

Casing (+) 

Spring 

Spacer 

Cathode 

Separator 

Anode 

Spacer 

Casing (-) 
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2.2  Sample Characterization 

2.2.1  Scanning Electron Microscopy / Energy Dispersive Spectroscopy 

The surface characteristics and particle sizing of the anode disc samples were examined 

using scanning electron microscopy (SEM) with a Hitachi S-4800 microscope.  A 

working distance of 12 mm and acceleration voltage of 20 kV were retained throughout 

the imaging process.  Energy-dispersive X-ray spectroscopy (EDS) was performed using 

an Oxford EDS system on both anode disc samples and sample coatings annealed on 

tantalum foil.  Data were analyzed using the Oxford Instrument’s INCA and AZTEC 

software.  An image of the equipment and setup are included in Fig. 15. 

 

 
Fig. 15: Hitachi S-4800 scanning electron microscope (SEM) and attached Oxford 

energy-dispersive X-ray spectroscopy (EDS) system used for surface characterization of 

the samples. 



45 
 

2.2.2 Inductively Coupled Plasma Optical Emission Spectrometry 

Inductively coupled plasma optical emission spectrometry (ICP-OES) analysis was 

conducted using a PerkinElmer ICP-OES 8000 to confirm the presence and composition 

of copper within the experimental samples. For ICP-OES, 0.1 g of each sample material 

annealed on tantalum foil was dissolved in 0.5 mL of nitric acid. Mixtures were heated in 

a boiling water bath for approximately 40 minutes, and then they were diluted with 

deionized water.  Calibration standards were purchased from SCP Science, and reported 

results showed less than 3% relative standard deviation.  An image of the equipment is 

shown in Fig. 16. 

 

 
Fig. 16: PerkinElmer inductively couples plasma optical emission spectrometer  

(ICP-OES) 8000 used to assess the copper content of anode materials  

after heat treatment. 
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2.2.3  Raman Spectroscopy 

Raman spectroscopy was also performed on the materials to characterize the surface of 

the anode discs.  This step was conducted using a Thermo Scientific DXR Raman 

Microscope with a 532-nm laser at 10 mW power. The Raman data were collected at 10x 

magnification and a spot size of 50 µm.  Several spots were analyzed for this process, and 

results appeared consistent across the surface of the anode.  The data reported is 

representative of the whole selection of data obtained across the sample.  The instrument 

and setup for the microscope is shown in Fig. 17. 

 

 
Fig. 17: Thermo Scientific DXR Raman Microscope used for characterization of the 

anode disc surfaces.  Data were obtained at 10x magnification and a spot size of 50µm. 
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2.2.4  X-ray Diffraction 

The samples were then investigated using X-ray diffraction (XRD) with a Rigaku 

SmartLab XRD using CuKα radiation.  Samples coated on tantalum foil were ground into 

a fine powder and prepared on a glass stage for this step.  All patterns were collected over 

the range of 2θ = 20° to 100° with a step size of 0.07º and at a scan rate of 0.5ºmin
-1

. 

Rigaku PDXL2 analysis software and JCPDS cards were used in assessing the XRD data.  

Figure 18 shows the X-ray diffractometer. 

 

 
Fig. 18: Rigaku SmartLab X-ray diffractometer (XRD) used to characterize the anode 

samples.  All patterns were collected over the range of 2θ = 20° to 100° with  

a step size of 0.07º and at a scan rate of 0.5ºmin
-1

. 
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2.3  Electrochemical Measurement 

2.3.1  Electrochemical Impedance Spectroscopy 

The fabricated coin cells were tested using electrochemical impedance spectroscopy 

(EIS) measurements performed with an Ametek PARSTAT 4000 instrument.  A 

frequency range from 100 kHz to 0.01 Hz was used to test the coin cells containing the 

sample anodes.  Reported data show the average plot from three test trials for each anode 

type. 

 

2.3.2  Charge/Discharge Cycle Testing 

To assess important performance variables for each anode material, charge and discharge 

cycling of the cells was performed using an MTI multichannel battery analyzer rated for 

use with a maximum voltage reading of 5.0 V and a maximum current reading of 1 mA.  

Test schedules were programmed using the MTI battery analyzer software.  The cells 

were cycled galvanostatically in the voltage range from 0.01 V to 1.5 V at room 

temperature.  To establish active layer lithiation and SEI layer development, cells were 

scheduled to first complete two cycles at a lower current density of 100 mAg
-1

 before 

proceeding to full testing [65].  These two cycles were considered preparatory and were 

thus not included in the reported results.  Following this step, all sample tests were 

performed at a current density of 250 mAg
-1

.  The testing current rate for each cell was 

then calculated using this value and the active material mass loading for the anode type.  

Anodes from the low temperature study were tested for 50 cycles, and subsequent anodes 

were tested for 100 cycles.  The battery analyzer apparatus setup is shown in Fig. 19.  
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Figure 20 shows a close view of the coin cell testing board attachment that houses eight 

coin cells for testing. 

 

 
Fig. 19: MTI multichannel battery analyzer with attached laptop (above) and coin cell 

testing board (below).  The laptop display shows the battery analyzer software used to 

program the test schedules for the eight channels. 
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Fig. 20: MTI coin cell testing board which houses eight coin cells.  The board is an 

attachment to the battery analyzer. 
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Chapter 3: Results and Discussion 
 

3.1  Low-Temperature Anodes 

This section includes the results from qualitative observations and electrochemical testing 

of the low-temperature anode materials.  Two studies were conducted using the low-

temperature heat treatment procedures as described in Chapter 2: one batch used the 

standard procedure while the other included an additional ball milling step.  Discussion of 

the results is also provided to elucidate the main lessons learned from these studies. 

 

Coin cells fabricated using anodes of the two different low-temperature materials (Si only 

and Si-Cu) were tested electrochemically to assess their performance characteristics.  

MTI analyzers were programmed to apply a lower current of 100 mAg
-1

 for two cycles 

followed by a current of 250 mAg
-1

 for 50 cycles as explained in the methods from 

Chapter 2.  Applied current for each anode was calculated using the mass loading of 

active material for the specific anode.  At least three anodes of the same batch were tested 

simultaneously to ensure the quality and consistency of the results.  Variability between 

the anodes was common in testing, but outliers from the general trends of the batch were 

a rare occurrence.  During data assessment, the results for a group of anodes were plotted 

together, and the data for the average anode were used as the representative of the batch.  

The methodology used for reporting cycling data is rarely included in literature, and 

reported data is typically shown for a single anode without indicators for deviation.  This 

method was developed to ensure that data was accurately representative of the batch but 
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was also compatible with the formatting of published reports.  A visualization of the 

process of selecting the representative data for an anode batch is shown in Fig. 21.   

 

 
Fig. 21: Example plot of the performance for three anodes of the same batch  

(low-temperature Si-Cu) for comparison.  Noticeable variabilities exist between the 

different samples; therefore, the data from the most-average sample from the group 

(Sample 2 in this scenario) is used as a representative for the batch. 

 

The specific capacity values for the Si only and Si-Cu anodes are plotted as a function of 

cycling for the 50-cycle test, and this graph is shown in Fig. 22.  Capacity values were 

maintained in specific terms per unit mass so that direct comparisons could be made for 
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the material between anodes of different mass loading values.  Figure 23 shows the 

Coulombic efficiencies of both Si only and Si-Cu anodes plotted as a function of cycling. 

 

 
Fig. 22: Charge/discharge cycling results for 50 cycles for low-temperature Si only and 

Si-Cu anodes cycled at 250 mAg
-1

 current density.  Initial capacities reached above  

700 mAhg
-1

 and 1000 mAhg
-1

 for Si-only and Si-Cu anodes, respectively; however, 

capacity retention is poor for both materials with over 50% loss within the first 10 cycles. 
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Fig. 23: Coulombic efficiency results from the 50 cycles for low-temperature Si only and 

Si-Cu anodes.  Efficiency behavior is shown to be erratic and have poor stability within 

the first 30 cycles. 

 

From the results shown in Fig. 22, the initial specific capacity values of 722 mAg
-1

 and  

1018 mAg
-1

 were reached for the Si only and Si-Cu anodes, respectively.  The Si-Cu 

anode maintained higher capacity throughout the duration of the test and completed 50 

cycles with 253 mAg
-1

 capacity while the Si only anodes attained 174 mAg
-1

 capacity.  

Capacity retention for both cells is relatively low with over 50% capacity loss within the 

first 10 cycles of the test; over the 50 cycle duration, the anodes retained only 24% and 

25% capacity for Si only and Si-Cu, respectively. 
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The Coulombic efficiency values for the Si only and Si-Cu anodes are shown to have 

significant irregularity and exceed unity for multiple cycles in Fig. 23.  Though efficiency 

results shown in literature may occasionally include a data point of over 100% as an 

anomaly, the bulk of the data should generally reflect that the discharge capacity does not 

exceed the charge capacity during cycle testing.  However, efficiency data was relatively 

repeatable across the groups of tested anodes for both the Si only and Si-Cu batches.  As 

shown in Fig. 23, the two data sets follow approximately the same pattern of high initial 

efficiency and gradual convergence towards 100%. 

 

Though these anodes were able to be successfully cycled over 50 times, the qualitative 

appearance of the anode surfaces also raised concern.  The application of the slurry 

mixture on the current collector foil was smooth, but the texture of the coating had a 

visibly grainy nature before and after the heat treatment step.  For this reason, a second 

set of low-temperature anode batches was made with an additional ball milling step for 

the dry active material in an attempt to reduce particle size.  After ball milling, it was 

qualitatively noted that the material seemed to have fewer larger grains.  However, the 

material also showed a tendency to form small clumps, and there was a significant loss of 

material from the sides of the ball milling containers.  Slurry mixtures made from the 

milled material appeared to be slightly less grainy after the casting process.  The anodes 

were electrochemically tested using the previously described method, and the specific 

capacity versus cycle number graph, shown in Fig. 24, compares the results for the Si 

only and Si-Cu anodes.  Figure 25 shows the Coulombic efficiencies of the two anodes as 

a function of cycling. 
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Fig. 24: Charge/discharge cycling results for 50 cycles for Si only and Si-Cu ball-milled 

anodes cycled at 250 mAg
-1

 current density.  Results are similar to the previous  

low-temperature anode results with significant immediate capacity loss. 
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Fig. 25: Coulombic efficiency results for the Si only and Si-Cu ball-milled anodes.  

Efficiency results are also similar to the initial low-temperature results. 

 

As shown in Fig. 24, the ball milled low-temperature anodes show similar performance 

behavior to that of the anodes that were not ball milled.  Both data sets exhibit a steep 

capacity fade within the first 10 cycles of the test and follow a modest decline in capacity 

value for the remaining cycles.  A wider disparity between the capacity values for the Si 

only and Si-Cu anodes is apparent from the graph.  Initial capacities were 346 mAg
-1

 and 

966 mAg
-1

 for Si only and Si-Cu anodes, respectively; capacities for the fiftieth cycle are 

159 mAg
-1

 and 314 mAg
-1

 for Si only and Si-Cu, respectively.  Though similar behavior 
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was observed, the capacity retention from these anodes was improved over the previous 

anodes at 46% for Si only and 33% for Si-Cu anodes. 

 

Coulombic efficiency for both anodes also followed a similar trend as previously 

described.  The efficiency values were erratic and exceed 100% often throughout the 

duration of the testing.  However, the efficiencies for the ball milled anodes showed a 

wider range of variability.  This instability was also vaguely present in the data shown in 

Fig. 24 as the capacity curves were not as smooth as those shown in Fig. 22.  Though 

noticeably different, this level of erraticism was fairly common and accepted in literature 

and was visible in the data presented in the report by Cetinkaya et al. [98].   It is also not 

uncommon for efficiency curves to be absent in literature, but reported curves do not 

exhibit this type of behavior when included. 

 

The electrochemical results obtained from testing both batches of low-temperature 

anodes showed room for improvement in capacity retention with generally less than 50% 

capacity retained after 50 charge/discharge cycles.  These results were comparable with 

similar experiments in literature.  The silicon and silicon-graphite composite anodes 

tested by Cetinkaya et al. exhibited similar behavior of high initial discharge capacities 

(930 mAhg
-1

) that degrade to 45% of this value on the fiftieth cycle  [98].  Fang et al. 

also tested anodes with compositions of silicon and silicon with increasing amounts of 

copper nanoparticles; results from electrochemical testing of these anodes yielded 

capacity retentions of 11.4%, 27.2%, 44.4%, and 38.6%, respectively [78].  The increased 

retention values were stated in the report to be a result of the copper content in the anode, 
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though the results from the low-temperature anode study in this report are unable to 

support this hypothesis.  From this study, it was inconclusive whether or not the copper 

additive could contribute to the retention of the anode; however, it was shown that ball 

milled anodes displayed greater capacity retention despite having less stable performance 

behavior.   

 

From the results, the initial and final capacity values of Si-Cu anodes were substantially 

increased relative to the Si only anodes; all Si-Cu anodes maintained higher capacity 

values throughout the 50-cycle test duration.  The immediate improvement of the anodes 

was important considering the simplicity of the fabrication methods.  With only a minor 

addition of copper and rudimentary methods of incorporation into the silicon structure, 

the anodes exhibited an appreciable difference in performance behavior. 

 

Cycling results from these experiments also showed that an additional 30-minute ball 

milling step provided both an advantage and disadvantage for the material: though 

retention was improved, stability was noticeably reduced. As shown in Gauthier et al., 

the greatest difference between the performances of as-received and ball milled materials 

is the retention: the Gauthier et al. report and this report both showed relatively 

unchanged initial capacity yet higher final capacity for ball milled anodes [97].  Longer 

ball milling time could be tested in conjunction with more in-depth particle size analysis; 

however, milling jars of alternative materials, such as stainless steel, should also be 

considered to increase material recovery. 

 



60 
 

One of the concerns from these results was the erratic behavior of the cells while cycling.  

For this reason and also in pursuance of greater improvement in anode performance, 

techniques for sample fabrication needed to be explored further. 

 

These preliminary studies provided a sufficient proof-of-concept for the benefits of using 

copper additive with silicon-based anodes.  Results were shown to be comparable to 

those in literature using similar procedures, and the increased capacity of anodes with 

copper additive was clearly demonstrated.  The work also established the basis of the 

fabrication protocols, testing parameters, and data processing that would be used 

throughout subsequent studies.  After analysis of the results, more literature was reviewed 

to identify alternative processing techniques that would yield anodes with greater 

improvement in performance characteristics.  Many successful reports have described 

using a heat treatment step at much higher temperatures for the anode materials [65, 77, 

87, 100, 101].  Thus, the initial study with high-temperature heat-treated anodes was 

performed. 
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3.2  Initial High-Temperature Anodes 

This section includes the results from the qualitative observations, basic characterization, 

and electrochemical testing of the initial high-temperature anode materials.  These were 

the initial experiments in using a higher temperature heat treatment procedure as 

described in Chapter 2.  Discussion of the results is provided, and rationale for the 

adjustments made to this procedure to produce the final high-temperature anodes is 

included. 

 

3.2.1  Sample Characterization 

Anodes were prepared using the protocol as described in Chapter 2 using a high-

temperature heat treatment step at 700 ºC.  Following heat treatment, the coating surface 

did not share the same grainy texture of the low-temperature anodes; instead, surfaces 

were relatively smooth with faint cracking in some regions.  Anode discs were punched 

and examined using the scanning electron microscope (SEM) with energy dispersive 

spectroscopy (EDS) capabilities.  Images at 30x magnification of the general appearance 

of the anode disc surfaces for the Si only and Si-Cu anodes are shown in Fig. 26. 



62 
 

 
Fig. 26: SEM images of the overall surfaces of the (a) Si only and (b) Si-Cu anodes at 

30x magnification.  Surfaces are grainy in texture, but large grains are dispersed evenly 

across the surface for both materials. 

 

As shown, both Si only and Si-Cu anode surfaces were comprised of multi-sized particles 

atop a fairly homogeneous base layer of smaller-sized particles.  In both samples, faint 

cracks are evident across the surface but are short in length relative to the size of the 

anode.  Images collected at 20k-x magnification provide greater insight into the structure 

of the base layer as shown in Fig. 27. 
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Fig. 27: SEM images showing the particle sizing and texture of the (a) Si only and (b) Si-

Cu anodes at 20k-x magnification.  Agglomerates of smaller particles ranging in size on 

the nanometer scale compose the base layer of the coating.  Large copper particles are 

also found on the Si-Cu anode surface. 

 

Images at 20k-x magnification show that the base layer is comprised of nanoscale 

particles in a homogeneous mixture across the surfaces.  Si-Cu anodes also showed an 

even dispersion of larger copper particles of approximately 0.8 µm diameter atop the base 

layer.  The particles were determined to be copper from an EDS line scan analysis at  

40k-x magnification, and the results are shown in Fig. 28.  In the spectra, the region of 

particles is shown to have a dramatic increase in copper and decrease in silicon content, 

and the surrounding background is a mixture of silicon, oxygen, carbon, and copper.   
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Fig. 28:  EDS line scan of a copper particle on the anode surface at 40k-x magnification. 

Colored graphs show the elemental composition across the sample scan line through the 

particle, and they indicate a clear confirmation that the particle is copper against the 

primarily silicon base layer. 
 



65 
 

The characterization techniques used in this study provided a qualitative analysis of the 

surface of the Si only and Si-Cu anodes.  A network of nanoscale particles provides the 

structure of the base layer of the coating, and larger particles and structures are visible on 

top.  Copper is shown to be both integrated into this base layer and also as larger particles 

evenly scattered atop the surface.  Small cracks are visible at lower magnification which 

could contribute to the anode degradation over electrochemical testing.   

 

3.2.2  Electrochemical Measurement 

The experimental anode discs were also used in the fabrication of coin cells with lithium 

foil discs so that their performance characteristics during electrochemical testing could be 

analyzed.  Charge/discharge tests for the cells used the parameters described in Chapter 

2, and the duration of the tests was extended to 100 cycles to observe longer-term cycling 

behaviors.  Figure 29 shows the graph of the specific capacities of the Si only and Si-Cu 

anodes as a function of cycling.  The results for the Coulombic efficiencies of both 

anodes are shown in Fig. 30. 
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Fig. 29: Charge/discharge cycling results for 100 cycles for Si only and Si-Cu initial 

high-temperature anodes cycled at 250 mAg
-1

 current density.  Though results yield 

lower initial capacity values than those of the low-temperature anodes, capacity retention 

and long-term stability is much improved. 
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Fig. 30: Coulombic efficiency results for the Si only and Si-Cu initial high-temperature 

anodes.  Efficiency results show greater stability compared to low-temperature results 

and overall improvement over cycling duration. 

 

The initial specific capacity of the Si-Cu anode was lower than the capacities previously 

discussed in Section 3.1 at 481 mAg
-1

, but it rose to 604 mAg
-1

 within the first 20 cycles; 

the initial and highest capacity for the Si only anode was 405 mAg
-1

.  The final capacity 

after 100 cycles for the Si-Cu anode was also higher at 349 mAg
-1

 than that of the Si only 

anode at 199 mAg
-1

.  The capacity retentions of the anodes were therefore 49% and 58% 

for Si only and Si-Cu, respectively.  The overall capacity curves showed a different initial 

behavior from the curves for the low-temperature anodes: the dramatic initial capacity 

fade was absent, and the fade was more evenly distributed across the 100 cycles.  Final 
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capacities of the high-temperature anodes at 100 cycles were also higher than those of the 

low-temperature anodes after only 50 cycles. 

 

The Coulombic efficiencies of the high-temperature anodes were also improved.  The 

trend of the plot was a more accurate representation of the expected behavior of cell 

efficiency: lower in initial cycles with steady improvement and values less than 100%.  

The Si-Cu cell showed slightly more scattered behavior in early cycles, but both anodes 

reached nearly 99% efficiency by the completion of the cycle testing. 

 

Electrochemical testing of the anodes showed further support that copper additive 

increased the specific capacity.  Capacity retention was also improved for both Si only 

and Si-Cu anodes compared to the low-temperature anodes, indicating that high-

temperature heat treatment can enhance cycling performance.  Perhaps the most 

significant improvement was the stability of the efficiency obtained in this study.  

Efficiencies for these anodes showed reasonable behavior and reached approximately 

99% upon the conclusion of cycling. 

 

These tests served as a first step in understanding the effects of high temperature heat 

treatment for the anodes and reinforced the concept of silicon anode enhancement via 

copper additive.  Though the presence of copper was detected in the base layer from the 

EDS analysis, it became of concern that the copper was not as well incorporated into the 

silicon structure of the anode as initially planned.  Much of the copper content appeared 

to have manifested as larger particles despite efforts to grind down and thoroughly mix 
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the CuCl2 material.  Considering this, CuCl2 of finer particle size was purchased for use 

in the next study for this project.  In the next set of experiments, there was also greater 

focus on explicating the mechanisms of the new anode materials through more rigorous 

characterization and electrochemical analysis. 

 

 

3.3  Final High-Temperature Anodes 

This section includes the characterization and electrochemical results for the final high-

temperature anode materials.  Details concerning the smaller-sized CuCl2 used in this 

study and the fabrication methods are included in Chapter 2.  Discussion of the results is 

provided with a greater emphasis in understanding the benefits of the copper additive and 

processing techniques.  For this study, a third batch was made with CuCl2 and no added 

carbon black to assess the viability of the copper as the only conductive additive for the 

material.  Anodes of this composition are denoted as “Si-Cu (NC)” throughout the report.  

It was also noted that many reports in literature perform characterization of the materials 

prior to important fabrication steps – such as heat treatment – and therefore are not 

examining an accurate representation of the material to be used in electrochemical 

applications.  In this thesis, anode materials were characterized after all processing steps 

and just prior to use in electrochemical testing.  
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3.3.1  Sample Characterization 

Qualitative observations of the three anode materials were made using SEM and EDS.  

To assess the main visual differences between the initial and final high-temperature 

anodes, anode discs of each Si-Cu batch were examined together.  The larger copper 

particles on the surfaces were highly visible using the backscattered electron (YAG BSE) 

mode of the SEM as they appear bright white in imaging.  The particles were identified 

as copper.  The images for the different high-temperature Si-Cu anodes at 1k-x 

magnification are included in Fig. 31.   
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Fig. 31: SEM images showing the particle sizing and texture of the (a) Si-Cu initial high-

temperature and (b) Si-Cu final high-temperature anodes at 1k-x magnification and  

YAG BSE mode.  The initial Si-Cu anode visibly has larger copper particles in  

greater amount than the final Si-Cu anode. 

 

As shown in the images, the high-temperature Si-Cu surface discussed in the previous 

section had copper particles that are visibly larger than those on the final Si-Cu anode 

surface.  The initial Si-Cu anode also had more of these particles in general across the 

surface.  These observations indicated that the copper additive used for the final Si-Cu 

anodes was smaller and had improved integration with the silicon structure. 
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In producing the anode slurry coatings, homogeneity of the copper distribution in the 

mixture was important to maximize the contact of the copper and silicon for greater 

conductivity.  Figure 32 compares the SEM micrographs of the Si only, Si-Cu, and  

Si-Cu (NC) anode disc surfaces at 40k-x magnification to examine the distribution of 

particles.  
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Fig. 32: SEM images using 20 kV accelerating voltage at 40k-x magnification of the 

anode surfaces prior to cycle testing for (a) Si only, (b) Si-Cu, (c) Si-Cu (NC).  The initial 

surfaces of all three coatings show a similar, homogeneous dispersion of particles with an 

average size range from 5 nm to 20 nm. 
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As shown, the surfaces were comprised of particles with nanoscale diameters, and the 

particles form clusters as previously shown for the initial high-temperature anodes. 

Particles seen on the anode surface were in the range of 5 nm to  

20 nm. Little visual difference can be seen between the three samples, indicating that the 

use of anhydrous CuCl2 additive did not substantially alter the surface morphology. The 

particle distribution also appears consistent across the surfaces of the anode discs as there 

are no anomalous formations. 

 

EDS was utilized to verify the even dispersion of the copper in the base layer of the 

coating.  For this procedure, coatings were annealed on tantalum foil, as described in 

Chapter 2, to eliminate interference from the copper current collector foil used for the 

anode discs.  The coatings were then removed from the foil following heat treatment and 

adhered to a stage for EDS analysis.  Figure 33 includes the results of EDS elemental 

mapping of copper for the Si-Cu and Si-Cu (NC) samples where copper content is 

designated with lighter-colored dots.  The elemental mapping was conducted at 40k-x 

magnification for direct comparison with the images shown in Fig. 32. 
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Fig. 33: EDS elemental mapping of the dispersion of copper for the (a) Si-Cu and (b) Si-

Cu (NC) samples at 40k-x magnification shows the confirmation of the integrated copper 

nanoparticles.  Copper was uniformly distributed in the silicon-based coating. 

 

From the images, it was confirmed that the copper was uniformly distributed throughout 

the silicon-based coatings.  Elemental mapping of all three anode materials was also 

conducted to assess the silicon, oxygen, and copper content of the coatings.  The 

approximate weight percentages are included in Table 5. 
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Table 5: Weight percentages of silicon, oxygen, and copper for the Si only, Si-Cu, and 

Si-Cu (NC) anodes determined using EDS mapping analysis.  Results confirm the low 

copper content present in Si-Cu and Si-Cu (NC) materials. 

 Si only Si-Cu Si-Cu (NC) 

Si Content (wt%) 76.6 71.2 73.5 

O Content (wt%) 23.1 26.7 25.3 

Cu Content (wt%) 0.00 1.7 1.0 

 

EDS analysis confirmed the low weight percentages of copper present in the Si-Cu and  

Si-Cu (NC) anode materials following all fabrication steps.  Relatively small amounts of 

the copper additive were originally used to promote the goal of cost-effectiveness, and 

the use of smaller quantities of additive metals has been shown in previous reports to 

have a significant effect on anode performance [65, 77]. 

 

It was also noticed that recent literature does not generally include SEM images collected 

after the electrochemical testing of silicon anodes.  After completing the electrochemical 

analysis of completing over 100 charge/discharge cycles, the Si only, Si-Cu, and Si (NC) 

anodes were extracted from their cells inside the glove box.  The established procedure 

was followed in preparing anodes for characterization, and the SEM was used to examine 

the surface changes.  Figure 34 shows the images collected at 30x magnification to 

provide a general overview of the three surfaces.  Figure 35 shows the three surfaces at 

40k-x magnification for greater structure detail. 
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Fig. 34: SEM images using 20 kV accelerating voltage at 30x magnification of the anode 

surfaces after cycle testing for (a) Si only, (b) Si-Cu, (c) Si-Cu (NC). 
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Fig. 35: SEM images using 20 kV accelerating voltage at 40k-x magnification of the 

anode surfaces after cycle testing for (a) Si only, (b) Si-Cu, (c) Si-Cu (NC).   
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Post-cycling images can be important to show how the surface morphology of the anode 

changes with cycling and to identify degradation features.  The low magnification images 

from Fig. 34 show considerable changes from pre-cycled overview images such as those 

included in Fig. 26.  There still appeared to be a distinct difference between the base layer 

and larger structures on top as shown before; however, the distinction was abstracted by 

the swelling of the larger structures in the post-cycling anodes.  Most notably, the Si-Cu 

anode had dramatic cracking across the surface.  The Si-Cu and Si-Cu (NC) anodes 

displayed very similar characteristics, whereas the Si only anode had the least evidence of 

change of the three samples. 

 

The images from Fig. 35 show that all three samples have undergone a considerable 

transformation in appearance following cycle testing.  There was some semblance of the 

pre-cycling structure visible from the vague outlines of particles and the overall surface 

arrangement.  However, the particles seemed to have swelled to sufficiently lose their 

definition.  Unlike the low magnification view, all three images looked relatively similar 

as to be undistinguishable from one another.  To provide a clear comparison of the effects 

of cycle testing, images of the Si-Cu anodes before and after cycle testing at 1k-x 

magnification are included together in Fig. 36. 
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Fig. 36: SEM images showing the surface characteristics of the Si-Cu final high-

temperature anodes (a) before cycling and (b) after cycling at 1k-x magnification. 

 

As shown in the images, significant cracking was evident after cycle testing the Si-Cu 

anode.  Despite the clear degradation of the anode surface, it was interesting to note the 

relatively unchanged presence of the larger copper nanoparticles between both images.  

The copper particles shown in white were starkly visible in the pre-cycling image, but 

they were also faintly visible and similarly dispersed in the post-cycling image as well.  

Though cycling imposed great stress on the anode material, the copper remained an 

integrated part of the structure. 
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In all post-cycling images, the distinction between the initial anode material and the 

decomposed SEI layer was difficult to identify.  Because the entire anode surface had 

come into contact with the electrolyte and solvent following the coin cell assembly 

process, EDS results showed fairly inconclusive results for this endeavor.  A variety of 

techniques have been used in literature to observe the degradation of electrodes, and the 

same general effects of cycling have been documented such as cracking, loss of adhesion 

to the base foil, film formation, and clogging of pores between particles [99]. 

 

To corroborate the results of the elemental make-up determined by the EDS analysis, 

ICP-OES was also conducted on the Si only, Si-Cu, and Si-Cu (NC) materials.  The 

measured amounts of copper present in each sample after the fabrication processes as 

determined by the ICP-OES analysis are shown in Table 6.  

 

Table 6:  ICP-OES results showing the copper content of the Si only, Si-Cu, and Si-Cu 

(NC) materials following the heat treatment process. 

 Si only Si-Cu Si-Cu (NC) 

Cu Content (%) 0.00 3.04 2.12 

 

From the results, no copper was detected in the control sample as expected. The Si-Cu 

and Si-Cu (NC) samples contained 3.04% and 2.12% of copper, respectively.  These 

values supported those determined via EDS in confirming the relatively small copper 

content present after all processing steps. 
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To confirm the chemical composition of the anode materials and to elucidate further 

differences between the samples, Raman spectroscopy was used on the Si only, Si-Cu, 

and Si-Cu (NC) anode discs.  Data were collected at several spots on each anode surface 

at 10x magnification, and the average data set was selected as representational of the 

batch using the previously described methodology.  Figure 37 shows a comparison of the 

Raman spectra of the three samples.  

 

 
Fig. 37: Raman spectra of Si only, Si-Cu, and Si-Cu (NC) anode disc surface at 10x 

magnification.  Silicon peaks are visible at 520 cm
-1

 and 950 cm
-1

, and the prevalence of 

the amorphous carbon structure is shown from the D and G carbon bands at 1350 cm
-1

 

and 1580 cm
-1

 in each of the three samples. 
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All samples exhibited the same four prominent peaks: two corresponding to silicon at 

approximately 520 cm
-1

 and 950 cm
-1

 [102-105] and two corresponding to graphite 

carbon [54, 96, 106].  The graphite D band and G band are visible at approximately 1350 

cm
-1

 and 1580 cm
-1

 and have similar relative intensity between all three samples.  The 

calculated intensity ratios for the two carbon bands (ID/IG) of the Si only, Si-Cu, and Si-

Cu (NC) were 0.92, 0.96, and 0.95, respectively. The values of these ratios indicated that 

the carbon in the materials was of significantly amorphous quality. The prevalence of the 

amorphous carbon was thought to be derived from the PVP binding material during the 

annealing step, and groups such as Zhong et al. have shown in previous work that the 

decomposition of the PVP forms a carbonaceous structure surrounding the other 

particulates [107]. Though the Si-Cu (NC) sample did not have added carbon in its 

mixture, the amorphous carbon from the PVP and high weight percentage of PVP used 

seemed to have been sufficiently large enough to nullify the lack of carbon.   

 

Raman spectroscopy revealed the presence of amorphous carbon in all three anode 

materials despite that no carbon was added to the Si-Cu (NC) slurry mixture.  These 

results suggested that the addition of conductive carbon may be redundant when another 

conductive additive is used because carbon can be sufficiently present in the material 

from the carbonization of the binding agent.   

 

To detect the presence of copper and to determine the chemistry of the anode materials 

following the fabrication processes, the Si only, Si-Cu, and Si-Cu (NC) samples were 

analyzed using XRD.  Powders of the samples prepared on tantalum foil were used for 



84 
 

this analysis.  The three overall XRD patterns of the samples in the range of 2θ = 20° to 

100° are shown in Fig. 38.  A narrower region in the range of 2θ = 40° to 60° of the 

pattern for the Si-Cu (NC) material is illustrated in Fig. 39 to clearly show the first and 

second peaks for Cu3Si.  Table 7 includes a listing of the peak numbers, peak positions, 

phase and plane identifications, and the designated symbols for the patterns in Fig. 38 and 

Fig. 39. 

 

 

 
Fig. 38: XRD patterns of the Si only, Si-Cu, and Si-Cu (NC) materials between the range 

of 2θ = 20° to 100°.  Peaks indicating the presence of Si, Cu, and Cu3Si were identified 

for anodes with copper additive. 

 

 

 

 

 
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Fig. 39: Narrower region of the XRD pattern for the Si-Cu (NC) material in the range of 

2θ = 40° to 60° shows the distinguished first and second Cu3Si peaks. 
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Table 7: Peak positions and identification from the XRD patterns for final  

high-temperature anodes with copper additive. 

Peak Number 2θ (deg) Phase Plane (h.k.l) Symbol 

1 28.48 Silicon, syn (1 1 1)  

2 43.37 Copper (1 1 1)  

3 44.73 Copper silicide (1 1 0)  

4 45.24 Copper silicide (1 0 3)  

5 47.35 Silicon, syn (2 2 0)  

6 50.50 Copper (2 0 0)  

7 56.16 Silicon, syn (3 1 1)  

8 69.16 Silicon, syn (4 0 0)  

9 74.15 Copper (2 2 0)  

10 76.41 Silicon, syn (3 3 1)  

11 88.07 Silicon, syn (4 2 2)  

12 89.99 Copper (3 1 1)  

13 94.98 

Silicon, syn 

Copper 

Copper silicide 

(5 1 1) 

(1 1 6) 

(2 2 2) 

 
 
 

 

The peaks for Si are consistent with JCPDS 00-005-0565, and peaks indicating 

crystalline Cu (JCPDS 00-004-0836) and Cu3Si (JPCDS 00-059-0262) are well matched 

with the index.  It is important to recognize that copper is identified in this analysis in the 

metallic form and not as the original CuCl2 precursor material.  The XRD patterns for Si-

Cu and Si-Cu (NC) also suggest that the formation of the Cu3Si compound occurred 
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during high-temperature heat treatment step from the copper additive, and this method of 

formation is well supported in literature [75, 77, 87].  

  

Several publications attest to the benefits of Cu3Si in the anode composition to improve 

stability [75, 81, 82] and electrical conductivity [81, 87], but the compound does not 

seem to actively participate during electrochemical reactions with lithium [82, 87].  The 

importance of the formation of Cu3Si is also manifested when comparing the 

electrochemical results of the low-temperature anodes and high-temperature anodes in 

this report.  As shown by the XRD analysis included in the report by Fang, et al., Cu3Si is 

not formed, and this absence could be contributory in part to the poor long-term 

performance of the anodes [78].  The results of this research reinforce the hypothesis that 

Cu3Si has a distinct role in enhancing the capacity stability of the anodes; however, other 

structural and chemical changes in the coating from the high-temperature heat treatment 

may also contribute to the enhancement of anode performance. 

 

3.3.2  Electrochemical Measurement 

One of the primary goals of the initial project proposal, the enhancement of the 

conductivity of silicon anodes, needed to be directly addressed.  To determine the effects 

of the copper additive on the anode resistance, EIS was performed prior to any cycle 

testing of the cells.  The Nyquist plot of the results for the three anodes is shown in  

Fig. 40. 
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Fig. 40: EIS curves of the experimental data for the sample anodes prior to cycle testing.  

Resistance values are 94.04 Ω, 55.39 Ω, and 57.28 Ω for the Si only, Si-Cu, and  

Si-Cu (NC) samples, respectively.  Thus, the addition of copper leads to  

increased conductivity in anodes. 

 

As shown in the Nyquist plot, two dominant sections of each curve were apparent: the 

first semicircle-shaped portion and the second near-linear portion.  The semicircle-shaped 

portion had a span in the high-to-medium frequency range, and the portion was attributed 

to the charge transfer resistance of the anode.  The near-linear second portion in the low 

frequency range was attributed to the Warburg diffusion element as previously modeled 

in literature [101, 108]. The plot illustrated visible differences in the charge transfer 

resistances of the samples.  The curves also confirmed that the addition of copper lead to 
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the lowered resistivity of the anodes as shown by the resistance values of 94.04 Ω, 55.39 

Ω, and 57.28 Ω for the Si only, Si-Cu, and Si-Cu (NC) samples, respectively. From the 

resistance value results, it was inferred that the copper additive had effectively enhanced 

the electrical conductivity of the anode.  These results provided insight into 

understanding the increased performance for anodes with copper additive that have been 

shown throughout the entirety of this study. 

 

EIS testing showed that Si-Cu and Si-Cu (NC) anode materials had significantly reduced 

resistivity than Si only, supporting the assertion that material conductivity plays an 

important role in anode performance.  Resistivity values of the anodes with copper 

showed a reduction of over 40% the value of the Si only resistivity, and the overall 

resistivity values were generally lower than comparable results for anodes with additives 

reported in literature [65, 77, 78]. 

 

To assess the performance characteristics of the final high-temperature materials, the Si 

only, Si-Cu, and Si-Cu (NC) anode discs were also used in the fabrication of coin cells.  

The fabrication processes and the parameters for charge/discharge cycle testing are 

described in Chapter 2, and the tests were conducted for 100 cycles.  The graph of the 

specific capacities of the three anode types as a function of cycling are shown in Fig. 41.  

The results for the Coulombic efficiencies of the three anodes are shown in Fig. 42. 
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Fig. 41: Charge/discharge cycling results for 100 cycles for Si only and Si-Cu final  

high-temperature anodes cycled at 250 mAg
-1

 current density.  Results show high initial 

capacity compared to previous high-temperature anodes, improved capacity retention 

compared to low-temperature anodes, and increased capacity for anodes  

with copper additive. 
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Fig. 42: Coulombic efficiency results for the Si only and Si-Cu final high-temperature 

anodes.  Efficiency results show relative consistency between samples and overall 

improvement over the cycling duration. 

 

As shown in the capacity plot, the initial specific capacities for the samples were  

309 mAg
-1

, 957 mAg
-1

, and 775 mAg
-1

, for the Si only, Si-Cu, and Si-Cu (NC) anodes, 

respectively.  The final specific capacities for the one-hundredth cycle were 148 mAg
-1

, 

482 mAg
-1

, and 391 mAg
-1

, for the Si only, Si-Cu, and Si-Cu (NC) anodes, respectively.  

After 100 cycles, both anodes with copper additive had over twice the capacity of the Si 

only anode.  These results were also comparable to similarly-fabricated anodes: samples 

formed by Cheng et al. with small quantities of added copper precursor yielded an 

average specific capacity of 990 mAh g
-1

 at 200 mA g
-1

 current density during cycle 
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testing [77].  Samples prepared by Kim et al. also used CuCl2 – though in a CuCl2 to Si 

ratio of 2.683:1 – and achieved an initial discharge capacity of 680 mAh g
-1

 for the 

material during cycle testing at a constant current of 50 mAh g
-1

 [87].  The results 

provided in Fig. 41 showed that anodes fabricated using fewer processes and significantly 

less CuCl2 additive were able to perform at an equal, if not advanced, level compared 

with anodes described in the literature. 

 

The capacity retentions for each anode were 48% for Si only, 50% for Si-Cu, and 50% 

for Si-Cu (NC).  These retention values were comparable to the retentions of the initial 

high-temperature anodes.  The similarity of the Si-Cu (NC) anode with the Si-Cu anode 

in capacity value supported that conductivity of the anode affected cycle performance and 

that copper additive was capable of functioning as the sole conductive element in the 

coating mixture.  From these results, it was again confirmed that even small quantities of 

copper additive dispersed in the anode structure had a noteworthy effect on the cycling 

performance of the anode. 

 

Coulombic efficiencies of these anodes were relatively stable and comparable to those of 

the initial high-temperature anodes.  Samples with copper additive displayed visibly 

greater variations in efficiency, but the deviations remained less than 2% of the Si only 

sample. Si-Cu and Si-Cu (NC) sample efficiencies were also consistently greater than 

96%, reaching over 99% efficiency in the final testing cycles.  The overall trend of the 

efficiency curves resembled the same traditional trend showed in the initial high-

temperature anode results as well. 
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To provide an overarching comparison amongst the cycling performances of the four 

anode types (low-temperature, low-temperature ball milled, initial high-temperature, and 

final high-temperature), Fig. 43 was compiled. 

 

 
Fig. 43:  Compilation graph showing the specific capacities of all anode types from this 

study with respect to cycling.  Final high-temperature anodes demonstrated high initial 

and final capacity with gradual capacity fade with cycle testing. 

 

As shown, final high-temperature anodes showed high initial and final capacity and more 

gradual capacity fading when compared with other anode types.  Though low-

temperature anodes displayed the highest initial capacities, the graph shows how quickly 

this becomes irreverent due to the anodes’ subsequent severe capacity fading.  The 
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excellent performance of the final high-temperature anodes with copper additive 

functioning as the only conductive additive is also important to note as it demonstrates 

one of the primary goals of the final-temperature anode experiment. 
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Chapter 4: Conclusions 
 

To address the need for higher-performing lithium-ion batteries, methods to improve 

silicon-based anode materials were explored throughout the studies in this report.  Three 

primary studies were conducted to test the viability of using a copper additive to increase 

the conductivity and electrochemical performance of silicon anodes.  The initial part, 

using low-temperature anodes, provided a proof of concept for the endeavor, and it 

served to establish the basic protocols for anode fabrication and testing.  In this part, 

initial capacities of 346 mAg
-1

 and 966 mAg
-1

 were reported for Si only and Si-Cu 

anodes, respectively, though capacity values experienced rapid fading within the first 10 

cycles.  Low capacity retention and erratic efficiency data proved to be necessary issues 

to address in subsequent experiments.  The second part, using a higher temperature heat 

treatment step, yielded further improvements in anode performance and higher quality 

data.  Initial capacity values were noticeably lower than the capacity values from the first 

part; however, capacity retention and efficiency were improved. 

 

The last part serves as a culmination of the knowledge gained from the previous studies.  

High-temperature heat treatment and optimized techniques were used to fabricate anodes 

with initial capacities of 309 mAg
-1

, 957 mAg
-1

, and 775 mAg
-1

, for the Si only, Si-Cu, 

and Si-Cu (NC) anodes, respectively.  Cycle testing data showed that anodes prepared 

with the copper additive had increased discharge capacities of over 200% compared to 

anodes without copper, and high efficiencies of over 96% were achieved. 

Electrochemical testing showed that the copper additive improved the conductivity of the 
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anode, thus contributing to the more effective utilization of the active layer composition 

and enabling higher cycling performance.  Results also showed that Si-Cu (NC) anodes 

had superior specific capacity compared to Si only anodes, indicating that copper can 

replace carbon black to function as the sole conductive additive.  Characterization of 

these anode materials provided insight into the surface morphology before and after the 

electrochemical testing, and copper was shown to be well-integrated into the silicon-

based structure.  Further analysis confirmed the small percentages of copper present in 

the Si-Cu and Si-Cu (NC) materials, and the formation of the beneficial compound Cu3Si 

following annealing was reported.  These results provided an understanding of the effects 

of the copper additive and the mechanisms for the improvement of the anode 

performance characteristics. 

 

Though the technical performance challenges were met with this study, the overarching 

goal of promoting methods that were economically viable, industry compatible, and 

sustainably minded, was also achieved.  This research offers a potential low-cost, 

straightforward process for improving silicon anode performance.  The fabrication of 

these anodes involved off-the-shelf ingredients with equipment and protocols that are 

already commonly utilized in commercial electrode manufacturing.  Materials such as 

silicon are nontoxic and more abundant, and ethanol has garnered attention as a 

replacement solvent for more hazardous option such as NMP.  High-temperature heat 

treatment is the only step that is energy-intensive, and it is also of short duration. 

Although anodes in this study had excellent performance relative to silicon-based anodes 
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described in the literature, further research is necessary to form silicon anodes with 

cycling lifetimes comparable to commercial Li-ion battery anodes. 
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Chapter 5: Future Work 
 

There are many possible avenues for future work stemming from this research.  The 

initial experiments in the low-temperature anode study should be revisited to optimize the 

fabrication techniques and gain deeper insight into the mechanisms for the dramatic 

capacity fading within the anode’s first cycles.  Because low-temperature processes are 

desirable to conserve energy and cost at the commercial scale, improvements in the 

performance of these anodes would be of great value.  The grainy texture of the anodes 

prepared in this report was thought to potentially contribute to the degradation of the 

anode over its cycling lifetime, so future projects could focus on ball milling strategies or 

particle size analysis.   

 

It was also shown that the carbonization of the binding agent during high-temperature 

heat treatment in the later studies potentially played an important role in improving anode 

performance.  Future studies could compare different binding agent materials in this 

application and determine a ratio of binder to active material that provides the optimum 

amount of carbon coating to benefit the anode and maintain proper adhesion to the 

current collector foil.  When examining SEM images of the high-temperature anodes, 

small cracks in the slurry coating were already visible prior to electrochemical testing.  

There are several opportunities for improvement in the fabrication process that could 

potentially mitigate these defects.  The thickness of slurry coatings and the post-casting 

drying techniques could be altered; the heating rate, cooldown rate, and final 

temperatures in heat treatment are also varying parameters throughout literature that can 
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be assessed.  Cracking could also be prevented through optimized binding agent 

materials. 

 

Further evaluation of the effects of cycle testing on these types of anodes would also be a 

valuable contribution to the field.  The advancement of silicon anodes requires 

improvements in several areas, notably including long-term cycling ability.  Providing in-

depth analysis into the failure mechanisms of these anodes through further 

characterization and longer-term cycling of over 100 cycles could determine which 

aspects of the anode are most critical to address. 

 

Finally, there are numerous opportunities for future studies in exploring alternative 

conductive additives and combinations of additives therein.  Novel, creative methods of 

incorporating metal components into the silicon structure of the anode could prove 

successful, and determination of the optimum quantities of additives would be helpful to 

balance cost and performance for the materials.   

  



100 
 

Scholarly Work 
 

Publications: 

G. Bachand, D. Chidambaram, Improved Performance of Silicon Anodes Using 

Copper Nanoparticle Additive.  (Submitted for peer-reviewed journal). 

 

Professional Presentations: 

G. Bachand, D. Chidambaram, Improved Performance of Silicon Anodes Using 

Copper Nanoparticle Additive.  Symposium Batteries and Energy Storage: 

Student Battery Slam A.  The 232
nd 

Meeting of the Electrochemical Society.  

National Harbor, MD.  October 1-6, 2017. 

 

G. Bachand, D. Chidambaram, Understanding the Degradation of Electrodes in 

Lithium Based Battery Systems.  Fall 2016 Graduate Poster Symposium.  

University of Nevada, Reno Graduate Student Association.  Reno, NV.  

November 14, 2016. 

 

G. Bachand, D. Chidambaram, Understanding the Degradation of Electrodes in 

Lithium Based Battery Systems.  Symposium Energy Storage VI: Materials, 

Systems and Applications.  Materials Science & Technology 2016.  Salt Lake 

City, UT.  October 23-27, 2016. 

 

Awards: 

First Prize Presentation: Improving Silicon Anode Performance Using Copper 

Nanoparticle Additive.  Spring 2017 Three Minute Thesis Competition, Master’s 

Thesis Category.  University of Nevada, Reno Graduate Student Association.  

Reno, NV.  April 20, 20167. 

 

  



101 
 

References 
 

1. U.S. Energy Information Administration (EIA), International Energy Outlook 

2017. 2017. 

 

2. Gerland, P., et al., World population stabilization unlikely this century. Science, 

2014. 346(6206): p. 234-237. 

 

3. World Energy Council (WEC), World Energy Resources 2016. 2016. 

 

4. Intergovernmental Panel on Climate Change (IPCC), Climate Change 2014 

Synthesis Report Summary for Policymakers. 2014. 

 

5. National Institute of Environmental Health Sciences (NIEHS), A Human Health 

Perspective on Climate Change: A Report Outlining the Reserach Needs on the 

Human Health Effects of Climate Change. 2010. 

 

6. McMichael, A.J., R.E. Woodruff, and S. Hales, Climate change and human 

health: present and future risks. Lancet, 2006. 367(9513): p. 859-869. 

 

7. Panwar, N.L., S.C. Kaushik, and S. Kothari, Role of renewable energy sources in 

environmental protection: A review. Renewable & Sustainable Energy Reviews, 

2011. 15(3): p. 1513-1524. 

 

8. Renewable Energy Policy Network for the 21
st
 Century (REN21), Renewables 

2017 Global Status Report. 2017. 

 

9. Hasanuzzaman, M., et al., Global electricity demand, generation, grid system, and 

renewable energy polices: a review. Wiley Interdisciplinary Reviews-Energy and 

Environment, 2017. 6(3): p. 18. 

 

10. Mahlia, T.M.I., et al., A review of available methods and development on energy 

storage; technology update. Renewable & Sustainable Energy Reviews, 2014. 33: 

p. 532-545. 

 

11. AECOM, Energy Storage Study: A Storage Market Review and Recommendations 

for Funding and Knowledge Sharing Priorities for Australian Renewable Energy 

Agency. 2015. 

 

12. Kousksou, T., et al., Energy storage: Applications and challenges. Solar Energy 

Materials and Solar Cells, 2014. 120: p. 59-80. 

 

13. Moller, K.T., et al., Hydrogen - A sustainable energy carrier. Progress in Natural 

Science-Materials International, 2017. 27(1): p. 34-40. 



102 
 

14. SBC Energy Institute, SBC Energy Institute Electricity Storage FactBook. 2013. 

 

15. Gielen, D., F. Boshell, and D. Saygin, Climate and energy challenges for 

materials science. Nature Materials, 2016. 15(2): p. 117-120. 

 

16. Reddy, T.B., ed. Linden's Handbook of Batteries, Fourth Edition. Fourth Edition 

ed., ed. D. Linden. 2011, McGraw-Hill: New York, NY. 

 

17. Poullikkas, A., A comparative overview of large-scale battery systems for 

electricity storage. Renewable & Sustainable Energy Reviews, 2013. 27: p. 778-

788. 

 

18. Ren, G.Z., G.Q. Ma, and N. Cong, Review of electrical energy storage system for 

vehicular applications. Renewable & Sustainable Energy Reviews, 2015. 41: p. 

225-236. 

 

19. Cho, J., S. Jeong, and Y. Kim, Commercial and research battery technologies for 

electrical energy storage applications. Progress in Energy and Combustion 

Science, 2015. 48: p. 84-101. 

 

20. Kazempour, S.J., et al., Electric energy storage systems in a market-based 

economy: Comparison of emerging and traditional technologies. Renewable 

Energy, 2009. 34(12): p. 2630-2639. 

 

21. Baumann, M., et al., CO2 Footprint and Life-Cycle Costs of Electrochemical 

Energy Storage for Stationary Grid Applications. Energy Technology, 2017. 5(7): 

p. 1071-1083. 

 

22. U.S. Energy Information Administration (EIA), U.S. Energy Information 

Administration Monthly Energy Review: September 2017. 2017. 

 

23. Bollino, C.A., et al., A Note on Medium- and Long-Term Global Energy 

Prospects and Scenarios. Sustainability, 2017. 9(5): p. 25. 

 

24. Franchini, M., et al., Association between particulate air pollution and venous 

thromboembolism: A systematic literature review. European Journal of Internal 

Medicine, 2016. 27: p. 10-13. 

 

25. Center for Entrepreneurship and Technology (CET) with University of California, 

Berkeley, Electric Vehicles in the United States: A New Model with Forecasts to 

2030. 2009. 

 

26. Organization for Economic Co-Operation and Development (OECD) with 

International Energy Agency (IEA), Global EV Outlook 2016: Beyond One 

Million Electric Cars. 2016. 



103 
 

 

27. Wu, Y. and L. Zhang, Can the development of electric vehicles reduce the 

emission of air pollutants and greenhouse gases in developing countries? 

Transportation Research Part D-Transport and Environment, 2017. 51: p. 129-

145. 

 

28. Falcao, E.A.M., A.C.R. Teixeira, and J.R. Sodre, Analysis of CO2 emissions and 

techno-economic feasibility of an electric commercial vehicle. Applied Energy, 

2017. 193: p. 297-307. 

 

29. Hannan, M.A., et al., Review of energy storage systems for electric vehicle 

applications: Issues and challenges. Renewable & Sustainable Energy Reviews, 

2017. 69: p. 771-789. 

 

30. Barkenbus, J., Electric Vehicles Climate Saviors, or Not? Issues in Science and 

Technology, 2017. 33(2): p. 55-59. 

 

31. Blomgren, G.E., The Development and Future of Lithium Ion Batteries. Journal of 

the Electrochemical Society, 2017. 164(1): p. A5019-A5025. 

 

32. Dell, R.M. and D.A.J. Rand, Understanding Batteries. 2001, Thomas Graham 

House, Science Park, Milton Road, Cambridge CB4 0WF, UK: The Royal 

Society of Chemistry. 

 

33. Peled, E. and S. Menkin, Review-SEI: Past, Present and Future. Journal of the 

Electrochemical Society, 2017. 164(7): p. A1703-A1719. 

 

34. Vincent, C.A. and B. Scrosati, Modern Batteries: An Introduction to 

Electrochemical Power Sources, Second Edition. 1997, Linacre House, Jordan 

Hill, Oxford OX2 8DP; 200 Wheeler Road, Burlington, MA 01803: Butterworth-

Heinemann. 

 

35. Brett, C.M. and A.M. Oliveira Brett, Electrochemistry: Principles, Methods, and 

Applications. 1998, New York: Oxford Univeristy Press Inc. 

 

36. Goodenough, J.B., Batteries and a Sustainable Modern Society. Electrochemical 

Society Interface, 2016. 25(3): p. 66-69. 

 

37. MTI Corporation. Product Equipment: Battery Structure. 2013.  November 01, 

2017; Available from: http://www.mtixtl.com/productimages/battery-

equipment/spring%20and%20spacer%20structure-2.jpg. 

 

38. Goodenough, J.B., Evolution of Strategies for Modern Rechargeable Batteries. 

Accounts of Chemical Research, 2013. 46(5): p. 1053-1061. 



104 
 

39. Suciu, G., A. Pasat, and Ieee, Challenges and Opportunities for Batteries of 

Electric Vehicles. 2017 10th International Symposium on Advanced Topics in 

Electrical Engineering (Atee), 2017: p. 113-117. 

 

40. Thackeray, M.M., C. Wolverton, and E.D. Isaacs, Electrical energy storage for 

transportation-approaching the limits of, and going beyond, lithium-ion batteries. 

Energy & Environmental Science, 2012. 5(7): p. 7854-7863. 

 

41. Armand, M. and J.M. Tarascon, Building better batteries. Nature, 2008. 

451(7179): p. 652-657. 

 

42. Nitta, N. and G. Yushin, High-Capacity Anode Materials for Lithium- Ion 

Batteries: Choice of Elements and Structures for Active Particles. Particle & 

Particle Systems Characterization, 2014. 31(3): p. 317-336. 

 

43. Ma, D.L., Z.Y. Cao, and A.M. Hu, Si-Based Anode Materials for Li-Ion Batteries: 

A Mini Review. Nano-Micro Letters, 2014. 6(4): p. 347-358. 

 

44. Beattie, S.D., et al., Si electrodes for li-ion batteries - A new way to look at an old 

problem. Journal of the Electrochemical Society, 2008. 155(2): p. A158-A163. 

 

45. Su, X., et al., Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. 

Advanced Energy Materials, 2014. 4(1): p. 23. 

 

46. Grey, C.P. and J.M. Tarascon, Sustainability and in situ monitoring in battery 

development. Nature Materials, 2017. 16(1): p. 45-56. 

 

47. Teki, R., et al., Nanostructured Silicon Anodes for Lithium Ion Rechargeable 

Batteries. Small, 2009. 5(20): p. 2236-2242. 

 

48. Beaulieu, L.Y., et al., Reaction of Li with alloy thin films studied by in situ AFM. 

Journal of the Electrochemical Society, 2003. 150(11): p. A1457-A1464. 

 

49. Baker, D.R., M.W. Verbrugge, and A.F. Bower, Swelling and Elastic 

Deformation of Lithium-Silicon Electrode Materials. Journal of the 

Electrochemical Society, 2016. 163(5): p. A624-A631. 

 

50. Orcutt, M. The Tesla Model 3 May Depend on This Battery Breakthrough. 2016.  

October 26, 2017; Available from: 

https://www.technologyreview.com/s/601178/the-tesla-model-3-may-depend-on-

this-battery-breakthrough/. 

 

51. Yang, Y., et al., New Nanostructured Li2S/Silicon Rechargeable Battery with 

High Specific Energy. Nano Letters, 2010. 10(4): p. 1486-1491. 



105 
 

52. Son, S.B., B. Kappes, and C.M. Ban, Surface Modification of Silicon Anodes for 

Durable and High-Energy Lithium-Ion Batteries. Israel Journal of Chemistry, 

2015. 55(5): p. 558-569. 

 

53. Zhang, Y.Z., et al., Towards reducing carbon content in silicon/carbon anodes for 

lithium ion batteries. Carbon, 2017. 112: p. 72-78. 

 

54. Kim, H., et al., Preparation of silicon nanoball encapsulated with graphene shell 

by CVD and electroless plating process. Journal of Industrial and Engineering 

Chemistry, 2017. 50: p. 115-122. 

 

55. Loveridge, M.J., et al., Towards High Capacity Li-ion Batteries Based on Silicon-

Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes. 

Scientific Reports, 2016. 6: p. 11. 

 

56. Ng, S.H., et al., Highly reversible lithium storage in spheroidal carbon-coated 

silicon nanocomposites as anodes for lithium-ion batteries. Angewandte Chemie-

International Edition, 2006. 45(41): p. 6896-6899. 

 

57. Yoo, J.K., et al., Scalable Fabrication of Silicon Nanotubes and their Application 

to Energy Storage. Advanced Materials, 2012. 24(40): p. 5452-5456. 

 

58. Liu, W.R., et al., Electrochemical characterizations on Si and C-coated Si 

particle electrodes for lithium-ion batteries. Journal of the Electrochemical 

Society, 2005. 152(9): p. A1719-A1725. 

 

59. Zhang, R.Y., et al., Highly Reversible and Large Lithium Storage in Mesoporous 

Si/C Nanocomposite Anodes with Silicon Nanoparticles Embedded in a Carbon 

Framework. Advanced Materials, 2014. 26(39): p. 6749-6755. 

 

60. Sourice, J., et al., Core-shell amorphous silicon-carbon nanoparticles for high 

performance anodes in lithium ion batteries. Journal of Power Sources, 2016. 

328: p. 527-535. 

 

61. Tocoglu, U., et al., Cyclic Performance Study of Silicon/Carbon Nanotube 

Composite Anodes Using Electrochemical Impedance Spectroscopy. Acta Physica 

Polonica A, 2014. 125(2): p. 290-292. 

 

62. Wang, C.S., et al., Lithium insertion in carbon-silicon composite materials 

produced by mechanical milling. Journal of the Electrochemical Society, 1998. 

145(8): p. 2751-2758. 

 

63. Liang, B., Y.P. Liu, and Y.H. Xu, Silicon-based materials as high capacity 

anodes for next generation lithium ion batteries. Journal of Power Sources, 2014. 

267: p. 469-490. 



106 
 

64. Yang, X.L., et al., Electrochemical performances of silicon electrode with silver 

additives. Solid State Ionics, 2006. 177(26-32): p. 2807-2810. 

 

65. Zhong, L., et al., Tin nanoparticles as an effective conductive additive in silicon 

anodes. Scientific Reports, 2016. 6: p. 8. 

 

66. Chan, C.K., X.F. Zhang, and Y. Cui, High capacity Li ion battery anodes using 

Ge nanowires. Nano Letters, 2008. 8(1): p. 307-309. 

 

67. Wachtler, M., J.O. Besenhard, and M. Winter, Tin and tin-based intermetallics as 

new anode materials for lithium-ion cells. Journal of Power Sources, 2001. 94(2): 

p. 189-193. 

 

68. Winter, M. and J.O. Besenhard, Electrochemical lithiation of tin and tin-based 

intermetallics and composites. Electrochimica Acta, 1999. 45(1-2): p. 31-50. 

 

69. Zhang, H.G. and P.V. Braun, Three-Dimensional Metal Scaffold Supported 

Bicontinuous Silicon Battery Anodes. Nano Letters, 2012. 12(6): p. 2778-2783. 

 

70. Guan, H., et al., Coaxial Cu-Si@C array electrodes for high-performance lithium 

ion batteries. Chemical Communications, 2011. 47(44): p. 12098-12100. 

 

71. Wang, N., et al., Highly Conductive Cu Nanoneedle-Array Supported Silicon Film 

for High-Performance Lithium Ion Battery Anodes. Journal of the 

Electrochemical Society, 2016. 163(3): p. A380-A384. 

 

72. Chen, H.X., et al., Silicon nanowires coated with copper layer as anode materials 

for lithium-ion batteries. Journal of Power Sources, 2011. 196(16): p. 6657-6662. 

 

73. Murugesan, S., et al., Copper-Coated Amorphous Silicon Particles as an Anode 

Material for Lithium-Ion Batteries. Chemistry of Materials, 2012. 24(7): p. 1306-

1315. 

 

74. Polat, B.D. and O. Keles, Improving Si Anode Performance by Forming Copper 

Capped Copper-Silicon Thin Film Anodes for Rechargeable Lithium Ion 

Batteries. Electrochimica Acta, 2015. 170: p. 63-71. 

 

75. Kim, J.W., et al., Improvement of silicon powder negative electrodes by copper 

electroless deposition for lithium secondary batteries. Journal of Power Sources, 

2005. 147(1-2): p. 227-233. 

 

76. Joyce, C., et al., Metallic Copper Binders for Lithium-Ion Battery Silicon 

Electrodes. Journal of the Electrochemical Society, 2012. 159(6): p. A909-A914. 



107 
 

77. Cheng, Y., et al., Influence of copper addition for silicon-carbon composite as 

anode materials for lithium ion batteries. Rsc Advances, 2016. 6(62): p. S6756-

S6764. 

 

78. Fang, K., et al., Facile Fabrication of Silicon Nanoparticle Lithium-Ion Battery 

Anode Reinforced with Copper Nanoparticles. Digest Journal of Nanomaterials 

and Biostructures, 2017. 12(2): p. 243-253. 

 

79. Xu, K.Q., et al., Core-shell Si/Cu nanocomposites synthesized by self-limiting 

surface reaction as anodes for lithium ion batteries. Functional Materials Letters, 

2017. 10(3): p. 5. 

 

80. Ling, L., et al., Copper-Nanoparticle-Induced Porous Si/Cu Composite Films as 

an Anode for Lithium Ion Batteries. Acs Nano, 2017. 11(7): p. 6893-6903. 

 

81. Kim, S.O. and A. Manthiram, Low-cost carbon-coated Si-Cu3Si-Al2O3 

nanocomposite anodes for high-performance lithium-ion batteries. Journal of 

Power Sources, 2016. 332: p. 222-229. 

 

82. Woo, J.Y., et al., Cu3Si-doped porous-silicon particles prepared by simplified 

chemical vapor deposition method as anode material for high-rate and long cycle 

lithium-ion batteries. Journal of Alloys and Compounds, 2017. 701: p. 425-432. 

 

83. Yoon, S., et al., Enhancement of capacity of carbon-coated Si-Cu3Si composite 

anode using metal-organic compound for lithium-ion batteries. Journal of Power 

Sources, 2006. 161(2): p. 1319-1323. 

 

84. Zhou, J.B., et al., Cu3Si@Si core-shell nanoparticles synthesized using a solid-

state reaction and their performance as anode materials for lithium ion batteries. 

Nanoscale, 2015. 7(37): p. 15075-15079. 

 

85. Kim, I.C., et al., Electrochemical characteristics of copper silicide-coated 

graphite as an anode material of lithium secondary batteries. Electrochimica 

Acta, 2006. 52(4): p. 1532-1537. 

 

86. Johnson, D.C., et al., Synthesis of copper silicide nanocrystallites embedded in 

silicon nanowires for enhanced transport properties. Journal of Materials 

Chemistry, 2010. 20(10): p. 1993-1998. 

 

87. Kim, J.H., H. Kim, and H.J. Sohn, Addition of Cu for carbon coated Si-based 

composites as anode materials for lithium-ion batteries. Electrochemistry 

Communications, 2005. 7(5): p. 557-561. 

 

88. Olesinski, R.W., G. J. Abbaschian, The Cu-Si (Copper-Silicon) System. Bulletin 

of Alloy Phase Diagrams, 1986. 7(2): p. 170-178. 



108 
 

89. Solberg, J.K., Crystal Structure of Eta-Cu3Si Precipitates in Silicon. Acta 

Crystallographica Section A, 1978. 34(SEP): p. 684-698. 

 

90. Mima, G., M. Hasegawa, The Diagram of Cu−Si−Zn Alloys III. Technol. Rep. 

Osaka Univ., 1960. 10: p. 157-169. 

 

91. Mitrašinović, A., Characterization of the Cu-Si System and Utilization of 

Metallurgical Techniques in Silicon Refining for Solar Cell Applications in 

Department of Materials Science and Engineering 2010, University of Toronto: 

Ontario, Canada. 

 

92. Cytermann, C., et al., Unusual Room-Temperature Intermixing and Oxidation in 

Copper Deposited on a Fluorinated Amorphous-Silicon System. Applied Physics 

Letters, 1988. 52(3): p. 191-193. 

 

93. Kasavajjula, U., C.S. Wang, and A.J. Appleby, Nano- and bulk-silicon-based 

insertion anodes for lithium-ion secondary cells. Journal of Power Sources, 2007. 

163(2): p. 1003-1039. 

 

94. Thompson, R.D. and K.N. Tu, Low-Temperature Gettering of Cu, Ag, and Au 

Across a Wafer of Si by Al. Applied Physics Letters, 1982. 41(5): p. 440-442. 

 

95. Jeong, M., et al., New approach for enhancing electrical conductivity of 

electrodeposited Si-based anode material for Li secondary batteries: Self-

incorporation of nano Cu metal in Si-O-C composite. Nano Energy, 2016. 28: p. 

51-62. 

 

96. Han, P., et al., Copper Nanoparticle-Incorporated Carbon Fibers as Free-

Standing Anodes for Lithium-Ion Batteries. Nanoscale Research Letters, 2016. 11: 

p. 8. 

 

97. Gauthier, M., et al., A low-cost and high performance ball-milled Si-based 

negative electrode for high-energy Li-ion batteries. Energy & Environmental 

Science, 2013. 6(7): p. 2145-2155. 

 

98. Cetinkaya, T., et al., Electrochemical Characterization of the Powder Silicon 

Anodes Reinforced with Graphite Using Planetary Ball Milling. Acta Physica 

Polonica A, 2013. 123(2): p. 393-395. 

 

99. Waldmann, T., et al., Review-Post-Mortem Analysis of Aged Lithium-Ion 

Batteries: Disassembly Methodology and Physico-Chemical Analysis Techniques. 

Journal of the Electrochemical Society, 2016. 163(10): p. A2149-A2164. 

 



109 
 

100. Chae, O.B., et al., Nano-scale uniform distribution of Ge/Cu3Ge phase and its 

electrochemical performance for lithium-ion batteries. Electrochimica Acta, 

2010. 55(8): p. 2894-2900. 

 

101. Guo, J.C., et al., Cyclability study of silicon-carbon composite anodes for lithium-

ion batteries using electrochemical impedance spectroscopy. Electrochimica 

Acta, 2011. 56(11): p. 3981-3987. 

 

102. Nadimpalli, S.P.V., et al., Quantifying capacity loss due to solid-electrolyte-

interphase layer formation on silicon negative electrodes in lithium-ion batteries. 

Journal of Power Sources, 2012. 215: p. 145-151. 

 

103. Sethuraman, V.A., V. Srinivasan, and J. Newman, Analysis of Electrochemical 

Lithiation and Delithiation Kinetics in Silicon. Journal of the Electrochemical 

Society, 2013. 160(2): p. A394-A403. 

 

104. Uchinokura, K., T. Sekine, and E. Matsuura, Raman Scattering By Silicon. Solid 

State Communications, 1972. 11(1): p. 47. 

 

105. Parker, J.H., D.W. Feldman, and M. Ashkin, Raman Scattering By Silicon and 

Germanium. Physical Review, 1967. 155(3): p. 712. 

 

106. Wang, C., et al., A Well-Defined Silicon Nanocone-Carbon Structure for 

Demonstrating Exclusive Influences of Carbon Coating on Silicon Anode of 

Lithium-Ion Batteries. Acs Applied Materials & Interfaces, 2017. 9(3): p. 2806-

2814. 

 

107. Zhong, L.L., J.C. Guo, and L. Mangolini, A stable silicon anode based on the 

uniform dispersion of quantum dots in a polymer matrix. Journal of Power 

Sources, 2015. 273: p. 638-644. 

 

108. Sharma, N., et al., Tin oxides with hollandite structure as anodes for lithium ion 

batteries. Chemistry of Materials, 2005. 17(18): p. 4700-4710. 
 

 

 

 

  



110 
 

Appendix A:  Silicon Anodes 
 

This appendix includes notes and best-practice techniques discovered during the course 

of the high-temperature silicon anode studies.  Figure 1 shows a good example of the 

slurry-coated copper foil when prepared on the graphite stage.  The foil was air-dried and 

exhibits little to no cracking on the surface.  Edges on either side of the foil were folded 

under the stage to keep the foil flat and in place while transporting in and out of the tube 

furnace.  The exposed top surface of the foil is approximately 15 cm long with several 

centimeters on either edge to accommodate folding. 

 

 
Fig. 1: A dried, slurry-coated foil prepared on the graphite stage prior to heat treatment.  

Edges are folded under the stage to keep the foil in flat and in place.  A ruler is shown to 

indicate the length of the foil (approximately 15 cm exposed surface). 

 

 

 

 

 

 



111 
 

Cracking of the anode slurry coating was documented on several occasions, though two 

separate causes were determined.  An example of the first form of cracking is shown in 

Fig. 2.  The mixing step played a significant role in the success of the slurry mixture; 

mixing was conducted in small beakers (approximately 50 mL in size), and dry contents 

have the propensity to accumulate in the bottom edge of the beaker.  This example shows 

a slurry casting where it was later noticed that the binding agent had accumulated in the 

edge and not fully mixed with the remainder of the slurry. 

 

 
Fig. 2: A dried, slurry-coated foil with severe cracking and poor adhesion visible on the 

surface.  During mixing, the binder was not fully integrated into the slurry. 

 

As a result of this, the slurry is cracked and has poor adhesion to the copper foil surface.  

To prevent this occurrence, a spatula was used to occasionally scrape the bottom beaker 

edges throughout the stirring duration to ensure full mixing of the slurry contents.   
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Another example of cracking is shown in Fig. 3 and is attributed to the fast ramp-up 

heating rate programmed for the tube furnace.  The foil shown had little to no evidence of 

cracking prior to heat treatment; following heat treatment, the foil has uniform cracking 

across the surface.  Additional operational manuals for tube furnace heating and in 

literature detailing fabrication processes were consulted and suggested a slower heating 

rate to prevent material cracking.   

 

 

Fig. 3:  A slurry-coated foil following the high-temperature heat treatment step in the 

tube furnace.  It is speculated that the ramp-up heating rate programmed for  

the furnace was too fast.   

 

A recommended rate of 5 ºC per minute was subsequently used for heat treatment, and 

less cracking was evident.  This issue should be further explored to mitigate as much of 

the cracking on the anode surface as possible as cracking can propagate the degradation 

of the electrode. 
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The stirring duration of the slurry mixtures also proved to have an effect on the quality of 

the slurry casting on the foil.  In the images included in Fig. 4, two examples of slurries 

with differing stirring durations are shown.   

 

 

 

Fig. 4:  Two slurry-coated foils demonstrating the importance of mixture stirring 

duration.  The slurry in the top image was stirred for approximately five minutes and has 

a grainy texture.  The slurry in the bottom image was stirred for over 15 minutes  

and has a smoother texture. 

 

The slurry from the top image was stirred for approximately five minutes, and the slurry 

has a visibly grainy texture.  The tail-end of the casting on the left side shows multiple 

scratches in the surface as a result of the large grains.  The slurry in the bottom image has 

a stirring duration of over 15 minutes, and it shows a much smoother, more consistent 

texture.  The slurry shows no blemishes from grains and extends the full length of the 

foil.  Longer mixing affects the homogeneity of the slurry, and it also seems to either 

reduce grain size or allow more complete dissolution of the material in the solvent.  
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Following this preliminary test, it was determined that slurries should be mixed for an 

hour, and this requirement is used in all studies in this report. 

 

Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) 

were used to examine the samples as shown in this report.  On the surface of high-

temperature anodes only, the presence of contaminant particles was occasionally noticed.  

These particles were generally larger than surrounding particles on the surface and 

showed dissimilar characteristics to surroundings.  Figure 5 shows the results of EDS 

elemental mapping of the particle located on a high-temperature anode disc.  The particle 

is visibly comprised of aluminum and oxygen, and the background particles (and current 

collector foil) are shown as copper and silicon.  Because this phenomenon occurs only on 

high-temperature anodes and because alumina blocks were used for insulating material in 

the tube furnace, it was concluded that the contamination was from the alumina block 

dust deposited on the anode surface during the vacuum purge and argon filling of the 

tube.  Further studies should consider using a different insulating material or coating 

alumina blocks in a protective coating to reduce contamination.   
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Fig. 5:  SEM-EDS elemental mapping results of a contaminant on the surface of a silicon-

based anode.  The large particle is identified as alumina, allegedly from the alumina 

blocks used as insulating material in the tube furnace. 
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Appendix B:  Fundamental Electrode Work 
 

This appendix includes procedures and notes for the author’s previous studies in 

electrode fabrication and in developing the Battery Laboratory protocol.  Initial studies 

were conducted to test the functionality of electrodes using the new laboratory 

equipment.  Graphite, the commercial standard option, was used in the fabrication of 

anodes; an assortment of cathodes was also made using compounds such as LiCoO2, 

Li(NiMnCo)O2, LiMn2O4, and LiFePO4.  The two materials with layered structure, 

LiCoO2, Li(NiMnCo)O2, were used for a general comparison study.  The electrodes were 

fabricated using a preliminary version of the methodology described in the report for 

silicon anodes.  Table 1 details the materials and quantities used in these experiments.  

The term “active material” refers to the primary electrode material: graphite was used for 

the anode, and LiCoO2 or Li(NiMnCo)O2 was used for the cathode. 

 

Table 1: Materials and quantities for the fundamental electrode studies.   

The active materials used were LiCoO2 or Li(NiMnCo)O2 for the  

cathodes and graphite for the anodes. 

Material Abbreviation Details Manufacturer Amount 

Active Material - powder MTI 4.00 g 

Polyvinylidene 

fluoride 
PVDF powder MTI 0.09 g 

Carbon black  

(Super P) 
CB powder MTI 0.09 g 
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The materials were dry mixed and then dissolved in approximately 3 mL of n-methyl-2-

pyrrolidone (NMP, MTI) to form a homogeneous slurry.  Mixtures were stirred using a 

magnetic stirrer at room temperature for approximately two hours.  Slurries were spread 

on current collector foils – copper for anodes and aluminum for cathodes – using a doctor 

blade.  Coated foils were then allowed to air dry for one hour and were heat treated in a 

vacuum oven at 120 ºC for three hours.  Following this step, electrodes were punched 

into discs of 1.3 cm diameter from the coated foils. 

 

Electrodes and 18 mm diameter cell separator discs (Celgard tri-layer PP/PE/PP 

membrane with 25 μm thickness) were brought into the argon-filled glove box for coin 

cell assembly.  Membranes were allowed approximately 15 minutes to soak in 

electrolyte, which was a solution of 1.0M lithium hexafluorophosphate (LiPF6) in 

ethylene carbonate (EC) and diethyl carbonate (DEC) with a 1:1 volume ratio (Sigma-

Aldrich).  Coin cells were constructed using graphite anodes and various cathodes, and 

cells were sealed with the electric crimper.  Electrochemical testing of the cells was 

conducted using the MTI battery analyzer; cells were cycled galvanostatically in the 

voltage range of 2.0 V to 4.0 V with a current density of 100 mAhg
-1

 at room 

temperature.  Cells were typically tested for 50 cycles; longer tests were also conducted 

for the LiCoO2 cathodes for 1000 cycles to observe long-term degradation. 

 

The results from the cycle testing for the LiCoO2 and Li(NiMnCo)O2 cathodes are shown 

in Fig. 1 in terms of specific capacity and in Fig. 2 in terms of Coulombic efficiency.  

Li(NiMnCo)O2 are designated as “Li(NMC)O2” in the following figures. 
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Fig. 1: Charge/discharge cycling results for 50 cycles for the LiCoO2 and Li(NiMnCo)O2 

cathodes at 100 mAhg
-1

 current density.  LiCoO2 and Li(NiMnCo)O2 cathodes are 

comparable in specific capacity and exhibit significant capacity fade only within  

the first 10 cycles. 
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Fig. 2:  Coulombic efficiency resulst for the LiCoO2 and Li(NiMnCo)O2 cathodes are 

shown.  Efficiencies for both cathodes increase rapidly within the first 10 cycles and 

converge towards values above 96% towards the end of testing. 

 

LiCoO2 and Li(NiMnCo)O2 cathodes show comparable specific capacity values and 

behaviors for the 50-cycle testing.  The most significant capacity fade is apparent within 

the first 10 cycles for both cathode materials, and capacity remains stable for the 

remainder of testing.  Coulombic efficiencies for both cathode materials are well-over 

90% after the first few cycles of stabilization.  Both capacity and efficiency results are 

representative of the already well-known characteristics of these cathode materials: these 

materials are commercial favorites due to their high, lasting capacity and efficiency.   
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To examine the long-term degradation behavior of the cells, a 1000-cycle test was 

conducted using the LiCoO2 cathode and graphite anode.  Figure 3 shows the combined 

capacity and efficiency results for this cathode material. 

 

 
Fig. 3: Charge/discharge cycling and Coulombic effiiency results for 1000 cycles for the 

LiCoO2 cathode at 100 mAhg
-1

 current density.  This test shows the long-term 

degradation of the cathode: the high capacity of approximately 130 mAhg
-1

  

eventually drops to approximately 100 mAhg
-1

 after 1000 cycles.  Efficiency  

of nearly 100% is maintained for the majority of the test duration. 

 

Results from this study illustrate the capacity fading of the cathode over long-term 

cycling: though the capacity of this cathode material appeared to stabilize in the 50-cycle 
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test, the gradual decay of the capacity is more apparent over 1000 cycles.  The effiicency 

remains relatively stable around 100% for the duration.   

 

Scanning electron microscopy (SEM) was also used to assess the degradation effects of 

cycle testing on the electrode materials.  The previously described cells containing 

LiCoO2 and Li(NiMnCo)O2 cathodes and graphite anodes were cycle tested and then 

deconstructed for extraction of the electrodes.  Electrodes were dried in the argon-filled 

glove box prior to SEM analysis.  Cycled electrodes showed visible degradation of the 

material particles as shown in the images in Fig. 4.  Overall views of the electrode 

surfaces taken at 1k-x magnification are included, and additional higher magnification 

images illustrate cracking on the material surfaces. 
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Fig. 4:  SEM images using 20 kV accelerating voltage of the anode and cathode surfaces 

after cycle testing for (a) Li(NiMnCo)O2 at 1k-x magnification , (b) LiCoO2
 
at 1k-x 

magnification, (c) graphite at 1k-x magnification.  Detailed images showing degradation 

effects are shown for (d) Li(NiMnCo)O2 at 80k-x magnification, (e) LiCoO2
 
at 10k-x 

magnification, and (f) graphite at 5k-x magnification.   
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These images show the effects of the cycling process on the electrode materials and 

provide visual evidence of the electrode degradation.  These results support the bulk of 

reports throughout literature that discuss the behaviors of commercial graphite anodes 

and layered cathode materials. 

 

These experiments in the fundamentals of electrode fabrication and electrode surface 

analysis served three key purposes: 1) to establish fabrication protocol and effective 

processing techniques in the Battery Laboratory, 2) to explore testing and 

characterization methods to assess electrode performance and behavior, and 3) to develop 

methods of data collection and repeatability so that results may be compared to literature 

standards.  These purposes were achieved, and the knowledge gained in this study 

provided a basis for future Battery Laboratory research in Li-ion batteries. 
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Appendix C:  Permission for Figure Publication 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


