

University of Nevada, Reno

Optimal Strategy Imitation Learning from Differential Games

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science and Engineering

by

Niki Silveria

Dr. Richard Kelley/Thesis Advisor

December, 2017

We recommend that the thesis
prepared under our supervision by

NIKI T. SILVERIA

     

Entitled

Optimal Strategy Imitation Learning from Differential Games
     

be accepted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

Richard Kelley, Ph.D., Advisor

Kostas Alexis, Ph.D., Committee Member

Thomas Quint, Ph.D., Graduate School Representative

David W. Zeh, Ph.D., Dean, Graduate School

December, 2017

i

Abstract

The ability of a vehicle to navigate safely through any environment relies on its

driver having an accurate sense of the future positions and goals of other vehicles on

the road. A driver does not navigate around where an agent is, but where it is going

to be. To avoid collisions, autonomous vehicles should be equipped with the ability

to to derive appropriate controls using future estimations for other vehicles,

pedestrians, or otherwise intentionally moving agents in a manner similar to or

better than human drivers. Differential game theory provides one approach to

generate a control strategy by modeling two players with opposing goals.

Environments faced by autonomous vehicles, such as merging onto a freeway, are

complex, but they can be modeled and solved as a differential game using discrete

approximations; these games yield an optimal control policy for both players and

can be used to model adversarial driving scenarios rather than average ones, so that

autonomous vehicles will be safer on the road in more situations. Further, discrete

approximations of solutions to complex games that are computationally tractable

and provably asymptotically optimal have been developed, but may not produce

usable results in an online fashion. To retrieve an efficient, continuous control

policy, we use deep imitation learning to model the discrete approximation of a

differential game solution. We successfully learn the policy generated for two games

of different complexity, a fence escape and merging game, and show that the

imitated policy generates control inputs faster than the differential game generated

policy.

ii

Table of Contents

List of Tables iii

List of Figures iv

1. Introduction 1

2. Background and Related Works

 2.1. Differential Game Theory 5

 2.2. Differential Game Solutions 9

 2.3. Deep Learning 12

 2.4. Previous Deep Learning for Autonomous Vehicles 16

3. Approach

 3.1. Differential Game Setup 18

 3.2. Deep Imitation Learner Setup 24

 3.3. Performance Guarantees 25

4. Test Cases

 4.1. Fence Escape Game 27

 4.2. Merging Cars Game 29

5. Evaluation

 5.1. Fence Escape Game 30

 5.2. Merging Cars Game 33

6. Future Work and Discussion 35

7. Conclusion 36

8. Bibliography 38

iii

List of Tables

Table Page

A formulation of the prisoner’s dilemma. 6

iv

List of Figures

Figure Page

An illustration of the homicidal chauffeur game in a
reduced state space.

9

An illustration of a feedforward deep neural network. 15

The VI* algorithm. 21

The algorithm for iGame*, a iterative sampling discrete
approximator that solves differential games.

23

Pseudo code for the dataset agregator algorithm, DAgger. 25

The fence escape game has two players, a pursuer p and
evader e.

28

The merging game models an interaction between two
cars, a pursuer p, already on the highway, and a merging
evader, e.

29

The estimated value function for the fence escape game. 32

The value function for the merging cars game. 34

1

1. Introduction

For autonomous vehicles, precise navigation through dynamic environments

is necessary for the safety of passengers, surrounding vehicles, and pedestrians.

However, driving on a freeway, navigating city streets, or pulling into a

neighborhood -- any real life driving scenarios -- are situations that add the

additional difficulty of avoiding collisions in an environment with other intentional

agents. An intentional agent is any object in an environment that moves according to

its own attitudes, goals, and beliefs. Most importantly, an intentional agents’ choice

of action is affected by the actions of other agents. All cars and pedestrians may be

considered intentional agents, independent of whether they are autonomous or fully

under human control. As humans, we are able to make assumptions about other

agent’s intentions and, based on this knowledge, how these agents will move in

reaction to our actions. The understanding of where others will be in reaction to

ourselves allows us to manipulate the environment in our favor. To avoid collisions

effectively, an autonomous vehicle must also be able to emulate this estimation of

future positions and agent reactions within a continuous state and control space.

Although it seems the straightforward choice, future positions of pedestrians

or other cars on the road are not accurately estimated using solely object tracking

algorithms. Object tracking assumes that the only intentional agent in the

environment is the tracker. Other agents’ movements are assumed not to be affected

by any actions taken, and it contains no structure to account for competitive actions

taken in response some driver maneuver. It is possible that one agent may attempt

2

to prevent the actions of another in order to achieve its own goals faster, more easily,

or to prevent the other from reaching its goal. In the case of highway driving,

merging and changing lanes are both actions that require the cooperation of at least

one other driver. It is possible that other drivers may merge from different lanes and

reduce the merging space or speed up to make more room. A vehicle must have

some kind of intent recognition in order to plan around anticipated reactions of

other agents, especially when those agents may be competing against it.

Differential game theory is turned towards instead to model actions and

reactions in a given situation. Game theory provides a method of generating optimal

controls in a multi-agent, competitive environment. With the publishing of their

book Theory of Games and Economic Behavior , John von Neumann and Oskar

Morgenstern solidified the concept of mathematically determining an optimal way

for either competing or cooperative players to behave in games of choice (Neumann

and Morgenstern). Players create a strategy, or series of decisions, that results in

some return of value to each player at the end of the game. The strategy that is

superior to any other is considered the optimal strategy. A greedy policy, chosen

with respect to this optimal strategy, is guaranteed to be the optimal optimal policy.

The original formulation of game theory by Von Neumann and Morgenstern

is not applicable to autonomous vehicles as the physical dynamics of vehicles are not

accounted for. It is more appropriate to apply differential game theory (Isaacs).

Representing two player games with ordinary differential equations leads to

strategies that are expressed as a series of choices in continuous time, rather than as

3

a sequence of steps. Several authors have previously presented papers utilizing the

optimal controls generated by differential games relating to vehicle behavior, such as

naval collision avoidance, but the optimal controls generated by these algorithms are

practically implementable for more complex problems (Ho, Yu-Chi, et al.). The

solutions presented by these algorithms require large amounts of calculation to

obtain in continuous space. They can, however, be discretely approximated, but then

produce large tables of state and action values that take up large amounts of

memory for complex problems. While the obtained strategies are guaranteed to be

optimal, a more efficient solution needs to be developed for realtime, limited space

situations.

Another method of learning an optimal way to avoid collisions is through

machine learning. Deep neural networks are currently a popular choice in research

to perform many functions in the autonomous car industry. Variations of deep

neural networks are being explored as collision detection, lane navigation, and full

end-to-end navigation control, and large amounts of data for these problems can be

collected by human drivers or simulated to train complex models (Xu, Huazhe, et al.;

Chen and Huang; Wang, Pin, and Chan). More recently, improvements in imitation

learning, learning an end-to-end policy, have enabled successful models to learn

sequences of actions better than supervised learning alone. However, the data to

train models is often collected for ideal situations, where autonomous vehicles seek

to avoid objects in their environment and abide by the rules of the road while

assuming that other vehicles are cooperating. A method of determining what to do

4

in an adversarial situation is necessary while there are still humans sharing the road

with autonomous vehicles.

In order to take advantage of the optimal control strategies offered by game

theory in adversarial conditions without requiring large amounts of real time

processing, and data storage, we propose modeling the results of game theory with

deep imitation learning. Strategies generated by differential game theory consist of a

series of states and actions which can be used as data to train a neural network in a

supervised fashion. A test if this combination would produce reasonably accurate

results was created, and two differential pursuit-evasion games were created for an

application of game theory to generate optimal controls and train an imitation

learning model.

A simple fence escape game and a more dynamically complex vehicle merging

game were defined to test the architecture of our solution and to see if it would

generalize to more complex game environments. Optimal actions for states in each

game are calculated using a variation of the iterative iGame algorithm developed by

Mueller and Zhu. Once collected, these state-action pairs are used to train a deep

neural network model using an implementation of DAgger. Additionally, a

reinforcement learning algorithm was applied to the results of the fence escape

game to further optimize its control policy.

The model learned an accurate representation of the game theory generated

policy, and was able to provide controls twice as quickly. The success of the model

indicates that collecting optimal action training data from game theory could be a

5

good method of training neural networks on cars to navigate situations where ideal

behavior cannot be expected from the environment around them.

2. Background and Related Works

The combination of differential game theory and machine learning is

proposed given two functions; the ability of differential game theory to provide the

optimal control policy for players in a given game environment, and the ability of a

neural network to learn a policy provided by an expert. In order to provide a

foundation for understanding this work, both of these concepts are delved into

individually before introducing how they work together. An introduction to the

relevant game and differential game theories and current solutions are presented

first, followed by a short tutorial on neural networks, deep learning, and imitation

learning. Then, recent works related to game theory and machine learning for

autonomous cars specifically are explored. The contributions of our work in the

form of the connection between game theory and machine learning is discussed

with relation to these references.

2.1 Differential Game Theory

Game theory is a mathematical method for calculating the best actions a

player can take while playing a game. In this case, a game is any situation involving

two or more players that make choices where he results of all players choices result

in some value return to the players. In many games, players’ actions result in a

benefit to themselves and a cost to their opponent. One such famous game is the

prisoner’s dilemma. Two prisoners that have been arrested for some crime have the

6

option to either betray the other’s involvement, or remain silent. Their prison

sentences are decided based on the combination of their responses, but they cannot

communicate with each other. For example, if both prisoners remain silent, they

both serve a year in prison, but if prisoner A betrays prisoner B and prisoner B

remains silent, the betrayer will not serve any prison time while the silent prisoner

will have to serve three years (Selten). A diagram of the typical rewards for a

prisoner’s dilemma is included in table 1.

Table 1: A formulation of the prisoner’s dilemma. Prisoners have two choices of
action that determine their number of years in prison. The number of years in

prison is represented as a negative reward value.

Prisoner A \ Prisoner B Betray Stay Silent

Betray -2 \ -2 0 \ -3

Stay Silent -3 \ 0 -1 \ -1

The goal of a prisoner in the prisoner’s dilemma is to earn the least amount

of prison time, so they wish to discover which action is the best action to take to

achieve that goal. A player’s action choice is referred to as that player’s strategy, and

the strategy that results in a greater reward than any other strategy is the dominant

strategy or optimal strategy (Issacs). The goal of game theory is to calculate an

optimal strategy for one or all players in the game.

The solution to a game can be found according to multiple criteria. On one

hand, a game could be said to be solved when the player’s strategies reach an

equilibrium . An equilibrium is reached when a strategy is found for both players that

7

cannot be improved, however the definition of improved changes equilibrium

points. Nash Equilibrium for example, defines lack of improvement as when neither

player can increase their reward by changing their strategy while the other players’

remain constant. Alternatively, the trembling hand perfect equilibrium takes into

account when players may make unintentional choices, or tremble (Stelton).

Alternatively, the solution of a game can be determined with a minimax function. In

this way, different solution concepts can lead to different strategies for players in a

game, but would still result in a solved game. The prisoner’s dilemma, however, is a

very simple game and changing solution criteria does not lead to a different solution.

Prisoner’s dilemma can also be played iteratively: each prisoner makes the

choice to betray or stay silent more than once and attempts to maximize their

rewards over time rather than just for a single game instance. The strategy that a

player forms to choose actions based on the state of the game over time can also be

referred to as a policy . Different policies result in different rewards, so, similar to

strategies, the policy that earns a player more reward than any other policy is the

optimal policy. If optimal policies could be generated for games of vehicles

interacting on the road, an autonomous vehicle could maximize a reward related to

avoiding collisions. However, general game theory does not have any knowledge of

the kinematics that players are bound by. Solutions to these games cannot be applied

to autonomous vehicles as they map actions directly to reward values. In order to

consider the dynamics for the players, the game can be formed as a differential game

instead.

8

In a differential game, players are described according to their possible

states, kinematic equations, and control inputs. Unlike in traditional game theory

where players choose actions and receive some reward, players instead choose their

control inputs as their strategies and change their state in the game according to

their kinematic equations while attempting to reach some defined goal. Goals do not

have to be to move towards a static location, they can include intercepting or

avoiding a moving target, and players can have cooperative or adversarial goals. An

advantage to this formulation of a game is that when a differential game is solved,

both players will have optimal control policies that describe optimal paths for them

to take towards their goals.

Isaacs originally developed and solved differential games to apply them to

military applications (Isaacs). He provided several examples of the use of

pursuit-evasion games, where the goal of one player, the pursuer, is to capture or cut

off the evader player, whose goal is usually to avoid the pursuer. A common

pursuit-evasion game is called the homicidal chauffeur. The pursuer is fashioned

after a vehicle that has a high top speed but large turning radius and the evader is a

pedestrian with low top speed but small turning radius. The solution to the game

depends on whether the game is posed as a game of kind or game of degree. Games

of degree have a continuum of outcomes, often solutions provide the controls of a

player or the time until capture, whereas solutions to a game of kind report a finite

outcome of a game, such as whether a player will win or lose based on starting

positions. A sample diagram for the homicidal chauffeur game is found in fig. 1.

9

Figure 1: An illustration of the homicidal chauffeur game in a reduced state
space. The pursuer P has to get within distance r of E to win the game. Players

control their velocity and turning radius.

2.2 Differential Game Solutions

Optimal interception strategies for collision avoidance and capture can be

modeled and solved as a pursuit-evasion game. The solution to a differential game

can take the form of the optimal value function, optimal control policy, or optimal

path, and any one of these solution formulations can be used to derive the others

(Isaacs). Solving a differential game, rather than a traditional game, as a game of

degree will provide an autonomous vehicle with a useable control policy for collision

10

avoidance in various situations, however, the solutions to a differential game are not

as easily calculated.

To derive a solution to a differential game in the continuous space that it is

defined in, Isaacs defined the Main Equation . A generally nonlinear, first-order

partial differential equation, the Main Equation is a function of the kinematics and

controls equations of all the players in a game. When solved it provides a true

solution to the game. It is, however, difficult or impossible to solve computationally

for complex games. In all of the previously mentioned games, solutions relied on a

great deal of pre-calculating equations and attempts to simplify the kinematic

equations (Exarchos; Pachter and Yavin; Lewin and Olsder). Directly solving the

Main Equation becomes impossible for more complex games. In such a vein, games

designed for an autonomous vehicle, even simplified, are likely to yield a Main

Equation that is too complex to solve computationally.

Fortunately, differential games’ solutions can be obtained numerically. Using

higher order derivations of the value function, to reduce the complexity of the Main

Equation, and the development of the “multiple shooting method” have provided

more computationally viable solutions (Lachner; Morrison et al.). However, some of

the most computationally successful numerical solutions involve sampling based or

discrete approximations.

Several sampling based methods can be used to solve games, but exhibit

varying levels of accuracy and refinement. Algorithms like Rapidly-exploring

Random Trees, or RRT*, are built upon randomly sampling states from the available

11

state space. RRT* is used to generate optimal motion planning. It is important to

note, however, that RRT* creates an open-loop strategy rather than the closed-loop

strategy that is usually generated by pursuit-evasion games (Karaman, Sertac, and

Frazzoli). Viability theory has also been applied to approximate a value function as a

sampling based method (Cardaliaguet, Pierre, et al.). Multi-grid, successive

approximation approaches, such as the one used alongside viability theory by

Cardaliaguet, are successful at discretely approximating the value of games, but are

limited in accuracy by a predefined and static grid resolution.

To leverage incremental sampling as well as viability theory in order to

improve on multi-grid approximation methods, iGame*, was developed (Mueller,

Erich, et al). iGame* operates similarly to Cardaliaguet’s method, but refines the grid

resolution each iteration to the smallest grid that all previously sampled points fit

on, allowing the accuracy of the algorithm to increase the longer it runs. iGame*

maintains this grid in order to create the value function for a game. This value

function is represented as each sampled state having its own value.

iGame* as presented is faster than the previous multi-grid methods, and its

asymptotic convergence is formally insured for all states, meaning that as time

approaches infinity, iGame* will produce the optimal value function. From the

approximated value function, iGame* can also generate the control policy that is

greedy with respect to the value, and if that value function is optimal then the

resulting policy will also be optimal (Sutton and Barto). For these reasons, iGame* is

chosen to generate solutions to the proposed autonomous vehicle differential games.

12

iGame* generates solutions well; however, its discrete solution needs to be modeled

in the continuous space, or have some form of policy compression applied to the

results in order to avoid comparing states from a table of thousands of points in a

real-time collision avoidance environment. Using deep learning to learn the policy

with imitation learning accomplishes both of these objectives.

2.3 Deep Learning

Deep learning is one way to accomplish machine learning, or getting an

algorithm to learn from experience. A deep learning algorithm is built to fulfill the

definition of machine learning as a connection between several neural networks.

Broadly, machine learning is the ability for an algorithm to improve its

performance on a task T, with respect to some performance measure P, given

exposure to some experience E (Mitchell). As far as the task T is concerned, machine

learning can be applied to problems such as classification, regression, translation, or

anomaly detection, among other fields. The network built to learn iGame*’s policy is

a classifier, identifying which is the proper control input to take given an input state.

Formally, this classifier is tasked with producing a function f:Rn -> {y1, y2, …, yk}

such that when given a state x the model will produce an appropriate y from the set

of available controls (Goodfellow, Ian, et al.). Classification is a subset of supervised

learning. In supervised learning, every element of a training dataset is accompanied

by a label and provides the experience, E, part of machine learning. Specifically, a set

of elements {x1:y1, x2:y2, …, xi:yi}, where xi is a feature observation and yi is its

label, is used to train a network.

13

One of the simplest neural networks is one that performs linear regression.

Although classification is the goal of the network created to model iGame*, the

construction of a linear regressor is similar and provides a good introduction to the

machine learning concepts that are necessary to extend into deep learning.

Following is a condensed explanation of a simple network, based primarily on the

work in Goodfellow, Bengio, and Courville’s Deep Learning book, which can be

referenced for more in depth information about different types of neural networks.

The task, T, of a linear regressor is to predict the value of a scalar y ∈ R from

an input vector x ∈ R n . The model should output ŷ, an estimation of y, following the

equation:

, w x bŷ = T
+

where w is a vector of weights, w ∈ R n , that are applied to x to determine the

estimated ŷ, and b is a bias applied to the formula. Weights decide how much

emphasis a feature in x has on the final prediction; changing the values of individual

weights affects whichever feature it is multiplied with. Values can be: (1) positively

valued, which increases ŷ, (2) negatively valued, decreasing ŷ, or (3) zero, causing no

effect to the final value. If the input expands in feature size, w can also be a matrix.

The regressor also needs some way to measure performance, P. A common

performance measure for linear regressors is mean squared error. Given the

prediction ŷ and true label y, vectors of size m, the mean squared error (MSE) is

defined as:

14

.SE (ŷ y)M = 1
m ∑

i
− i

2

Since the MSE is larger when ŷ and y are farther apart, and smaller when they are

similar, the regressor can be said to perform better when the output of MSE is

smaller. With a performance measure defined, the regressor needs some way to

change the weights w and bias b after observing labeled data, the experience E, to

minimize the MSE.

Gradient descent is the most commonly used method of updating w. Taking

the derivative of the cost function yields its slope, or gradient, and given that

information the values in the w vector can be updated to “descend” the slope of the

cost function towards the minimum value. Effectively, after evaluating each data

point in the training dataset, gradient descent can be run to update w before the

next evaluation. Updates to w and b are scaled with a learning rate parameter to

control how much the weights are changed each iteration. Note that on large

datasets, gradient descent can be very slow, as it runs in O(n) time, so stochastic

gradient descent is usually run on mini-batches of examples selected uniformly from

the dataset instead of updating after every evaluation.

Simple machine learning solutions, like the linear regressor, can be powerful

tools, but cannot be generalized to solve many complex problems. Deep learning was

created to overcome problems like the curse of dimensionality , the number of

distinct configurations of a set of inputs can be much larger than the number of

available training examples, and the local consistency prior, that learned functions

15

are assumed to change very little within a small region, along with other problems

that hinder generalization (Goodfellow, Ian, et al.).

Deep neural networks can be thought of as a series of functions, like the

linear regressor, that are chained together. Each function makes up a layer of the

network, and the output from one function is passed on to the next, until the last

layer’s function produces an output. For example, three functions in a chain would

form, f(x) = f 3 (f 2 (f 1 (x))). The number of layers in a network is the network’s depth.

Figure 2 is a sample diagram of a 3 layer deep feedforward network. In a feedforward

network, the input, x, is only passed through each layer once in a straight line, as

visible in the diagram. Layers that are not first or last, f 2 in the figure, are called

hidden layers ; during training, these layers are used to find the best approximation

of f(x) .

Figure 2: An illustration of a feedforward deep neural network. This network has
three layers, two linear functions and a sigmoid function. The inclusion of a sigmoid

function as the final layer means that this could function as a binary classifier.

Like in the linear regressor, deep networks are also updated using gradient

descent. The chain rule is used to propagate changes to all weights and biases in the

network working backwards from the last layer to the first in a process that is aptly

known as back propagation. Networks can be made as large or as small as needed to

16

learn a dataset, and functions do not have to remain linear. More complex networks

can learn vast amount of associations.

2.4 Previous Deep Learning for Autonomous Vehicles

Variations of supervised learning are used in many neural networks intended

for autonomous applications. Variations of deep neural networks are being explored

as collision detection, lane navigation, and full end-to-end navigation control, as

large amounts of data to train complex models for these problems can be collected

by human drivers or simulated (Wang, Pin and Chan) (Xu, Huazhe, et al.) (Bojarski,

Mariusz, et al.). The Next Generation Airborne Collision Avoidance System (ACAS-X)

family of systems, for example, is a deep neural net explored by a Stanford team as a

policy compression algorithm to reduce the memory requirements for air traffic

collision avoidance tables. the purposes of policy compression, with particular

success seen by the Next Generation Airborne Collision Avoidance System (ACAS X)

family of machine learning solutions (Kochenderfer, Mykel, Holland, and

Chryssanthacopoulos). However, pure supervised learning is not the most accurate

way to train a deep learning network. There is an assumption that each new state is

independent of the last. In truth, the next state relies on the previous state

estimation and chosen controls. In practice, a model that makes a mistake can result

in experiencing a state that it was never trained on. The model would be forced to

guess at the best controls to make from the new state, most likely inaccurately,

leading to compounding errors. To avoid models "getting off track", the DAgger

architecture was created to train a better imitation learner (Ross, Stephane, et al.).

17

DAgger progressively limits the student learner's policies and action selection until

it can no longer create off track policies.

Imitation learning can be used to learn a policy accurately, but the choice of

policy to learn is also important. Most current applications of machine learning to

control autonomous vehicles train on human collected data, either generating a

simulation based on an aggregate of controls or training directly from human

provided input to go with state or image data, but the data does not reflect

adversarial situations. Most adversarial research aims to control for attempts at

deceiving sensor input rather than avoid collisions with a potentially adversarial

driver (Szegedy, Christian, et al.; Huang, Sandy, et al.; Gu, Shixiang, and Rigazio.). Our

method seeks to generate optimal control strategies for worst case scenarios rather

than average driving ones, so that autonomous vehicles will be safer on the road.

3. Approach

To create a control policy for an autonomous vehicles that considers

intentional agents, a situation is modeled as a differential game, iGame* is used to

approximate the value function and corresponding greedy policy, then an

implementation of DAgger trains a student to imitate iGame*'s policy. The setup of

this system is detailed from start to final output considering the connections

between each section. The definition of a differential game in a way that is usable by

iGame* is covered first, followed by a description of the iGame* and DAgger

algorithms and their implementations, as well as the final output of the system.

18

3.1 Differential Game Setup

A pursuit-evasion game can be used to model many of the situations faced by

an autonomous vehicle, but it must be defined in such a way that it can be solved in

iGame*. Recall, a differential game is defined with a set of ordinary differential

equations that describe the dynamics of the game environment. These equations are

functions of the current state and controls of the system, at a time t, for each agent in

the environment. Each agent is governed by its own equation and controls, but the

state for the entire game is based on the state information of every player at the

current time. Several subsets of the state space must be defined for use in iGame*.

 The set of all possible states in the state space are defined as X, where X ∈

ℝ N . The specific state that is represented at time t is x(t). For two-player games, we

consider a pursuer player and an evader player which have different goals. The

pursuer wishes to move the system from the initial state, x(0), into a set of states

where the evader loses the game X bad . The evader, meanwhile, wishes to move to a

winning set of states, X goal , while remaining free from X bad . X free is considered to be a

constraint set where the game is neither in a winning or losing state, X free ≐

closure(X - X bad).

The controls space of the differential game must also be defined. Both players

control the system through their choice of strategies in order to achieve their stated

goals. Let sets U and W represent the control strategies of an evader and pursuer,

respectively, and be defined as:

U ≜ { u(.) : [0, +∞) -> U, measurable}

19

W ≜ { w(.) : [0, +∞) -> W, measurable}

where U ⊂ ℝ ma and W ⊂ ℝ md .

Finally, the following equation would define the dynamical system:

x’(t) = f(x(t), u(t), w(t)),

where x’(t) denotes the next state and u(t) ∊ U and w(t) ∊ W. The set of kinematic

equations that move the state according to the control values are defined

individually for each game considering the players and environment. With the

dynamics of the system defined, computing the value function of the resulting game

is the job of iGame*.

After defining the differential game, the controls and kinematic equations can

be used in iGame* to approximate the optimal value function and control policy.

Give a vague overview of iGame*, dispersion, the values each state carries

around...iGame*, that runs even faster by utilizing cascade update rules. Instead of

updating every sampled point when a new one is generated, iGame* maintains a set

of directed trees where the new point is inserted as a child of the nearest, lowest

value neighbor within a defined ball distance. Children are decided with an updated

VI function VI*. Updates are only triggered when a node’s child changes their

estimates or is added, or if an update has not been done for a defined amount of

consecutive iterations.

As input, iGame* requires: I, the number of iterations to run, M, the, l, the

Lipschitz constant of the dynamical system equation, alpha, any positive scalar to be

used in the calculation of the time discretization, D, the maximum number of

20

iterations allowed before a state must have its value updated, and (Beta), a constant

used in the generation of the dispersion of the state space. The algorithm starts by

generating an initial set of random samples in the state space X, S0. Each of these

initial states are assigned a random value between 0 and 1 and their update Flag is

set to 0. The estimated values of each state also are assigned 0.

On each step of the remainder of the n iterations, a new sample is uniformly

randomly generated within X and added to the existing set of states S. Based on the

current iteration and input constant (Beta) a new dispersion value, d n , is calculated.

d n is considered the resolution of the finite grid that the elements of S n lie on, and

can be defined as: for any x (in) X free (exists) x’ such that distance between x and x’ is

less than d n . The authors provided a lemma defining an upper and lower bound for

the value of d n , and chose to calculate d n as the lower bound as it could be calculated

offline; the math is reflected in line 8 of the algorithm. From d n and the input values

of M and l, values for the time discretization, h n , and dilation size, α n are also

calculated that are used for determining how long a timestep is for the purposes of

calculating controls and determining a search radius for neighbors around a state,

respectively.

After calculating all the necessary variables, iGame* moves into several loops

that modify the values of states in S depending on various factors. First, existing

states are checked if they need to be updated. For each state x in S n-1 , newest

sampled state excluded, if x has reached the maximum number of iterations since

updating, or the child of x has just been updated, add x to the set of states that

21

require updates, Kn. Next, for the states in Kn that are not within X goal values are

updated according to the VI* algorithm, which solves a single step game. The

algorithm of VI* is detailed in fig. 3.

Within VI*, the single step game at the current point is solved. The solution to

this game is to discover which state in S, within a reachable distance, is of best value

to move to considering both the controls of the evader and the pursuer. To do this, a

maximin function searches for a saddle point that minimizes the estimated value

with respect to the evader’s available controls while maximizing it with respect to

the pursuer’s controls. Two separate sets of controls choices are available to the

evader and pursuer. It does not matter whether the maximin function makes a list of

the evader’s or the pursuer’s controls choices first, as either way the same saddle

point will be discovered (Isaacs). In the original VI* algorithm, a new possible

control value is added to the controls set for the evader every iteration, but to reduce

the computation time a subset of the control space is sampled once and this

discretization is used for the remainder of the algorithm.

Figure 3: The VI* algorithm. The algorithm solves a maximin function for a single
point in a game’s space, leading to an update to the assigned value and controls of

that state (Mueller, Erich, et al. “Anytime Computation Algorithms for
Approach-Evasion Differential Games”).

22

After calculating a solution to the single-step games at each of the state points

that needed their value updated, iGame* continues to update the values of states

based on two additional criteria

The next loop updates the states in S that are not in Kn or Xgoal. Each of these

states have a child state assigned to them such that the state’s child is the state

within the defined ball distance with the lowest value. The new value of the chosen

state will match the previous value of the child. Note that in this loop no controls are

calculated to navigate between this state and its new child. Whatever controls are

calculated for the state in VI* remain the same. The iterations until update flag is

increased, and iGame* moves on to its final loop.

Finally, iGame* considers the last subset of states in S, those that are within a

single step of Xgoal. These states follow a simple update rule; their next value is

equal to the previous estimated value. The iGame* pseudo code is outlined in fig. 4.

23

Figure 4: The algorithm for iGame*, a iterative sampling discrete approximator that
solves differential games (Mueller, Erich, et al. “Anytime Computation Algorithms for

Approach-Evasion Differential Games”).

When iGame* has finished running, it produces a set of states with attached

information. Each sampled state has an associated value and calculated control value

that is saved in a python dictionary and written to file. The values of each state can

be used to visualize the value function of the game and verify its correctness,

24

however, it is the saved control values that are used to train the imitation learner to

produce a similar policy.

3.3 Deep Imitation Learner Setup

Once iGame* has generated its set of sampled state and control inputs, an

imitation learner can be trained to model the discrete policy created by iGame* in

continuous space. As mentioned previously, DAgger is the framework that was

chosen to train a model on the policy. Its pseudo code is included in fig. 5 but the

algorithm is also explained briefly. To train a policy that will perform sequence

prediction without dooming a model to being unable to recover from a mistake,

DAgger starts by initializing a dataset of collected trajectories Ɗ. This set is initially

empty but is filled with trajectories generated from the first provided policy, 1 , theπ︿

expert’s. In this case, iGame*’s policy will provide the expert policy. The next policy,

 2 , is produced by a student classifier trained to mimic the trajectories generated byπ︿

the expert. This new policy is used to generate more trajectories to add to what

already exists in Ɗ. For each iteration n DAgger repeats this process, using n toπ︿

generate more trajectories for Ɗ then training the student to create the next policy,

 n+1 , to mimic the whole dataset Ɗ. When all iterations are completed, the finalπ︿

policy has been trained on the aggregate dataset of all previously generated

trajectories.

25

Figure 5: Pseudo code for the dataset agregator algorithm, DAgger. DAgger trains a
policy on iterations of generated trajectories (Ross, Stephane, et al.).

The classifier mentioned in the pseudo code is the student attempting to

learn the policy, and any choice of student for a classifier would suffice. A

feedforward, deep neural network, with three fully connected linear layers is used as

the student for both of the test cases presented. It is implemented using the pytorch

machine learning library in Python. The network uses MSE as its loss function and

the Adam optimizer provided by pytorch, and for both of the test cases trains for

2000 epochs with a minibatch size of 64. The final output of DAgger is a model of the

policy generated by iGame*. The model accepts as input a state in the game space

and outputs its learned control inputs for the evader and pursuer from that state.

3.4 Performance Guarantees

The combination of iGame* and DAgger algorithms results in a system that

generates and learns policies for differential games; these learned policies will be

near optimal due to the performance guarantees of both algorithms. While iGame* is

proven asymptotically optimal in running time, it is also shown to globally converge

26

from any initialized values of the initial random sampling of states. From two

assumptions about the input and setup of iGame*, assumptions 2.1 and 3.1, the

authors propose their theorem of convergence (Mueller, Erich, et al.). The following

properties are said to hold for 2.1:

1. the sets of positions and controls, X, U, and W, are compact

2. the function f that defines the dynamical system is Lipschitz continuous in

x for any (u,w) ∈ U × W

3. for any pair of x ∈ X and u ∈ U, F(x,u) is convex where the set-valued map

F(x,u) ≜ ⋃ w ∈W f(x,u,w)

Assumption 3.1 requires the definition of an integer D, D ≥ 0, such that each state

sample invokes VI* at least once every D+1 iterations and for any iteration n ≥ 1, the

set of sampled states S n . Given these two assumptions, it holds that the ⋃ K ⊆ D
s=0 n+s

sequence of values v n converges to the optimal value function v* for any x ∈ X:

. As the number of iterations approaches the limit, (x) v (x)v * = lim
n→+∞

min
y ∈ B(x,d) ∩S n n n

the difference between v* and v n goes to 0. As such, when run for a significant

amount of iterations, iGame* will produce a near optimal value function and control

policy.

DAgger has its own performance guarantees which bound the loss and regret,

or the variation of distance between states observed by the expert and learned

policies in hindsight. Lemma 4.1 in the DAgger publication defines an inequality that

bounds the distance between state distributions d over T steps, given that willπ

27

execute over T steps with probability : . This lemmaπ︿ 1 β) (− i
T Tβd d|

|
|
| πi − πi︿

|
|
|
|i ≤ 2 i

is used in their proof of theorem 4.1; there exists a policy in DAgger,π︿

, ∈ π s.t E [ℓ(s,)] γ [n TΣ β]π︿ ︿
1:N s~dπ︿

π︿ ≤ εN + N + N
2ℓmax

β + N
i=nβ+1 i

where is the loss, is the loss of the best policy in hindsight, is the [ℓ(s,)]E π︿ εN γ N

average regret of all generated policies, is the upper bound on loss, and is theℓmax nβ

largest iteration such that (Ross, Stephane, et al.). For any input distribution,βn > 1
T

some policy achieves a surrogate loss of under its own state distribution in theε

limit. The authors also address a finite sample case wherein a similar bound of the

loss is calculated. With iGame* able to produce a near optimal policy, a DAgger

taught imitation learner will be able to imitate the same policy with minimal regret.

4. Test Cases

4.1 Fence Escape Game

Our first attempt to imitate iGame*'s policy was with a pursuit-evasion fence

escape game. This game was selected first as its state space is simple and the

solution is easy to observe without involving any pre-calculations. Two players start

the game at random points in a plane along a fence of some defined length. The

evader wants to reach the end of the fence and escape, but the pursuer can prevent

its escape by remaining within a set capture distance from the evader. Figure 6 is an

illustration of the setup of the fence escape game setup.

28

Figure 6: The fence escape game has two players, a pursuer p and evader e. The
evader’s goal is to get around the fence to the grey shaded X goal without being within

the dashed capture zone of the pursuer.

The pursuer and evader system is defined by the following differential

equations:

x_p'(t) = x_p(t)*w(t)

x_e'(t) = x_e(t)*u(t),

where x_p and x_e are the positions of the pursuer and evader and w and u are their

respective controls. A state of the game at time t is represented as the pair of

position points of x_p and x_e. Each player directly controls their velocities,w = vel_p

and u = vel_e. Both players move only along the x axis in either the positive or the

negative direction; the controls values for velocity are constrained between [-1,1].

This implementation of the fence escape game used a fence of length 10

where the fence starts at position 0 and ends at 10. The players’ states are confined

between -1 and 11. iGame* variables. DAgger is configured to run trajectory length,

how many initial trajectories and rounds to run, and how many rounds and

trajectories per round are run after the initial trajectories.

29

4.2 Merging Cars Game

A pursuit-evasion game with more complex states was our second test of

policy imitation learning. This merging game is a model of two vehicles in an

everyday situation, the evader is merging onto a single-lane highway that already

has the pursuing vehicle on it. In this situation, the evader wants to reach the gray

X goal without colliding with the pursuer after exiting the on-ramp. The pursuer is

attempting to accomplish the worst case scenario of trying to run into the evader.

Figure 7 illustrates the merging game.

Figure 7: The merging game models an interaction between two cars, a pursuer p,
already on the highway, and a merging evader, e. The evader wishes to merge

30

successfully by proceeding to the grey shaded X goal , located after position 4, without
colliding with the pursuer between positions 3 and 4.

The dynamical system of the merging game is defined as:

x_p'(t) = x_p(t)*v_p(t)

x_e'(t) = x_e(t)*v_e(t)

v_p'(t) = v_p(t)*w(t)

v_e'(t) = v_e(t)*u(t).

States for the game are made up of sets of 4 variables, the positions and

velocities of the evader and pursuer [x_p, v_p, x_e, v_e]. Both evader and pursuer

control their acceleration, w = accel_p and u = accel_e, constrained between values of

[-0.2, 1.2]. Several state constraints apply to both players as well. Vehicles’ positions

must be between 0 and 5, and their velocities cannot exceed 1.2 or be lower than -.2.

Since the horizontal position of the vehicles is controlled by the road, it is sufficient

to model vehicle position with a single variable.

The merging game setup is not reflective of the complexity of real life

environments, but the increase in complexity from the fence escape game to the

merge game shows that our imitation learner can generalize to more difficult to

solve cases.

5. Evaluation

5.1 Fence Escape Game

To ensure a simple policy was learnable by the imitation student, an instance

of the iGame* algorithm was created utilizing the dynamics of the fence escape

31

game. The dynamical system is used to construct the value function and policy in the

form of labeled states. Each sampled state has a corresponding value and control

inputs stored with it in a python style dictionary. The output of iGame* in the form of

an approximated value function is shown in fig. 8, where the values of each state are

plotted with respect to the pursuer and evader positions. A line appears through the

center of the diagram marking the states from which the evader will lose. Based on

this value function, iGame* generates a control policy. The paired states and control

inputs are used to train the imitation student.

32

Figure 8: The estimated value function for the fence escape game. The x-axis is the
position of the pursuer and the y-axis is the position of the evader. A clear line is

observed through the states in the center of the diagram where the value is 1 and
the evader loses the game.

With DAgger configured to run using 20 total rounds and generating 100

trajectories per round, the deep learning student was taught the generated policy.

The student produces comparable outputs, and manages to do so with considerable

speed up from referencing iGame*'s dictionary of states directly. On average in

33

simulation, generating pursuer and evader control inputs from iGame*'s policy

requires 83.1 milliseconds to complete a game, while it takes the imitation student

41.8ms, making it 49.7% faster. Some of the speed increase may be due to the

implementation of iGame* as a dictionary lookup in Python; however, the more

complex merging game shows that the imitation student is able to generalize in the

increased state space and compress the policy, reducing the time required more than

iGame* is able.

Additionally for this game, reinforcement learning was applied as a second

machine learning algorithm to further optimize the control policy. Using Proximal

Policy Optimization (PPO), a model was learned directly from playing the game from

the perspective of the evader(Schulman, John, et al.). The resulting model won the

winnable games it played 95% of the time. Although PPO specifically addresses how

difficult it can be to tune reinforcement learning algorithms, some tuning is still

necessary, and additional adjustments could yield a 100% accurate model. With

such a model, the DAgger learner would have additional, superhuman performance

policy data to learn from.

5.2 Merging Cars Game

With the system successfully learning a simple fence escape game, it was

expanded to learn the merging game to see the effect of its more complicated state

and control space. Like the fence escape game, the merging game's dynamics were

used in iGame* to construct the value function and policy. A graph of the

approximated value function produced is provided in fig. 9. As in the fence escape

34

game, the value of states where the evader loses is indicated in the middle of the

graph. DAgger was set up with similar settings to the previous game, with the

exception of using a neural network with a different input size due to the increased

state sizes of the merging game.

Figure 9: The value function for the merging cars game. The x axis represents the
position of the pursuer and the y axis the evader. There is a clear collision zone

between positions 3 and 4, and states between positions 2 and 3 where collisions
become unavoidable.

35

The merging imitation student was also able to learn iGame*'s policy and

produces comparable control values. Both iGame*'s policy and the student

completed merging simulations more slowly than the fence escape game, but iGame*

experienced considerably more slowdown. iGame*'s policy requires on average

147.6ms to complete the simulation while fetching the control values, while the

imitating student only required 61.4ms to generate its solutions (a 58% decrease in

required time). Interestingly, the runtime of referencing the plain policy increased

77.6% compared to the student's increase of 46.8%, showing that the imitation

learner much more efficiently generalizes to complex environments, such as those

found on autonomous vehicles. The large increase in runtime compared to the fence

escape game is likely do to searching through the much larger dictionary of states

required in the more complicated state space of the merging game. The student

compresses the policy and reduces the effect of the increased state size.

6. Future Work and Discussion

In both test cases, the imitation learner was able to model the policy created

by iGame*. Going forward however, there are improvements and extensions to the

system that would make it more applicable to an autonomous vehicle. The resulting

policy learned by the student relies, like its game theory based expert, on having a

full knowledge of the state space in order to derive the correct controls. Tracking

neural nets exist that are feasible for use in a real time environment, with the ability

to track objects at upwards of 100fps (Held, David, et al.). Any error in tracking,

however, that would translate into incorrect state information would cause this

36

system to generate incorrect controls. An imitation learner utilizing input

remapping, or learning the correlation between controls and the image input

directly, would avoid this issue.

iGame* itself is also very sensitive to its initial parameters. The value of the

dispersion at the start of the algorithm, for instance, is determined by the user, and it

must be not too small or too large in order for states to be able to find their

neighbors but not consider too much of the state space. Dispersion values that are

improperly scaled result in inaccurate value functions. It is possible to compute a

good starting value of the dispersion for less complex games, such as fence escape,

but for state spaces more complex than the merging game calculation becomes less

intuitive. A more efficient way to estimate a good value for the initial dispersion

would decrease the time spent tuning iGame*, and would increase the accuracy of its

final policy.

7. Conclusion

We set up two test cases to test the ability of imitation learning to model a

discretely approximated policy as a continuous control policy. The fence escape

game showed that our system architecture could learn a policy generated by iGame*

and the merging game showed that the process is generalizable to more complex

environments. Modeling situations faced by autonomous vehicles as differential

games provides a vehicle with measures to predict how other agents in its

environment may react to its own actions and goals so that their future positions can

be estimated. This knowledge allows a vehicle to make control decisions to avoid

37

future collisions. Although the environment faced by an autonomous vehicle may be

complex, the iterative sampling methods used in iGame* should be able to generate

the value function given sufficient processing time, and the resulting policy can be

modeled with imitation learning to drastically decrease runtime.

38

Bibliography

Cardaliaguet, Pierre, et al. “Set-Valued Numerical Analysis for Optimal Control and
Differential Games.” Stochastic and Differential Games , 1999, pp. 177–247.,
doi:10.1007/978-1-4612-1592-9_4.

Chen, Zhilu, and Xinming Huang. “End-to-End Learning for Lane Keeping of
Self-Driving Cars.” 2017 IEEE Intelligent Vehicles Symposium (IV) , 2017,
doi:10.1109/ivs.2017.7995975.

Bojarski, Mariusz, et al. “End to End Learning for Self-Driving Cars.” [1604.07316]
End to End Learning for Self-Driving Cars , Cornell University Library, 25 Apr. 2016,
arxiv.org/abs/1604.07316.

Driggs-Campbell, Katherine, and Ruzena Bajcsy. “Identifying Modes of Intent from
Driver Behaviors in Dynamic Environments.” 2015 IEEE 18th International
Conference on Intelligent Transportation Systems , 2015, doi:10.1109/itsc.2015.125.

Exarchos, Ioannis, et al. “On the Suicidal Pedestrian Differential Game.” Dynamic
Games and Applications , vol. 5, no. 3, Feb. 2014, pp. 297–317.,
doi:10.1007/s13235-014-0130-2.

Goodfellow, Ian, et al. Deep Learning . The MIT Press, 2017.

Gu, Shixiang, and Luca Rigazio. “Towards Deep Neural Network Architectures Robust
to Adversarial Examples.” Towards Deep Neural Network Architectures Robust to
Adversarial Examples , Cornell University Library, 9 Apr. 2015,
arxiv.org/abs/1412.5068v4.

Held, David, et al. “Learning to Track at 100 FPS with Deep Regression Networks.”
Computer Vision â�� ECCV 2016 Lecture Notes in Computer Science , 2016, pp.
749–765., doi:10.1007/978-3-319-46448-0_45.

Ho, Yu-Chi, et al. “Differential Games and Optimal Pursuit-Evasion Strategies.” IEEE
Transactions on Automatic Control , IEEE., 1965, pp. 385–389.

Huang, Sandy, et al. “Adversarial Attacks on Neural Network Policies.”
[1702.02284v1] Adversarial Attacks on Neural Network Policies , Cornell University
Library, 8 Feb. 2017, arxiv.org/abs/1702.02284v1.

Isaacs, Rufus. Differential Games: a Mathematical Theory with Applications to Warfare
and Pursuit, Control and Optimisation . Dover Publications, 1999.

39

Jiang, Frank, et al. “Using Neural Networks to Compute Approximate and Guaranteed
Feasible Hamilton-Jacobi-Bellman PDE Solutions.” [1611.03158] Using Neural
Networks to Compute Approximate and Guaranteed Feasible Hamilton-Jacobi-Bellman
PDE Solutions , Cornell University Library, 27 Mar. 2017, arxiv.org/abs/1611.03158.

Karaman, Sertac, and Emilio Frazzoli. “Sampling-Based Algorithms for Optimal
Motion Planning.” The International Journal of Robotics Research , vol. 30, no. 7, 2011,
pp. 846–894., doi:10.1177/0278364911406761.

Kochenderfer, Mykel J., Jessica E. Holland, and James P. Chryssanthacopoulos.
Next-generation airborne collision avoidance system . Massachusetts Institute of
Technology-Lincoln Laboratory Lexington United States, 2012.

Lachner, R. “Collision Avoidance as a Differential Game: Real-Time Approximation of
Optimal Strategies Using Higher Derivatives of the Value Function.” 1997 IEEE
International Conference on Systems, Man, and Cybernetics. Computational
Cybernetics and Simulation , vol. 3, Oct. 1997, pp. 2308–2313.,
doi:10.1109/icsmc.1997.635270.

Lewin, J., and G. J. Olsder. “Conic Surveillance Evasion.” Journal of Optimization
Theory and Applications , vol. 27, no. 1, 1979, pp. 107–125.,
doi:10.1007/bf00933329.

Mitchell, Tom M. "Machine learning. WCB." (1997).

Morrison, David D., et al. “Multiple Shooting Method for Two-Point Boundary Value
Problems.” Communications of the ACM , vol. 5, no. 12, Jan. 1962, pp. 613–614.,
doi:10.1145/355580.369128.

Mueller, Erich, et al. “Anytime Computation Algorithms for Approach-Evasion
Differential Games.” [1308.1174v2] Anytime Computation Algorithms for
Approach-Evasion Differential Games , Cornell University Library, 28 Sept. 2013,
arxiv.org/abs/1308.1174v2.

Mueller, Erich, et al. “Anytime Computation Algorithms for Stochastically Parametric
Approach-Evasion Differential Games.” 2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems , 2013, doi:10.1109/iros.2013.6696902.

Neumann, John Von, and Oskar Morgenstern. Theory of Games and Economic
Behavior . University University Press, 1953.

Pachter, M., and Y. Yavin. “A Stochastic Homicidal Chauffeur Pursuit-Evasion
Differential Game.” Journal of Optimization Theory and Applications , vol. 34, no. 3, 1
July 1981, pp. 405–424., doi:10.1007/bf00934680.

40

Ross, Stephane, et al. “A Reduction of Imitation Learning and Structured Prediction
to No-Regret Online Learning.” A Reduction of Imitation Learning and Structured
Prediction to No-Regret Online Learning , Cornell University Library, 16 Mar. 2011,
arxiv.org/abs/1011.0686.

Royo, Vicenç Rubies, and Claire Tomlin. “Recursive Regression with Neural
Networks: Approximating the HJI PDE Solution.” [1611.02739] Recursive Regression
with Neural Networks: Approximating the HJI PDE Solution , Cornell University
Library, 23 Mar. 2017, arxiv.org/abs/1611.02739.

Selten, R. “Reexamination of the Perfectness Concept for Equilibrium Points in
Extensive Games.” International Journal of Game Theory , vol. 4, no. 1, 1975, pp.
25–55., doi:10.1007/bf01766400.

Schulman, John, et al. “Proximal Policy Optimization Algorithms.” [1707.06347]
Proximal Policy Optimization Algorithms, 28 Aug. 2017, arxiv.org/abs/1707.06347.

Sutton, Richard S., and Andrew G. Barto. Reinforcement Learning: an Introduction .
The MIT Press, 2012.

Szegedy, Christian, et al. "Intriguing properties of neural networks." arXiv preprint
arXiv:1312.6199 (2013).

Wang, Pin, and Ching-Yao Chan. “Formulation of Deep Reinforcement Learning
Architecture Toward Autonomous Driving for On-Ramp Merge.” [1709.02066]
Formulation of Deep Reinforcement Learning Architecture Toward Autonomous
Driving for On-Ramp Merge , Cornell University Library, 7 Sept. 2017,
arxiv.org/abs/1709.02066.

Xu, Huazhe, et al. “End-to-End Learning of Driving Models from Large-Scale Video
Datasets.” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ,
2017, doi:10.1109/cvpr.2017.376.

