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Abstract 

 

Approximately 12% of all infants are born prematurely in the United States, costing 

in excess of 26 billion dollars annually. About half of those preterm births are the 

result of spontaneous preterm labor (sPTL), which is idiopathic in nature. One of 

the reasons so many cases of sPTL result in preterm birth is because tocolytics, 

which are drugs that prevent or halt labor, are only effective at delaying birth by 

48-hours. This failure of tocolytics is due in part to the unique nature of uterine 

smooth muscle. Specifically, we have found that global cGMP accumulation, or 

depletion, has little effect on nitric oxide-mediated myometrial relaxation. This 

observation has generally been overlooked during tocolytic development in favor 

of pursuing therapeutics that modulate canonical pathways; however, this 

peculiarity of the myometrium may reveal the importance of the direct action of 

nitric oxide to modify proteins via S-nitrosation, a labile posttranslational 

modification whose dysregulation is associated with many diseases. Unlike term 

human myometrium, nitric oxide’s effects are not only blunted in sPTL 

myometrium, but global protein S-nitrosations are also diminished, suggesting a 

dysfunctional response to nitric oxide-mediated protein S-nitrosation. Our study of 

S-nitrosoglutathione reductase (GSNOR), an enzyme that degrades the common 

endogenous form of nitric oxide, S-nitrosoglutathione (GSNO), reveals increased 

expression of the enzyme in sPTL myometrium, associated with decreased total 

protein S-nitrosation. Inhibition of GSNOR by N6022 relaxes myometrial tissue, 
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indicating the importance of nitric oxide donors and protein S-nitrosation in 

myometrial quiescence. GSNO, which can trans-S-nitrosate proteins, also alters 

acto-myosin ATP-ase activity, increases TREK-1 outwardly rectifying potassium 

currents, and increases myosin light chain kinase activity. Taken together, these 

findings offer novel explanations for nitric oxide-mediated relaxation in 

myometrium, and provide evidence for the effectiveness of a new class of 

tocolytics. 
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Preterm Labor: The failure of tocolytics and the search for a new path 
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Introduction: 

Managing spontaneous preterm labor (sPTL) should be a simple problem. It is 

however, a problem with no tenable solution despite decades of intensive research 

(Berkman et al., 2003; Elvira et al., 2014; Giles and Bisits, 2007; Gyetvai et al., 

1999). A cursory investigation into the conundrum that is sPTL quickly drives one 

towards a common-sense solution — since contraction of the uterus is the 

proximate cause of preterm birth, simply stop the uterus from contracting. There 

exists a host of therapeutic interventions that can inhibit smooth muscle 

contraction, so why are there no drugs to prevent the early delivery of a child?  The 

answer to this question is not entirely known, but progress has been made. Here 

we investigate the idiosyncrasies of the myometrium and propose a novel 

approach to treat sPTL that leverages the unique relationship between nitric oxide 

(·NO) and myometrium.  

 

History of Preterm Labor: 

 

Long before modern pharmacological methods were available to treat 

preterm labor, its consequences were well known. Depictions of pregnancy and 

birth can be found in ancient Egyptian hieroglyphics (Figure 1), and in 400 B.C.E., 

Hippocrates described several maladies associated with pregnancy and its 

complications in his work Aphorisms  (Hippocrates and Chadwick, 1950). In the 
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early 16th century, Leonardo da Vinci undertook intense physiological studies to 

better understand pregnancy and parturition (Gilson, 2008). One of the earliest 

written descriptions of preterm birth (PTB) was of Sir Isaac Newton, born in 1642. 

He was portrayed as being born so premature that “he could have been put into a 

quart mug” (Simpson, 1907). Unfortunately, in the intervening centuries following 

Sir Isaac Newton’s premature birth, our ability to treat preterm labor (PTL) and PTB 

remains limited.  

PTL, and by extension PTB, impact millions of lives each year. PTB places 

a massive financial burden on society estimated at $26.2 billion annually in the 

United States alone (Behrman and Butler, 2007). Adjusted for inflation, this figure 

has risen to 30 billion. Estimates of the cost of PTB cannot accurately account for 

many of the costs of ongoing medical care for premature infants with unwanted 

outcomes such as chronic lung disease, cardiovascular disease or cerebral palsy, 

or track these costs to adulthood. PTB remains the primary cause of neonatal 

morbidity and hospitalization during pregnancy (D’Onofrio et al., 2013; Miniño et 

al., 2006; Rundell and Panchal, 2017) and accounts for a majority of pediatric care 

worldwide (Howson et al., 2013). In the United States alone, greater than 12% of 

infants are born prematurely, resulting in 20,000 deaths annually (Martin et al., 

2011). About half of those premature births are attributed to sPTL (Goldenberg et 

al., 2008). Worldwide, the statistics are even more disconcerting. Approximately 

thirteen million infants across the globe are affected by premature birth each year 

(Behrman and Butler, 2007). Sub-Saharan Africa is of particular concern, where  
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Figure 1: Depictions of pregnancy and birth in antiquities: (a) Hieroglyphic 

depictions of a woman giving birth from The Temple of Kom Ombo in Aswan 

Governorate, Egypt, which was constructed during the Ptolemaic dynasty, 

180–47 BC. Used with permission (CC). (b) Leonardo da Vinci – ‘Studies of 

the foetus in the womb’, 1510-1512. Black chalk, sanguine, pen, ink wash 

on paper. Public domain image . Written examples of the perinatal 

disorders have been recorded as far back as Hippocrates in 400 B.C.E., in 

his book, Aphorisms. 2400 years later and we still have exceedingly few 

tools to prevent the early delivery of a child, despite decades of intense 

evidence-based research. 
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as many as 336,000 of the 1.2 million (28%) births each year result in newborn 

death (Kinney et al., 2010). In fact, women of African descent are 50% more likely 

to deliver preterm than women of European descent (CDC, 2015). While some 

cohorts are disproportionately affected by sPTL and PTL, the emotional and 

physical consequences of early labor and delivery span all races, nationalities, 

ages and socioeconomic groups. It is because of this that solving this complex 

problem is of paramount importance. 

PTL is defined as labor between 20 and 37 weeks of gestation, with extreme 

PTB between 22-28 weeks  (“Preterm labor,” 1995). sPTL differs from PTL in that 

it is idiopathic in nature, meaning no root cause for the labor has been established. 

PTB can adversely affect fetal development; in particular, the heart, lungs, and 

brain. (Saigal and Doyle, 2008). Approximately 75% of neonatal mortality and 50% 

of long-term neurologic impairment are the result of PTB (McCormick, 1985). 

Amillia Taylor, born in 2006 at 21 weeks and 6 days, is the earliest known surviving 

preterm infant. This is an extraordinary success of modern medicine considering a 

full-term pregnancy in humans is 40 weeks. While the medical community 

continues to enhance its ability to decrease morbidity and mortality in extreme 

preterm infants (H.C. et al., 2015), 60% of all neonatal deaths still occur in infants 

born prior to 34 weeks of gestation (H.C. et al., 2015). Identifying effective methods 

to prevent PTB altogether would better serve the infant and our global community 

at large.  
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It wasn’t until half way through the 20th century that PTB was systematically 

defined. In 1950, the World Health Organization (WHO) formally described PTB as 

any infant weighing less than 2,500 grams upon delivery (Camacho, L., Cross M., 

Lelong M., Levine S., Magnussen E., 1950). For comparison, Amillia Taylor 

weighed less than ten ounces (283 grams) when born. Amillia’s survival is all the 

more astonishing when we consider that Extremely Low Birth Weight (ELBW) 

infants, weighing less than 1000 grams at the time of delivery, experience mortality 

levels of 30–50%, and morbidity rates of 20–50% (Figure 2) as compared to their 

full term counterparts (H.C. et al., 2015). 

In 1961 the WHO refined the definition of PTB to its current definition of birth 

prior to 37 weeks, and instead used 2,500 grams to define ‘low birth weight’ (WHO, 

1961). This change was made to better offset the observation that infant weight 

can vary drastically, even in full-term deliveries, but still recognizes that low birth 

weight can adversely affect postnatal outcome independent of the developmental 

issues associated with PTB (Ghosh and Daga, 1967). 

In the subsequent decades, our ability to care for extreme preterm infants 

has increased markedly. Morbidity and mortality rates continue to decline (Cooke, 

2006), yet approximately 12% of all pregnant women will still experience PTL 

(Martin et al., 2011), meaning that millions of infants are born each year with no 

tenable solution to prevent their early delivery. Our inability to keep the fetus in 

utero until term stems from an incomplete understanding of how the body’s many  
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Figure 2: Preterm birth risks: Morbidity and mortality: The progression of 

pregnancy and the associated health risks associated with preterm birth. 

Tocolytics are ineffective at delaying preterm birth beyond 48-hours after 

the onset of preterm labor. Mortality and morbidity decrease precipitously 

as the pregnancy progresses from weeks 22-34, therefore, it is imperative 

that we identify novel approaches to delay preterm birth beyond current 

capabilities. 
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disparate systems converge to initiate and maintain labor. At the core of this 

process, regardless of which upstream factors trigger the labor, is the myometrium. 

 

The Myometrium and Pregnancy:  

 

The myometrium, a smooth muscle that encapsulates and protects the developing 

fetus, and provides the force needed to separate infant from mother during birth. 

Smooth muscles are a specialized class of myocytes found throughout the body. 

While they serve many roles, they most commonly aid in the function of hollow 

structures and organs such as the bladder, airway, blood vessels, intestines, and 

the uterus (Jonathan D. Kibble and Colby R. Halsey, 2015). Most smooth muscles 

communicate to adjacent cells through gap junctions. These important channels 

propagate contractile signals between myocytes (Laird, 2006). This efficient cell-

to-cell communication allows for an amplified response to modest stimuli. An 

atypical exception to this paradigm are multiunit smooth muscles, such as those 

that control pupil diameter and require individual autonomic nerve stimulation to 

each muscle cell (Bose and Bose, 1977), but here we will focus our discussion on 

the function on the myometrium. Like skeletal and cardiac myocytes, smooth 

muscle requires a depolarization, followed by an influx of extracellular Ca2+, to 

stimulate muscle contraction. To better understand the unique nature of smooth 

muscle, a brief overview of generalized muscle contraction is warranted. 
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Generalized Smooth Muscle Contraction: 

 

Like skeletal and cardiac muscle, Ca2+ initiates contraction of smooth muscle, 

albeit through a vastly different mechanism. The stimulation of a smooth muscle 

contraction varies depending on the type of the muscle group. For example, enteric 

neurons drive smooth muscle contraction in the digestive tract (Kunze and 

Furness, 1999). Vascular and airway smooth muscle responds strongly to 

adrenergic stimulation (Barnes, 1995), and the myometrium relies heavily on 

hormones and prostaglandins (Gimpl and Fahrenholz, 2001). While there is some 

overlap in the mechanisms that drive contraction in these different smooth muscle 

types, such as with common GPCR signaling pathways and depolarization-driven 

Ca2+ entry, minor phenotypic variations dictate unique responses to stimuli and 

drugs. This also means therapeutics intended for one type of smooth muscle may 

not be effective in other types; an observation that has become exceedingly clear 

when examining the failure of tocolytics, drugs used to halt or prevent labor (Giles 

and Bisits, 2007). This concept holds true for the myometrium and has proven 

problematic in the treatment of sPTL, as there are significant differences in 

myometrial physiology when compared to other types of smooth muscle. 
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The Myometrium: 

 

The myometrium is a powerful smooth muscle that acts as the principle 

expulsive driving force during labor. It is phasic in nature, as opposed to tonic, 

meaning that contractions are balanced by relaxation a short time after stimulation 

(Szal et al., 1994). An endogenous myometrial stimulator is oxytocin (OT), a 

peptide hormone primarily generated in the hypothalamus and secreted into the 

bloodstream via the posterior pituitary gland (Kimura et al., 1992). OT binds to 

oxytocin receptors (OXTR) in the myometrium (Gimpl and Fahrenholz, 2001). 

When stimulated, these GPCRs (Gαq/11) activate phospholipase C, in turn 

generating inositol triphosphate (IP3) and diacylglycerol (DAG) from membrane 

stores of phosphatidylinositol 4,5-bisphosphate (PIP2). This activates protein 

kinase C (PKC), as well as other downstream effectors of smooth muscle 

contraction (Figure 3a) (Wray, 1993). 

As with skeletal and cardiac myocytes, Ca2+ is every bit as critical to 

contraction in the myometrium, but for very different reasons. GPCR stimulation 

activates voltage-gated Ca2+ channels, which in turn triggers calcium-induced 

calcium release (CICR) from the sarcoplasmic reticulum, further depolarizing the 

membrane. Unlike in skeletal muscle, Ca2+ binds to calmodulin (CaM), which 

activates myosin light chain kinase (MLCK) (Bursztyn et al., 2007). MLCK 

phosphorylates S18/S19 of the regulatory light chain (MYL9) of smooth muscle 

myosin (SMM) (Frearson et al., 1976; Hong et al., 2011), sometimes called RLC20, 
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referring to its ~20kDa molecular weight. Of note, the currently accepted 

nomenclature for RLC20 is MYL9, and will hence force be referred to as such. It 

has been hypothesized that MLCK isoforms are differentially expressed in non-

pregnant, term, and preterm myometrium (Moore and Bernal, 2001), which may 

affect the catalytic efficiency of this enzyme. 

It is widely accepted that the phosphorylation of MYL9 is the ‘master switch’ 

that drives smooth muscle contraction, and that the kinase activity of MLCK is 

balanced by the dephosphorylation of MYL9 by myosin light chain phosphatase 

(MLCP) (Figure 3b). Class II SMM contains two interacting heavy chains, each 

with their own actin-binding head domain along with an essential light chain and a 

regulatory light chain (MYL9). In its unphosphorylated state, one head of the SMM 

complex binds to the actin filament, while the complementary actin-binding site on 

the second head is “blocked” due to interactions with the first head (Baumann et 

al., 2012).  As a result, cross-bridge cycling is prevented, and a contraction cannot 

occur. Phosphorylation of MYL9 causes a conformation change to the myosin 

head formerly bound to its “sister” head, which in turn permits actin binding, and 

cross-bridge cycling can occur. Many drugs seek to prevent the influx of Ca2+ into 

the cell, thereby preventing MLCK activation. Our research proposes an alternative 

mechanism through protein S-nitrosation, that may compliment this well-

established pathway by altering the structure and function of these and other 

proteins associated with the acto-myosin complex 
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Figure 3: Canonical contraction and relaxation pathways in smooth muscle: (a) 

The canonical contraction and relaxation of smooth muscle is mediated by 

transmembrane receptors, ion channels, small molecules, hormones, and 

thousands of other molecules. (b) Despite the complex intertwining of 

pathways that control smooth muscle contraction and relaxation, it is the 

phosphorylation of MYL9, the 20kD regulatory light chain of smooth muscle 

myosin that acts as the ‘master switch’ to contraction, and it is the ratio of 

kinase (MYLK) to phosphatase (MLCP) that dictates contraction in the cell. 
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Canonical Smooth Muscle Relaxation: 

 

Unlike skeletal muscle, in which high levels of cytosolic calcium are required to 

maintain contraction, smooth muscles maintain contractile force until MYL9 is 

dephosphorylated (Bursztyn et al., 2007). Dephosphorylation of MYL9 is primarily 

driven by the myosin phosphatase targeting subunit, MYPT1, of MLCP, the 

predominant phosphatase in smooth muscle. MLCP contains a PP1cδ catalytic 

subunit, a MYPT1 targeting subunit, as well as an M20 subunit with unknown 

function (Hudson et al., 2012). MYPT1 itself is phosphorylated at S695, T696, 

S852 and T853, and is constitutively active when not phosphorylated, albeit with 

low activity, so some contractile stimulation is needed to maintain contraction (Ito 

et al., 2004). This modulation of MLCP activity is a major component of Ca2+ 

sensitization/desensitization (Somlyo and Somlyo, 2003), and it allows for complex 

regulation of smooth muscle contraction and relaxation.  

 MYPT1 is phosphorylated by cAMP dependent PKA and cGMP dependent 

PKG, which activate the enzyme, as well as Rho-Kinase (ROCK or ROK), which 

inhibits MLCP (Puetz et al., 2009). The relationship among these kinases and their 

activation pathways is complex. In smooth muscle, one common route to PKA 

activation is through β2 adrenergic (Gs) driven cAMP production. PKG is also 

activated through cyclic nucleotide production, in this case cGMP, which is created 

as the result of ·NO-stimulated soluble guanylyl cyclase (sGC). ROK, an inhibitor 
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of MLCP, is activated by the RhoGEF complex, as a result GPCR12/13 stimulation 

(Figure 3a). While all three of these kinases act upon MYPT1, it should be noted 

that each of them have a number of phosphorylation targets that either enhance 

or inhibit contraction (Puetz et al., 2009). PKG action halts when either of its 

upstream activating factors, 	·NO or cGMP, are exhausted. ·NO itself is generally 

depleted by either endogenous metabolizers of ·NO, such as S-nitrosoglutathione 

reductase (GSNOR), or the thioredoxin system, while cGMP is metabolized by 

phosphodiesterases (PDEs). As such, tocolytics that target these systems have 

been used with varying claims of success, and will be discussed further. 

Confounding MLCP function in smooth muscle is the finding that disparate 

functional isoforms of MLCP exist; specifically, it has been discovered that a 

leucine-zipper variant of MLCP affects PKG activity and cGMP-mediated 

relaxation in the cell (Dou et al., 2010; Yuen et al., 2011). Thus, neither the 

mechanism whereby PKG activates MLCP, nor the nature of the interaction 

between these two proteins are completely understood. 

Another important mediator of pMYL9 is Telokin, the 17kD terminal 

fragment of MLCK that binds to SMM. Telokin is not only a functional domain of 

MLCK, but also serves as an autonomous, independently-translated, protein that 

is transcribed by a separate promoter from MLCK (Smith et al., 1998). Telokin 

serves two known functions. For one, it has an inhibitory effect on MYL9 

phosphorylation via competitive binding with MLCK to SMM (Khromov et al., 2006). 

Second, it aids in MYPT1 activation (Komatsu et al., 2002). As will be discussed 
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further, Telokin is known to be differentially S-nitrosated depending of the state of 

pregnancy, which may affect its function (Figure 7b).  

Nitric Oxide (·NO):  One of the most important mediators of smooth muscle 

relaxation is •NO, a small molecule produced by the family of nitric oxide synthases 

(NOS) through the conversion of L-arginine to L-citrulline (Figure 4) (Wink and 

Mitchell, 1998). ·The discovery of ·NO as endothelium-dependent relaxing factor 

(EDRF) by Robert Furchgott, its chemical identification as ·NO by Louis Ignaro, 

and its signaling through cGMP, was the subject of the 1998 Nobel Prize in 

Physiology or Medicine (Furchgott et al., 1998). ·NO is an uncharged, yet highly 

reactive molecule, due to an unpaired electron (Valko et al., 2007). These 

characteristics were thought to allow it to readily cross the membrane to interact 

with intracellular proteins. This assumption notwithstanding, there is evidence that 

·NO is transported from sites of production to sites of action as S-nitrosoglutathione 

(GSNO) (K A Broniowska et al., 2013; Gaston et al., 1993).  

Canonically, ·NO stimulates sGC in smooth muscle, catalyzing the 

formation cGMP, a second messenger much like cAMP. cGMP activates PKG, 

which phosphorylates S695 on the catalytic subunit of MLCP, MYPT1 (Puetz et 

al., 2009). As has been mentioned, phosphorylation does not appear to be an 

obligate requirement for MLCP activation, and thus some unknown action may 

serve to activate MLCP, orchestrated by PKG activation. Interestingly, and as will 

expanded upon in the coming pages, ·NO  also activates the inducible form of 

cyclooxygenase-2 (COX2), increasing the synthesis of the prostaglandin PGE2 
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(Kim, 2011; Salvemini et al., 1993) which promotes quiescence through its GPCR 

(Gs) stimulation. PGE2 is also an important mediator of cervical ripening (Keelan 

et al., 2003), indicating that ·NO’s role in myometrial pregnancy and parturition is 

multilayered and nuanced. Another important distinction of uterine smooth muscle 

is that cGMP action can be compartmentalized (Iain L O Buxton et al., 2010a), and 

relaxation of the tissue in response to ·NO is independent of global cGMP 

accumulation (I. L. Buxton, 2004a). The reason behind this phenomenon has not 

been fully elucidated, but our lab has made substantial progress on this front. This 

signaling exception may have far reaching consequences, and affect how we 

approach the treatment of sPTL in the future, a topic that will be covered at length 

in chapter 2.  

Within the family of smooth muscles, the myometrium has a particularly 

complex and varied response to stimuli that drive contraction and relaxation. It is 

not surprising that therapies used to treat sPTL are ineffective, as there are 

multiple compensatory and complimentary pathways which work independently to 

initiate contractions and mediate quiescence.  

 

What Causes Spontaneous Preterm Labor? 
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Figure 4: Nitric Oxide and protein S-nitrosation: Nitric oxide, an important 

mediator of smooth muscle relaxation, is created by the NOS family of 

enzymes. Nitric oxide that is relevant to the myometrium during pregnancy 

and parturition is believed to originate in either endothelial cells or from the 

syncytiotrophoblast. NO moves free through the membrane or may be 

transported by proteins such as γ-glutamyltransferase (GGT). NO is often 

stored in the cell as stable GSNO. Free NO or GSNO then react with thiol 

group of cysteines. This PTM called S-nitrosation 
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Despite a wealth of knowledge concerning this process, the short answer is that 

we do not know what causes the myometrium to contract spontaneously at times 

preterm. From an obstetrical point of view, the natural birth of a child requires two 

important physiological changes to occur; (1) remodeling of the cervix (effacement 

and dilation), and (2) myometrial contractions. In a normal full-term birth, 

biochemical factors originating from the fetus (Chard et al., 1971; Gao et al., 2015) 

and mother (Tribe, 2001), coupled with stretch-induced gene regulation in the 

myometrium (Buxton et al., 2011a; C. L. Cowles et al., 2015; Hua et al., 2013), 

work in concert to initiate labor. In the case of generalized PTL, several well-known 

maladies and dysfunctions, such as preterm premature rupture of the membrane 

(PPROM), microbial invasion of the amniotic cavity (MIAC), bacterial colonization 

and/or inflammation of the choriodecidua, among others, can result in PTB through 

cytokine/prostaglandin cascades that initiate contractions  (Agrawala and Hirscha, 

2012; Park et al., 2005). sPTL, on the other hand, is idiopathic in nature, and we 

currently lack the mechanistic insight to determine the root cause(s) of this 

disorder.  

Before we can answer the question of what causes the sPTL, we must first 

determine whether there is a difference between sPTL and ordinary term labor 

(TL). An important initial question is whether or not spontaneous labor is simply 

early onset labor?  This distinction is important if we are to identify therapies that 

target sPTL. It turns out that sPTL is different from TL, although the distinctions 
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are nuanced. One important difference between sPTL and TL is the concentrations 

of the prostaglandin precursor, PGHS-2, as well as cytokine IL-8 levels in the lower 

segment of the myometrium (Tattersall et al., 2008). Other important distinctions, 

such as protein S-nitrosation, and the expression of contractile proteins, will 

discussed in further detail. 

 

Biomarkers for PTL and PTB: 

 

A lingering question regarding PTL is whether or not tocolytics are ineffective at 

preventing PTB beyond 48-hours simply because they are administered too late?  

That is to say, once the mechanistic underpinnings that drive labor have reached 

a tipping point, it may not be possible to put the proverbial genie back in the bottle. 

Due to the inherent risks to the fetus associated with tocolytics, combined with the 

fact that ~90% of women do not experience preterm labor, it would be irresponsible 

and cost-prohibitive to administer prophylactic tocolytics (maintenance tocolytics) 

to all pregnant women. The logical alternative to this approach would be to identify 

either correlative or causal factors (i.e., biomarkers) that can be used to distinguish 

women at high risk for preterm birth from those at low risk. 

Fortunately, there are many well-known positive predictors of PTL and PTB 

(Table 1) (Sayres, 2010; Weismiller, 2000). Several common contributing factors 

to PTL and PTB, such as illicit drug use, alcohol abuse, and smoking, are easy to 

mitigate, at least conceptually, although their cessation is more difficult in practice 
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Table 1: Common risk factors for preterm birth: There are dozens of known 

risk factors that correlate to preterm labor (PTL) and preterm birth (PTB). While 

useful for indicating those at higher risk for PTL and PTB, and in some cases, 

provide a route to decrease the overall risk of PTL and PTB, these factors generally 

do not provide the mechanistic underpinnings of spontaneous PTL. 
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(Donatelle et al., 2004; Kaltenbach et al., 1998). Others, such as race (Culhane 

and Goldenberg, 2011), and low socioeconomic class (Whitehead, 2012), are 

much more perplexing; however, in both cases access to healthcare, at least in 

the United States, is more limited than with other cohorts (Olah et al., 2013), 

indicating a potential contributing factor. High levels of stress also contribute to 

PTL, which is well-known to increase proinflammatory cytokines (Field, 2017; 

Karlsson et al., 2017). That being said, these positive predictors of PTL are 

correlative, and are not in themselves true biomarkers. 

If a biomarker for sPTL is to be useful in a clinical sense, it must be 

consistent and unambiguous. Fetal fibronectin is a protein produced by the fetus 

and found at the interface of the chorion and the decidua (Cunningham et al., 

2014). Fibronectin acts as a cervical adhesive and can be found in higher levels in 

the vagina as the pregnancy nears term (Crane et al., 1999). Using the presence 

of fetal fibronectin in the vagina as a positive predictor of PTL has been contentious 

(Esplin et al., 2017; Roman et al., 2005; Stafford et al., 2008), but the evidence 

does not currently support its use as a biomarker to predict labor (Jwala et al., 

2016). More recently, it has been proposed that the levels of cell-free fetal DNA 

(cffDNA) found in maternal blood plasma may be used as a marker for PTL 

(Phillippe, 2014; Romero et al., 2014), as cffDNA can activate TLR-9 and induce 

an inflammatory response (Scharfe-Nugent et al., 2012). Also, miRNA has been 

investigated as a biomarker for PTL. Interestingly, miR-143 and miR-145 see a 

12.3 and 11.5-fold change, respectively, in cervical cells of women who 
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experienced PTB (Elovitz et al., 2014). These miRNAs target several hundred 

genes, to include TLR-2 and fibronectin production, as well as the translation of 

proteins associated with phenotypic switch in smooth muscle and cytoskeleton 

dynamics. MicroRNAs may ultimately prove to be useful as PTL/PTB biomarkers, 

but more research is needed. 

 

Single Nucleotide Polymorphisms (SNPs) and Genetics:  SNPs, while not 

biomarkers in the classical sense, do provide a minimally-invasive means to 

identify modifications to genes that may contribute to early onset labor. SNPs may 

ultimately prove to affect proteins and pathways that alter the body’s response to 

pregnancy. Over the past several decades, the importance of SNPs in human 

health and disease has become evident (Frazer et al., 2009). Due to SNPs 

tendency to alter the structure, function and/or expression of proteins, it is only 

logical that they be investigated in relation to PTL and PTB. 

Several SNPs in genes important to pregnancy maintenance and labor have 

been identified over time. For instance, SNPs that alter expression of 

metalloproteinase (MMP1/MMP9), β2 adrenergic receptors (β2ARs), TNF-alpha 

and IL-1β were all positively correlated to PTB (Crider et al., 2005). An 

investigation of SNPs in a Latin American cohort of women found SNPs in KCNN3, 

the gene encoding for Small Conductance Calcium-Activated Potassium Channel 

3 (SK3), Corticotropin Releasing Hormone Receptor 1 (CRHR1), and F3, a 

Coagulation Factor associated with PPROM driven PTB (Gimenez et al., 2017). A 



	

	

28	

2017 GWAS study of more than 43,000 women found six genes strongly 

associated with PTB, including the gene for adenylyl cyclase, WNT4, as well as 

other genes with SNPs relevant to labor (Zhang et al., 2017). Of interest, SNPs in 

ADH5, the gene that encodes GSNOR, an enzyme that modulates ·NO availability 

in the myometrium, has been found in some groups who experience asthma (Wu 

et al., 2007). As ·NO is important to both airway smooth muscle and uterine smooth 

muscle relaxation, it would be of interest to determine if these SNPs are present in 

women who experience PTL and PTB. While SNPs most likely play an important 

role in pregnancy and parturition, much more work is needed to determine how 

they specifically effect this complex process.  

Like many complex disorders, there may not be a “magic bullet” to identify   

women at risk for, or who are experiencing, preterm labor. SNPs and other genetic 

anomalies may serve as important contributing factors, that when combined with 

others, “kick-start” the process of sPTL. To this point, women with a history of 

spontaneous preterm delivery are 1.5 to 2x more likely to have a subsequent 

preterm delivery (Rundell and Panchal, 2017). While in some cases this may be 

the result of lifestyle or other contributing factors, it is not unreasonable to 

hypothesize that a genomic influence may also contribute. Researchers have 

begun to identify methodologies to systematically categorize how genetics drive 

the phenotypic endpoint that is PTL (Manuck et al., 2015; Villar et al., 2012), and 

progress has been made on identifying specific maternal and fetal genes that may 

be in play (Allen and Founds, 2013). To this point, our laboratory has found that 
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splice variants of the outward-rectifying K+ channel, TREK-1, affect trafficking of 

the protein to the membrane, and diminish the ability of the cell to maintain the 

negative membrane potential needed for myometrial quiescence (Chapter 2) (C. 

L. Cowles et al., 2015). 

While the list of biomarkers considered in this review is by no means 

exhaustive, the unfortunate fact of the matter is that biomarkers which reliably 

identify risk of PTL or PTB do not exist. An extensive 2011 review of biomarkers 

associated with PTB over 4 decades (Menon et al., 2011), as well as a more recent 

2014 review of the data (Kacerovsky et al., 2014), found no reliable trend between 

biomarkers and PTB. That being said, our ability to use the power of genomic 

analysis to identify those at risk for PTL is still in its fledgling stage. As whole 

genome sequencing becomes more cost effective (Herper, 2017), and as ‘big data’ 

analysis becomes more sophisticated (Bellazzi, 2014; Raghupathi and 

Raghupathi, 2014), we may see significant advances in identifying genes and other 

biomarkers important to PTL and PTB. Due to the potential benefits of recognizing 

a true biomarker of sPTL, researchers and clinicians are highly incentivized to 

continue their searches. The identification of biomarkers that recognize women 

who are at high risk for PTL and PTB would represent a major leap forward in 

obstetrics. It would allow us to monitor appropriate individuals more closely, and 

might open the door to create patient specific tocolytics to be used as prophylactic 

agents. 
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Tocolytics 

 

Drugs that suppress or terminate uterine contractions in an effort to treat premature 

labor are called tocolytics. The word tocolytic is derived from the Greek tokos = 

contraction, and lysis = to untie or dissolve (Keirse, 2003; Lewis, 1983). The term 

tocolytic did not emerge until the mid-1960s when there was a dramatic increase 

in research to treat premature labor (Mosler, 1966). The first modern compound 

used specifically as a tocolytic was relaxin in 1955 (Abramson and Reid, 1955). 

Relaxin is a peptide hormone which is generated by the corpus luteum and 

activates GPCRs in the myometrium. Despite its encouraging namesake, relaxin 

was quickly determined to be ineffective at mitigating contractions during labor 

(Babcock and Peterson, 1959). In the intervening years dozens of drugs that target 

a multitude of contractile pathways have been introduced into the market (Keirse, 

2003). One of the reasons the myometrium is such an attractive therapeutic target 

is because labor can be initiated by many factors, such as: hormones, 

prostaglandins, cytokines and other immunological factors, stress, infection, 

among others. As such, it is no surprise that a wide-range of drugs have been 

tested for therapeutic potential as tocolytic agents.  

 The crux of sPTL, and the reason why the search for new drugs continues, 

is that currently available tocolytics are not effective at delaying birth beyond 48-

hours (Weismiller, 2000). A systematic review of tocolytic research from 1966-

1998 revealed a simple startling observation, “Although tocolytics prolong 
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pregnancy, they have not been shown to improve perinatal or neonatal outcomes 

and have adverse effects on women in preterm labor” (Gyetvai et al., 1999). The 

only known exception to this paradigm is in women with a short cervix or a history 

of PTB, where progesterone can delay birth longer than 48-hours (Navathe and 

Berghella, 2016); however, this treatment regime does not hold for sPTL. Despite 

these findings, tocolytics are routinely used in an attempt to maintain uterine 

quiescence in high-risk pregnancies, as well as for acute treatment of labor, for the 

simple reason that more effective therapies do not exist. Because of their limited 

efficacy, tocolytics are primarily used to provide a window for which to administer 

antepartum corticosteroids, between 24 and 34 weeks of gestation (Borders and 

Gyamfi-bannerman, 2017), which serve to accelerate fetal lung development 

(Roberts et al., 2017), rather than to halt labor altogether. 

This observation is not surprising when we consider that tocolytics, in 

general, are borrowed pharmacology. That is to say, nearly every drug used to 

treat PTL was designed to treat maladies in other types of smooth muscle, such 

as vascular, colonic and airway. Even atosiban, a selective oxytocin–vasopressin 

receptor antagonist designed specifically to mitigate uterine contractions (Åkerlund 

et al., 1985), is not approved for use in the United States, despite demonstrating 

initial positive results (Coomarasamy et al., 2002; Romero et al., 2000). 

Importantly, atosiban does not reduce the risk of preterm birth beyond 48-hours or 

improve neonatal outcome (Papatsonis D, Flenady V, Cole S, 2005). 
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Generally speaking, modern tocolytics fall into four major classes: Calcium 

channel blockers, hormone modulators, prostaglandin pathway antagonists, and 

beta-2 adrenergic receptor (B2AR) agonists (Figure 5), although dozens of 

tocolytics exist. With the exception of B2AR agonists, most therapies seek to 

prevent contractions by inhibiting the “front-end” of the contractile pathway. In other 

words, they attempt to mitigate the onset of contractions, which begins with the 

influx in cations into the cell. This approach is logical, though not entirely effective, 

as we will see. To better understand why the current line of tocolytics perform so 

anemically, let us first look closer at some of the most common drugs used as 

tocolytic agents. 

 

Magnesium Sulfate: MgSO4 was first used clinically as a tocolytic in 1966, and is 

still used off-label by some physicians today. MgSO4 limits calcium influx into the 

cell (Altura et al., 1987) through the action of the Mg2+ ion, a group IIA divalent 

cation similar to Ca2+, albeit with a smaller diameter. Mg2+ decreases the tone and 

frequency of smooth muscle contraction, in part by competing with Ca2+ for entry 

into the cell (Altura and Altura, 1974; Karaki, 1989). Mg2+ is readily absorbed by 

the fetus that can lead to hypermagnesemia, depression of the central nervous 

system, heart rate variability (Ramsey P., 1983), and brain lesions (Mittendorf et 

al., 2006). MgSO4 administered antenatally can decrease the incidence of 

moderate-to-severe cerebral palsy (Rouse et al., 2008), in particular in preterm 
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infants (Rundell and Panchal, 2017), but it does not delay birth (Crowther et al., 

2014). 

 

β2 Agonist and Betamimetics:  β2 adrenergic receptor agonists, as well as 

betamimetics - named for their ability to ‘mimic’ endogenous β2 ligands - have 

proven popular as tocolytics. Second generation β2 agonist such as ritodrine, 

fenoterol, salbutamol, terbutaline, buphenine, and hexaoprenaline are poor 

tocolytic agents due to their limited specificity (i.e. β1 activation), rapid metabolism 

or renal clearance, as well as unacceptable side-effects that include: fetal 

tachycardia, chest pain, headache, difficulty breathing, hypokalemia, nausea 

and/or vomiting (Lewis, 1983). In 2014, a full review of 12 betamimetics trials 

between 1966 and 2010, involving 1367 women, found that while this class of 

drugs could delay birth by up to 48-hours, they do not reduce the incidence of 

preterm birth, nor is there improvement to neonatal outcome or perinatal death 

(Neilson et al., 2014a). Furthermore, in 2011, after a 14-year review, the FDA 

issued a safety announcement warning against the use of terbutaline for the 

prevention or prolonged treatment of preterm labor due to a lack of efficacy and 

the potential risks to the mother and child (FDA, 2011). More recent studies have 

also found that PKA activation is only a partial contributing factor to cAMP-

mediated myometrial relaxation, and that prolong exposure to cAMP agonist does 

not maintain relaxation (Lai et al., 2016), questioning the importance of cAMP (and 

cGMP, see chapter 2), in myometrial quiescence. 
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Figure 5: Common tocolytics used to treat preterm labor: Tocolytics are drugs 

used to prevent or to halt labor. Tocolytics generally target essential 

pathways to contraction, such as the oxytocin receptor (OXTR), 

prostaglandin receptors (PTGFR) and prostaglandin synthesis (COX), 

adrenergic receptors (B2AR) and voltage-dependent calcium channels 

(VDCC). Currently available tocolytics are not able to delay preterm birth 

beyond 48-hours. 
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Calcium Channel Blockers: Calcium channel blockers (CCBs) are commonly 

used in adults to treat hypertension. As the name implies, CCBs function by 

preventing the influx of calcium into the cell. Nifedipine and MgSO4 are commonly 

prescribed tocolytics in this class. Nifedipine, a voltage-gated calcium channel  

antagonist, is used to treat high blood pressure by acting upon vascular smooth 

muscle (Olivari et al., 1979), which is a tonic, and not phasic, smooth muscle. The 

most significant issue with using CCBs as tocolytic agents is not that they are 

ineffective at reducing contractions, rather it is that these drugs pose life-

threatening consequences to the fetus. As with most tocolytics, nifedipine only 

provides a modest reduction in the birth rates within 48-hours, and does not 

improve neonatal mortality or respiratory distress rates (Gyetvai et al., 1999). 

Furthermore, severe hypotension and an increased fetal mortality has been 

reported with nifedipine use (Veen A.J., Pelinck M.G., 2005). Nifedipine 

significantly decreases maternal systolic and diastolic blood pressure, which is to 

be expected, but it also decreases the uterine artery pulsatility index, and important 

indicator of fetal circulation (Guclu et al., 2006).  

 

Antibiotics/Anti-inflammatories: Pregnancy is a unique immunological state in 

which the mother’s immune system must balance the need to protect itself from 

infection, yet must also avoid rejecting the fetus (Racicot et al., 2014). A woman’s 
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immune system naturally fluctuates as the pregnancy progresses (Gillespie, 

Porter, 2016), but in certain cases immunological factors, like cytokines, 

leukotrienes, and prostaglandins can increase the risk of PTL and PTB  

(Goldenberg et al., 2008; Mor and Cardenas, 2010; Romero et al., 2006). In the 

first century A.D., the Roman scientist Celsus documented the four cardinal signs 

of inflammation: rubor (redness) tumor (swelling) calore (heat) dolore (pain) (e 

Silva, 1978). We now know that inflammation is the inventible consequence of 

either infection or other exogenous/endogenous proinflammatory stimuli. Given 

the consequences of the inflammatory response during pregnancy (Belt et al., 

1999; Racicot et al., 2014; Romero et al., 2014; Scharfe-Nugent et al., 2012), much 

research has been conducted to mitigate infection and proinflammatory immune 

modulators. 

Intrauterine infection is a well-known cause of PTL (Agrawala and Hirscha, 

2012), but sub-clinical, or “occult” infections stemming from floral dysregulation in 

the uterus and vagina have long been thought to act as contributing factors to sPTL 

(Gibbs et al., 1992; Potkul et al., 1985). Unfortunately, prophylactic antibiotics do 

not alter the incidence of chorioamnionitis, postpartum endometritis, or placental 

infection (Matsuda et al., 1993). Most importantly, the treatment of vaginosis with 

antibiotics does not decrease the rate of PTB, and prophylactic antibiotics do not 

decrease the rates of PTL or PTB (King et al., 2002; McDonald et al., 2007). The 

one exception to this paradigm are cases in which preterm premature rupture of 

the membranes (PPROM) has occurred (Hubinont and Debieve, 2011). This is not 
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to say that infections do not cause PTL and PTB; however, the evidence is clear 

that prophylactic administration of antibiotics does not prevent the early delivery of 

the fetus. The American College of Obstetricians and Gynecologists goes so far 

as to state, “antibiotics should not be used to prolong gestation or improve neonatal 

outcomes in women with pre-term labor and intact membranes” (ACOG, 2016). 

Prostaglandins:  Prostaglandins are not only deeply entwined with the 

inflammatory response, but they are also integral to pregnancy and parturition. In 

fact, the term ‘prostaglandin’ was first used almost a century ago after it was 

determined that seminal fluid could initiate uterine contractions (Kurzrok and Lieb, 

1930). The two primary prostaglandins associated with pregnancy and labor are 

PGE2 and PGF2α. These prostaglandins drive cervical ripening and bolster the 

contractile response in the myometrium during labor (Figure 6) (Bakker et al., 

2017). PGE2 is a ligand for receptor EP4, a GPCR (Gs) that activates cAMP 

through adenylyl cyclase, promoting quiescence, but also contributes to cervical 

ripening during labor. These functions may appear to oppose each other, but β2AR 

expression decreases by half in the myometrium during labor, helping to minimize 

the quiescence effect of PGE2 (Chanrachakul et al., 2003). PGF2α, on the other 

hand, is a ligand for FPa/b, a Gq, which increases phospholipase C activity 

(Katzung et al., 2004). Azapeptide and compound PDC113.824, both PGF2α 

receptor antagonists, both mitigate contraction, but they have not been thoroughly 

tested for safety and efficacy in a clinical setting  (Bourguet et al., 2011; Goupil et 

al., 2010).  
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Cytokine Inhibition:  Proinflammatory cytokines, such as interleukin-1β 

(IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα), are not only 

generated in response to injury or infection, but they also function to promote 

cervical ripening and help to initiate labor (Nadeau-Vallée et al., 2016; Rhee et al., 

2015; Tattersall et al., 2008; Unal et al., 2011). IL-1β induces COX2 expression 

through NF-κB and PKC activity in the myometrium (Belt et al., 1999), which then 

leads to the synthesis of the prostaglandins PGE2 and PGF2α. Researchers are 

in the early stages of testing compounds that inhibit IL-1β (compound 101.10) 

while avoiding deactivation NF-κB (Nadeau-Vallée et al., 2016), as well as drugs 

that target the PGF2α-mediated Rho-Kinase activation (Goupil et al., 2010), a 

process that deactivates MYPT1. Investigation into the use of NF-κB inhibitors, like 

Sulfasalazine, have also proven fruitful in women with infection (Sykes et al., 

2015), but it is unknown if NF-κB inhibition would be useful to treat sPTL. While it 

is too early to determine if these approaches will yield significant dividends in the 

field of tocolytic development, it does provide interesting insight into novel 

therapies to treat PTL.  

Due to the integral role of cytokines and prostaglandins in parturition, 

researchers have used nonsteroidal anti-inflammatory drugs (NSAIDs), which are 

inhibitors of the COX pathway, to mitigate the response of the body to cytokines 

and prostaglandins. Indomethacin, a nonspecific COX1/COX2 inhibitor, when 

used alone (Ehsanipoor et al., 2011), or in concert with other tocolytics (Vogel et 

al., 2014), provides a modest tocolytic effect, but does not extend PTB by more  
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Figure 6: Prostaglandin and hormone pathways during pregnancy: Hormones 

and prostaglandins play an integral role in pregnancy and parturition. 

Oxytocin (OT) and prostaglandin F2-alpha (PGF2a) stimulate uterine 

contraction through GPCR (Gq) activation. Human chorionic gonadotropin 

(hCG), and the prostaglandin PGE2, conversely, quiesce the cell through 

GPCR (Gs) activation. Prostaglandin synthesis is drive by cyclooxygenase 

activity (COX), which converts arachidonic acid to prostaglandins. 

Prostaglandin synthesis is inhibited by NSAIDS. Progesterone is an 

important pregnancy maintenance hormone. PR-A and PR-B differentially 

regulate the expression of contractile-associated proteins (CAPS). 
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than 48-hours. More significantly, there are potentially serious side effects to the 

fetus when using Indomethacin. Premature closure of the patent ductus arteriosus, 

as well as renal complications, are known outcomes of Indomethacin 

administration (Moise, 1993), limiting its use. To avoid the adverse effects 

associated with COX1 inhibition (Reinebrant et al., 2015), researchers have also 

targeted the inducible isoform of cylcooxygenase, COX2, which is upregulated 

during labor (Loudon et al., 2003). Unfortunately, COX2 inhibitors have 

undesirable side effects as well, and a comment regarding their usefulness was 

aptly put forth by Vermillion and Landen in 2001 when they stated, “They [COX-2 

Inhibitors] may join the long list of medications that inhibit uterine activity but are 

not clinically useful” (S.T. and C.N., 2001).  

 

Oxytocin Receptor (OXTR) Antagonist:  To date, the only drug designed 

specifically as a tocolytic is Atosiban, an oxytocin receptor (OXTR) antagonist. 

Atosiban, trade name Tractocile® (Ferring Pharmaceuticals), is a derivative of the 

peptide hormone, oxytocin (OT) (Williams and Pettibone, 1996). Early studies 

hinted at the potential of Atosiban as a tocolytic (Åkerlund et al., 1985; 

Coomarasamy et al., 2002); however, a systematic review of Atosiban in 2005 

involving two trials with 651 women showed that Atosiban neither reduced the risk 

of preterm birth, nor improved neonatal outcomes (Papatsonis D, Flenady V, Cole 

S, 2005). Atosiban was withdrawn from a phase III clinical trial in 2015 

(ClinicalTrials.gov Identifier: NCT01796522), but its use is still approved for use in 
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the European Union, Australia and New Zealand. It may not be entirely surprising 

that Atosiban is not highly effective as a tocolytic when we consider that OT null 

mice (-/-) have no deficits in fertility, reproduction, gestation or parturition 

(Nishimori et al., 1996). Moreover, blockade of the actions of OT do not completely 

relax the term laboring myometrium (I. L. Buxton et al., 2001). While there is no 

doubt that OT can initiate strong and regular contractions to induce labor (Erickson 

et al., 2017) and increase prostaglandin synthesis (Blanks and Thornton, 2003), it 

is possible that OT’s function role in parturition is complimentary, not obligatory. 

 

hCG and Progesterone: The hormones human chorionic gonadotropin (hCG) and 

progesterone are critical to implantation and pregnancy maintenance. Unlike 

luteinizing hormone (LH), which is a close analog to hCG (J G Pierce and T F 

Parsons, 1981) produced in the anterior pituitary of the mother, hCG is generated 

by the syncytiotrophoblast, and later the placenta, and stimulates progesterone 

production by the corpus luteum for the first 5-6 weeks of gestation (Norman and 

Litwack, 1997). hCG levels drop considerably after the placenta begins producing 

appreciable quantities of its own progesterone (Figure 2). Despite the diminished 

presence of hCG in the second and third trimester, it has been proposed that hCG 

may still be useful as a maintenance tocolytic. hCG receptors, which are GPCRs 

(Gs) and stimulate cAMP production and PKA activity, have been identified on the 

membrane of uterine smooth muscle cells (Kurtzman et al., 2001). In practice, 

while hCG administration is effective at reducing the peak force of contractions, 
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hCG paradoxically increases the frequency of contractions (Eta et al., 1994), and 

is therefore not a practical tocolytic. 

 Progesterone, on the other hand, due to its critical role in the maintenance 

of pregnancy, would appear to have obvious potential as a tocolytic. Progesterone 

is an important transcriptional modulator that inhibits the expression of many genes 

encoding contraction-associated proteins (CAP) during pregnancy (Figure 6). 

Because of this, progesterone serves as an obligate hormone for pregnancy 

maintenance and it increases in concentration continually throughout the 

pregnancy (Pepe and Albrecht, 2008). In the 3rd trimester placental production of 

progesterone peaks at 210 mg/day, or ~600 nM (Lin et al., 1972), a notably high 

concentration for any steroid hormone. Circulating progesterone below 10 ng/ml 

will result in abortion in 80% of women (Nygren et al., 1973). To this point, the drug 

mifepristone (RU486), a progesterone receptor antagonist, is used clinically to 

terminate pregnancies by inducing premature labor (Avrech et al., 1991). 

The most obvious problem with using progesterone as a tocolytic is that 

humans, along with a handful of other mammals such as non-human primates and 

guinea pigs, do not experience an appreciable decrease in circulating 

progesterone until after the delivery of the placenta (Tulchinsky et al., 1972). The 

initiation of labor in many mammals, including mice and rats, is triggered by a fall 

in progesterone. This seemingly minor deviation from other mammals, called 

progesterone withdrawal, is an important differentiator that is often minimized. 

Therefore, methodology of studies touting progesterone as a maintenance 
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tocolytic must be analyzed closely to ensure their findings align with human 

studies. 

Those who favor progesterone’s use as tocolytic often point to the actions 

of progesterone on secondary pathways. For instance, it has been proposed that 

progesterone metabolites may act as a OXTR antagonist (S Thornton, V Terzidou, 

A Clark, 1999), which would enhance its role as a tocolytic, but other groups have 

refuted this finding (Astle et al., 2003). Also of consideration, is the fact that the 

two primary receptors of progesterone, PR-A and PR-B, serve contradictory roles 

during pregnancy. PR-A promotes labor by inhibiting the anti-inflammatory actions 

of PR-B, and the ratio of these two receptors can vary drastically in the 

myometrium during pregnancy (Tan et al., 2012). This may explain the numerous 

contradicting reports of progesterone’s efficacy in treating preterm labor. 

In general, studies using progesterone as a maintenance tocolytic show 

promise, but lack broad applicability. Notably, In 2011, the FDA approved 

Makena®, an injectable progestin “for use in women with a singleton pregnancy 

who have a history of singleton spontaneous preterm birth and a short cervix” 

(NDA 21-945 Makena PI 3Feb2011Clean - FDA, 2011). It should be noted that 

Makena’s® approval was granted using the less stringent guidelines outlined in 

the Orphan Drug Act (Norwitz and Greenberg, 2011). Makena® holds the 

distinction as being the only FDA-approved tocolytic, although with the 

aforementioned stipulations. 
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Progesterone serves many important roles during pregnancy and it may 

contribute in unknown pathways to promote quiescence. Due to the breadth of 

potential targets of progesterone, it is difficult to predict all of the interactions that 

progesterone may regulate in the realm of uterine quiescence; therefore, more 

studies are needed to fully elucidate progesterone’s potential as a tocolytic. 

 

Nitric Oxide: It is well known that ·NO is the predominate canonical mediator of 

smooth muscle relaxation in the body. Because of this, its use to halt contractions 

is both logical and obvious. Therapeutically, ·NO is most generally administered 

using transdermal glyceryl trinitrate patches, as intravenous nitroglycerin, or an 

inhaled gas to treat bronchopulmonary dysplasia in preterm infants, although its 

efficacy in this sense unclear (Hasan et al., 2017). While some have reported 

success using nitroglycerin as a tocolytic (Shaikh et al., 2012), a comprehensive 

meta-review of twelve trials, including a total of 1227 women, concluded that ·NO 

does not prevent PTB (Duckitt et al., 2014). One of the problems with the systemic 

administration of ·NO donors is that the ·NO readily acts on all the smooth muscles 

of the body. More specifically, when used as a tocolytic, off-target effects are felt 

by both mother and child, and include: hypotension, increased heart rate, and 

intense headaches (Nankali et al., 2014). Furthermore, ·NO donors can amplify 

cervical ripening (Ghosh et al., 2016), a result that is contradictory to the desired 

outcome of delaying birth.  
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Taking the aforementioned information into consideration, it becomes clear 

that a systemically delivered therapeutic dose of ·NO exerts unacceptable side 

effects, and it is not an appropriate tocolytic. Additionally, and as will be later 

explained in detail, the sPTL myometrium exhibits a blunted response to ·NO, 

further limiting its effectiveness as a tocolytic. Of note, therapies that promote a 

global increase in plasma ·NO should not be confused with amplifying the cell’s 

endogenous capability to modulate ·NO, as with what occurs with GSNOR 

inhibition or eNOS activation. ·NO is an important contributor to smooth muscle 

relaxation through both canonical cGMP-mediated pathways, and as proposed in 

this dissertation, through protein S-nitrosation. 

 

Other Tocolytics:  Tocolytics comprise a wide range of drugs that, regardless of 

their mechanisms of action, seek to delay PTB by halting or minimizing uterine 

contractions. To this point, there are many pathways, proteins, and enzymes that 

contribute to uterine contractions and quiescence outside of the common pathways 

described thus far.  

One of the first drugs used as a tocolytic was ethanol (Haas et al., 2015), 

although it is unclear whether its popularity was due to its proposed efficacy, or 

because of its well-known calming and analgesic effects. There were several 

studies in the 1960s and 1970s that recommended ethanol’s continued use as a 

tocolytic, including the discovery that ethanol negatively regulates OT release 

(Fuchs and Wagner, 1963; Gibbens and Chard, 1976); although more recent 
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studies have called into question the importance of OT in labor (Nishimori et al., 

1996). It was also discovered that ethanol mutes the contractile response in 

isolated myometrial strips (Wilson et al., 1969), and that it slows the phasic wave-

like propagation of depolarizations in smooth muscle (Subramanya et al., 2015). 

However, as with so many other tocolytics, a multitude of carefully controlled 

studies over the past 30 years leaves little doubt to ethanol’s inadequacy as a 

tocolytic (Abel, 1981; Haas et al., 2015). 

In recent years, a more thorough biochemical understanding of smooth 

muscle structure and function has led researchers to investigate 

phosphodiesterases (PDEs) as tocolytics. PDEs are important enzymes in smooth 

muscle that aid in the degradation of cyclic nucleotides, such as cAMP and cGMP. 

PDE inhibitors are an interesting target for the treatment of PTL as they can 

increase PKG and MLCP activity, and it has been proposed that PDEs may serve 

as effective tocolytic agents (Montorsi et al., 2004). The combination of nifedipine 

and sildenafil citrate, a PDE5 inhibitor commonly known as Viagra®, is in phase I 

clinical trials for the treatment of acute preterm labor (NCT02337881, 2016) in 

Saudi Arabia. However, it should be considered that of the many isozymes of 

PDEs, it is PDE4 rather than PDE5, that is the predominant form of the PDE in the 

myometrium near term (Méhats et al., 2007). Furthermore, and as will be 

expanded upon in the coming pages, our data indicates that this treatment will be 

ineffective due to myometrium’s muted response to cGMP accumulation. 
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Diazepam, or Valium®, is a potent benzodiazepine known for its anxiolytic 

properties. It principally acts upon GABA receptors in the brain (Griffin et al., 2013); 

however, research has shown this drug has an affinity for many other targets. In 

smooth muscle diazepam relaxes the tissue	through	inhibitory effects on voltage-

dependent Ca2+ channels (Kim et al., 2000; Yamakage et al., 1999). In rat uterus, 

diazepam has been shown to inhibit α1-adrenergic receptors, promoting relaxation 

(Zupkó et al., 2003). In chapters 2 and 5, the importance of K+ in uterine 

quiescence, through TREK-1 activity, will be addressed. 

Lastly, we consider the inhibition of the Rho-associated kinases, ROK-1 and 

ROK-2. Rho-kinases, or ROKS, are important mediators of MLCP function (Figure 

3a) (Mitchell et al., 2013). ROKs phosphorylate MYPT1 (T696 & T853), inhibiting 

MYPT1’s primarily catalytic function of dephosphorylating MYL9 (Puetz et al., 

2009). This facilitates the smooth muscle’s ability to maintain contraction in the 

absence of continued Ca2+ influx (calcium sensitization). Early research has 

indicated that inhibiting ROK with either AS1892802, or fasudil, a drug used in the 

treatment of cerebral vasospasm, decreases contractile force in the myometrium 

(Ergul et al., 2016). While there is no clinical data available to evaluate the efficacy 

of ROK inhibition as a tocolytic, this approach may be of importance in the future.  

Interestingly, there is a dearth of clinically available pharmacological 

inhibitors that target two critical proteins critical to smooth muscle contraction, CaM 

and MLCK. If either these proteins were prevented from acting upon their targets, 

MYL9 phosphorylation would cease, and the myometrium would relax. While  
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Figure 7: S-nitrosation as an alternative pathway to myometrial quiescence: 

(a) Nitric oxide relaxes myometrial tissue independently of cGMP 

accumulation. (b) We hypothesize the S-nitrosation of important 

Contractile-Associated Proteins (CAPS) by nitric oxide may contribute to 

the cGMP-independent relaxation of the tissue. 
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inhibitors of these proteins exist (Eikemo et al., 2016; Sakurada et al., 2003), it is 

possible that a major hurdle to their use as tocolytics is the ability to localize their 

administration to the myometrium, as systemic administration of these inhibitors 

would most likely have catastrophic effects on other classes of smooth muscle. 

However, new methods that target drugs to specific tissue types, such as with 

oxytocin receptor-targeted liposomes which deliver drugs largely to the 

myometrium (Paul et al., 2017), may provide new opportunities to test these 

classes of drugs. 

Clearly, over the past century there has been an enormous effort to identify, 

develop, and test a multitude of tocolytics. While it is unfortunate that currently 

available therapeutics are unable able to delay PTB by more than 48-hours, this 

shortcoming does shed light on the reality that there is something fundamental to 

the process of pregnancy and parturition that remains obfuscated. We believe that 

our research may shed light on this enigma. As will be discussed in detail, our 

findings reveal that the myometrium has a unique relationship with cGMP and ·NO 

when compared to other types of smooth muscle (Figure 7). We seek to better 

understand this relationship and to identify tocolytics that leverage this important 

distinction.  

 

A New Path Forward: 
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Three key pieces of information regarding the myometrium and sPTL set the stage 

for the research described in this dissertation: (1) We do not know what causes 

idiopathic early onset labor (sPTL); (2) tocolytics are ineffective at delaying PTB 

beyond 48-hours; and (3) the myometrium responds uniquely to ·NO. It is here that 

we attempt to lift the veil on these unanswered questions. 

 It has been well documented that ·NO is not suitable as a tocolytic. While it 

does relax the term myometrium, systemically administered ·NO produces 

unacceptable side effects. That does not mean that ·NO is not critically important 

to natural relaxation of the myometrium. The metabolism of ·NO is regulated by 

several enzymes in the cell, such as the thioredoxin system (Sengupta and 

Holmgren, 2012a, 2012b), and carbonyl reductase (Bateman et al., 2008), but the 

predominant mediator of ·NO availability in the cell is the enzyme S-

nitrosoglutathione reductase, or GSNOR (Hou et al., 2011).  

GSNOR is a potent negative regulator of S-nitrosoglutathione (GSNO) 

(Figure 8), a common endogenous form of ·NO in smooth muscle (Que et al., 

2009). The aberrant expression of ADH5, the gene that encodes GSNOR, is 

associated with many diseases (S D Barnett and Buxton, 2017; Jelski et al., 2009; 

Jelski and Szmitkowski, 2008; Laniewska-Dunaj et al., 2013). In fact, deletion of 

the ADH5 gene increases both the levels of GSNO and total protein S-nitrosation 

in vivo (Liu et al., 2001a). GSNOR, like other cysteine containing proteins, can be 

S-nitrosated by GSNO, which creates a feedback loop that affects GSNOR 

expression (Guerra et al., 2016) and activity (Brown-Steinke et al., 2010) . 
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Figure 8: Metabolism of S-nitrosoglutathione by S-nitrosoglutathione 

reductase: GSNOR metabolizes multiple substrates. S-nitrosoglutathione 

(GSNO), one of the primary substrates for GSNOR, is first enzymatically 

degraded to an unstable intermediate, N-hydroxysulfinamide (GSNHOH). 

In the presence of additional glutathione (GSH) GSNHOH will be converted 

to glutathione disulfide (GSSG), then back to GSH (Scott D. Barnett and 

Buxton, 2017b). 
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As will be discussed in much greater detail, we hypothesize that the dysregulation 

of GSNOR in sPTL tissue precipitates contractions through the excess metabolism 

of endogenous ·NO. 

There are very few tocolytics that target relaxation specific pathways in 

smooth muscle. The inhibition of GSNOR functionally increases the global amount 

of available ·NO in the cell, making it an attractive therapeutic target. GSNOR 

inhibitors are currently being tested to treat asthma, cystic fibrosis and interstitial 

lung disease, and we are testing GSNOR inhibition as tocolytic. 

 

S-nitrosation: 

 

At the core of this research is an attempt to better understand how the 

myometrium differs from other smooth muscles. Tocolytics are ineffective at 

extending birth beyond 48-hours; therefore, it is important that we better 

comprehend the mechanistic underpinnings of myometrial physiology so that we 

can develop better therapies to treat PTL. 

As previously mentioned, ·NO is highly reactive. As such, it often forms a 

stable intermediate with glutathione (GSH), a modified tripeptide of Glu-Cys-Gly, 

called S-nitrosoglutathione (GSNO) (Williams, 1999). Glutathione is one of the 
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most highly expressed peptides in the cell, often in the high mM range (Lushchak, 

2012), and GSH is critically important to the redox system.  

In the same manner as GSNO formation from GSH and ·NO, the addition 

of the •NO moiety to a cysteine thiol of a protein is called S-nitrosation (Figure 4). 

The effects of this posttranslational modification (PTM) on cell signaling and its role 

in disease have reverberated throughout the medical community for over 25 years 

(Broniowska and Hogg, 2012a; Foster et al., 2009a; Stamler et al., 1992a). A 

unique characteristic of protein S-nitrosation is the lability of this PTM, partially due 

to the fact that S-nitrosation and de-S-nitrosation of proteins is not enzymatically 

driven. In fact, the ·NO moiety can easily be transferred to a cysteine on another 

protein, as with GSNO mediated S-nitrosation, through a process called trans-S-

nitrosation (Broillet, 1999). It is intracellular availability of nitric oxide and its 

functional derivatives, like GSNO, that enable protein S-nitrosation (Broniowska 

and Hogg, 2012a; Hess et al., 2005a; Thomas and Jourd’heuil, 2012a). To this 

point, there is a direct stoichiometric relationship between intracellular ·NO 

concentrations and total protein S-nitrosation (Katarzyna A Broniowska et al., 

2013; Broniowska and Hogg, 2012b; Hess et al., 2005b; Thomas and Jourd’heuil, 

2012b). Protein S-nitrosation is of intense interest to researchers and clinicians as 

the hypo/hyper-S-nitrosation of a diverse set of proteins, spanning nearly every 

tissue type, can have drastic effects on disease states (Foster et al., 

2009a)(Barnett, et. al., 2017). Some of these include: Type 2 diabetes (Akt et al., 

2005), sickle cell anemia (Bonaventura et al., 2002, 1999), ventricular arrhythmia 
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in individuals with Duchenne muscular dystrophy (Fauconnier et al., 2010), cell 

death and survival pathways (Anand Krishnan V. Iyera, Yon Rojansakulb, 2011), 

post-infarct cardio-protection (Methner et al., 2014), and preterm labor (Ulrich et 

al., 2013b), among others. 

Protein S-nitrosation is highly regulated during pregnancy and parturition. 

Our laboratory has discovered that proteins are differentially S-nitrosated based 

on the state of labor in women (Ulrich et al., 2013b). When GSNO is applied to the 

lysates of PTL and TL tissue, many proteins important to contraction, such as 

MYL9, telokin, actin, and profilin-1, are either up-S-nitrosated or down-S-nitrosated 

(Figure 7b). This is an unexpected observation that suggests something 

endogenous to the cell is mediating the differential S-nitrosation of proteins 

between the two labor states. Whether these changes are due to conformational 

changes to the protein, or perhaps some other mitigating factor, is yet to be 

determined. 

One of the principal inquiries addressed in this dissertation is whether or not 

protein S-nitrosation alters protein function. It is one thing to know that proteins are 

differentially S-nitrosated based on the state of labor (Ulrich et al., 2013c), but it is 

entirely another to determine if those S-nitrosations are functionally relevant. We 

know that the myometrium relaxes independently of cGMP accumulation (Figure 

7a) (Bradley et al., 1998a; I. L. O. Buxton, 2004; Tichenor et al., 2003). The 

question remains as to what other roles, complementary or otherwise, ·NO plays 

during pregnancy and parturition?  We propose that protein S-nitrosation imparts 
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a functional effect on important CAP proteins, and provide evidence to support this 

hypothesis.  

 

Conclusion 

 

There is little doubt that sPTL is a complex multifactorial disorder. The cause(s) of 

sPTL most likely include genetic, environmental, and social factors. When 

developing therapies to treat sPTL we must not forget that the broader goal of 

tocolytics are not only to prevent preterm labor, but more importantly, to delay or 

prevent preterm birth. Infant mortality and morbidity decreases precipitously as the 

third trimester progresses, (H.C. et al., 2015); however, an extensive analysis of 

extreme preterm births (22-28 wks) by the National Institute of Child Health and 

Human Development found that while 92% of infants survive if delivered by week 

28, 93% of them had serious and life-threatening health complications (Stoll et al., 

2010). These data amplify the need for a new class of tocolytics that not only 

mitigate contractions, but extend the time to birth beyond the current limit of 48-

hours. 

Over the past century researchers and physicians have labored extensively 

to identity tocolytics that target the many pathways that drive labor, yet there are 

still unexplored avenues to investigate. Excluding beta-agonists, there are an 

exceedingly small number of therapeutics that bolster the cell’s active “relaxation” 

response, rather than just prevent contraction. This is not in a pedantic distinction. 
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Inhibiting smooth muscle contraction (i.e. VDCC, Gαq/11, etc.) is quite different 

functionally from promoting relaxation (i.e. MLCP, CPI-17, telokin, etc.). As 

evidenced in the previous pages, currently available tocolytics that inhibit 

contractions leave much to be desired, therefore new approaches should be 

investigated. 

Our research seeks to leverage the myometrium’s unique response to ·NO 

to identify novel tocolytics. This, coupled with an ever-increasing understanding of 

how our collective and individual genomes affect pregnancy and parturition, will 

increase the likelihood of developing new therapeutics to delay PTB. The need for 

more capable data analysis is further highlighted by the fact that the ‘pregnancy 

system’ includes two or more sets of genomes that interact and influence both 

mother and child. Fortunately, new tools are coming online. IBM’s Watson®, which 

interprets complex health issues by analyzing the treatments and outcomes of 

millions of patients, is identifying new ways to diagnose and treat diseases in ways 

previously beyond our capabilities (Brief, 2015; Chen et al., 2016). This, coupled 

with the use of artificial intelligence (Dilsizian and Siegel, 2014) and better analysis 

of ‘big data’ aggregated from massive data sets (i.e. GWAS, RNA-seq, 

eipigenomics) (Taglang and Jackson, 2016), has huge potential to change the way 

we identify and treat women at risk for sPTL. 

Preterm labor, and by extension preterm birth, are the byproducts of an 

exceedingly intricate, and poorly understood system of converging pathways that 

stem from both mother and child. The fruit of 100 years of evidence-based 
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research has only allowed us to delay the birth of an infant by 48-hours in women 

who enter labor early. Few would question the need to develop a better 

understanding of the basic mechanisms of pregnancy and parturition in order to 

develop new, more effective, therapies to treat this disorder. The research 

contained in this dissertation seeks to extend our knowledge of preterm labor, 

however incrementally, by investigating the myometrium’s unique response to 

nitric oxide to identify novel tocolytics to treat preterm labor.  
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Chapter 2 

 

The Distinctly Different Myometrium 
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Abstract: 

 

Spontaneous preterm labor is a pandemic issue with no obvious solution. In order 

to develop novel tocolytics to stop labor, and prevent preterm birth, we must better 

understand the mechanisms that drive uterine quiescence. This research 

characterizes the relevance cGMP signaling in the myometrium through the 

actions of soluble guanylyl cyclase (sGC) and particulate guanylyl cyclase (pGC-

C), and the electrophysiological characteristics of the outward rectifying potassium 

channel, TREK-1, with and without co-expression of its five splice variants. We 

have determined that pGC-C, which is activated by uroguanylin, and not nitric 

oxide, relaxes pregnant myometrium, but not non-pregnant, presumably through 

compartmentalized cGMP action. Conversely, sGC activation by BAY58-2667, or 

the addition of 8-bromo-cGMP, does not relax myometrial tissue. The expression 

of TREK-1 splice variants found in preterm myometrium decreases TREK-1 

trafficking to the membrane, indicating dysregulation of this system in preterm 

tissue. Taken together, these data provide further insight into the underpinning of 

myometrial function, and open the door to the identification of therapeutics that are 

specifically targeted to the myometrium. 
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Introduction: 

 

The uterus is responsible for maintaining an environment nurturing to fetal 

development and survival over the 40 weeks of gestation. The perpetuation of our 

species would not be possible, in part, had we not developed mechanisms that 

were largely affective at maintaining uterine quiescence prior to term. As such, the 

myometrium has evolved into phenotypically unique tissue (Buxton et al., 2011b; 

I. L. O. Buxton, 2004; Chad L Cowles et al., 2015). An obvious, and relevant, 

example of this concept can be seen by examining the myometrial response to 

oxytocin, which binds to oxytocin receptors to drive contraction (Blanks and 

Thornton, 2003). Outside the reproductive complex, oxytocin plays a limited role 

in muscle contraction (Gimpl and Fahrenholz, 2001). Beyond oxytocin-mediated 

contractions, there exist an extraordinary number of factors that dictate whether or 

not the myometrium will contract or remain quiescent. Prostaglandins, cytokines, 

hormones, protein expression and associated posttranslational modifications, 

kinases and phosphatases, membrane polarization, and more (Challis et al., 2009; 

Chwalisz and Garfield, 1997; Elvira et al., 2014), each contribute with differing 

degrees of influence to unbalance the teeter-totter of contraction and relaxation. 

Here we discuss our findings surrounding two distinct systems in the myometrium 

that are important to uterine quiescence:  The compartmentalization of the cyclic 

nucleotide cGMP, and the outward rectifying potassium channel, TREK-1 (TWIK-

Related K+ Channel 1). 
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cGMP in the Myometrium:  Like cAMP, cGMP is an important second messanger 

responsible for a variety of actions across most cell types (Lucas et al., 2000). 

cGMP wasn’t formally discovered until 1963 (Ashman et al., 1963), but its effects, 

like other cyclic nucleotides (Blumenthal, 2012), have long been observed. cGMP 

is generated by the guanylyl cyclase (GC) family of isozymes, and they are 

degraded by phosphodiesterases (Francis et al., 2010). In smooth muscle, cGMP 

activates PKG, a kinase with many targets, that include MYPT1, the catalytic 

subunit of myosin light chain phosphatase (Schmidt et al., 1993). There are two 

primarily expressed isoforms of GC in the myometrium; soluble (sGC), and 

particulate type C (pGC-C) (Telfer et al., 2001). As its name implies, sGC exists as 

a free enzyme in the cytosol. Alternatively, pGC-C is a membrane bound enzyme 

(Hardman and Sutherland, 1969). Both sGC and pGC-C catalyze the formation of 

cGMP from GTP, but the ligands that stimulate each enzyme are very different. 

sGC is principally activated by ·NO, while pGC binds uroguanylin (uGN) (Lucas et 

al., 2000). ·NO is created by the family of nitric oxide synthases (NOSs), and ·NO 

is known to activate sGC in smooth muscle (Kuhn, 2016). uGN, on the other hand, 

is a 16-amino acid peptide excreted by many cell types, binds to an extracellular 

domain on pGC-C, and is upregulated in rat myometrium (Girotti and Zingg, 2003). 

pGC-C has long been known to play a crucial role in intestinal and kidney function 

(Kuhn, 2016), and we propose that it may be important to uterine physiology as 

well.  
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 A logical question is whether or not these disparately dispersed enzymes, 

both of which generate the same product, exert a differential influence in the 

myometrium (Figure 1)? sGC activation increases global intracellular 

concentrations of cGMP and is known to activate PKG type I (Salvador Moncada, 

1994), a kinase that is downregulated during pregnancy (Word and Cornwell, 

1998). The canonical relaxation of smooth muscle by ·NO is traditionally thought 

to be driven by sGC activation, yet we have previously shown that inhibition of sGC 

by LY-83583 (Bradley et al., 1998b) or 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-

one (ODQ), does not prevent NO-mediated relaxation in the myometrium (I. L. O. 

Buxton et al., 2001). Conversely, by artificially increasing global cGMP levels in 

the myometrial tissue, without sGC activation, through the addition of the cell 

permeable cGMP analog, 8-bromo-cGMP, contractile dynamics are not altered 

(Bradley et al., 1998b). This finding highlights an important peculiarity of the 

myometrium and questions the role of sGC and cGMP in myometrial relaxation. 

One of the unanswered questions we further investigate here is whether or not 

sGC activation, rather than its inhibition, plays any role in myometrial relaxation.  

Apart from sGC, the other major generator of cGMP in the myometrium is 

the aforementioned pGC-C, the membrane-bound isoform of GC. In 2004, Dr. Iain 

Buxton proposed the idea that cGMP signaling in the myometrium may be 

compartmented (I. L. O. Buxton, 2004). The importance of cAMP and cGMP 

compartmentalization has been well documented (Houslay, 2010; Maurice et al., 

2014). Both PKG type II (Schlossmann et al., 2005) and pGC-C are membrane- 
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Figure 1 Global cGMP elevation does not relax myometrium where localized 

elevation does: Compartmentalized actions of cGMP in the Myometrium.  In 

the myometrium, the cyclic nucleotide cGMP can be generated by either 

soluble guanylyl cyclase (sGC), or by particulate guanylyl cyclase type C 

(pGC-C).  A global increase in cGMP by sGC stimulation with BAY58-2667 

does not relax the tissue.  On the other hand, pGC-C activated by 

uroguanylin (uGN) does relax pregnant myometrium.  pGC-C is known to 

form complexes in cholesterol-rich caveolae.  Both pGC-c and CAV-1, and 

important structural component of caveolae, are upregulated during 

pregnancy. It may be this localization with other mediators of relaxation, 

such as PKG-II that promotes relaxation of the tissue.   
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bound (Iain L O Buxton et al., 2010a; Schlossmann et al., 2005), and in epithelial 

cells PKG-II and pGC-C work in concert to increase ion flow across the membrane 

(Forte et al., 2000; Vaandrager, 2002). A reasonable question is to ask whether or 

not the actions of pGC-C are relevant to myometrial quiescence?  Based on 

previous findings that the signaling domain of pGC-C relies on cholesterol	(Buxton 

and Vittori, 2005; Zhang et al., 2007), we propose that pGC-C signaling may be 

heightened when in proximity to caveolae lipid rafts. We have shown that both 

CAV-1, an important structural protein of caveolae, and pGC-C, are upregulated 

during pregnancy (Iain L O Buxton et al., 2010b), further bolstering this hypothesis. 

Here we investigate whether cGMP generated by pGC-C relaxes myometrial 

tissue where sGC generated cGMP cannot. 

  

TREK-1 and Myometrial Function:  Another critical mediator of contractile 

dynamics in the uterus is the myometrial membrane potential. Like all muscles, a 

negative membrane potential is required to maintain uterine quiescence. The 

depolarization of the membrane is the result of an influx of positively charged ions, 

including Ca2+, that drives contraction. Generally speaking, the resting potential of 

the myometrium in a non-pregnant woman is between -40 mV and -50 mV (Aguilar 

and Mitchell, 2010). By mid-pregnancy this drops to as low as -60 mV, before 

returning to approximately -45 mV near term (Parkington and Coleman, 1990; 

Patel and Honore, 1998). Clearly there are mechanisms at play that ensure a 

robust negative membrane potential during the critical phases of fetal development 
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prior to the onset of parturition. One such mediator of myometrial negative 

membrane potential is TREK-1. 

TREK-1 is a unique 4TMS/2P member of the KCNK family of potassium 

permeable channels that regulate the myometrial cell membrane potential by 

shuttling K+ ions to the extracellular environment (Lotshaw, 2007). Each K2P 

channel subunit is made up of four transmembrane segments and two pore-

forming domains, which are arranged in tandem, and function as either homo or 

heterodimeric channels (A Dedman et al., 2009). KCNK channels were not 

discovered until the mid-1990s (Fink et al., 1996), so in a modern biochemical 

sense, these channels are quite new, and there is no doubt more to be learned 

about their function. TREK-1 exist alongside the inward rectifiers and the voltage 

and/or calcium-dependent K+ channels. Potassium channels, in general, play an 

important role in smooth muscle contraction and quiescence (Nelson and Quayle, 

1995). An important distinguisher of TREK-1 when compared to other potassium 

channels, such as TASK-1 and TASK-3, which are constitutively active “leak” 

channels (Goldstein et al., 2001), is that TREK-1 requires stimulation before 

permitting ion flow (A Dedman et al., 2009). Both the C-terminus and N-terminus 

of TREK-1 are located intracellularly and TREK-1 can be activated by many stimuli, 

to include: phosphorylation of S333 on the C-terminal domain by PKA, S351 

phosphorylation by PKG, unsaturated fatty acids such as arachidonic acid, stretch 

(important as the uterus expands during pregnancy), intracellular acidification at 
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E306 (Patel and Honore, 1998), and potentially PTMs such as glutathionylation 

and  S-nitrosation (see chapter 5) (Buxton et al., 2011a).  

 As one might expect, there are many ion channels important to 

pregnancy in the myometrium (Sanborn, 1995). TREK-1 has long been known to 

be important as a modulator of vascular tone (Mongahan et al., 2011) and neuronal 

activity (Alexandra Dedman et al., 2009), and we have shown that TREK-1 

expression increases during gestation in the myometrium, then trends towards 

baseline as the pregnancy nears term (I L O Buxton et al., 2010c). Even more 

compelling is that TREK-1 is downregulated in in preterm laboring myometrium as 

compared to term laboring and term non-laboring tissue, making it an important 

ion channel to investigate (I L O Buxton et al., 2010c).  

The significance of TREK-1 in the myometrium during pregnancy is further 

amplified when we consider the possibility that the presence of TREK-1 splice 

variants (SVs) may affect trafficking and function of the channel. SVs are formed 

in eukaryotic organisms by the combination of multiple alternatively spliced exons, 

allowing for a much greater diversity of expressed proteins in the cell (Modrek and 

Lee, 2002; Pan et al., 2008). Previously, our laboratory identified the transcripts of 

five unique SVs of TREK-1 in myometrial samples (Wu et al., 2012). Each variant 

either lacks either pore domains, transmembrane domains, or both, and these 

variants are known to co-exist with wild-type TREK-1 (wtTREK-1), potentially 

altering trafficking and cellular distribution.  
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The recent identification of TREK-1 SVs, coupled with TREK-1’s relevance 

to myometrial quiescence during gestation, confers a significant role for TREK-1 

as an important mediator of contractile dynamics. Here, for the first time, we 

investigate the physiological characteristics of TREK-1 in the myometrium, and we 

determine the impact on channel activity when TREK-1 SVs are co-expressed with 

wtTREK-1. 

 

Note:  A portion of these Methods and Results are from (I L O Buxton et al., 2010a; 

C. L. Cowles et al., 2015; N S Heyman et al., 2013), for which I was a co-author.  

Permission to use is contained in Appendix C 

 

Material and Methods: 

 

Primary culture pregnant human uterine smooth muscle cells:  With informed 

consent obtained in writing and approved by the University of Nevada, Reno 

Biomedical Institutional Review Board, samples of term pregnant (non-laboring) 

uterine tissue from the superior aspect of the incision were obtained from women 

undergoing Cesarean section. Women were selected based on the surgery 

schedule when a clinical decision was made to deliver a normal term pregnancy 

by Caesarian section. Exclusion criteria were age less than 21 years, multiple 

pregnancies, known illicit drug use, or HIV, or hepatitis C infection. Within 20 min 

of their removal, fresh tissue samples were transported to the laboratory in cold 
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physiological buffer containing (in mM): NaCl (120), KCl (5), KH2PO4 (0.587), 

Na2HPO4 (0.589), MgCl2 (2.5), Dextrose (20), CaCl2 (2.5), Tris (25), and NaHCO3 

(5), adjusted to pH 7.4. Uterine smooth muscle (myometrium) was dissected under 

the microscope from tissue samples and prepared as thin strips (2 x 2 x 8 mm) 

devoid of blood vessels in a modified Krebs’-HEPES buffered solution (in mM: 118 

NaCl, 4.75 KCl, 1.2 KH2PO4, 0.25 NaHCO3, 1.2 MgSO4, 20 dextrose, 25 Na 

HEPES, pH 7.4). Minced tissue underwent three 30 min incubation periods in a 50 

ml conical tube containing 2 mg/ml collagenase type II and 1 mg/ml trypsin at 37oC. 

Each successive supernatant was collected in growth media with 10% fetal bovine 

serum (FBS), antibiotics (penicillin, 60 μg/ml; streptomycin, 100 µg/ml; fungizone, 

5 μg/ml), pH 7.4, with trypsin inhibitor (1 mg/ml). Cells were centrifuged at 400g, 

resuspended in Dulbecco’s growth media containing 10% steroid free FBS (FBSSF) 

with estrogen 15 ng/ml - progesterone 200 ng/ml to mimic third trimester human 

pregnant plasma concentrations and plated on tissue culture dishes. For freshly 

isolated patch clamp studies, the cells were immediately plated on glass cover 

slips coated with Type 1 collagen from rat tail (Sigma) and employed in 

electrophysiological experiments within 8-12 hours. Other cells were grown 

through passage 5 in primary culture and were combined in equal numbers from 

three Caucasian donors at term (24-29 yr) and telomerized to establish a pregnant 

myometrial cell model.  

Tissue collection for sGC contractile studies. Human tissue collection and 

research was approved by the University of Nevada Biomedical Review 
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Committee for the protection of human subjects. Human uterine myometrial 

biopsies were obtained with written informed-consent from mothers undergoing 

Cesarean section without infection or rupture of membranes. Tissues were 

transported to the laboratory immediately in cold Krebs buffer containing: NaCl 

(118mM), KCl (4.75mM), CaCl2 (2.5mM), KH2PO4 (1.2mM), NaHCO3 (25mM), 

MgCl2 (1.2mM), dextrose (20mM), and adjusted to pH 7.4. Tissues were 

microdissected under magnification to isolate smooth muscle, employed in 

contractile experiments or snap frozen in liquid nitrogen, and stored at -150°C. The 

average age for patients in the pregnant laboring group was 28.9 ± 5.6 yr and in 

the preterm laboring group 30.8 ± 10.2 yr. Pregnant laboring patients ranged from 

39 to 41 wk gestation, with the mean at 39 wk. Preterm laboring patients without 

evidence of infection, PROM or preeclampsia ranged from 29.2 to 36 wk of 

gestation, with the mean being 33.5 wk. Patients represented a range of ethnicities 

and were 52% Caucasian, 30% Hispanic, 7.4% African American, and 11% other. 

Animal studies were approved by the University Institutional Animal Care and Use 

Committee. Dunkin-Hartley Guinea pigs (Elm Hill, Chelmsford, MA) were 

purchased as either virgin juveniles (300-350g) and bred on site, or as timed-

pregnancies (30-35d). Non-pregnant guinea pigs were estrogen primed (3mg/kg 

β-estradiol) 48-hours prior to tissue collection to ensure alignment of estrous 

cycles. Virgin female guinea pigs and timed-pregnant animals were sacrificed 

under isoflurane anesthesia. Uterine tissue was dissected and used immediately 

as previously described (Iain L O Buxton et al., 2010b). 
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Contractile studies:  Virgin female guinea pigs or timed pregnant animals at 

different stages of gestation were sacrificed under isofluorane anesthesia 

according to an Institutional Animal Care and Use Committee-approved protocol. 

Virgin animals were estrogen-primed with 1 mg/kg of estradiol-17 in corn oil (0.5 

ml) injected subcutaneously each day for 2 days, and the animals were sacrificed 

on day 3. Estrogen treatment has the effect of bringing animals into estrus so that 

control comparisons are uniform. Uterine horns were removed and placed in 

HEPES-buffered Krebs’ solution without Ca2+, containing 118 mM NaCl, 4.75 mM 

KCl, 1.2 mM KH2PO4 , 0.25 mM NaHCO3, 1.2 mM MgSO4, 20 mM dextrose, and 

25 mM Na HEPES, pH 7.4. Tissues were opened longitudinally in a dissecting 

dish. For pregnant samples, fetuses were removed along with their placenta, and 

regions of uterus between placentas in the upper third of the horn were dissected 

for contractile experiments. Muscle was dissected away from the decidua (DEC), 

and the myometrium was cut to 4-mm strips and mounted between a fixed point 

and a force transducer (Kent Scientific, Torrington, CT) in 5 ml of tissue baths filled 

with Kreb’s buffer (118 mM NaCl, 4.75 mM KCl, 1.8 mM CaCl2, 1.20 mM KH2PO4, 

25 mM NaHCO3, 1.2 mM MgSO4, and 20 mM glucose, pH 7.4). Transducer 

voltages were amplified and converted to digital signals by an analog-to-digital 

board mounted within a computer system running the DaisyLab 10 data acquisition 

system (I/O Tech, Norton, MA). Strips were maintained at 37°C, aerated with 95% 

O2/5% CO2, and loaded with initial tensions of 1.2-g force as described previously 

(Kuenzli et al., 1996). During the course of a 1-h equilibration period, tissues were 
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routinely challenged first with high potassium (60 mM KCl) and subsequently with 

100 nM oxytocin (OT) followed by washout. Tissues were allowed to equilibrate for 

1 h before experiments. Uroguanylin (Sigma-Aldrich, St. Louis, MO) was added to 

organ baths (1:1000) from a concentrated stock solution made daily and protected 

from light. The effects on both spontaneous and OT-stimulated tissues were 

studied over 15 min of addition followed by washout and were quantified as area 

under the force curve for 15 min before treatment and 15 min after treatment. 

Additions of ascorbate (blank) or peptide were blinded from the experimenter to 

serve as control. The putative pGC-C inhibitor 2-chloro-ATP (2Cl-ATP) was 

dissolved in Kreb’s buffer and added to the tissue bath from a 1:1000 working 

stock. 1H-[1,2,4]ox-adiazolo[4,3-a]quinoxalin-1-one (ODQ) was dissolved in 

dimethyl sulfoxide and diluted 1:10,000 from a working stock. Isatin (1H-indole-

2,3-dione; (Frolova V.Kh.; Biyushkin,V.N.; Chumakov,Yu.M.; Belkova,O.N.; 

Malinovskii,T.I., 1988)) was dissolved in hot ethanol (70°C) and diluted 1:100,000 

from a working stock. Dimethyl sulfoxide at a final concentration of 0.01% or 

ethanol at 0.001% did not have any effect on contraction. 

Patch clamp wtTREK-1:  Cells were plated on glass coverslips 4-48 hours 

before experiments, placed in a chamber for recording mounted on top of an 

inverted microscope and currents typically were recorded in the standard whole-

cell variant of the patch clamp technique using pCLAMP software (V9.2; Axon 

Instruments/Molecular Devices Inc; Sunnyvale, CA). Currents were amplified with 

an Axopatch200B amplifier (Axon Instruments/Molecular Devices Inc.; Sunnyvale, 
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CA), digitized using a computer interfaced with a Digidata 1322A acquisition 

system (Axon Instruments/Molecular Devices Inc.; Sunnyvale, CA), filtered at 1kHz 

and digitized at 2kHz for whole cell recording and filtered at 1kHz and digitized at 

4kHz for inside out patch recordings. The standard external solution contained (in 

mM): NaCl (140), KCl (5.4), CaCl2 (1.8), HEPES (10), MgCl2 (1), and TEA (2) 

adjusted to pH 7.4 with NaOH and with osmolarity adjusted to 310 mOsm/L with 

D-mannitol (measured with Model 3320 Osmometer/ Advanced Instruments; 

Norwood, MA). The standard pipette solution contained (in mM): KCl (140), K2ATP 

(3), NaGTP (0.2), HEPES (5), MgCl2 (1), and BAPTA (10; minimize large-

conductance Ca+2-activated K+ currents), adjusted to pH 7.4 with KOH with 

osmolarity adjusted to 310 mOsm/L with D-mannitol. Solutions were delivered by 

gravity through a manifold perfusion system. Pipettes were made of borosilicate 

glass (Sutter Instrument Co; Novato, CA) pulled on a two-stage vertical puller (pp-

83; Narishige International USA, Inc.; East Meadow, NY) and had a resistance of 

2-4 mΩ when filled with standard pipette solution. Cell capacitance and series 

resistance were measured using the membrane test feature of pCLAMP. Series 

resistance was then compensated ≈70%. Cell capacitance was later used for 

normalization of whole cell current to capacitance to yield current density (pA/pF) 

for each cell. Whole cell currents were monitored by running a pulse/ramp protocol 

every 15 seconds stepping to +80mV for 100 milliseconds, ramping from +80 to -

80mV over 1 second and finally stepping to -80mV for 100 milliseconds. For 

experiments employing AA, cells were held at -80mV between pulse/ramp 
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protocols (Meadows et al., 2000). For all other whole cell experiments cells were 

held at 0mV between pulse/ramps protocols. For inside out patch experiments, the 

pipette was filled with standard (5 mM KCl) bath solution containing 2 mM TEA, 

100 µM DIDS, and 100 µM GdCl3 to block voltage gated K+, Cl-, and non-selective 

cation channels respectively. The bath solution for inside out experiments 

contained (in mM) KCl (140), EGTA (1), HEPES (5), MgCl2 (1), and TEA (2) 

adjusted to pH 7.4 with KOH and osmolarity to 310 mOsm/L with D-mannitol. 

Negative pressure was applied via pipette suction. Suction was measured using a 

pressure transducer calibrated to mm Hg. Currents were digitized at 4kHz and 

filtered at 1kHz. Channel activity was measured by taking the mean value of 

current of ≈10 seconds of recording minus the mean value of baseline current 

(current when no channels were open). 

Patch clamping splice variants: HEK293T were transfected using 

Lipofectamine 2000, 1 μg HA-TREK-1 plasmid, and 5μg HSV plasmid was used 

for each of the TREK-variants during co-expression experiments; 1 μg HA- TREK-

1 or 5 μg of HSV plasmid were used for individual expression studies. The ratio 

of 1:5 was selected based on previous studies of TREK-1 variants that were 

discovered in other tissues that directly interacted with TREK-1. Successful 

transfection was verified using co-expression of fluorescent proteins in the plasmid 

DNA (green fluorescent protein with HA-TREK-1; and red fluorescent protein with 

each TREK-1 variant). Transfected cells were trypsin digested, plated on glass 

coverslips, and utilized for patch clamp experiments within 72 hr of transfection. 
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Transfected cells on glass coverslip shards were placed in a chamber mounted on 

top of an inverted microscope. The chamber was continuously perfused with a bath 

(external) solution that contained: 140 mM NaCl, 5.4 mM KCl, 1.8 mM CaCl2, 10 

mM HEPES, 1 mM MgCl2, 2 mM TEACl (to block voltage gated K+ channels), 0.1 

mM 4,4-Diisothiocyanatostilbene-2,2-disulfonic acid (DIDS; chloride channel 

blocker), and 0.1 mM GdCl3 (non-specific cation current blocker) with the pH 

adjusted to 7.4 and osmolarity adjusted to 310 mOsm/L with D-mannitol that was 

delivered by gravity through a manifold. Currents were recorded in the standard 

whole-cell variant of the patch clamp technique using pCLAMP software (V9.2; 

Axon Instruments/ Molecular Devices Inc; Sunnyvale, CA). Pipettes were made of 

borosilicate glass (Sutter Instrument Co; Novato, CA) pulled on a two- stage 

vertical puller (pp-83 Narishige International US, Inc.; East Meadow, NY) with a 

resistance of ~6 MΩ when filled with standard pipette solution. The pipette solution 

contained: 140 mM KCl, 3 mM K2ATP, 0.2 mM NaGTP, 5 mM HEPES, 1 mM 

MgCl2, and 10 mM BAPTA (to minimize Ca2+ activated K+ currents) with the pH 

adjusted to 7.4 and osmolarity adjusted to 310 mOsm/L. Cell capacitance and 

series resistance were measured using the membrane test feature of pCLAMP and 

series resistance was compensated. Currents were amplified with an 

Axopatch200B amplifier (Axon Instruments/Molecular Devices Inc.; Sunnyvale, 

CA) and digitized using a computer interfaced with a Digidata 1322A system (Axon 

Instruments/Molecular Devices Inc.; Sunnyvale, CA). Currents were filtered at 1 

kHz and digitized at 2 kHz for whole cell recording. Whole cell currents were 
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normalized using cell capacitance to yield current density (pA/pF) for each cell. 

Whole cell currents were monitored by running a pulse or ramp protocol every 15-

sec stepping to +80 mV for 0.1 sec, ramping from +80 to -80 mV over 1 second, 

and finally stepping to -80 mV for 0.1 sec. For all other whole cell experiments, 

cells were held at 0 mV between pulse/ramp protocols. Currents were also 

observed using a step protocol during which they were held at 0 mV for 0.25 sec, 

an input potential of -100 mV was applied for 0.5 sec, and the cells were held again 

for 0.25 sec at 0 mV, the potentials were increased by 20 mV for each recording 

until the input reached +100 mV. To elicit TREK-1 currents, a bath solution 

containing 90 mM sodium bicarbonate was perfused into the chamber resulting in 

intracellular acidosis, a known activator of TREK-1 currents.  

Statistics: Data are expressed as mean ± standard error of the mean. 

Student’s t tests were used to compare mean values. Paired tests were used when 

both conditions were measured on the same cell. Unpaired tests were used when 

conditions were measured on different cells. One-tailed tests were used when the 

direction of changes were hypothesized. P values of less than 0.05 were taken as 

a statistically significant.  

 

Results: 
 

pGC-C and sGC on myometrial relaxation 
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Both soluble (sGC) and particulate (pGC-C) guanylyl cyclase are expressed in the 

myometrium. Canonically, guanylyl cyclases promote relaxation through the 

generation of the second messenger, cGMP, which activates PKG. Here we 

investigate the ability of sGC and pGC-C activation to relax myometrium. 

Uroguanylin relaxes pregnant guinea pig myometrium: Addition of 100 nM 

uGN to guinea pig myometrial tissues from estrogen-primed non-pregnant (NP) 

guinea pigs failed to reduce oxytocin (OT) (100 nM)-induced contractions (Figure 

2, B and C). Despite the appearance of a small regularization of the contraction 

seen (Figure 2B), no significant effect was measurable when tested in duplicate 

tissue strips (n=6) (Figure 2C)	(Buxton et al., 2010). However, when 10 nM uGN 

was added to myometrial strips from pregnant guinea pigs (34 days), there was a 

marked reduction in both the frequency of contractions and peak tension (Figure 

2A). The effect of uGN quantified as tension over time (area under the curve, 15 

min) was dose-dependent with significant inhibition of OT-induced contractions at 

3 nM uGN (Figure 2C). Because uGN is known to stimulate pGC-C in intestinal 

epithelium, we tested the possibility that uGN was acting via an increase in cGMP 

accumulation in the myometrium. “When the putative pGC-C antagonists 2Cl-ATP 

or isatin were added to the tissue bath, followed 3 min later by addition of 10 nM 

uGN, relaxation was prevented (Figure 2C). The effect of uGN to relax the tissue 

was not caused by stimulation of the soluble guanylyl cyclase, because addition of 

the sGC inhibitor, ODQ, had no effect” (Buxton et al., 2010).  
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Activation sGC Fails to Relax Myometrium. In order to examine the role of 

cGMP in uterine smooth muscle relaxation in the absence of haem-dependent 

activation of soluble guanylyl cyclase by ·NO, we have assessed the effect of direct 

stimulation of myometrial tissue by the haem-independent agonist BAY58-2667 

(cinaciguat) on uterine relaxation. BAY58-2667 fails to relax human term 

myometrium despite the use of concentrations from 0.1 to 10µM, administered in 

an increasing accumulative dose at 10 min intervals after oxytocin stimulation 

(8nM) (Figure 3A). Treatment of rat aorta with BAY58-2667 undertaken as a 

comparative control, resulted in immediate relaxation consistent with the known 

actions of cGMP in vascular smooth muscle after stimulation with 1 µM 

phenylalanine (Figure 3B). The EC50 for BAY58-2667 activation of the sGC is 6.4 

nM and its effect to relax vascular smooth muscle is sub-µM (Stasch et al., 2006). 

Experiments repeated with term myometrium from multiple human (n=4) and 

guinea pig (n=3) donors (Figure 3C,3D) confirmed the failure of BAY58-2667 to 

relax the tissue (simple one-way ANOVA: human p=0.29; guinea pig p=0.92). 

Addition of 300µM GSNO after application of the final BAY58-2667 dose relaxed 

the tissue (data not shown). 
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Figure 2   Uroguanylin relaxes myometrium through pGC-C stimulation: 

Uroguanylin relaxes oxytocin-stimulated contractions in a dose-dependent, 

pGC-C-mediated fashion in pregnant guinea pig myometrium. (A) In the 

pregnant guinea myometrium (50–60 days gestation) 10 nM uGN relaxes 

the tissue with a reproducible effect on peak height and frequency of 

contraction. (B), no such effect is seen in tissues from estrogen-primed 

nonpregnant animals even at 100 nM. Traces are representative examples. 

Effects were reproducible after washout and were seen both early and late 

in the recording. (C) contractile tension was measured in grams from area 

under the curve (AUC) for 15 min of oxytocin- stimulated contractile activity 

in replicate pregnant guinea pig tissues (n=6) in the presence or absence 

of 2Cl-ATP, ODQ, or isatin. The uGN relaxation was dose-dependent and 

significant at 3 nM uGN. Uroguanylin stimulation in the presence of 2Cl-ATP 

(1µM) or isatin (10µM) prevented the relaxation to 100 nM uGN. ODQ 

(10µM) had no significant effect on the uGN-mediated relaxation. Data are 

mean S.E.M. from two replicate tissues from each of six animals (50 – 60 

days gestation). , p 0.01; , p 0.001. (Iain L O Buxton et al., 2010b) 
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Figure 3 The myometrium does not relax in response to BAY58-2667, an sGC 

activator: Smooth muscle response to sGC activation by BAY58-2667. (A) 

Human pregnant myometrium was hung in tissue baths at 37°C with 

continuous oxygenation and stimulated to contract in the presence of 

oxytocin.  Following 60 min, tissues were challenged in the presence or 

absence of BAY58-2667 in a cumulative fashion as indicated in the figure.  

No response was seen to addition of BAY58-2667.  Addition of the NO-

donor at the end of the experiment confirmed the ability of the tissue to relax 

(not shown).  (B) Rat aorta was hung in tissue baths with Krebs buffer at 

37°C with continuous oxygenation and allowed to equilibrate for 60 min in 

the absence of drug.  Addition of phenylephrine (1 µM) produced immediate 

contractions that could be relaxed by addition of BAY58-2667 (10 µM).  (C) 

The failure of tissues to relax to BAY58 was repeatable in both human (n=4) 

and (D) guinea pig (n=3), and quantified as area under the curve over 10 

min and demonstrated the absence a dose-dependent effect on tension. 
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Membrane potential and uterine quiescence 
 

Beyond the role of guanylyl cyclase variants on myometrial relaxation, there are 

other factors that contribute to contractile/relaxation dynamics in the myometrium. 

Earlier work by our laboratory has shown that TREK-1, an outward rectifying 

potassium channel important to membrane polarization, is upregulated during 

pregnancy, presumably to aid in myometrial quiescence, and is significantly 

downregulated in preterm tissues (I L O Buxton et al., 2010c). Here, for the first 

time, we electrophysiologically characterize TREK-1 in uterine SM cells, and we 

explore effects of TREK-1 splice variants on channel activity (Figure 4). 

 

Intracellular acidification activates TEA-insensitive K+ current in pHUSMC 

and HEK293-hTREK-1 cells: The ability of intracellular acidification to activate 

TEA-insensitive K+ currents in pregnant human uterine smooth muscle cells 

(pHUSMC) was tested by measuring whole cell currents in the presence of TEA (2 

mM) under two recording conditions resulting in intracellular acidification: i) after 

exchanging 90 mM NaCl for 90 mM NaHCO3 in the bath solution, and ii) adjusting 

the pipette solution from pH 7.4 to pH 6. “Both approaches yielded an increase in 

outward current in both pHUSMC and HEK293-hTREK-1 cells that resulted in a 

shift in current reversal potential toward that for K+. Intracellular acidification by 

NaHCO3 yielded an increase in outward current at +80 mV from 3.0 ± 0.8 to 11.8 
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± 2.7 pA/pF (≈4 fold) in pHUSMC (n=4) and from 34.8 ± 8.9  to 218.6 ± 45.0 pA/pF 

(≈6 fold) in HEK293 hTREK-1 cells (n=8) that was reversible upon returning to 

standard bath solution” (Figure 5) (Heyman et al., 2013). NaHCO3 bath solutions 

also shifted the reversal potential toward that predicted for K+ (≈-85 mV) with a shift 

from 0.5 ± 6.0 mV to -40.6 ± 3.0 mV (n=4) in standard vs. 90 mM NaHCO3 bath, 

respectively in pHUSMC; and from -46.1 ± 4.4 mV to -65.1 ± 3.6 mV (n=8) in 

standard vs. 90 mM NaHCO3 bath, respectively in HEK293 hTREK-1 cells.  

“Intracellular acidification using pH 6 pipette solutions resulted in the 

activation of an outward current that typically took 5-10 min after membrane 

rupture to reach a maximal steady state level (Figure 6). Acidification by a pH 6 

pipette solution resulted in significantly higher outward currents in pHUSMC 10 

min after membrane rupture (16.9 ± 3.2 pA/pF, n=5) when compared to pH 7.4 

pipette solutions at the same time point (2.5 ± 0.7 pA/pF, n=5; Figure 6). A similar 

increase was seen in HEK293-hTREK-1 cells 10 min after membrane rupture with 

pH 6 pipette solution having a mean of 83.2 ± 13.8 pA/pF (n=8) vs. 30.9 ± 20.7 

pA/pF (n=4) in pH 7.4 pipette solution. Intracellular acidification by pH 6 pipette 

solution also resulted in a negative shift in current reversal potential toward that 

predicted for K+ (≈-85mV) in pH 7.4 vs. pH 6 pipette solutions from 1.0 ± 5.1 mV to 

-46.0 ± 6.0 mV (n=5) and from -46.1 ± 4.4 mV (n=4) to -53.7 ± 4.2 mV (n=8) in 

pHUSMC and HEK293-hTREK-1 cells, respectively” (Heyman et al., 2013). 

Replacing the standard bath with a high K+ bath solution after activating current 

with pH 6 pipette solution  
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Figure 4 TREK-1 splice variants alter its trafficking and function:  Native 

TREK-1 assembles as a homodimer and acts as an outward rectifying 

potassium channel, which in turn hyperpolarizes the membrane, 

maintaining quiescence during pregnancy.  There are five known splice 

variants of TREK-1 that decrease full-length TREK-1’s trafficking to the 

membrane, resulting in decreased TREK-1 currents. 
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Figure 5 Intracellular activation activates TREK-1: Intracellular acidification by 

90mM NaHCO3 activates a TEA-insensitive K+ current in pHUSMC and 

HEK293-hTREK-1 cells. A: time course of whole cell voltage-clamp 

recording at -80 and +80 mV showing reversible activation of TEA-

insensitive outward current after exchange of 90 mM NaCl for 90 mM 

NaHCO3 in bath solution to cause intracellular acidification in pHUSMC and 

HEK293- hTREK-1 cells. B: mean current density in response to 20-mV 

voltage steps from -100 to +100 mV before (NaCl) and after NaHCO3 

treatment in pHUSMC and HEK293-hTREK-1 cells. *P < 0.05. Insets: 

representative whole cell current traces before and after NaHCO3 

treatment. (Nathanael S Heyman et al., 2013b) 
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Figure 6 Isometric K+ shift the reversal potential of TREK-1 to 0mV: pH6 

pipette solution activates a TEA-insensitive K+ current: A. Mean current 

densities measured in response to 20mV voltage steps from -100 to 

+100mV with pH7.4 (n) and pH6 (l) pipette solutions from pHUSMC (left 

panel) and HEK293 hTREK-1 cells (right panel) (* p<0.05). B. 

Representative whole cell current density traces in response to voltage 

ramps from +80 to -80mV made shortly after gaining whole cell access 

(initial), after 10 min (activated) and after activation and switching to high K+ 

bath solution (high K+). (Nathanael S Heyman et al., 2013b) 
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increased inward current and moved the reversal potential near 0 mV (Figure 6B) 

in both cell types. 

Arachidonic acid activates TEA-insensitive K+ current in pHUSMC and 

HEK-hTREK-1 cells. “TREK-1 K+ channels have been shown to be activated by 

AA (Caley et al., 2005; Meadows et al., 2000; Moha ou Maati et al., 2011) and to 

be largely insensitive to the classical K+ channel blocker TEA (53). To test for the 

presence of an AA-activated and TEA-insensitive K+ current in pHUSMC, AA (10 

µM) was applied during recording of whole cell currents in pHUSMC and HEK293-

hTREK-1 cells in the presence of TEA (2 mM). Application of AA resulted in a 

significant increase in outward current at +80 mV, from 4.8 ± 1.5 to 19.4 ± 7.5 

pA/pF (~4 fold) in pHUSMC (n = 7) and from 91.0 ± 23.8 to 247.5 ± 73.3 pA/pF 

(~3-fold) in HEK293-hTREK-1 cells (n = 6), that was reversible upon washout 

(Figure 7). In addition, activation of current by AA resulted in a negative shift in 

reversal potential toward the equilibrium potential for K+ from 4.3 ± 5.8 to -33.1 ± 

2.8 mV (n = 7) in pHUSMC and from -50.3 ± 7.5 to -62.8 ± 4.7 mV (n = 6) in 

HEK293-hTREK-1 cells. Under the recording conditions used, only K+ had a 

Predicted Nernst potential negative to 0 mV. Replacing the standard bath with a 

high- K+ bath solution under AA activation increased inward current and moved the 

reversal potential near 0 mV (Figure 7B) in both cell types. This result indicates 

that a majority of the current was carried by K+. The AA-activated current in both 

cell types showed outward rectification in physiological K+, slight outward 

rectification in symmetrical K+, time-dependent activation at more positive 
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membrane potentials, lack of inactivation, and a flickering appearance. All these 

properties have been previously reported for TREK-1. These data demonstrate the 

presence of a TEA-insensitive K+ current activated by AA in pHUSMC and 

HEK293-hTREK-1 cells with properties similar to those previously reported for 

TREK-1 channels (Caley et al. 2005; Meadows et al. 2000). Importantly, in 

response to AA, freshly isolated myocytes, pHUSMC, and HEK293-hTREK-1 cells 

demonstrated similar current activation.  

Fluphenazine blocks TEA-insensitive K+ currents in pHUSMC and HEK293 

hTREK-1 cells: The antipsychotic fluphenazine has been shown to block hTREK-

1 and hTREK-2 currents but not hTRAAK currents (Patel et al., 1999). In order to 

test the ability of fluphenazine to block the TEA-insensitive K+ currents reported 

here, currents were activated with 10 µM AA, a 90 mM NaHCO3 bath, and pH 6 

pipette solution. In each case the current was allowed to fully activate and then 10 

µM fluphenazine was applied in the continued presence of each agonist to observe 

blockade. Fluphenazine significantly blocked current stimulated by all three 

treatments (Figure 8) in both pHUSMC and TREK-1 overexpressing HEK cells. 

Currents in pHUSMC at +80 mV were reduced by 51.2 ± 9.8% (n=6), 73.9 ± 4.2% 

(n=5), 75.6 ± 4.0% (n=6) after activation by 10 µM AA, 90 mM NaHCO3 bath, or 

pH6 pipette solutions, respectively. Currents in HEK hTREK-1 cells at +80 mV 

were reduced by 89.5 ± 2.3% (n=3), 91.6 ± 3.4% (n=3), and 89.8 ± 2.2% (n=7) 

after activation by 10 µM AA, 90 mM NaHCO3 bath, and pH 6 pipette solution 

respectively. The somewhat smaller block seen in the presence of AA in pHUSMC  
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Figure 7 Arachidonic acid activation of TREK-1: AA activates a TEA-

insensitive K current in pHUSMC and HEK293-hTREK-1 cells. A: time 

course of whole cell voltage-clamp recording from pHUSMC and HEK293-

hTREK-1 cells at 80 and 80 mV showing reversible activation of outward 

current by AA (10 M). B: representative whole cell current density traces in 

response to voltage ramps from 80 to 80 mV before treatment (initial) and 

in the presence of AA in standard and high-K bath solutions in pHUSMC 

and HEK293-hTREK-1 cells. C: mean current density in response to 20-mV 

volt- age steps from 100 to 100 mV before (initial) and after AA treatment in 

pHUSMC and HEK293- hTREK-1 cells. *P 0.05. Insets: representative 

whole cell current traces before and after AA treatment. (Nathanael S 

Heyman et al., 2013b) 
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Figure 8  Fluphenazine inhibits TREK-1 currents:  Fluphenazine block 

of TEA-insensitive K currents. A–C: mean current density in response to 20-

mV voltage steps from 100 to 100 mV before and after 10 M fluphenazine 

in pHUSMC and HEK293- hTREK-1 cells. Currents were first activated by 

AA (A), 90 mM NaHCO3 (B), or pH 6 pipette solution (C). *P 0.05. Insets: 

representative whole cell current density traces in response to voltage 

ramps from 80 to 80 mV of the fluphenazine-sensitive current (fully activated 

fluphenazine-blocked).  (Nathanael S Heyman et al., 2013a) 

  



	

	

102	

was likely due to the presence of a contaminating current that reversed at ≈0 mV 

that sometimes developed in these experiments. Subsequent experiments were 

carried out in the presence of 100 µM GdCl3 and 100 µM 4,4'diisothio-

cyanatostilbene-2,2'-disulfonic acid (DIDS) to reduce non-selective cation and Cl- 

currents respectively. The fluphenazine-sensitive currents (Figure 8 insets) for all 

three agonists showed outward rectification in physiological K+ and reversal 

potentials (-71.0 ± 3.9 mV (n=6), -77.1 ± 1.3 mV (n=5), and -67 ± 7.6 mV (n=6) for 

AA, NaHCO3, and pH 6 pipette activated currents respectively in pHUSMC) near 

that predicted for K+ (≈-85 mV). HEK293-hTREK-1 cells showed similar 

fluphenazine-sensitive currents with reversal potentials of -62.4 ± 11.8 mV (n=3), 

-66.0 ± 5.7 mV (n=6), and -63.2 ± 12.4 mV (n=3), for AA, NaHCO3, and pH 6 pipette 

activated currents respectively. These data show that the TEA-insensitive K+ 

currents activated in pHUSMC and HEK293 hTREK-1 cells by AA and intracellular 

acidification are significantly blocked by fluphenazine, a known blocker of TREK-1 

channels. These findings are consistent with hTREK-1 and not hTRAAK being the 

primary K+ current carrier under these conditions. 

TEA-insensitive K+ Current in Freshly Isolated Myocytes:  To investigate 

channel properties under conditions that most closely resemble the physiological 

environment in which we hypothesize a role for TREK-1, whole cell recordings 

were performed in myocytes freshly isolated from pregnant and non-pregnant 

subjects. An outwardly rectifying TEA insensitive current was observed in freshly 

isolated myocytes (Figure 9) from pregnant subjects that could be activated by AA 
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(n=4). Moreover, in freshly isolated myocytes from non-pregnant women, AA could 

not stimulate the same channel activity. Only a small residual outward basal 

current was detectable in pregnant myocytes in the presence of TEA. The AA-

induced current was consistent with the properties of the TEA insensitive K+ 

channels that were characterized in both HEK hTREK-1 and pHUSMC cells 

displaying outwardly rectifying properties, voltage-dependent activation, and lack 

of inactivation at positive potentials” (Heyman et al., 2013).  

TREK-1 Currents are Inhibited in the Presence of Variants:  “While TREK-1 splice 

variants were incapable of generating significant currents, their interaction with 

TREK-1 and the potential relationship to uterine quiescence was explored using 

co-transfection. Therefore, HEK293T cells were co-transfected with 1 µg TREK-1 

and 5 μg of each splice variant; TREK-1 was also co-transfected with 5 µg RFP 

as an expression control. The average current-voltage relationship for basal (NaCl 

bath) TREK-1 currents in HEK293T cells co-transfected with TREK-1 and each of 

the variants compared to the basal current of TREK-1 co-transfected with RFP (the 

positive control) were observed. When TREK-1 was co-transfected with variants, 

the current was decreased; at 0 mV basal currents were 2.1 ± 0.6, 2.5 ± 0.1, 6.4 ± 

0.3, 2.7 ± 0.2, 7.5 ± 2.3 pA/pF for TREK-1 co-transfected with HSV-1 (n=8), HSV-

2 (n=10), HSV-3 (n=9), HSV-4 (n=10), and HSV-5 (n=8), respectively, compared 

to 11.97 ± 1.3 pA/pF for TREK-1 (n=10) co-transfected with RFP (Figure 10). This 

reduction in basal current was found to be significantly different for HSV-1, HSV-

2, HSV-3, and HSV-4 at more positive (> 40 mV) input potentials compared to  
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Figure 9 Arachidonic acid activates TREK-1 in primary pHUSMC cells: 

Arachidonic acid (AA) activates tetaethylammonium (TEA)-insensitive 

current in freshly isolated pregnant uterine myocytes. Whole cell recordings 

from freshly isolated pregnant myocytes demonstrate a current elicited 

using AA (left). AA activates pregnant, but not non-pregnant, myocytes in 

freshly isolated cells (right). I, current; V, voltage. *P 0.05. (Nathanael S 

Heyman et al., 2013b) 
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Figure 10 Co-expression of TREK-1 splice variants with full-length TREK-1 

decreases basal activity: Co-expression of wt-TREK-1 and TREK-1 splice 

variants decreases basal currents. HEK293 cells on glass coverslips were 

transfected (1.0 µg of HA-TREK-1 and 5.0 µg of HSV or RFP) and placed 

in a recording chamber. Currents were recorded in the whole cell mode of 

patch clamp. Currents were stabilized in an NaCl bath for 2 min. a-e) 

Average mean whole cell current densities in response to 20 mV steps from 

-100 to + 100 mV for TREK-1 co-expressing each individual splice variant 

compared with TREK-1 co-expressing RFP in standard 90 mM NaCl bath 

solution (TREK-1+RFP, n=10; TREK-1+HSV-1, n=8; TREK-1+HSV-2, 

n=10; TREK- 1+HSV-9, n=8; TREK-1+HSV-4, n=10; TREK-1+HSV-5, n=8) 

(*p < 0.05 between average HA-TREK-1+RFP current vs. TREK-1 HSV 

current). f) Average currents at 0 mV in NaCl bath solution for TREK-1 co-

expressing RFP or each individual splice variant *0.05). (Chad L Cowles et 

al., 2015) 
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Figure 11 Co-expression of TREK-1 splice variants with full-length TREK-1 

activated currents: Co-expression of wt-TREK-1 with TREK-1 splice 

variants decreases activated currents. HEK293 cells on glass coverslips 

were transfected (1.0 µg of HA-TREK-1 and 5.0 µg of HSV or RFP) and 

placed in a recording chamber. Currents were recorded in the whole cell 

mode of patch clamp. Currents were stabilized in an NaCl bath followed by 

perfusion of NaHCO3 into the chamber, activated currents were stabilized 

for 2 min. a-e) Average mean whole cell current densities in response to 20 

mV steps from -100 to +100 mV for HA-TREK-1 co-expressing each 

individual splice variant compared with HA-TREK-1 co-expressing RFP in 

standard 90 mM NaCl bath solution (TREK-1+RFP, n=10; TREK-1+HSV-1, 

n=8; TREK- 1+HSV-2, n=10; TREK-1+HSV-9, n=8; TREK-1+HSV-4, n=10; 

TREK-1+HSV-5, n=8) (*p< 0.05 between average HA-TREK-1+RFP 

current vs. TREK-1 HSV current). f) Average currents at 0 mV in NaHCO3 

bath solution for TREK-1 co-expressing RFP or each individual splice 

variant *0.05). (Chad L Cowles et al., 2015) 
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TREK-1 co-expressing RFP. The relatively low basal current density observed was 

consistent with TREK-1 channel activity, which is reported to require a chemical or 

mechanical stimulus to open. To test if activated TREK-1 currents were altered in 

the presence of variants after the basal currents were stabilized, NaHCO3 was 

perfused into the bath solution. In general, depending on the exact perfusion rate, 

currents would increase within 3-5 min and would stabilize after 5-7 min. The 

average currents at 0 mV were 20.7 ± 5.8, 19.7 ± 2.1, 26.0 ± 2.9, 24.4 ± 2.7, and 

16.3 ± 3.8 pA/pF for HSV-1, HSV-2, HSV-3, HSV-4 and HSV-5 respectively, 

compared to the significantly higher activation 94.5 ± 8.9 pA/pF for TREK-1 co-

expressing RFP (Figure 11). When applied voltages were -40 mV or greater, there 

was a significant difference between TREK-1 co-expressing variants compared to 

co-expression with RFP. The average currents and SEM of TREK-1 co-expressing 

each of the variants or RFP at every input potential is shown in Supplemental Table 

S3. These data show that activated TREK-1 currents are decreased in the 

presence of each of the splice variants. It should be pointed out that compared to 

variants expressed alone, HSV-2, HSV-3, HSV-4, and HSV-5 co-expressed with 

TREK-1 demonstrated activation that was significantly greater than variants 

expressed alone (Chad L Cowles et al., 2015). These activated currents most likely 

are generated by TREK-1 that is expressed and still functional. Collectively, the 

functional assessment of TREK-1 and TREK-1	 splice variants indicates: (1) 

variants demonstrate minimal currents and show little if any activation by 

intracellular acidosis; (2) TREK-1 basal currents are generally decreased when 
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splice variants are co-expressed (~64% average reduction); (3) Activated TREK-1 

currents are more significantly decreased than basal currents when splice variants 

are co-expressed (~77% average reduction)”	(Cowles et al., 2015). 

 

Discussion: 

 

Without a better understanding of the nuances that distinguish the regulation of 

preterm myometrium from that of term myometrium, as well as the particulars of 

what divides the myometrium as a whole from other types of smooth muscle, we 

have little chance of identifying effective therapeutics to treat early onset labor. 

Two critical mediators of smooth muscle contractile dynamics are cyclic 

nucleotides, and ion channels that control the resting membrane potential of the 

cell. Here we have identified a unique role of guanylyl cyclase (GC) in the 

myometrium, and we have electrophysiologically characterized TREK-1 and its 

splice variants. Taken together, these two disparate influencers of myometrial 

quiescence shed light on the unique mechanisms that drive uterine contractile 

dynamics. 

 GC and cGMP during pregnancy: Research over the past 20 years, 

bolstered by our findings here, emphasize the idea that sGC plays an exceedingly 

limited role in myometrial quiescence. The product of sGC, cGMP, is a prevalent 

second messenger important to many processes in the cell (Buxton and Brunton, 

1983; Fiscus and Murad, 1988; Kuenzli et al., 1996). Despite this, the inhibition of 
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sGC does not prevent ·NO-mediated relaxation, indicating an alternative function 

of ·NO, perhaps through protein S-nitrosation (see chapter 5). Furthermore, the 

activation of sGC by BAY58-2667 does not promote relaxation of uterine smooth 

muscle in pregnant humans or guinea pigs (figure 3). These data, combined with 

our previous finding that a global increase in cGMP actions by using its surrogate, 

8-Br-cGMP, does not alter contractile dynamics (Iain L O Buxton et al., 2010a), 

questions the function of sGC and cGMP in the contractile regulation of the 

myometrium. 

sGC is responsible for increasing global cellular levels of cGMP. This is, 

however, not the only route of cGMP generation in the cell. pGC-C, the membrane 

bound isoform of GC in the myometrium, promotes relaxation through 

compartmentalized action of cGMP (figures 1,2). In recent  years, 

compartmentation of second messenger signaling, such as with sGC, PKG, and 

PKA in caveolae complexes, has been observed in rat aorta (Linder et al., 2005), 

and the effects of soluble vs. particulate GC-generated in ventricular myocytes has 

also been seen (Su et al., 2005), further reinforcing the concept that localized 

cGMP actions are important in muscle signaling. 

There are three common ways in which a cyclic nucleotide can be 

“compartmented”: (1) Physical containment, as with organelles, (2) bound 

signaling complexes, such as with AKAPs/GKAPs and caveolae, or (3) by localized 

depletion events, normally mediated by the cyclic nucleotide’s cognate 

phosphodiesterase (Arora et al., 2013). Additionally, there are temporal aspects in 
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flux, such as the rate of diffusion of the compartmented cyclic nucleotides (Agarwal 

et al., 2016), further layering the signal. Much as AKAPs are important scaffolding 

proteins for PKA compartmentation, we are beginning to learn more about the role 

GKAPs and PKG, which anchor the N-terminus of PKG-II (Casteel et al., 2010). 

Based on our findings that pGC-C and CAV-1 are upregulated during pregnancy, 

and that pGC-C co-localizes with caveolae, while pGC-C mediated relaxation is 

muted in cholesterol depleted fractions (Iain L O Buxton et al., 2010b), it stands to 

reason that a localized signaling complex is formed between cGMP and other 

downstream factors that influence relaxation. Exposure of pregnant myometrium 

to the pGC-C inhibitors ISTATIN and 2-CIATP prevents uGN-mediated relaxation, 

while the same tissue relaxes with a modest dose of uGN (10nM) under condition 

in which sGC was inhibited by ODQ (figure 1C). This observation does not belie 

our finding that sGC activation fails to relax the myometrium; in fact, it provides a 

novel explanation for segmented cGMP actions in the myometrium (Figure 2).  

 

TREK-1 and its splice variants:  TREK-1 is an important ion channel that regulates 

the myometrial cell membrane potential by shuttling K+ ions to the extracellular 

environment (Goldstein et al., 2001). Maintaining a negative membrane potential 

in uterine smooth muscle cells preserves a state of quiescence during gestation 

by keeping the cell below the action potential threshold, thus decreasing the 

probability of depolarization and Ca2+ influx. Splice variants (SVs) also play an 

important role in protein function by allowing for a much greater diversity of 
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expressed proteins (Nilsen and Graveley, 2010). As such, some variants allow for 

subtle shifts in protein function, while other drive disease states (Blencowe, 2006). 

For instance, in rat heart, TREK-1 splice variants alter the operating mode of the 

ion channel (Xian et al., 2006). Previous work from our laboratory has shown that: 

(1) TREK-1 expression increases during pregnancy, plateauing at mid-gestation, 

in order to maintain that negative cell membrane potential (I L O Buxton et al., 

2010c), and that (2) the transcripts of five SVs of TREK-1 exist in preterm 

myometrial tissue (Wu et al., 2012). The purpose of our exploration of TREK-1 is 

to detail the electrophysiological channel properties of wtTREK-1 in the 

myometrium to further elucidate its role in quiescence, and to determine the 

functional relevance of the co-expression of the TREK-1 SVs found in preterm 

myometrial tissue. 

  TREK-1 currents: When identifying the TREK-1 currents in pHUSMC it was 

of paramount importance to ensure we were observing TREK-1 and not another 

similar uterine K+ channel such as TRAAK (TWIK-Related Arachidonic Acid K+ 

Channel, KCNK4), which is expressed in the myometrium (Tichenor et al., 2005). 

With this in mind, we took a three-pronged approach. First, we used HEK293 cells 

that had been stably transfected with TREK-1 as a means to compare the target 

signal in pHUSMC cells. Second, we employed a combination of blocking agents 

that eliminated undesirable secondary currents, such TEA to block voltage-gated 

K+ currents, DIDS for Cl- currents, and GdCl3 for nonselective cation currents. 

Finally, we utilized activators and inhibitors that would distinguish TREK-1 from 
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TRAAK, such as intracellular acidification and fluphenazine, respectively. The 

addition of AA to pHUSMC and HEK293 hTREK-1 cells activated TREK-1 in a 

similar, and reversible, manner (Figure 7 A,C). We also found that under conditions 

of isometric K+, the reversal potential migrated to 0 mV (Figure 7B), a finding 

consistent with K+ channels. 

TRAAK, which expressed in myometrial tissue, is not activated under 

conditions of intracellular acidification. To test conditions of intracellular 

acidification we used a NaHCO3 bath solution as well as a pH 6.0 pipette solution.  

Introduction of NaHCO3 into the bath solution causes a dissociation of the 

bicarbonate anion to CO2. The CO2 migrates across the cell membrane and 

causes a decrease in intracellular pH by a process known as ‘paradoxical 

acidification’ (Ritter et al., 1990). TREK-1 is the only K+ channel reported so far to 

be directly opened by intracellular acidosis (Maingret et al., 1999), and it does so 

by interaction of the H+ ion with E306 on the cytosol facing C-terminus (Enyedi and 

Czirjak, 2010). It has been proposed that TREK-1 is activated in response to 

intracellular acidification as a means to mitigate ischemic conditions that are 

generated during intense contractions (Harrison et al., 1994; Larcombe-McDouall 

et al., 1999); the belief being that the corresponding drop in pH as the cell becomes 

hypoxic will activate TREK-1, repolarizing the membrane, relaxing the tissue. We 

report strong activation of the suspected TREK-1 current through intracellular 

acidification using both NaHCO3 (Figure 5), as well as with a pH 6.0 pipette solution 

(Figure 6). 
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 Fluphenazine, a piperazine antipsychotic, is a potent dose-pendent and 

reversible inhibitor of TREK-1, but not TRAAK (Thummler et al., 2007). 

Fluphenazine almost entirely abolished TREK-1 currents in both pHUSMC and 

HEK293 hTREK-1 cells that had been activated with pH 6.0 pipette solution (Figure 

8), further bolstering evidence that we were in fact activating TREK-1 currents in 

the pHUSMC cells. 

Finally, as a means to confirm TREK-1 activity in cells that were not cultured 

or telomerized, we utilized freshly isolated primary uterine myocytes from pregnant 

and non-pregnant women. We verified that TREK-1 activates as predicted with 

arachidonic acid in these cells (Figure 9). Interestingly, the current in the non-

pregnant myocytes, when challenged with arachidonic acid, was significantly 

smaller (Figure 9), a finding in line with expectations as TREK-1 is downregulated 

in non-pregnant myometrium.  

Electrophysiological data obtained through the activation of TREK-1 by 

intracellular acidosis and arachidonic acid, as well as deactivation with 

fluphenazine and a shift in the reversal potential by an increase in extracellular K+, 

are all in keeping with what would be expected of this particular channel. The 

electrophysiological characterization of wtTREK-1 in pHUSMC was an important 

first step in not only better understanding TREK-1’s role in uterine quiescence, but 

was also important in establishing a baseline for which to compare its splice 

variants. 
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TREK-1 splice variants:   Dr. Wu of our lab previously identified the 

transcripts of five TREK-1 SVs in the myometrium of pregnant women (Wu et al., 

2012). Each of these SVs are truncated to a varying degree, with SV-1 only missing 

a single transmembrane domain, and SV-5 lacking exons 3, 4, 5, 6, and 7. It is of 

intense interest to determine whether expression of these SVs confer a functional 

significance to TREK-1, as any information garnered may reveal opportunities for 

therapeutic intervention in preterm labor. 

Interestingly, the co-expression of each SV with wtTREK-1 decreased both 

basal (Figure 10) and NaHCO3 activated currents (Figure 11). It has been shown 

that the presence of SV transcripts decrease the amount of wtTREK-1 found in the 

membrane (Wu et al., 2012), and our electrophysiological data corresponds with 

that data. Our findings are also in line with later experiments conducted by different 

research groups using TREK-1 SVs. For instance, TREK1ΔEx4 splice variant 

decreases channel activity in neurons (Veale et al., 2010), and in cases for which 

exon 5 was skipped, a SV which causes a corresponding frame shift in exon 6, 

resulted in a decrease in TREK-1 current when co-expressed with wtTREK-1, 

presumably through inhibition of wtTREK-1 vesicular trafficking (Rinné et al., 

2014). The precise cause for the decrease in TREK-1 current in our cells is unclear, 

but may be the result of impaired trafficking, or by competition of the splice variants 

with TREK-1 for translation factors (Lodish et al., 2000), or by some other 

mechanism? Recently it has been discovered that TREK-1 can form heterodimers 

with other member of the KCNK family, such as TRAAK (Blin et al., 2016). 
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Therefore, it may be possible that in addition to the lowered density of wtTREK-1 

found at the membrane, the decrease in TREK-1 activity seen in our cells may be 

confounded by heterodimeric SV/TREK-1 formation?  

To conclude, before we can hope to identify novel tocolytics that will better 

treat preterm labor, we must first better understand what distinguishes the 

myometrium from other smooth muscles. It is a well-established fact that 

phenotypic variations among tissue sub-types alters their response to stimuli, and 

our findings confirm similar distinctions in the myometrium that affect how it 

behaves to endogenous and/or exogenous challenges.  This research has shed 

new light on two important and unique aspects of myometrial function. First, we 

have further reinforced a growing body of evidence promoting the idea that sGC 

and global cGMP are not primary drivers of relaxation in the myometrium. We 

believe that ·NO’s ability to relax the myometrium must lie outside of the canonical 

pathway. As will be discussed in chapter 5, we have evidence to support ·NO’s 

ability to alter protein function through the direct actions of protein S-nitrosation. 

We have also found that the compartmented actions of pGC-C on cGMP signaling 

in pregnant myometrium relaxes the tissue, opening the door to potential 

therapeutic options using uGN as a tocolytic, as others have found (US patent 

document identifier: US 20120220526 A1; 

www.google.com/patents/US20120220526). These data, combined with the 

decreased aggregate activity of TREK-1 when co-expressed with it SVs, provide 
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new and important data that may be used to develop therapeutics to treat preterm 

labor. 
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The Role of S-nitrosoglutathione Reductase (GSNOR) in Human Disease 

and Therapy 
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Abstract 

 

S-nitrosoglutathione reductase (GSNOR), or ADH5, is an enzyme in the alcohol 

dehydrogenase (ADH) family. It is unique when compared to other ADH enzymes 

in that primary short-chain alcohols are not its principle substrate. GSNOR 

metabolizes S-nitrosoglutathione (GSNO), S-hydroxymethylglutathione (the 

spontaneous adduct of formaldehyde and glutathione), and some alcohols. 

GSNOR modulates reactive nitric oxide (·NO) availability in the cell by catalyzing 

the breakdown of GSNO, and indirectly regulates S-nitrosothiols (RSNOs) through 

GSNO-mediated protein S-nitrosation. The dysregulation of GSNOR can 

significantly alter cellular homeostasis, leading to disease. GSNOR plays an 

important regulatory role in smooth muscle relaxation, immune function, 

inflammation, neuronal development, and cancer progression, among many other 

processes. In recent years, the therapeutic inhibition of GSNOR has been 

investigated to treat asthma, cystic fibrosis and interstitial lung disease (ILD). The 

direct action of ·NO on cellular pathways, as well as the important regulatory role 

of protein S-nitrosation, are closely tied to GSNOR regulation and define this 

enzyme as an important therapeutic target. 
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Introduction 

S-nitrosoglutathione reductase (GSNOR) is an important regulator of human 

health and disease. The modulation of protein S-nitrosation by GSNOR contributes 

to a host of maladies and can be exacerbated by the dysregulation of GSNOR. In 

recent years, much effort has been dedicated to identifying a safe and efficacious 

means to alter GSNOR activity. A myopic investigation of GSNOR  would reveal 

little more than its inherit ability to metabolize S-nitrosoglutathione (GSNO) 

(Jensen et al., 1998), S-hydroxymethylglutathione (HMGSH) (Hedberg et al., 

2000), and a handful of alcohols (Adinolfi et al., 1984b; Jensen et al., 1998). If we 

look beyond the direct actions of the enzyme itself, it quickly becomes apparent 

that GSNOR influences several downstream and parallel pathways (Figure 1). One 

of the most important is GSNOR’s regulation of GSNO, and by extension, nitric 

oxide (·NO) and protein S-nitrosation. ·NO is a reactive nitrogen species (RNS) 

that is critical to the normal function of most cells type (Beckman and Koppenol, 

1996; Moncada et al., 1991; Radi et al., 1991; Salvador Moncada, 1994). It is a 

powerful smooth muscle relaxing agent (Bradley et al., 1998a; I. L. O. Buxton et 

al., 2001; Ricciardolo et al., 2004; Tomita et al., 2002), cardiopulmonary regulator 

(Liu et al., 2004; Tamargo et al., 2010b), neuroeffector (Bredt and Snyder, 1992; 

Corti et al., 2014) and immune system modulator (MacMicking et al., 1997). ·NO 

is likely carried as GSNO from endothelium, and other sources, and acts as a 

stable ·NO reserve (Katarzyna A Broniowska et al., 2013; Smith and Marletta, 

2012). GSNO can transfer  
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Figure 1 Actions of GSNO and GSNOR in the cell:  ·NO enters the cell and 

reacts with glutathione (GSH) to create S-nitrosoglutathione (GSNO). GSNO can 

trans-S-nitrosate other proteins with compatible cysteines. GSNOR expression is 

regulated by single nucleotide polymorphisms (SNPs) in the promoter and 3’ 

untranslated region of the gene, ADH5. The amount of GSNO and S-nitrosothiols 

(RSNOs) in the cells is proportional to GSNOR activity 
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its ·NO moiety to a cysteine thiol, resulting in the posttranslational modification 

(PTM) S-nitrosation/S-nitrosylation (Stamler et al., 1992b). S-nitrosation describes 

a thiol (e.g., cysteine) converted to a S-nitrosothiol (RSNO) by a one-electron 

oxidation from the ·NO radical (Smith and Marletta, 2012). The term nitrosylation 

describes addition of an ·NO group to a metal centered protein such as guanylyl 

cyclase (Martínez-Ruiz and Lamas, 2004). Researchers have used both terms to 

describe ·NO addition to a protein thiol. We employ S-nitrosation to refer to protein 

modifications on cysteine residues. Protein S-nitrosations are also referred to in 

the literature in a fashion that takes into account protein and non-protein 

nitrosations (e.g., RSNO). We employ the term RSNO as it appears in the 

literature.  

 

Alcohol dehydrogenase family overview 

 

The alcohol dehydrogenase (ADH) family of enzymes have been investigated for 

well over a century (Battelli, F and Stern, 1910; Daniel, 1909; Lutwak-Mann, 1938). 

They are evolutionarily conserved from bacteria to man (Gonzàlez-Duarte and 

Albalat, 2005; Liu et al., 2001a) and are categorized into five distinct classes that 

contain seven known isoforms (Table 1). ADH enzymes perform several important 

functions in human cells. The most well studied of these is the metabolism of short 

chain alcohols. Ethanol, being of significant cultural relevance due to its 

widespread consumption and abuse (Oscar-Berman and Marinkovic, 2003), has 
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led to an extensive investigation of the entire ADH family. Most ADH enzymes have 

some affinity for ethanol. In hepatocytes, ADH1A (formerly ADH1), ADH1B 

(formerly ADH2), and ADH1C (formerly ADH3) , are responsible for the oxidative 

catabolism of ethanol to acetaldehyde before further processing in the Krebs cycle, 

or elimination (Cederbaum, 2013). ADH4, a class II ADH (Svensson et al., 2001) 

whose sequence is 70% homologous to ADH1, catalyzes the oxidation of retinol 

(Vitamin A), and bolsters ethanol metabolism in the liver (Ramchandani et al., 

2001). Numerous single nucleotide polymorphisms (SNPs) in the genes encoding 

the ADH family affect the rate of ethanol metabolism. These SNPs have been 

linked to some forms of alcoholism and cancer (Edenberg and Ph, 2007; Hurley 

and Edenberg, 2012). Other ADH SNPs have been correlated with schizophrenia, 

Parkinson’s disease, asthma, and autism in certain populations (Bowers et al., 

2011; Buervenich et al., 2000; Wu et al., 2007; Zuo et al., 2013). GSNOR (ADH5), 

the focus of this review, is differentiated from other ADH enzymes in that primary 

short chain alcohols, in particular ethanol, are not its principal substrate. ADH6 has 

been identified in both fetal and adult livers, but its function remains unclear as this 

enzyme has yet to be isolated for biochemical analysis (Edenberg and Ph, 2007; 

Östberg et al., 2016). A recent examination of ADH6 has provided evidence that it 

may act as an S-nitroso-CoA reductase (Anand et al., 2014). Similarly, ADH7’s 

function remains elusive. Available data suggests ADH7 may serve a role in 

seemingly disparate cellular functions and diseases, such as: first pass gastric 

metabolism of ethanol (Lee et al., 2006), retinol metabolism  
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Table 1 Alcohol dehydrogenase variants: ADHs are most commonly known 

as highly effective metabolizers of ethanol. ADH5 varies from class I ADH 

isozymes in that GSNO and S-(hydroxymethyl)glutathione (HMGSH), the 

spontaneous adduct of formaldehyde and GSH, as its primary substrates. The 

function of all known ADHs has yet to be fully determined. 
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(Jennifer R. Chase, Mark G. Poolman, 2009), Parkinson’s disease (Buervenich et 

al., 2000), and even personality traits in some individuals with substance 

dependence (Xingguang Luo, Henry R. Kranzler, Lingjun Zuo, Huiping Zhang, 

2008). Clearly, the ADH family of enzymes perform a diverse and important role in 

the cellular metabolism of endogenous and exogenous chemicals. Here we focus 

on the function, significance and therapeutic potential of modulating GSNOR 

activity.  

 

Nomenclature of alcohol dehydrogenases 

 

The ADH family of enzymes has had several overlapping naming schemes in the 

past (Holmquist and Vallee, 1991; C. A. Staab et al., 2008). This has led to 

ambiguity in the literature and is due in part to the fact that naming assessments 

have historically been guided by substrate specificity, phylogenic classification, 

and publication date. GSNOR was not disambiguated from glutathione-dependent 

formaldehyde dehydrogenase until 1989 when it was found that these two proteins 

were in fact the same enzyme (Koivusalo et al., 1989). A formal attempt to 

reconcile the nomenclature began in 1999 when it was proposed that ADH proteins 

use numeric Arabic designators to identify each class of enzyme (Duester et al., 

1999). In recent years the research community has generally adopted the gene 

naming guidelines put forth by the Human Genome Organization’s Gene 
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Nomenclature Committee (Wain et al., 2002). Of all the ADH enzymes, GSNOR 

naming is particularly convoluted in this respect. While this protein is still 

sometimes referred to in the literature by its non-standard name, ADH3 (as in class 

III ADH), the official gene designator is now ADH5, and the protein is S-

nitrosoglutathione reductase, ADH5, or alcohol dehydrogenase 5 (class III) c-

polypeptide. It can also be found in the literature under several other monikers: 

Formaldehyde dehydrogenase (FDH or FALDH); alcohol dehydrogenase X 

(ADHX); alcohol dehydrogenase class-3 (ADH-3); cc-ADH (homodimeric chi 

ADH); alcohol dehydrogenase 5; glutathione-dependent formaldehyde 

dehydrogenase (GSH-FDH); and S-(hydroxymethyl) glutathione dehydrogenase 

(EC 1.1.1.284). For purposes of clarity this review will address the gene as ADH5, 

and the protein as ADH5 or GSNOR. 

 

ADH5: Structure/Localization 

 

ADH5, the gene that encodes GSNOR, is located on the reverse strand of 

chromosome 4’s  (4q23 - chr4:99993567- 10000985) (Smith, 1986). ADH5 is 

tandemly aligned in the same orientation as the other genes that encode for the 

entire family of ADH enzymes. Phylogenic analysis of the ADH5 locus revealed 

that GSNOR evolved independently from class I & II ADH (Adinolfi et al., 1984a), 

and it is highly conserved across most vertebrate species (Foglio and Duester, 

1996). GSNOR has a molecular weight of 39,724 Daltons and is translated to a 
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374 amino acid enzyme (UniProtKB identifier: P11766) via 9 exons (Hur & 

Edenberg 1992). Glu-67 and Arg-368 are highly conserved essential amino acids 

important to the catalytic mechanism of this enzyme (Sanghani et al., 2006). Splice 

variants of ADH5 exist and result in the production of truncated proteins; however, 

their functional relevance has not been documented (Höög et al., 2001). 

 

GSNOR functions as a homodimer (Figure 2) (Yang et al., 1997) and is localized 

to the nucleus and cytoplasm (Fernández et al., 2003). Amino acid substitutions in 

the subunit interacting portions of the coenzyme-binding domain prevent 

heterodimeric variants from being generated with other ADH enzymes (Julià et al., 

1988). Each subunit binds a catalytic and structural Zn2+ cofactor (Kaiser et al., 

1988; Östberg et al., 2016), for a total of four Zn2+ ions per functional enzyme. In 

addition to Zn2+, GSNOR also requires a coenzyme that can vary based upon the 

substrate. These include: nicotinamide adenine dinucleotide (NAD+), its reduced 

form NADH, NADPH + H+, or NAD(P)+ (Gupta, Kapuganti Jagadis, 2015; Hedberg 

et al., 2003; Jensen et al., 1998; Sanghani et al., 2000). 

 

In general, ADH enzymes are highly expressed in the liver, the upper digestive 

tract and the kidneys (Zuo et al., 2013). ADH5 RNA has been recognized in all 

major human tissue types with protein expression highest in smooth muscle, liver, 

epididymis, kidney and testis (Giri et al., 1989). GSNOR is an important negative 

regulator of neuronal differentiation during development (Wu et al., 2014) and is 
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the only known ADH enzyme present in the brain (Beisswenger et al. 1985; Galter 

et al. 2003). Conversely, GSNOR protein expression is negligible or non-existent 

in skeletal muscle, lymph nodes, spleen, bone marrow, cerebellum and the lateral 

ventricle (If and Wb, 2009). 

 

Substrates  

S-nitrosoglutathione/formaldehyde: As with most enzymes, GSNOR has a varying 

degree of affinity for several substrates. The two primary targets of GSNOR are 

GSNO, and HMGSH, the spontaneous adduct of formaldehyde and glutathione. 

HMGSH binds at the zinc active site and interacts with the highly conserved 

residues Arg114/115, Asp55, Glu57, and Thr46 (Engeland et al., 1993; Sanghani 

et al., 2002). That being said, the rate of substrate conversion (Kcat) is about 20-

fold higher for GSNO over HMGSH (Green et al., 2012a; Hedberg et al., 2003; 

Salisbury and Bronas, 2015; Sanghani et al., 2000; Claudia A Staab et al., 2008a). 

Both reactions are dependent on an abundant source glutathione (GSH) in the cell. 

GSH is the major thiol in mammalian cells and while concentrations can reach 

as high as 10 mM (Bateman et al., 2008), they are typically 1 mM. Under stress 

conditions the concentration can fluctuate dramatically and drive GSNO towards 

atypical reactions (Figure 3) (Salisbury & Bronas 2015; Staab et al. 2009). The 

enzymatic activity of human recombinant GSNOR for GSNO exhibits a Km of 

approximately 27 µM and a kcat value of between 2,400 and 12,000 min-1 
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Figure 2 GSNOR Quaternary structure model: derived from X-ray diffraction 

(2.7 Å) and displayed as a functional χχ homodimer with (2) Zn+ ions and (1) 

NADH co-enzyme per subunit. (CC) swissmodel.expasy.org SMTL id 1teh.1 
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Figure 3 GSNOR metabolizes multiple substrates: S-nitrosoglutathione 

(GSNO), one of the primary substrates for GSNOR, is first enzymatically degraded 

to an unstable intermediate, N-hydroxysulfinamide (GSNHOH). If glutathione 

(GSH) is present GSNHOH will be converted to glutathione disulfide (GSSG). 

Under certain condition, such as high levels of oxidative stress, GSH will not be 

sufficiently available, and other products, such as glutathione sulphinamide 

(GSONH2) and glutathione sulfinic acid (GSSOH) will be formed. Furthermore, 

GSNOR can oxidize the spontaneous adduct of formaldehyde and GSH, S-

(hydroxymethyl)glutathione (HMGSH), to S-formylglutathione (FGSH). 
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 (Fernández et al., 2003; Hedberg et al., 2003). 

Alcohols: GSNOR more readily acts upon alcohols of greater chain length than 

class I ADH enzymes (Figure 4). This is due in part to a longer span between the 

binding and active site of the enzyme (Salisbury and Bronas, 2015), as well as 

amino acid substitutions that affect binding affinity (Julià et al., 1988; Östberg et 

al., 2016). As a result of these evolutionary divergences, GSNOR is not optimized 

for metabolizing short-chain alcohols. Consequently, it is not a misnomer to identify 

GSNOR as an alcohol dehydrogenase. GSNOR metabolizes both ethanol and 

medium/long change alcohols (preferring a double-bond in the beta position). The 

active site of GSNOR cannot be saturated by ethanol (Beisswenger et al., 1985), 

and the high activity of class I ADH enzymes toward ethanol minimizes the 

functional role of ethanol metabolism by GSNOR. Several Km values for EtOH (all 

>2M) (Lee et al., 2003; Sharma C.P., Fox E.A., Holmquist B., Jornvall H., 1989) 

have been reported in the literature, with a kcat of 33±3 min-1 (Beisswenger et al., 

1985; Lee et al., 2003). GSNOR’s ability to metabolize EtOH is far surpassed by 

those of class I ADH enzymes whose Km values range from 0.05 to 40 mM. As 

such, medium and long chain alcohols (> 4 carbons) (Holmquist and Vallee, 1991; 

Salisbury and Bronas, 2015; Theorell et al., 1969; Wagner et al., 1984) are more 

freely oxidized by GSNOR (Staab et al., 2009).  
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Other substrates: As with most enzymes, the entire cohort of ADH5 substrates is 

not fully known. Additional classes of molecules such as ω-hydroxy fatty acids 

(Achkor et al., 2003; Boleda et al., 1993; Moulis et al., 1991) exhibit a limited affinity 

for the enzyme. The ability of GSNOR to metabolize retinol remains in question. 

ADH7 (a class IV ADH) is the primary ADH accountable for retinol metabolism 

(Cederbaum, 2013), but there is evidence to support GSNOR’s contribution in the 

retinoid-signaling pathway. Studies have shown that ADH5-/- null mice exhibit 

reduced retinoic acid production (Molotkov et al., 2002), and the presence of ADH5 

transcript in human fetal lungs correlates with a decrease in the presence of retinol 

(Coste and Labbe, 2011). Ultimately, the exact nature of relationship between 

GSNOR and retinol is still under investigation (Boleda et al., 1993; Cañestro et al., 

2010; Gonzàlez-Duarte and Albalat, 2005). 

 

GSNOR: Health & Disease 

 

GSNOR is integral to the modulation of ·NO in the cell. ·NO is produced 

enzymatically in many cell types (Schmidt and Walter, 1994). Free ·NO is a highly 

reactive uncharged radical with a half-life of ~1-5 second in vivo (Kelm and 

Schrader, 1990), and will often establish a stable RSNO equilibrium with GSH in 

the form of GSNO (Wink and Mitchell, 1998). ·NO, and by extension, GSNO, plays 

a critical role in smooth muscle relaxation (Bradley et al., 1998; Tomita et al., 2002; 

Buxton, 2004 Ricciardolo et al., 2004; Liu et al., 2016) cardiopulmonary regulation 
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Figure 4 GSNOR metabolism of alcohols: GSNOR can metabolize medium 

and long chain primary alcohols to aldehydes and/or keytones before being further 

processed by other enzymes. GSNOR preferentially metabolizes alcohols with a 

double-bond on the beta carbon; however, despite having a poor affinity for 

ethanol, GSNOR is quite adept at metabolizing this molecule. *Evidence 

supporting GSNOR’s ability to metabolize retinol to retinoic acid is limited. 
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 (Rastaldo et al., 2007; Sears et al., 2004; Tamargo et al., 2010a) neuronal 

signaling (Shahani and Sawa, 2011), as well as dozens of other intra/extracellular 

functions (Pa´ L Pacher, Josehph S. Beckman, 1995; Salvador Moncada, 1994). 

The dysregulation of ·NO production and metabolism can lead to drastic changes 

in protein S-nitrosation (Foster et al., 2009a, 2003), an important posttranslational 

modification, and can have numerous other downstream consequences.  

 

Oxidative/Nitrosative Stress: The dysregulation of GSNO through aberrant 

GSNOR modulation, when combined with oxidative stress, can further exacerbate 

disease. During conditions of cellular stress reactive nitrogen species, such as 

peroxynitrite (ONOO-), are formed when ·NO reacts with superoxide (O2
·-) 

(Squadrito and Pryor, 1998). Not only does oxidative stress commandeer available 

·NO and GSH (Rahman and MacNee, 2000), but peroxynitrite can cross the cell 

membrane and react directly with protein thiols (Alvarez and Radi, 2003) , which 

may prevent S-nitrosation. RNS also induce S-glutathionylation of protein thiols 

(Dalle-Donne et al., 2009), further depleting the GSH pool (Klatt and Lamas, 2000). 

Decades of research have left little question as to detrimental effects of 

oxidative/nitrosative stress (Dalle-Donne et al., 2006; Guzik et al., 2002; Münzel et 

al., 1997), and the mechanistic underpinnings of this process have been 

thoroughly investigated (Apel and Hirt, 2004; Valko et al., 2007). For the purpose 

of this review it should be noted that this process can alter the levels of ·NO and 

GSH in the cell, which in turn can affect NO/GSNO signaling. 
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GSNO & S-nitrosation: Any investigation into the modulation/activity of GSNOR 

would not be complete without mention of S-nitrosation. The study of these PTMs 

and their influence on normal cell-signaling and disease has significantly impacted 

research and medicine for over 25 years (Broniowska and Hogg, 2012a; Foster et 

al., 2009a; Stamler et al., 1992a).  

 

The detection and quantitation of RSNOs in biological systems is inherently 

challenging. The biotin switch technique (Jaffrey and Snyder, 2001), in which S-

nitrosated cysteines are reduced and biotinylated, provides a simple and elegant 

method for the qualitative detection of S-nitrosated proteins. An analysis of a wide 

variety of RSNO measurement techniques, including the biotin switch, has 

established that artifacts are common when measuring RSNOs and it is not always 

possible to identify which thiols have been S-nitrosated (Giustarini et al., 2003). 

Newer techniques have become available in recent years (Chen et al., 2013; 

Devarie-Baez et al., 2013), such as tandem mass spectrometry (MS/MS) of S-

nitrosated protein thiols (Murray et al., 2012; Ulrich et al., 2013b), that are highly 

quantitative. Beyond the problem of quantitation, it has been proposed that other 

thiol modifications such as dithiol/disulfide exchange, S-glutathionylation, and 

oxidation, may affect signaling more readily than do RSNOs (Lancaster, 2008), 

and should be investigated along with S-nitrosation.  
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As with phosphorylation, S-nitrosation regulates cellular mechanisms and affects 

protein-protein interactions. The intracellular availability of nitric oxide and its 

functional derivatives, like GSNO, affect protein S-nitrosation (Broniowska and 

Hogg, 2012a; Hess et al., 2005a; Thomas and Jourd’heuil, 2012a). GSNOR is a 

potent negative regulator of GSNO in smooth muscle (Que et al., 2009). The 

aberrant expression of ADH5, as with many ADH subclasses, is associated with 

disease (Jelski et al., 2009; Jelski and Szmitkowski, 2008; Laniewska-Dunaj et al., 

2013). In fact, the deletion of the ADH5 gene increases both the levels of GSNO 

and total protein S-nitrosation in vivo (Liu et al., 2001a). Protein S-nitrosation is of 

intense interest to researchers and clinicians as the hypo/hyper-S-nitrosation of a 

diverse set of proteins, spanning nearly every tissue types, can have a drastic 

effects in disease (Foster et al., 2009a). Some of these include: Type 2 diabetes 

(Akt et al., 2005), sickle cell anemia (Bonaventura et al., 2002, 1999), ventricular 

arrhythmia in individuals with Duchenne muscular dystrophy (Fauconnier et al., 

2010), cell death and survival pathways (Anand Krishnan V. Iyera, Yon 

Rojansakulb, 2011), post-infarct cardio-protection (Methner et al., 2014), 

pregnancy/parturition (Ulrich et al., 2013b), and many others. Interestingly, 

GSNOR itself is a cysteine rich protein that is S-nitrosated by GSNO, which in turn 

initiates a feedback loop that affects GSNOR expression (Guerra et al., 2016) and 

activity (Brown-Steinke et al., 2010)(Barnett et al., 2017). Although it is beyond the 

scope of this review, it should be noted that GSNOR dysregulation in plants can 
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result in significant biotic and abiotic nitrosative events that affect growth, 

development, and survival (Leterrier et al., 2011; Shi et al., 2015; Yun et al., 2016).  

 

GSNOR dysregulation 

 

GSNOR dysregulation has been implicated in numerous disease sates (Figure 5). 

The use of models and ADH5-/- knockout animals has uncovered surprising and 

valuable data related to GSNOR function. RSNO levels, as well as canonical NO-

mediated pathways, are severely altered when GSNOR activity is modulated. 

Cardiovascular health: One of the major organs affected by GSNOR is the heart 

and surrounding vascularity. It has long been known that ·NO and S-nitrosation 

protect the body from cardiovascular disease. Following myocardial infarction 

ADH5-/- mice exhibit enhanced cardiac regenerative capabilities as a result of 

increased cardiac stem cell turnover (Hatzistergos et al., 2015), as well as a 

reduction in myocardial infarct size and higher coronary vascular density (Lima et 

al., 2009). Moreover, de-S-nitrosation of cardiac ryanodine receptor 2 (RyR2) in 

ADH5-/- mice results in decreased peripheral vascular tone due to calcium “leak” 

(Beigi et al., 2012). In skeletal muscle only about 1 in 50 cysteines on the ryanodine 

receptor are S-nitrosated, indicating that this PTM, even when conservatively 

distributed, can drastically alter protein function (Sun et al., 2001). Taken together 

this data suggests that RyR2 S-nitrosation modulates calcium storage in the  
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Figure 5 Diseases associated with GSNOR dysregulation: The dysregulation 

of GSNOR can initiate or exacerbate many disease states. This is due in part to 

GSNOR’s indirect function as a S-nitrosothiol modulator, as well as ability to 

mediate canonical NO cell signaling though GSNO metabolism. GSNOR inhibitors 

are being actively investigated to treat certain disorders in which increased NO 

availability would be beneficial. 
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sarcoplasmic reticulum. There is clearly a complex relationship between the 

correlative observation of an increase in S-nitrosation and GSNOR dysregulation.  

Immune system: GSNOR performs an important protective role in the immune 

system’s development of lymphocytes. ADH5-/- KO mice show increased RSNO 

production that decreases CD4 single-positive thymocyte development, and 

increases lymphocytic apoptosis (Yang et al., 2010). Damage to immune cells from 

nitrosative stress in ADH5-/- mice results in a significant increase in the animal’s 

susceptibility to pulmonary infection by K. pneumoniae as well as multi-fold 

increases of the bacteria in the spleen and blood, resulting in increased 

inflammation (Tang et al., 2013a). Enhanced nitric oxide synthase (NOS) 2 activity 

in monocytes and macrophages increases ·NO production and elicits a cytostatic 

or cytotoxic response against bacteria, viruses and other intruders, but also 

increases inflammation (MacMicking et al., 1997). The bronchoalveolar lavage 

fluid of asthmatics consists of high macrophage levels as well as a significant 

increases GSNOR activity (Que et al., 2009). Inhibiting GSNOR in these patients 

increases total RSNOs and restores inflammatory markers to near baseline levels 

while limiting ova-induced NFκB activation (Blonder et al., 2014). Ultimately, the 

balance between GSNOR activation and inhibition is critical in maintaining balance 

in the immune system. 

Brain development and function: GSNOR regulation in the brain affects a broad 

swath of cellular functions ranging from neural development and maturation to 
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other neurodegenerative diseases more typically associated with adult and 

geriatric populations. These disease states are often the result of aberrant protein 

S-nitrosation caused by the dysregulation of GSNO. For instance, in developing 

and adult mouse brains the overexpression of GSNOR results in decreased 

neuronal differentiation in part due to de-S-nitrosation of histone deacetylase 2 

(HDAC2) (Wu et al., 2014). Conversely, ADH5-/- mice exhibit neuromuscular 

atrophy as a result of a decrease in muscle mass, while also presenting with 

neuropathic behavior (Montagna et al., 2014). In Drosophila, GSNOR 

overexpression results in visual pattern memory defects which can be rescued by 

co-expression of cyclic-GMP dependent protein kinase G (PKG) (Hou et al., 2011). 

This occurs independently from neuronal development and implies an adjacent 

regulatory role for GSNOR the PKG phosphorylation pathway. Neuronal 

homeostasis is also affected by GSNOR. In a Parkinson’s disease model using 

neuronal (SH-SY5Y) cells a decrease in GSNOR availability results in activation 

of nuclear factor Nrf2 ((erythroid-derived 2)-like 2), which regulates the expression 

of antioxidant proteins (Rizza et al., 2015). Interestingly, GSNOR may also affect 

the phosphorylated state of platelet-derived growth factor receptor-β (Palmer et 

al., 2015) in the brainstems of mice during hypoxic exposure. When these data are 

considered as a whole, it is apparent that deviating GSNOR activity and expression 

from baseline can have drastic consequences in both the developing and mature 

brain.  
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Cancer: The link between GSNOR dysregulation and cancer is not well 

understood. GSNOR deficiency has been known to affect the rate of genomic 

mutations in mice by increasing the frequency of A:T to T:A transposition (Leung 

et al., 2013). This may be the result of a GSNOR-mediated reduction in activity of 

the DNA repair protein O6-alkylguanine-DNA alkyl transferase which can lead to 

an increase in the rate of human hepatocellular carcinoma (HCC) (Tang et al., 

2012; Wei et al., 2011, 2010). Pharmacologic inhibition of inducible NOS (iNOS) 

when GSNOR is down-regulated shows strong potential as a therapeutic for those 

patients with HCC (Chi-Hui Tang, Wei Wei, Martha A. Hanes, 2013). As with HCC, 

some types of breast cancer are linked to a decrease in GSNOR expression. 

Specifically, high levels of human epidermal growth factor receptor 2 (HER2) 

expression in breast tumors is associated with low GSNOR expression and an 

increase in apoptosis-related protein S-nitrosation (Cañas et al., 2016). This study 

also determined that an increase in GSNOR expression in HER2 tumors correlates 

with higher patient survival and begs the question as to whether or not NOS 

inhibition would also serve this population well. These examples are of course 

complicated by the fact that ·NO is a pleiotropic regulator of gene function and the 

modulation of GSNO by GSNOR can have both cytostatic and cytotoxic effects on 

tumor survival (Xu et al., 2002). To this point, GSNOR is effective at removing 

formaldehyde, a known carcinogen, from the cell; however, ADH5 polymorphisms 

do not significantly affect an individual’s capacity to protect against DNA damage 

when exposed to formaldehyde (Xie et al., 2010). Furthermore, ADH5−/− mice are 
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known to generate DNA damage when formaldehyde forms and adduct with 

guanine to create N2-hydroxymethyl-dG which can result dysfunction of 

hepatocytes and nephrons (Pontel et al., 2015). 

 

Asthma & Single nucleotide polymorphisms (SNPs): SNPs can alter the 

transcriptional output of a gene as well as the structure/function of proteins they 

encode. Several SNPs in the promoter and 3’ UTR of the ADH5 gene can result in 

the aberrant expression of GSNOR (Choudhry et al., 2010a). Of particular interest 

is the observation that airway hyperesponsivity in wild-type mice correlates with 

increased expression of GSNOR and decreased RSNO production, while ADH5-/- 

mice are protected from airway hyperresponsiveness and maintain higher total 

RSNO levels (Que et al., 2005). In humans GSNOR upregulation can lead to 

changes in airway smooth muscle tone in asthmatics (Henderson and Gaston, 

2005a; Wu et al., 2007). A study involving Mexican children with asthma who 

possess SNPs in the promoter region of ADH5 at suspected NF-κB binding sites 

(rs2602899 and rs2851301), were found to exhibit a decreased relative risk of 

asthma due to suppressed GSNOR production (Wu et al., 2007). Interestingly, 

alternative SNPs (rs1154404 and rs28730619) were associated with an increase 

in childhood asthma risk, although the mechanism behind this correlation has not 

been determined (Wu et al., 2007). Another study in African American children 

found that SNPs in ADH5 and the β2 adrenergic receptor gene are associated with 

acute response to asthma-specific therapy (Moore et al., 2009a). 
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Looking beyond GSNO-mediated relaxation of airway smooth muscle we may also 

consider GSNOR’s ability to metabolize formaldehyde, a chemical known to induce 

bronchoconstriction after long term exposure at low concentrations (Leikauf, 

1992). It has been suggested that the presence of formaldehyde in airway smooth 

muscle may stoichiometrically favor bound NADH/GSNOR, thereby increasing 

GSNOR metabolism of GSNO, and by extension, promote smooth muscle 

contraction (Thompson and Grafström, 2007). 

 

Regardless of the mechanism driving GSNOR-mediated consumption of GSNO in 

airway smooth muscle, it is easy to see why the inhibition of GSNOR has been of 

particular interest to researchers for its therapeutic potential as a smooth muscle 

relaxant. 

 

Myoendothelial Junctions: GSNOR plays an interesting role at myoendothelial 

junctions (MEJ) where it co-localizes with the hemichannel Connexin-43 (Cx43). 

Cx43 hemichannels form gap junctions between cells by linking to hemichannels 

in opposing membranes to couple endothelial and vascular smooth muscle cells 

and when Cx43 is S-nitrosated this pore allows for the free movement of inositol 

trisphosphate from vascular smooth muscle to endothelial cells. Due to the co-

localization of GSNOR and Cx43 at the MEJ, basal ·NO availability at this site is 

blunted, which in turn increases the likelihood that Cx43 will not be S-nitrosated 
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(Straub et al., 2011). This decreases channel permeability until Ca2+ levels 

increase as a result of smooth muscle cell stimulation, which in turn activates 

eNOS and increases the probability of Cx43 S-nitrosation.  

 

Myometrium: ·NO is an important mediator of relaxation in the myometrium. It has 

been well established that ·NO relaxes vascular and gastrointestinal smooth 

muscle by activating soluble guanylyl cyclase (sGC), which in turn converts 

guanosine triphosphate to cyclic guanosine monophosphate (cGMP), activating 

PKG, which in turn dephosphorylates the regulatory light chain (MYL9) of myosin 

via the amplified phosphatase activity of MYPT1 (pS695) (Grassie et al., 2011; 

Nakamura et al., 2007; Puetz et al., 2009; Roux et al., 2012). This is not the 

dominant ·NO-mediated relaxation pathway in uterine smooth muscle however. 

·NO can relax the myometrium even when sGC has been inhibited (I L O Buxton 

et al., 2010b). The pathway through which NO relaxes the myometrium 

independent of cGMP is unknown, but it is likely that the S-nitrosation of contractile 

proteins plays a role. It has been determined that the state of labor (full term vs. 

preterm) can vastly alter the S-nitrosated protein landscape in uterine smooth 

muscle after exposure to GSNO (Ulrich et al., 2012a). It is also well known that S-

nitrosation can vary significantly based upon the cytoplasmic availability GSNOR 

(Broniowska and Hogg, 2012a; Hess et al., 2005a; Thomas and Jourd’heuil, 

2012a). Regardless of the pathway through which ·NO acts to relax uterine smooth 

muscle, it does beg the question as to whether or not inhibiting GSNOR, and 
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thereby increasing intracellular availability of GSNO, may serve as an effective 

tocolytic strategy by promoting uterine quiescence through ·NO-mediated 

relaxation pathways. This notion is supported by data showing an increased 

expression of GSNOR in patients delivering spontaneously preterm.  

 

Therapeutic Inhibition of GSNOR 

 

GSNOR is an attractive therapeutic target. GSNOR inhibition increases GSNO 

availability in the cell and in turn facilitates ·NO-mediated signaling pathways. 

Dozens of small molecules have been identified that can inhibit GSNOR to varying 

degrees (Green et al., 2012a; Jiang et al., 2016a; Sanghani et al., 2009; Sun et 

al., 2012, 2011a, 2011b). Two of these, N6022 (3-(5-(4-(1H-imidazol-1-yl) phenyl)-

1-(4-carbamoyl- 2-methylphenyl)-1H-pyrrol-2-yl) propionic acid) and N91115 from 

Nivalis Pharmaceuticals show promise as potentially safe and effective GSNOR 

inhibitors that have undergone clinical trial for both the treatment of mild asthma 

(clinicaltrials.gov -  NCT01316315), and cystic fibrosis in individuals who are 

heterozygous for the cystic fibrosis transmembrane conductance regulator (CFTR) 

gating mutation CFTRΔF508+ (clinicaltrials.gov – N6022: NCT01746784; N91115: 

NCT02724527). Endogenous GSNO levels are low in the airways of cystic fibrosis 

patients (Grasemann et al., 1999) and GSNOR inhibition is an appealing 

alternative to the direct administration to of GSNO (Snyder et al., 2002; Zaman et 

al., 2013, 2001). N6022 is well tolerated with minimal side effects, even at high 
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concentrations, in both animals (Blonder et al., 2014; Colagiovanni et al., 2012a) 

and humans (clinicaltrials.gov – NCT01147406, NCT01746784). Another GSNOR 

inhibitor, SPL-334 (4-{[2-[(2-cyanobenzyl) thio]-4-oxothieno[3,2-d]pyrimidin-3(4H)-

yl]methyl}benzoic acid) from SAJE Pharmaceuticals (Baltimore, MD), is being 

tested as a therapeutic to treat allergic asthma and interstitial lung disease (ILD). 

Using an allergic asthma mouse model, intranasally administered SPL-334 

decreased CD4+ Th2 cytokines, eosinophils, and mitigated the lung inflammatory 

response (Ferrini et al., 2013a). Likewise, in a mouse model of ILD SPL-334 

functions as both a prophylactic agent and a therapeutic to attenuate profibrotic 

cytokines and collagen accumulation in the lungs (Luzina et al., 2015). Unlike 

N6022 and N91115, SPL-334 is not in human clinical trials. 

 

FDA-approved drugs are also being tested as potential GSNOR inhibitors. 

Nebivolol, a ß1-adrenergic receptor antagonist used for the management of 

hypertension, has been shown to increase total RSNO levels in animal and cell 

models (Jiang et al., 2016a). Our own investigation of GSNOR fails to confirm 

Nebivolol as an inhibitor of GSNOR in an enzyme activity assay. Since there are 

no FDA-approved GSNOR inhibitors, the repurposing of existing therapeutic 

agents that inhibit GSNOR and/or modulate GSNO and RSNOs is of interest. 

 

When considering GSNOR inhibitors as therapeutic agents, it should be taken into 

consideration that enzymes other than GSNOR modulate ·NO availability in the 
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cell. ·NO is critical to the normal function of most cells types, and as is often the 

case, there are multiple concurrent and complementary mechanisms to regulate 

·NO and RSNOs (Benhar et al., 2009; Liu et al., 2001b). Two of the most well-

known are thioredoxin-1 (Sengupta and Holmgren, 2012a, 2012b) and carbonyl 

reductase (Bateman et al., 2008). NOS, the predominate source of ·NO in the 

body, can also be dysregulated in certain disease states, as can its substrate, L-

arginine (Ckless et al., 2007). For instance, after stimulation of the cavernous 

nerve in ADH5 -/- mice, eNOS phosphorylation did not increase as predicted 

(Musicki et al., 2016). Modulating GSNOR activity may insufficiently control, or 

even aggravate some conditions if these alternate •NO-regulators are the source 

of the disorder. Unfortunately, direct application of endogenous •NO-donors, such 

as GSNO, Cys-NO, or SNO-albumin, as well as some exogenous donors, are of 

limited clinical value because they either degrade rapidly, cause intolerable side 

effects, or lead to a toxic systemic build up nitrates (H.H. Al-Sa’doni, 2005). 

 

The therapeutic inhibition of GSNOR to treat ·NO-mediated disorders should be 

weighed carefully against potential contraindications. For example, the inhibition 

of GSNOR may increase a patient’s susceptibility to bacterial or viral infection. The 

inhibition of GSNOR will also increase total RSNO levels and this can have 

adverse effects in the body, especially if the drug is administered systemically and 

not targeted to a specific tissue type through means such as liposomal delivery. 

GSNOR regulation varies widely in different cancer types (Cañas et al., 2016; Chi-
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Hui Tang, Wei Wei, Martha A. Hanes, 2013). Inhibiting GSNOR may lead to a 

further increase in GSNO at the tumor site which can favor angiogenesis (Prudente 

et al., 2017). Conversely, with disorders such as asthma and hypertension, 

GSNOR inhibition results in the desired relaxation of the smooth muscle.  

 

Conclusion 

 

·NO, and by extension ·NO-donors, have been investigated intensely for over a 

century as therapeutics (Schmidt and Walter, 1994). ·NO modulation not only 

affects traditional pathways connected to this highly reactive molecule, but it also 

drastically alters S-nitrosation levels in the cell. GSNOR is unique among the ADH 

family of enzymes in that it targets GSNO and varies the body’s response to 

endogenously generated NO carried as GSNO. ADH5-/- animal and cell models 

have provided a unique window into the importance of GSNOR in nearly every 

tissue type. The up/down regulation of GSNOR in humans has also provided 

invaluable data to the medical and research communities concerning its role in 

disease states. There are currently no FDA-approved modulators of GSNOR; 

however, several drugs are being investigated, and some are in clinical trial. 

Indeed, our understanding of the dysregulation of GSNOR and its effect on protein 

S-nitrosation and other glutathione/·NO-mediated events is in its infancy. Further 

investigations into the role of GSNOR in health and disease are needed to reveal 

the most effective therapeutic options. 
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Chapter 4 

 

S-nitrosoglutathione Reductase and Spontaneous Preterm Labor 
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Abstract: 

 

The underlying mechanism(s) of spontaneous preterm labor (sPTL) are unknown.  

Currently available therapeutics do not reliably delay preterm birth beyond 48-

hours after the onset of labor.  More effective tocolytics will require a better 

understanding of the pathophysiology of sPTL.  Here we show that sPTL 

myometrium exhibits a blunted relaxation response to ·NO, a finding that 

corresponds to our discovery that S-nitrosoglutathione reductase (GSNOR), an 

enzyme that regulates ·NO, is upregulated sPTL myometrium as well.  We 

investigate GSNOR inhibitors to establish if they serve as effective tocolytics. We 

find that N6022, a known GSNOR inhibitor, and nebivolol, which does not inhibit 

GSNOR, attenuate uterine contractions, although through differing mechanisms, 

revealing a novel class of tocolytics for the treatment of sPTL.   
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INTRODUCTION 

 

Approximately 15 million preterm births occur annually worldwide (Blencowe et al., 

2012).  Preterm infants that survive are at risk for learning disabilities, cerebral 

palsy, vision and hearing loss, respiratory and digestive problems (Ray and Lorch, 

2013). In 2012, more than 11% of US births were premature (Hamilton et al., 2013). 

The etiology of spontaneous preterm labor (sPTL) is almost certainly a complex 

amalgam of disparate medical, environmental, and genetic risk factors thought to 

converge on effector pathways in the myometrium to influence contractility and 

birth timing in women (Romero et al., 2014).  Tocolytics used to prevent or halt 

sPTL, in an effort to prevent preterm birth, are not FDA approved for this purpose, 

and on average are said to delay labor for only 48 hours (Elvira et al., 2014), a 

window for antenatal steroid (Roberts et al., 2017), but hardly a solution to the 

problem.  Microbial infection might initiate preterm labor (PTL) in some cases, but 

antibiotic treatment, prophylactic or otherwise, does not prevent preterm birth 

(Prince et al., 2014; Vinturache et al., 2016).  If we are to advance our 

understanding of preterm labor in order to delay or prevent preterm birth, we posit 

that understanding the biochemical mechanisms of relaxation of the uterus is 

paramount.  This point is bolstered when we consider that employing tools such 

as terbutaline, used to relax airway smooth muscle, or nifedipine, used to relax 

vascular smooth muscle, in an effort to prevent preterm labor are borrowed 

pharmacology.  Even Atosiban, a selective oxytocin–vasopressin receptor 
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antagonist designed specifically to mitigate contractions, is not approved for use 

in the United States and does not reduce the risk of preterm birth or improve 

neonatal outcome (Papatsonis D, Flenady V, Cole S, 2005). It is not unreasonable 

to conclude that myometrial relaxation signaling is unique, and a detailed 

understanding of myometrial relaxation signaling is urgently needed. 

Unlike most tocolytics, few drugs target the relaxation pathway in an attempt 

to mitigate contractile force and frequency. Nitric oxide (·NO), a powerful 

endogenous smooth muscle relaxing agent, is an interesting therapeutic target.  In 

pregnant women, the administration of nitric oxide or NO-donors, such as with 

nitroglycerine transdermal patches, show little (Smith et al., 2007) to no (Nankali 

et al., 2014) clinical efficacy; and as we will show here, ·NO fails to quiesce sPTL 

myometrium.  This is not to dismiss the role of ·NO in the myometrium.  ·NO 

functions as an important endogenous mediator of relaxation in myometrium, and 

we offer evidence that ·NO metabolism is dysregulated in sPTL uterine smooth 

muscle. 

·NO availability in the myometrium is regulated by enzymes such as 

thioredoxin (Trx) and its cognate reductase (TrxR) (Sahlin et al., 2000), carbonyl 

reductase (Khan et al., 2010), and the class-III alcohol dehydrogenase, S-

nitrosoglutathione reductase (GSNOR or ADH5).  GSNOR utilizes the co-enzyme 

NADH to carry out a 2e− reduction of GSNO to generate glutathione sulfinamide 

(Claudia A Staab et al., 2008b) before it is further reduced back to glutathione 

by glutathione reductase (Figure 1).  A drug that could effectively mitigate ·NO 
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metabolism, while minimizing adverse or off-target effects — a common problem 

with these classes of drugs — could function well as a tocolytic.  Here we look 

closer at GSNOR and its function in myometrial quiescence. 

The dysregulation of GSNOR is linked to many diseases throughout the 

body (Scott D. Barnett and Buxton, 2017b).  The possibility that the dysfunctional 

expression of GSNOR may contribute to sPTL has not been previously 

investigated; however, there is precedence to merit a more detailed exploration of 

GSNOR’s role in pregnancy and parturition.  What initially lead our laboratory to 

investigate GSNOR is its known dysregulation in airway smooth muscle (Wu et al., 

2007), which shares many of the same biochemical pathways as the myometrium, 

including its responsiveness to ·NO. In humans, GSNOR upregulation heightens 

airway smooth muscle tone in asthmatics (Henderson and Gaston, 2005a; Wu et 

al., 2007).  Conversely, studies involving ADH5(-/-) knockout mice show that these 

animals are protected from airway hyperresponsiveness (Que et al., 2005), 

presumably due to the increased availability of ·NO, as well as an increase in s-

nitrosothiols (SNOs), a topic that will be covered in chapter 5.  While correlative 

and not necessarily causal, it has also been reported that asthma is a positive 

predictor of preterm labor with a relative risk estimate of 2.33 (Doucette and 

Bracken, 1993).  Here we investigate the relationship between GSNOR and the 

sPTL, and we examine the usefulness of GSNOR inhibition as a tocolytic to 

mitigate contractions in the myometrium. 
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Figure 1: GSNO Metabolism by GSNOR - GSNOR metabolizes multiple 

substrates, but has the highest affinity for S-nitrosoglutathione (GSNO).  

GSNOR requires Zn2+ and NADH (co-factor/co-enzyme) for activation, and 

can be inhibited by a number of drugs, to include N6022. GSNO is first 

enzymatically degraded to an unstable intermediate, N-hydroxysulfinamide 

(GSNHOH).  If sufficient glutathione (GSH) is available, GSNHOH will be 

spontaneously converted to glutathione disulfide (GSSG). Glutathione 

reductase returns GSSG back to GSH, completing the cycle (not shown). 
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Material and Methods: 

 

Tissue collection. Modified from (Ulrich et al., 2013c). Human tissue collection and 

research was approved by the University of Nevada Biomedical Review 

Committee for the protection of human subjects. Human uterine myometrial 

biopsies were obtained with written informed-consent from mothers undergoing 

Cesarean section, and did not have infection or rupture of membranes. Tissues 

were stored in cold Krebs buffer containing: NaCl (118mM), KCl (4.75mM), CaCl2 

(2.5mM), KH2PO4 (1.2mM), NaHCO3 (25mM), MgCl2 (1.2mM), dextrose (20mM), 

and adjusted to pH 7.4. Tissues were microdissected under magnification to isolate 

smooth muscle, employed in contractile experiments or snap frozen in liquid 

nitrogen, and stored at -150°C. The average age for patients in the pregnant 

laboring group was 28.9 ± 5.6 yr and in the preterm laboring group 34.1 ± 2.5 yr. 

Pregnant laboring patients ranged from 39 to 41 wk gestation, with the mean at 39 

wk. Preterm laboring patients without evidence of infection, PROM or 

preeclampsia ranged from 29.2 to 36 wk of gestation. 

Animal studies were approved by the University Institutional Animal Care 

and Use Committee. Dunkin-Hartley Guinea pigs (Elm Hill, Chelmsford, MA) were 

purchased as either virgin juveniles (300-350g) and bred on site, or as timed-

pregnancies (30-35d). Non-pregnant guinea pigs were estrogen primed (3mg/kg 

β-estradiol) 48-hours prior to tissue collection to ensure alignment of estrous 

cycles. Virgin female guinea pigs, and timed-pregnant animals, were sacrificed 
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under isoflurane anesthesia. Uterine tissue was dissected and used immediately 

as previously described (Iain L O Buxton et al., 2010a) or flash frozen and stored 

at -80°C. 

Contractile studies. Strips of myometrium (~0.5x15mM) were clip-mounted 

by silk thread, attached to a force transducer, and isometrically stretched to an 

initial tension of 1.2x tissue length in an organ bath (WPI, Sarasota, FL) containing 

Krebs buffer. Tissues were maintained at 37°C and gently bubbled with balanced 

oxygen (95% O2, 5% CO2).  Tissues were then challenged with KCl (60mM 

replacing NaCl) for 3 min, followed by washout, then allowed to equilibrate for 1 

hr, during which time regular spontaneous contractions were seen.  Only tissues 

that responded to KCl-challenge were employed in experiments.  Under some 

conditions, tissues were further challenged with oxytocin (10nM), followed by 

washout. Both Cysteine-NO (100µM) or GSNO (300µM) were made daily. Data 

were analyzed with LabScribe (version 3.015800, Mac OS 10.11, iWorx systems 

inc., Dover, NH).  Aorta was collected from 3-month-old Sprague-Dawley rats, cut 

into 2mm rings, and hung by stainless steel triangles that were passed through the 

lumen of each ring. 

Wes Protein Assay. Each sample was ground to a powder under liquid 

nitrogen and reconstituted in RIPA buffer (0.8 mg/ml final): Tris pH 7.5 (20mM), 

NaCl (150mM), EDTA (1mM), EGTA (1mM), NP-40 (1%), sodium deoxycholate 

(1%), and protease inhibitors (cat.78430: Thermo Fisher Scientific Inc., Waltham, 

MA). Wes was run according to manufacturer protocols (SM-W004 - 
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ProteinSimple, San Jose, CA) using a 12-230 kDa Wes Separation Module 

coupled to a 25-capillary cartridge. GSNOR was labeled with rabbit anti-ADH5 

primary antibody (1:100 dilution, ab59134: Abcam, Cambridge, MA) and mouse 

anti-GAPDH (1:100 dilution, sc-47724: Santa Cruz Biotechnology, Inc., Dallas, 

TX). Linearity of ADH5 1° Ab was tested (Supp. Figure 1A/B), as well as specificity 

of the antibody in guinea pig tissue lysates (Supp. Figure 1C).  GSNOR and 

GAPDH were not multiplexed due to insufficient separation of bands as a result of 

similar molecular weights. Protein identification and quantification was determined 

using Compass software (version: 2.7.1, Mac OS 10.11: ProteinSimple, San Jose, 

CA), followed by Prism (version 7.0c for Mac OS 10.11, GraphPad Software, La 

Jolla California USA) when necessary.  Power analysis for each cohort was set to 

alpha=0.05 and an 90% power level (G*power,	Düsseldorf, Germany).  A sample 

size of n=8 for PTL and TL groups was calculated. 

Enzyme Activity Assay. The Enzyme Activity Assay was performed as previously 

described (Liu et al., 2001a) using total protein lysate from human uterine smooth 

muscle tissue taken from the superior portion of the incision. The lysate was 

prepared to a final concentration of 1 mg/ml in oxygen-purged experimental buffer 

containing: Tris-HCl pH 8.0 (20mM), EDTA (0.5mM), NP-40 (0.1%) and 1mM 

phenylmethylsulphonyl fluoride (PMSF). Lysate was equilibrated at r.t. for 10 min 

in the presence of NADH (300µM) prior to addition of GSNO (200µM), and tested 

against appropriate controls (Supp. Figure 2). Absorbance at 340nm (A340) 

(SmartSpecTM Plus: Bio-Rad Laboratories, Inc., Hercules, CA) was recorded at t = 
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0, 5, 10 min to ensure stability of the NADH pool prior to the addition of GSNOR 

and/or inhibitors.  Following equilibration, GSNO was added to the lysate mixture 

and A340 recording were collected at t = 0, 5, 10 min. N6022 (8nM) (S77589: 

Selleck Chemicals, Houston, TX), a GSNOR inhibitor, was used to verify negligible 

NADH conversion to NAD+ in the presence of GSNO. N6022 was added 

concurrently with NADH to the protein lysate and equilibrated for 10 min prior to 

the addition of GSNO. 

SC-TR Activity Assay. The selenocystine-thioredoxin reductase (SC-TR) assay 

was performed as previously described (Cunniff et al., 2013) with the exception 

that substituted selenocystine with selenocystamine due to poor aqueous solubility 

of selenocystine.  The SC-TR assay measures the reduction of diselenide-bridged 

amino acids (substrate) by TR through monitoring the consumption of NADPH (co-

enzyme) at 340 nm (a 365nm filter was used but showed adequate Abs at this 

wavelength, Supp. Figure 8). HEK293 cells were grown to 90% confluency and 

lysed with ice-cold TE-buffer (pH 7.5) containing 1mM EDTA, 1% NP-40, 1 µg/ml 

leupeptin, 1mM NaF, and protease inhibitors (cat.78430: Thermo Fisher Scientific 

Inc., Waltham, MA). Lysed cells were sonicated for on ice for 30 seconds with 2 

second pulses.  Lysates were centrifuged at 10,000xg for 10 minutes and protein 

concentrations were determined by EZQ Protein Quantification (Invitrogen, 

Carlsbad, CA).  100µl reaction volumes (final volume) were used in costar 3396 

96-well polystyrene plates and read on a Hidex Plate Chameleon (model 425-106, 

MikroWin software ver. 4.43).  Reaction mixtures consisted of: 500µM NADPH 
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(sigma N1630), 800µM selenocystamine (sigma S0520), and 25µg total protein 

lysate from HEK293 cells, with or without 1 or 10 nM auranofin (sigma A6733), in 

a final volume of 100µl in lysis buffer. Protein lysates and inhibitors were incubated 

at r.t. for 5 minutes prior to the start of the assay to allow for equilibrium to occur. 

Samples were read at 30 second intervals for 20 minutes at 365 nm. 

Confocal Microscopy. Myometrial tissues were sliced into 10μm sections using a 

cryostat at -30°C and placed on coated slides (Surgipath, Buffalo Grove, Illinois). 

Samples were fixed in 4% paraformaldehyde then permeabilized with 0.5% Triton 

X-100. GSNOR protein was labeled with goat anti-rabbit ADH5 (1:250) 1° antibody 

(ab59134: Abcam, Cambridge, MA), followed by either TRITC-donkey anti-rabbit 

2° (Santa Cruz Biotech) for tissue sections, or FITC- donkey anti-rabbit 2° (Santa 

Cruz Biotech) for cultured cells, then mounted in Vectashield plus DAPI 

(VectorLabs, Burlingame, California). Negative control images were obtained 

through omission of ADH5 1° Ab.  Images were acquired on an Olympus IX81 

Fluoview confocal microscope system at 40x magnification and analyzed with 

bundled software FV10-ASW (version 04.02, Windows 7 professional, Olympus 

America, Inc., Melville, NY). Brightness and contrast were adjusted globally using 

identical values for each image (brightness +256, contrast +53, Photoshop CC 

2017.1.0, Adobe Systems Inc., San Jose, CA). 

 Analysis. All data analysis was conducted using Prism (version 7.0c for Mac 

OS 10.11, GraphPad Software, La Jolla California USA).  Significance is defined 

as P < 0.05 using an unpaired, two-tailed, student’s t-test, unless otherwise stated. 
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Results: 

 

NO-Mediated Relaxation is Blunted in Preterm Human Myometrium.  

Patients who enter labor spontaneously preterm without infection have a blunted 

relaxation response to the ·NO donor, Cys-NO (Figure 2),  suggesting that the 

mechanism of ·NO action may be involved in the pathophysiology of preterm labor.  

Addition of ·NO donor in increasing concentrations (1nM – 100µM) to term tissues 

(TL) relaxed both spontaneously active and oxytocin-treated tissues.  100µM Cys-

NO relaxed TL tissue by 84% and 90% over basline, in sponateous-contracting 

and oxytocin-treated tissues, respectively (P<0.05). In tissues from sPTL 

myometrium, Cys-NO relaxation was insignificant compared to baseline in 

oxytocin-treated samples (p=0.6), and severely blunted (26%) in spontaneous 

samples as compared to TL tissue (84%). Treatment of sPTL tissues in an identical 

fashion revealed that Cys-NO could not relax OT-treated tissues and the relaxation 

of spontaneous contractions was blunted.  This is the first study to measure the 

ability of ·NO to relax spontaneous preterm vs. term pregnant human myometrium.   

GSNOR is upregulated in spontaneous preterm laboring myometrium.  One 

possibility to explain the blunted relaxation of sPTL myometrial tissue to ·NO is that  

·NO’s availability in sPTL tissue may be limited.  Glutathione (GSH) is the major 

thiol in mammalian cells and it is expressed in the mM range (Bateman et al., 

2008; Leeuwenburgh et al., 1994).  S-nitrosoglutathione (GSNO), a modified   
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Figure 2: The myometrium exhibits a blunted response to nitric oxide: 

Myometrial strips from patients in labor at term or preterm were hung in 

tissue baths and allowed to contract spontaneously. Strips served as their 

own control (compared to baseline).  (a) In tissues from women in labor at 

term Cys-NO relaxed oxytocin (100nM) induced contractions (q).  (b) In 

tissues from women in labor spontaneously preterm Cys-NO relaxation was 

insignificant ( ) compared to relaxation in baseline measurements (p=0.6).  

Cys-NO relaxed term laboring myometrium contracting spontaneously ( ) 

while the relaxation seen in tissues from women in labor spontaneously 

preterm was blunted ( , 26% vs. 84% relaxation) and the apparent IC50 

was right-shifted 10-fold.  Data are mean ± SEM of triplicate determinations 

in 5 patients in each pregnancy state.   
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form of GSH in which an NO-moiety has been added to its sole cysteine, is the 

likely form in which ·NO resides in the cell to trans-nitrosate proteins (Gaston et 

al., 1993).  GSNO is efficiently metabolized by GSNOR, making this enzyme an 

interesting and appropriate target to investigate.  Using a Wes® Simple 

Western™ assay we determined that GSNOR protein expression increased in 

sPTL myometrium (sPTL, N=9) compared to term tissues (TL, N=8) p=0.03, as 

well as in term laboring (TL) myometrium compared to term non-laboring (TNL) 

tissue (TNL, N=3, p=0.0089), as determined by a two-way unpaired student’s t-

test (Figure 3A).  Women of African descent are known to be disproportionately 

affected by sPTL.  We also compared GSNOR expression in Caucasian women 

to those of women of African descent, both in term-laboring and term non-

laboring myometrial samples, but did not find a significant difference in GSNOR 

expression	(TNL p=0.7541, n=3; TL p=0.4138, n=3) between African American 

vs. Caucasian samples. (Supp. Figure 3A).  Due to a limited “n” in this cohort 

there is insufficient data to draw a definitive conclusion, one way or the other, as 

to whether or not GSNOR expression varies between race in sPTL myometrium. 

In order to better understand the GSNOR protein expression profile in the 

myometrium over the entire length of the pregnancy, something not possible in 

humans, we utilized a guinea pig model. Here we address the possibility that the 

observed differences in sPTL GSNOR expression are the result of gestational 

length, rather than a pathological feature of sPTL.  GSNOR expression in guinea 

is pigs biphasic (Figure 3B), dropping until mid-gestation, then trending towards 
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pre-pregnancy levels at term, and was significantly lower than the non-pregnant 

(NP) guinea pig by gestational days 40-45 (p=0.0005), 50-55 (p=0.002), and 60-

65 (p=0.005), as determined by one-way ANOVA (F (5, 21) = 9.382" P<0.0001) 

followed by Dunnett’s multiple comparisons test. Decreased expression of 

GSNOR increases SNOs (Liu et al., 2004), which promotes critical S-nitrosations 

that are consistent with quiescence (Ulrich et al., 2012b), while increased 

expression of GSNOR, as with sPTL, would serve to lower the availability of ·NO 

and thus lower critical S-nitrosations that may govern uterine quiescence, a topic 

that will be covered in chapter 5. 

GSNOR Enzyme activity in Pregnant Myometrium.  To insure that the 

increased protein expression of GSNOR correlates to a functional increase in 

enzymatic activity, we adapted an enzyme activity assay that follows NADH 

consumption, NADH being an obligate co-enzyme of GSNOR (Figure 1), in protein 

lysates of TL and sPTL myometrial protein lysates (Liu et al., 2001b) (Figure 4). 

N6022 (3-(5-(4-(1H-imidazol-1-yl) phenyl)-1-(4-carbamoyl- 2-methylphenyl)-1H-

pyrrol-2-yl) propionic acid) from Nivalis Pharmaceuticals is known to be a potent 

and specific inhibitor of GSNOR (Green et al., 2012b), and was used to verify 

specificity of the assay. The enzyme activity assay uses a total protein lysate from 

frozen tissue in the presence of NADH and GSNO.  Once frozen tissue shows no  
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Figure 3: GSNOR expression in the myometrium: (a) Wes® protein assay of 

normalized GSNOR expression in tissues from women laboring 

spontaneously preterm (PTL - mean delivery at 34 wks. ± 2.5 wks., n=9), 

tissues from women in labor at term (TL, n=8), and tissues from women 

non-laboring at term (TNL, n=3).  Statistical comparison by Dunnett's 

multiple comparisons test; sPTL vs TL p=0.04; PTL vs TNL p=0.02; TL vs 

TNL p=0.007. (b) A gestational timing control of GSNOR expression was 

performed in guinea pigs. GSNOR expression at several times during 

pregnancy was compared to non-pregnant (NP) control. (n=3-6 at each 

time). Statistical comparison gestational times to NP by ANOVA (c) 

Confocal images of GSNOR expression in telomerized human uterine 

smooth muscle cells (PHUSMC 60x magnification, green = GSNOR, blue = 

nucleus) and whole tissue from TL, and PTL myometrial tissue (40x 

magnification, red = GSNOR, blue = nucleus). All data presented as mean 

± SEM. 
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Figure 4: GSNOR enzyme activity: GSNOR enzyme activity assay measured 

at time = 0 & 10 min: (a) Total GSNOR activity from myometrial protein 

lysate (1 mg/ml) is higher in tissues from women laboring spontaneously 

preterm (sPTL n = 4) than in tissues from women laboring at term (TL n=4) 

p=0.006.  The addition of N6022 (8nM) reduces GSNOR activity to baseline 

levels. (b) NADH, a required coenzyme for GSNOR activation, absorbs 

strongly at 340nm. A decrease in A340nm occurs when the enzyme 

converts NADH to NAD+ and serves as a measure of GSNOR enzyme 

activity during the conversion of GSNO to glutathione disulfide (GSSG). 

Values (1/A340 by convention) are reported as mean ± SEM. 
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depreciable decline in GSNOR enzymatic activity as compared to fresh tissue, 

although frozen protein lysates are not suitable for this assay (Supp. Figure 2A).  

NADH is required for the conversion of GSNO to GSSG and absorbs strongly at 

340nm. GSNOR converts NADH to NAD+ which does not absorb at 340nm and 

can therefore be used as an indirect measurement of GSNOR activity (Liu et al., 

2001b).   Both term laboring (P= 0.0001, 0-Min Mean ± SEM = 0.448 ± 0.00252; 

10-Min Mean ± SEM = 0.45325 ± 0.01091) and preterm laboring (P= 0.0001, 0-

Min Mean ± SEM = 0.35850 ± 0.00272; 10-Min Mean ± SEM = 0.55425 ± 0.02141) 

protein lysate displayed a significant increase in GSNOR activity after a 10-minute 

incubation with 300µM GSNO. Furthermore, preterm laboring protein lysate 

exhibited significantly higher enzyme activity than term laboring lysate (P= 0.0063, 

TL Mean ± SEM = 0.45575 ± 0.01087, PTL Mean ± SEM = 0.55425 ± 0.02141). 

8nM N6022 abolished GSNOR enzyme activity. Control absorbance (-GSNO) did 

not change significantly after a 10-minute incubation in total protein, indicating that 

NADH is not being metabolized or degraded by other components in the lysate.  

As with GSNOR protein expression, there was not a significant difference in 

enzyme activity between the two racial cohorts (TNL p=0.5318; TL p=0.6946; n=3 

per group).  Other experimental controls, such as the addition of GSNO (no 

NADH), only NADH (no GSNO), or GSNO in the presence of GSH, did not 

significantly change absorbance over the 10-minute observation period (Supp. 

Figure 2). This finding indicates that components in the protein lysate, other than 

GSNOR, do not contribute significantly to the degradation of NADH in this assay. 
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GSNOR Inhibition:  Nebivolol is the most potent of the 3rd generation β1AR 

antagonists.  It has been proposed that nebivolol also acts as a GSNOR inhibitor 

(Jiang et al., 2016b) based on two observations: (1) It shares structural similarities 

with N6022, and (2) it is known to increase total levels of s-nitrosothiols in cells 

and tissue.  In order to determine if nebivolol alters the activity of GSNOR we 

employed the same enzyme same activity assay as described above, in the 

presence of N6022, nebivolol, or the β2AR agonists formoterol or terbutaline 

(Figure 5), all of which share structural similarities to N6022 (except terbutaline, 

which serves as a control) as identified in the PubChem Substance and Compound 

database (Supp. Figure 04) [structural identifiers: nebivolol  CID=71301, formoterol 

CID=3083544, N6022 CID=44623946, terbutaline CID=5403] (Database, 2017).  It 

has also been reported that at higher concentrations nebivolol may act as a βAR 

agonist (Rozec et al., 2009); therefore, we also tested two β2AR agonist for 

GSNOR inhibition: Formoterol, due to a 2° structural similarities to nebivolol and 

N6022 (Database, 2017), as well as the fact that it is effective as a tocolytic agent 

in rats (Shinkai and Takayama, 2000), and terbutaline, a known and effective 

β2AR agonist with no structural similarities to N6022 or nebivolol, to test whether 

or not the family of β2AR agonist has an affinity for GSNOR.  Data is reported as 

GSNOR activity within a range between 0 and 1. NADH consumption of the 

reaction mixture after 10 minutes (GSNO (300µM) + NADH (200µM) + protein 

lysate (1mg/ml)) was set to a nominal value of “1”, while NADH consumption of the 

reaction mixture (same as above (-)GSNO) after 10 minutes was set to a nominal 
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Figure 5: GSNOR enzyme activity in presence of candidate inhibitors: GSNOR 

activity measured over 10 minutes in the presence of the β2AR agonists. 

GSNOR activity from myometrial protein lysate (1 mg/ml) is not significantly 

inhibited by nebivolol (p=0.1129) or terbutaline (p=0.3323), at all 

concentrations from 1nM to 100µM, but it is inhibited by formoterol 

(p=0.0007) at concentrations of 10µM and greater.  N6022, a known 

inhibitor of GSNOR (Ki = 2.5 nM), significantly inhibited GSNOR across the 

entire dosing range (p<0.0001). 
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value of “0”.  The Ki of the inhibitors for their target receptors are as follows: N6022 

for GSNOR, Ki = 2.5 nM (S77589: Selleck Chemicals, Houston, TX), Nebivolol for 

β1AR, Ki = 0.9 nM (Leysen et al., 1991), formoterol and terbutaline for β2AR, Ki = 

of 0.4 nM and 53 nM, respectively (Shinkai and Takayama, 2000).  Drug 

concentrations between 1 nM and 100µM were tested (drugs tested well above 

their Ki, as their affinity for GSNOR is unknown).  One-way ANOVA analysis for 

each drug’s actions on GSNOR are as follows: N6022 "F (8, 18) = 174.1" 

P<0.0001, Nebivolol "F (7, 16) = 2.038" P=0.1129, terbutaline "F (9, 20) = 1.229" 

P=0.3323, and formoterol "F (9, 20) = 5.526" P=0.0007.  Of note, while there was 

a decrease in GSNOR activity in the presence of formoterol, the change was not 

significantly different from baseline until a concentration of 10µM, a 2,500-fold 

increase from the Ki of formoterol for its principal target, β1AR. 

Blockade of GSNOR Activity Relaxes Term Non-Laboring (TNL) 

Myometrium.  In order to determine if GSNOR actively contributes to myometrial 

quiescence, we inhibited the enzyme with N6022, a potent and selective inhibitor 

of GSNOR (Green et al., 2012a). Ex vivo organ bath experiments using oxytocin 

(OT) primed, TNL human myometrium, revealed that the addition of N6022 relaxes 

TNL myometrium and results in a reduction in both peak force, 100µM N6022: 

93.9% ± 4.67 (p=0.0126, n=4) of baseline, and 300µM N6022: 83.0% ± 4.79 

(p=0.005, n=4) over DMSO vehicle control maximal dose, and a decrease in area 

AUC, 100µM N6022: 90.5% ± 3.29 (p=0.0612 (n.s.), n=4) of baseline, and 300µM 



	

	

185	

N6022: 82.4% ± 4.40 (p=0.013, n=4) over DMSO vehicle control maximal dose 

(Figure 6).  Contractions per unit time (CPUT) are defined as the average number 

of contractions per 15-minute dosing period, normalized to the average number of 

contractions in the vehicle control group during the same period of time, and were 

not significantly different at either dose (100µM p=0.3144, 300µM p=0.1325).  Area 

under the curve (AUC) and peak force were calculated by normalizing the 

treatment group to vehicle control during the same dosing period, 15-minutes 

(treatment/vehicle), then a secondary normalization was applied using the value 

(AUC or peak force) during 10-mintues prior to initial drug treatment, in order to 

account for variability between each individual tissue strips.  Similar results were 

found when N6022 cumulative dose-dependent fashion (1µM-300µM) (Figure 7). 

AUC was significant at 300µM (p=0.0147, n=3), Peak force was significant at all 

doses other than 1µM (10 µM p=0.0373, 30µM p=0.0363,100µM p=0.0112, 300µM 

p=0.0022, all n=3), and CPUT was not significant at any concentration.  

Contractions did not return to baseline after washout (data not shown), possibly 

because N6022 acts intracellularly, as opposed to drugs that act on extracellular 

receptors; therefore, a return to baseline would occur at a rate consistent with 

metabolism of the drug or its passive/active transport from the cell, which was not 

observed during the course of the experiment.  Concentrations were determined 

based on pharmacokinetic properties (IC50 = 20 nM; Ki = 2.5 nM), and data 

relating to bioavailability and testing of the drug (~4%) (Sun et al., 2011c) In rats, 

N6022 was administered safely in rats at circulating levels as high as 0.1 mg/ml  



	

	

186	

  



	

	

187	

 

 
 
 
 
 
 
 
 
 

Figure 6: The myometrium relaxes in response to N6022: (a) The GSNOR 

inhibitor N6022, was applied to human myometrial tissue in an ex vivo organ 

bath at 100 µM and 300 µM (TNL, n=4).  Myometrial Response to N6022 

inhibition after 30-minute incubation with drug relative to DMSO control. 

Contractions per unit time (CPUT), an indicator of the relative number of 

contractions per dosing period, were not significantly different at either 

concentration of N6022 (100µM p=0.3144, 300µM p=0.1325). Peak force 

(100µM p=0.0126, 300µM p=0.005), and area under the curve (AUC) 

(100µM p=0.0612, 300µM p=0. 013) were significant to varying degrees. All 

data presented as mean ± SEM. 
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Figure 7: The myometrium relaxes in a dose-dependent manner to N6022: (a) 

An increasing cumulative dose of N6022 ( 1µM-300µM) was added to a 

bath with TNL myometrial tissue strips (n=3) at 15 min intervals. (a) Area 

under the curve (AUC), was significant at 300µM N6022 (p=0.0147, n=3), 

(b) Peak force was significant at doses from 10µM to 300µM (10 µM 

p=0.0373, 30µM p=0.0363,100µM p=0.0112, 300µM p=0.0022, all n=3), 

and (c) the contractions per unit time (CPUT), an indicator of the relative 

number of contractions per dosing period, was not significantly different at 

any concentration of N6022.  All data presented as mean ± SEM. 
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(240 µM) (Colagiovanni et al., 2012b), therefore we used a maximal dose 

of 300µM in our samples. 

Nebivolol Exerts Negative Inotropic Effects in the Myometrium:  Although 

nebivolol is not a GSNOR inhibitor, it has been shown to relax smooth muscle.  

Based upon this information we elected to investigate nebivolol’s potential as a 

tocolytic.  Nebivolol was applied at two doses, 100µM and 300µM, to OT-primed 

TNL human tissues (N=4), in a cumulative dose fashion, to tissues in ex vivo organ 

bath as described above (Figure 8).  Nebivolol significantly altered TNL human 

myometrial dynamics when applied to the organ bath, showing a strong negative 

inotropic effect.  CPUT was significantly decreased at 100µM but not at 300µM 

(100µM p=0.0319, 300µM p=0.1176, n=4), peak force was significantly decreased 

at both 100µM and 300µM (100µM p=0.0185, 300µM p=0.0006, n=4), and AUC 

was significantly decreased at both 100µM and 300µM (100µM p=0.0080, 300µM 

p=0.0033, n=4).  Since nebivolol is known to increase total s-nitrosothiols in both 

tissue an cells (Jiang et al., 2016b), we next tested whether or not nebivolol was 

effective at inhibiting another mediator of ·NO in the myometrium, thioredoxin 

reductase. 

Thioredoxin Reductase Assay:  The selenocystamine/thioredoxin reductase 

assay (SC-TR), in a similar manner to the GSNOR assay, can measure thioredoxin 

reductase (TrxR) activity by observing the change in absorbance at 340 nm as 

NADPH (NADH is used for the GSNOR assay), a required cofactor of TrxR, is 
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oxidized to NADP+.  The substrate for TrxR in the assay is selenocystamine, and 

it has been reported that TrxR is the only known enzyme in the cell capable of 

reducing a diselenide bond (Cunniff et al., 2013).  As a result, this assay is 

continuous, direct, and highly specific to TrxR activity. To confirm the specificity of 

the assay we employed auranofin, a gold-containing compound which inhibits the 

enzyme by reacting with the seleno-containing residues of thioredoxin reductase 

(Gromer et al., 1998; Marzano et al., 2007). Individual reaction mixture 

components, as well as the protein lysate in combination with either substrate 

(selenocystamine) or cofactor (NADPH) alone, were tested with no change in Abs 

over time (Supp. Figure 8).  Under experimental conditions, we determined that 

nebivolol does not inhibit TrxR activity (Figure 9) (n=3 for all conditions), nor was 

it significantly different from baseline activity at 10µM and 100µM, as analyzed with 

a one-way ANOVA analysis: "F (2, 117) = 2.694 " P=0.0718.  Auranofin, as 

predicated, inhibited the enzyme in a dose dependent fashion (Figure 9a) 

(P<0.0001 at either dose of auranofin compared with a max dose of nebivolol), 

whereas nebivolol, at all concentrations tested (0.1µM and 100µM), did not 

significantly decrease the activity of the enzyme. (Figure 9b).  
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Figure 8: Myometrium relaxes in response to nebivolol: (a) The β1AR 

antagonist, nebivolol, relaxes myometrium at 100 µM and 300 µM (TNL, 

n=3), after 30-minute incubation with drug, relative to DMSO control tissues. 

Contractions per unit time (CPUT) were significantly different only at the 

lower dose of nebivolol (100µM p=0.0319, 300µM p=0.1776). Peak force 

(100µM p=0.0185, 300µM p=0.0006), and area under the curve (AUC) 

(100µM p=0.008, 300µM p=0. 0033) were significant at both concentrations. 

All data presented as mean ± SEM.  
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Figure 9: Nebivolol does not inhibit thioredoxin reductase (TrxR): (a) TrxR 

activity was no different from baseline activity after 20 minutes of activity in 

the presence 100µM nebivolol (n.s., n=3), whereas 1µM and 10µM 

auranofin were both significantly decreased from baseline (P<0.0001, n=3). 

(b) Nebivolol at concentrations from 100nM to 100µM failed to decrease 

TrxR activity below baseline activity (P<0.0001, n=3) All data presented as 

mean ± SEM. 
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Discussion: 

 
Despite decades of research, tocolytics do not reliably extend pregnancy beyond 

48-hours. Approaches to manage sPTL are employed without clear evidence of 

benefit for acute or maintenance tocolysis (Dodd et al., 2006; Whitworth and 

Quenby, 2008), and no drug currently in use is without potential adverse effects 

(Lamont et al., 2016).  It is imperative that new approaches to prevent preterm 

contractions of the uterus be found (Illanes et al., 2014).  

When considering tocolytics options for the treatment of sPTL, our findings 

here provide unique insight.  First, is the observation that while ·NO relaxes full-

term myometrium, ·NO’s actions are severely blunted in sPTL myometrial tissue 

(Figure 2).  This finding reveals a unique, and previously unreported, phenotype of 

sPTL myometrium.  Because ·NO fails to relax sPTL tissue, its use as a tocolytic 

is not appropriate, beyond the known health risks to mother and child (Duckitt et 

al., 2014). As a result, we asked the question as to whether or not aberrant ·NO 

metabolism in sPTL myometrium may explain sPTL’s blunted response to ·NO by 

skewing cellular function and promoting contractions?  Interestingly, we found that 

GSNOR expression (Figure 3) and activity (Figure 4) are increased in sPTL 

myometrium.  The finding that GSNOR dysregulation corresponds to the 

pathophysiology that is sPTL, prompted a deeper analysis of this enzyme.  

GSNOR is an important metabolizing agent of GSNO, the stable endogenous form 

of ·NO in the cell (Figure 1).  GSNOR dysregulation has long been known to 
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regulate many disease states (Scott D. Barnett and Buxton, 2017b).  Importantly, 

this enzyme is also dysregulated in some cohorts with asthma, which leads to 

enhanced airway smooth muscle constriction, and resistance to bronchodilators 

(Choudhry et al., 2010b; Henderson and Gaston, 2005b; Wu et al., 2007).  This, 

combined with observations that women with asthma exhibit a higher relative risk 

of preterm labor and delivery (Doucette and Bracken, 1993), solidified GSNOR as 

protein of interest. 

In order to better understand the normal progression of GSNOR expression 

in the myometrium over the entire course of gestation, we employed a guinea pig 

model.  Like humans, guinea pigs do not experience a decrease in circulating 

progesterone prior to the initiation of labor (Nnamani et al., 2013).  This makes 

the guinea pig an attractive model to compare uterine biochemistry at various 

time-points during gestation.  GSNOR expression in guinea pigs is biphasic, 

dropping during gestation and returning toward pre-pregnancy levels as term 

nears (Figure 3B).  When we consider that GSNOR trends upward from mid-

gestation towards term, we would expect that GSNOR expression in sPTL 

myometrium would be lower than term.  However, this is not what we observed 

(Figure 3A), indicating that GSNOR is dysregulated in sPTL myometrium.  A 

merging of the human and guinea pig GSNOR expression data, while not directly 

comparable, visually amplifies the disparity between sPTL and TL GSNOR 

expression (Supp. Figure 5). 
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Beyond investigating GSONR expression as a function of gestational 

length, we also acquired a limited data set examining whether nor not GSNOR 

expression in the myometrium varies between race.  This question is particularly 

germane as sPTL is known to disproportionately skew towards women of African 

descent (Culhane and Goldenberg, 2011; Hamilton et al., 2015).  A study in African 

American children found that single nucleotide polymorphisms (SNPs) in the ADH5 

gene in airway smooth muscle correlates to severe asthma and resistance to 

treatment (Moore et al., 2009a).  We postulated that GSNOR dysregulation may 

also be more prevalent in this population, mirroring our generalized sPTL findings. 

Unfortunately, our preliminary data does not support this hypothesis (Supp. Figure 

3).  That being said, due to an insufficient number of available samples, we were 

only able to test a small cohort of TL and TNL individuals. Future work will explore 

GSNOR expression in sPTL samples of those of African descent, as well as 

whether the aforementioned SNPs in the ADH5 gene exists in sPTL samples, as 

several SNPs in the promoter and 3’ UTR of the ADH5 gene can result in the 

aberrant expression of GSNOR (Choudhry et al., 2010a). 

Perhaps the most intriguing and important outcome of GSNOR 

dysregulation is that GSNOR now presents as a therapeutic target for which to test 

novel tocolytics that inhibit this enzyme.  N6022, a potent and selective inhibitor of 

GSNOR, is well tolerated in humans and has already been tested in clinical trials 

as an airway smooth muscle relaxing agent in asthmatics (clinicaltrials.gov -  

NCT01316315), and for individuals with cystic fibrosis (clinicaltrials.gov – N6022: 
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NCT01746784; N91115: NCT02724527(Nivalis Therapeutics, 2014).  Here we 

demonstrate its efficacy in the myometrium, and entertain its use as a tocolytic 

(Figures 8).  Our preliminary data in a small sample of guinea pigs identified N6022 

as an unparalleled tocolytic, nearly abolishing all contractile force (Supp. Figure 

6). However, after extensive ex vivo organ bath experimentation with human 

uterine smooth muscle, we found N6022’s effects on the myometrium, while 

statistically significant, were very modest (Figure 7). Due to the drug’s limited 

bioavailability (~4%) (Sun et al., 2011c), its potential as a marketable tocolytic 

remains in question. However, numerous derivatives of N6022 have been 

identified (Sun et al., 2011a) as well as other compounds targeting GSNOR (Ferrini 

et al., 2013b), which may prove useful as tocolytic agents.  We too have proposed 

conceptual variants of N6022 that may improve the diffusion of the N6022 across 

the cell membrane (Appendix 2) through the addition of a promoiety resorption 

ester (ethyl acetate) to the carboxylic side chain of N6022 (Supp. Figure 7).  This 

promoiety can be hydrolyzed intracellularly by endogenous esterases to return 

N6022 to its native active state (Jornada et al., 2016).  

 Aside from known GSNOR inhibitors, nebivolol, a β1AR antagonist, has 

also been reported as a GSNOR inhibitor due to structural similarities to N6022, 

as well as its ability to increase s-nitrosothiol (SNO) concentrations in the cell and 

relax arterial smooth muscle (Jiang et al., 2016b).  We, however, were unable to 

reproduce their finding, and show that nebivolol does not alter GSNOR activity. 

(Figure 4).  What then accounts for the generalized smooth muscle relaxing effects 
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seen with nebivolol?   Some have reported that nebivolol metabolites may serve 

as ligands to β2ARs (Broeders et al., 2000), and at higher concentrations nebivolol 

has been shown to act as a β3AR agonist in smooth muscle (Rozec et al., 2009).  

β3ARs serve as anti-inflammatory mediators in the myometrium, and they have 

even been proposed as a potential tocolytic (Lirussi et al., 2008).  We tested 

several βAR agonists with varying degrees of tertiary structural similarity to N6022 

(Supp. Figure 4), but like nebivolol, they did not inhibit GSNOR (Figure 5). 

As nebivolol does not inhibit GSNOR, but is known to increase SNOs, we 

further investigated nebivolol’s affinity for another important mediator of ·NO in the 

cell, thioredoxin reductase (TrxR).  TrxR is another important mediator of GSNO 

and SNOs in the cell ((Nikitovic and Holmgren, 1996; Sengupta and Holmgren, 

2012a). TrxR is found in the placenta and myometrium during pregnancy (Gromer 

et al., 1998; Sahlin et al., 2000), but its role in myometrial quiescence has not been 

closely studied.  Unfortunately, we found that nebivolol does not decrease TrxR 

activity (Figure 9).  A wide range of concentrations of nebivolol were employed, 

including concentrations in which cells treated with nebivolol exhibit a strong 

increase in SNO levels (Jiang et al., 2016b), yet they did not alter TrxR activity.  

Interestingly, while nebivolol does not inhibit GSNOR or TrxR, it is, 

nonetheless, an excellent myometrial relaxing agent.  In our ex vivo tissue bath 

experiments nebivolol decreases peak force of contraction by 60% (+/- 6.1), and 

AUC by 43% (+/- 4.9) (Figure 8).  Although the mechanism behind nebivolol’s 

action on smooth muscle relaxation has not been elucidated, it is likely that the 
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observed negative inotropic effects seen in our experiments are due to nebivolol’s 

activation (Münzel and Gori, 2009; Van Nueten and De Cree, 1998), and/or 

upregulation (Wang et al., 2017), of endothelial nitric oxide synthase (eNOS), an 

important generator of ·NO.  This eNOS activation and regulation would also 

explain the increase in SNOs in tissues and cells treated with nebivolol (Jiang et 

al., 2016b).  In Chapter 5, we explain why SNOs may play a crucial role in 

myometrial function.  Beyond nebivolol’s actions of eNOS, it has also been 

reported that nebivolol acts on mechanosensitive ion channels, which would 

provide an interesting alternate mechanism for nebivolol-mediated uterine smooth 

muscle relaxation, but this observation has not yet been reported in myocytes of 

any kind (Kalinowski, 2003). 

Ultimately, the underlying cause(s) of sPTL remain unknown. While the 

complex mechanisms that drive sPTL have not been fully elucidated, our discovery 

that GSNOR is dysregulated in the myometrium of women who experience sPTL 

provides novel insight into this disease state.  Our findings here afford an 

opportunity to investigate a new class of drugs in the tocolytics family, GSNOR 

inhibitors.   GSNOR inhibitors not only function to increase endogenous levels of 

·NO, but by extension, they also increase total SNOs in the cell.  We believe that 

the cGMP-independent mechanism through which ·NO exerts its influence 

(chapter 2) is protein S-nitrosation, and GSNOR has been shown to modulate SNO 

concentration in the cell.  In the next chapter we discuss the connection between 
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aberrant GSNOR expression in the myometrium and the functional effects of 

protein S-nitrosation on important proteins associated with uterine contractions. 
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Supp. Figure 1: Linearity and specificity of GSNOR antibody: Preliminary 

GSNOR expression data acquired by western blot.  (a/b) linear range of 

antibody (1:100 dilution, ab59134: Abcam, Cambridge, MA), GAPDH (1:00 

dilution, sc-47724: Santa Cruz Biotechnology, Inc., Dallas, TX) compared 

to skeletal muscle control (does not express GSNOR), (c) and verification 

that GSNOR antibody shows specificity for guinea pig GSNOR (animal Af5).  

For Wes studies (d) GSNOR and GAPDH antibody dilutions from 1:20-

1:320 (protein 0.7mg/ml), and (e) protein concentrations from 0.2mg/ml-

1.2mg/ml (antibodies 1:50) to determine optimal protein and antibody 

combinations. 
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Supp. Figure 2: Controls for enzyme activity assay:  (a) comparison of 

GSNOR enzyme activity of 10 minutes with fresh (never frozen) human 

myometrial tissue (1mg/ml) vs. once frozen intact tissue, and frozen protein 

lysates between 1 and 5 cycles.  Fresh and once frozen tissues show no 

appreciable difference in enzyme activity. (b) NADH absorbs at 340nm and 

is the principal detector of GSNOR activity.  Assay verified that 

recommended 200µM NADH was appropriate the range of our sensor.  (d) 

Varied GSNO (substrate) and (e) protein concentrations to determine 

saturating concentrations. (f) Verified that the reaction products, glutathione 

and NAD+, do not affect absorbance measurements. 
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Supp. Figure 3: GSNOR expression and enzyme activity assay between 

races: (a)  GSNOR protein expression is not significantly different between 

racial cohorts (African vs. Caucasian, TNL p=0.7541 n=3, TL p=0.4138 

n=3), (b) nor is the GSNOR enzyme activity measured at time = 10 min 

(African vs. Caucasian, TNL p=0. 5318n=3, TL p=0.6946 n=3). 8nM N6022 

was used as a control as it abolishes GSNOR activity. 
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Supp. Figure 4: 2° and 3° structures of candidate GSNOR inhibitors from the 

National Center for Biotechnology Information:  Structural identifiers: 

nebivolol  CID=71301, formoterol CID=3083544, N6022 CID=44623946, 

terbutaline CID=5403] (Database, 2017). Images used with permission 

(https://pubchem.ncbi.nlm.nih.gov/ (accessed Nov. 1, 2017)). 
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Supp. Figure 5: Relative GSNOR expression as compared between human 

and guinea pigs:  Human term laboring (TL) GSNOR expression was set on 

a scale to match guinea pig GSNOR expression trend at term. 
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Supp. Figure 6: Guinea pig myometrial response to N6022: Preliminary data 

indicated that guinea pig myometrium relaxes completely to N6022 in a 

dose-dependent fashion, with contractions nearly completely abolished at 

100µM concentration of N6022.  Myometrial Response to N6022 inhibition 

after 30-minute incubation with drug relative to DMSO control.  The 

experiment was not repeatable to the same extent in human or guinea pig 

samples. 
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Supp. Figure 7: Proposed modifications to N6022:  N6022 has a limited 

bioavailability (~4%).  Charged and polar side-chains decrease permeability 

across the membrane.  The addition of ethyl acetate to the charged and 

polar COO- side change of N6022 may help to neutralize the charge and 

distribute the electronegativity.  Endogenous esterases have been shown 

to cleave similar bonds and return the drug to its native state once inside 

the cell. 
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Supp. Figure 8: Thioredoxin reductase (TrxR) assay experimental controls: 

(a) Determination as to whether or not the master mix (buffer + NADPH + 

selenocystamine), or its individual components, spontaneously altered 

absorbance over the 20-minute assay.  (b) Determination as to whether or 

not the complete reaction mixture, minus either the substrate or the co-

enzyme, spontaneously altered absorbance over the 20-minute assay.  The 

complete reaction mixture as also tested without substrate, but in the 

presence of inhibitors. None of these conditions altered absorbance over 

time. (c)  This assay was designed to measure absorbance of NAPDH, 

which has a peak absorbance of 340nm.  Our equipment is only able to 

determine absorbance at 365nm, therefore, we determined that NADPH will 

absorb at this wavelength. (d)  Relative TrxR activity is measured as the 

inverse of absorption, with TrxR “initial activity” set to a nominal value of 1 

(figure 9).  This figure shows the raw data collected from the sensor.  

Decreasing values seen in this figure represent metabolism of NADPH to 

NADP+ (which does not absorb at 365nm), which serves as an indirect 

measurement of TrxR activity. 
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Chapter 5 

 

 S-nitrosation: Alternative Actions of Nitric Oxide in the Myometrium 
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Abstract: 

 

The precise mechanism that leads to the onset of spontaneous preterm labor is 

not fully known; however, our finding that the myometrium relaxes when 

challenged with nitric oxide (·NO), independent from cGMP accumulation, 

indicates that ·NO functions through alternative pathways to relax the tissue. ·NO 

and S-nitrosoglutathione (GSNO) are capable of trans-S-nitrosating critical 

contractile-associated proteins in the myometrium, such as myosin light chain 

kinase, and myosin regulatory polypeptide 9. S-nitrosation is an important 

modulator of cellular function, and its dysregulation is seen in many disease states. 

Here we find that the increase in GSNO reductase activity in spontaneous preterm 

laboring myometrium correlates to a decrease in total protein S-nitrosation, and 

we explore the effects of GSNO on myosin light chain kinase activity, acto-myosin 

ATP-ase dynamics, and TREK-1 channel activity.  
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Introduction: 

 

Preterm labor (PTL) and preterm birth (PTB) represent a significant predicament 

within the global community. The cost, both to the development of the fetus and 

financially, are substantial. In the United States alone greater than 12% of infants 

are born prematurely, resulting in 20,000 deaths annually (Martin, Hamilton et al. 

2007). Worldwide, the statistics are even more disconcerting. Approximately 

thirteen million infants are affected by premature birth each year (Martin et al., 

2011). Sub-Saharan Africa is of particular concern where as many as 336,000 of 

the 1.2 million (28%) births each year result in newborn death (Kinney et al., 2010). 

A simple, yet persistent realization of pregnancy and parturition is that in 

order to prevent PTB, we need to also avoid or halt PTL. The myometrium is at the 

literal and metaphorical core of this problem. In order to identify and develop new 

tocolytic therapies to treat spontaneous preterm labor (sPTL), it is imperative that 

we develop a better understanding of how the myometrium differs from other 

smooth muscles. Our previous work has set the stage for this chapter by revealing 

two important distinctions of uterine smooth muscle. First, is the fact that the 

myometrium relaxes independently of global cGMP concentrations when exposed 

to nitric oxide (·NO), a finding that challenges existing dogma (Furchgott, 1999) 

established following the classic smooth muscle experiments of Furchgott 

(Furchgott and Zawadzki, 1980). The currently accepted mechanism of action of 

·NO-mediated relaxation of vascular smooth muscle theorizes that ·NO binds to 
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the haem moiety of soluble guanylyl cyclase in the adjacent smooth muscle to 

activate the smooth muscle soluble guanylyl cyclase (sGC), resulting in the 

accumulation of cGMP in the muscle cell. cGMP then activates its cognate kinase, 

PKG, leading to phosphorylation of critical contraction-associate proteins such as 

myosin phosphatase, and relaxation of the muscle. In myometrium, however, ·NO 

relaxes the muscle, but this is largely independent of cyclic GMP elevation (Bradley 

et al., 1998b; I. L. Buxton, 2004a). This cGMP-independent relaxation indicates 

that ·NO is acting on alternative pathways to quiesce the tissue, such as through 

S-nitrosation, and opens a new door for which to investigate new therapies. The 

second relevant finding from our previous work is that S-nitrosoglutathione 

reductase (GSNOR), an enzyme responsible for the metabolism of ·NO, is 

upregulated in sPTL myometrium. This is important because GSNOR’s 

dysregulation affects the availability of ·NO (S D Barnett and Buxton, 2017) and 

has been shown to alter the amount of S-nitrosothiols (SNOs) in the cell (Liu et al., 

2001b). Taken together, these findings provide a base of understanding to better 

investigate non-canonical functions of ·NO function in myometrium; specifically, 

through protein S-nitrosation. 

S-nitrosation: The posttranslational modification of proteins has long been 

recognized as a key regulator of cellular function. In recent years, it has been 

shown that the S-nitrosation acts as an important mediator of disease states 

(Anand and Stamler 2012). As with phosphorylation, S-nitrosation regulates 

cellular mechanisms and affects protein-protein interactions, and the emerging 
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field of S-nitrosation, and its effects on protein function, represents an exciting new 

branch of research. S-nitrosation cannot occur without an available source of ·NO 

(Martínez-Ruiz and Lamas, 2004). ·NO is produced enzymatically in many cell 

types and tissues, and as a low molecular weight molecule ·NO can easily cross 

the membrane (Bredt and Snyder, 1992). S-nitrosation occurs when an ·NO moiety 

is covalently added to the thiol side chain of cysteine residues within proteins and 

peptides (Hess, Matsumoto et al. 2005) by a one-electron oxidation from the ·NO 

radical (Smith and Marletta, 2012). The term nitrosylation is often used 

interchangeably with S-nitrosation, though this is incorrect. Both processes 

produce a S-nitrosothiol, but the manner in which this occurs differs chemically in 

that nitrosylation requires a metal centered protein such as guanylyl cyclase 

(Martínez-Ruiz and Lamas, 2004).  

An analysis of the myometrial S-nitrosoproteome has revealed that several 

smooth muscle contractile-associated proteins (CAPS) are differentially S-

nitrosated based upon the state of labor in women (Ulrich, Quillici et al. 2012). 

Included in these S-nitrosated CAP proteins is the regulatory light chain of smooth 

muscle myosin (SMM), called myosin regulatory light polypeptide 9 (LC20, RLC or 

MYL9), as well as the telokin domain of myosin light chain kinase (MLCK), an 

important domain that affects MYL9 phosphorylation (pMYL9) through its binding 

to SMM (Silver et al., 1997). The phosphorylation of MYL9 by MLCK is at the center 

of canonical contraction/relaxation pathways in smooth muscle. The finding that 

these proteins are differentially S-nitrosated in sPTL myometrium when exposed 
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to S-nitrosoglutathione (GSNO), an endogenous ·NO donor, makes them an 

interesting target to study. Unfortunately, there is a dearth of published data 

describing the functional significance of protein S-nitrosation, specifically in 

regards to its effects on smooth muscle. Here we investigate how GSNO impacts 

the function of several important CAP systems, to include: Acto-myosin dynamics, 

the rate of MYL9 phosphorylation by MLCK, and TREK-1 activity. 

 

Material and Methods: 

 

Protein Isolation for S-nitrosation Measurement. Myometrial muscle 

samples were collected from 12 patients in each pregnancy state and relevant 

experimentation and data analysis kindly provided by Dr. Craig Ulrich as described 

here (Ulrich et al., 2013a, 2015): “Tissues were ground to a powder under liquid 

nitrogen and reconstituted in 20 ml HEN buffer: HEPES-NaOH (25mM), EDTA 

(1mM), and neocuproine (0.1mM, pH 7.7). Samples were sonicated (10 x 2-sed 

bursts, 70% duty cycle) and brought to CHAPS (0.4%) (3-(3-

cholamidopropyl)dimethylammonio-1-propanesulfonate). Samples were 

centrifuged at 2,000x g for 10 min at 4°C. Protein concentration was determined 

by the bicinchoninic acid assay and samples diluted to 0.8 mg/ml in HEN buffer. 

Biotin Switch and Streptavidin Pulldown. Mass spectrometry methods in part from 

(Ulrich et al., 2015). For the purposes of total protein S-nitrosation, samples from 

each patient in each group was independently isolated by biotin switch and 
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streptavidin pulldown and then pooled for tandem mass spectrometry (MS/MS) 

analysis (i.e., SPTL1, 4 unique patients; SPTL2, 4 unique patients; SPTL3, 4 

unique patients; for a total of 12 unique patients split into 3 biological replicates to 

help control for human diversity). Protein isolates (1.8 ml 0.8 mg/ml in HEN buffer) 

were incubated with GSNO (300 µM) for 20 min at r.t. At this concentration, GSNO 

will produce ~5µM reactive NO over 15–20 min without accumulation (Cleeter et 

al., 1994). This reactive species concentration matches the IC50 concentration for 

relaxation of isolated myometrium (I. L. O. Buxton et al., 2001). Neither biotin-

HPDP nor a maleimide dye lead to false positives because the amines or tyrosines 

are not labeled even if nitrosated. SDS (0.2 ml of 25% SDS) was added along with 

30mM NEM. Samples were incubated at 50°C in the dark for 20 min and proteins 

precipitated in -20°C acetone for 1 hr and collected by centrifugation at 3,000 g for 

10 min. The clear supernatant was aspirated, and the protein pellet was gently 

washed with 70% acetone (4 x 5 ml). After resuspension in 0.24 ml HEN buffer 

with 1% SDS (HENS), the material was transferred to a fresh 1.7-ml microfuge 

tube containing 30 µl biotin-HPDP (2.5 mg/ml). The labeling reaction was initiated 

by addition of 30 µl of 200mM sodium ascorbate (final 20mM ascorbate) for 1 hr at 

r.t. in the dark. Four volumes of -20°C acetone were added to the labeled samples 

and incubated at -20°C for 20 min to remove biotin-HPDP. The samples were 

centrifuged at 3,000 g for 10 min at 4°C, and the supernatant discarded. The pellet 

was resuspended in 140 µl of HENS buffer. Neutralization buffer (HEPES (20mM) 

pH 7.7, NaCl (100mM), EDTA (1mM), and Triton X-100 (0.5%)), was added (280 
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µl) along with 42 µl of streptavidin-agarose. Proteins were incubated for 1 hr at r.t. 

and washed five times with 1.5 ml of neutralization buffer with 600mM NaCl. Beads 

were incubated with 100 µl elution buffer (neutralization buffer with 600mM NaCl 

plus 100mM b-mercaptoethanol) to recover the bound proteins. This step releases 

the protein from the streptavidin bead leaving the biotin-HPDP tag bound to the 

bead as well as natively biotinylated proteins still bound to the bead. Four volumes 

of -20°C acetone were added to re-precipitate proteins. Samples were centrifuged 

at 3,000 g for 10 min at 4°C, the supernatant was discarded, and the pellet was 

washed and dried for proteomic analysis. Western Blot for SNO-MYL9: The 

identification of SNO-MYL9 began with the same biotin switch and streptavidin 

pulldown as above, but with a single laboring human myometrial sample. Prior to 

the switch and pulldown, the sample was split into three experimental groups and 

treated with either 300µM GSNO, 300µM GSH, or the volumetric equivalent of 

vehicle (H2O) for 10 minutes. Following the biotin switch and streptavidin pulldown, 

the S-nitrosated protein lysate was run on a western blot. 20μg of protein lysate 

were run at 200 V for 45 min on a 4-20% PAGE gel and transferred to 

nitrocellulose, blocked in Licor® blocking buffer. The Western blot was labeled with 

rabbit anti-MYL9 polyclonal 1° (1:100, ab64161: Abcam Plc. Cambridge, UK), and 

2° 680-donkey anti-rabbit 2° (Santa Cruz Biotech). This is a qualitative visualization 

of SNO-MYL9 as proteins to normalize the data were not available because only 

S-nitrosated proteins were in the western lysate. 
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Mass Spectrometry. “Mass spectrometry sample preparation and analysis 

were conducted by Dr. Craig Ulrich and the Nevada Proteomics Center as 

previously described (Ulrich et al., 2015). “Proteins were trypsin digested, followed 

by liquid chromatography (LC)/MS/MS analysis. Acetone-precipitated pellets were 

washed twice with 25mM ammonium bicarbonate and 100% acetonitrile, reduced, 

and alkylated using 10mM dithiothreitol and 100mM iodoacetamide and incubated 

with 75 ng sequencing grade modified porcine trypsin (Promega, Fitchburg WI) in 

25mM ammonium bicarbonate overnight at 37°C. Peptides were first separated by 

Michrom Paradigm Multi-Dimensional Liquid Chromatography (MDLC) instrument 

[Magic C18AQ 3µ 200Å (0.2 x 50mM) column (Michrom Bioresources, Auburn, 

CA) with an Agilent ZORBAX 300SB-C18 5µ (5 x 0.3mM) trap (Agilent 

Technologies, Santa Clara, CA)] using a 0.1% formic acid/1% formic acid in 

acetonitrile gradient. Eluted peptides were analyzed using a Thermo Finnigan 

LTQOrbitrap using Xcalibur v 2.0.7. MS spectra (m/z 300–2,000) were acquired in 

the positive ion mode with resolution of 60,000 in profile mode. The top 4 data-

dependent signals were analyzed by MS/MS with CID activation, minimum signal 

of 50,000, isolation width of 3.0, and normalized collision energy of 35.0 with a 

targeted reject list (Ulrich et al., 2013d). Dynamic exclusion settings were used 

with a repeat count of two, repeat duration of 10 s, exclusion list size of 500, and 

exclusion duration of 30 s” (Ulrich, et al., 2012). 

Criteria for S-Nitrosation Identification. “PROTEOIQ (V2.6, www.nusep.com) was 

used to validate MS/MS-based peptide and protein identifications. Peptides were 
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parsed before analysis with a minimum Xcorr value of 1.5 and a minimum length 

of six amino acids. There were no matches to the concatenated decoy database, 

and therefore, a false discovery value is not applicable or “0.” Peptide 

identifications were accepted if they could be established at >95.0% probability as 

specified by the Peptide Prophet algorithm (Keller et al., 2002). Protein 

identifications were accepted if they could be established at >95.0% probability 

and contained at least two identified peptides with five spectra per peptide. Protein 

probabilities were assigned by the Protein Prophet algorithm (Nesvizhskii et al., 

2003). Proteins that contained similar peptides and could not be differentiated 

based on MS/MS analysis alone were grouped to satisfy the principles of 

parsimony” (Ulrich, et al., 2012). 

Actin Motility Assay: The actin motility assay was performed as previously 

described (Hooft et al., 2007) with minor modifications to minimize the presence of 

DTT in the flow chamber. Flow cells were prepared by flushing the following 

reagents through the flow chamber and incubating at each step for 1 min prior to 

the next addition: i) myosin added in the appropriate experimental concentration 

(5,10, 25, 50, 100, 200, 300, 400 µg/ml), ii) BSA (5mg/mL), iii) TRITC-labeled actin 

(10nM), iv) two washes of DTT-free actin buffer (with or without 300µM GSNO), 

and v) two washes of DTT-free motility buffer containing 1mM ATP (with or without 

300µM GSNO). Note: skeletal muscle actin was used in lieu of smooth muscle 

actin, but their behaviors in the actin motility assay are functionally identical (Harris 

and Warshaw, 1993). Motility assays were implemented using a Nikon TE2000 
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epifluorescence microscope with fluorescent images digitally assimilated with a 

Roper Cascade 512B (Princeton Instruments, Trenton, NJ) camera. Each flow cell 

was imaged for 30 seconds from three distinct fields to obtain a single sample (n 

= 1) and performed in triplicate. Data were analyzed using Simple PCI tracking 

software (Compix, Sewickley, PA) to obtain actin-sliding velocities. Objects were 

defined by applying an exclusionary area threshold to minimize background noise. 

Velocities too slow to be accurately measured by the PCI tracking software were 

hand-calculated in ImageJ (version 1.50i, Mac OS 10.11) by recording the linear 

velocity of (3) filaments per recording (9 velocities per n=1). Phosphorylated 

smooth muscle myosin (pSMM) preparation. SMM was isolated (Hong et al., 2009) 

from frozen chicken gizzard (ID: 43018-2: Pel-Freez Biologicals, Rogers, AR) and 

phosphorylated (Haldeman et al., 2014) as previously described (Supp. Figure 1). 

SMM Phosphorylation above 50% minimally affects Vmax (Warshaw et al., 1990). 

The resulting SMM product was dialyzed twice for 8 hours each in 2-liters of DTT-

free HMM buffer, described below, using a 3ml, 3.5 kDa dialysis cassette (66330: 

Thermo Fisher Scientific Inc., Waltham, MA). Phosphorylation of the regulatory 

light chain (MYL9) was also performed as previously described (Ellison et al., 

2000)(Supp. Figure 1) in DTT-free HMM buffer: MOPS (10mM) , EGTA (0.2mM), 

NaCl (50mM), CaCl2 (3mM), MgCl2 (2mM), and ATP (1mM) (#A3377: Sigma-

Aldrich, St. Louis, MO). Chicken Gizzards kindly provided by the Cremo laboratory 

(University of Nevada, Reno, Pharmacology), with additional support by the Baker 

laboratory (University of Nevada, Reno, Pharmacology). 
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MLCK Activity Assay: The myosin light chain kinase (MLCK) activity assay was 

performed as previously reported (Alcala et al., 2016) with minor modifications. 

Each reaction mixture was prepared on ice and equilibrated in a r.t. water bath for 

5 minutes prior to the addition of ATP [γ-32P] (BLU502A001MC: PerkinElmer, 

Waltham, MA). Reaction mixtures consisted of: buffer [Tris-HCl (pH 7.5, 25 mM), 

KCl (60 mM), MgCl2 (4 mM), CaCl2 (0.1 mM), 0.1% (v/v) Tween 80], human 

recombinant MLCK (0.01µM), CaM (2µM), +/- GSNO (300µM), MYL9 at 

appropriate experimental concentrations (0, 7.5, 10, 15, 20, 50, 75, 100, 150, 200 

µM), and ATP [γ-32P] (200µM). The addition of ATP [γ-32P] denotes time = 0 and 

the reaction mixture was quenched at (5) 1-minute intervals on ion exchange 

chromatography paper (3698-915: Whatman/GE Life Sciences, Marlborough). 

Free β-counts from each unquenched hot reaction mixture were measured to 

account for pipetting variance and ATP [γ-32P] decay between experimental days 

(repeated twice for each reaction mixture). Quenched reaction papers were 

allowed to dry completely and were then washed 3 times, 5 minutes each, in 0.5% 

(v/v) H3PO4, followed by a single 5-minute acetone wash and allowed to dry 

completely. Dried papers were placed into individual scintillation vials filled with 

scintillation fluid (882470: MP Biomedicals, Santa Ana, CA) and counted in a 

TriCarb 2900TR Liquid Scintillation Analyzer. Data were analyzed using Prism 7 

(version 7.0c, Mac OS 10.11, GraphPad Software, Inc., La Jolla, CA) MLCK and 

CaM kindly provided by the Cremo laboratory (University of Nevada, Reno, 

Pharmacology). MYL9 was isolated from purified chicken gizzard SMM as 
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described by (Facemyer and Cremo, 1992). MYL9-C108-IAM: For blocked C108-

MYL9 experiments, preparation was the same as before, but with iodoacetamide 

(IAM) to block MYl9. To accomplish the blocking of the lone cysteine on MYL9, we 

incubated the MYL9 with 5mM IAM (+5mM DTT) overnight at 4°C. The resulting 

proteins were dialyzed using a 3500 MWCO dialysis cassette (Pierce 

Biotechnology; Rockford, IL). The blocking of C108 was confirmed using a DTNB 

(5, 5'-dithio-bis(2-nitrobenzoic acid) free thiol detection assay (Anderson and 

Wetlaufer, 1975; Pouchnik et al., 1996), which gives a spectrophotometric 

determination of free thiol groups. MYL9 Isolation: Isolation of RLC (MYL9) begins 

with 500mg of total SMM in high salt storage buffer to which MgCl2 (10mM) was 

added to filament the SMM. Solution is centrifuged at 20k RCF to pellet SMM then 

resuspended in Tris pH 8.0 at 4°C. Guanidine HCl (5M) is added to further 

solubilize the SMM. 100% cold EtOH is added until final concentration is 55%, at 

which time SMM, but not the RLC (MYL9) or ELC, should precipitate out of 

solution. Pellet out the SMM then continue to add 100% EtOH to 82.5% at which 

time RLC should precipitate out. Note: Test non-precipitated and precipitate 

solutions by running contents on Coomassie gel after RLC precipitation to confirm 

all RLC was isolated. We still had a small amount of ELC contamination, so we 

used the ratio of ELC to RLC to adjust final concentration of RLC in solution (Supp. 

Figure 2). Protocol and expertise for the MLCK assay provided by the Cremo 

laboratory (University of Nevada, Reno, Pharmacology). 
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Patch Clamp Techniques: Electrophysiology was conducted as previously 

described (Nathanael S Heyman et al., 2013a), with modifications: “Stably-

transfected overexpressing HEK293-TREK1 cells were plated on glass coverslips 

4-24 hours before experiments, placed in a chamber for recording mounted on top 

of an inverted microscope and currents typically were recorded in the standard 

whole-cell variant of the patch clamp technique using pCLAMP software (V9.2; 

Axon Instruments/Molecular Devices Inc; Sunnyvale, CA). Currents were amplified 

with an Axopatch200B amplifier (Axon Instruments/Molecular Devices Inc.; 

Sunnyvale, CA), digitized using a computer interfaced with a Digidata 1322A 

acquisition system (Axon Instruments/Molecular Devices Inc.; Sunnyvale, CA), 

filtered at 1kHz and digitized at 2kHz for whole cell recording. The external bath 

solution contained (in mM): NaCl (140), KCl (5.4), CaCl2 (1.8), HEPES (10), MgCl2 

(1), and TEA (2) adjusted to pH 7.4 with NaOH and osmolarity adjusted to 310 

mOsm/L with D-mannitol (measured with Model 3320 Osmometer/ Advanced 

Instruments; Norwood, MA). The pipette solution contained (in mM): KCl (140), 

K2ATP (3), NaGTP (0.2), HEPES (5), and MgCl2 (1), and BAPTA (10; minimize 

large-conductance Ca2+-activated K+ currents), adjusted to pH 7.4 with KOH and 

osmolarity adjusted to 310 mOsm/L with D-mannitol. Solutions were delivered by 

gravity through a manifold perfusion system. Pipettes were made of borosilicate 

glass (Sutter Instrument Co; Novato, CA) pulled on a two-stage vertical puller (pp-

83; Narishige International USA, Inc.; East Meadow, NY) and had a resistance of 

2-4 mΩ when filled with pipette solution. Cell capacitance and series resistance 
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were measured using the membrane test feature of pCLAMP. Series resistance 

was then compensated ≈70%. Cell capacitance was later used for normalization 

of whole cell current to capacitance to yield current density (pA/pF) for each cell.” 

Either 100µM GSNO or GSH, in bath solution, was delivered by gravity through 

the manifold perfusion system. After a 5-minute lavage with drug whole-cell 

recording were obtained, followed by washout (data not shown). hTREK-1 

transfected HEK293 cells were generously provided by Dr. Wu (UNSOM, 

Pharmacology). 

 

Results: 

 

The Effect of GSNO on Protein S-Nitrosation in Human Myometrium. Our previous 

findings revealed that GSNOR is upregulated in sPTL myometrium (Chapter 4), 

therefore, we elected to determine if total protein S-nitrosations in the myometrium 

are altered in sPTL samples as compared to full-term samples. Total protein S-

nitrosations were measured in GSNO treated full-term laboring (TL) and sPTL 

myometrium using LC/MS/MS. Earlier work from our lab (Ulrich et al., 2013a) was 

differentially analyzed to identify total protein S-nitrosations of, 110 S-nitrosated 

proteins that were normalized to spectral counts and AUC measurements of 

extracted ion chromatographs.  
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Figure 1:  S-nitrosation differences in TL vs sPTL myometrium:  Relative 

expression of human uterine smooth muscle S-nitrosated proteins in tissues 

from sPTL patients (n=12) versus patients in labor at term (n=12) when 

isolated myometrium is treated with GSNO. Data represent a compilation of 

total protein S-nitrosations in each tissue state controlled for total protein 

abundance. S-nitrosations are significantly lower in sPTL tissues (p <0.05). 

Data collected by Dr. Craig Ulrich 
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Figure 2: Actin motility assay: Actin velocities (± 300µM GSNO) reveal 

changes in ATPase activity and acto-myosin binding kinetics. 

Phosphorylated uterine smooth muscle myosin (pSMM) binds to a 

nitrocellulose-coated cover slip and is inverted onto a glass slide to form a 

flow cell. TRITC-labeled actin (10nM) and ATP (1mM) ± GSNO are 

combined in the flow-cell and actin velocities are measured using video 

imaging. All data presented as mean ± SEM 
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The number of MS2 events per peptide aligned with the actual peptide count that 

was determined by area under the curve of the MS1 chromatographs. ANOVA 

demonstrated that proteins exhibited statistically significant differences between 

TL and sPTL tissues specified by an F-statistic P value of P < 0.05 (Figure 1). 

These proteins exhibited log2 fold changes in expression of at least ±1 log in 

preterm laboring patients compared with full-term laboring patients. 

GSNO Alters Actin-Myosin Motility. An important metric of smooth muscle 

contractile dynamics is the rate at which myosin completes each cross-bridge 

cycle. The actin motility assay measures myosin-dependent actin dynamics, 

measured as translocation, or sliding, of actin filaments over myosin bound to a 

coverslip (Figure 2B). Attachment/detachment limiting kinetics can alter sliding 

velocities, based on myosin density, and we sought to determine if GSNO affects 

actin velocity across a large range of myosin densities. Addition of 300µM GSNO 

to the motility assay resulted in a reduction in velocity consistent with an effect of 

GSNO to S-nitrosate one or more constituents in the assay, specifically smooth 

muscle myosin, and/or actin, both of which contain numerous cysteines (Bansbach 

and Guilford, 2016). At myosin densities of 25, 50, 100, 200, and 400 (µg/ml), the 

addition of 300µM GSNO significantly decreased actin velocity (P<0.05) (Figure 

2A), a result is consistent with an effect of GSNO to relax the smooth muscle, and 

in line with our preliminary data that showed a dose-dependent decrease in 

velocity in response to GSNO (Supp. Figure 3).  
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GSNO Increases the Rate of MYL9 Phosphorylation by MLCK. To determine if 

GSNO alters the rate at which MLCK phosphorylates MYL9, we ran an MLCK 

activity assay. The assay is a measurement of MLCK activity relative to substrate 

concentration. The substrate, in this case, is free MYL9, and MLCK action on 

MYL9 is measured over 5 minutes (t=1,2,3,4,5) to determine the rate of MLCK 

activity per unit time. The reaction mixture contains only the obligate kinase 

components: MLCK, MYL9, Calmodulin, Ca2+ and ATP [γ-32P]. At each MYL9 

concentration (0-250µM) the reaction mixture is quenched at 1 minute intervals for 

5 minutes (Supp. Figure 4), and the rate of phosphorylation is determined as a 

measure of β-decay, P-32 to S-32, per unit time, at each quench point, as read by 

a scintillation counter. The number of “counts” is proportionate to the amount of 

phosphorylated MYL9 proteins (n=3 per time point * 5 times points, yielding 15 

readings per MYL9 concentration). The assay was run under identical conditions 

± 300µM GSNO. The addition of GSNO did not alter the Km [(-)GSNO: 51.50µM, ± 

12.59 SEM. (+)GSNO: 59.31µM, +/- 13.71 SEM]; however, the Vmax was 

significantly higher in the presence of GSNO [(-)GSNO: 0.3116 µmol Pi*(min-mg)-

1, ± 0.0258 SEM. (+)GSNO: 0.582 µmol Pi*(min-mg)-1, ± 0.0511 SEM] (Figure 4A) 

(Supp. Figure 5).	Control experiments using 40μM MYL9 in the absence of MLCK 

showed no detectable activity (data not shown). 

MYL9 (C108) is known to be up-S-nitrosated in sPTL myometrium (Ulrich 

et al., 2013c), while MLCK is down-S-nitrosated (Ulrich et al., 2012b), as compared 

to term laboring tissue. Because our reaction mixture contained both MLCK and  
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Figure 3: Myosin light chain kinase activity assay: (a) The MLCK activity assay 

utilizes radioactive ATP [γ-32P] to determine the rate of phosphorylation of 

free regulatory light chain (MYL9) by human recombinant MLCK. Beta 

radiation counts from phosphorylated MYL9 are collected over 5-minutes 

(at 1-minute intervals) to establish the rate of MLCK activity at each myosin 

concentration, ± 300µM GSNO. GSNO is a stable endogenous form of nitric 

oxide, and is capable of the non-enzymatic transfer of the NO-moiety to 

cysteine thiols, a process called S-nitrosation. We use the MLCK activity 

assay, ± GSNO, to determine if GSNO affects MLCK activity when (b, left) 

both MYL9 and MLCK are S-nitrosated, or (b, right) when only MLCK is S-

nitrosated. 
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Figure 4: GSNO affects the rate of phosphorylation of MYL9 by MLCK: The 

MLCK kinase assay utilizes radioactive ATP [γ-32P] to determine the rate 

of phosphorylation of free regulatory light chain (MYL9) by human 

recombinant MLCK. Beta radiation counts from phosphorylated MYL9 are 

collected over 5-minutes (at 1-minute intervals) to establish the rate of 

MLCK activity at each myosin concentration, ± 300µM GSNO. (a) The Km 

was not significantly different between baseline (Km=49.12µM 95% CI: 

29.05 to 86.25) and GSNO (Km=59.13µM 95% CI: 35.7 to 105) treated 

samples; however, the Vmax was significantly higher in the presence of 

GSNO (1.862x, 95% CI: 1.557 to 2.357) as compared to baseline. (b) 

Identical experimental conditions, but MYL9 thiols were blocked with 

iodoacetamide, which prevents S-nitrosation of C108. Assay run at myosin 

concentrations between 75-150 µM, which allows for a determination of 

changes in Vmax. There was not a significant change in Vmax after the 

application of GSNO, indicating that MYL9 S-nitrosation is the contributing 

factor to the changes in Vmax.  
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MYL9, the previous experiment is unable to determine whether MYL9-SNO 

or MLCK-SNO is to account for the change in phosphorylation rates. To address 

this issue, we blocked the lone cysteine on MYL9 with iodoacetamide (IAM), 

MYL9-C108-IAM, to prevent its S-nitrosation when exposed to GSNO. The assay 

was repeated under otherwise identical assay conditions at concentrations of 

MYL9 (75,100,125,150 µM) that would allow a change in Vmax to be observed. 

There was no statistically appreciable difference (p=0.238, n=4) in the 

phosphorylation rates of MYL9-C108-IAM in the presence or absence of GSNO 

(Figure 4B). This suggest that MYL9-SNO is the contributing variable to the change 

in observed phosphorylation rates when exposed to GSNO. 

GSNO Increases hTREK-1 Currents. TREK-1 is an outward rectifying K+ 

that is important to uterine quiescence during pregnancy by maintaining the 

negative membrane potential (Nathanael S Heyman et al., 2013b). The presence 

of TREK-1 splice variants in sPTL myometrium have been shown to impair channel 

function and membrane localization (Chapter 2) (C. L. Cowles et al., 2015). 

Beyond splice variants, the C-terminus of TREK-1 is susceptible to several 

phosphorylative PTMs (Figure 5B) by PKA/PKG/PKC that greatly alter channel 

function (Enyedi and Czirjak, 2010), and using analytical software (GPS-SNO v1.0) 

it is predicated that C414 on the cytosolic C-terminus of TREK-1 can be S-

nitrosated (Xue et al., 2010). We compared TREK-1 activity in the presence of 

300µM GSNO or 300µM glutathione (GSH, which is structurally identical to GSNO 

but without the ·NO moiety) to that of NaHCO3, a known activator of the channel. 
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Application of 100µM GSNO for 10 minutes to overexpressing stably transfected 

HEK293 hTREK-1 resulted in a significant increase in outward current, as 

compared to GSH control, at applied voltages of +60 to +80mV (+60mV p=0.049, 

+80mV p=0.043, +100mV p=0.038, n=4 for each) (Figure 5A). At +100mV there 

was a ~4-fold increase of TREK-1 current over GSH (GSNO 51.1 ± 12.39, GSH 

12.62 ± 7.489 pA/pF, n = 4). Conversely, there was no significant difference 

between GSNO activated currents and NaHCO3 activated current at +100mV (n.s., 

p=0.3569), or any other voltage. Data is presented as ΔI(pA/pF), indicating a net 

change in current as compared to baseline for each recording. Taken together, 

these data demonstrate activation HEK293-hTREK-1 cells with GSNO in a manner 

similar to those previously reported for TREK-1 channels using known endogenous 

activators (Caley et al. 2005; Meadows et al. 2000). 

 
 
Discussion 

 

The myometrium is unique when compared to all other muscles. Of the 

many distinguishing characteristics of uterine smooth muscle, here we seek to 

better understand the alternative actions of ·NO in the cell. The ability of ·NO, and 

its endogenous analogs, such as GSNO, to posttranslationally modify proteins 

through S-nitrosation indicates a unique pathway in the myometrium to quiesce 

the tissue. S-nitrosations result in both redox regulation, as well as stable  
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Figure 5: GSNO increases TREK-1 currents HEK293-hTREK-1 cells: (a) 

Either 100µM GSNO, GSH or NaHCO3 was applied to the bath of HEK293-

hTREK-1 cells and incubated for 10 minutes. The change (delta) in mean 

current density in response to 20-mV voltage steps from 100 to 100 mV 

before (initial) and after application of GSNO, GSH or NaHCO3 was 

recorded and GSNO treated cells showed a significantly greater activation 

over GSH treated cells at voltages of +60 mV to +100 mV. *P < 0.05. (b) 

The translated sequence of TREK-1 reveals the significance of C-terminus 

to PTMs. Analytical software (GPS-SNO) indicates that C414 on the C-

terminus is likely to be S-nitrosated. 
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S-nitrosations that alter protein function (Scott D. Barnett and Buxton, 2017a; Rizi 

et al., 2017; Wolhuter and Eaton, 2017). In recent years, the body of evidence to 

support protein S-nitrosation as an important regulator of human health and 

disease has grown dramatically (Foster et al., 2009b). S-nitrosation in the cell is 

highly dependent on the availability of intracellular GSNO (Smith and Marletta, 

2012). As GSNO concentrations increase, so do levels of total protein S-

nitrosation. Because GSNOR-/- mice show increased cellular levels of GSNO and 

SNOs (Liu et al., 2004), it is likely that GSNO, and S-nitrosated proteins, are in 

equilibrium governed by Cys-to-Cys trans-nitrosation (Dalle-Donne et al., 2000), 

and GSNOR mediated de-nitrosation (Liu et al., 2001b). The global decrease in 

total protein S-nitrosations measured between term and preterm myometrium 

(Figure 1) is consistent with our measured increase in GSNOR expression in sPTL 

(chapter 4), and highlights the possibility that specific S-nitrosation variability might 

underlie and contribute to preterm pathology. 

We have previously shown that many proteins critical to the uterine 

contraction/relaxation cycle are differentially S-nitrosated in preterm laboring 

myometrium, as compared to term laboring, and term non-laboring tissue lysates 

(Ulrich et al., 2013d). There is a conspicuous paucity of functional data detailing 

whether or not the S-nitrosation of CAP proteins in smooth muscles are functionally 

relevant. To further advance this body of knowledge, we investigated how acto-
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myosin ATP-ase activity, MLCK activity, and TREK-1 channel activity were altered 

in the presence of GSNO. 

  Muscles are unable to contract without active acto-myosin cross-bridge 

cycling. The actin motility assay measures the translocation of F-actin by myosin 

(Sellers, 2001), and serves as an indicator of acto-myosin ATP-ase activity, and 

by extension, cross-bridge cycling. ·NO donors have long been known to impact 

skeletal muscle systems with a general trend towards decreasing contractile force, 

sliding velocity, and ATP-ase activity (Bansbach and Guilford, 2016). In fact, S-

nitrosation of the heavy chain of skeletal and cardiac myosin causes a decrease 

in actin velocity (Evangelista et al., 2010a), and S-nitrosation of skeletal myosin 

affects the catalytic cycle, but does not alter Actomyosin affinity (Nogueira et al., 

2009). While the structure and function of smooth muscle myosin differs in several 

critical ways to skeletal and cardiac myosin, and thus prevent direct comparison of 

GSNO actions in the two systems, the actin monomers that interact with the 

myosin head are functionally identical between the muscle classes (Harris and 

Warshaw, 1993). To this point, relevant studies of skeletal SNO-actin have been 

shown to affect the rate of f-actin formation (Dalle-Donne et al., 2000), and in both 

skeletal and smooth muscle, actin can be S-nitrosated at two sites per monomer 

and this results in a decrease in sliding velocities by ~24% when using skeletal 

myosin (Bansbach and Guilford, 2016). 

When we applied GSNO to the actin motility assay we saw a decrease in 

actin velocity at intermediate concentrations of myosin (Figure 2), a finding 



	

	

252	

consistent with ·NO-donor application to skeletal muscle myosin (Evangelista et 

al., 2010b). While it is common to only investigate actin velocity at a single myosin 

concentration, typically 100 µg/ml, testing its velocity at a wide range of myosin 

densities permits one to better understand the nuances of the attachment and 

detachment kinetics. The velocity of the actin in this assay is defined as V=n*d*v, 

where n=number of myosin per actin filament, d=distance moved per stroke, and 

v=rate of ATPase activity (Stewart et al., 2013). At low myosin densities, the 

velocity of actin is constrained by the lever arm motion at the point of the cycle in 

which the myosin transitions from a free to actin-bound state, as there are a limited 

number of myosin heads competing for the actin filament (Baker et al., 2002). This 

is called the “attachment limit,” and our data indicates that the presence of GSNO 

is affecting this dynamic (Figure 2). As the concentration of myosin increases, it is 

the myosin transitioning from the bound to unbound state that affects velocity. At 

high myosin densities, the probability of second myosin head being attached to the 

actin, while the first myosin is attempting a power stroke, increases.  Because of 

this, at high myosin densities the “detachment limit” dictates the velocity of the 

actin.  The entire ATP-ase cycle takes approximately one second, and as the 

number of myosin increases, the chances of additional myosin being bound 

simultaneously increase dramatically, causing the velocity to plateau.  At these 

high myosin densities, we recorded unexpectedly low velocities, both with and 

without GSNO. While there is a dearth of published data surrounding SMM 

velocities at our highest velocities (300 and 400 µg/ml), trends suggest that 
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velocities generally plateau, rather than decrease (Harris and Warshaw, 1993); 

therefore, this finding is compelling and warrants further investigation. Our 

experiments lack the specificity to determine which protein S-nitrosations were 

responsible for this decrease in actin velocity, but future experiments will include 

S-nitrosating induvial reaction chamber components, such as MYL9 and actin, to 

pinpoint the relevant protein S-nitrosations. 

The actin motility assay just described reports ATP-ase activity, which is an 

important metric detailing the physical mechanism of force production (Le Clainche 

and Carlier, 2004). Upstream of the process, however, is the critical 

phosphorylation of MYL9. Phosphorylation of MYL9 by MLCK is at the crux of all 

contractile activity in smooth muscle. Beyond MYL9’s phosphorylation, which 

initiates ATP-ase activity and cross-bridge cycling (Word, 1995), MYL9 is also 

required, from a structural sense, for folding into the 10S conformation (Katoh and 

Morita, 1996), and pMYL9 interaction with the essential light chain enhances lever 

action of the myosin head to allow for engagement with actin (Ni et al., 2012). 

There is little doubt that MYL9 is a fundamentally critical component to SMM 

structure and function. The obligate phosphorylation of MYL9 for cross-bridge 

cycling is at S19 (Colburn et al., 1988), but less is known about the relevance of 

PTMs more distal from the N-terminus where that phosphorylation occurs. 

Interestingly, through the use of photo-crosslinking, it has been shown that C108, 

the sole cysteine of MYL9, is unshielded when in the unphosphorylated state 

(Mazhari et al., 2004), intimating the possibility that C108 may be susceptible to S-
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nitrosation when the cell is relaxed. Previous work from our lab has shown that 

MYL9 in not S-nitrosated when the myometrium is quiescent prior to labor (TNL), 

and that it achieves the highest state of S-nitrosation during spontaneous preterm 

labor (Ulrich et al., 2012b). At first glance, it may appear contradictory that GSNO, 

an agent known to promote relaxation, increases the rate of MYL9 phosphorylation 

(Figure 4). However, when we consider that sPTL myometrium is functionally a 

“disease” state, and that MYL9 is highly S-nitrosated during sPTL over TL and 

TNL, it is easy to entertain the possibility that S-nitrosation of MYL9 is promoting 

contraction through increased kinase activity. What remains obfuscated is why 

MYL9 in sPTL fundamentally more permissive to S-nitrosation?  This question is 

further confounded when we consider that total S-nitrosations decrease in sPTL 

myometrium (Figure 1) as a result of increased GSNOR activity (chapter 4). 

Whether the cytosolic environment in sPTL myometrium promotes a 

conformational shift in MYL9, or if it is driven by distinct mutation of the protein, or 

something else, requires further investigating. These data, however, provide novel 

insight into the functional relevance of MLCK action on MYL9-SNO. 

Phosphorylation of MYL9 cannot occur unless MLCK is activated. MLCK 

activation requires stimulation by calmodulin, which in turn needs high cytosolic 

Ca2+. That influx of Ca2+, spurred by CICR, does not occur until the membrane is 

depolarized. One of the most obvious distinguishing characteristics of the 

myometrium, when compared to other types of smooth muscle, is that it must 

remain largely quiescent over the 40 weeks of gestation. The myometrium employs 
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many tools to achieve this end, such as oxytocin receptor modulation (Takemura 

et al., 1996), a shift in progesterone receptor ratios to decrease CAP protein 

production (Tan et al., 2012), among many others, to include an increase in TREK-

1 expression (Tichenor et al., 2005), which helps to maintain a negative cell 

membrane potential, preventing the aforementioned influx of Ca2+. Our laboratory 

has previously determined that splice variants of TREK-1 affect trafficking of full-

length functional TREK-1 in sPTL (Chapter 2) (C. L. Cowles et al., 2015), and 

computational analysis of TREK-1 using the program GPS-SNO (Xue et al., 2010), 

suggests a high likelihood that TREK-1 may be S-nitrosated at C414 on the C-

terminus, in the same region as other key PTMs that alter TREK-1 function. Our 

finding that GSNO increases TREK-1 currents (Figure 5), further enhancing 

membrane hyperpolarization, corroborates the possibility of C414 S-nitrosation. 

That being said, there are other plausible pathways to TREK-1 activation through 

GSNO. For example, the HEK293 hTREK-1cells used for these experiments 

natively express PKG (Protein Atlas: ENSG00000185532), a known activator of 

TREK-1 through phosphorylation at S360 (previously reported as S351) (Enyedi 

and Czirjak, 2010). Future experiments will mutate C414 to determine if GSNO still 

activates the channel. 

In conclusion, the underlying cause(s) of sPTL remain unknown. Here we 

provide a novel mechanism that may provide insight into the unique relaxation 

pathway in the myometrium through protein S-nitrosation. Our data have revealed 

that total protein S-nitrosations in sPTL myometrium are decreased relative to term 
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tissue, which serves as an indicator of ·NO availability, and implicates sPTL as a 

“disease state.”  In an effort to elucidate the functional implications of protein S-

nitrosation, we determined that acto-myosin ATP-ase activity is retarded in the 

presence of GSNO, MLCK activity is enhanced, and that the outward rectifying K+ 

channel, TREK-1, exhibits an increase in current. Our finding that GSNOR, and by 

extension protein S-nitrosation, are dysregulated in the myometrium of women 

undergoing sPTL affords an opportunity to investigate a new class of drugs that 

increase the availability of endogenous ·NO in the cell. 

 

 

 

Acknowledgements: 

With the highest level of gratitude, I would like to thank the Baker and Cremo 

laboratory for patience and expertise with the actin motility assay and the MLCK 

activity assay. This simply would not have been possible without their unreserved 

assistance. Also, thank you to Craig Ulrich for providing the mass-spectrometry 

data. 

 
 
 
 
 
 
 
 
 



	

	

257	

 

 

 

 

 

 

 

 

 

 

SUPPLEMENTAL FIGURES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	

	

258	

 

  



	

	

259	

 
 
 
 
 
 
Supp. Figure 1: SMM isolation, phosphorylation, and MYL9 differentiation: (a) 

(left panel) A Coomassie stain verifying the purity of SMM isolation in both 

chicken (gallus gallus) gizzard, and human myometrium. Human SMM was 

tested for degradation after three and seven day. (center panel) A western 

blot using 10µg of SMM to verify specificity of the MYL9 antibody for both 

human and chicken MYL9. (right panel) Overlay of western blot (pink) for 

MYL9 and Coomassie Blue total protein stain (blue) to verify presence of 

MYL9 in both gizzard and human myometrial smooth muscle myosin (SMM) 

isolates. A single 10-well 4-20% polyacrylamide gel with duplicate samples 

was run. Image was generated using Adobe® Photoshop™ CS5 with a 

100% screen overlay. (b) MYL9 differs at only two amino acids in human 

(uniprot: P24844) and chicken gizzard (uniprot: P02612). Importantly, 

C108, the only cysteine in the protein, is unaltered. (c) Phosphorylation was 

assessed using non-denatured, urea prepped samples, on a 10% or 4–20% 

Tris-glycine gel. 
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Supp. Figure 2: MLCK activity assay RLC/ELC ratio: The regulatory light chain 

(RLC/MYL9) concentration, for use in the MLCK activity assay, is measured 

by spectrophotometry. Essential light chain (ELC) does not interact with 

MLCK, however, there is generally some level of ELC contamination when 

performing the RLC preparation. Since it is not possible to determine the 

concentration of only RLC using spectrophotometry, we ran a concentration 

gradient (1:10 – 1:3000 dilution) of the RLC/ELC isolate (a), and determined 

the ratio of RLC to ELC by the relative density of the bands run on 

Coomassie gel. The middle linear range of the bands (1:100 dilution) was 

used to acquire the ration (b), then the ratio was applied to the total protein 

concentration to determine an actual RLC concentration in the isolate. 
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Supp. Figure 3: Actin motility assay with two concentrations of GSNO: 

Preliminary data from the actin motility assay (n=1, with three technical 

replicates) indicated that at 100µg/ml myosin concertation, actin velocity 

was affected in dose-dependent manner when exposed to GSNO. 
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Supp. Figure 4: MLCK activity determination: At each myosin concentration, 

the reaction is quenched at t=1,2,3,4,5 min after the addition of ATP [γ-32P]. 

From this, the slope can be acquired, which is relative to the counts*min-1. 

MLCK activity is measured as (slope/[background scint count])*[1/([reaction 

vol.]*[MLCK concentration]). 
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Supp. Figure 5: Double reciprocal plot of MLCK data: (a) Data from Figure 4A 

plotted as a double reciprocal (Lineweaver-Burke) indicates that GSNO is 

enhancing the ability of MLCK to bind to its substrate, MYL9. No change in 

Km, but a change in Vmax can easily be determined from this plot. (b) 

pHUSMC hTRT cells were incubated in 300µM GSNO for 20 minutes, and 

a biotin-switch was used to biotinylate and stabilize S-nitrosated proteins. 

Following this, SNO-proteins were isolate by a streptavidin pull-down, and 

the resulting proteins were run on a western blot and exposed to MYL9 anti-

bodies. This gel indicates that MYL9 can be S-nitrosated when exposed to 

GSNO, while glutathione (GSH) and vehicle controls are not. 
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Chapter 6 

 

Conclusions and Future Directions 
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 Pregnancy and parturition are complex, multi-factored events. As evidence, 

80-years of ongoing pharmacological research seeking to halt preterm labor (PTL) 

have fallen well short. Tocolytics still cannot extend preterm birth (PTB) beyond 

48-hours after the onset of labor (Sayres, 2010). While this modest reprieve does 

provide an important window to deliver antenatal corticosteroids, which bolster 

fetal lung development when administered from weeks 24-34 of gestation, it does 

nothing to mitigate the multitude of other complications associated with PTB 

(Behrman and Butler, 2007). Of the dozens of tocolytics that have been used over 

the years, nearly all are borrowed pharmacology. That is to say, they were 

developed to treat other muscle disorders, such as hypertension (Conde-Agudelo 

et al., 2011), asthma (Neilson et al., 2014b), and heart failure (Guclu et al., 2006), 

but not PTL. It was posited that these drugs, which work well in other smooth 

muscles, would have similar effects in the myometrium; they do not. Unfortunately, 

these drugs are either: (1) completely ineffective (Abramson and Reid, 1955; 

Duckitt et al., 2014; Romero et al., 2000), (2) must be used in concentrations that 

are harmful to mother and child (Sayres, 2010), or (3) only extend PTB 48-hours 

(ACOG, 2016). Why is it that these therapeutics have failed to halt PTL?  The 

answer, at least in part, is that the myometrium is a fundamentally distinct muscle 

(Figure 1). Because of this, any successful approach to therapeutically moderate 

this muscle must take into account the nuances of uterine smooth muscle. Here 
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we have described the unique metabolism and actions of nitric oxide (·NO) in the 

myometrium, and we employ new drugs that leverage these distinctions. 

 An important realization that drives much of the research contained in this 

dissertation is our laboratory’s finding that, unlike other smooth muscles, the 

myometrium relaxes independently of global cGMP accumulation when exposed 

to ·NO (Chapter 2) (Bradley et al., 1998d).  This finding compliments other recent 

work showing the limited role of cAMP and PKA in myometrial relaxation (Lai et 

al., 2016). The logical question in response to this observation is what alternative 

pathways does ·NO act upon to relax the tissue?  We believe that the 

posttranslational modification, S-nitrosation, is a major contributing factor to 

myometrial quiescence. Earlier work by our laboratory has found that proteins 

important to contraction in the myometrium can be differentially S-nitrosated based 

on the state of labor (preterm vs. full-term) when exposed to the endogenous ·NO 

donor, S-nitrosoglutathione (GSNO) (Ulrich et al., 2013c, 2012b). With this 

information in hand, we sought to determine what functional significance these 

protein S-nitrosations impose on contractile dynamics. As reported in Chapter 5, 

we determined that GSNO inhibits ATP-ase activity, which decreases actin 

velocities. This can have important consequences in the cell by decreasing the 

force of contraction (Warshaw et al., 1990; Word, 1995). We also found that the 

critical regulatory light chain (MYL9) of smooth muscle myosin increases MLCK 

activity when S-nitrosated, a contradictory finding that is reconciled when we 

consider that MYL9 S-nitrosation in greatly increased in spontaneous preterm 
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laboring (sPTL) myometrium over term laboring myometrium, bolstering evidence 

of sPTL as a disease state. Lastly, we determined that GSNO increases the activity 

of TREK-1, an outwardly rectifying K+ channel important to myometrial quiescence 

by promoting a negative cell membrane potential. Taken together, we have 

provided novel evidence to support the functional role of protein S-nitrosations on 

myometrial contractile dynamics. 

 Beyond its ability to S-nitrosate proteins, the fact remains that ·NO, 

regardless of its mechanism of action, is a capable and important mediator of 

myometrial relaxation (I. L. O. Buxton, 2004; Norman, 1996). We have discovered 

that S-nitrosoglutathione reductase (GSNOR), an enzyme that metabolizes 

GSNO, is upregulated in sPTL tissue (Chapter 4); ergo, available ·NO and total 

protein S-nitrosations decrease (Chapter 5). As a result, women who undergo 

sPTL exhibit a blunted response to ·NO (Chapter 4). Because enzymes are 

common and effective targets for therapeutics, it is fortuitous, at least 

pharmacologically speaking, that GSNOR is dysregulated in sPTL myometrium. 

We found that N6022, an inhibitor of GSNOR, decreases the ‘peak force’ and ‘area 

under the curve’ of contractions in the myometrium (Chapter 4). The discovery of 

novel tocolytics is uncommon, and by leveraging our newly found knowledge, we 

may have identified an entirely new class of drugs to treat preterm labor (Appendix 

B). 
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Future Directions 

 

Compelling science, when done properly, will generate many more 

questions than it does answers. While it is not up to me decide whether or not this 

research contained in these pages is persuasive or important, I can happily report 

that this work has generated many yet to be explored questions. 

One of the most important lingering questions of this research is the 

mechanism of action of nebivolol. We first investigated nebivolol (Chapter 4) 

because it was reported to be an inhibitor of GSNOR (Jiang et al., 2016a); it is not. 

Quizzically, nebivolol is an acutely effective relaxer of uterine smooth muscle. We 

determined that nebivolol also does not inhibit thioredoxin reductase, which is 

another GSNO metabolizing agent. Interestingly, and of undoubtable applicability 

to our research, is the recent finding that nebivolol increases the activity of 

endothelial nitric oxide synthase (eNOS) (Wang et al., 2017). This is particularly 

compelling because sPTL myometrium overexpresses GSNOR; therefore, the 

idea of simultaneously inhibiting GSNOR with N6022, while increasing eNOS 

activity with nebivolol, presents as a conceivably potent tocolytic combination. 

As N6022 has limited bioavailability in the cell, due to its hydrophobic 

structure, we also proposed to modify N6022 to increase its permeability. We are 

in talks with the organic chemistry department at UNR to collaborate on the 

synthesis of a modified form of N6022 that contains an ester-linked side chain, to 
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increase cellular uptake, that can be cleaved by endogenous esterases, returning 

the compound to its native state.  We have been granted a provisional patent for 

this concept, and will continue this work moving forward (Appendix B).  

Also, the initial data set acquired from the actin motility assay and the MLCK 

activity assay were compelling and warrant further investigation. With the actin 

motility assay, we seek to further investigate which protein S-nitrosations are most 

relevant to ATP-ase activity and actin sliding velocities. Because the ‘attachment 

limit’ drives actin velocity at low myosin concentrations, and our data suggest that 

attachment kinetics may be at play in the presence of GSNO, we will seek to 

determine if it is myosin S-nitrosation, or actin S-nitrosation, that drives this change 

in kinetics. Others have determined that in skeletal and cardiac myocytes the 

myosin heavy chain is S-nitrosated (Evangelista et al., 2010b). We can easily S-

nitrosate actin outside of this experimental system, rather than apply GSNO to the 

entire flow chamber, and we can also perform an MYL9-SNO exchange on SMM 

to avoid application of GSNO to the entire system as well.  Both experiments will 

allow us to better pinpoint the relevant S-nitrosations. 

 Lastly, an important future direction for our research should include an 

investigation of single nucleotide polymorphisms (SNPs). SNPs in the promoter 

and 3’ UTR of ADH5, the gene that encodes for GSNOR, have been shown to 

affect the expression of the gene in some asthmatic cohorts (Henderson and 

Gaston, 2005b; Moore et al., 2009b; Tang et al., 2013b; Zuo et al., 2013). While 

our myometrial sample library is inadequate to identify is ADH5 SNPs pertinent to 
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sPTL, there are other academic sources of sPTL tissue that may be available to 

us. Also, commercial enterprises, such as 23andMe®, have begun sharing their 

vast data sets in an effort to identify genetic anomalies relevant to disease states 

(Chang et al., 2017), which may be an avenue worth considering. If we were to 

identify SNPs relevant to sPTL, it would be particularly applicable to the preterm 

labor research community as we currently do not have a genetic test for sPTL. If 

ADH5 SNPs are identified during early pregnancy with a simple blood test, newly 

identified ·NO modulating drugs, such as N6022 and nebivolol, could be used for 

maintenance tocolysis, preventing sPTL before it occurs. These notions are, of 

course, speculative, but they could prove to be important. 

 

Conclusions 

 

Preterm labor is an expensive problem. Each preterm infant incurs an 

average of $51,000 in additional medical fees, above and beyond uncomplicated 

normal delivery cost (ACOG, 2016). In the United States alone, we collectively 

spend approximately $30 billion annually (adjusted) on direct and indirect 

expenses associated with PTL and PTB. While it also cost billions of dollars to 

bring a new drug to market (Chit et al., 2015), this number pales in comparison to 

the financial and emotional burdens experienced by families of PTB infants. Here 

we offer unambiguous evidence that the myometrium is fundamentally different 
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from other muscles in the body, and we propose novel mechanisms and therapies 

to treat a disorder that causes so much grief to families around the world. 

The title of this dissertation begins, “intimations on the pathophysiology of 

preterm labor.”  An intimation is a “hint” or an “indication.” I do not possess the 

hubris to think that the research in this dissertation will “cure” sPTL, but I hope that 

the evidence put forth will help establish a new beachhead to attack the problem, 

so that one day sPTL will fade from our collective memories. 
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Appendix A 

 

Noninvasive determination of pregnancy in Dunkin-Hartley guinea pigs 
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Our investigation of preterm labor requires a biochemical analysis of the 

myometrium during pregnancy and parturition.  As it is not possible to collect 

uterine smooth muscle samples from women mid-gestation, an animal model was 

used.  Mice are often the preferred animal for experimental studies due to their 

relatively low cost, rapid breeding cycle, and the availability of numerous 

transgenic models.  Unfortunately, they are suboptimal for myometrial studies, as 

endogenous progesterone withdrawal initiates labor in mice through cervical 

remodeling (Yellon et al., 2009), where it does not humans.  Guinea pigs are 

advantageous in this regard, as they are one of the few animals do not experience 

progesterone withdrawal (Nnamani et al., 2013), and are therefore more 

physiologically relevant to our studies. 

 Dunkin-Hartley (DH) guinea pigs (Elm Hill, Chelmsford, MA) were 

purchased as either virgin juveniles (300-350g) and bred on site, or as timed-

pregnancies (30-35d). All animal studies were approved by the University of 

Nevada, Reno, Institutional Animal Care and Use Committee. The average length 

of gestation of a guinea pig is  ~70 days, although this can vary slightly based on 

litter size (Goy et al., 1957).  Our research requires the timed-interval collection of 

guinea pig myometrial tissue as early as 20-days of gestation. While there are 

numerous methods to determine pregnancy in guinea pigs, we sought to identify 

a technique that would require minimal handing of the animals to mitigate stress, 

while still accurately assessing pregnancy state.  Studies in mice have shown that 

the manner in which the animals are handled can have a significant effect on stress 
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(Hurst and West, 2010), to include less obvious factors, such as the gender of the 

handler (Sorge et al., 2014), and the presence of unknown individuals (Van Driel 

and Talling, 2005).  Stress in animals can even lead to miscarriage (Xu et al., 

2013), a finding particularly applicable to our research. 

 

Approaches to determine pregnancy in DH guinea pigs: 

 

Ultrasonography: Ultrasound is a common, fast, and generally effective 

method to identify pregnancy in most animals.  Unfortunately, this normally 

requires shaving of the animal, the liberal use of ultrasound gel, anesthetizing 

agents, and the possibility of the animal being handled by personnel unknown to 

the guinea pig. Corticosterone has been shown in animals to increase with 

exposure to isoflurane (Altholtz et al., 2006), with females be more susceptible to 

repeated isoflurane administration (Hohlbaum et al., 2017).  We attempted to 

identify pregnancy via ultrasound on three guinea pigs, ranging from 10-25 days 

of gestation, with no success.  Two of the three animals were later found to be not 

pregnant by other methods, yet in none of the cases were we able to conclusively 

rule out pregnancy through ultrasonography, indicating a high potential for false 

negatives.  For the reasons listed above, we have suspended its use as a tool to 

identify pregnant guinea pigs. 

 X-ray Imaging: X-ray imaging is an attractive alternative to ultrasonography, 

as it only requires anesthetizing the animal for a short period time, and handling of 
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the animal is kept to a minimum.  This approach is limited in that calcification of 

the fetal skeleton does not begin until day 28 of gestation, and is not complete until 

day 39 (Graham and Scothorne, 1970).  We were able to easily confirm pregnancy 

in 65d guinea pigs using x-ray imaging (Figure 1); however, by day 65 of gestation 

there are more obvious indicators of pregnancy, such as weight, abdominal 

circumference, and the use of palpation. X-ray imaging may prove useful in cases 

of low-weight gain by mid-gestation, but it is a time-consuming and expensive 

mean to identify pregnancy. 

Copulatory Plug & Vaginal Swab:   Like mice, guinea pigs will often develop 

a copulatory plug after insemination (Martan and Shepherd, 1976).  While this is 

commonly used method of pregnancy detection in mice, it is correlative and does 

not guarantee impregnation. This technique is further complicated in our 

experimental setting as the guinea pig cages are lined with chip bedding; therefore, 

locating the copulatory plug is akin to finding the proverbial needle in a haystack. 

Despite several attempts, we were unable to find any plugs in the animal bedding, 

or still attached to an animal.  Vaginal swabs, on the other hand, are easily 

collected and only require minimal handling the animals.  Our guinea pigs are co-

housed with a breeding male for five-days.  Vaginal swabs were collected the 

morning the 2nd and 4th day of cohabitation with a male.  We swabbed the vagina 

of each female guinea pig with a sterile cotton swab and then immediately smeared 

onto a slide and used 50µl of Phosphate Buffer Solution (pH 7.4) on a cover slip.  

Samples were observed under a light microscope to identify spermatozoa via 



	

	

283	

morphology (Byers et al., 2012) (Figure 2).  Alternatively, the vaginal swabs were 

placed into an Eppendorf tube containing 500uL of PBS immediately after 

collection and stored on ice for analysis at the laboratory (Humphreys et al., 1982).  

After 16 swabs, with 4 different animals, only a single positive identification was 

made. This finding, coupled with the fact that copulation does not always signify 

pregnancy, lead us to seek alternative methods to identify pregnancy. 

Chorionic Gonadotropin:  Chorionic gonadotropin (CG) is important to 

implantation and pregnancy maintenance (Cross et al., 1994).  The pituitary 

gonadotropin hormones, CG, LH, and FSH, share an identical alpha subunit with 

a unique beta subunit (Themmen and Huhtaniemi, 2000).  It has been shown that 

guinea pig CG is more similar to human CG than other rodents (Bambra et al., 

1984), increasing the likelihood that an over the counter (OTC) human pregnancy 

test would be effective. Human pregnancy test use antibodies to identify the beta-

subunit of hCG, however, the precise binding epitope has not been disclosed 

(Berger and Lapthorn, 2016).  CG levels peak in the guinea pig at day 18 

(Humphreys et al., 1982), making this a potentially fast and noninvasive method to 

detect early pregnancy in guinea pigs. 

We used two different OTC pregnancy kits (Equate® One Step Pregnancy 

Test™, and First Response® Digital Pregnancy Test) as a “proof of concept” to 

determine if they would be effective at determining pregnancy in our guinea pigs.  

We tested between 250µl-500µl of urine from a 20d and 40d pregnant guinea pig, 

and neither provided a positive result.  This may have been due to insufficient urine 
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volume, or because the test is incompatible with guinea pig CG, but the sample 

size was too small to be conclusive. 

Palpation:  Unlike mice, guinea pigs are born precocious (Sosenko and 

Frank, 1987).  As such, they develop rapidly during the short ~70d gestational 

period.  At day 30 the fetus is only ~2.5g, but weight gain increases exponentially, 

and the guinea pig will weigh ~250g by day 68 (Engle and Lemons, 1986).  The 

uterus expands to accommodate the fetus and a placental disc forms in concert 

with fetus development.  These factors, combined with the growing volume of the 

fetus itself, allows for ready identification of pregnancy through palpation.  In our 

experimental setting, palpation is performed weekly on suspected pregnant 

females during other handling tasks.  To accomplish this, the guinea pig is held 

upright and the abdomen is grasped at the midline.  With a gentle squeeze the 

hand palpates the abdomen of the female while moving outward to the edge of the 

body until the entire area is tested, and is then repeated bilaterally. Pregnancy was 

consistently identified by day 20-30, with detection as early as 15 days.  Palpation, 

when done by a handler familiar to the guinea pig can be completed in under a 

minute and with minimal discomfort (and presumably stress) to the animal.  This 

technique has become our primary means to detect pregnancy under 35 days. 

 Weight and Abdominal Circumference: As is readily evident, guinea pigs, 

as with most animals, gain weight during pregnancy. This makes weight tracking 

an attractive and reliable metric for which to identify pregnancy.  Guinea pig fetal 

weight, and by correlation maternal weight, does not increase linearly during the 
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pregnancy.  At day 30 the fetus is only ~2.5g, approximately 1% of its delivery 

weight 40 days later (Engle and Lemons, 1986). For this study we tracked 18 

pregnancies, for which 39 offspring were birthed.  Of these offspring, there were 

21 males and 18 females, with an average litter size of 4.3 (SD = 1.5) (Table 1). 

Beyond the fact that weight gain will be affected by the number of 

developing fetuses, using weight a metric to identify pregnancy is further 

complicated by the fact that guinea pigs are capable of reproduction by a biological 

age of 60 days, at which point they are still growing themselves, making it more 

difficult to differentiate maternal growth from weight gain attributed to pregnancy.  

For this purpose, we bifurcated our gestational groups into juvenile and adult 

pregnancies.  Pregnancy was able to be determined solely by weight gain in our 

juvenile guinea pig cohort by gestational day 42 (p < 0.05) when compared to a 

control group of identical biological age (Figure 3A). Weight gain per day in the 

pregnant group (n=4) was 7.142g ± 0.2525 (95% CI 6.493 to 7.791), and 2.907g ± 

0.3608 (95% CI 2.054 to 3.76) in the non-pregnant group (n=8) over the course of 

the pregnancy.  Pregnancy in mature adults, on the other hand, was able to be 

determined by gestational day 35 (Figure 3B) (p = 0.0357 d31-40. n=3 to n=7 at 

each time point, except at day 61-70 for which there was only a single recording, 

and was only included to show the visual trend).  An aggregate of all collected 

weights shows that a majority of the weight gain occurs from gestational days 30-

65 (Figure 4A), as would be expected.  Furthermore, when age is not accounted 

for, the weight of a pregnant guinea pig can be differentiated from a non-pregnant 
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guinea pig by day 31-40 (P = 0.019), with the average being 34.2d in this cohort 

(Figure 4B). 

Abdominal Circumference: Lastly, we used abdominal circumference as a 

noninvasive means to detect pregnancy in our guinea pigs.  A string measured the 

animal’s circumference once weekly and was compared to non-pregnant controls. 

Two people were used to ensure accuracy and consistency.  One handled the 

guinea pig while the other took and recorded measurements.  To consistently 

record measurements, the pig is held upright during recordings. The handler 

placed one hand under the upper appendages of the guinea pig, while providing a 

stable base for hindquarters with the other hand.  Circumference is measured by 

wrapping a string around the widest portion of the lower abdomen and recorded to 

the nearest half centimeter. With this methodology alone, we were able to 

determine pregnancy by gestational day 40 (Figure 5), with a 19.6% (± 5.89%, 

n=4) increase in abdominal circumference (p= 0.0377).  As a comparison, there 

was no significant difference in abdominal circumference at day 20 (p=0.5311, 

n=8). 

 

Conclusion 

 

Mitigating stress in experimental animals is not only an ethical impetrative, 

but it improves the health of laboratory animals (Council, 2008). Of nine methods 

to identify pregnancy that we employed, palpation proved to be the least invasive 
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and most reliable technique, and can differentiate guinea pigs by gestational day 

15.  While we were unsuccessful at using OTC pregnancy tests as a means to 

identify pregnancy, this technique requires further study, as CG levels peak at 

gestational day 18, indicating that pregnancy determination may be possible many 

days earlier.  Weight gain is easily trackable with little stress to the animals, and 

with a sufficient ‘n’, trends can easily be determined in each cohort to be used a 

metric to identify pregnancy.  That being said, the earliest possible day to 

determine pregnancy, by weight alone, at least with our adult cohort, was day 35, 

which has its limitations. Ultimately, there exist multiple, reliable, noninvasive 

techniques to identify pregnancy in guinea pigs while minimizing stress to the 

animal.  
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Figure 1: X-ray filmography of pregnant and non-pregnant guinea pig: X-ray 

filmography of a non-pregnant adult Dunkin-Hartley guinea pig and a term 

pregnant guinea pig at 65 days of gestation.  Three fetuses (red arrows) are 

morphologically identifiable. 
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Figure 2: Vaginal swab of guinea pig post-mating: A single sperm, as identified 

through light microscopy (40x). A vaginal swab was taken following 

overnight cohabitation and smeared onto a glass slide with 50µl of PBS.  No 

other sperm were identified on the slide. 
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Figure 3: Juvenile vs. adult guinea pig weight gain during pregnancy: (a) 

Juvenile guinea pigs can be identified as pregnant, using weight gain as the 

sole metric, at day 42 of gestation, gaining 7.14g ± 0.25 (n=4) of weight per 

day, as compared to 2.90g ± 0.36 per day in the non-pregnant group (n=8). 

(b) In mature guinea pigs, in which their individual weight has stabilized 

when not pregnant, the weight of a pregnant guinea pig can be differentiated 

from a non-pregnant guinea pig by day 31-40 (P = 0.019), with the average 

being 34.2d in this cohort. 
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Figure 4: Aggregate guinea pig weight gain during pregnancy: (a) A plot of all 

individual recorded weight of adult guinea pigs during pregnancy reveals a 

trend that appreciable weight gain does not occur until gestational day 

~30+, and continues to term.  (b) As expected, the absolute weight gain of 

all guinea pigs, regardless of age, reveals a significant deviation from non-

pregnant guinea pigs between gestational days 31-40, with a more reliable 

delineation in the 41-50 day period. 
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Figure 5: Abdominal circumference to determine guinea pig pregnancy:  

Abdominal circumference was measured weekly in pregnant (n=4) and non-

pregnant (N=8) guinea pigs.  There was no difference in circumference at 

gestational day 20 (p=0.5311), but there was by day 40(p= 0.0377), with a  

19.6% (± 5.89%) increase in abdominal circumference. 
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