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Abstract 

The ability of a vehicle to navigate safely through any environment relies on its 

driver having an accurate sense of the future positions and goals of other vehicles on 

the road. A driver does not navigate around where an agent is, but where it is going 

to be. To avoid collisions, autonomous vehicles should be equipped with the ability 

to to derive appropriate controls using future estimations for other vehicles, 

pedestrians, or otherwise intentionally moving agents in a manner similar to or 

better than human drivers. Differential game theory provides one approach to 

generate a control strategy by modeling two players with opposing goals. 

Environments faced by autonomous vehicles, such as merging onto a freeway, are 

complex, but they can be modeled and solved as a differential game using discrete 

approximations; these games yield an optimal control policy for both players and 

can be used to model adversarial driving scenarios rather than average ones, so that 

autonomous vehicles will be safer on the road in more situations. Further, discrete 

approximations of solutions to complex games that are computationally tractable 

and provably asymptotically optimal have been developed, but may not produce 

usable results in an online fashion. To retrieve an efficient, continuous control 

policy, we use deep imitation learning to model the discrete approximation of a 

differential game solution. We successfully learn the policy generated for two games 

of different complexity, a fence escape and merging game, and show that the 

imitated policy generates control inputs faster than the differential game generated 

policy. 
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1. Introduction 

For autonomous vehicles, precise navigation through dynamic environments 

is necessary for the safety of passengers, surrounding vehicles, and pedestrians. 

However, driving on a freeway, navigating city streets, or pulling into a 

neighborhood -- any real life driving scenarios -- are situations that add the 

additional difficulty of avoiding collisions in an environment with other intentional 

agents. An intentional agent is any object in an environment that moves according to 

its own attitudes, goals, and beliefs. Most importantly, an intentional agents’ choice 

of action is affected by the actions of other agents. All cars and pedestrians may be 

considered intentional agents, independent of whether they are autonomous or fully 

under human control. As humans, we are able to make assumptions about other 

agent’s intentions and, based on this knowledge, how these agents will move in 

reaction to our actions. The understanding of where others will be in reaction to 

ourselves allows us to manipulate the environment in our favor. To avoid collisions 

effectively, an autonomous vehicle must also be able to emulate this estimation of 

future positions and agent reactions within a continuous state and control space.  

Although it seems the straightforward choice, future positions of pedestrians 

or other cars on the road are not accurately estimated using solely object tracking 

algorithms. Object tracking assumes that the only intentional agent in the 

environment is the tracker. Other agents’ movements are assumed not to be affected 

by any actions taken, and it contains no structure to account for competitive actions 

taken in response some driver maneuver. It is possible that one agent may attempt 
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to prevent the actions of another in order to achieve its own goals faster, more easily, 

or to prevent the other from reaching its goal. In the case of highway driving, 

merging and changing lanes are both actions that require the cooperation of at least 

one other driver. It is possible that other drivers may merge from different lanes and 

reduce the merging space or speed up to make more room. A vehicle must have 

some kind of intent recognition in order to plan around anticipated reactions of 

other agents, especially when those agents may be competing against it. 

Differential game theory is turned towards instead to model actions and 

reactions in a given situation. Game theory provides a method of generating optimal 

controls in a multi-agent, competitive environment. With the publishing of their 

book  Theory of Games and Economic Behavior , John von Neumann and Oskar 

Morgenstern solidified the concept of mathematically determining an optimal way 

for either competing or cooperative players to behave in games of choice (Neumann 

and Morgenstern). Players create a strategy, or series of decisions, that results in 

some return of value to each player at the end of the game. The strategy that is 

superior to any other is considered the optimal strategy. A greedy policy, chosen 

with respect to this optimal strategy, is guaranteed to be the optimal optimal policy. 

The original formulation of game theory by Von Neumann and Morgenstern 

is not applicable to autonomous vehicles as the physical dynamics of vehicles are not 

accounted for. It is more appropriate to apply differential game theory (Isaacs). 

Representing two player games with ordinary differential equations leads to 

strategies that are expressed as a series of choices in continuous time, rather than as 
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a sequence of steps. Several authors  have previously presented papers utilizing the 

optimal controls generated by differential games relating to vehicle behavior, such as 

naval collision avoidance, but the optimal controls generated by these algorithms are 

practically implementable for more complex problems (Ho, Yu-Chi, et al.). The 

solutions presented by these algorithms require large amounts of calculation to 

obtain in continuous space. They can, however, be discretely approximated, but then 

produce large tables of state and action values that take up large amounts of 

memory for complex problems. While the obtained strategies are guaranteed to be 

optimal, a more efficient solution needs to be developed for realtime, limited space 

situations. 

Another method of learning an optimal way to avoid collisions is through 

machine learning. Deep neural networks are currently a popular choice in research 

to perform many functions in the autonomous car industry. Variations of deep 

neural networks are being explored as collision detection, lane navigation, and full 

end-to-end navigation control, and large amounts of data for these problems can be 

collected by human drivers or simulated to train complex models (Xu, Huazhe, et al.; 

Chen and Huang; Wang, Pin, and Chan). More recently, improvements in imitation 

learning, learning an end-to-end policy, have enabled successful models to learn 

sequences of actions better than supervised learning alone. However, the data to 

train models is often collected for ideal situations, where autonomous vehicles seek 

to avoid objects in their environment and abide by the rules of the road while 

assuming that other vehicles are cooperating. A method of determining what to do 
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in an adversarial situation is necessary while there are still humans sharing the road 

with autonomous vehicles. 

In order to take advantage of the optimal control strategies offered by game 

theory in adversarial conditions without requiring large amounts of real time 

processing, and data storage, we propose modeling the results of game theory with 

deep imitation learning. Strategies generated by differential game theory consist of a 

series of states and actions which can be used as data to train a neural network in a 

supervised fashion. A test if this combination would produce reasonably accurate 

results was created, and two differential pursuit-evasion games were created for an 

application of game theory to generate optimal controls and train an imitation 

learning model. 

A simple fence escape game and a more dynamically complex vehicle merging 

game were defined to test the architecture of our solution and to see if it would 

generalize to more complex game environments. Optimal actions for states in each 

game are calculated using a variation of the iterative iGame algorithm developed by 

Mueller and Zhu. Once collected, these state-action pairs are used to train a deep 

neural network model using an implementation of DAgger. Additionally, a 

reinforcement learning algorithm was applied to the results of the fence escape 

game to further optimize its control policy. 

The model learned an accurate representation of the game theory generated 

policy, and was able to provide controls twice as quickly. The success of the model 

indicates that collecting optimal action training data from game theory could be a 
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good method of training neural networks on cars to navigate situations where ideal 

behavior cannot be expected from the environment around them. 

2. Background and Related Works 

The combination of differential game theory and machine learning is 

proposed given two functions; the ability of differential game theory to provide the 

optimal control policy for players in a given game environment, and the ability of a 

neural network to learn a policy provided by an expert. In order to provide a 

foundation for understanding this work, both of these concepts are delved into 

individually before introducing how they work together. An introduction to the 

relevant game and differential game theories and current solutions are presented 

first, followed by a short tutorial on neural networks, deep learning, and imitation 

learning. Then, recent works related to game theory and machine learning for 

autonomous cars specifically are explored. The contributions of our work in the 

form of the connection between game theory and machine learning is discussed 

with relation to these references. 

2.1 Differential Game Theory 

Game theory is a mathematical method for calculating the best actions a 

player can take while playing a game. In this case, a game is any situation involving 

two or more players that make choices where he results of all players choices result 

in some value return to the players. In many games, players’ actions result in a 

benefit to themselves and a cost to their opponent. One such famous game is the 

prisoner’s dilemma. Two prisoners that have been arrested for some crime have the 
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option to either betray the other’s involvement, or remain silent. Their prison 

sentences are decided based on the combination of their responses, but they cannot 

communicate with each other. For example, if both prisoners remain silent, they 

both serve a year in prison, but if prisoner A betrays prisoner B and prisoner B 

remains silent, the betrayer will not serve any prison time while the silent prisoner 

will have to serve three years (Selten). A diagram of the typical rewards for a 

prisoner’s dilemma is included in table 1. 

Table 1: A formulation of the prisoner’s dilemma. Prisoners have two choices of 
action that determine their number of years in prison. The number of years in 

prison is represented as a negative reward value. 

Prisoner A \ Prisoner B Betray Stay Silent 

Betray -2 \ -2 0 \ -3 

Stay Silent -3 \ 0 -1 \ -1 

 

The goal of a prisoner in the prisoner’s dilemma is to earn the least amount 

of prison time, so they wish to discover which action is the best action to take to 

achieve that goal. A player’s action choice is referred to as that player’s strategy, and 

the strategy that results in a greater reward than any other strategy is the dominant 

strategy or  optimal strategy  (Issacs). The goal of game theory is to calculate an 

optimal strategy for one or all players in the game. 

The solution to a game can be found according to multiple criteria. On one 

hand, a game could be said to be solved when the player’s strategies reach an 

equilibrium . An equilibrium is reached when a strategy is found for both players that 
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cannot be improved, however the definition of improved changes equilibrium 

points. Nash Equilibrium for example, defines lack of improvement as when neither 

player can increase their reward by changing their strategy while the other players’ 

remain constant. Alternatively, the trembling hand perfect equilibrium takes into 

account when players may make unintentional choices, or tremble (Stelton). 

Alternatively, the solution of a game can be determined with a minimax function. In 

this way, different solution concepts can lead to different strategies for players in a 

game, but would still result in a solved game. The prisoner’s dilemma, however, is a 

very simple game and changing solution criteria does not lead to a different solution. 

Prisoner’s dilemma can also be played iteratively: each prisoner makes the 

choice to betray or stay silent more than once and attempts to maximize their 

rewards over time rather than just for a single game instance. The strategy that a 

player forms to choose actions based on the state of the game over time can also be 

referred to as a  policy . Different policies result in different rewards, so, similar to 

strategies, the policy that earns a player more reward than any other policy is the 

optimal policy.  If optimal policies could be generated for games of vehicles 

interacting on the road, an autonomous vehicle could maximize a reward related to 

avoiding collisions. However, general game theory does not have any knowledge of 

the kinematics that players are bound by. Solutions to these games cannot be applied 

to autonomous vehicles as they map actions directly to reward values. In order to 

consider the dynamics for the players, the game can be formed as a differential game 

instead. 
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In a differential game, players are described according to their possible 

states, kinematic equations, and control inputs. Unlike in traditional game theory 

where players choose actions and receive some reward, players instead choose their 

control inputs as their strategies and change their state in the game according to 

their kinematic equations while attempting to reach some defined goal. Goals do not 

have to be to move towards a static location, they can include intercepting or 

avoiding a moving target, and players can have cooperative or adversarial goals. An 

advantage to this formulation of a game is that when a differential game is solved, 

both players will have optimal control policies that describe optimal paths for them 

to take towards their goals. 

Isaacs originally developed and solved differential games to apply them to 

military applications (Isaacs). He provided several examples of the use of 

pursuit-evasion games, where the goal of one player, the pursuer, is to capture or cut 

off the evader player, whose goal is usually to avoid the pursuer. A common 

pursuit-evasion game is called the homicidal chauffeur. The pursuer is fashioned 

after a vehicle that has a high top speed but large turning radius and the evader is a 

pedestrian with low top speed but small turning radius. The solution to the game 

depends on whether the game is posed as a  game of kind  or  game of degree.  Games 

of degree have a continuum of outcomes, often solutions provide the controls of a 

player or the time until capture, whereas solutions to a game of kind report a finite 

outcome of a game, such as whether a player will win or lose based on starting 

positions. A sample diagram for the homicidal chauffeur game is found in fig. 1.  
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Figure 1: An illustration of the homicidal chauffeur game in a reduced state 
space. The pursuer P has to get within distance r of E to win the game. Players 

control their velocity and turning radius. 
 

2.2 Differential Game Solutions 

Optimal interception strategies for collision avoidance and capture can be 

modeled and solved as a pursuit-evasion game. The solution to a differential game 

can take the form of the optimal value function, optimal control policy, or optimal 

path, and any one of these solution formulations can be used to derive the others 

(Isaacs). Solving a differential game, rather than a traditional game, as a game of 

degree will provide an autonomous vehicle with a useable control policy for collision 
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avoidance in various situations, however, the solutions to a differential game are not 

as easily calculated. 

To derive a solution to a differential game in the continuous space that it is 

defined in, Isaacs defined the  Main Equation . A generally nonlinear, first-order 

partial differential equation, the  Main Equation  is a function of the kinematics and 

controls equations of all the players in a game. When solved it provides a true 

solution to the game. It is, however, difficult or impossible to solve computationally 

for complex games. In all of the previously mentioned games, solutions relied on a 

great deal of pre-calculating equations and attempts to simplify the kinematic 

equations (Exarchos; Pachter and Yavin; Lewin and Olsder). Directly solving the 

Main Equation  becomes impossible for more complex games. In such a vein, games 

designed for an autonomous vehicle, even simplified, are likely to yield a  Main 

Equation  that is too complex to solve computationally. 

Fortunately, differential games’ solutions can be obtained numerically. Using 

higher order derivations of the value function, to reduce the complexity of the  Main 

Equation,  and the development of the “multiple shooting method” have provided 

more computationally viable solutions (Lachner; Morrison et al.). However, some of 

the most computationally successful numerical solutions involve sampling based or 

discrete approximations. 

Several sampling based methods can be used to solve games, but exhibit 

varying levels of accuracy and refinement. Algorithms like Rapidly-exploring 

Random Trees, or RRT*, are built upon randomly sampling states from the available 
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state space. RRT* is  used to generate optimal motion planning. It is important to 

note, however, that RRT* creates an open-loop strategy rather than the closed-loop 

strategy that is usually generated by pursuit-evasion games (Karaman, Sertac, and 

Frazzoli). Viability theory has also been applied to approximate a value function as a 

sampling based method (Cardaliaguet, Pierre, et al.).  Multi-grid, successive 

approximation approaches, such as the one used alongside viability theory by 

Cardaliaguet, are successful at discretely approximating the value of games, but are 

limited in accuracy by a predefined and static grid resolution. 

To leverage incremental sampling as well as viability theory in order to 

improve on multi-grid approximation methods, iGame*, was developed (Mueller, 

Erich, et al). iGame* operates similarly to Cardaliaguet’s method, but refines the grid 

resolution each iteration to the smallest grid that all previously sampled points fit 

on, allowing the accuracy of the algorithm to increase the longer it runs. iGame* 

maintains this grid in order to create the value function for a game. This value 

function is represented as each sampled state having its own value. 

iGame* as presented is faster than the previous multi-grid methods, and its 

asymptotic convergence is formally insured for all states, meaning that as time 

approaches infinity, iGame* will produce the optimal value function. From the 

approximated value function, iGame* can also generate the control policy that is 

greedy with respect to the value, and if that value function is optimal then the 

resulting policy will also be optimal (Sutton and Barto).  For these reasons, iGame* is 

chosen to generate solutions to the proposed autonomous vehicle differential games. 



 

12 

iGame* generates solutions well; however, its discrete solution needs to be modeled 

in the continuous space, or have some form of policy compression applied to the 

results in order to avoid comparing states from a table of thousands of points in a 

real-time collision avoidance environment. Using deep learning to learn the policy 

with imitation learning accomplishes both of these objectives. 

2.3 Deep Learning 

Deep learning is one way to accomplish machine learning, or getting an 

algorithm to learn from experience. A deep learning algorithm is built to fulfill the 

definition of machine learning as a connection between several neural networks. 

Broadly, machine learning is the ability for an algorithm to improve its 

performance on a task T, with respect to some performance measure P, given 

exposure to some experience E (Mitchell). As far as the task T is concerned, machine 

learning can be applied to problems such as classification, regression, translation, or 

anomaly detection, among other fields. The network built to learn iGame*’s policy is 

a classifier, identifying which is the proper control input to take given an input state. 

Formally, this classifier is tasked with producing a function f:Rn -> {y1, y2, …, yk} 

such that when given a state x the model will produce an appropriate y from the set 

of available controls (Goodfellow, Ian, et al.). Classification is a subset of supervised 

learning. In supervised learning, every element of a training dataset is accompanied 

by a label and provides the experience, E, part of machine learning. Specifically, a set 

of elements {x1:y1, x2:y2, …, xi:yi}, where xi is a feature observation and yi is its 

label, is used to train a network. 
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One of the simplest neural networks is one that performs linear regression. 

Although classification is the goal of the network created to model iGame*, the 

construction of a linear regressor is similar and provides a good introduction to the 

machine learning concepts that are necessary to extend into deep learning. 

Following is a condensed explanation of a simple network, based primarily on the 

work in Goodfellow, Bengio, and Courville’s Deep Learning book, which can be 

referenced for more in depth information about different types of neural networks. 

The task, T, of a linear regressor is to predict the value of a scalar y ∈ R from 

an input vector x ∈ R n . The model should output ŷ, an estimation of y, following the 

equation: 

, w x bŷ =  T  
+   

where  w  is a vector of  weights,  w ∈ R n  , that are applied to x to determine the 

estimated ŷ, and  b  is a  bias  applied to the formula. Weights decide how much 

emphasis a feature in x has on the final prediction; changing the values of individual 

weights affects whichever feature it is multiplied with. Values can be: (1) positively 

valued, which increases ŷ, (2) negatively valued, decreasing ŷ, or (3) zero, causing no 

effect to the final value. If the input expands in feature size,  w  can also be a matrix.  

The regressor also needs some way to measure performance, P. A common 

performance measure for linear regressors is mean squared error. Given the 

prediction ŷ and true label y, vectors of size m, the mean squared error (MSE) is 

defined as: 
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.SE (ŷ y)M =  1
m ∑

 

i
−  i

2  

Since the MSE is larger when ŷ and y are farther apart, and smaller when they are 

similar, the regressor can be said to perform better when the output of MSE is 

smaller. With a performance measure defined, the regressor needs some way to 

change the weights  w  and bias  b  after observing labeled data, the experience E, to 

minimize the MSE. 

Gradient descent  is the most commonly used method of updating w. Taking 

the derivative of the cost function yields its slope, or gradient, and given that 

information the values in the w vector can be updated to “descend” the slope of the 

cost function towards the minimum value. Effectively, after evaluating each data 

point in the training dataset, gradient descent can be run to update w before the 

next evaluation. Updates to  w  and  b  are scaled with a learning rate parameter to 

control how much the weights are changed each iteration. Note that on large 

datasets, gradient descent can be very slow, as it runs in O(n) time, so  stochastic 

gradient descent  is usually run on mini-batches of examples selected uniformly from 

the dataset instead of updating after every evaluation. 

Simple machine learning solutions, like the linear regressor, can be powerful 

tools, but cannot be generalized to solve many complex problems. Deep learning was 

created to overcome problems like the  curse of dimensionality , the number of 

distinct configurations of a set of inputs can be much larger than the number of 

available training examples, and the  local consistency prior,  that learned functions 
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are assumed to change very little within a small region, along with other problems 

that hinder generalization (Goodfellow, Ian, et al.).  

Deep neural networks can be thought of as a series of functions, like the 

linear regressor, that are chained together. Each function makes up a layer of the 

network, and the output from one function is passed on to the next, until the last 

layer’s function produces an output. For example, three functions in a chain would 

form,   f(x) = f 3 (f 2 (f 1 (x))).  The number of layers in a network is the network’s depth. 

Figure 2 is a sample diagram of a 3 layer  deep feedforward network.  In a feedforward 

network, the input, x, is only passed through each layer once in a straight line, as 

visible in the diagram. Layers that are not first or last,  f 2   in the figure, are called 

hidden layers ; during training, these layers are used to find the best approximation 

of  f(x) . 

 

Figure 2: An illustration of a feedforward deep neural network. This network has 
three layers, two linear functions and a sigmoid function. The inclusion of a sigmoid 

function as the final layer means that this could function as a binary classifier. 
 

Like in the linear regressor, deep networks are also updated using gradient 

descent. The chain rule is used to propagate changes to all weights and biases in the 

network working backwards from the last layer to the first in a process that is aptly 

known as  back propagation.  Networks can be made as large or as small as needed to 
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learn a dataset, and functions do not have to remain linear. More complex networks 

can learn vast amount of associations. 

2.4 Previous Deep Learning for Autonomous Vehicles 

Variations of supervised learning are used in many neural networks intended 

for autonomous applications. Variations of deep neural networks are being explored 

as collision detection, lane navigation, and full end-to-end navigation control, as 

large amounts of data to train complex models for these problems can be collected 

by human drivers or simulated (Wang, Pin and Chan) (Xu, Huazhe, et al.) (Bojarski, 

Mariusz, et al.). The Next Generation Airborne Collision Avoidance System (ACAS-X) 

family of systems, for example, is a deep neural net explored by a Stanford team as a 

policy compression algorithm to reduce the memory requirements for air traffic 

collision avoidance tables. the purposes of policy compression, with particular 

success seen by the Next Generation Airborne Collision Avoidance System (ACAS X) 

family of machine learning solutions ( Kochenderfer, Mykel, Holland, and 

Chryssanthacopoulos ). However, pure supervised learning is not the most accurate 

way to train a deep learning network. There is an assumption that each new state is 

independent of the last. In truth, the next state relies on the previous state 

estimation and chosen controls. In practice, a model that makes a mistake can result 

in experiencing a state that it was never trained on. The model would be forced to 

guess at the best controls to make from the new state, most likely inaccurately, 

leading to compounding errors. To avoid models "getting off track", the DAgger 

architecture was created to train a better imitation learner (Ross, Stephane, et al.). 
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DAgger progressively limits the student learner's policies and action selection until 

it can no longer create off track policies. 

Imitation learning can be used to learn a policy accurately, but the choice of 

policy to learn is also important. Most current applications of machine learning to 

control autonomous vehicles train on human collected data, either generating a 

simulation based on an aggregate of controls or training directly from human 

provided input to go with state or image data, but the data does not reflect 

adversarial situations. Most adversarial research aims to control for attempts at 

deceiving sensor input rather than avoid collisions with a potentially adversarial 

driver ( Szegedy, Christian, et al.;  Huang, Sandy, et al.; Gu, Shixiang, and Rigazio.). Our 

method seeks to generate optimal control strategies for worst case scenarios rather 

than average driving ones, so that autonomous vehicles will be safer on the road. 

3. Approach 

To create a control policy for an autonomous vehicles that considers 

intentional agents, a situation is modeled as a differential game,  iGame* is used to 

approximate the value function and corresponding greedy policy, then an 

implementation of DAgger trains a student to imitate iGame*'s policy. The setup of 

this system is detailed from start to final output considering the connections 

between each section. The definition of a differential game in a way that is usable by 

iGame* is covered first, followed by a description of the iGame* and DAgger 

algorithms and their implementations, as well as the final output of the system. 
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3.1 Differential Game Setup 

A pursuit-evasion game can be used to model many of the situations faced by 

an autonomous vehicle, but it must be defined in such a way that it can be solved in 

iGame*. Recall, a differential game is defined with a set of ordinary differential 

equations that describe the dynamics of the game environment. These equations are 

functions of the current state and controls of the system, at a time t, for each agent in 

the environment. Each agent is governed by its own equation and controls, but the 

state for the entire game is based on the state information of every player at the 

current time. Several subsets of the state space must be defined for use in iGame*. 

 The set of all possible states in the state space are defined as X, where X ∈ 

ℝ N . The specific state that is represented at time t is x(t). For  two-player games, we 

consider a pursuer player and an evader player which have different goals. The 

pursuer wishes to move the system from the initial state, x(0), into a set of states 

where the evader loses the game X bad . The evader, meanwhile, wishes to move to a 

winning set of states, X goal  , while remaining free from X bad . X free  is considered to be a 

constraint set where the game is neither in a winning or losing state, X free  ≐ 

closure(X - X bad ). 

The controls space of the differential game must also be defined. Both players 

control the system through their choice of strategies in order to achieve their stated 

goals. Let sets U and W represent the control strategies of an evader and pursuer, 

respectively, and be defined as: 

U ≜ { u(.) : [0, +∞) -> U, measurable} 
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W ≜ { w(.) : [0, +∞) -> W, measurable} 

where U ⊂ ℝ ma  and W ⊂ ℝ md .  

Finally, the following equation would define the dynamical system: 

x’(t) = f(x(t), u(t), w(t)), 

where x’(t) denotes the next state and u(t) ∊ U and w(t) ∊ W. The set of kinematic 

equations that move the state according to the control values are defined 

individually for each game considering the players and environment. With the 

dynamics of the system defined, computing the value function of the resulting game 

is the job of iGame*.  

After defining the differential game, the controls and kinematic equations can 

be used in iGame* to approximate the optimal value function and control policy. 

Give a vague overview of iGame*, dispersion, the values each state carries 

around...iGame*, that runs even faster by utilizing cascade update rules. Instead of 

updating every sampled point when a new one is generated, iGame* maintains a set 

of directed trees where the new point is inserted as a child of the nearest, lowest 

value neighbor within a defined ball distance. Children are decided with an updated 

VI function VI*. Updates are only triggered when a node’s child changes their 

estimates or is added, or if an update has not been done for a defined amount of 

consecutive iterations. 

As input, iGame* requires: I, the number of iterations to run, M, the, l, the 

Lipschitz constant of the dynamical system equation, alpha, any positive scalar to be 

used in the calculation of the time discretization, D, the maximum number of 
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iterations allowed before a state must have its value updated, and (Beta), a constant 

used in the generation of the dispersion of the state space. The algorithm starts by 

generating an initial set of random samples in the state space X, S0. Each of these 

initial states are assigned a random value between 0 and 1 and their update Flag is 

set to 0. The estimated values of each state also are assigned 0.  

On each step of the remainder of the n iterations, a new sample is uniformly 

randomly generated within X and added to the existing set of states S. Based on the 

current iteration and input constant (Beta) a new dispersion value, d n ,  is calculated. 

d n  is considered the resolution of the finite grid that the elements of S n  lie on, and 

can be defined as: for any x (in) X free  (exists) x’ such that distance between x and x’ is 

less than d n . The authors provided a lemma defining an upper and lower bound for 

the value of d n , and chose to calculate d n  as the lower bound as it could be calculated 

offline; the math is reflected in line 8 of the algorithm. From d n  and the input values 

of M and l, values for the time discretization, h n , and dilation size, α n  are also 

calculated that are used for determining how long a timestep is for the purposes of 

calculating controls and determining a search radius for neighbors around a state, 

respectively. 

After calculating all the necessary variables, iGame* moves into several loops 

that modify the values of states in S depending on various factors. First, existing 

states are checked if they need to be updated. For each state x in S n-1 , newest 

sampled state excluded, if x has reached the maximum number of iterations since 

updating, or the child of x has just been updated, add x to the set of states that 
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require updates, Kn. Next, for the states in Kn that are  not  within X goal  values are 

updated according to the VI* algorithm, which solves a single step game. The 

algorithm of VI* is detailed in fig. 3. 

Within VI*, the single step game at the current point is solved. The solution to 

this game is to discover which state in S, within a reachable distance, is of best value 

to move to considering both the controls of the evader and the pursuer. To do this, a 

maximin function searches for a saddle point that minimizes the estimated value 

with respect to the evader’s available controls while maximizing it with respect to 

the pursuer’s controls. Two separate sets of controls choices are available to the 

evader and pursuer. It does not matter whether the maximin function makes a list of 

the evader’s or the pursuer’s controls choices first, as either way the same saddle 

point will be discovered (Isaacs).  In the original VI* algorithm, a new possible 

control value is added to the controls set for the evader every iteration, but to reduce 

the computation time a subset of the control space is sampled once and this 

discretization is used for the remainder of the algorithm. 

 

Figure 3: The VI* algorithm. The algorithm solves a maximin function for a single 
point in a game’s space, leading to an update to the assigned value and controls of 

that state (Mueller, Erich, et al. “Anytime Computation Algorithms for 
Approach-Evasion Differential Games”). 
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After calculating a solution to the single-step games at each of the state points 

that needed their value updated, iGame* continues to update the values of states 

based on two additional criteria 

The next loop updates the states in S that are not in Kn or Xgoal. Each of these 

states have a child state assigned to them such that the state’s child is the state 

within the defined ball distance with the lowest value. The new value of the chosen 

state will match the previous value of the child. Note that in this loop no controls are 

calculated to navigate between this state and its new child. Whatever controls are 

calculated for the state in VI* remain the same. The iterations until update flag is 

increased, and iGame* moves on to its final loop. 

Finally, iGame* considers the last subset of states in S, those that are within a 

single step of Xgoal. These states follow a simple update rule; their next value is 

equal to the previous estimated value. The iGame* pseudo code is outlined in fig. 4. 
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Figure 4: The algorithm for iGame*, a iterative sampling discrete approximator that 
solves differential games (Mueller, Erich, et al. “Anytime Computation Algorithms for 

Approach-Evasion Differential Games”). 
 

When iGame* has finished running, it produces a set of states with attached 

information. Each sampled state has an associated value and calculated control value 

that is saved in a python dictionary and written to file. The values of each state can 

be used to visualize the value function of the game and verify its correctness, 
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however, it is the saved control values that are used to train the imitation learner to 

produce a similar policy. 

3.3 Deep Imitation Learner Setup 

Once iGame* has generated its set of sampled state and control inputs, an 

imitation learner can be trained to model the discrete policy created by iGame* in 

continuous space. As mentioned previously, DAgger is the framework that was 

chosen to train a model on the policy. Its pseudo code is included in fig. 5 but the 

algorithm is also explained briefly. To train a policy that will perform sequence 

prediction without dooming a model to being unable to recover from a mistake, 

DAgger starts by initializing a dataset of collected trajectories Ɗ. This set is initially 

empty but is filled with trajectories generated from the first provided policy,  1 , theπ︿  

expert’s. In this case, iGame*’s policy will provide the expert policy. The next policy, 

 2 , is produced by a student classifier trained to mimic the trajectories generated byπ︿  

the expert. This new policy is used to generate more trajectories to add to what 

already exists in Ɗ. For each iteration n DAgger repeats this process, using  n  toπ︿  

generate more trajectories for Ɗ then training the student to create the next policy, 

 n+1 , to mimic the whole dataset Ɗ. When all iterations are completed, the finalπ︿  

policy has been trained on the aggregate dataset of all previously generated 

trajectories. 
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Figure 5: Pseudo code for the dataset agregator algorithm, DAgger. DAgger trains a 
policy on iterations of generated trajectories (Ross, Stephane, et al.). 

 
The classifier mentioned in the pseudo code is the student attempting to 

learn the policy, and any choice of student for a classifier would suffice. A 

feedforward, deep neural network, with three fully connected linear layers is used as 

the student for both of the test cases presented. It is implemented using the pytorch 

machine learning library in Python. The network uses MSE as its loss function and 

the Adam optimizer provided by pytorch, and for both of the test cases trains for 

2000 epochs with a minibatch size of 64. The final output of DAgger is a model of the 

policy generated by iGame*. The model accepts as input a state in the game space 

and outputs its learned control inputs for the evader and pursuer from that state.  

3.4 Performance Guarantees 

The combination of iGame* and DAgger algorithms results in a system that 

generates and learns policies for differential games; these learned policies will be 

near optimal due to the performance guarantees of both algorithms. While iGame* is 

proven asymptotically optimal in running time, it is also shown to globally converge 
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from any initialized values of the initial random sampling of states. From two 

assumptions about the input and setup of iGame*, assumptions 2.1 and 3.1, the 

authors propose their theorem of convergence (Mueller, Erich, et al.). The following 

properties are said to hold for 2.1:  

1. the sets of positions and controls, X, U, and W, are compact 

2. the function f that defines the dynamical system is Lipschitz continuous in 

x for any (u,w) ∈ U × W 

3. for any pair of x ∈ X and u ∈ U, F(x,u) is convex where the set-valued map 

F(x,u) ≜ ⋃ w ∈W f(x,u,w)  

Assumption 3.1 requires the definition of an integer D, D ≥ 0, such that each state 

sample invokes VI* at least once every D+1 iterations and for any iteration n ≥ 1, the 

set of sampled states S n . Given these two assumptions, it holds that the ⋃  K  ⊆ D
s=0 n+s  

sequence of values v n  converges to the optimal value function v* for any x ∈ X: 

. As the number of iterations approaches the limit, (x)  v (x)v * =  lim
n→+∞

min
y ∈ B(x,d ) ∩S   n n n  

the difference between v* and v n  goes to 0. As such, when run for a significant 

amount of iterations, iGame* will produce a near optimal value function and control 

policy. 

DAgger has its own performance guarantees which bound the loss and regret, 

or the variation of distance between states observed by the expert and learned 

policies in hindsight. Lemma 4.1 in the DAgger publication defines an inequality that 

bounds the distance between state distributions d over T steps, given that willπ  
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execute  over T steps with probability : . This lemmaπ︿ 1 β ) ( −  i
T Tβd  d|

|
|
| πi −  πi︿

|
|
|
|i ≤ 2 i  

is used in their proof of theorem 4.1; there exists a policy  in DAgger,π︿   

, ∈ π   s.t  E  [ℓ(s, )]  γ  [n  TΣ β ]π︿ ︿
1:N s~dπ︿

π︿ ≤  εN +  N +  N
2ℓmax

β +  N
i=nβ+1 i  

where is the loss,  is the loss of the best policy in hindsight, is the [ℓ(s, )]E π︿  εN γ N  

average regret of all generated policies, is the upper bound on loss, and is theℓmax nβ  

largest iteration such that (Ross, Stephane, et al.). For any input distribution,βn > 1
T  

some policy achieves a surrogate loss of under its own state distribution in theε  

limit. The authors also address a finite sample case wherein a similar bound of the 

loss is calculated. With iGame* able to produce a near optimal policy, a DAgger 

taught imitation learner will be able to imitate the same policy with minimal regret. 

4. Test Cases 

4.1 Fence Escape Game 

Our first attempt to imitate iGame*'s policy was with a pursuit-evasion fence 

escape game. This game was selected first as its state space is simple and the 

solution is easy to observe without involving any pre-calculations. Two players start 

the game at random points in a plane along a fence of some defined length. The 

evader wants to reach the end of the fence and escape, but the pursuer can prevent 

its escape by remaining within a set capture distance from the evader. Figure 6 is an 

illustration of the setup of the fence escape game setup.  
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Figure 6: The fence escape game has two players, a pursuer p and evader e. The 
evader’s goal is to get around the fence to the grey shaded X goal  without being within 

the dashed capture zone of the pursuer. 
 

The pursuer and evader system is defined by the following differential 

equations: 

x_p'(t) = x_p(t)*w(t) 

x_e'(t) = x_e(t)*u(t), 

where x_p and x_e are the positions of the pursuer and evader and w and u are their 

respective controls. A state of the game at time t is represented as the pair of 

position points of x_p and x_e.  Each player directly controls their velocities,w = vel_p 

and u = vel_e. Both players move only along the x axis in either the positive or the 

negative direction; the controls values for velocity are constrained between [-1,1]. 

This implementation of the fence escape game used a fence of length 10 

where the fence starts at position 0 and ends at 10. The players’ states are confined 

between -1 and 11. iGame* variables. DAgger is configured to run trajectory length, 

how many initial trajectories and rounds to run, and how many rounds and 

trajectories per round are run after the initial trajectories. 
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4.2 Merging Cars Game 

A pursuit-evasion game with more complex states was our second test of 

policy imitation learning. This merging game is a model of two vehicles in an 

everyday situation, the evader is merging onto a single-lane highway that already 

has the pursuing vehicle on it. In this situation, the evader wants to reach the gray 

X goal  without colliding with the pursuer after exiting the on-ramp. The pursuer is 

attempting to accomplish the worst case scenario of trying to run into the evader. 

Figure 7 illustrates the merging game. 

 

 

Figure 7: The merging game models an interaction between two cars, a pursuer p, 
already on the highway, and a merging evader, e. The evader wishes to merge 
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successfully by proceeding to the grey shaded X goal , located after position 4, without 
colliding with the pursuer between positions 3 and 4. 

 
The dynamical system of the merging game is defined as: 

x_p'(t) = x_p(t)*v_p(t) 

x_e'(t) = x_e(t)*v_e(t) 

v_p'(t) = v_p(t)*w(t) 

v_e'(t) = v_e(t)*u(t). 

States for the game are made up of sets of 4 variables, the positions and 

velocities of the evader and pursuer [x_p, v_p, x_e, v_e]. Both evader and pursuer 

control their acceleration, w = accel_p and u = accel_e, constrained between values of 

[-0.2, 1.2]. Several state constraints apply to both players as well. Vehicles’ positions 

must be between 0 and 5, and their velocities cannot exceed 1.2 or be lower than -.2. 

Since the horizontal position of the vehicles is controlled by the road, it is sufficient 

to model vehicle position with a single variable. 

The merging game setup is not reflective of the complexity of real life 

environments, but the increase in complexity from the fence escape game to the 

merge game shows that our imitation learner can generalize to more difficult to 

solve cases. 

5. Evaluation 

5.1 Fence Escape Game 

To ensure a simple policy was learnable by the imitation student, an instance 

of the iGame* algorithm was created utilizing the dynamics of the fence escape 
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game. The dynamical system is used to construct the value function and policy in the 

form of labeled states. Each sampled state has a corresponding value and control 

inputs stored with it in a python style dictionary. The output of iGame* in the form of 

an approximated value function is shown in fig. 8, where the values of each state are 

plotted with respect to the pursuer and evader positions. A line appears through the 

center of the diagram marking the states from which the evader will lose. Based on 

this value function, iGame* generates a control policy. The paired states and control 

inputs are used to train the imitation student. 
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Figure 8: The estimated value function for the fence escape game. The x-axis is the 
position of the pursuer and the y-axis is the position of the evader. A clear line is 

observed through the states in the center of the diagram where the value is 1 and 
the evader loses the game. 

 
With DAgger configured to run using 20 total rounds and generating 100 

trajectories per round, the deep learning student was taught the generated policy. 

The student produces comparable outputs, and manages to do so with considerable 

speed up from referencing iGame*'s dictionary of states directly. On average in 
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simulation, generating pursuer and evader control inputs from iGame*'s policy 

requires 83.1 milliseconds to complete a game, while it takes the imitation student 

41.8ms, making it 49.7% faster. Some of the speed increase may be due to the 

implementation of iGame* as a dictionary lookup in Python; however, the more 

complex merging game shows that the imitation student is able to generalize in the 

increased state space and compress the policy, reducing the time required more than 

iGame* is able. 

Additionally for this game, reinforcement learning was applied as a second 

machine learning algorithm to further optimize the control policy. Using Proximal 

Policy Optimization (PPO), a model was learned directly from playing the game from 

the perspective of the evader(Schulman, John, et al.). The resulting model won the 

winnable games it played 95% of the time. Although PPO specifically addresses how 

difficult it can be to tune reinforcement learning algorithms, some tuning is still 

necessary, and additional adjustments could yield a 100% accurate model. With 

such a model, the DAgger learner would have additional, superhuman performance 

policy data to learn from. 

5.2 Merging Cars Game 

With the system successfully learning a simple fence escape game, it was 

expanded to learn the merging game to see the effect of its more complicated state 

and control space. Like the fence escape game, the merging game's dynamics were 

used in iGame* to construct the value function and policy. A graph of the 

approximated value function produced is provided in fig. 9. As in the fence escape 
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game, the value of states where the evader loses is indicated in the middle of the 

graph. DAgger was set up with similar settings to the previous game, with the 

exception of using a neural network with a different input size due to the increased 

state sizes of the merging game.  

 

Figure 9: The value function for the merging cars game. The x axis represents the 
position of the pursuer and the y axis the evader. There is a clear collision zone 

between positions 3 and 4, and states between positions 2 and 3 where collisions 
become unavoidable. 
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The merging imitation student was also able to learn iGame*'s policy and 

produces comparable control values. Both iGame*'s policy and the student 

completed merging simulations more slowly than the fence escape game, but iGame* 

experienced considerably more slowdown. iGame*'s policy requires on average 

147.6ms to complete the simulation while fetching the control values, while the 

imitating student only required 61.4ms to generate its solutions (a 58% decrease in 

required time). Interestingly, the runtime of referencing the plain policy increased 

77.6% compared to the student's increase of 46.8%, showing that the imitation 

learner much more efficiently generalizes to complex environments, such as those 

found on autonomous vehicles. The large increase in runtime compared to the fence 

escape game is likely do to searching through the much larger dictionary of states 

required in the more complicated state space of the merging game. The student 

compresses the policy and reduces the effect of the increased state size. 

6. Future Work and Discussion 

In both test cases, the imitation learner was able to model the policy created 

by iGame*. Going forward however, there are improvements and extensions to the 

system that would make it more applicable to an autonomous vehicle. The resulting 

policy learned by the student relies, like its game theory based expert, on having a 

full knowledge of the state space in order to derive the correct controls. Tracking 

neural nets exist that are feasible for use in a real time environment, with the ability 

to track objects at upwards of 100fps (Held, David, et al.). Any error in tracking, 

however, that would translate into incorrect state information would cause this 
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system to generate incorrect controls. An imitation learner utilizing input 

remapping, or learning the correlation between controls and the image input 

directly, would avoid this issue. 

iGame* itself is also very sensitive to its initial parameters. The value of the 

dispersion at the start of the algorithm, for instance, is determined by the user, and it 

must be not too small or too large in order for states to be able to find their 

neighbors but not consider too much of the state space. Dispersion values that are 

improperly scaled result in inaccurate value functions. It is possible to compute a 

good starting value of the dispersion for less complex games, such as fence escape, 

but for state spaces more complex than the merging game calculation becomes less 

intuitive. A more efficient way to estimate a good value for the initial dispersion 

would decrease the time spent tuning iGame*, and would increase the accuracy of its 

final policy. 

7. Conclusion 

We set up two test cases to test the ability of imitation learning to model a 

discretely approximated policy as a continuous control policy. The fence escape 

game showed that our system architecture could learn a policy generated by iGame* 

and the merging game showed that the process is generalizable to more complex 

environments. Modeling situations faced by autonomous vehicles as differential 

games provides a vehicle with measures to predict how other agents in its 

environment may react to its own actions and goals so that their future positions can 

be estimated. This knowledge allows a vehicle to make control decisions to avoid 
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future collisions. Although the environment faced by an autonomous vehicle may be 

complex, the iterative sampling methods used in iGame* should be able to generate 

the value function given sufficient processing time, and the resulting policy can be 

modeled with imitation learning to drastically decrease runtime. 
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