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i	

Abstract 

Farmers	in	the	Great	Basin	are	investing	in	inexpensive	low-tech	greenhouses,	

known	as	high	tunnels	(HTs)	or	hoop	houses.	This	study	evaluated	the	microclimate	

inside	HTs,	how	farmers	were	using	HTs	to	grow	crops	and	how	the	microclimate	

inside	HTs	led	to	improved	crop	growth.	The	HT	microclimate	varied	by	season,	

with	more	growing	degree	days	inside	the	HT	than	outside	in	the	spring,	fall	and	

winter.	The	way	farmers	managed	HTs	using	manual	ventilation,	shade	cloth	and	

fans	was	the	strongest	determinant	of	how	the	climate	inside	the	HT	was	different	

from	outside.	HTs	increased	vapor	pressure,	leading	to	potentially	less	need	for	

irrigation	water.	By	creating	microclimates	suitable	to	crop	growth,	farmers	were	

able	to	extend	the	growing	season,	grow	a	wider	variety	of	crops	and	improve	

yields.	HTs	improved	the	economic	viability	of	farms	for	farmers	who	had	been	

using	them	for	several	years.	HTs	in	the	high	desert	are	only	increasing	in	popularity	

and	farmers	are	continuing	to	use	and	recommend	them	to	other	farmers.	
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Introduction 

Globally, most farming still occurs at a small scale. Despite increasingly being 

displaced by larger operations, small farms grow a wide variety of nutrient-dense foods, 

often providing regional food security (Samberg et al., 2016). Small farms produce on 

multiple scales, from a few hectares to hundreds of hectares. They tend to use a wide 

array of resources, land tenure systems and labor (Wolfenson, 2013). In the U.S., the 

United States Department of Agriculture (USDA) defines small farms as those with a 

gross annual income of $250,000 or less (2007 Census of Agriculture: Small Farms, 

2007). Emerging technologies can allow local small farms to produce a wide variety of 

diverse and nutritious crops, strengthening the farms’ economic viability (Waterer, 2003; 

Galinato and Miles, 2013; Hecher et al., 2014). In regions such as the Great Basin, 

United States, where growing conditions are more difficult, high tunnels, also known as 

hoop houses, are one evolving technology increasingly being used by small farmers in 

cost effective ways to intensify production. 

The term high tunnel (HT) refers to a single or multi-bay greenhouse-like 

structure covered in one or two layers of greenhouse plastic that manages heat manually 

through roll-up sides, vents or fans. The type of structure varies by location, based on the 

farmers’ needs and local climate concerns such as wind, rain and snow load (Lamont et 

al., 2002; Blomgren and Frisch, 2007). The use of HTs in agriculture has been increasing 

worldwide especially in Asia, Italy, Spain and the Middle East where HTs have been 

used for many decades (Lamont, 2009). More recently in the United States, HT adoption 

has increased as local food movements across the country have led to higher demand for 
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fresh, local produce (Carey et al., 2009). In general, HTs are used for growing high-value 

specialty crops, such as berries, tree fruit, cut flowers and a wide variety of vegetables 

(Lamont, 2009). As a result, most HT research has focused on crop growth and yield. 

Study Objectives 

Because the climate conditions in a HT are more controlled than growing in the 

field, but not as precisely as in greenhouses, they warrant their own research. The 

purpose of this study is to fill the gap that currently exists in HT research in the high 

desert. First, the study evaluated whether the HT climate was different from the climate 

outside and if the orientation, size and the way the HT was managed influenced the 

differences. Second, farmers were interviewed to understand how they were using HTs 

and how the HTs influenced their business. Third, leaf area index and yields were 

compared inside and outside to determine if the differences in climate also influenced the 

differences in yield. The objective of this research is twofold. The first to fill an 

important gap in the research by providing climate data on HTs in the high desert. The 

second to provide farmers who are using HTs with information on how the microclimate 

inside HTs is influenced by different management strategies. 

Literature Review 

High Tunnels in the High Desert 

HT research is particularly lacking in the high desert environment where many 

small farmers are growing food to supply local urban areas (Gatzke, 2012a). In response 

to increased use of HTs in the Great Basin, University of Nevada, Cooperative Extension 
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has begun conducting research on HTs. A study examining growing summer crops in 

HTs in the Great Basin found yields and quality of tomatoes, summer squash and some 

pepper varieties improved, although eggplant and melons grew better outside. Studies 

also found HTs provided some protection against pests, such as insects, insect vectored 

diseases and wild animals (Gatzke, 2012b; Davison and Lattin, 2015). By growing 

different high-value crop varieties and harvesting for a longer period of time, farmers can 

use HTs to produce a profitable crop (Bishop et al., 2010).  

Economics 

Economic success with HTs is usually based on how well labor costs and crop 

rotations are managed, because HTs typically require more labor than field crops 

(Fitzgerald and Hutton, 2012). Crops grown in HTs are often managed similarly to field 

crops, using drip tape for irrigation, row covers for crop protection, and fertigation 

(Lamont, 2009). However, HTs often provided labor flexibility because farmers had more 

control over when to plant and could work in HTs even in bad weather. Labor in HTs 

could be balanced with field labor by focusing on HT work in the spring before field 

crops had been planted and working less in HTs during the summer (Conner et al., 2010). 

When properly managed, HTs can increase farm profits. Because farmers reported 

harvesting produce from HTs one month earlier and later in the season, HTs extended the 

regular growing season by two months (Fitzgerald and Hutton, 2012). 

Produce grown in HTs has the potential to fill niche markets available through the 

local food movement (Conner et al., 2009). The season extension provided by HTs 

allowed farmers to sell a wider variety of produce for a premium price earlier in the 
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season, while building and maintaining longer relationships with their customers, 

increasing their income for an extended period of time (Conner et al., 2010; Maughan et 

al., 2015). Customers also valued the increased availability of fresh produce, as well as 

developing relationships with farmers to gain information about how and where the crops 

were produced (Conner et al., 2010). 

 The relatively low cost of this technology, from initial installation to continuing 

management, has made them a critical asset to farmers of all sizes. HTs had a relatively 

quick rate of return on investment, averaging four years to earn back the initial cost 

(Conner et al., 2010). The increase in income and low cost of HTs led many farmers to 

feel that HTs were critical to the survival of their farm, and they would consider investing 

further in the technology (Fitzgerald and Hutton, 2012). Both local and regional 

economies also benefited from a longer growing season by allowing farmers to extend 

their market season in order to meet the local demand for fresh produce (Conner et al., 

2010). 

Crop Growth 

HTs are a flexible tool that farmers use to modify and improve field crop 

production. Many of the high-value crops that local markets demand grow well in HTs 

(Lamont, 2009). Thus, they are a useful tool for farmers who want to take advantage of 

the local food movement and maintain economic viability. Depending on management 

practices and crop choice, HTs can provide season extension, crop protection and 

production intensification (O’Connell et al., 2012). 
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HTs often enhance crop development, which can lead to more produce earlier in 

the season (Waterer, 2003). From tomatoes to raspberries, produce was harvested earlier 

and more consistently from HTs than from outside, increasing profitability especially at 

the beginning and end of the season (Hanson et al., 2011; O’Connell et al., 2012; 

Sydorovych et al., 2013). HTs also improved the yield of cut flowers while reducing the 

time to harvest and increasing the number of crop rotations (Wien, 2013; Owen et al., 

2016). Farmers reported that, in addition to higher yields, produce was of a higher quality 

inside HTs, reducing the time spent preparing the product before sale (Fitzgerald and 

Hutton, 2012). Because they were protected from wind, rain and cold damage, cherries, 

strawberries and cut flowers grown under HTs had higher marketable yields sometimes 

earlier in the season (Kadir et al., 2006; Hanson et al., 2011; Lang, 2014). HTs were even 

used to produce cool-season crops, such as lettuce, throughout the winter (Borrelli et al., 

2013). However, some crop varieties did not grow as well under the climate conditions 

inside HTs (Wallace et al., 2012; Rudisill et al., 2015). For example, some blackberry 

and melon varieties grew better outside (Hanson, 2012; Fernandez and Perkins-Veazie, 

2013; Vescera and Brown, 2016). 

Quantifying how crop growth changes over time inside and outside HTs may 

improve understanding of how HTs impact crop growth, particularly when that analysis 

is accompanied by climate monitoring. Leaf area index (LAI) is one metric used to assess 

changes in growth over time. LAI is a measure of the total leaf area per ground area 

(Larcher, 2003). While one study examined leaf area inside and outside the HTs and 

found it to be higher inside (Kadir et al., 2006), no studies have examined the how 

growth rate over time differs inside and outside HTs. Taken over time, these 
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measurements can indicate the rate of crop growth. By comparing LAI measurements 

inside and outside HTs, the rate of crop growth inside HTs can be better understood. HT 

design and management impact how much time crops spend in their optimal growing 

environment which in turn impacts the rate of crop growth. LAI provides a metric for 

assessing the speed and quality of crop growth over time by quantifying how quickly the 

crops grow and any damages the crops sustain. 

Climate 

One of the main proposed benefits of HTs is the ability to use them to create a 

microclimate to improve crop growth. The literature suggests that HTs modify the 

climate in two distinct ways. In tropical areas they provide protection from heavy rain, 

while in cold and temperate areas they moderate temperature. Both of these climate 

modifications act to extend the growing season and improve water efficiency which may 

increase produce quality, improve yields and reduce disease (Lamont, 2005, 2009). 

Because HTs utilize passive heating and cooling, they are highly influenced by the local 

climate conditions and management practices. Therefore, it is necessary to examine the 

microclimates of HTs in different locations. As a result of the popularity and economic 

success of HTs, universities and cooperative extensions have been researching and 

providing resources about HTs (Carey et al., 2009). As use of HTs continues to grow, 

research and education will be necessary to address information gaps on labor 

management, soil and climate (Carey et al., 2009; Montri and Biernbaum, 2009; 

Fitzgerald and Hutton, 2012). 
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Solar Radiation 

The plastic covering on HTs reduces and diffuses incoming solar radiation 

(Blomgren and Frisch, 2007; Hemming et al., 2008; Heuvelink and González-Real, 

2008). Direct solar radiation creates an uneven distribution with more reaching the top of 

the plant than the bottom. However, diffuse solar radiation is more evenly distributed, 

decreasing the danger of the top of crops overheating and increasing the overall 

distribution of light to the entire plant (Hemming et al., 2008). The diffuse solar radiation 

distribution can lead to increased photosynthesis, crop growth and fruit quality (Markvart 

et al., 2010; Dueck et al., 2012; Elingsa et al., 2012). 

Studies comparing solar radiation inside HTs to outside found that HTs 

consistently reduce the amount of incoming solar radiation by about 20 to 35%, with 

some HTs lowering it by as little as 15% (Table 1). The addition of shade cloth further 

decreases solar radiation by as much as 50% (Zhao and Carey, 2009). Comparison of 

existing studies suggests that the variability in how much solar radiation is reduced may 

be due to the site selection, orientation or covering of the HTs (Table 1).  

Several factors influence the amount of incoming solar radiation inside HTs. In 

practice, a roof angle between 20° and 30° tends to transmit the most solar radiation 

(Giacomelli, 2009). As the angle of incoming solar radiation varies over the season, more 

solar radiation is transmitted when the angle of solar radiation becomes more 

perpendicular to the roof of the HT. East-west oriented HTs tend to transmit more 

incoming solar radiation than north-south oriented HTs, especially in the winter at high 

latitudes in the Northern Hemisphere (Blomgren and Frisch, 2007) and presumably in the 

Southern Hemisphere as well. 



	

	

8	

The thickness and film treatment of the plastic covering also affects the amount 

and quality of incoming solar radiation (Espí et al., 2006). Coverings can be treated to 

absorb and reradiate infrared radiation, increasing the HTs’ heat-retention capacity. 

However, if temperatures need to be reduced in HTs, a covering treatment or shade cloth 

can reflect solar radiation (Blomgren and Frisch, 2007). Finally as the cover ages, the 

amount of solar radiation transmitted by the cover can be reduced by as much as 7% after 

four years (Giacomelli, 2009). 

Because most of the studies listed in Table 1 used standard 0.15 mm plastic, the 

additional variability not explained by shade cloth is likely due to the variability in siting 

and orientation of the HTs. Despite its important influence on the amount of incoming 

solar radiation, the orientation of the HT is not often reported (Table 1). As HT research 

continues, more consistent reporting of HT site, orientation and materials will improve 

understanding of how different HT management strategies influence incoming solar 

radiation. The types and treatments of plastic coverings are also rapidly evolving 

(Mormile et al., 2017). As more varieties of plastic are adopted, further research will be 

necessary to understand how incoming solar radiation is reduced and the subsequent 

influence on crop growth. 

Wind  

Properly installed HT structures provide protection from excessive wind, while 

allowing farmers to control the growing conditions of crops by venting excess heat and 

moisture (Blomgren and Frisch, 2007; Lamont, 2009). Roll-up sides, end vents or fans 

give farmers flexibility to open or close HTs based on wind speed and direction while 
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taking into account the progress of the crops’ growth (Wells, 1996). The design of the HT 

also determines how and when farmers can vent without losing or damaging the plastic 

cover. Farmers often close their HTs during high wind events to keep the plastic and 

structure from sustaining wind damage (Blomgren and Frisch, 2007; Black et al., 2011). 

Across studies examining wind, HTs reduced wind speeds inside by 34 to 98% 

(Table 2). Wind reduction varies depending on how the HT is managed and the HT’s 

location relative to prevailing winds. In Table 2, the largest wind reduction occurred 

when a woven fabric rather than greenhouse plastic covered the HTs. Positioning the HT 

so that the end is facing the prevailing wind direction lowers the wind exposure to the 

structure (Blomgren and Frisch, 2007). However, some HTs’ roof shape and angle are 

designed to push air up over the structure when placed perpendicular to prevailing winds 

(Giacomelli, 2009). In practice, farmers consider the unique wind conditions of the 

location where the HT is being placed to determine the optimal type and orientation of 

the structure (Spaw and Williams, 2004; Blomgren and Frisch, 2007). While the covering 

and management of a HT does seem to influence the amount of wind reduction, each 

study varies in how much detail they provide on management and location of the HTs. 

Because of the sparse reporting of information in the literature, it is difficult to determine 

the relationship between management of HT ventilation and the amount of wind 

reduction.  

Soil Temperature and Moisture 

 HTs’ influence on soil temperature is highly variable (Table 3), depending on 

how the HT is managed. When HTs were closed, soil temperatures were higher inside 
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than when HTs were vented (Rader and Karlsson, 2006). When a double air-inflated 

layer of plastic or infrared-blocking plastic was used, soil temperature increased further 

(Both et al., 2007; O’Connell et al., 2012). In addition to structural and management 

differences in the HTs, variations in the soil may also contribute, although it is difficult to 

draw conclusions from the information in Table 3, in part because soil type is not always 

reported. 

Furthermore, the variability in soil temperature response may be related to 

differences in the management of soil inside and outside of HTs. Soil is often more 

intensively managed inside HTs to maintain higher production levels than outside 

(Montri and Biernbaum, 2009; Knewtson et al., 2010). In addition, soil nutrient and salt 

levels can be different from outside (Knewtson et al. 2010), which in turn influences how 

crops are irrigated inside and outside. Different soil types and management practices may 

in part have led to the variable response from soil temperature across the studies      

(Table 3). 

Soil temperature in HTs can vary over the season, but its response was 

inconsistent across studies. Several studies observed larger increases in HT soil 

temperature early in the spring, with less of an increase or even a slight decrease relative 

to outside in the summer (Lamont et al., 2003; Reiss et al., 2004; Zhao et al., 2014). 

However, some studies found HT soil temperature increased more in the fall and winter 

than in the spring and summer when it was near or below outside soil temperatures 

(Rader and Karlsson, 2006; Ogden and Iersel, 2009). This research indicates that HTs 

influence on soil temperature is different depending on the time of year and management 

practices such as venting. 
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Little research has been done on soil moisture. HTs provide more control over 

when, where and how much water is applied to crops (Montri and Biernbaum, 2009). 

Further research will be necessary to understand how HTs impact the amount of moisture 

held in the soil, and in turn how that influences crop growth. 

Air Temperature 

While air temperature inside HTs varies depending on management practices, 

average air temperatures are generally higher inside HTs than outside (Table 4).  

However, HTs influence minimum and maximum air temperature differently. Across 

most HT designs and locations, maximum air temperature increases more than minimum 

air temperature. 

Several factors influence the magnitude and direction of maximum air 

temperature differences between inside and outside HTs. Maximum air temperatures rise 

more inside HTs on sunny days than cloudy days (Ogden et al., 2011; Powell et al., 

2014). Increases in air temperature inside HTs are reduced and often become negligible 

with more ventilation (Ogden and Iersel, 2009; Wien, 2009; Lang, 2014). In particular, 

when HTs have no sides or end walls air temperatures can be the same as or similar to 

outside (Thompson et al., 2009; Powell et al., 2014; Rogers et al., 2016). Maximum air 

temperatures can be effectively lowered inside HTs, often below that of outside, using 

shade cloth (Rowley et al. 2011; Zhao and Carey 2009).  

Minimum air temperatures inside HTs can slightly increase above (Ogden and 

Iersel, 2009; Rogers and Wszelaki, 2012), be the same as (Ogden and Iersel, 2009; Ogden 

et al., 2011; Rogers and Wszelaki, 2012; Rogers et al., 2016) or decrease below outside 
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air temperatures (Ogden et al., 2011; Wallace et al., 2012). Nonetheless, HTs can provide 

protection from air temperatures below freezing (O’Connell et al., 2012), such as in 

Florida where they buffered minimum air temperatures by several degrees (Santos and 

Salame-Donoso, 2012). In some cases, crops inside HTs benefit from an increase in both 

minimum air temperature and minimum soil temperature buffering extreme low 

temperatures (Zhao et al., 2014). 

Several processes inside HTs can lead to air temperatures lower than outside. 

Because of the lack of air movement inside HTs, especially when they are closed, warmer 

air from outside does not mix with the air inside, and less air movement leads to more 

stratification (Ogden et al., 2011). This pattern is especially pronounced on clear nights. 

Additionally, some plastic coverings radiate more long wave radiation than the ground or 

crops, creating a thermal inversion effect (Montero et al., 2005; Ogden et al., 2011). 

Two potential passive solutions to the lower minimum temperatures have been 

suggested in the literature. One is to cover HTs in an infrared-blocking greenhouse 

plastic. Summer nighttime air temperatures inside infrared-blocking HTs remained just 

above those outside (Both et al., 2007; Wien, 2009), while winter nighttime air 

temperatures inside HTs dropped below outside air temperatures (Wien, 2009). Because 

of the variable results between seasons, the impact of different plastic coverings on 

minimum temperature warrants further research. Another solution is to use low tunnels or 

floating covers, a plastic or woven fabric that covers one row of crops either with small 

hoops or directly on the crop. HTs with low tunnels have been more effective increasing 

minimum air temperatures by several degrees (Martin and Sideman, 2012; Ward and 

Bomford, 2013; Santos et al., 2014). 
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In many cases, HTs’ effect on temperature varies depending on the season (Fig. 1, 

Table 4). HTs often increase temperature more during the winter, spring and fall, while 

during the summer, temperatures are closer to or lower than outside. This seasonal 

variation is likely a function of seasonal changes in management practices. HTs were 

often vented more in the summer in order to keep the HT from reaching extremely high 

temperatures (Reiss et al., 2004; Kadir et al., 2006). Adding shade cloth in the summer 

months also lowered temperatures (Rowley et al., 2011). 

Not only do HTs change the seasonal variability of temperature, they also 

influence diurnal temperature range (DTR). Temperatures can increase and decrease 

faster inside HTs leading to higher DTR than outside (Wien, 2009; Ogden et al., 2011; 

Bumgarner et al., 2012). Across different climates, HTs increased the time crops spent in 

their optimal temperature growing ranges, but they also increased the number of 

temperature extremes crops experienced (Wien, 2009; Rowley et al., 2011; Olberg and 

Lopez, 2016). Despite differences in HTs and crop varieties, crops generally benefit from 

increased time spent in optimal temperature ranges even if HTs also increase temperature 

extremes. While HTs provide a buffer to field climatic conditions, it is more difficult to 

manage HTs to maintain optimum temperatures for crops than traditional greenhouses 

(O’Connell et al., 2012). 

Growing Degree Days 

 Growing degree days (GDD) are a measure of heat accumulation over time used 

to determine plant growth rates. It is calculated by taking the average daily temperature 

and subtracting a base temperature at which plant growth is limited, often 10 °C 
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(McMaster and Wilhelm, 1997). It can be modified to include a particular crop’s 

preferred temperature range by using peak and base temperatures, outside of which plant 

growth is considered to be limited and GDDs do not accumulate (Both et al., 2007). The 

temperature range for a given crop is generally determined from existing research on the 

crop and the climate in which the crop is being grown. For example, one study calculated 

tomato GDDs using base and peak temperatures of 10 °C and 30 °C, respectively (Both 

et al., 2007).  

Growing degree days are in general higher inside HTs than outside (Table 5), and 

they often accumulate faster and earlier in the season inside HTs than outside (Borrelli et 

al., 2013). The increase in GDD inside HTs can lead not only to earlier harvests, but also 

to improved crop growth, yield and quality (O’Connell et al., 2012; Wallace et al., 2012; 

Lang, 2014). When temperatures inside HTs are lower than outside, GDDs for heat 

tolerant crops, such as melons, are also lower inside HTs (Vescera and Brown, 2016). 

Based on the studies in Table 5, accumulation of GDDs inside HTs is generally increased 

for crops well suited to heat such as tomatoes. However, management practices still play 

a role. Managing HTs to lower temperature can lower the number of GDDs depending on 

the temperature range for the crop. 

Humidity 

Humidity is a critical but less commonly studied climate variable inside HTs. As 

illustrated by the studies in Table 6, relative humidity decreased if specific humidity 

remained the same as air temperatures increased inside HTs. At night, relative humidity 

rose as temperatures dropped. In one study, nighttime relative humidity increased as 
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much as 12% (Both et al., 2007). With only one study, it is difficult to determine if the 

large increase is typical or an anomaly. More research is needed to determine if this 

pattern occurs consistently across variable climates and management practices. 

Methods 

Data Collection 

Weather Station Instrumentation 

Research on HTs at University of Nevada, Reno, took place at Desert Farming 

Initiative (DFI, 39.5384°N, 119.8049°W), during the 2016-2017 growing season. DFI is a 

public-private partnership designed to be run similar to a commercial farm while 

providing research and resources for local farmers. The farm manager determined 

fertilizer plans, pest control and planting schedules. This study used existing FarmTek 

(Dyersville, IA, USA) HTs constructed from triple-galvanized structural steel tubing with 

a 0.254 mm woven fabric covering (85% light transmission) and roll up sides. Onset 

weather stations (U30-NRC, Bourne, Massachusetts, USA) were installed in two 24 ft. 

(7.3 m) by 124 ft. (37.8 m) HTs oriented east-west, two 24 ft. (7.3 m) by 96 ft. (29.3 m) 

HTs oriented north-south and in a nearby outside plot. Weather stations were placed in 

the center crop bed 12.5 m and 9.8 m from the HT entrance, respectively. Outside,one 

weather station was located in the center crop bed in the center of the plot. Each weather 

station had a temperature and relative humidity sensor covered in a solar radiation shield 

at 1 m and 16 cm above the soil surface (S-THB-M002, RS3, Bourne, Massachusetts, 

USA). The sensor recorded temperature with an accuracy of ± 0.21 °C and humidity with 
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an accuracy of ± 2.5 %. Soil moisture sensors were located at 6 cm and 16 cm below the 

soil surface. They have an accuracy of ± 3.1 % (S-SMD-M005, Bourne, Massachusetts, 

USA; S-TMB-M003, Bourne, Massachusetts, USA). A soil temperature sensor with an 

accuracy of ± 0.2 °C was located 6 cm below the soil surface (S-TMB-M003, Bourne, 

Massachusetts, USA). A silicon pyranometer recorded incoming solar radiation with an 

accuracy of ± 10 W/m2 (S-LIB-M003, M-LBB, M-LLA, Bourne, Massachusetts, USA), 

and an anemometer measured wind speed with an accuracy of ± 1.1 m/s (S-WSET-B, M-

CAA, Bourne, Massachusetts, USA) at approximately 1.5 m. Weather stations recorded 

measurements every 15 minutes. Stealthcam cameras (G42NG, Bourne, Massachusetts, 

USA) were placed inside and outside the HTs recording photos every 15 minutes. Data 

were collected from March 2016 to April 2017. At the beginning of the experiment, soil 

samples from the HTs and outside plot were tested for texture using the sedimentation 

method (Taubner et al., 2009). 

Lettuce Leaf Area Index 

 At University of Nevada, Reno’s Main Station Field Lab (39.5125°N, 

119.7170°W), a 16 ft. (4.9 m) by 85 ft. (25.9 m) PVC HT was covered in 0.15 mm 

infrared-blocking plastic with 45% light transmission (Agriculture Solutions, Strong, 

Maine, USA). Green and Red Saladbowl lettuce (Johnny’s Selected Seeds, Albion, 

Maine) was planted 50 seeds per foot in two beds, inside and outside on May 24, 2017. 

Inside the HT, tomatoes were planted for 6 m on either end of the tunnel to avoid edge 

effects. HTs were vented daily. An AccuPAR meter model PAR-80 (Decagon Devices, 

Pullman, Washington, USA) was used to measure Leaf Area Index (LAI) of the lettuce 
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inside and outside the HTs. Based on methods determined by Tewolde et al. (2005), five 

randomly spaced readings were taken from each bed every nine days after planting 

between 11:30 am and 12:30 pm PDT. The meter recorded LAI on seven equally spaced 

segments of the sensor bar (Tewolde et al., 2005). The instrument automatically 

calculated the zenith angle using the coordinates 39.51°N and 119.7°W. LAI was 

calculated using a chi of 1. The sensor was placed perpendicularly across a row the same 

length as the sensor bar. For the first two measurements after planting, LAI was difficult 

to measure because the leaves barely reached above the sensor. Due to some stormy 

weather, the cover blew off the HT for about one week during the second week of the 

experiment. Lettuce was harvested inside July 3, 2017 and outside July 4, 2017. 

Farms and School Gardens Instrumentation 

The Cooperative Extension and DFI identified farms and schools across northern 

Nevada with operating HTs for potential instrumentation. Ten farms and schools were 

asked to participate, and eight accepted. Farms ranged in size from less than an acre to 

over 2000 acres. School gardens were using HTs to educate children about healthy food 

and provide fresh produce to the local communities. Each farmer and extension agent 

managed their HTs according to the needs of the farm or school. High-value crops were 

grown using both conventional and organic methods. Due to the operational nature of the 

farms, there are some data gaps when equipment was used in the HTs (See Appendix 

Table 1). For descriptions of each HT and further information on farming practices see 

Table 7. 



	

	

18	

A total of 25 HTs and 13 outdoor plots were instrumented with temperature and 

humidity sensors (Logtags HAXO8, Auckland, Auckland, New Zealand). The sensors 

had an accuracy of less than ± 0.5 °C temperature and ± 3% relative humidity. Each 

Logtag sensor was shielded with two white plastic funnels (3816, 3832WN-2, Canaan, 

Connecticut, USA) separated by a 1 ½” schedule 80 PVC pipe spacer 4 cm long. Equally 

spaced holes were drilled into the funnels and the PVC pipe to provide ventilation. 

While the temperature shields protected the sensors from direct solar radiation, 

they did not protect from indirect solar radiation. Therefore, these temperatures cannot be 

directly compared to air temperature. Temperatures from these sensors will be referred to 

as indirect solar air temperature (ISAT). 

At the farms, sensors attached to a post at 1 m and 16 cm were placed in the 

center crop bed inside and outside the HTs. Each set of sensors was located at one-third 

and two-thirds of the total length of the HT, similar to the placement of weather stations 

at DFI. At the school gardens, one sensor was placed at 1 m only. Each sensor was 

located in the center of a crop bed at one-half the length of the HT. All sensors recorded 

every 15 minutes. Data were downloaded once per month weather permitting. 

Cooperative extension staff were tasked with downloading the data from the sensors at 

the school HTs. Data was collected from April 2016 to April 2017.  

Farms and School Gardens Interviews 

 Small farmers and extension staff in northern Nevada currently using HTs in their 

farms and school gardens were interviewed on their HT practices. Observations of HT 

management practices were made each time data was collected from sensors. A total of 
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five farmers and two extension staff were interviewed. Semi-structured interview 

questions were developed to address how farmers use HTs and what economic benefits 

the HTs provide (Table 8). Follow-up prompts to answers were given where appropriate 

(Hay, 2005). 

Data Analysis 

Quantitative 

 Analysis was completed using the R programming language (R Core Team, 

2017). All data was quality assured and controlled. Occasionally, 15-min measurements 

were missing either when sensors were downloaded or the sensor temporarily 

malfunctioned. For data from all sensors, 15-minute measurements were averaged to 

hourly including hours where 15-minute measurements were missing. All measurements 

were in Pacific Daylight Time (PDT). At each of the farms where two sensors were in 

each HT, the duplicates were averaged together. All further analysis was conducted on 

the averaged data. 

Data collected from HTs where the cover ripped off for the majority of the study 

were removed from analysis. Several HTs were not in continuous operation for the entire 

year. Only data during HT operation was used. Two additional HTs were removed from 

the statistical analysis: one HT not planted or ventilated during the experiment was 

removed from analysis because it was not representative of a functioning HT and as such 

had anonymously high temperature readings; one HT was regularly moved by the farmer 

at unknown dates making the data difficult to compare to other HTs. 
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 Daily maxima and minima were isolated from each complete 24-hour period for 

all climate variables except solar radiation and wind where only maxima were isolated. 

For temperature, vapor pressure and vapor pressure deficit (VPD), the diurnal range was 

calculated using the daily maxima and minima. In addition, to understand HT’s influence 

on air stratification, daily maxima and minima at 16 cm were subtracted from daily 

maxima and minima at 1 m. 

Leaf Area Index 

The average and standard deviation were calculated for each nine-day LAI 

measurement. Yields were summarized as kg/m2. Statistical comparisons were not 

calculated because of the small sample size. 

Solar Radiation, Wind and Soil Temperature 

Average, minimum and maximum percent reductions of solar radiation and wind 

inside HTs were calculated for the entire period of data collection. Average, minimum 

and maximum differences in soil temperature between inside and outside HTs were 

calculated for each season. Spring was April, May and June. Summer was July, August 

and September. Fall was October, November and December. Winter was January, 

February and March. Due to the small sample size, statistical tests were not conducted to 

determine if inside was statistically different from outside.  
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Growing Degree Days 

Modified growing degree days (GDD) were calculated for lettuce and tomatoes. 

The following equation was used: 

!"" = !"#$%&% !"#$"%&'(!"!!"#"$%$ !"#$"%&'(%"
! −  !"#$ !"#$"%&!'%" 

When temperatures were higher and lower than the plants optimal growing range, the 

observed maximum and minimum temperature was replaced with a peak and/or base 

temperature (Nielsen, 2001). For lettuce, GDD was calculated with temperatures 

measured at 16 cm using a base of 4 °C (Fraisse et al., 2011) and a peak of 27 °C 

(Wildung and Johnson, 2012). For tomatoes, GDD was calculated with temperatures 

measured at 1 m using a base temperature of 10 °C (Fraisse et al, 2011) and a peak of 27 

°C (Wildung and Johnson, 2012).  

Vapor Pressure and Vapor Pressure Deficit (VPD) 

Relative humidity was converted to vapor pressure. Saturation vapor pressure and 

vapor pressure were calculated using the Clausius-Clapeyron equation in the humidity 

package (Cai, 2016). Vapor pressure was subtracted from saturation vapor pressure to 

calculate the VPD (Abtew and Melesse, 2013).  

Statistical tests 

For statistical analysis, daily maxima and minima were averaged monthly. GDD 

were summed by month. Statistical comparisons were calculated for temperature, vapor 

pressure and VPD. Months with less than 90% complete data were not used in the 

statistical analysis. The statistical significance of the difference between maxima, minima 

and diurnal range inside and outside HTs was tested on data from sensors at 16 cm and 1 
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m. In addition, differences between maxima and minima at 1 m and 16 cm were also 

tested. Because the sample size was small, it was difficult to verify normality. A two-

sided Student t-test and a two-sample Wilcoxon test, also known as Mann-Whitney test 

(Bauer, 1972; Holander and Wolfe, 1973), were used to test statistical significance 

(Appendix Table 2-4). 

Linear regression 

Linear regression (Wilkinson and Rogers, 1973; Chambers, 1992) was used to 

compare monthly mean temperature and vapor pressure across HT type, area, height and 

material. Mean temperature and vapor pressure were treated as a continuous response 

variable. HT type, area, height and material were treated as categorical predictor 

variables. HT type compared quonset and gothic. Three different plastic covering 

thicknesses were used: 0.15, 0.28 and 0.30 mm. HT areas were 15 values between 19.5 

and 267.8 m2, while HT heights were 10 values between 1.5 and 4.3 m2. Area and height 

were treated as categorical because HTs are purchased from a standard set of sizes and 

heights.  

Contrasts for each categorical variable were set using treatment with gothic 

compared to quonset and the smallest area, height and material thickness compared to the 

larger ones. Models with coefficients of determination of 0.80 or higher were evaluated. 

All model residuals and Q-Q plots were examined for normality. For all statistical tests, 

p-values of 0.05 and 0.10 were used to determine where differences were statistically 

significant and at what level. 
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Qualitative 

Interview responses were coded thematically. Responses to each question were 

quantified by how many farmers mentioned each response. For the purpose of this 

research, couples running a farm were considered as one respondent. Seven respondents 

were interviewed. Information mentioned outside of direct question responses was 

summarized (Hay, 2005). 

Results and Discussion 

High Tunnel Management: Farmer Interviews 

 In response to interview questions, farmers and extension staff indicated a wide 

variety of applications for and benefits to using HTs in Nevada. HTs have been used in 

Nevada since the late 1990s with a recent increase in popularity in response to the 

growing local food movement. Farmers and extension staff in Nevada used Utah State 

University’s HT program (Production Horticulture: High Tunnels, no date) as an early 

example of how to implement HTs in a farm or school garden environment in a similar 

climate. Farmers placed HTs on their farms to take advantage of already existing 

infrastructure. HTs were often oriented the same direction as existing crop rows, typically 

east-west. Each farmer then customized the HT with manual sides, fans and/or shade 

cloth depending on the time of year and what crops they grew. The most common 

covering for the houses was 0.15 mm plastic. Farmers worked with each other and shared 

knowledge as they implemented this new technology on their farms. During the course of 

this project, three of the farmers purchased new HTs, and the school garden program 
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expanded to two additional schools. The university farm also invested in seven more HTs 

and increased their outreach to support farmers installing HTs. Clearly the use of HTs is 

increasing across northern Nevada. 

 There were several reasons farmers and extension staff made the initial 

investment in HTs. The majority of the farmers (four of seven farmers interviewed) were 

looking to extend the high desert’s short growing season. Farmers felt that HTs would be 

an important tool to mitigate the harsh climate through reducing wind and moderating 

extreme temperatures. Farmers also invested in HTs to improve crop production by 

increasing the number and consistency of crops throughout the season while reducing 

pests. Economics was mentioned as a factor when deciding whether to purchase HTs. 

Farmers indicated that it made economic sense for their business and gave them the 

potential to access new customers by growing crops they would not otherwise be able to 

grow. All paid for some or part of their HTs out of pocket, while four used the Natural 

Resources Conservation Services’ (NRCS’s) High Tunnel System Initiative or other 

grants to pay for part of their HTs. 

 Once farmers invested in HTs, they used the same farming practices inside the 

HTs as they had outside. Farmers and extension staff vented their HTs according to the 

climate of their specific location. If it became windy, closing HTs was important for 

reducing damage to both crops and the structure. One farm opened and closed sides on a 

daily basis, while one opened the sides after the last frost and before the first frost. Where 

HTs had fans, one farmer used the fans consistently in the summertime and according to 

weather conditions the rest of the year. Another farmer used a HT with no manual 
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ventilation; that HT was cooled with automatic fans that turned on when the temperature 

exceeded 29.4 °C. The school gardens left the doors open in the summer.   

 Management practices changed throughout the seasons. Two farms and all the 

school gardens planted cover crops inside in the winter. One farmer mentioned the need 

to remove snow on the HT cover in the winter. Early in the spring or in the winter, low 

tunnels (three of seven farmers interviewed) and mid-tunnels (one of seven farmers 

interviewed) were added to provide extra crop protection. Two farmers added shade cloth 

to their HTs in the spring and summer. One farmer moved the HTs over different crops at 

different times of the year in an effort to produce more crops from one HT. Farmers took 

advantage of the flexibility of HTs, often using them only when they needed them for 

season extension by taking them down or leaving them fallow for the summer. For 

example, some farmers used shaded HTs in the summer to cool crops or operated HTs at 

the end or beginning of summer to extend the season. 

 The most important reported advantages HTs provided are: wind protection (five 

of seven farmers interviewed), season extension (four of seven farmers interviewed), pest 

protection (three of seven farmers interviewed), improved climate for the crops through 

modification of temperature and/or humidity (three of seven farmers interviewed), and 

the ability to grow year around (two of seven farmers interviewed). When discussing 

climate modification, farmers mentioned that HTs reduce solar radiation and increase 

humidity. Farmers were able to modify the climate all year by cooling crops in the 

summer and keeping snow off of them in the winter. HTs also provided important 

advantages by increasing the types, yield and quality of the crops grown. 
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 In addition to providing clear benefits, HTs also had several disadvantages 

including: initial cost (three of seven farmers interviewed), wind damage to the structure 

and cover (three of seven farmers interviewed) and increased labor (two of seven farmers 

interviewed). Upkeep and maintenance of the HT structure and cropping system were 

higher than outside. In addition, more management decisions needed to be made about 

when to open and close HTs or remove the plastic. The limited space made cropping 

decisions more critical, as farmers wanted to manage the area for the highest yield. One 

farmer noted that the larger the farm the more difficult it was to manage labor inside 

small scale HTs to take advantage of the potential for increased yield. While HTs keep 

out many pests, if a pest got inside the infestation was often worse and harder to get rid of 

than outside. 

 HTs need to produce higher yields and better quality product in order to justify 

their upfront cost. Farmers were generally positive about the impacts of HTs on their 

business. They were able to grow and sell crops in the winter (three of seven farmers 

interviewed) and produce high-value crops they were unable to grow previously, such as 

tomatoes and turmeric (two of seven farmers interviewed). HTs increased yield and 

quality for a longer period of time, allowing farmers to increase their income over a 

longer season. As long as the structure was secured, most farmers indicated that 

maintenance costs were low (four of seven interviewed). However in one case, labor to 

plant in the HTs was high, and the farmer was still trying to find the best crops to produce 

in HTs to make the investment profitable. When asked whether HTs directly increased 

the farms profitability, three said yes while two said no. 
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 HTs enabled farmers to enter niche markets by growing high-value specialty 

crops such as vegetables, melons, fruit, nuts, berries and greenhouse/nursery plants. 

Commodity crops including corn, soybeans, wheat and other grains (MacDonald et al., 

2013) were not grown in HTs. The crops farmers grew in HTs included: radishes, turnips, 

beets, various leafy greens, bok choy, arugula, cucumbers, peppers, eggplant, tomatoes, 

spinach, chard, asparagus, beans, broccoli, cabbage, carrots, garlic, herbs, onion, peas, 

potatoes, sweet potatoes, Hawaiian ginger, turmeric, raspberries and blackberries. HTs 

provided critical protection from pests for many of these crops. For example, HTs 

protected tomatoes from the beet curly top virus (Davison and Lattin, 2015). The ability 

to have increased control over the crops’ growing conditions, through the HT modifying 

temperature, humidity, wind and solar radiation, allowed farmers to grow a wider variety 

of crops. However, sprawling crops such as squash and cantaloupe did not grow well in 

HTs because they took up too much space to be economically viable. 

 All interviewed farmers felt that HTs were a worthwhile investment and would 

recommend them to other farmers (seven of seven farmers interviewed). Experienced 

farmers with knowledge about what crops to grow and what markets to sell to would be 

best prepared to take advantage of HTs. In practice, farmers of all experience levels and 

backgrounds are investing in HTs. With the increased ability to control the environment 

in which the crops are growing, farmers are able to mitigate many of the climate and pest 

stresses common in the high desert. As one farmer noted, crops experience “far less 

tragedies” inside HTs. Because farmers in the Great Basin are using HTs to protect their 

crops from the variable and sometimes harsh climate conditions, it is important to 

examine the environment inside HTs to help farmers manage their tunnels better for 
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improved crop growth. The environment inside the HT may vary depending on location 

and management practices.  

Lettuce Leaf Area Index 

 Several previous studies have found HTs to be effective at improving the quality 

and sometimes the yield of lettuce by enhancing the crop’s growing environment. (Rader 

and Karlsson, 2006; Wallace et al., 2012; Galinato and Miles, 2013). In order to quantify 

crop growth rates inside and outside HTs, LAI was measured for lettuce inside and 

outside HTs at Main Station. Lettuce inside the HT grew quickly (Fig. 2) and was 

harvested a week earlier than planned, yielding 1.55 kg/m2. Lettuce outside grew 

intermittently and yielded only 0.04 kg/m2. The farmer felt that the main factor in the 

lettuce not growing outside was most likely high air temperatures. Lettuce inside HTs 

spent less time exposed to hot temperatures outside their optimal growing range. 

Climate 

Solar Radiation 

Maximum Solar Radiation 

Maximum solar radiation at DFI was reduced by 45 to 52% on average, with daily 

reductions of as little as 16% (Fig. 3). This reduction is greater than the current 15 to 36% 

reported in the research (Table 1), in part because the HTs used in this study were 

covered by a thicker woven fabric than coverings used in previous studies. Maximum 

solar radiation was reduced by 95% to 96% when the HTs were covered with snow after 

winter storms.  
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Solar radiation was reduced relative to outside in all HTs in all seasons. However, 

the amount of reduction varied depending on the orientation of the HT and the time of 

year. The north-south HTs experienced greater reductions in solar radiation than the east-

west HTs (Fig. 3). Although this study’s results mirror what is reflected in the literature 

(Blomgren and Frisch, 2007), the small number of HTs did not allow for statistical 

evaluation of the effect of orientation. Early in the season, maximum solar radiation rises 

quickly inside the HTs, similar to trends outside the HT. Solar radiation in HTs levels off 

from May to July, irrespective of HT orientation, before decreasing in August (Fig. 3). 

The summertime plateau in radiation is unexpected because the HT covers allow 85% 

light transmission. However, the amount of incoming solar radiation that the HT cover 

transmits varies with the angle of the sun relative to the angle of the HT roof. While 

quonset HTs generally transmit the most solar radiation in the summer when the sun is 

highest in the sky, gothic HTs, such as those at DFI, receive the most solar radiation in 

the spring and fall when the angle of the incoming solar radiation is more perpendicular 

to the angle of the HT roof. This effect is increased in east-west oriented gothic HTs 

(Blomgren and Frisch, 2007). 

Studies examining solar radiation inside HTs have not examined variability in 

solar radiation over a season or from year to year. Further research will be necessary to 

confirm the patterns seen in this study and fully determine what is causing them. Sensors 

could be placed in different locations vertically and horizontally in HTs to determine if 

different locations in the HTs receive different amounts of solar radiation. In order to 

further explain the seasonal and daily variation, HTs in different regions of the U.S. could 

be compared to determine if the patterns seen in this research occur across a wider variety 
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of structures and locations. Finally, variations in solar radiation with respect to HT 

orientation, roof angle and cover type could be tested to further characterize the 

relationship between the angle of the sun and the amount of light reduction and diffusion. 

Such evaluation would allow farmers to make improved choices about the structure 

types, coverings and orientations that best meet their needs. 

Diurnal Solar Radiation Variability 

HTs influenced the daily distribution of solar radiation. Maximum solar radiation 

peaked inside 1 to 2 hours earlier inside than outside (Appendix Fig. 1). This diurnal 

pattern was also found with other variables in the HT, such as soil and air temperature. 

Wind 

Wind speed at DFI was reduced 87% to 93% on average, with daily decreases as 

low as 35%. The average reductions in wind speed seen in this study are similar to the 

reduction seen in other studies where woven fabric was used (Table 2). Inside the HTs, 

wind was reduced by 95% or greater 40% of the time. While the anemometers used in 

this experiment are inaccurate at low wind speeds (‘Wind Speed Smart Sensor (S-WSB-

M003) Manual’, no date), differences in wind speeds were substantial enough that the 

differences seen here are unlikely to result from lack of instrumental precision. 

HTs reduced the speed and variability of wind, particularly from November 

through February when the HTs were closed most or all of the time (Fig. 4). The HTs 

used at DFI are designed to be placed perpendicular to the prevailing wind to allow air to 

flow over them reducing wind inside (FarmTek, personal communication). Wind speed 

was slightly lower in the north-south HTs because they were perpendicular to the 
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prevailing west to east wind direction. Because of the lower wind speeds, HTs likely slow 

the movement of air within the HT as well as reducing the exchange of air between inside 

and outside. Further research investigating air flow inside HTs as well as flow in and out 

of the HTs will be necessary to determine how air moves within the HT and how much 

air exchange there is with outside. 

Soil Temperature and Soil Moisture 

Maximum and Minimum Soil Temperature 

Seasonally, HTs reduced the range of soil temperatures crops experienced by 

lowering variability between the winter and summer (Fig. 5). Both maximum and 

minimum soil temperatures were lower inside the HTs in the spring and summer. On 

average during these seasons, maximum soil temperatures were 1.7 to 4.8 °C lower inside 

the HT, while minimum soil temperatures were the same as outside or lower by 1.0 °C, 

with decreases of as much as 6.0 °C in minimum temperature and 14.3 °C in maximum 

temperature. However, late into the fall and winter, HTs were particularly effective at 

keeping soil temperatures higher than outside. Maximum and minimum soil temperatures 

were higher by an average of 1.9 to 4.4 °C and 2.1 to 3.7 °C inside the HT with increases 

of as much as 9.6 °C and 7.1 °C, respectively. Higher soil temperatures inside HTs often 

created an environment that allowed crops to grow through the winter (Knewtson et al., 

2010; Zhao et al., 2014). 

Previous studies found similar patterns of seasonal variability, wherein HTs 

lowered temperatures in the spring and summer (Rader and Karlsson, 2006; Ogden and 

Iersel, 2009). In this study, management practices may have played a role, because the 
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HTs were vented early in the spring through the summer and then closed in the fall and 

winter. Although this study’s results are similar to some of the results found in the 

literature, the small number of HTs at DFI did not allow for statistical evaluation of the 

differences between inside and outside. Further research investigating HTs influence on 

soil temperature under different soil types, irrigation methods and soil management 

strategies will be necessary to fully understand HTs relationship to soil temperature. 

Diurnal Soil Temperature Variability 

At DFI, soil DTR was also often lower inside HTs. These results were 

corroborated by another study where soil DTR was always lower inside (Chenhui Li et 

al., 2014). In winter, HTs often increased maximum soil temperature more than minimum 

soil temperature leading to increased diurnal variability inside. The daily maximum soil 

temperatures occurred slightly earlier in the day inside HTs following the pattern of solar 

radiation and air temperature (Appendix Fig. 2). 

Soil Moisture 

 Due to the observational nature of the study, with farmers at DFI watering 

according to their planting needs, clear differences in soil moisture inside and outside 

HTs could not be determined from the data (See Appendix, Fig. 3). However, farmers 

commented that they needed to apply less irrigation water inside than outside. Not only 

does the HT plastic covering seem to reduce water loss through evaporation, HTs can 

also facilitate the use of more water-efficient irrigation strategies, such as drip tape, 

overhead sprinklers or subirrigation. It has been suggested that increased control over soil 

moisture inside HTs could reduce stress crops experience from high and low temperature 
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extremes (Montri and Biernbaum, 2009). Further research using a controlled setting 

would be necessary to determine the HT’s influence on soil moisture, irrigation water use 

and the resulting effect on crops.  

Air/Indirect solar air temperature 

Maximum temperature 

HTs’ influence on maximum temperatures varied in response to different 

management strategies (Fig. 6, Appendix Fig. 4). As observed in other studies (Ogden 

and Iersel, 2009; Wien, 2009; Lang, 2014), increased HT ventilation in the summer 

months lowered maximum temperatures close to those outside. Since this practice was 

more common during the summer than at any other time of the year, management 

practices reduced seasonal variability in maximum temperature inside HTs relative to 

ambient conditions. In contrast, the HT at School 2 remained completely closed, with no 

crops grown, and temperature continued to rise throughout the summer (data not shown). 

At Farm 3 and DFI, maximum temperatures noticeably increased in October when the 

HTs were completely closed.  

Shade cloth often reduced maximum temperatures below those outside in the 

summer, consistent with other studies using shade cloth (Rowley et al. 2011; Zhao and 

Carey 2009). In the case of Farm 2, despite the use of shade cloth, the farmer managed to 

keep HT temperatures high through minimal venting. Farm 3’s caterpillar HTs 

experienced temperatures slightly lower than those outside in the summer despite not 

being covered in shade cloth. When the farmer at Farm 4 replaced the plastic and 
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decreased venting of the unshaded HTs, maximum temperature markedly increased from 

November to April.  

Minimum Temperature 

Minimum temperatures were less influenced by management practices than 

maximum temperatures. Similar to some of the current findings on minimum temperature 

in HTs (Ogden and Iersel, 2009; Ogden et al., 2011; Rogers and Wszelaki, 2012; Wallace 

et al., 2012), minimum temperatures were similar inside and outside at all of the sites in 

this study. At 1 m, minimum temperatures in the HT were the same, slightly lower or 

slightly higher than outside (Appendix Fig. 5). At 16 cm, minimum temperatures were 

almost always higher inside the HT than outside, irrespective of covering type (Fig. 7). 

Depending on how the HT was managed, the increased temperature was more 

pronounced from late summer through early winter, possibly due to the fact that soil 

temperatures inside the HT were increased during the same part of the year (Fig. 5).  

Diurnal Temperature Variability 

As discussed above, HTs do little to increase minimum temperatures while 

increasing maximum temperatures, especially in the fall and spring. Thus, the DTR was 

generally increased inside at both 1 m and 16 cm (Appendix Figs. 6-7). However, in the 

spring and summer, the DTR was sometimes lower inside than outside. This pattern 

occurred when maximum temperature in the HT was lower than outdoors due to the use 

of shade cloth or in the case of the caterpillar HT. Rather than moderating DTR and 

decreasing large temperature swings, most HTs increased them. Another study found 

similar results; HTs most often increased DTR while sometimes having little effect, 
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possibly when HTs were vented more (Chenhui Li et al., 2014). This result may seem 

counter-intuitive to improved crop growth. However, low minimum temperatures at night 

limit the resources plants expend on respiration (Nelson, 2003). Meanwhile, higher 

temperatures during the day, especially in the spring and fall, can increase crop growth by 

allowing crops more time in their optimal temperature ranges. Nevertheless, plants inside 

HTs are still subject to temperature extremes that could negatively impact crop growth 

(Wien, 2009; Rowley et al., 2011; Olberg and Lopez, 2016). Crops could be buffered 

from temperature extremes due to increased soil moisture inside HTs (Montri and 

Biernbaum, 2009). 

As noted in previous studies (Wien, 2009; Ogden et al., 2011; Bumgarner et al., 

2012), daily temperature patterns were also influenced by HTs. Temperatures at 1 m 

tended to increase and decrease faster, often peaking earlier inside HTs, especially in the 

fall and winter (Appendix Fig. 8). Temperatures at 16 cm followed a similar pattern, but 

with peak temperatures occurring closer to the peak outside during the spring and 

summer (Appendix Fig. 9). This pattern is consistent with solar radiation and soil 

temperature also peaking earlier in the day within HTs. Nonetheless, management of the 

HTs plays a role in the daily pattern. For example, shade cloth would reduce temperature 

increases and potentially adjust when temperatures peak. 

Temperature Variability with Height 

 Temperature differences between sensors at 1 m and 16 cm above the soil surface 

exhibited contrasting patterns inside and outside HTs. In HTs, maximum temperatures 

were higher at 1 m than 16 cm inside (Fig. 8). Minimum temperature exhibited the 
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opposite pattern with temperatures higher at 16 cm than 1 m (Fig. 9). Outside the pattern 

was reversed. Because there is less air exchanging with outside, air stratification may 

occur inside HTs, especially at night as air temperature drops (Ogden et al., 2011). 

During the day, as air temperature increases and air begins to rise, HTs seem to increase 

temperatures more with height. Crops closer to the ground experience less temperature 

variability with slightly higher temperatures at night and slightly cooler temperatures 

during the day. Taller crops have to contend with the temperature differences in height as 

they grow; however they may still benefit from moderated temperature regimes near their 

roots. 

Temperature Variability Across HT Structures 

 Because HTs vary in size, configuration and material, HTs may differ in how they 

alter temperature relative to the HTs’ characteristics. This study found no clear pattern 

between temperature and the characteristics of the HTs. While it may be the case that HT 

size and other factors change the microclimate created by the HT, in this study 

management practices were the clearest driver of the microclimates created by the HTs. 

Neither the type of HT nor the thickness of the covering displayed a strong relationship 

with temperature (Fig. 10-13). Area and height may have more of an influence on 

temperature, however the relationship varies between months and may have been 

influenced by management practices. 

However, because each farmer is managing the HTs for the conditions the crop 

requires, it is difficult to determine whether size and height or high tunnel management 

are driving temperature changes. For example, many farmers felt that their larger HTs 
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increased temperature more than their smaller tunnels. As a result, they managed their 

larger tunnels to reduce heat build-up. On the other hand, farmers growing crops that 

needed high temperatures managed their tunnels to increase temperatures no matter the 

size. The sample sizes used were also relatively small, increasing the influence of 

management practices at individual farms on the results. A controlled experiment or 

larger sample size would be necessary to determine if height and area influence 

temperature. 

Growing Degree Days 

Consistent with the studies listed in Table 5, HTs increased lettuce GDDs, shown 

in Figure 14, and tomato GDDs (Appendix Fig. 10). Similar to maximum temperature 

(Appendix Fig. 4, Fig. 6), GDDs increased more in the spring, winter and fall than in the 

summer. GDDs, particularly for tomatoes, were sometimes slightly lower during the 

summer inside HTs, in part because HTs increased maximum temperatures beyond the 

plants’ optimal growing range. Despite the fact that HTs do not increase minimum 

temperature as much as maximum temperature, crops still experienced an increase in 

GDDs inside. The increased GDDs allow for lettuce production most or all of the year, an 

advantage which three of the farmers and the University farm regularly took advantage 

of. While not directly part of the GDD calculation, crops also spend more time in their 

optimum temperature range inside because HTs increase temperature faster at the 

beginning of the day (O’Connell et al., 2012).  
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Vapor Pressure 

While relative humidity is the most common water vapor metric used in HT 

research (Table 6), vapor pressure is generally used in the greenhouse literature. Partial 

and saturated vapor pressure are then often used to calculate vapor pressure deficit (VPD) 

(Nelson, 2003). Management strategies and VPD thresholds for improving plant growth 

have been established for many crops (Gates et al., 1998; Leonardi et al., 2000; Gazquez 

et al., 2008; Lu et al., 2015). Using vapor pressure and VPD as metrics for water vapor 

instead of relative humidity would allow HT research to take advantage of the 

greenhouse VPD research already established in the literature. In addition, using vapor 

pressure as apposed to relative humidity is often recommended to farmers because it can 

be interpreted without knowing the temperature (Wollaeger and Runkle, 2015). 

Maximum and Minimum Vapor Pressure 

Vapor pressure was highly variable both inside and outside the HT. Overall, 

minimum and maximum vapor pressure were higher inside the HT than outside by 

statistically significant amounts (Fig. 15-16, Appendix Fig. 11-12). Management 

practices clearly influenced maximum vapor pressure, notably at Farm 3 where maximum 

vapor pressure increased when HTs were closed in October (Fig. 15). By reducing air 

exchange with outside, HTs increase vapor pressure inside, potentially lowering irrigation 

water use, which is particularly important in high deserts such as the Great Basin. 

However, vapor pressure within the HT occasionally dipped below that of outside, and 

maximum vapor pressure was consistently lower inside than outside at 1 m inside Main 

Station HTs (Fig. 15). These results indicate that irrigation, crop type, HT management 
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and outside climate conditions play a role in determining vapor pressure inside HTs. 

Further research will be necessary to understand HTs impact on vapor pressure and what 

conditions can lead to a drier environment inside HTs.  

Diurnal Vapor Pressure Variability 

While relative humidity was often more consistent on a daily basis inside HTs 

than outside, vapor pressure provided a clearer picture of how HTs impact humidity. The 

diurnal range of vapor pressure was generally higher inside HTs than out following a 

similar pattern to that of air temperature (Appendix Fig. 13-14). Vapor pressure tended to 

follow the pattern of solar radiation, air and soil temperature often rapidly rising and 

peaking higher, sometimes earlier in the day inside HTs (Appendix Fig. 15-16), 

suggesting enhanced evapotranspiration due to increasing temperatures. Daily variations 

in vapor pressure may be influenced by the farmers’ irrigation schedule. Unlike air 

temperature, there were no clear patterns in differences between sensor heights (data not 

shown).  

Vapor Pressure Variability Across HT Structures 

 Similar to temperature, vapor pressure may vary inside HTs depending on size, 

configuration and material. However, the results of this study found no clear pattern 

between vapor pressure and the characteristics of the HTs. As with temperature, 

management practices were the clearest indicator of the microclimates created by the 

HTs. The type of HT and material thickness did not have a strong relationship with vapor 

pressure. Area and height do seem to influence vapor pressure, although temperature was 

influenced more (Fig. 17-20). As with temperature, it is difficult to disentangle the effects 
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of HT size from management practices, since farmers tended to manage different HTs 

differently according to their assessments of crop requirements. Thus, a controlled 

experiment or larger sample size would be necessary to determine if height and area 

consistently influence vapor pressure. 

Vapor Pressure Deficit 

Maximum and Minimum Vapor Pressure Deficit 

 Maximum VPD closely tracked maximum temperature (Fig. 21, Appendix Fig. 

17). Similar to the pattern of relative humidity seen in Table 6, when temperature rose 

VPD also rose. By adjusting the ventilation and covering of the HT, farmers not only 

modify temperature but also VPD. Minimum VPD was strongly variable across the 

season, increasing from May through September (Fig. 22, Appendix Fig. 18). During 

those months, minimum VPD at 1 m was consistently lower inside HTs than outside, 

especially when the tunnel was covered in shade cloth. The rest of the year it was close to 

that of outside. At 16 cm, minimum VPD was more variable sometimes lower or higher 

than outside. VPD varies with temperature as well as timing and amount of irrigation 

water. Presumably as irrigation water increases, VPD would decrease, but this would 

depend on how temperature varied as well. Because of the uncontrolled nature of this 

study, it is difficult to determine what combination of factors led to the variability seen in 

the data.  

Diurnal Vapor Pressure Deficit Variability 

 The diurnal range of VPD followed a similar pattern to that of maximum VPD 

and air temperature (Appendix Fig. 19-20). As expected, daily VPD followed the pattern 
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of solar radiation, temperature and vapor pressure, rising faster earlier in the day and 

sometimes peaking before outside. The difference was more pronounced in the fall and 

winter (Appendix Fig. 21-22). Relative to outside, the increased control provided by HTs 

warrants further research on VPD. While VPD has traditionally been studied in 

greenhouse settings, future research could investigate crops in HTs to determine whether 

they spend more time in their optimal VPD range. 

Conclusions 

HTs provide a flexible, yet relatively simple technology for small farmers to 

improve crop growth and economic viability. Although there were similarities in 

microclimate patterns inside HTs across a wide variety of farm management practices, 

microclimates inside HTs varied over the course of the season and could be strongly 

influenced by management practices. Solar radiation and wind were consistently reduced, 

a climate modification that is particularly useful in a high desert climate with a large 

number of sunny, windy days. 

Maximum temperatures were generally higher in HTs than outside during the fall, 

winter, and spring, but moderated during the summer when HTs were often ventilated 

more and/or covered in shade cloth. Meanwhile minimum temperatures were more 

similar to outside all year around. New plastic coverings with IR-blocking properties 

have the potential to increase minimum temperature inside HTs. Seasonal variability in 

temperatures was moderated inside; however, crops inside HTs could still experience 

extreme low and high temperatures on a daily basis. These climate conditions led to an 

increase in GDDs, particularly in the spring, fall and winter. 
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Vapor pressure increased inside across HT configurations. Increased vapor 

pressure can reduce evaporative demand, potentially reducing the amount of irrigation 

water needed inside. Maximum VPD, similar to maximum temperature, was highly 

influenced by management practices while minimum VPD was not. HTs influence on 

both maximum temperature and VPD can be managed by farmers.  

Given the observed seasonal variability in the effect of HTs, it seems likely that 

most HT designs and management strategies would also exhibit a seasonal influence. The 

response of microclimates inside to ventilation and shade cloth was similar across a 

variety of conditions. Farmer’s working in a wide variety of climates could expect similar 

results. Nonetheless, further research will be necessary to confirm if these seasonal 

patterns exist over a wider variety of HTs in different climates. 

With a variety of ventilation strategies and covering types, HTs provide farmers 

the conditions to grow a wider variety of crops while increasing yield and quality of the 

produce. Through the use of temperature-controlled fans and multiple layers of plastic, 

HTs provide the farmer with the unique ability to be high tech or low tech. As farmers 

continue to experiment with technologies to improve yields and increase income, HTs 

will play a significant role in their continued economic viability as a business. 

On-Farm Climate Monitoring 

With a wide variety of sensors available, farmers have an opportunity to monitor 

the climate of their HTs to better manage their crops. By investing in a turn-key weather 

station for their HT, farmers could monitor air temperature, relative humidity, soil 

temperature and soil moisture. Some sensors will even calculate vapor pressure and VPD. 
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With the information provided by air temperature, farmers can in real-time determine 

when to vent their HTs to lower the temperature and humidity. If their sensors calculate 

vapor pressure deficit, then farmers will have further information they can use to 

maintain vapor pressure deficit within the optimal range of the crop. Venting can be 

customized to increase the time crops spend in their optimal temperature and VPD 

growing ranges. By monitoring soil moisture, irrigation water can be used more 

efficiently. Soil temperature could provide important information about the root 

environment, particularly for winter crops close to the ground such as leafy greens and 

root vegetables. While not necessary, outside sensors provide information about crops 

outside the HTs. Farmers could compare conditions inside HTs with outside. For 

example, it may be more difficult to cool the HT when temperatures outside are higher. If 

farmers do not want to invest in the expense of outside sensors, they could compare their 

measurements to that of a near by weather station, although it would not be as precise. A 

study testing different sensor configurations would help farmers choose a sensor set that 

fits their budget, provides reliable data and is simple to use. Additional monitoring 

through turn-key sensor configurations would allow them to save water and maximize 

yields, further improving the farms economic viability. 

Future Research Directions 

HTs provide improved control over crop growth and yield in a wide variety of 

climates. Future research should focus on several questions not yet addressed here or in 

the literature. First, determining how the roof angle and orientation influence incoming 

solar radiation. Because HTs are passive, there may be a design and orientation that best 
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maximizes incoming solar radiation. In addition, how do the properties of the plastic 

covering influence temperature inside HTs, particularly minimum temperature. 

Initial results show that HTs impact the amount of irrigation water needed and the 

amount of evaporation. Controlled studies would be needed to quantify how much HTs 

reduce irrigation water use. In addition, experiments could be run to see if HTs can be 

managed to allow crops to spend more time in their optimal VPD ranges, much the way 

this study looked at GDDs. Understanding how the roof angle, HT orientation and 

covering type effect climate variables can help farmers manage irrigation water and 

maximize crop growth inside HTs. 
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Tables and Figures 

 
Table 1. Summary of statistics from studies of average solar radiation in HTs in the U.S. Covering refers to the thickness, number 
of layers and type of covering. Orientation refers to whether or not the HTs end walls faced North-South or East-West. 
Location Covering Orientation Solar Radiation Change Reference 
Washington 
State 

Single layer 0.15 mm N/A - 27 to - 36%y (Borrelli et al., 2013) 

Washington 
State 

Single layer 0.15 mm N/A - 23%y (Cowan et al., 2014) 

Oregon Single layer 0.15 mm N/A - 31%y (Thompson et al., 2009) 
Michigan Three-season single 

layer 0.15 mm 
N/A - 15 to - 26%z (Lang, 2009, 2014) 

Indiana Single layer 0.15 mm N/A - 33%z (Owen et al., 2016) 
Indiana Single layer 0.15 mm N/A - 27%z (Olberg and Lopez, 2016) 
Ohio Single layer 0.15 mm N/A - 23%y (Bumgarner et al., 2012) 
Pennsylvania Polyethylene plastic N/A - 25%y (Lang et al., 2011) 
New Jersey Single layer 0.15 mm 

infrared-blocking plastic 
North-South - 24%z (Both et al., 2007) 

New Jersey Single layer 0.15 mm North-South - 26%y (Reiss et al., 2004) 
Arkansas Single layer 0.15 mm N/A - 17 to - 20%y (Rom et al., 2010) 
Kansas Single layer 0.15 mm East-West - 16 to - 36%y (Zhao and Carey, 2009) 
Kansas Single layer 0.15 mm  

with 39% white shade 
cloth 

East-West - ≥ 50%y (Zhao and Carey, 2009) 

yPhotosynthetically Active Radiation; zDaily light integral: Total PAR/m2/day 
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Table 2. Summary of statistics from studies of average wind in HTs in the U.S. Covering refers to the thickness, number of layers 
and type of covering. Ventilation refers to the ventilation mechanisms each HT had. 
Location Covering Ventilation Wind Change Reference 
Washington 
State 

Single layer 0.15 mm Open end doors 
and manual sides 

- 61% (Cowan et al., 2014) 

Washington 
State 

Single layer 0.15 mm Manual end doors 
and sides 

- 61% (Wallace et al., 2012) 

Michigan Three-season single layer 0.15 mm Open end doors 
and sides 

- 50% (Lang, 2009) 

Texas Woven greenhouse fabric Manual end doors 
and sides 

- 98% (Wallace et al., 2012) 

Kansas Single layer 0.15 mm Manual end doors 
and sides 

- 34 to - 41% (Zhao and Carey, 2009) 

Tennessee Single layer 0.15 mm Manual end doors 
and sides 

- 57% (Wallace et al., 2012) 
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Table 3. Summary of statistics from studies of average soil temperature in HTs in the U.S. Covering refers to the thickness, 
number of layers and type of covering. Ventilation refers to the ventilation mechanisms each HT had. Soil type refers to the 
texture of the soil. Growing season refers to the length of the study. 
Location Covering Ventilation Soil Type Growing 

Season 
Soil Temperature 
Change 

Reference 

Alaska Single layer  
0.15 mm 

Manual end doors 
and sides 

Loam May to 
September 

- 0.7 to + 2.6 °Ctu 
- 0.9 to + 2.6 °Cux 

- 0.5 to + 2.5 °Cuv 

(Rader and Karlsson, 
2006) 

Washington 
State 

Single layer  
0.15 mm 

Manual end doors Fine-Silt November to 
March 

+ 1.4 °Cxw 

+ 3.1 °Cxw 
(Borrelli et al., 2013) 

Washington 
State 

Three-season 
woven 
greenhouse fabric 

Manual end doors 
and sides 

Fine-Silt April to 
September 

+ 1.1 °Cx (C Li et al., 2014; 
Chenhui Li et al., 2014) 

Oregon Single layer  
0.15 mm 

Open end doors 
and sides 

Fine-Silt September to 
November 

Samex (Thompson et al., 2009) 

New Jersey Single layer  
0.15 mm 
infrared-blocking 
plastic 

Manual end doors 
and sides 

N/A March to 
May 

+ 6.7 °Cy (Both et al., 2007) 

New Jersey Single layer  
0.15 mm 

Manual end doors 
and sides 

N/A May to 
August 

+ to slightly -uz (Reiss et al., 2004) 

Rhode 
Island 

Single layer  
0.153 mm 

Manual sides and 
automatic roof 
vents 

Silt-
Loam 

May to 
August 

+ 0.2 °Cx (Vescera and Brown, 
2016) 

New York Single layer  
0.15 mm 
infrared-blocking 

Manual end vents 
and sides 

N/A January + 2 °Cx (Wien, 2009) 
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plastic 

Texas Woven 
greenhouse fabric 

Manual end doors 
and sides 

Fine-
Loam 

April to 
September 

+ 2.6 °Cx (C Li et al., 2014; 
Chenhui Li et al., 2014) 

Kansas Single layer  
0.15 mm plastic 
with 39% white 
shade cloth 

Manual end doors 
and sides 

N/A July to 
August 

- 3.4 °Ct 
- 0.2 °Cv 

(Zhao and Carey, 2009) 

Mississippi Single layer  
0.15 mm 

Manual end doors 
and sides 

Fine 
sandy 
loam 

April to July + 6.3 to + 1.9 °Ctu 
+ 5.6 to + 1.1 °Cux 

+ 4.9 to + 0.7 °Cuv 

(Zhao et al., 2014) 

Georgia Single layer  
0.15 mm 

Manual sides N/A December to 
July 

+ to - tuz 

+ to slightly + uvz 
(Ogden and Iersel, 
2009) 

Tennessee Woven 
greenhouse fabric 

Manual end doors 
and sides 

Silt-
Loam 

April to 
September 

+ 0.45 °Cx (C Li et al., 2014; 
Chenhui Li et al., 2014) 

North 
Carolina 

Double layer, 
inflated  
0.152 mm 

Manual end doors 
and automated 
sides 

Sandy-
Loam 

March to 
August 

+ 5 to + 7 °Cx (O’Connell et al., 2012) 

tMaximum; uSeasonal temperature difference at the beginning and end of the season. See text for details.; vMinimum;  
wStudy conducted in multiple locations; xAverage; yAverage nighttime temperature; zStudy only indicated direction of change 
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Table 4. Summary of statistics from studies of air temperature in HTs in the U.S. Maximum, minimum and average temperatures 
indicated by footnotes. Covering refers to the thickness, number of layers and type of covering. Ventilation refers to the 
ventilation mechanisms each HT had. 
Location Covering Ventilation Growing Season Air Temperature 

Change 
Reference 

Alaska Single layer  
0.15 mm 

Manual end 
doors and sides 

May to 
September 

- 1.3 to + 1.5 °Cqr 

+ 0.5 to + 2.5 °Ctr 

+ 2.3 to + 5.1 °Csr 

(Rader and Karlsson, 2006) 

Washington 
State 

Single layer  
0.15 mm 

Open end doors 
and manual sides 

May to October + 2.7 °Cq 

+ 0.8 °Cs 
(Cowan et al., 2014) 

Washington 
State 

Single layer  
0.15 mm 

Manual end 
doors and sides 

April to October + 3.3 °Cq 

+ 0.5 °Cs 
(Wallace et al., 2012) 

Washington 
State 

Three-season  
polyethylene 
plastic 

Open end doors 
and sides 

May to October + 1 to 2 °Ct (Powell et al., 2014) 

Washington 
State 

Single layer  
0.15 mm 

Manual end 
doors 

December to 
April 

+ 1.9 °Ct (Borrelli et al., 2013) 

Washington 
State 

Three-season  
woven 
greenhouse 
fabric 

Manual end 
doors and sides 

May to October + 0.9 °Ct (Chenhui Li et al., 2014) 

Oregon Single layer  
0.15 mm 

Open end doors 
and sides 

May to October Samet (Thompson et al., 2009) 

Wyoming Single layer  
0.15 mm 

Manual sides September to 
November 

+ uq 

+ us 
(Shiwakoti et al., 2016) 

Minnesota Single layer  
0.15 mm 

Open end doors 
until ends were 
covered in mesh 

March to August + uq 

Sames 
(Rogers et al., 2016) 

Michigan Three-season  
single layer  
0.15 mm 

Manual end 
doors and sides 

April to June + 10 to + 30 °Cvw 

+ 1 °Cx 
(Lang, 2014) 

Utah Single layer  Manual end August to July of + ≤ 4.2 °Cs (Rowley et al., 2011) 
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0.15 mm doors the following 
year 

Utah 40% shade cloth Manual end 
doors 

August to July of 
the following 
year 

- 4 °Cq (Rowley et al., 2011) 

New York Single layer  
0.15 mm 
infrared-blocking 
plastic 

Manual end 
vents and sides 

Summer: June 
Winter: January 

+ summerruw 

Slight + summerrux 

+ winterruw 
Slightly – winterrux 

(Wien, 2009) 

New Hampshire Single layer  
0.15 mm 
infrared-blocking 
plastic 

Manual and sides 
automatic fans 

September to 
April of the 
following year 

+ ≤ 16.9 °Cs (Martin and Sideman, 
2012) 

New Jersey Single layer  
0.15 mm 
infrared-blocking 
plastic 

Manual end 
doors and sides 

May to August + 0.9 °Csx (Both et al., 2007) 

New Jersey Single layer  
0.15 mm 

Manual end 
doors and sides 

May to August + to samert (Reiss et al., 2004) 

Rhode Island Single layer  
0.153 mm 

Manual sides and 
automatic roof 
vents 

May to July + 4.5 to - 2.3 °Cqr 

+ 2.7 to - 0.7 °Crs 
(Vescera and Brown, 2016) 

Connecticut Single layer  
0.1 mm 

Automatic end 
doors 

September to 
June of the 
following year 

+ 10 °Cq 

+ 1 to 2 °Cs 
(Gent, 2002) 

Texas Woven 
greenhouse 
fabric 

Manual end 
doors and sides 

March to June + 5.2 °Cq 

- 4.5 °Cs 
(Wallace et al., 2012) 

Texas Woven 
greenhouse 
fabric 

Manual end 
doors and sides 

April to 
November 

+ 3.2 °Ct (Chenhui Li et al., 2014) 
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Arkansas Single layer  
0.15 mm 

Manual sides April to 
November 

+ ≤ 5 °Cx (Rom et al., 2010) 

Kansas Single layer  
0.15 mm 

Manual end 
doors and sides 

July to August + 0.3 °Cq 

+ 0.2 °Cs 
(Zhao and Carey, 2009) 

Kansas Single layer  
0.15 mm plastic 
with 39% white 
shade cloth 

Manual end 
doors and sides 

July to August - 0.4 °Cq 

+ 0.5 °Cs 
(Zhao and Carey, 2009) 

Kansas Single layer  
0.15 mm 

Manual sides December to 
March 

+ 14 to + 3 °Cqr 
+ ≤ 17 °Cy 
+ 1 to + 2 °Crs 
+ ≤ 7 °Cz 

(Kadir et al., 2006) 

Mississippi Single layer  
0.15 mm 

Manual end 
doors and sides 

April to June + 4.3 to + 1.8 °Cqr 

+ 1.3 to + 0.5 °Crs 
(Zhao et al., 2014) 

Indiana Single layer  
0.15 mm 

Manual end-wall 
peak vents and 
sides 

July to October + 0.5 °C t (Owen et al., 2016) 

Indiana Single layer  
0.15 mm 

Automated sides April to June + 2.7 to + 1.8 °Crt (Olberg and Lopez, 2016) 

Ohio Three-season  
single layer  
0.15 mm 

Open ends March to April 
October to 
November 

+ tu (Bumgarner et al., 2012) 

Kentucky Double layer  
0.15 mm 
infrared-blocking 
plastic 

Manual end 
doors and sides 

February to June 
of the following 
year 

+ 4.9 °Cs (Ward and Bomford, 2013) 

Tennessee Double layer, 
non-inflated 0.15 
mm plastic 

Manual end 
doors and sides 

March to August + qu 

Sames 
(Rogers and Wszelaki, 
2012) 
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Tennessee Woven 
greenhouse 
fabric 

Manual end 
doors and sides 

February to June - 1.8 °Cq 

- 3.4 °Cs 
(Wallace et al., 2012) 

Tennessee Woven 
greenhouse 
fabric 

Manual end 
doors and sides 

March to 
October 

+ 0.65 °Ct (Chenhui Li et al., 2014) 

Georgia Single layer  
0.15 mm 

Manual sides December to 
July 

+ ≤ 15 to same °Cqr 

Same or slightly - rs 
(Ogden and Iersel, 2009; 
Ogden et al., 2011) 

North Carolina Single layer  
0.15 mm 

Manual end 
doors and sides 

November to 
May of the 
following year 

+ qu 

+ su 
(Gu et al., 2017) 

North Carolina Double layer, 
inflated  
0.152 mm plastic 

Manual end 
doors and 
automated sides 

March to August + 1.77 to + 0.07 °Cqr 

+ 2.98 to + 0.60 °C rs 
(O’Connell et al., 2012) 

Florida Three-season  
single layer  
0.15 mm 

Manual end 
doors and sides 

September to 
April of the 
following year 

Sameq 

+ 6 to + 7 °Cs 
(Santos and Salame-
Donoso, 2012) 

Florida Polyethylene 
plastic 

Manual end 
doors and sides 

October to 
February 

+ 7 °Cs (Santos et al., 2014) 

qMaximum; rSeasonal temperature difference at the beginning and end of the season. See text for details.; sMinimum; tAverage; 
uStudy only indicated direction of change; vConfirmed accuracy with author; wAverage daytime air temperature; xAverage 
nighttime air temperature; yMaximum crown (temperature of the crop canopy); zMinimum crown (temperature of the crop canopy) 
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Fig. 1. Summary of statistics from studies of seasonal temperature variability in HTs in the US.  
See Table 4 for more details. 
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Table 5. Summary of statistics from studies of growing degree days (GDD) within HTs in the U.S. Covering refers to the 
thickness, number of layers and type of covering. Ventilation refers to the ventilation mechanisms each HT had. Temperature 
limits refers to the temperatures used to calculate GDD. Average seasonal GDD values are the average total number of GDD 
unless otherwise noted. 
Location Covering Ventilation Temperature Limits Average 

Seasonal 
GDD Change 

Reference 

Washington 
State 

Single layer  
0.15 mm 

Open end doors 
and manual sides 

Base temperature of 10 °C + 291 (Cowan et al., 2014) 

Washington 
State 

Single layer  
0.15 mm 

Manual end 
doors and sides 

Base temperature of 5.5 °C + 52.5 (Wallace et al., 2012) 

Michigan Three-season 
single layer  
0.15 mm 

Open end doors 
and sides 

Base temperature of 10 °C + ~10% (Lang, 2009, 2014) 

Pennsylvania Polyethylene 
plastic 

Open end doors 
and sides 

Base temperature of 10 °C + ~10% (Lang et al., 2011) 

New Jersey Single layer  
0.15 mm 
infrared-
blocking plastic 

Manual end 
doors and sides 

Tomato: 
Base temperature of 10 °C and 
maximum temperature of 30 °C 

+ 239 (Both et al., 2007) 

Rhode Island Single layer  
0.153 mm 

Manual sides 
and automatic 
roof vents 

Melon: 
Base temperature of 14 °C and 
maximum temperature of 40 °C 

- z (Vescera and Brown, 
2016) 

North 
Carolina 

Double layer, 
inflated  
0.152 mm 
plastic 

Manual end 
doors and 
automated sides 

Base temperature of 10 °C + 300 (O’Connell et al., 2012) 

z Study only indicated direction of change. 

 



	

	

55	

Table 6. Summary of statistics from studies of humidity in HTs in the U.S. Structure refers to whether the HTs are stand alone 
structures or part of a multi-bay structure. Covering refers to the thickness, number of layers and type of covering. Ventilation 
refers to the ventilation mechanisms each HT had. 
Location by  
State 

Covering Ventilation Average 
Humidity 
Change 

Temperature 
Change 

Reference 

Washington State Three-season 
polyethylene plastic 

Open end doors and 
sides 

- 1% to - 5% + 1 to + 2 °C (Powell et al., 2014) 

Washington State Single layer  
0.15 mm 

Open end doors and 
manual sides 

- 2.9% + 0.8 to + 2.7 °C (Cowan et al., 2014) 

Oregon Single layer  
0.15 mm 

Open end doors and 
sides 

Same Same (Thompson et al., 2009) 

Minnesota Single layer  
0.15 mm 

Open end doors 
until ends were 
covered in mesh 

Samewx 
- yw 

+ wx 
Sameyw 

(Rogers et al., 2016) 

New Jersey Single layer  
0.15 mm infrared-
blocking plastic 

Manual end doors 
and sides 

+ 12%z + 0.9 °Cz (Both et al., 2007) 

Kansas Single layer  
0.15 mm 

Manual end doors 
and sides 

Same + 0.2 to + 0.3 °C (Zhao and Carey, 2009) 

wStudy only indicated direction of change; xMaximum; yMinimum; zNighttime 
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Table 7. Summary of farm and school HTs. Type refers to the structure of the tunnel. Caterpillar are long-skinny PVC-pipe HTs 
ranging from 108.1 to 181 m2. Quonset refers to tall metal-hoop HTs. Large range from 87.4 to 174.1 m2, and small range from 
23.5 to 41.9 m2. Gothic refers to tall pointed-roof with straight sides HTs. Large range from 89.3 to 267.8 m2, and small range 
from 28.3 to 37.9 m2. Mid-T refer to short tunnels covering at least two rows of crops ranging from 19.5 to 20.2 m2. Covering 
refers to the thickness of the plastic covering. Orientation refers to the direction HTs end walls face: North-South, East-West or 
Northeast-Southwest. Ventilation refers to the different HT ventilation mechanisms each HT had. Shade cloth refers to the 
percent solar radiation reduction according to the  manufacturer. The season and location of shade cloth was included if 
applicable. 
Location and 
Number of HTs 

Type Plastic 
Covering 
(mm) 

Orientation Ventilation Shade cloth 
Cater-
pillar 

Quonset Gothic Mid-T N-S E-W NE-
SW Large Small Large Small 

Desert 
Farming 
Initiative 
(DFI) 

4 0 0 0 4 0 0  2 2 0 Manual 
sides 

None 

Farm 1 (F1) 5 0 0 0 0 3 2 0.15 1 0 4 Manual 
end doors 

None 

Farm 2 (F2) 2 0 1 0 1 0 0 0.28 0 2 0 3-5 
automatic 
fans and 4 
vents 

40% in 
summer 

Farm 3 (F3) 7 2 3 
 

0 2 0 0 0.15 1 6 0 Manual 
sides 

40% on 2 
Large 
Quonset 

Farm 4 (F4) 3 0 0 0 3 0 0 0.15 0 3 0 Manual 
sides and  
2 fans 

50% only 
on 1 HT 
spring and 
summer 
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University 
Main 
Station 
(MS) 

2 2 0 0 0 0 0 None 0 2 0 Manual 
sides and 
open ends 

30% only 

School 1 
(S1) 

2 1 0 1 0 0 0 0.28 2 0 0 End doors 50% 

School 2 
(S2) 

1 0 0 1 0 0 0 0.30 1 0 0 End doors None 

School 3 
(S3) 

1 0 0 1 0 0 0 0.30 0 1 0 End doors None 

School 4 
(S4) 

1 0 0 1 0 0 0 0.30 0 1 0 End doors None 
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Table 8. Semi-structured interview questions. 
Semi-Structured Interview questions:  
1. Would you be interested in answering some questions about your experience growing in HT? 
2. When did you first purchase your HT? Did you continue to purchase HT over time? If so, what was you time frame? 
3. Why did you initially decide to invest in HT? 
4. How has investing in HT affected your profitability? 
5. Did you use NRCS’s hoop house program to help pay for the HT? 
6. Have HT paid off as an investment? 
7. How important are maintenance costs in maintaining the economic viability of HT? 
8. What crops have you grown in HT? Which crops have been successful?  Which haven’t? 
9. What management practices have you used in your hoop house? What has been successful? What hasn’t? 
10. Do HT play an important role in your ability to survive as a business? 
11. Would you recommend HT to other farmers? 
12. Why do you think HT help you extend the season and grow a wider variety of crops? 
13. Are there any downsides to growing in HT? 
14. What are your future plans for your HT? 
15. Will you invest more in the technology either through purchasing more HT or improving your current HT? 
16. What do you consider to be the most important advantage HT provide? Season extension? Ability to grow different 
crops? Other? 
17. Is there any other information you would like to share? 
18. Are there any questions that I missed that you feel are important to answer? 
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Fig. 2. Leaf area index of lettuce grown in June 2017. Shading shows the standard deviation across measurements. 
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Fig. 3. The 31-day moving average of maximum solar radiation at DFI. HTs were closed from November to February. Values 
are plotted against the center date. Shading shows the standard deviation across sensor. The outside plot had no replicate. The 
East/West high tunnel had replicates only for January through April due to sensor and high tunnel failures. 
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Fig. 4. The 31-day moving average of maximum wind at DFI. HTs were closed from November to February. Values are 
plotted against the center date. Shading shows the standard deviation across sensor. The outside plot had no replicate. The 
East/West high tunnel had replicates only for January through April due to sensor and high tunnel failures. 
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Fig. 5. The 31-day moving average of soil temperature at DFI. HTs were closed from November to February. Values are 
plotted against the center date. Shading shows the standard deviation across sensor. The outside plot had no replicate. The 
East/West high tunnel had replicates only for January through April due to sensor and high tunnel failures. 
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Fig. 6. The 31-day moving average of maximum air temperature at 1 m. Values are plotted against the center date. Two HTs 
with the same construction, similar crops and management were averaged together. Shading shows the standard deviation 
across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 7. The 31-day moving average of minimum air temperature at 16 cm. Values are plotted against the center date. Two HTs 
with the same construction, similar crops and management were averaged together. Shading shows the standard deviation 
across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 8. The 31-day moving average of differences between 1 m and 16 cm of maximum air temperature. Values are plotted 
against the center date. Two HTs with the same construction, similar crops and management were averaged together. Shading 
shows the standard deviation across HTs. DFI temperature data were collected with a different sensor in a different type of 
shielding, so they are not directly comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates 
when the orange line was covered by the HT, while dark tan indicates when the green line was covered by the HT. Dates of 
moves are approximate. Months with one asterisk indicate a statistical significance of 0.10, and months with two indicate a 
statistical significance of 0.05. See Table 7 for further details and a description of y-axis codes. 
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Fig. 9. The 31-day moving average of differences between 1 m and 16 cm of minimum air temperature. Values are plotted 
against the center date. Two HTs with the same construction, similar crops and management were averaged together. Shading 
shows the standard deviation across HTs. DFI temperature data were collected with a different sensor in a different type of 
shielding, so they are not directly comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates 
when the orange line was covered by the HT, while dark tan indicates when the green line was covered by the HT. Dates of 
moves are approximate. Months with one asterisk indicate a statistical significance of 0.10, and months with two indicate a 
statistical significance of 0.05. See Table 7 for further details and a description of y-axis codes.
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Fig. 10. Linear regression comparing observed monthly maximum temperature at 1 m to 
type, area, height and material. One asterisk indicates a statistical significance of 0.10, 
and two indicate a statistical significance of 0.05. 
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Fig. 11. Linear regression comparing monthly maximum temperature at 16 cm to type, 
area, height and material. One asterisk indicates a statistical significance of 0.10, and two 
indicate a statistical significance of 0.05. 
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Fig. 12. Linear regression comparing monthly minimum temperature at 1 m to type, area, 
height and material. One asterisk indicates a statistical significance of 0.10, and two 
indicate a statistical significance of 0.05. 
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Fig. 13. Linear regression comparing monthly minimum temperature at 16 cm to type, 
area, height and material. One asterisk indicates a statistical significance of 0.10, and two 
indicate a statistical significance of 0.05. 
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Fig. 14. The 31-day moving average of lettuce growing degree days. Values are plotted against the center date. Two HTs with 
the same construction, similar crops and management were averaged together. Shading shows the standard deviation across 
HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 15. The 31-day moving average of maximum vapor pressure at 1 m. Values are plotted against the center date. Two HTs 
with the same construction, similar crops and management were averaged together. Shading shows the standard deviation 
across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 16. The 31-day moving average of minimum vapor pressure at 1 m. Values are plotted against the center date. Two HTs 
with the same construction, similar crops and management were averaged together. Shading shows the standard deviation 
across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 17. Linear regression comparing monthly maximum vapor pressure at 1 m to type, 
area, height and material. One asterisk indicates a statistical significance of 0.10, and two 
indicate a statistical significance of 0.05. 
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Fig. 18. Linear regression comparing monthly maximum vapor pressure at 16 cm to type, 
area, height and material. One asterisk indicates a statistical significance of 0.10, and two 
indicate a statistical significance of 0.05. 
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Fig. 19. Linear regression comparing monthly minimum vapor pressure at 1 m to type, 
area, height and material. One asterisk indicates a statistical significance of 0.10, and two 
indicate a statistical significance of 0.05. 
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Fig. 20. Linear regression comparing monthly minimum vapor pressure at 16 cm to type, 
area, height and material. One asterisk indicates a statistical significance of 0.10, and two 
indicate a statistical significance of 0.05. 
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Fig. 21. The 31-day moving average of maximum vapor pressure deficit at 1 m. Values are plotted against the center date. Two 
HTs with the same construction, similar crops and management were averaged together. Shading shows the standard deviation 
across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 22. The 31-day moving average of minimum vapor pressure deficit at 1 m. Values are plotted against the center date. Two 
HTs with the same construction, similar crops and management were averaged together. Shading shows the standard deviation 
across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Appendix 

Table 1. Summary of data completeness for each HT. 
Location HT Type Start Date Data Gaps End Date Notes 

DFI 1 Large Gothic: 
East-West 2016/03/15 

2016/10/15: Artificial 
heating brought in for 
farm to table dinner 

2017/04/24  

DFI 2 Large Gothic: 
East-West 2017/01/04 None 2017/04/24 

Short record due to 
cover ripping off and 
weather station battery 
failed 

DFI 3 Large Gothic: 
North-South 2016/03/15 None 2017/04/24   

DFI 4 Large Gothic: 
North-South 2016/03/15 None 2017/04/24   

DFI Outside   2016/03/15 None 2017/04/24   
Farm 1 1 Small Gothic 2016/04/03 None 2016/06/06   

Farm 1 2 Mid-T 2016/04/03 None 2016/06/21 

Removed because 
cover removed shortly 
after sensors were 
installed 

Farm 1 3 Mid-T 2016/04/03 None 2016/06/21 

Removed because 
cover removed shortly 
after sensors were 
installed 

Farm 1 Outside 1   2016/04/03 None 2016/06/06   
Farm 1 4 Small Gothic 2017/03/08 None 2017/05/31   
Farm 1 5 Small Gothic 2017/03/08 None 2017/05/31   
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Farm 1 Outside 2   2017/03/08 None 2017/05/31   

Farm 1 6 Mid-T 2016/04/03 
2016/05/30 - 2016/12/01: 
Mid-Ts taken down and 
put back up 

2017/02/23  

Farm 1 Outside 3   2016/04/03 2016/05/30 - 2016/12/01 2017/02/23   

Farm 1 7 Mid-T 2016/04/03 
2016/05/03 - 2016/12/14: 
Mid-Ts taken down and 
put back up 

2017/02/23  

Farm 1 Outside 4   2016/04/03 2016/05/30 - 2016/12/14 2017/02/23   
Farm 2 2 Large Gothic 2016/04/04 None 2017/04/20   
Farm 2 2 Large Quonset 2016/04/04 None 2017/04/20   
Farm 2 Outside   2016/04/04 None 2017/04/20   
Farm 3 1 Large Quonset 2016/03/21 None 2017/04/20   

Farm 3 2 Large Quonset 2016/03/21 
2016/10/26 - 2016/10/31: 
Sensors temporarily 
removed for equipment 

2017/03/22  

Farm 3 3 Large Gothic 2016/03/21 None 2017/04/20 
Removed because 
cover ripped off for 
most of the record 

Farm 3 4 Large Gothic 2016/03/21 None 2017/04/20 
Removed because 
cover ripped off for 
most of the record 

Farm 3 Outside 1   2016/03/21 None 2017/04/20   

Farm 3 5 Caterpillar 2016/03/21 
One sensor at 1 m 
between 2016/06/10 - 
2016/06/27 

2017/03/22 

Sensors were 
sometimes temporarily 
moved inside to allow 
for equipment 

Farm 3 6 Caterpillar 2016/03/21  None 2017/03/22 

Sensors were 
sometimes temporarily 
moved inside to allow 
for equipment 
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Farm 3 7 Large Quonset 2016/03/21 None 2017/04/20 
Removed because 
cover ripped off for 
most of the record 

Farm 3 Outside 2   2016/03/21 
Sensor malfunction: 
humidity data starts 
2016/05/24 

2017/04/20  

Farm 4 1 Large Gothic 2016/03/23 
2016/07/17 - 2017/10/30: 
HTs taken down and put 
back up 

2017/03/31  

Farm 4 Outside 1   2016/03/23 2016/07/17 - 2017/10/30 2017/04/01   

Farm 4 2 Large Gothic 2016/03/23 
2016/07/17 - 2017/10/30: 
HTs taken down and put 
back up 

2017/04/02  

Farm 4 Outside 2   2016/03/23 2016/07/17 - 2017/10/30 2017/04/03   
Farm 4 3 Large Gothic 2016/03/23 None 2017/04/20 Tunnel moved 
University 
Main 
Station 

1 Caterpillar 2016/07/29 None 2016/10/29   

University 
Main 
Station 

2 Caterpillar 2016/07/29 None 2016/10/29   

University 
Main 
Station 

Outside   2016/07/29 None 2016/10/29   

School 1 1 Caterpillar 2016/04/01 None 2017/05/15   
School 1 2 Small Gothic 2016/04/01 None 2017/05/15   
School 1 Outside   2016/04/01 None 2017/05/15   

School 2 1 Small Gothic 2016/04/01 2017/01/31 - 2017/03/07:  2017/05/27 Extension agents 
downloaded data 

School 2 Outside   2016/04/01 2016/11/09 - 2016/11/17, 
2017/02/06 - 2017/03/11 2017/05/31 Extension agents 

downloaded data 
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School 3 1 Small Gothic 2016/04/01 2016/12/26 - 2017/01/05 2017/04/20 Extension agents 
downloaded data 

School 3 Outside   2016/04/01 2016/12/26 - 2017/01/05 2017/04/20 Extension agents 
downloaded data 

School 4 1 Small Gothic 2016/04/01 2016/12/26 - 2017/01/05 2017/04/20 Extension agents 
downloaded data 

School 4 Outside   2016/04/01 2016/10/04 - 2016/10/14 2017/04/20 Extension agents 
downloaded data 
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Table 2. Results comparing the Student t-test and the Wilcoxon test for temperature and GDDs because normality could not be confirmed 
due to small samples. Light grey indicates statistical significance of 0.10 and white indicates statistical significance of 0.05. 

  Temperature GDD 

Date Test 
Min  
1 m 

Min  
16 cm 

Max  
1 m 

Max 
 16 cm 

Diurnal  
1 m 

Diurnal  
16 cm 

Min  
1 m - 16 cm 

Max  
1 m - 16 cm 

Tomato  
1 m 

Lettuce  
16 cm 

Apr 
16 

wilcox 0.2773 0.0001 < 0.0001 0.1011 0.0001 0.1457 0.0007 0.1419 0.0011 0.4871 
t-test 0.3744 0.0013 0.0003 0.0710 0.0004 0.2053 0.0014 0.0633 0.0002 0.4307 

May 
16 

wilcox 0.5079 0.0006 < 0.0001 0.2766 < 0.0001 0.2766 0.0007 0.0007 0.0104 0.1672 
t-test 0.4565 0.0002 0.0003 0.1912 0.0004 0.5470 < 0.0001 0.0004 0.0154 0.0888 

Jun 
16 

wilcox 0.8404 0.1490 0.1288 0.7551 0.0060 0.2677 0.0007 0.0007 0.9340 0.1667 
t-test 0.9691 0.0348 0.0909 0.6870 0.0889 0.2689 0.0002 0.0019 0.9977 0.0754 

Jul 
16 

wilcox 0.6354 0.2619 0.4923 0.7143 0.4278 0.2619 0.0238 0.0952 0.5496 0.2619 
t-test 0.7042 0.3580 0.4815 0.2764 0.4432 0.0973 0.0005 0.0073 0.6504 0.3489 

Aug 
16 

wilcox 0.7732 0.2141 0.9018 0.1535 1.0000 0.0727 0.0081 0.0162 0.7031 0.2019 
t-test 0.7442 0.3527 0.9079 0.0784 0.8779 0.0847 0.0122 0.0148 0.6947 0.3216 

Sep 
16 

wilcox 0.9671 0.0727 0.1956 0.4606 0.2268 0.1535 0.0040 0.0162 0.7667 0.5697 
t-test 0.9552 0.0675 0.1079 0.3842 0.2329 0.1446 0.0036 0.0129 0.6412 0.1888 

Oct 
16 

wilcox 0.5249 0.0242 0.0365 0.6485 0.0782 0.4121 0.0121 0.0424 0.0436 0.3152 
t-test 0.6971 0.0078 0.0047 0.4356 0.0096 0.6012 0.0024 0.0173 0.2297 0.5458 

Nov 
16 

wilcox 0.0124 0.0016 < 0.0001 0.0016 0.0030 0.0451 0.0109 0.0109 0.0002 0.0016 
t-test 0.0434 0.0005 < 0.0001 0.0007 0.0004 0.0474 0.0049 0.0080 < 0.0001 < 0.0001 

Dec 
16 

wilcox 0.0031 0.0008 0.0007 0.0004 0.0031 0.0004 0.1274 0.0932 0.0012 0.0004 
t-test 0.0042 < 0.0001 < 0.0001 < 0.0001 0.0002 < 0.0001 0.2216 0.3509 < 0.0001 < 0.0001 

Jan 
17 

wilcox 0.0031 0.0001 0.0001 0.0001 0.0001 0.0001 0.0451 0.1274 0.0008 0.0007 
t-test 0.0036 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0307 0.2206 < 0.0001 < 0.0001 

Feb 
17 

wilcox 0.0825 0.0187 < 0.0001 0.0016 < 0.0001 0.0016 0.0016 0.0031 0.0002 0.0043 
t-test 0.2178 0.0031 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0164 0.0043 < 0.0001 < 0.0001 

Mar 
17 

wilcox 0.1388 0.0318 0.0001 0.0079 0.0001 0.0556 0.0079 0.0079 0.0006 0.0079 
t-test 0.2366 0.0088 < 0.0001 0.0040 0.0003 0.0923 0.0430 0.0009 < 0.0001 0.0004 
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Table 3. Results comparing the Student t-test and the Wilcoxon test for vapor pressure because normality could not be confirmed due to 
small samples. Light grey indicates statistical significance of 0.10 and white indicates statistical significance of 0.05. 

  Vapor Pressure 
Date Test Min 1 m Min 16 cm Max 1 m Max 16 cm Diurnal 1 m Diurnal 16 cm Min 1 m - 16 cm Max 1 m - 16 cm 
Apr 

16 
wilcox 0.0007 0.0001 < 0.0001 0.0003 < 0.0001 0.0009 0.0187 0.5237 

t-test < 0.0001 < 0.0001 < 0.0001 0.0001 0.0001 0.0004 0.0157 0.1765 
May 

16 
wilcox 0.0001 0.0025 < 0.0001 0.0016 < 0.0001 0.0016 0.1709 0.5237 

t-test 0.0001 0.0014 0.0003 0.0023 0.0005 0.0041 0.1011 0.6013 
Jun 

16 
wilcox 0.0012 0.0177 0.0002 0.0480 0.0003 0.1061 0.5303 0.8763 

t-test 0.0012 0.0120 0.0014 0.1192 0.0041 0.3318 0.4134 0.8927 
Jul 
16 

wilcox 0.0017 0.0476 0.0005 0.1667 0.0160 0.2619 0.7143 0.7143 
t-test 0.0035 0.0893 0.0006 0.1593 0.0125 0.2634 0.9821 0.7801 

Aug 
16 

wilcox 0.0098 0.0162 0.0037 0.2141 0.0358 0.4606 0.3677 0.8081 
t-test 0.0182 0.0740 0.0034 0.0868 0.0223 0.1503 0.2196 0.2865 

Sep 
16 

wilcox 0.0026 0.0081 0.0026 0.0283 0.0098 0.1535 0.4606 0.4606 
t-test 0.0004 0.0033 0.0025 0.0145 0.0070 0.0419 0.5463 0.3129 

Oct 
16 

wilcox 0.0273 0.0242 0.0048 0.2303 0.0103 0.3152 0.0727 0.0424 
t-test 0.0027 0.0072 0.0275 0.0656 0.0361 0.0870 0.0514 0.0872 

Nov 
16 

wilcox 0.0007 0.0016 < 0.0001 0.0016 0.0001 0.0062 0.1274 0.7242 
t-test 0.0003 0.0004 0.0010 0.0032 0.0016 0.0056 0.0961 0.4049 

Dec 
16 

wilcox 0.0001 0.0004 0.0001 0.0040 0.0001 0.0004 0.1709 0.6216 
t-test 0.0001 < 0.0001 0.0006 0.0001 0.0010 0.0001 0.1337 0.3903 

Jan 
17 

wilcox 0.0068 0.0001 0.0001 0.0001 0.0001 0.0001 0.7242 1.0000 
t-test 0.0013 0.0005 0.0006 0.0002 0.0006 0.0003 0.7233 0.4742 

Feb 
17 

wilcox 0.0022 0.0109 < 0.0001 0.0016 < 0.0001 0.0016 0.1274 0.6216 
t-test 0.0010 0.0061 0.0009 0.0062 0.0009 0.0070 0.1470 0.1433 

Mar 
17 

wilcox 0.0274 0.0079 0.0002 0.0079 0.0001 0.0079 0.0952 0.5476 
t-test 0.0087 0.0096 0.0098 0.0119 0.0122 0.0151 0.1557 0.2741 
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Table 4. Results comparing the Student t-test and the Wilcoxon test for VPD because normality could not be confirmed due to small 
samples.. Light grey indicates statistical significance of 0.10 and white indicates statistical significance of 0.05. 

  Vapor Pressure Deficit 
Date Test Min 1 m Min 16 cm Max 1 m Max 16 cm Diurnal 1 m Diurnal 16 cm Min 1 m - 16 cm Max 1 m - 16 cm 
Apr 

16 
wilcox 0.1569 0.6965 0.0073 0.9654 0.0030 0.9654 0.1709 0.1709 

t-test 0.0578 0.9549 0.0042 0.2074 0.0037 0.2011 0.2792 0.3589 
May 

16 
wilcox 0.0574 0.6058 0.0124 0.2766 0.0073 0.2766 0.1709 0.0016 

t-test 0.0795 0.4680 0.0107 0.3627 0.0090 0.3675 0.4646 0.0002 
Jun 

16 
wilcox 0.5448 0.4318 0.3511 0.7551 0.1774 0.7551 0.2677 0.0025 

t-test 0.3008 0.8224 0.2132 0.8593 0.1607 0.8391 0.6179 0.0001 
Jul 
16 

wilcox 0.2635 0.5476 0.8749 0.3810 0.8749 0.2619 0.0238 0.0476 
t-test 0.2811 0.9176 0.8630 0.2364 0.6599 0.1865 0.0224 0.0096 

Aug 
16 

wilcox 0.3845 0.6828 0.4320 0.0485 0.5358 0.0485 0.0727 0.0081 
t-test 0.3765 0.9977 0.5781 0.0454 0.7692 0.0503 0.1046 0.0275 

Sep 
16 

wilcox 0.1673 0.5697 0.7732 0.1535 0.9671 0.1535 0.0283 0.0040 
t-test 0.1484 0.9611 0.9141 0.0922 0.6449 0.0981 0.0745 0.0146 

Oct 
16 

wilcox 0.3011 0.9273 0.4043 0.7879 0.3502 0.7879 0.0242 0.0424 
t-test 0.2007 0.8326 0.0707 0.4291 0.0500 0.4302 0.0119 0.0283 

Nov 
16 

wilcox 0.4727 0.5237 0.0041 0.0295 0.0041 0.0295 0.3543 0.0031 
t-test 0.4753 0.3412 0.0028 0.1455 0.0025 0.1476 0.3131 0.0042 

Dec 
16 

wilcox 0.6009 0.9546 0.0012 0.0004 0.0020 0.0004 0.1709 0.6216 
t-test 0.8622 0.7870 0.0018 0.0001 0.0012 0.0001 0.4895 0.2141 

Jan 
17 

wilcox 0.3148 0.8125 0.0004 0.0001 0.0004 0.0001 0.0451 0.0109 
t-test 0.2454 0.8606 < 0.0001 < 0.0001 < 0.0001 < 0.0001 0.0463 0.0183 

Feb 
17 

wilcox 0.0473 0.5237 < 0.0001 0.0016 < 0.0001 0.0016 0.0295 0.0016 
t-test 0.0568 0.2593 < 0.0001 0.0039 < 0.0001 0.0032 0.1415 0.0002 

Mar 
17 

wilcox 0.0745 0.0556 0.0002 0.2222 0.0001 0.2222 0.6905 0.0079 
t-test 0.3304 0.0543 0.0001 0.4507 0.0001 0.4251 0.9799 0.0096 
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Fig. 1. Hourly average of solar radiation at DFI. Shading shows the standard deviation across sensor and day. Standard 
deviation has been truncated at zero. Winter is January, February and March. Fall is October, November and December. 
Summer is July, August and September. Spring is April, May and June. 
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Fig. 2. Hourly average of soil temperature at DFI. Values are plotted against the center date. Shading shows the standard 
deviation across sensor and day. Standard deviation has been truncated at zero. Winter is January, February and March. Fall is 
October, November and December. Summer is July, August and September. Spring is April, May and June. 
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Fig. 3. Hourly soil moisture at DFI. Shading shows the standard deviation across sensor. The outside plot had no replicate. The 
East/West high tunnel had replicates only for January through April due to sensor and high tunnel failures. 
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Fig. 4. The 31-day moving average of maximum air temperature at 16 cm. Values are plotted against the center date. Two HTs 
with the same construction, similar crops and management were averaged together. Shading shows the standard deviation 
across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 5. The 31-day moving average of minimum air temperature at 1 m. Values are plotted against the center date. Two HTs 
with the same construction, similar crops and management were averaged together. Shading shows the standard deviation 
across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 6. The 31-day moving average of diurnal air temperature at 1 m. Values are plotted against the center date. Two HTs with 
the same construction, similar crops and management were averaged together. Shading shows the standard deviation across 
HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 7. The 31-day moving average of diurnal air temperature at 16 cm. Values are plotted against the center date. Two HTs 
with the same construction, similar crops and management were averaged together. Shading shows the standard deviation 
across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 8.  Hourly average of air temperature at 1 m at DFI. Values are plotted against the center date. Shading shows the standard 
deviation across sensor and day. Standard deviation has been truncated at zero. Winter is January, February and March. Fall is 
October, November and December. Summer is July, August and September. Spring is April, May and June. 
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Fig. 9.  Hourly average of air temperature at 16 cm at DFI. Values are plotted against the center date. Shading shows the 
standard deviation across sensor and day. Standard deviation has been truncated at zero. Winter is January, February and 
March. Fall is October, November and December. Summer is July, August and September. Spring is April, May and June. 
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Fig. 10. The 31-day moving average of tomato growing degree days. Values are plotted against the center date. Two HTs with 
the same construction, similar crops and management were averaged together. Shading shows the standard deviation across 
HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
 



	

	

97	

 

 
Fig. 11. The 31-day moving average of maximum vapor pressure at 16 cm. Values are plotted against the center date. Two 
HTs with the same construction, similar crops and management were averaged together. Shading shows the standard deviation 
across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 12. The 31-day moving average of minimum vapor pressure at 16 cm. Values are plotted against the center date. Two HTs 
with the same construction, similar crops and management were averaged together. Shading shows the standard deviation 
across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 13. The 31-day moving average of diurnal vapor pressure at 1 m. Values are plotted against the center date. Two HTs with 
the same construction, similar crops and management were averaged together. Shading shows the standard deviation across 
HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 14. The 31-day moving average of diurnal vapor pressure at 16 cm. Values are plotted against the center date. Two HTs 
with the same construction, similar crops and management were averaged together. Shading shows the standard deviation 
across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 15. Hourly average of vapor pressure at 1 m at DFI. Values are plotted against the center date. Shading shows the standard 
deviation across sensor and day. Standard deviation has been truncated at zero. Winter is January, February and March. Fall is 
October, November and December. Summer is July, August and September. Spring is April, May and June. 
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Fig. 16. Hourly average of vapor pressure at 16 cm at DFI. Values are plotted against the center date. Shading shows the 
standard deviation across sensor and day. Standard deviation has been truncated at zero. Winter is January, February and 
March. Fall is October, November and December. Summer is July, August and September. Spring is April, May and June. 
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Fig. 17. The 31-day moving average of maximum vapor pressure deficit at 16 cm. Values are plotted against the center date. 
Two HTs with the same construction, similar crops and management were averaged together. Shading shows the standard 
deviation across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are 
not directly comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line 
was covered by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. 
Months with one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 
0.05. See Table 7 for further details and a description of y-axis codes. 
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Fig. 18. The 31-day moving average of minimum vapor pressure deficit at 16 cm. Values are plotted against the center date. 
Two HTs with the same construction, similar crops and management were averaged together. Shading shows the standard 
deviation across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are 
not directly comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line 
was covered by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. 
Months with one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 
0.05. See Table 7 for further details and a description of y-axis codes. 
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Fig. 19. The 31-day moving average of diurnal vapor pressure deficit at 1 m. Values are plotted against the center date. Two 
HTs with the same construction, similar crops and management were averaged together. Shading shows the standard deviation 
across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 20. The 31-day moving average of diurnal vapor pressure deficit at 16 cm. Values are plotted against the center date. Two 
HTs with the same construction, similar crops and management were averaged together. Shading shows the standard deviation 
across HTs. DFI temperature data were collected with a different sensor in a different type of shielding, so they are not directly 
comparable to other farms. Farm 4 HT moves are indicated by shading. Light tan indicates when the orange line was covered 
by the HT, while dark tan indicates when the green line was covered by the HT. Dates of moves are approximate. Months with 
one asterisk indicate a statistical significance of 0.10, and months with two indicate a statistical significance of 0.05. See Table 
7 for further details and a description of y-axis codes. 
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Fig. 21.  Hourly average of vapor pressure deficit at 1 m at DFI. Values are plotted against the center date. Shading shows the 
standard deviation across sensor and day. Standard deviation has been truncated at zero. Winter is January, February and 
March. Fall is October, November and December. Summer is July, August and September. Spring is April, May and June. 
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Fig. 22.  Hourly average of vapor pressure deficit at 16 cm at DFI. Values are plotted against the center date. Shading shows 
the standard deviation across sensor and day. Standard deviation has been truncated at zero. Winter is January, February and 
March. Fall is October, November and December. Summer is July, August and September. Spring is April, May and June. 
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