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Abstract
by Janelle Blankenburg

This thesis addresses the problem of task allocation for multi-robot systems that

perform tasks with complex, hierarchical representations which contain different types

of ordering constraints and multiple paths of execution. We propose a distributed

multi-robot control architecture that addresses the above challenges and makes the

following contributions: i) it allows for on-line, dynamic allocation of robots to various

steps of the task, ii) it ensures that the collaborative robot system will obey all of

the task constraints and iii) it allows for opportunistic, flexible task execution given

different environmental conditions. This architecture uses a distributed messaging

system to allow the robots to communicate. Each robot uses its own state and team

member states to keep track of the progress on a given task and identify which sub-

tasks to perform next using an activation spreading mechanism. We demonstrate

the proposed architecture on a team of two humanoid robots (a Baxter and a PR2)

performing hierarchical tasks.

jjblankenburg@nevada.unr.edu
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Chapter 1

Introduction

In this paper we propose a control architecture for collaborative multi-robot systems

[1], focusing on the problem of task allocation under hierarchical constraints imposed

on a joint task. Real-world tasks are not only a series of sequential steps, but typically

exhibit a combination of multiple types of constraints, with parts of the task that are

sequential, others that have no ordering constraints, and others that may allow for

alternative paths of execution. These tasks pose significant challenges even in the

single robot domain, as enumerating all the possible ways in which the task can

be performed can lead to very large representations and keeping track of the task

constraints during execution is not trivial. In previous work [2, 3] we developed an

architecture that provides a compact encoding of such tasks, and validated it in a

single robot domain.
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In this work, we extend the above architecture to address the problem of representing

and executing similarly structured tasks in a collaborative multi-robot setting. In

this setup the robots can work together, performing individual task steps in order to

accomplish the overall task. This poses a new set of challenges pertaining to task

allocation, as the robots need to decide on which step of the task to work on and in

what order, such that the overall constraints are obeyed, all the required steps are

executed, and no robots work on the same part of the task.

To address the above challenges we developed a distributed multi-robot control ar-

chitecture that makes several key contributions. First, the architecture allows for

on-line, dynamic allocation of robots to various steps of the task. This is achieved

through a distributed communication mechanism between the robots. Each robot

has its own individual copy of the joint task and each node in the task representation

communicates directly with its peer nodes on the other robots, sharing information

regarding its current state or progress, enabling the robots to know at all times

which subtasks are in progress or have been completed by other agents. Second,

our architecture ensures that the collaborative robot system will obey all of the task

constraints. For this, each robot uses its own state and team member states to keep

track of the progress on a given task and uses an activation spreading mechanism

to identify which sub-tasks to perform next, enforcing task constraints. Third, the

proposed architecture allows for opportunistic and flexible task execution given dif-

ferent environmental conditions. The activation spreading mechanism enables each

robot to select the task steps that are most relevant or easier to perform from its own
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perspective (e.g. objects that are closer are better than those that are farther away).

As our experimental results show, the robots choose to perform different steps given

different environmental setups for the same joint task, indicating that the robot team

can adapt to varying environmental conditions.

The remainder of the thesis is structured as follows: Chapter 2 presents related work,

Chapter 3 presents the technical details of our approach, and Chapter 4 shows the

results of our evaluation of the multi-robot architecture. Chapter 5 concludes our

paper and provides details of our ongoing and future work.

1.1 Summary

Real-world tasks are not only a series of sequential steps, but typically exhibit a

combination of multiple types of constraints. These tasks pose significant challenges,

as enumerating all the possible ways in which the task can be performed can lead to

large representations and it is difficult to keep track of the task constraints during

execution. Previously we developed an architecture that provides a compact encoding

of such tasks and validated it in a single robot domain. In this work, we extend

this architecture to address the problem of representing and executing tasks in a

collaborative multi-robot setting. Firstly, the architecture allows for on-line, dynamic

allocation of robots to various steps of the task. Secondly, our architecture ensures

that the collaborative robot system will obey all of the task constraints. Thirdly,
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the proposed architecture allows for opportunistic and flexible task execution given

different environmental conditions.



5

Chapter 2

Related Works

Multi-robot systems gained momentum in the 80’s and 90’s when a series of projects

were implemented successfully such as ACTRESS [4], ALLIANCE [5] and MUR-

DOCH [6]. These projects proposed the efficient use of multi-robot systems over a

single powerful robot. To date, a wide range of distributed approaches have been

developed for task allocation in multi-robot systems.

Several approaches fall under the category of behavior-based systems [7]. These ap-

proaches perform computations on internal representations in order to decide what

action to take. They consist of a collection of parallel, concurrently executing behav-

iors devoid of a centralized arbiter [8]. Our proposed architecture is such a behavior-

based system, relying on activation spreading and peer-behavior communication for

task allocation. Parker et al. [5] proposed one of the first behavior-based architec-

tures for the multi-robot task allocation problem called ALLIANCE and a related
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L-ALLIANCE architecture [9]. These approaches focus on fault tolerant and efficient

control. Werger [10] presented a distributed behavior based approach to the problem

of Cooperative Multi-Robot Observation of Multiple Moving Targets (CMOMMT).

The architecture used cross-inhibition and cross-subsumption between peer behav-

iors on each robot in order to determine allocation of robots to targets. Unlike these

approaches, our architecture incorporates various types of ordering constraints and

multiple paths of execution which allows for a more diverse application to multi-

robot collaboration tasks, such as building or manufacturing instead of navigation

type tasks as in these earlier approaches.

Other approaches focus on a market-based architecture for allocating tasks distribu-

tively. In these approaches, the team seeks to optimize an objective function based

upon individual robot utilities for performing particular tasks [11]. Gerkey et al.

[6] proposed a novel dynamic task allocation approach for a group of heterogeneous

robots utilizing a publish/subscribe messaging system to carry out auctions called

MURDOCH. Wang et al. [12] proposed a market-based task allocation algorithm

which utilizes a task evaluation function based on distance fitness and urgency.

Trigui et al. [13] proposed two auction-based distributed algorithms for task allo-

cation namely DMB and IDMB, and found that IDMB (extension of DMB) resulted

in nearly optimal solutions and produced an optimal solution in several cases. Unlike

these approaches, our approach does not use a complicated utility function or an

explicit auction system with a coordinator and bidders. Our hierarchical architecture
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uses activation-spreading based on distance to the robots’ grippers to identify which

tasks to complete.

Compared with the above approaches, our architecture focuses on tasks with signif-

icant constraints, allowing for both sequential and non-ordering constraints, as well

as multiple paths of execution to be present in the same task. Our proposed method

enables the team of robots to dynamically allocate robots to sub-tasks, while main-

taining all the required constraints.

2.1 Summary

To date, a wide range of distributed approaches have been developed for task allo-

cation in multi-robot systems. Many approaches fall under the category of behavior-

based systems [7]. These approaches perform computations on internal representa-

tions in order to decide what action to take. Unlike these approaches, our architecture

incorporates various types of ordering constraints and multiple paths of execution

which allows for a more diverse application to multi-robot collaboration tasks. Other

approaches focus on a market-based architecture for allocating tasks distributively in

which the team seeks to optimize an objective function based upon individual robot

utilities for performing particular tasks [11]. Unlike these approaches, our approach

does not use a complicated utility function or an explicit auction system with a co-

ordinator and bidders. We instead use an activation-spreading based on distance to
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the robots’ grippers to identify which tasks to complete. Compared with these types

of approaches, our architecture focuses on tasks with significant constraints, allowing

for both sequential and non ordering constraints, as well as multiple paths of exe-

cution to be present in the same task. Our proposed method enables the team of

robots to dynamically allocate robots to sub-tasks, while maintaining all the required

constraints.
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Chapter 3

Proposed Architecture

The proposed architecture uses a behavior-based paradigm [7], which allows com-

munication and connectivity between nodes in the architecture. This is built as an

extension of our single-robot architecture described in [2] and [3]. The representation

enables the system to encode tasks involving various types of constraints such as se-

quential, non-ordering, and alternative paths of execution. All of these constraints

can be incorporated into a single task representation such as that presented in Fig-

ure 3.1. In this example, the THEN nodes represent sequential constraints, the AND

represents non-ordering constraints, and the OR represents alternative paths of exe-

cution. The setup of this architecture on a single robot is defined in more detail in

Section 3.1. The extension of this architecture to the multi-robot domain is described

in Section 3.2.
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Figure 3.1: The full task structure of the tea-time task experiment. Both robots
have an identical copy of this task tree. The lighter purple nodes represent the goal
nodes of the task structure and the darker purple nodes represent the behavior

nodes.

3.1 Single Robot Architecture

The hierarchical control architecture for single-robot scenarios is described in detail

in [2]. Below we provide a brief description. To encode a task on a single robot we

define two types of nodes:

• Goal Nodes: These provide the base goal control behaviors of the hierarchical

task structure, and include the THEN, AND, and OR nodes that are used

internally in the tree to encode the task constraints:

– THEN: This is a n-ary node which is used to encode sequential constraints

(the left child must execute before the children to its right can execute).

– AND: This is a n-ary node which is used to encode non-ordering con-

straints (children can be executed in any order).
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– OR: This is a n-ary node which is used to encode alternative paths of

execution (only one of the children will be executed).

• Behavior Nodes: These are the leaf nodes in the task tree structure and

encode the physical behaviors that the robot can perform, e.g. a PickAnd-

Place(Cup) behavior will control the arm of the robot to pick up a cup from

the table in front of it and place it in another location.

In order to maintain communication and connectivity between the nodes in a task

tree, each node in our architecture maintains a state consisting of several components:

• Activation Level: a number provided by the node’s parent and represents the

priority placed on executing and finalizing a given node.

• Activation Potential: a number representing the node’s perceived efficiency,

which is sent to the parent of the node.

• Active: a boolean variable that is set to true when the node’s activation level

exceeds a predefined threshold, indicating that the behavior is ready to be

executed.

• Done: a boolean variable that is set to true when the node has completed its

required work.

The above state information is continuously maintained for each node and is used

to perform top-down and bottom-up activation spreading that ensures the proper
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execution of the task given the constraints. The architecture is designed using the

Robot Operating System (ROS) [14]. To execute a task, activation spreading messages

are sent from the root node of a task toward its children. These messages spread

the activation level throughout the task tree in a top-down manner. At the same

time, each node sends status messages, which encode a node’s current state, to its

parent node. These messages spread the activation potential throughout the tree in

a bottom-up fashion. The state of each node in the task structure is maintained via

an update loop which runs at each cycle. This loop performs a series of checks of the

node’s state and updates the various components of the state accordingly. The full

algorithm of the update loop is presented in [2]. We provide the algorithm for the

multi-robot domain in Algorithm 1 below.

3.2 Multi-Robot Architecture

To extend our single robot architecture to the multi-robot domain, several components

need to be added, as described below; these are extensions of the ideas proposed in

our previous work [3].

3.2.1 Task Representation for Multiple Robot Domain

In a multiple robot scenario, each robot has its own instance of the task tree structure,

identical to that of the other robots, which encodes the joint team task. Equivalent



13

nodes in the task structures across robots are called peers. These peers are the means

of communication between the robots and allow nodes to keep track of other robots’

progress on the task. While the task hierarchy is uniform across robots, the activation

potential and activation levels for each node are calculated individually by each robot.

In addition to the state components used in the single robot case above, the multi-

robot state of each node contains two new variables:

• peer_active: a boolean variable that is true when either the node is active or

the node’s peer is active.

• peer_done: a boolean variable that is true when either the node is done or

the node’s peer is done.

These additional state variables are required for collaboration between the robots

because they allow each robot to identify if the node is currently being worked on

or was already completed by another robot. This information is necessary to ensure

there is no overlap in the sub tasks that the robots perform. By identifying what tasks

are being worked on by its teammates and which tasks are already completed, each

robot is able to determine the next step it should perform based on the activation

spreading mechanism within its own task tree structure as well as its own state.
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3.2.2 Peer Message Passing for Robot Communication

In order to communicate across robots we use a distributed message passing sys-

tem called ZeroMQ [15], which opens a channel allowing messages to be passed be-

tween each set of peer nodes in a given task tree structure. Each node continuously

passes status messages to its peer nodes through the ZeroMQ interface. These status

messages contain the same encoding of a node’s state as the messages used in the

bottom-up activation spreading in the single robot case. The same encoding is used

here because the peer portions of the state variables are not needed as the peer nodes

receiving these messages already know their own states. By continuously passing this

information between nodes, all nodes in the tree are able to keep track of their peers’

progress and can use this data to update their own states accordingly.

3.2.3 Decision Making Process for Task Allocation

In order to decide which part of the task to work on, each robot runs a state update

loop that is performed on every node in its task tree.

The details of this update loop are shown in Algorithm 1. This process is responsible

for ensuring that the nodes are activated in a way that obeys all of the task constraints

encoded by the architecture and that the robots do not choose to work on the same

part of the task. In order to start the task execution, a positive activation level

is passed externally to the root of each robots’ task tree. Once this happens, the
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Algorithm 1 Update Loop
1: if done == FALSE then
2: if active == TRUE then
3: if Precondition() == TRUE then
4: Activate()
5: else
6: SpreadActivation()
7: end if
8: ActivationFalloff() // decays by α ∗ activation_level
9: end if

10: end if

activation spreading mechanism described in the single robot case propagates this

activation to the rest of the nodes. As the activation spreads from the root of the

task tree, the activation levels of the top node in each task tree will rise above a

given threshold, which causes it to be set to active. This allows the node’s state to

pass the done and active checks (lines 1, 2) of this loop and follow the remaining

logic of the algorithm to determine which node to activate next in each tree. As the

loop runs, if any nodes are already active or done, the update loop will not activate

them again. This ensures that nodes that have executed already will not receive

repeated activation and will only be performed once. Once a node is active, it checks

the preconditions of the node. Preconditions are the set of conditions that must be

completed prior to a node beginning its work. These conditions ensure that work

is only started after all the required task constraints on a node are satisfied. If the

preconditions are met we run the Activate function. If the preconditions are not met

we spread activation across the other nodes in the calling node’s own task tree in the

same manner as the single robot case. At the end of the loop, the activation falloff

function will lower the activation level of the current node to ensure that nodes that
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are not currently being considered for work are less likely to be performed next than

nodes that are currently being given attention by the control architecture.

Algorithm 2 Activate
1: if peer_check_thread == FALSE then
2: check_peer = TRUE
3: peer_check_thread = new boost thread
4: peer_check_thread → detach
5: else if check_peer == FALSE then
6: peer_check_thread → interrupt
7: peer_check_thread = NULL
8: end if
9: if peer_okay == TRUE then

10: if active == FALSE
AND done == FALSE then

11: if ActivationPrecondition() == TRUE then
12: lock(work_mutex)
13: active = TRUE
14: PublishStateToPeers()
15: end if
16: end if
17: peer_okay = FALSE
18: end if

The Activate function is described in Algorithm 2. This function uses the Peer

Check Thread to check the status of the calling node’s peers. This thread runs asyn-

chronously from the Activate function. Upon completion, the thread sets a condition

variable check_peer to false so that the next call to the Activate function will know

to stop the current thread (lines 5-7). If the thread no longer exists, the Activate

function launches a new thread in order to restart the check of the peers’ states (lines

1-4). During the peer checking, the check peer thread updates the peer_okay state

variable accordingly. If it was determined that the peers of the calling node are in

an acceptable state (i.e. not active and not done), the Activate function then begins
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checking the state components of the calling node’s own state, i.e. active and done.

If the node is neither active nor done, and the preconditions of the node are met,

the Activate function locks the work mutex, sets the node to active, and publishes

this updated state to its peers via the ZeroMQ channels described above. The work

mutex ensures that only one node of the task tree is working at a time. Lastly, this

function sets peer_okay to false so the peer check thread can update this as it sees

fit on the next call to this function.

Algorithm 3 Peer Check Thread
1: lock(node → peer_mutex)
2: // wait to check peer′s status until asked
3: while check_peer == FALSE do
4: node → cv.wait(lock)
5: end while
6: PublishStateToPeers()
7: sleep one loop
8: for each peer do
9: if peer_done == TRUE then

10: peer_okay = FALSE
11: else if peer_active == TRUE then
12: lower activation level
13: peer_okay = FALSE
14: else if peer_active == FALSE

AND peer_done == FALSE then
15: peer_okay = TRUE
16: end if
17: end for
18: check_peer = FALSE

The Peer Check Thread function is described in Algorithm 3. This function checks

the peer components of the calling node’s state to ensure the work being done by the

peers does not overlap with the work being done by the calling node. The thread uses

the lock on the peer mutex to force this thread to wait until the Activate function
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is ready to check the status of the node’s peers. At this time, check_peer gets set

to true and the thread begins the checking procedures. The thread first publishes

the node’s state to its peers via ZeroMQ. This ensures that the peers have the most

recent state of the current node so they can update themselves accordingly during

their own checks. The thread then sleeps for one cycle of the update loop. During

this time, the peers send their own current states to the calling node via ZeroMQ.

After one loop, the calling node will have received updated states from all of its

peers, which it uses to set the peer_okay variable. The thread iterates through the

list of the node’s peers and sets peer_okay accordingly. If any of the peers are done

or already active, peer_okay is set to false. This means that one of the peers has

already completed this part of the task or is currently working on it, so the calling

node cannot work on this part. In addition if peer_active is true, we want to deter

the robot from working on other nodes in this portion of the task tree by lowering the

node’s activation level. Since some other robot is already working in this area in this

case, working in a different area is less likely to result in work being paused due to

sequential constraints. If the peer is not active nor done, then the calling node is able

to begin work on this node and thus check_peer is set to true. Lastly, the thread sets

check_peer to false. In this way the next call to the Activate function will know that

the thread has finished its checks, has updated peer_okay accordingly, and is ready

to be stopped and relaunched.

Together, the above three algorithms maintain and communicate the states of all of

the nodes to their corresponding peer nodes on the other robots in order to ensure
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that the robots can work collaboratively to complete the task in a manner that follows

its constraints.

3.3 Summary

In Chapter 3 we presented our proposed distributed multi-robot architecture. This is

built as an extension of our single-robot architecture described in [2] and [3]. We first

presented the necessary concepts from our single-robot architecture in Section 3.1.

We then described our extension of this architecture to the multi-robot domain in

Section 3.2.

In a multiple robot scenario, each robot has its own instance of the task tree structure,

identical to that of the other robots, which encodes the joint team task. An example

task tree structure is shown in Figure 3.1. Equivalent nodes in the task structures

across robots are called peers. These peers are the means of communication between

the robots and allow nodes to keep track of other robots’ progress on the task. While

the task hierarchy is uniform across robots, the activation potential and activation

levels for each node are calculated individually by each robot. Our decision making

process for performing the task allocation was presented through three functions:

Update Loop, Activate, and Peer Check Thread.

The Update Loop function is responsible for ensuring that the nodes are activated in

a way that obeys all of the task constraints encoded by the architecture and that the
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robots do not choose to work on the same part of the task. The Activate function uses

the robots‘ state variables in order to determine whether or not to allow a given node

to activate. When a node is activated, the robot will begin performing the node’s

corresponding tasks and update its state variables to reflect this. The Peer Check

Thread function checks the peer components of the calling node’s state to ensure the

work being done by the peers does not overlap with the work being done by the calling

node.

Together, the three algorithms maintain and communicate the states of all of the

nodes to their corresponding peer nodes on the other robots in order to ensure that

the robots can work collaboratively to complete the task in a manner that follows its

constraints.



21

Chapter 4

Experimental Evaluation

In order to verify and demonstrate our multi-robot hierarchical control architecture

we implemented it on a PR2 robot and a Baxter robot to jointly perform a task that

exhibits all the constraints (sequential - THEN, non-ordering - AND, and alternative

paths - OR), using PickAndPlace behaviors as a basic behavior. The implementa-

tion of the PickAndPlace behaviors and their integration with our architecture are

described below in Section 4.1. The experiments used to evaluate the architecture

are discussed in Section 4.2.
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4.1 Robot Implementation

4.1.1 Pick and Place

In order to validate our architecture, we implemented a pick and place system which

converts the activation of the PickAndPlace behavior nodes in our task structure to

physical actions on the robots, allowing them to grasp and place various objects at

desired locations. To get the robots to move to the correct position of the objects in a

given task, we pass commands to the robots via MoveIt [16] through its interface with

the Robot Operating System (ROS) [14]. The PickAndPlace behavior is implemented

in such a way that when the task structure activates a PickAndPlace behavior node, it

will move to the corresponding object, pick it up, and place it at another location. For

the purpose of the pick and place movement, the right arm on each robot was used.

The full picking and placing movement is the required work that must be completed

in order for the PickAndPlace node to be marked as done. The architecture waits

until the place command has finished before it activates another node, since only one

node per robot can be doing work at any given time.

In our implementation, between the pick and place parts of the PickAndPlace behavior

the gripper returns to a location that has a small offset above and to the right of the

pick/place location of the object the robot is trying to grasp. This allows a human

watching the task to infer which object the robot is reaching for. In addition, this

allows us to incorporate the distance between the robot’s gripper and each object
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into the activation potential to make the robot more likely to pick up objects closer

to its current position, thereby making the overall pick and place task more efficient.

In order to identify the objects to be grasped in our current setup, we use predefined

locations and orientations for the objects for the Baxter. On the PR2, the orientations

are predefined, but the locations for the PR2 are received through the robot’s vision

system. For each object, a ROS service call is made to the vision system. This

service call returns the location of the calling object, which is then used for the

picking location as well as the activation potential calculation.

4.1.2 Vision System

The vision system is used to obtain the 3D location of the objects for the PR2. It

utilizes the Kinect V1 camera on the PR2’s head. The setup of this camera on the

PR2 can be seen in Figure 4.1. The Kinect has a range of 0.8-4.0 meters and provides

both depth information and RGB video. The vision system captures video streams

from the Kinect to get both depth and RGB data. The system performs object

detection by using a Mixture of Gaussian [17] background subtraction technique on

the depth plane of the data. During this processing, the scene is assumed to be static.

Morphological opening followed by morphological closing [18] clean the foreground

map, removing small noisy areas. Separate foreground regions are assigned different

labels by computing connected components. Features of the intensity plane obtained

from the camera’s RGB stream are used to detect objects. For each object in a given



24

Figure 4.1: The setup of the Kinect camera mounted on the PR2’s head used for
the vision system.

task, a Histogram of Oriented Gradients (HOG) [19] is used to describe the object’s

shape, while a normalized color histogram of the object describes its color content.

A Support Vector Machine (SVM) [20] is then used to classify the detected objects

based on their extracted features. Figure 4.2 shows an example of a set of objects

being detected and recognized using the vision system. Here, the 3D point cloud

from the Kinect is used to compute the 3D location of each object’s centroid, which

is then passed as the picking location of the object as a response to the ROS service

call from the pick and place portion. The integration of the vision system with the

task architecture on the Baxter robot is currently in progress.
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Figure 4.2: An example detection and recognition by the vision part using the
Kinect camera on the PR2.

4.2 Validation Experiments

We demonstrate our multi-robot control architecture with two sets of tasks designed to

illustrate the key contributions of the architecture: dynamic task allocation, obeying

of task constraints by the robot team, and opportunistic, flexible execution in different

environmental conditions. The first set of tasks are meant to validate the correctness

of each of the goal nodes individually. The second set illustrates that these goal nodes

can be combined together to encode a complicated joint task. These experiments were

run on a Baxter and a PR2 facing each other with a table and a set of objects in

between them. The first set of tasks are shown in Figures 4.3, 4.4, and 4.5. The

second set of tasks are shown in Figures 4.6, 4.7, and 4.8.
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Figure 4.3: A view of the first scenario of the simple behavior experiments.
The PR2’s gripper is closest to Lettuce, whereas the Baxter’s gripper is closest to
Left_Bread. The objects are set with Left_Bread and Meat closest to the Baxter

and Lettuce and Right_Bread closest to the PR2.

4.2.1 Simple Behavior Experiments

The first set of experiments consists of three different tests, one for each base goal

node. The task encodings for these tests were:

• (THEN PickAndPlace(Left_Bread) PickAndPlace(Meat)

PickAndPlace(Lettuce) PickAndPlace(Right_Bread))

• (AND PickAndPlace(Left_Bread) PickAndPlace(Meat)

PickAndPlace(Lettuce) PickAndPlace(Right_Bread))
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Figure 4.4: A view of the second scenario of the simple behavior experiments.
The PR2’s gripper is closest to Left_Bread, whereas the Baxter’s gripper is closest
to Lettuce. The objects are set with Lettuce and Right_Bread closest to the Baxter

and Left_Bread and Meat closest to the PR2.

• (OR PickAndPlace(Left_Bread) PickAndPlace(Meat)

PickAndPlace(Lettuce) PickAndPlace(Right_Bread)).

For each test case we set the four different objects from a children’s toy set (Left_Bread,

Meat, Lettuce, and Right_Bread) on the table in between the robots to be picked and

placed to a goal location. We chose these four objects because they can be easily

grasped by both robots. The two bread slices were encoded to be Left or Right with

respect to their position from the PR2’s viewpoint in order to ensure the same slice
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Figure 4.5: A view of the third scenario of the simple behavior experiments.
The PR2’s gripper is closest to Meat, whereas the Baxter’s gripper is closest to
Left_Bread. The objects are set with all objects in a row in the center of the table.

of bread corresponds to the same node in the task tree architecture which is mirrored

across the robots. We tested each goal node task in three different setups, varying the

locations for each setup. The view of each setup is shown in Figures 4.3-4.5. In sce-

nario 1, Left_Bread and Meat were close to the Baxter and Lettuce and Right_Bread

were close to the PR2. Scenario 2 swapped the locations so that Left_Bread and

Meat were closer to the PR2 and Lettuce and Right_Bread were closer to the Baxter.

Lastly, scenario 3 had all four objects lined up in a row along the center of the table.

For scenarios 1 and 2, the place locations were in between and slightly in front of the
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Table 4.1: The results of the simple node experiments. The rows are the scenario
numbers and the columns are the goal node type. Within a cell, each row corre-
sponds to one iteration of pick and place on the robots. For example, in the cell for
AND in scenario 1, we see from the first row that the Baxter grabbed Left_Bread
while the PR2 was grabbing Lettuce. The second row then illustrates that the
Baxter grabbed Meat while the PR2 was grabbing Right_Bread. The movements
vary across cells due to the different constraints of each goal node and the different

environmental conditions of each scenario.

THEN AND OR

1

Baxter:Left_Bread, Baxter:Left_Bread, PR2:Lettuce, Baxter:Left_Bread
Baxter:Meat, Baxter:Meat, PR2:Right_Bread
PR2:Lettuce,

PR2:Right_Bread,

2

PR2:Left_Bread, Baxter:Lettuce, PR2:Left_Bread, Baxter:Lettuce
PR2:Meat, Baxter:Right_Bread, PR2:Meat

Baxter:Lettuce,
Baxter:Right_Bread,

3

Baxter:Left_Bread, Baxter:Left_Bread, PR2:Meat, PR2:Meat
PR2:Meat, Baxter:Lettuce, PR2:Right_Bread

Baxter:Lettuce,
PR2:Right_Bread,

two objects closest to each robot. For scenario 3, the place locations were between

and slightly behind the two objects on each robot’s right side. These place locations

are important due to the fact that the activation spreading mechanism uses the dis-

tance from the right gripper of the robot to determine which object to pick next.

These different scenarios illustrate that the paths through the task tree generated by

the architecture in each case follow the constraints of the respective goal nodes in

different environmental conditions.
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Figure 4.6: A view of the first tea-time task scenario. The objects related to the
sandwich-making are positioned closest to the Baxter and the objects related to

the tea-making are closest to the PR2.

4.2.2 Simple Behavior Results

The resulting order of execution of the behavior nodes in each scenario for each goal

node task are displayed in Table 4.1. The rows are the scenario numbers and the

columns are the goal node type. The cells indicate the order in which the four objects

were picked up along with which robot picked them up. Each line in a cell represents

the object(s) picked up during one iteration of pick and place on either robot.

For the THEN trials, only one object was picked up at a time by either robot which

required four iterations of pick and place to finish. For each of these scenarios we
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Figure 4.7: A view of the second tea-time task scenario. The objects related to
the sandwich-making in addition to Tea are positioned closest to the Baxter. The

Cup and Sugar are closest to the PR2.

see that the objects get picked in the same sequential order, but by different robots

depending on their distances from the robots’ right grippers. In these trials, only one

robot is picking an object at a given time due to the sequential constraints of the

THEN. In scenario 1, the Baxter picks the first two objects and then the PR2 picks

the second two. These tasks are swapped in scenario 2. In scenario 3, we see that

the Baxter and PR2 take turns picking the objects. This shows that the sequential

constraints of the THEN node hold irrespective of the object placements.

For the AND trials, both robots were able to grasp objects simultaneously and thus

these only required two iterations of pick and place to finish. For these tasks we see
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Figure 4.8: A view of the third tea-time task scenario. The objects related to the
tea-making and sandwich-making are split between the Baxter and PR2.

that the objects are not necessarily picked up in sequential order, since the AND

does not encode ordering constraints. Instead, the robots simultaneously pick up

the objects closest to their right grippers first, and then move on to the next closest

objects. Since there are no ordering constraints, the robots are able to pick objects

at the same time.

The OR trials only selected one object and so they required one iteration. The

scenarios for the OR node only pick the object closest to either of the robots’ right

grippers, since only one child needs to be performed for the OR node’s constraints

to be satisfied. Since different locations correspond to different objects being picked,
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Figure 4.9: The timing diagrams of the first tea-time task scenario on the PR2
and the Baxter. The top image is the timing diagram for the Baxter and the
bottom image is the timing diagram for the PR2. These diagrams represent the
times at which the state of a node in a given task tree changed. Within each graph,
each row corresponds to a behavior node named as its corresponding object. The

horizontal axis is increasing time.
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Figure 4.10: The timing diagrams of the second tea-time task scenario on the
PR2 and the Baxter. The top image is the timing diagram for the Baxter and the
bottom image is the timing diagram for the PR2. These diagrams represent the
times at which the state of a node in a given task tree changed. Within each graph,
each row corresponds to a behavior node named as its corresponding object. The

horizontal axis is increasing time.
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Figure 4.11: The timing diagrams of the third tea-time task scenario on the
PR2 and the Baxter. The top image is the timing diagram for the Baxter and the
bottom image is the timing diagram for the PR2. These diagrams represent the
times at which the state of a node in a given task tree changed. Within each graph,
each row corresponds to a behavior node named as its corresponding object. The

horizontal axis is increasing time.
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we see that the multiple paths of execution through things along an OR node are

constrained correctly.

Since each scenario placed the objects in different locations and each node type en-

codes different ordering constraints, we see that the tasks were completed in different

orders and with a different number of iterations of pick and place. The above test

cases show that the robots are able to collaboratively complete a given task, allocating

sub-tasks according to the current environmental conditions.

4.2.3 Complex Tea-Time Experiments

The second set of experiments consisted of an encoding of a complex task structure,

which we call tea-time. The task structure for this experiment is shown in Figure

3.1. This structure consists of two main tasks: sandwich-making and tea-making.

Each task is made up of several sub-tasks. The tea-making task corresponds to the

left branch off the topmost AND node in the task tree. The sandwich-making task

corresponds to the right branch of the topmost AND node. We ran three scenarios

of this task structure with the objects in different locations. This illustrates that the

control architecture can determine different paths through the same task tree based

on the locations of the objects and their corresponding constraints in the architecture.

The setups for the three experiments are shown in Figures 4.6-4.8. For each scenario,

the placing position of the objects for the tea task are to the PR2’s right (the Baxter’s
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left) and the placing locations of the objects for the sandwich are to the PR2’s left

(the Baxter’s right).

4.2.4 Complex Tea-Time Results

The complex tea-time experiment was demonstrated on three different scenarios, each

with different initial object locations. The timing diagrams illustrating the change of

state of each node in the task structure for both robots are shown in Figures 4.9-4.11.

The different color bars in the figure represent the times during which a particular

behavior node is in one of the following states: inactive, active, running or done.

The intervals corresponding to the running state identify when a given PickAndPlace

behavior is being executed and are thus indicative of the order in which various

sub tasks have been performed. In the timing diagrams, there is a small difference

between the time in which a node gets set to active on one robot and the time it gets

set to active on the other. This timing difference is due to the structure of the Peer

Check Thread which waits one full loop to ensure that the peer’s states are able to

get updated before the node checks the status of these states.

We see from scenario 1 that the robots worked on the nodes corresponding to the

task with the objects closest to them; the PR2 worked on the tea task and the

Baxter worked on the sandwich. This illustrates that multiple robots are able to

collaborate on an overall task by completing the different main sub tasks of that

task. In scenario 2 we see that the Baxter completes the sandwich task and one part
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of the tea task. In scenario 3 we see that the Baxter and the PR2 both perform one

portion of the opposite robot’s main sub task (i.e. the Baxter grabs Tea and the PR2

grabs Lettuce). These two scenarios demonstrate that the architecture allows multiple

robots to share the sub tasks to varying degrees in order to complete the overall task,

thereby highlighting the extent to which collaboration is possible in the proposed

multi-robot control architecture. These diagrams show that the architecture adheres

to all the constraints while performing the joint task allocation between the robots

regardless of object locations.

4.3 Summary

In order to verify and demonstrate our multi-robot hierarchical control architecture

we implemented it on a Baxter robot and a PR2 robot to jointly perform a task that

exhibits all the constraints (sequential - THEN, non-ordering - AND, and alternative

paths - OR) using PickAndPlace behaviors.

In order to validate our architecture we implemented a pick and place system which

converts the activation of the PickAndPlace behavior nodes in our task structure to

physical actions on the robots, allowing them to grasp and place various objects at

desired locations. To identify the objects to be grasped, our current set up uses

predefined locations and orientations for the objects for the Baxter. On the PR2, the
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orientations are predefined but the locations are received through ROS service calls

to the robot’s vision system.

We demonstrate our multi-robot control architecture with two sets of tasks designed to

illustrate the key contributions of the architecture: dynamic task allocation, obeying

of task constraints by the robot team, and opportunistic, flexible execution in different

environmental conditions. The first set of tasks are meant to validate the correctness

of each of the goal nodes individually. Each scenario in this set placed the objects in

different locations. These scenarios show that the robots are able to collaboratively

complete a given task, allocating sub-tasks according to the current environmental

conditions. The second set illustrates that the goal nodes can be combined together

to encode a complicated joint task. We present timing diagrams for each scenario in

this set which illustrate the change of state of each node in the task structure for both

robots. These diagrams show that the architecture adheres to all the constraints while

performing the joint task allocation between the robots regardless of object locations.
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Chapter 5

Conclusion & Future Work

5.1 Conclusion

This work proposes a distributed control architecture for multi-robot systems that

perform tasks with complex, hierarchical representations, which contain different

types of ordering constraints and multiple paths of execution. The architecture pro-

vides several key contributions. First, it allows the robots to dynamically decide on

which part of the joint task to work on. For this, the architecture uses a distributed

message passing system for communication between the robots. Each robot has a

task tree encoding of the given task and communicates with its teammates as well

as within other parts of its own task tree to identify which parts of the task are cur-

rently being performed as well as those that have already been completed. Second,
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the control architecture allocates tasks in such a way that the robots, working to-

gether to complete the overall task, adhere to all task constraints. These constraints

can be sequential, non-ordering, or require alternative paths of execution. Third, as

shown by our experimental evaluation, the architecture allows for opportunistic task

execution on joint tasks given different environmental conditions. We demonstrated

the performance of our collaborative control architecture on two sets of experiments

using a Baxter robot and a PR2 robot, performing tasks that contain individual as

well as combinations of all of the above mentioned constraints.

5.2 Future Work

In order to further demonstrate the capabilities of this architecture there are sev-

eral implementation aspects that we are currently pursuing. First, we are currently

working on integrating the vision system with the architecture on the Baxter robot.

We are also exploring incorporating collision avoidance on the Baxter and PR2 in our

motion planning for the PickAndPlace behaviors. This will allow the robots to choose

objects much closer to each other. In turn, having the capability for the robots to

maneuver in close proximity to each other opens the door for more explicitly collab-

orative tasks such as hand-offs between robots. One idea for the hand-off behavior

that we are currently investigating is a bucket-brigade task. This task will require

stricter timing constraints of sub-tasks, collaboration between the robots to complete

the task, and have actions which can be completed by one robot, but not another.
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