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Abstract 

The Nevada Rural Ozone Initiative (NVROI) was a project undertaken to 

understand the spatial and temporal trends of atmospheric ozone (O3) concentrations and 

to identify sources of O3 to rural Nevada. Concentrations at multiple NVROI locations 

were observed to approach or exceed the current National Ambient Air Quality Standard 

(NAAQS) for O3 of 70 ppbv. A need for additional measurements, such as lead isotopes, 

to aid in identifying the sources of regional and global air masses intercepted in rural 

Nevada, was identified by the initial findings of the NVROI. To address this need, a 

method was developed using a Teledyne Advanced Pollution Instrumentation model 602 

BetaPlus particulate monitor, to quantify particulate matter < 2.5 µm in aerodynamic 

diameter (PM2.5), on two filter materials that allowed for post-processing of the filter 

samples for reactive mercury concentrations and lead isotopic ratios. A suite of 

measurements, including criteria air pollutants, meteorological data, aerosol optical 

properties, data collected from monitoring agencies, and statistical and back trajectory 

analyses were also used. 

Measurements of reactive mercury indicated that the filters were useful for 

understanding trends in atmospheric concentrations, but that more research on surface 

chemistry is needed. Analysis of the lead isotopic data and the results of the statistical 

and back trajectory analyses indicated that trans-Pacific input of atmospheric pollutants 

occurred spring through fall of both sample years (2014 and 2015) and was a major 

source of atmospheric pollutants to Nevada. Reactive mercury was likely removed from 

air masses due to deposition or conversion to elemental mercury before reaching the 

sample sites and formation was facilitated by regional sources of oxidants. Other sources 
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of atmospheric pollutants to Nevada included local and regional urban centers, regional 

and global wildfires, and subsidence of pollutants aloft. Anomalous particles observed at 

one high elevation sample site were attributed to corrosion of the sample line tubing 

during prolonged, high wind events. This research developed a novel method for tracing 

sources of pollution to aid in understanding the sources, source regions, and physical 

processes affecting air pollution in the complex terrain of Nevada, USA. 
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Chapter 1 

Introduction 

1. General overview 

Air quality is affected by local, regional, and global gas and particulate emissions 

originating from anthropogenic, biogenic, and natural sources. Air quality degradation 

can negatively affect human and ecosystem health as well as visibility. Under the United 

States Environmental Protection Agency (U.S. EPA), states are required to monitor six 

criteria air pollutants that cause damage to public health and the environment: carbon 

monoxide (CO), lead (Pb), nitrogen dioxide (NO2), ozone (O3), particulate matter (PM; 

PM2.5 and PM10), and sulfur dioxide (SO2). The Office of Air Quality Planning and 

Standards (OAQPS) of the U.S. EPA sets National Ambient Air Quality Standards 

(NAAQS) for the six criteria air pollutants. These include primary standards meant to 

protect public health, and secondary standards meant to protect public welfare, including 

animals, crops, vegetation, and built structures 

The 1990-amended Clean Air Act requires a network of air monitoring stations in 

every state using criteria set by the OAQPS. These stations are called the State and Local 

Air Monitoring Stations (SLAMS) and report an annual summary of monitoring results to 

the OAQPS. Certain methods, when operated as directed by the manual with quality 

assurance procedures, are designated by the U.S. EPA as Federal Reference Methods 

(FRM) or Federal Equivalent Methods (FEM). These methods, for measuring ambient 

concentrations of the criteria pollutants, are acceptable for use in state or local air quality 

monitoring systems (U.S. EPA, 2014). 
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Although air quality is generally monitored in areas of high population density, 

there are networks focused on measuring air pollution in non-urban areas. The Clean Air 

Act also requires that visibility in Class I areas be protected and improved. The 

Interagency Monitoring of PROtected Visual Environments (IMPROVE) network was 

started in 1985 to track changes in visibility. Class I areas include national parks and 

wilderness areas, and monitoring involves taking pictures of haze events and measuring 

extinction, concentration, and chemical composition of fine PM. There are three 

IMPROVE sites operating in Nevada: in the west at the Walker River Paiute Tribe site, in 

the east at Great Basin National Park, and in the north east corner in the Jarbidge 

Wilderness Area. 

The Clean Air Status and Trends Network (CASTNET), started in 1991, is a long-

term, national, air quality monitoring network that measures air pollutants in order to 

understand trends in air quality, atmospheric deposition, and ecological effects, to aid in 

evaluating the effectiveness of pollution control programs. There are more than 85 

regional sites throughout the United States and Canada, located in areas with little 

influence from urban centers. All O3 monitors in the network were brought into 

compliance with the Code of Federal Regulations (40 CFR) in 2011, and can therefore be 

used to determine if an area meets the NAAQS. There are two CASTNET sites in Nevada 

located in Great Basin National Park and in the Jarbidge Wilderness area. 

If a geographic area consistently exceeds the NAAQS or causes another area to 

exceed the standards, it is considered a nonattainment area. Under the good neighbor 

provision of the Clean Air Act, if a neighboring state contributes >1% of the relevant 

NAAQS to a downwind site it is considered out of attainment (U.S. EPA, 2017d). These 
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areas must then develop a State Implementation Plan (SIP) as required under the 

amended Clean Air Act that outlines how the state will attain and maintain the standard 

(US EPA, 2013). 

Development of the SIPs require considerable time and money, and can be 

significant burdens for states. If the state determines that a high concentration event of 

one of the six criteria pollutants is an exceptional event, it can be exempt from the SIP. 

An exceptional event is defined as an unusual or naturally occurring event that affects air 

quality, but is not reasonably controllable using current techniques for attaining the 

NAAQS (U.S. EPA, 2012a). In order to be exempt from the SIP, the state must supply 

evidence to the U.S. EPA demonstrating that the state would have been in compliance 

were it not for a circumstance outside of their ability to control, such as wildfires, 

stratospheric O3 intrusions, volcanic and seismic activities, and non-routine international 

transport (U.S. EPA, 2017d). 

In 2014 and 2015, a monitoring site in the U.S. EPA Air Quality System (U.S. 

EPA AQS) located in Reno, NV, USA was out of attainment for O3 in 2014 and for PM2.5 

and PM10 in 2014 and 2015 (Washoe County, 2017). The exceedances are under review 

for exceptional events, mainly wildfires (EPA, 2017). Ozone measurements at Great 

Basin National Park (GBNP, elevation 2060 m asl), in eastern Nevada, and at three other 

rural sites in Nevada, have also exceeded the NAAQS for O3 (Fine et al., 2015a). It is 

possible that other rural areas across Nevada and areas of other Western States will 

exceed the NAAQS despite the lack of sources in close proximity. Wildfires, intrusion of 

O3 rich stratospheric air, regional urban pollutants, and emissions from other countries 

contribute to these exceedances (Fine et al., 2015a; Fine et al., 2015b; Lin et al., 2014a; 



4 
 

Miller et al., 2015; Musselman and Korfmacher, 2014). This has important implications 

for national and global policy making, as pollution attributed to wildfires, stratospheric 

intrusions, and foreign countries impact states and countries downwind but are not 

readily controllable by the state or country that is impacted (Lin et al., 2014a; Lin et al., 

2012; Pierce et al., 2017). In addition, lack of data in many rural areas makes it difficult 

to understand the spatial and temporal variability of atmospheric pollutants. 

To characterize the spatial and temporal trends in Nevada, and to identify source 

regions contributing to elevated O3, the Nevada Rural Ozone Initiative (NVROI) was 

started in 2011. The NVROI project established 13 sites across Nevada at high elevations 

(>2000 m asl) and in valleys (<2000 m asl). Results from the project indicated that all 

rural NVROI sites experience O3 concentrations approaching the NAAQS, particularly in 

the spring and early summer, and that as the NAAQS become more stringent, 

exceedances will increase (Fine et al., 2015a; Miller et al., 2015). O3 concentrations in 

rural areas are well correlated with urban areas indicating that processes impacting 

concentrations across the state are similar, however, site to site variability can be high 

(Fine et al., 2015a). Long-term increases in O3 trends at Great Basin National Park are 

attributable to long-range transport and not increases in regional emissions (Fine et al., 

2015a). However, sources of O3 for discreet events also included wildfires, stratosphere 

to troposphere exchange (STE), and regional emissions (Fine et al., 2015b; Miller et al., 

2015). To aid in identifying the sources and source regions of air masses intercepted in 

the complex terrain of Nevada, multiple monitoring sites and a suite of trace gas and 

particulate measurements, supplemented by additional analyses for lead isotope and trace 

metal composition in atmospheric PM samples was suggested. Pollution sources are 
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difficult to monitor due to a lack of atmospheric boundaries, chemistry that can occur 

downwind of a source, and interactions with complex terrain. Determining metal and 

isotope concentrations of aerosols can facilitate identification of source areas especially 

when trying to understand a secondary air pollutant such as O3 (see discussion below).  

 

1.2 Conditions in the Western USA and Nevada affecting air quality 

Air pollution in the Western USA is influenced by synoptic scale and mesoscale 

weather patterns and complex terrain. Pressure gradients cause air to move from high- to 

low-pressure, balanced by the Coriolis force, generating near-geostrophic winds, 

particularly in extratropical synoptic-scale disturbances (Holton and Hakim, 2013a; 

Wallace and Hobbs, 2006). Differential heating at the equator compared to the poles, 

along with the geostrophic winds, create distinct circulation cells, the Hadley, Ferrel, and 

Polar cells. In the Northern Hemisphere, winds in the troposphere associated with the 

Hadley cell travel upwards and east, due to the conservation of angular momentum and 

the Coriolis force, as air rises and moves from the tropics, poleward. As air cools and 

sinks at ~30° and moves towards the tropics, it is deflected to the west (trade winds) 

closer to the surface of the earth (Wallace and Hobbs, 2006). Air in the Ferrel cell, 

influenced by the Hadley and Polar cells, flows the opposite direction of the Hadley cell, 

creating the prevailing westerly winds in the mid-latitudes (~30° to 50° N, Holton and 

Hakim, 2013d). The subtropical jet stream occurs where the Hadley and Ferrel cells 

converge (~30°), while the polar jet stream occurs where the Ferrel and Polar cells 

converge (~60°). Jet streams can rapidly transport air in the free troposphere, from west 

to east (Wallace and Hobbs, 2006). When jet streams deviate toward or away from the 



6 
 

equator, Rossby waves form, with associated high- and low-pressure systems, on either 

side of a wave (Wallace and Hobbs, 2006). High-pressure systems can cause subsidence 

of air aloft, generally stable conditions, and a buildup of atmospheric pollutants. Storms 

associated with low-pressure systems can disperse or scavenge atmospheric pollutants 

(Wallace and Hobbs, 2006). Nevada can be impacted by the deviating subtropical and 

polar jet streams (Holton and Hakim, 2013c). 

Gradient winds occur when the Coriolis force and the centrifugal force balance 

the horizontal pressure gradient force (Wallace and Hobbs, 2006). This causes gradient 

wind speeds in cyclonic flows to be less than the geostrophic wind speed and gradient 

wind speeds in anticyclonic flows to be greater than the geostrophic wind speed at a 

given location (Wallace and Hobbs, 2006). Actual wind speed is often better 

approximated by the gradient wind equation than by the geostrophic wind equation 

(Holton and Hakim, 2013b). 

Mesoscale weather dynamics in Nevada include up/downslope and valley flows. 

Upslope, or anabatic, flows occur during the day, caused by differential heating of 

surface air compared to the free atmosphere (Roland, 2006). Downslope, or katabatic, 

flows occur at night as the air at the surface cools, becomes more dense, and sinks 

(Roland, 2006). Valley flows are related to the up- and downslope flows. Warming 

during the day causes air to flow up the valley, while cold air at night pools in the valley 

and drains down and out of the valley (Roland, 2006; Rotach and Zardi, 2007; Wagner et 

al., 2015). Airflow around mountains causes a variety of smaller scale phenomena such 

as flow separation, gap flow winds through mountain passes, acceleration of wind over 

mountain crests, blocking of low-altitude winds on the windward side, lee-side 
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circulations, cloud formation, rotors, wake turbulence, downslope windstorms, and 

hydraulic jumps (McMurdie and Houze, 2006).  

Urban areas located in valleys of Nevada are often situated between north-south 

mountain ranges. Prevailing westerly winds are disrupted by the passage of fronts. As 

low-pressure systems move from west to east, the systems are lifted over the Sierra 

Nevada Mountains, causing the air mass to cool and water vapor to condense and 

precipitate out. As the air mass moves into Nevada, it sinks and warms, causing the rain 

shadow effect and dry conditions on the leeward side (WRCC, 2014a). Surface lows on 

the windward side of large mountain ranges may decay, while lee cyclogenesis will 

replace the surface low on the downwind side (McMurdie and Houze, 2006). The 

pressure gradient causes air to move towards the low and rise, causing horizontal 

transport of air from surrounding areas to replace the rising air. The north-south 

orientation of the mountain ranges and the cyclonic flow of the low-pressure system 

causes air from the south to be transported north as the low moves over a valley, 

potentially transporting air from central and southern California and southern Nevada 

(Fine et al., 2015a; Fine et al., 2015b; McMurdie and Houze, 2006). Westerly downslope 

flows and geostrophic wind circulating around the low cause these winds to be stronger 

than the winds on the north side of the low. On the north side of the low-pressure system 

cyclonic flow causes easterly winds, upslope flows and lifting or anticyclonic flows that 

are weaker than the flows on the southern edge of the low (McMurdie and Houze, 2006). 

With the passing of the low-pressure system and associated cold front, higher pressure 

occurs as cold air sinks behind the cold front, causing air from aloft to subside, 

potentially bringing pollutants aloft to the surface (Johnson and Viezee, 1981; Knowland 
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et al., 2015; Kunz and Speth, 1997; Viezee et al., 1983). Wind speeds are high as the 

front passes and are generally lower and shift from southerly to northerly as the system 

moves further east (McMurdie and Houze, 2006). These interactions affect airflow and 

atmospheric pollutants across Nevada. 

All of these phenomena contribute to a planetary boundary layer height that varies 

widely day-to-night and season-to-season. The lower atmosphere, or troposphere (few 

hundred meters to 10-20 km) contains the planetary boundary layer (few hundred meters 

to ~2 km), in direct contact with the surface. The boundary layer grows during the day 

and is shallow at night, due to heating and cooling of air masses. The height of the 

boundary layer depends on location. In the free troposphere, above the planetary 

boundary layer, air movement is driven by geostrophic or gradient winds and transport is 

more rapid than in the planetary boundary layer, where friction affects air movement. At 

night, there is little convective mixing, and the daytime planetary boundary layer 

becomes a residual layer, the bottom of which gradually becomes the nocturnal stable 

boundary layer (Roland, 2006). As solar radiation warms the surface during the day, and 

air at the surface rises, convective mixing increases the planetary boundary layer height, 

and entrainment of air from the free troposphere can occur. Entrainment occurs when 

rising thermals and turbulent eddies from the mixed boundary layer rise through the 

capping inversion layer, before sinking back into the mixed boundary layer, causing free 

troposphere air to move down through the capping inversion (Roland, 2006). This input 

of free tropospheric air can be an important contributor to the composition of the 

atmosphere in the planetary boundary layer (Wagner et al., 2015; Weiss-Penzias et al., 

2009).  
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Nevada is a large state with a total land area of 2.8 x 105 km2 (WRCC, 2014b), a 

majority of which is federally owned. The State generally rises in average elevation from 

south and west to northeast and east, with a mean elevation of 1676 m asl. There are 

more than 200 named mountain ranges that generally run north-to-south. Nevada is 

characterized by high solar radiation, resulting in rapid surface heating, low annual 

precipitation, heavy snowfall in the mountains, relatively clean, dry air, and large ranges 

of low and high daily temperatures (WRCC, 2014b). The combination of rapid surface 

heating and complex terrain leads to convective mixing and varying planetary boundary 

layer heights. Convective mixing can mix pollutants up from valleys and can cause 

entrainment of free tropospheric air to mix down to valleys (Gustin et al., 2015; Pierce et 

al., 2017; Rotach and Zardi, 2007; Wagner et al., 2015). 

 

2. Atmospheric pollutants of interest for this research 

2.1 Ozone 

Ozone is an oxidant that has positive and negative effects on terrestrial and 

aquatic life on Earth, dependent on its presence in different layers of the atmosphere. In 

the upper atmosphere, or stratosphere (10-50 km above Earth’s surface), O3 acts as a 

shield against ultraviolet (UV) radiation from the sun that is harmful to organisms. High-

energy UV radiation enters the atmosphere where it can interact with oxygen molecules 

(O2) and O3 present in the stratosphere as seen in reactions 1 through 3 (Chapman, 1930). 

1) 𝑂2 + ℎ𝜈  (𝜆 < 242 𝑛𝑚) → 𝑂 + 𝑂 

2) 𝑂3 +  ℎ𝜈 (𝜆 ≤ 336 𝑛𝑚) → 𝑂 + 𝑂2 

3) 𝑂 + 𝑂2

𝑀
→ 𝑂3 
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These reactions are particularly important because they are the only significant 

source of O3 in the stratosphere (Finlayson-Pitts and Pitts Jr, 2000a; Prinn, 2014), which 

holds about 90% of the world’s O3 (Prinn, 2014). These photochemical reactions that  

result in high O3 concentrations, effectively block all radiation at wavelengths less than 

290 nm, shielding the lower atmosphere and Earth’s surface (Chapman, 1930; Finlayson-

Pitts and Pitts Jr, 2000a). This shield is part of the reason that terrestrial life is possible on 

Earth. This important function came into international spotlight in 1985 with the first 

reports of O3 depletion over the Antarctic and the Arctic, extending into high latitude, 

populated regions in both hemispheres. Loss of stratospheric O3, and therefore enhanced 

exposure to UV radiation, increases the potential for tissue damage to terrestrial life 

forms, such as, cataracts, and reduced immune function in humans (U.S. EPA, 2017c). 

Loss of stratospheric O3 also affects the chemistry in the troposphere by increasing the 

amount of UV radiation available for photochemical reactions at the surface that can 

generate tropospheric O3 (U.S. EPA, 2017c).  

In the lower atmosphere, or troposphere, which includes the planetary boundary 

layer and the free troposphere, O3 is a harmful oxidant and a primary component of 

photochemical smog (US EPA, 2013). Ozone has detrimental effects on materials, 

vegetation, and animals (U.S. EPA, 2017c). Because of the harmful effects of ground 

level O3, the current NAAQS standard was lowered in 2015, to 70 parts per billion by 

volume (ppbv) eight hour maximum daily average (MDA8) ground level concentration. 

To avoid effects of unusual meteorological conditions that may cause periodic, high O3 

concentrations, compliance with the NAAQS is determined based on the three year 

running average of the annual fourth-highest MDA8 (U.S. EPA, 2017c). The European 
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Union standard is 60 ppbv MDA8 with 25 allowed exceedances based on the three year 

average while the World Health Organization standard is 50 ppbv for an 8 h average 

(European Commission, 2016; WHO, 2016).  

Determining sources of boundary layer O3 is difficult because it is a secondary 

pollutant. This means that O3 forms via reactions of primary pollutants, such as nitrogen 

oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOCs). O3 

chemistry in the unpolluted troposphere is dominated by methane (CH4) and it’s 

degradation products, formaldehyde (HCHO) and CO (NRC, 1991). In the lower 

troposphere, reactions with biogenic and anthropogenic VOCs and anthropogenic NOx 

emissions are dominant (NRC, 1991). Primary pollutants are directly released from a 

source (anthropogenic or biogenic) and undergo photochemical reactions in sunlight to 

form O3 such as reactions 4 through 6 (Finlayson-Pitts and Pitts Jr, 2000e; Prinn, 2014). 

4) 𝑁𝑂2 + ℎ𝜈 (𝜆 ≤ 430 𝑛𝑚) → 𝑂 + 𝑁𝑂 

5) 𝑂 + 𝑂2

𝑀
→ 𝑂3 

6) 𝑁𝑂 + 𝑉𝑂𝐶𝑠 → 𝑁𝑂2  + 𝑅𝐻 (hydrocarbon) 

Reaction 4 and 5 are the major source of anthropogenic O3. The relationship 

between O3, NOx, and VOC concentrations can be illustrated by isopleth plots of O3 

production as a function of NOx and VOC concentrations or emission rates that identify 

two different O3 regimes; the NOx-sensitive (low NOx to VOC ratio) or the NOx-saturated 

and VOC-sensitive (high NOx to VOC ratio) regimes (Finlayson-Pitts and Pitts Jr, 2000g; 

Sillman, 1999; Thielmann et al., 2001). O3 concentrations increase with NOx and are 

unaffected by increasing VOC concentrations in low NOx and high VOC conditions 

(Finlayson-Pitts and Pitts Jr, 2000b). O3 concentrations decrease with increasing NOx 
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(NOx-saturated) and increase with increasing VOC concentrations (VOC-sensitive) in 

high NOx and low VOC conditions (Finlayson-Pitts and Pitts Jr, 2000b). These regimes 

are determined by sources of NOx and hydrogen radicals. If hydrogen radicals exceed 

NOx sources, then peroxides become a dominant sink and O3 production is NOx-sensitive. 

In areas with high concentrations of NOx (NOx-saturated), OH will react with NO2 to 

form HNO3, removing NOx and decreasing O3 production, alternatively leading to 

increasing O3 production when NOx is lowered in this regime (Finlayson-Pitts and Pitts 

Jr, 2000b; NRC, 1991; Prinn, 2014; Sillman, 1999; Thielmann et al., 2001). Reaction 6 

recycles NO to NO2 that can then enter reaction 4. Reaction 6 will vary depending on the 

reactivity of the VOCs present (NRC, 1991; Sillman, 1999). 

Data on sources of NOx and other O3 precursors is thus important for 

understanding where the O3 may be coming from as well as for understanding destruction 

of O3 as seen in reactions 7 and 8 (Finlayson-Pitts and Pitts Jr, 2000e). 

 7) 𝑁𝑂2 + 𝑂 → 𝑁𝑂 + 𝑂2 

 8) 𝑁𝑂 + 𝑂3 → 𝑁𝑂2 + 𝑂2 

Near large emissions of NO, O3 is removed through NOx titration. This can occur 

immediately downwind of large sources of NOx (point sources, high volume highways), 

during periods of stagnation when NOx accumulates, and at nighttime when there is no 

sunlight to facilitate reaction 4 (Sillman, 1999). O3 is also highly reactive and will be 

broken down by reaction with other gases, removed via deposition to particles and 

droplets in the air, and by deposition to surfaces (Sillman, 1999). O3 concentrations are 

therefore, a product of the equilibrium between production and loss processes. 
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Ozone can be produced at the source or far away from the source of primary 

pollutants, causing variability in concentrations geographically, temporally, and based on 

altitude, and extent of anthropogenic influence. Major sources of O3 precursors, NOx and 

VOCs, are heterogeneously distributed and include emissions from industrial facilities 

and electric utilities, motor vehicle exhaust, gasoline vapors, and chemical solvents and 

manufacturing (U.S. EPA, 2017c). Natural sources include wildfires, emissions of 

precursors from vegetation, lightning, and down-mixing from the stratosphere (U.S. EPA, 

2017c). The largest sources of NOx in Nevada are on and off road vehicles, with 

contributions from fuel combustion and natural sources (U.S. EPA, 2017a). Natural 

sources are the largest source of VOCs in Nevada (U.S. EPA, 2017a). In Nevada, 

anthropogenic NOx emissions were ~16% and VOC emissions were ~28% of those 

emitted in California in 2014 (U.S. EPA, 2017a). Generally, in urban areas, VOC 

emissions control the rate of the initial buildup of O3, while NOx emissions determine the 

amount of O3 formed during downwind chemistry, often affected by the higher rate of 

biogenic emissions downwind (Sillman, 1999). The rural nature of Nevada means O3 

formation is generally NOx limited outside of the major urban areas (NRC, 1991).  

Increases in anthropogenic emissions of NOx have increased background 

concentrations of O3 from ~10-15 ppbv to 20-55 ppbv with peaks in the most polluted 

areas reaching as high as 500 ppbv (Finlayson-Pitts and Pitts Jr, 2000d; Fiore et al., 2003; 

Fiore et al., 2014; Jaffe, 2010; Vingarzan, 2004; Zhang et al., 2014). Pre-industrial 

measurements of O3 were made with paper strips containing potassium iodide and starch 

that changed color when exposed to O3 and have measurement issues (Tarasick and 

Slater, 2008). Despite these early issues, a general increasing trend has been observed 
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(Parrish et al., 2012; Tarasick and Slater, 2008; Vingarzan, 2004). North American 

Background is a modeled value constructed with zero North American emissions that 

includes man-made precursor sources outside of North America, while baseline O3 is 

defined as aged domestic emissions without recent local emissions (U.S. EPA, 2017c). 

Accurate measurements of O3 concentrations are important for understanding air quality 

trends. As previously mentioned some areas of Nevada exceed the O3 standard although 

sources of precursors are limited in Nevada. 

Temporal and spatial patterns of O3 are affected by meteorology, seasonal 

variability, and elevation. Large-scale climatic variability, such as the El Niño Southern 

Oscillation (ENSO), affects the distribution of O3 by enhancing transport from the tropics 

to the extra-tropics during the warm phase (El Niño events) of the ENSO, especially 

during spring (Lin et al., 2014b; Rieder et al., 2013a; Rieder et al., 2013b; Zerefos et al., 

1992). Springtime O3 maximums are influenced by STE due to increased storms and a 

lower tropopause, which allows for better vertical down-mixing from the stratosphere, 

with larger impacts at high elevation sites (Ambrose et al., 2011; Brodin et al., 2010; 

Burley and Bytnerowicz, 2011; Fine et al., 2015b; Vingarzan, 2004). Temperature, wind 

direction, the amount of solar radiation, and surface stability and mixing during different 

seasons affect surface O3 concentrations (Vingarzan, 2004).  

Increased temperatures due to climate change are also expected to increase O3 

concentrations during the summer time (Fang et al., 2013; Pfister et al., 2014; Ramsey et 

al., 2014; Rasmussen et al., 2013). This increase is due to increased reaction rates and 

greater emissions of VOCs at higher temperatures, which then mix with anthropogenic 

emissions to create O3. In addition, increasing CH4, globally increases baseline 
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concentrations of surface O3 (Holmes et al., 2013; Pfister et al., 2014; Sanderson et al., 

2003; Stevenson et al., 2005). The oxidation of CH4, as seen in reaction 9, produces 

CH3O2, which can then enter reaction 6, producing more NO2 (Stevenson et al., 2005). 

9) 𝐶𝐻4 + 𝑂𝐻 + (𝑂2) → 𝐶𝐻3𝑂2 + 𝐻2𝑂 

O3 is both an absorber and emitter of infrared (IR) radiation, which means that increases 

of ground level O3 may influence surface temperatures, while loss of stratospheric O3 

cools the stratosphere (Prinn, 2014).  

Eurasian long-range transport is strongest in the spring due to increased storm and 

frontal activity in Eurasia and strong transport of air across the Pacific during this time 

(Cooper et al., 2010; Knowland et al., 2015; Kunz and Speth, 1997; Vingarzan, 2004). 

The lifetime of O3 in the free troposphere is long enough (~22 days) to be transported 

between continents and across oceans (Stevenson et al., 2006). Transport of O3 and 

precursors has elevated background O3 concentrations in the Western United States by 3 

to 15 ppbv with episodic increases during spring up to 30 ppbv (Fine et al., 2015a; Jacob 

et al., 1999; Jaffe et al., 2003; Langford et al., 2015; Vingarzan, 2004). This influence is 

projected to increase as Asian countries continue to develop (Christensen et al., 2015; 

Cooper et al., 2010; Gratz et al., 2015). Species like PAN (peroxyacetyl nitrate, 

CH3COO2NO2) serve as reservoirs for and contribute to the long-range transport of NOy 

species, which can then contribute to downwind O3 concentrations (Fischer et al., 2011). 

Due to layers of polluted trans-Pacific air, lofting of pollution produced in 

California, USA, and stratospheric intrusions, higher elevation sites often observe higher 

O3 concentrations than lower elevation sites (Brodin et al., 2010; Burley and 

Bytnerowicz, 2011; Fine et al., 2015a; Fine et al., 2015b; Gustin et al., 2015; Vingarzan, 
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2004). Lower elevations sites have greater O3 removal rates in the boundary layer, 

particularly nighttime O3 removal in cities. Nevada routinely intercepts free tropospheric 

air lofted over the Sierra Nevada Mountains. The predominantly rural nature of the State 

means monitoring sites located in Nevada are useful for measuring regional air quality 

trends. In the present work, O3 production cannot be directly computed, however a suite 

of measurements are used to evaluate conditions and sources at each monitoring site and 

to compare across the sites. 

 

2.2 Particulate matter 

Natural sources of PM include sea spray, volcanic emissions, wind entrainment of 

dust, wildfires, gas-to particle conversion of hydrocarbons from plants, and 

dimethylsulfide from oceans (Buseck and Schwartz, 2014). Anthropogenic sources 

include land use processes (e.g. agricultural activities), roadways, combustion processes, 

and biomass burning (Buseck and Schwartz, 2014).  

Particles < 2.5 µm in aerodynamic diameter (PM2.5), considered fine PM, are a 

health concern because they can penetrate into the lungs and deposit potentially harmful 

microscopic solids or liquid droplets (Kleinstreuer and Zhang, 2009; U.S. EPA, 2013). 

Small particles also impair visibility and are monitored in the IMPROVE network. The 

primary PM2.5 NAAQS for 24 hours is 35 µg m-3, 98th percentile value averaged over 

three years and the annual primary PM2.5 NAAQS is 12 µg m-3 annual mean averaged 

over three years (U.S. EPA, 2013).  

Changes in PM2.5 mass concentration and composition can occur due to seasonal 

variables. In winter, during high-pressure systems and increased snow cover, with less 
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surface heating and therefore less mixing, a buildup of pollution can occur, particularly in 

valleys. Often the major component of PM during winter is nitrate aerosols. Nitrogen 

dioxide (NO2) is removed from the atmosphere when it reacts with a hydroxyl free 

radical (OH) forming nitric acid (reaction 10; Buseck and Schwartz, 2014; Finlayson-

Pitts and Pitts Jr, 2000c). Nitric acid acts as a temporary sink for NO2 since it can react 

with OH radicals to produce nitrate (reaction 11) or photochemically, to produce NO2 

(reaction 12). Nitric acid is removed from the atmosphere by precipitation (acid rain), or 

by reacting with ammonia to produce ammonium nitrate (NH4NO3), which is favored by 

cold temperatures and high humidity (reaction 13). For this reason during winter, high 

NO2 tropospheric concentrations tend to correlate with the locations of higher PM2.5 

concentrations. Wintertime buildup of ammonium nitrate has been observed in valleys in 

the West (Chen et al., 2012; Green et al., 2015). 

10) NO2 + OH →HNO3 

11) OH + HNO3 → H2O + NO3 

12) HNO3 + hν → OH + NO2 

13) HNO3 + NH3 → NH4NO3 

PM2.5 also varies due to topography. A study at high elevation sites in California 

has shown that the dominate aerosols originate from the Asian continent and are semi-

continuous over the year (VanCuren et al., 2005). Nighttime subsidence fumigation from 

the free troposphere causes a peak in Asian aerosols at these sites (VanCuren et al., 

2005). This is important in Nevada due to the high base elevation of much of the State 

and the many mountain ranges. 
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Particulate matter has direct and indirect impacts on climate. These impacts vary 

by region depending on the composition of the PM2.5. Direct effects include absorption 

and scattering of light, which affects visibility. Particles that absorb radiation, such as 

black carbon, can have a warming effect on the atmosphere, and when deposited to snow 

and ice surfaces, can increase melting (Heald et al., 2013; U.S. EPA, 2012b). Particles 

that scatter radiation, such as sulfates and nitrates, can have a cooling effect (Heald et al., 

2013). Particulate matter in the West is dominated by carbonaceous and nitrate particles, 

but will vary by site and local sources (Buseck and Schwartz, 2014; Malm et al., 2011; 

Malm et al., 2004; Malm and Sisler, 2000; Nguyen et al., 2016) 

Indirect effects of airborne particulates include changes in precipitation and 

changes in cloud albedo and lifetime, which affects radiation and hydrology (Finlayson-

Pitts and Pitts Jr, 2000f). Increased reflectivity of clouds due to particles can cause a 

cooling effect. Reductions in PM2.5 emissions may have a mixed effect on the climate; 

likewise, climate change will have a mixed effect on PM2.5 (U.S. EPA, 2012b). Better 

understanding of the composition and behavior of PM is essential for reducing negative 

effects on air quality. 

 

2.3 Mercury 

The adverse health effects of exposure to mercury (Hg) were brought to 

international recognition starting in 1956 when Minamata Disease was first discovered in 

Minamata city in Japan due to contamination from industrial waste released into 

Minamata Bay (Lofroth, 1978). Hg negatively affects the brain, heart, kidneys, lungs, and 

immune systems of people of all ages and is capable of crossing biological barriers, such 
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as the blood-brain barrier and the placental barrier where it causes harm to the developing 

nervous system (Axelrad et al., 2007; Clarkson and Magos, 2006; U.S. EPA, 2011). 

Negative impacts have also been documented on behavior and reproductive success of 

other vertebrates and invertebrates (Hallinger et al., 2010; Jackson et al., 2011; Wyman et 

al., 2011).  

The atmosphere is the main transport and deposition pathway for Hg to enter 

remote terrestrial and aquatic ecosystems where it can then be converted to the bio-

available form, methylmercury (Fitzgerald et al., 1998; Schroeder and Munthe, 1998). 

There are natural sources of Hg, which include enriched geologic sources, volcanoes, and 

forest fires (Friedli et al., 2001; Schroeder and Munthe, 1998), but anthropogenic sources 

are the major contributor of Hg to the atmosphere (Pacyna et al., 2010; Schroeder and 

Munthe, 1998). Anthropogenic sources include burning coal, oil, and wastes containing 

Hg, metal smelting, and artisanal gold mining (Pacyna et al., 2006).  

Mercury is present in the atmosphere in three forms, gaseous elemental Hg 

(GEM), gaseous oxidized Hg (GOM), and particulate bound Hg (PBM). GEM represents 

~95% of the Hg present in the atmosphere. It is relatively inert, with low solubility in 

water, and therefore has a long residence time in the atmosphere, which allows it to be 

transported long distances from sources (Lamborg et al., 2002; Schroeder and Munthe, 

1998; Slemr et al., 1985). GOM and PBM have shorter residence times in the atmosphere 

and are considered local or regional pollutants (Schroeder and Munthe, 1998; Shia et al., 

1999; Swartzendruber et al., 2006). The concentrations and chemical compounds of 

GOM and PBM, collectively referred to as reactive Hg (RM), vary spatially and 
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temporally, are not well characterized, and require further research on measurement 

methods (Gustin et al., 2016). 

 

3. Research objectives 

The goal of this research was to identify sources, source regions, and processes 

affecting the concentration of atmospheric pollutants in Nevada, specifically PM2.5, RM, 

and O3, using Pb isotopic ratios and a suite of measurements, including gaseous data, 

meteorological data, and aerosol optical properties. In addition, a method was developed 

and tested due to the need for improved methods for measuring RM and the need for 

additional measurements and methods for identifying sources of O3 to rural Nevada. 

The first research objective was to develop and deploy a particulate monitor to 

simultaneously collect PM2.5 on two filter materials that could then be post-processed for 

RM concentrations, and Pb concentrations and isotopes to understand the sources of air 

pollution to Nevada. The second objective was to use the Pb isotope data from this 

instrument and a suite of other measurements, to understand sources of elevated O3 and 

RM to Nevada. The third objective was to apply a statistical method to the data collected 

by the particulate monitor to better understand the sources and processes affecting 

horizontal and vertical heterogeneity of atmospheric pollutants at adjacent valley and 

peak measurement sites in Nevada. The fourth objective was to investigate the possible 

sources of anomalous PM collected at one of the sample sites during the sample period. 
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3.1 Research objective 1 

The first research objective was to develop a new method for measuring PM2.5 

mass concentrations on two filter materials that allowed for post-processing of sample 

filters for RM and Pb isotope ratios in aerosols to understand sources of PM2.5, RM, and 

O3. Accurate PM2.5 measurements, using the new method, had to be established before 

analysis of RM or Pb measurements could occur.  

Particulate matter is measured for different purposes, including compliance with 

air quality standards (mass concentration measurements), increased knowledge of 

chemical and physical processes, impacts on visibility, and impacts on human and 

ecosystem health. Mass concentration measurements are accomplished by actively 

drawing sample air through filter material to collect particulates. The most commonly 

used filter materials include Teflon membranes, quartz fiber filters, nylon membranes, 

cellulose fiber, Teflon-coated glass fiber, etched polycarbonate membranes, and glass 

fiber (Watson and Chow, 2011).  

Available FRMs for PM2.5 include low-volume collectors with gravimetric mass 

measurement. Sample filters are weighed in temperature- and relative humidity-

controlled laboratories before and after sampling. The difference is considered the sample 

weight, which is then divided by sample volume to attain mass concentration (Watson 

and Chow, 2011). Federal Reference Methods for measuring PM focus mainly on mass 

concentration measurements and have a limited ability for continuous sampling or post-

processing for particle sizing, hourly and daily continuous sampling, chemical 

composition, or quantification of volatile aerosols (Watson and Chow, 2011). Positive 

(e.g. adsorption of organic vapors) and negative (e.g. volatilization of organic aerosols) 
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sampling artifacts also complicate the collection of samples on filters (Allen 1989, 

Takahashi 2008). Measurement methods that avoid some of these limitations are, 

therefore, necessary. 

While the IMPROVE network uses gravimetric mass measurement it also uses 

several different filter types and analysis methods to attain speciated PM2.5 and PM10 

measurements. The IMPROVE setup has four separate sampling inlets: a Teflon filter 

that collects most of the PM2.5 data, a sampling inlet with a nylon filter that measures 

primarily nitrate and some sulfate and chloride, an inlet with quartz filters that measure 

carbon in eight temperature fractions, and a PM10 (0-10 µm) inlet (IMPROVE, 1995). 

There is also an option to measure SO2 on one of the Teflon inlets. Analysis includes 

gravimetric mass concentrations, X-ray fluorescence (XRF) for elements, ion 

chromatography (IC) for sulfate, nitrate, nitrite, chloride ions, and estimates of 

ammonium based on fully neutralized sulfate and nitrate, and thermal/optical reflectance 

(TOR) protocol for fractionated organic and elemental carbon (IMPROVE, 1995; 

Solomon et al., 2014; Watson and Chow, 2011). IMPROVE measurements assume no 

interference from other elements (for all elements except As). According to IMPROVE 

data analysis, reconstructed particulate mass correlates well with the gravimetric mass, 

and accounts for most of the fine mass, however ~20% of the missing mass could be due 

to volatilization of nitrate or residual water on the particles (IMPROVE, 1995). Samples 

are only collected every one-in-three days from 00:00 to 00:00-local time. 

Beta (β) attenuation is a common technique for measuring particulate mass at a 

finer temporal resolution (hourly) than commonly used gravimetric techniques. Beta rays, 

emitted from 14C are passed through a filter and measured. Particulate matter is then 
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collected on the filter and β rays are again passed through the filter. The decrease in β 

rays through the filter, due to absorption by the deposited particles, is used to calculate 

the mass of particles deposited to the filter material. Beta attenuation allows for 

measurement of collected samples directly after sample collection has completed. The β 

Attenuation Monitor (BAM-1020) is an FEM used at EPA AQS monitoring sites. The 

Teledyne Advanced Pollution Instrumentation Model 602 BetaPlus particulate monitor 

(TAPI), also an FEM, was used in this study. 

The TAPI was configured to measure PM2.5 on two separate filter types that could 

then be post-processed for RM concentrations, and Pb concentrations and isotopic ratios. 

This required a different configuration for the two sample inlets of the TAPI than was 

originally designed. Ensuring that PM2.5 measurements from the TAPI, in the new 

configuration, were comparable to FRM and other FEM instruments (BAM-1020) was 

critical before RM or Pb could be measured using the PM2.5 samples. PM2.5 and RM were 

addressed in the first research objective; Pb was addressed in the second research 

objective. 

GEM is reliably measured by pre-concentrating atmospheric samples on gold 

traps and analyzed using cold vapor atomic fluorescent spectroscopy (CVAFS). Co-

located instruments measuring GEM have been shown to have an average systematic 

uncertainty of ~10% and in some cases up to 20% (Slemr, 2014). Measurements of GOM 

and PBM are operationally defined and do not have standards available for calibration 

that are relevant for ambient concentrations. The commercially available method that is 

widely used collects GOM and PBM, separately. GOM is collected on a potassium 

chloride (KCl) coated annular denuder for 1 h while PBM (<2.5 µm in diameter) is 
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collected on quartz chips for 1 h. The annular denuder is desorbed at 500° C and the 

quartz chips are desorbed at 800° C. GEM is released during desorption and collected on 

gold traps where it is then analyzed using CVAFS. Temporal resolution is 1 h, every 

other hour.  

Another method for collecting RM, used in this study, is sample collection on 

cation exchange membranes (CEM) and post-processing following U.S. EPA method 

1631 for total Hg concentrations in aqueous samples. Filters are digested to remove Hg 

from the filter surface; all Hg present is oxidized to ensure all forms are the soluble HgII 

form, Hg is then reduced to volatile GEM. GEM is purged from the aqueous samples and 

collected on gold traps, thermally desorbed from the traps, and measured by CVAFS. 

The collection efficiency of GOM and PBM on the annular denuder and quartz 

chips is affected by O3 concentrations, relative humidity, temperature, interferences from 

other atmospheric constituents, and for GOM, the form present in the atmosphere (Huang 

and Gustin, 2015; Huang et al., 2013; Jaffe et al., 2014; Luke, 2016; Lyman et al., 2010; 

Malcolm and Keeler, 2007; McClure et al., 2014; Rutter and Schauer, 2007). GOM 

measurements from the annular denuder have been shown to be biased low by 2 to 13 

times compared to filter measurements (Gustin et al., 2013; Huang and Gustin, 2015; 

Huang et al., 2013). Developing novel measurement methods is therefore critical for 

improving our understanding of the global Hg cycle. 

 

3.2 Research objective 2: 

The second research objective was to use aerosol chemistry for determining 

sources of RM and O3 to Nevada using Pb isotopic ratios from PM2.5, combined with 
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gaseous measurements (O3, CO, NOx, NOy, SO2), meteorological data, and back 

trajectory analysis. Once it was established that the TAPI measured PM2.5 concentrations 

similar to those measured using FRM and FEM monitors, the PM2.5 data could be used to 

identify sources of air masses based on Pb isotopic ratios and back trajectory analyses. 

Although Pb is a criteria air pollutant, the removal of leaded gasoline in North 

America in the 1970s, has resulted in a dramatic decrease in atmospheric Pb 

concentrations (Nriagu and Pacyna, 1988; Reuer and Weiss, 2002). Decreases in Pb 

concentrations from anthropogenic sources mean that observed concentrations in the 

USA are usually much lower than the NAAQS (0.15 µg m-3, three month running 

average), making it easier to distinguish influence from sources outside of the USA 

(Bollhöfer and Rosman, 2002; U.S. EPA, 2016). Lead occurs naturally in soil with a 

mean of 17 ppm (range of 10 to 700 ppm) in the Western USA and can be emitted to the 

air when the soil is disturbed (Shacklette and Boerngen, 1984). Lead in soils can be 

enhanced by historic leaded gasoline vehicle exhaust, naturally occurring lead in fly ash 

from burning of coal, leaded paint, and contaminated sites such as lead smelters (U.S. 

EPA, 2017b). Lead is emitted from the use of fossil fuels, and industrial and 

metallurgical processes that also emit O3 precursors (Li et al., 2012; U.S. EPA, 2017b). 

Pollutants, including fine aerosol Pb, can be transported long distances, such as across 

oceans (Fiore et al., 2002; Heald et al., 2006; Jaffe et al., 1999; VanCuren, 2003; 

VanCuren et al., 2005; Wilkening et al., 2000). Aerosols collected on filters can then be 

analyzed for Pb isotopic ratios to determine sources of the aerosols (Bollhöfer and 

Rosman, 2001; Bollhöfer and Rosman, 2002; Christensen et al., 2015; Ewing et al., 

2010).  
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Isotopic ratio analysis of radiogenic samples has traditionally been performed 

using thermal ionization mass spectrometry (TIMS). However, TIMS analyses have low 

precision and reproducibility due to mass-dependent isotopic fractionation during 

analysis (White et al., 2000). Fractionation in TIMS analysis occurs during evaporation 

and ionization of the samples, which preferentially ionizes lighter isotopes and is time-

dependent. Generally, this is corrected for by observing the fractionation of two non-

radiogenic isotopes whose ratio is known in nature and is assumed to be invariant 

(Walder and Freedman, 1992; White et al., 2000). This correction is not possible for Pb 

isotopic analysis with only one non-radiogenic isotope (204Pb), and therefore the observed 

fractionation for a standard reference material is assumed to be the same as for the 

analysis of unknown samples and is used for mass-fractionation correction (Walder and 

Freedman, 1992; White et al., 2000).  

ICP-MS has larger fractionation than TIMS, due to space-charge effects in low 

electrostatic field regions of the instrument (e.g. ion beam), creating different ion 

focusing efficiencies as the ions enter the mass analyzer. This fractionation is essentially 

time-independent and should be primarily independent of the chemical properties of an 

ion and therefore only mass-dependent, which allows for use of an element with a similar 

mass to correct for mass fractionation (White et al., 2000). Samples were therefore spiked 

with thallium (5:1 ratio of Pb to Tl) with known isotopic composition (205Tl:203Tl) to 

adjust for instrumental mass fractionation of Pb during analysis for this research. MC 

ICP-MS is an improvement over quadrupole ICP-MS (Q ICP-MS), which has lower 

precision compared to TIMS due to poor ion peak shape (rounded instead of flat), low ion 

count rates, and instability of the plasma ion source (Hill, 2007; Taylor, 2001a; Walder 
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and Freedman, 1992; White et al., 2000). Q ICP-MS can also only measure one ion mass 

at a time. The flat topped peaks of the MC ICP-MS allows for high precision 

measurements, while the multiple Faraday collectors allows for simultaneous 

measurement of ions of different masses, removing source instability and further 

improving precision (Becker, 2005; Walder and Freedman, 1992; White et al., 2000). 

For this research objective, Pb from PM2.5 samples collected on Teflon filters is 

leached from the filters using acid solutions and run through resin columns for ion 

exchange chemistry to separate Pb and remove other constituents that may produce mass 

interferences or affect the mass fractionation behavior. The sample is then nebulized into 

a desolvation system to reduce water vapor in the aerosol and therefore oxide 

interferences. For these measurements an Apex isotope ratio [IR] sample introduction 

system with an actively cooled membrane [ACM] desolvation for Apex inlet system 

attached (by ESI), were used to produce a dry aerosol that is then introduced into the 

argon plasma stream. The plasma breaks down the aerosol, dissociates the molecules, and 

creates singly-charge ions (Taylor, 2001b). Faraday cups collect and measure the currents 

generated by the collected mass-separated ion beams. When ions impact on a Faraday 

cup they transfer their charge to the cup and are neutralized (Taylor, 2001a). The cup is 

an element in a circuit and the current created by the impacting ions can be measured and 

related to the number of ions intercepted by the cup with high sensitivity (Taylor, 2001a). 

A double-focusing sector field mass spectrometer directs ions to an array of Faraday 

cups, allowing for simultaneous collection of multiple, separated isotopic masses. The 

mass spectrometer uses a magnet and an electrostatic filter to focus ions with the same 

mass to charge ratios using both the kinetic energy and angular dispersions (Bradshaw et 



28 
 

al., 1989; Walder and Freedman, 1992). The separate ion signals collected from Faraday 

cup detectors set for masses of interest are amplified by current amplifiers. The ion signal 

can then be compared to the ion signal from a standard to determine concentration. 

The natural abundance of Pb isotope is not fixed in nature, 204Pb is the only 

primordial stable isotope with a constant abundance, and the other Pb isotopes are 

radiogenic. Radiogenic isotopes are products of natural radioactive decay of a parent 

isotope (235U to 207Pb, 238U to 206Pb, 232Th to 208Pb). This means that Pb isotopic ratios 

vary geographically depending on the source of the Pb and can therefore be attributed to 

different source regions (Bollhöfer and Rosman, 2001; Bollhöfer and Rosman, 2002; 

Ewing et al., 2010; Komárek et al., 2008). Atmospheric processes and concentrations of 

aerosols and Pb do not alter the isotopic composition of Pb as it is transported away from 

a source, making it a useful tool for tracing sources of pollutants. Previous studies have 

demonstrated the use of Pb isotopic ratios for identifying trans-Pacific input of pollutants 

(Ewing et al., 2010), and specifically O3, to the Western USA (Christensen et al., 2015). 

Combining Pb isotope data with back trajectory analyses aided in identifying 

general source regions of air masses intercepted at the measurement sites in Nevada. A 

Lagrangian back trajectory model for particle dispersion was used to follow theoretical 

particles observed at a measurement site, back in time based on meteorological inputs to 

the model (Stohl et al., 2002; Stohl et al., 2003). A large number of back trajectories, 

each representing a single particle, allow for a residence time calculation of all the 

particles in an area of interest, normalized by the total number of particles modeled in the 

back trajectories (Stohl et al., 2003). This calculation gives an estimate of the 

contribution of that area to the measurements observed at a site. Residence times and Pb 
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isotope analysis were then used to attribute enhancements of O3 in Nevada to different 

source regions. 

 

3.3 Research objective 3: 

The third research objective was to use data collected using the particulate 

monitor developed for the first two research objectives for use in a statistical method. The 

quadrant method, a data exploration tool, developed to understand sources and physical 

processes affecting the relationship between columnar aerosol optical depth (AOD) and 

surface PM2.5 measurements, was applied using the PM2.5 data collected with the TAPI. 

ANOVA one-way statistical analysis was applied to quantify statistically significant 

differences in the means of meteorological variables, aerosol optical properties, vertical 

structure, stability measures, and O3 concentrations to identify the sources and physical 

processes affecting the relationship between ground-based, columnar AOD and surface 

PM2.5 observations. 

The complex terrain, mixture of synoptic and mesoscale weather patterns that 

govern airflow in the Western USA, and input from local, regional, and long-range 

sources create horizontal and vertical gradients of pollutants that can be difficult to 

characterize. Furthermore, many urban centers in the intermountain west are located in 

valleys, where large populations are affected by atmospheric pollution emissions and 

valley airflow dynamics (Fernando, 2010). It is therefore necessary to quantify pollutant 

gradients to assess human and ecosystem exposure to potentially harmful concentrations 

and to develop air quality management policies.  
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In 2010, the U.S. EPA implemented a near-road monitoring program for NO2, 

CO, and PM2.5 to assess pollutant exposure in cities with >500,000 people, located within 

50 m, and ideally 20 m, of the nearest high-traffic lane (Batterman, 2013; EPA, 2016). 

Atmospheric pollutants from traffic interact with urban point and non-point sources of 

pollutants, and undergo reactions that affect concentrations at different times and 

distances from emission sources (Karner et al., 2010). While proximity and traffic 

intensity is important for assessing exposure to near-road pollutants, much of the 

complexity of the processes is lost without an understanding of site meteorology and 

physical processes, vehicle emissions, time-activity patterns, and confounding sources 

(Karner et al., 2010; Zhang and Batterman, 2013). Additionally, traffic-related air 

pollution, particularly secondary pollutants, affects areas downwind of urban centers 

(Batterman, 2013; Karner et al., 2010).  

The complexity of airflow in the Western USA, discussed previously, means that 

pollutants can exist within and above the planetary boundary layer, sometimes in 

filamentous layers (Fine et al., 2015b; Lin et al., 2012; Stohl et al., 2003). Vertical 

heterogeneity of pollutants will affect valley and high elevation sites differently 

depending on the site-specific sources and physical processes present. Surface monitoring 

stations provide valuable information, but only capture a small spatial picture in the 

complex environment of the Western USA. 

Satellites capture data at large spatial scales and are therefore useful in addressing 

the lack of data in rural and remote areas across the world. Measurements from the 

Moderate Resolution Imaging Spectroradiometer (MODIS), the Multi-angle Imaging 

SpectroRadiometer (MISR), and the Cloud-Aerosol Lidar with Orthogonal Polarization 
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(CALIOP), located on different satellites (Terra, Aqua, and CALIPSO), have been used 

to collect AOD. Aerosol optical depth is a measure of the light extinction caused by 

scattering and absorption of aerosols in the atmospheric column at different wavelengths. 

Two different algorithms, the Dark Target and the Deep Blue, are used to calculate AOD 

from the collected satellite data over land. Deep Blue was developed to retrieve AOD 

over bright surfaces, and uses different spectral channels than Dark Target to accomplish 

this (Hsu et al., 2013; Hsu et al., 2006; Martin, 2008; Sayer et al., 2013; Sorek-Hamer et 

al., 2015). 

Retrievals of columnar AOD have several challenges: retrievals are only available 

during daylight and clear sky conditions and retrievals by satellites are difficult over 

bright or reflective surfaces, such as deserts and snow (Gupta et al., 2006; Husar, 2011; 

Lee et al., 2016; Loría-Salazar et al., 2016; Nguyen et al., 2016; Sorek-Hamer et al., 

2015; Sorek-Hamer et al., 2013; van Donkelaar et al., 2006; Wang and Christopher, 

2003). Furthermore, comparisons between satellite and ground-based columnar AOD 

also show biases due to differences in calibration, presence of clouds, surface 

parameterization, aerosol measurement assumptions, and heterogeneous vertical 

distribution of aerosols in the atmospheric column (Engel-Cox et al., 2004; Li et al., 

2014a; Li et al., 2014b; Li et al., 2014c; Loría-Salazar et al., 2017; Zhang and Reid, 

2006).  

Ground-based retrievals of AOD from the AErosol RObotic NETwork 

(AERONET) consist of direct, collimated solar radiation measurements from a sun 

photometer. Direct sun measurements are made at eight wavelengths, 340, 380, 440, 500, 

670, 870, 940, and 1020 nm (Holben et al., 1998; NASA, 2007). Extinction of direct 
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radiation is calculated based on the Beer-Bouguer Law for each wavelength, using top of 

the atmosphere spectral irradiance obtained from a sun photometer located at Mauna Loa 

Observatory in Hawaii as the initial irradiance value and an air mass factor to account for 

the slant path through the atmosphere (Holben et al., 1998; NASA, 2007). Extinction due 

to Rayleigh scatter, absorption by O3, and other gaseous pollutants (NO2, CO2, CH4) are 

removed to calculate AOD. Data is then screened for cloud contamination and corrected 

using pre- and post-field deployment calibrations (Holben et al., 1998; NASA, 2007). 

Several studies have focused on deriving PM2.5 concentrations using empirical 

statistical correlations (linear and multivariate) with τext, land use information, other 

satellite products, and information from chemical transport models, with some success 

(Engel-Cox et al., 2004; Gupta et al., 2006; Liu et al., 2009; Liu et al., 2004; Strawa et al., 

2013; van Donkelaar et al., 2006; Wang and Christopher, 2003). Previous studies have 

identified relationships between columnar AOD and surface PM2.5 measurements that are 

not well correlated (Li et al., 2015; Loría-Salazar et al., 2017). The use of statistical 

methods, such as the quadrant method, aid in identifying the sources and physical 

processes influencing periods when columnar measurements are not associated with 

surface measurements. Information gained using this method can then be applied to 

identify exceptional events at measurement sites and for improving models that use 

columnar data to estimate surface PM2.5 and health exposure with large spatial coverage. 

 

3.4 Research objective 4: 

The fourth objective was to investigate the possible reasons for anomalous 

particulate data collected at one measurement site during the measurement campaign. 
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Particles were collected on a sample filter that were > 2.5 µm in aerodynamic diameter, 

which is the cut point size of the inlet for the TAPI. These samples indicated that either 

the observed particles had unique dimensions that allowed them to bypass a PM10 pre-

impactor and PM2.5 cyclone inlet or that there was an issue with the particulate monitor. 

For the purposes of measuring PM in ambient air, assumptions are made about the 

size and shape of particles, and therefore their behavior as they move through a 

measurement instrument. Ambient PM measurements are based on the behavior of an 

ideal spherical particle with a density of ~1000 kg m-3 (Kulkarni et al., 2011a). For 

particles that are non-spherical, equivalent diameters are used to approximate the particle 

behavior. More than one equivalent diameter is often necessary to understand the 

behavior of non-spherical particles. Aerodynamic equivalent diameter (Da), or the 

diameter of a sphere of unit specific gravity that settles at the same terminal velocity as 

the particle, is the most common equivalency measure used in ambient PM measurements 

(Marple and Olson, 2011).  

Impactors and cyclones are designed to use inertial separation to separate particles 

of different aerodynamic diameters (Kulkarni et al., 2011b). Impactors use an impactor 

plate to create an abrupt change in airflow direction, causing particles too large to move 

with the airflow to cross streamlines and deposit onto the impactor surface (Kulkarni and 

Baron, 2011; Marple and Olson, 2011). Cyclones create a swirling pattern in the airflow 

that causes large particles to deposit out of the air stream due to centrifugal force 

(Kulkarni and Baron, 2011; Marple and Olson, 2011). Particles with less inertia will 

remain in the airflow and continue to the sample surface. Collected particles can be 
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primary particles, or monomers, or collections of monomers into an agglomerate or 

aggregate. 

Aggregates are classified as particle-cluster aggregation (diffusion limited 

aggregation, DLA) or cluster-cluster aggregation (diffusion limited cluster aggregation, 

DLCA). DLA occurs when single monomers diffuse and stick to a growing, stationary 

cluster and have a fractal dimension (Df) of ~2.5. DLCA occurs when clusters diffuse and 

stick together (Df ~ 1.75 to 2.15) when they randomly come in contact and is known to 

occur in the atmosphere (Kulkarni et al., 2011a). Soot aggregates are formed during 

incomplete combustion via DLCA. The fractal dimension describes the relationship 

between linear and volumetric size (which is related to the primary particles that make up 

the aggregates) and is a quantitative description of the density of an aggregate (Kulkarni 

et al., 2011a). 

If the aerodynamic diameter of an aggregate is low and the fractal dimension is 

high, indicative of low density, high porosity aggregates, it is possible for these 

aggregates to deposit past inlets such as the PM10 pre-impactor and PM2.5 cyclone used 

by the TAPI (Chakrabarty et al., 2014; Kearney and Pierce, 2012). If these particles are 

present in the atmosphere they could potentially be harmful to organisms, as the mobility 

of the particles would allow them to penetrate deeper into the lungs than an equivalent 

spherical particle (Kleinstreuer and Zhang, 2009). However, if these aggregates are an 

instrument artifact, then PM2.5 measurements could be artificially biased high during 

conditions that facilitate the formation of aggregates within the sample line. 
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4. Chapter overview 

The following chapters address the four research objectives. Chapter 2 describes 

the development and deployment of a particulate monitor to quantify PM2.5, RM, and Pb 

isotopes and how it compares to other methods for measuring PM2.5 and RM. The third 

chapter applies Pb isotopic analyses and a suite of other measurements to understand 

elevated O3, RM, and sources of pollution to three sites in Nevada. Chapter 4 uses data 

from the particulate monitor in a statistical method to better understand the sources and 

physical processes affecting atmospheric pollutants in Nevada. In Chapter 5, the possible 

sources of anomalous PM collected on filters during the sample period are investigated. 

Chapter 6 summarizes the findings of each chapter and presents conclusions and 

recommendations for future research. 
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Abstract: 

The Teledyne Advanced Pollution Instrumentation (TAPI) Model 602 BetaPlus 

particulate system provides non-destructive analysis of particulate matter (PM2.5) mass 

concentration. This instrument was used to determine if measurements made with cation 

exchange membranes (CEM) were comparable to standard methods, the β attenuation 

method at two locations in Reno, NV, USA and an environmental β attenuation method 

and gravimetric method at Great Basin National Park, NV, USA. TAPI PM2.5 CEM 

measurements were statistically similar to the other three PM2.5 methods. Once this was 

established, the second objective, a destructive method for measurement of reactive 

mercury (RM=gaseous oxidized and particulate bound Hg), was tested. Samples collected 

at 16.7 liters per min (Lpm) for 24 h on CEM from the TAPI were compared to those 

measured by the University of Nevada, Reno-Reactive Mercury Active System 

(UNRRMAS, 1 Lpm) CEM and a Tekran® 2537/1130/1135 system (7 Lpm). Given the 

use of CEM in the TAPI and UNRRMAS, we hypothesized that both should collect RM. 

Due to the high flow rate and different inlets, TAPI data were systematically lower than 

the UNRRMAS. Correlation between RM concentrations demonstrated that the TAPI 

may be used to estimate 24 h resolution RM concentrations in Nevada. 

Keywords: Beta attenuation, PM2.5, UNRRMAS, Tekran, intercomparison 
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Introduction: 

Recent studies involving the standard instrument (Tekran 2537/1130/1135), 

applied across the globe, to measure gaseous elemental mercury (GEM), gaseous 

oxidized mercury (GOM), and particulate bound mercury (PBM), are problematic1-9. 

Concentrations are operationally defined, and in the case of GOM and PBM, no standards 

are available for use in calibration7, 10. Experiments with co-located Tekran 2537 

instruments measuring GEM have shown an average systematic uncertainty of about 10% 

and in some extreme cases up to 28%8, 11. The KCl-coated denuder in the Tekran 1130 

unit for measuring GOM collects different compounds of GOM (Hg II and possibly I) 

with different efficiencies, and has interferences with ozone and water vapor3, 5, 7-10. 

There is also evidence of uncertain PBM measurements due to evaporation, temperature, 

and interference with other atmospheric constituents7, 9, 12, 13. It is possible that Tekran 

measurements can be adjusted for the low concentration bias; however, calibration and 

improvement of measurement techniques and development of new sampling methods are 

critical6, 7, 14, 15. 

The 602 BetaPlus particulate system (Model 602, Teledyne® Advanced Pollution 

Instrumentation [TAPI]) is a unique instrument that allows collection of particulate 

matter (PM) on a filter analyzed for PM mass concentration non-destructively via β 

attenuation16. Knowledge of the chemical composition of PM sampled is not necessary 

for instrument calibration or measurements. 

 The β attenuation method allows analyses of PM mass concentration directly after 

a sample has been collected. Immediate analysis is important due to positive (e.g. 

adsorption of organic vapors) and negative (e.g. volatilization of organic aerosols) 
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sampling artifacts that occur with filter samples17-19. β attenuation instruments have been 

shown to measure 20-50% higher PM2.5 mass concentration than collocated FRM 

(Federal Reference Method) samplers, such as gravimetric methods, due to moisture 

accumulation on particulate matter during periods of high relative humidity (RH)20. Due 

to this, β attenuation instruments generally include heaters to maintain RH at certain 

levels during measurement. 

Negative artifacts are particularly important for comparison with gravimetric 

measurements (used in the Interagency Monitoring of Protected Environments 

[IMPROVE] network) where filters (Teflon) are weighed in temperature- and RH-

controlled laboratories prior to deployment and after a sample is collected21. But because 

filters are processed days to weeks after sample collection, volatilization of chemical 

compounds can occur (e.g. ammonium nitrate and ammonium chloride), and therefore 

lower measurements have been observed on filter samples that remain at room 

temperature for extended periods before processing19, 22. 

For this project, TAPI PM2.5 measurements using CEM were compared to 

established methods, gravimetric and beta attenuation, which use Teflon and glass fiber 

filters, respectively. The CEM is not the standard filter used in this method and the 

instrument had to be adjusted to correct for the pressure drop across the CEM that 

differed from that associated with the glass fiber filters. Comparisons were done to verify 

that PM2.5 collected with the CEM in the TAPI were comparable to other instruments 

typically used in the field. In addition, the non-destructive nature of β attenuation allows 

for post-processing of filter material to understand chemistry and potential sources of 
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PM2.5. Samples were post-processed for Hg concentrations. This system was tested as a 

potentially new way of measuring ambient GOM and PBM. 

There were two research hypotheses for this study: (1) if the CEM (instead of 

conventional glass fiber filters) in the TAPI measured PM2.5 accurately compared to 

established methods, then data collected on these filters could be used to quantify specific 

constituents present in the PM2.5 samples, in this case RM concentrations; and (2) due to 

different analytical configurations (i.e. flow rates, inlets, and sampling methods) RM 

concentrations measured by the different instruments will not be the same. Additionally, 

given the resolution of the TAPI measurement (24 h), RM and further post-processing of 

a second inlet filter for Pb isotope ratios (not presented here) could aid in elucidation of 

sources of pollution. 

PM2.5 data from the TAPI CEM measurements at the University of Nevada, Reno 

Agriculture Experiment Station Greenhouse Facilities (UNRG) were compared with 

those collected using a β Attenuation Monitor (BAM-1020, MetOne instruments, Inc. 

Grants Pass, OR, USA) located at the Washoe County Air Quality Management sites in 

Reno (Galletti and Reno; WCAQG, WCAQR). TAPI PM2.5 data from Great Basin 

National Park (GBNP), NV, USA were compared to an Environmental β Attenuation 

Monitor (EBAM-9800 Rev L, MetOne Instruments, Inc.) and gravimetrically measured 

PM2.5 data from the IMPROVE network (Table 1). 

Reactive Hg data from the TAPI CEM measurements collected at UNRG were 

compared with those collected using CEM in the University of Nevada, Reno-Reactive 

Mercury Active System (UNRRMAS) and a Tekran 2537/1130/1135 speciation system 

(Tekran Inc., Toronto, Canada). Data from the TAPI RM measurements collected at 
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Peavine Peak (PEAV), just outside of Reno, were compared with those collected using 

the UNRRMAS. Data were collected with a TAPI located at GBNP for six months. 

 

Measurement sites: 

See Table 1, the supplemental information (Fig. SI 1) and graphical abstract for 

more detailed information. 

 

Table 1: Measurement sites and measurements made at each, PM2.5 and RM median 

concentrations and range. 

Site 

Elevation (m) 

Lat (N), Lon (W) 
Code 

Measurements 

(n) 

Sample 

Period 

PM2.5 

(µg m-3) 

Median 

(range) 

RM 

(pg m-3) 

Median 

(range) 

Nevada Agricultural 

Experiment Station Greenhouse 

Facilities, Reno 

1371 

39.5374, 119.8044 
UNRG 

TAPI 131 
(n=387) 

04/2014, 

06/2014-

10/2015 

7 
(0.0-63) 

22 
(0.1-121) 

TAPI 135 

(n=114) 

11/2013, 

04/2014, 

05/2014
11/2014-

03/2015 

8 

(0.4-33) 
- 

UNRRMAS 
(n=42) 

06/2014-
10/2015 

- 
71 

(19-213) 

Tekran 
(n=310) 

06/2014-
10/2015 

- 
24 

(0.0-156) 

Peavine Peak, Reno 
2513 

39.5895, 119.9290 
PEAV 

TAPI 135 
(n=158) 

06/2014-
11/2014 

5 
(0.0-75) 

36 
(1.4-147) 

UNRRMAS 

(n=12) 

06/2014-

11/2014 
- 

129 

(48-288) 

Great Basin National Park 
2061 

39.0052, 114.2161 
GBNP 

TAPI 135 
(n=171) 

03/2015-

10/2015 

4 
(0.3-21) 

38 
(3-134) 

IMPROVE 

(n=72) 

3 

(0.8-19) 
- 

E-BAM 
(n=388) 

3 
(0.2-14) 

- 

Washoe County Air Quality 

Management Galletti 

1369 

39.5320, 119.7850 

WCAQ

G 

BAM 

(n=381) 

06/2014-

11/2014 

6 

(0.5-100) 
- 

Washoe County Air Quality 

Management Reno 

1368 
39.5251, 119.8077 

WCAQ
R 

BAM 
(n=698) 

06/2014-
present 

7 
(0.1-101) 

- 

 

 The University of Nevada, Reno Agricultural Experiment Station Greenhouse 

Facilities (UNRG, 1371 m, Table 1) is located in the Reno/Sparks metropolitan area 0.1 

km north of Interstate 80, 1.5 km west of U.S. Route 395, and 1.3 km northeast of 

downtown Reno (39.5374 N, 119.8044 W; see graphical abstract and Fig. SI 1). Reno is 
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located in a topographic bowl that experiences winter inversions and high convective 

mixing through the year that promotes down mixing of free tropospheric air23. 

 Peavine Peak, Reno (PEAV, 2513 m, Table 1) is located above tree level in a 

sage/steppe ecosystem at the summit, ~15 km east of the Sierra Nevada Mountain range 

and ~12 km northwest of UNRG (39.5895 N, 119.9290 W, see graphical abstract).  

Great Basin National Park, Nevada (GBNP) is located in eastern Nevada, close to 

the Utah border on the east side of the Snake Range (Table 1). The sampling site was 

located at the convergence of two valleys with airflow in the area influenced by solar 

radiation and upslope/downslope flows. Surrounding vegetation consists of 

pinyon/juniper forest vegetation (39.0052 N, 114.2161 W, see graphical abstract). The 

UNR/Nevada Division of Environmental Protection (NDEP) air-sampling trailer was 

located next to a National Park System operated IMPROVE site. 

The Washoe County Air Quality Galletti (WCAQG) site was located 0.6 km 

south of Interstate 80, 0.15 km east of U.S. Route 395, and 1.9 km southeast of UNRG. 

The Washoe County Air Quality Reno (WCAQR) site is located 1.3 km south of I-80, 2 

km west of U.S. Route 395 and 1.4 km southwest of UNRG. The WCAQ Galletti site, 

though closer to UNRG site with similar sources, went offline on November 18, 2014, 

which is why both the Galletti and Reno WCAQ sites were used here. 

 

Methods 

Particulate measurements 

The TAPI 602BetaPlus measured PM2.5 through two separate inlets. PM2.5 

concentrations were based on recovery of β particles emitted by 14C passing through the 
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CEM filter measured with a Geiger-Müller counter (see Fig. 1 and SI for more detail). 

Inlets consisted of a 10 µm pre-impactor and a 2.5 µm cyclone in series connected to 2.1 

and 1.7 m long anodized aluminum (25.4 mm outer diameter [O.D.]) sample inlets. 

Sample inlets had a condensation water trap just above a sample line heater used to 

maintain RH of the sample air stream. The sample line heater was preset to activate at 

40% RH and deactivate at 30% RH16. The instrument was set to make measurement 

through a CEM filter every 24h, and then the sample was rotated out and stored in a filter 

holder (unloader, Fig 1). This provided a means of storing samples for up to four weeks. 

These filters were then available for further processing. 

In this instrument, ambient air was collected for 24 h at a flow rate of 16.7 liters 

per min (Lpm) simultaneously on two filter mediums, 47 mm cation exchange 

membranes for RM (CEM; Pall Corporation, PN: MSTGS3R; pore size: 0.2 µm) and 47 

mm Teflon for Pb (data not discussed here). This differs from the typical deployment 

scheme that uses glass fiber filters. Thus, for both filters Teledyne needed to make 

adjustments and test for an adequate pressure drop across both membranes. Nylon 

membranes (0.2 µm pore, Cole Parmer) did not work. To further account for RH a 

reference CEM filter was automatically used throughout the sample process to allow for 

correction of humidity effects on the sample filter16. The manufacturer reported detection 

limit for PM2.5 measurements was 0.3 µg m-3 for 24 h16. 

Leak tests of the pneumatic circuit, span checks of the β source, and calibration of 

the flow rate system occurred automatically at the start of each sampling period for both 

sample lines. Sample inlets were cleaned monthly, and pumps rebuilt every 6 months 

following instructions from the instrument manual16. The TAPI is a Federal Equivalent 
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Method (FEM) and has been reported by the manufacturer to produce similar 

observations as the FRM methods16. Individual CEM filters were loaded into cartridges 

specific to the TAPI and then placed in the loader for sampling (Fig. 1) Filters were 

collected from the unloader filter holder every one to four weeks, depending on the ease 

of access to sites. Filters were removed from cartridges using clean tweezers, into a 125 

mL soda-lime glass jar and then stored in a freezer at -22 º C until analyzed. Data during 

maintenance or other data collection issues were not used. 
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Figure 1: Diagram of the Teledyne Advanced Pollution Instrumentation (TAPI) Model 

602 BetaPlus particulate system. The TAPI consists of two inlets with PM10 impactors and 

PM2.5 cyclones. The loader adds filters to the filter plate. After sampling and mass 

measurement, samples were moved to the unloader for collection. The filter plate holds 

six filters (F) at a time. The plate rotates as needed. Spy filters (S) consist of CEM 

material and were used to adjust for RH throughout sampling. Reference filters (R) 

consist of two different aluminum membranes with known surface mass density used for β 

calibration (β span test). Ambient air β counts (A) are measured through a hole in the 

filter plate. The mass measurement setup rotates between two filters and a spy filter while 

another two filters collect sample. Filters five and six are loaded and unloaded as 

necessary. 
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PM2.5 data collected using the TAPI with CEM was compared with three 

methods. 1) The automatic β attenuation monitor (BAM-1020) manufactured by MetOne 

Instruments is an FEM for measuring PM. Particulate matter is collected at 16.7 Lpm for 

24 h on glass fiber filter tape (pore size 0.2 µm). The BAM-1020 measured β particles 

emitted by 14C decay through the filter with a scintillation device located in a 

photomultiplier tube using the same theory as the TAPI above (also see SI). The BAM-

1020 consists of a smart heater that maintains RH, at the measurement point, at or below 

35% to address measurement biases due to RH20. The BAM-1020 has a reported 

detection limit of <1.0 µg m-3 for 24 h averaged measurements20. Washoe County Air 

Quality Management, following regulations for monitoring criteria pollutants set by the 

U.S. EPA, operated BAM-1020s.  

 2) The Environmental β Attenuation Monitor (EBAM-9800), a portable version of 

the BAM-1020, also uses β attenuation to collect β particles from a 14C source. A 

scintillation detector counted the β particles coming through the glass fiber filter tape 

(pore size 0.2 µm) at 16.7 Lpm. The E-BAM is not currently designated as a FEM for 

continuous PM2.5 monitoring, but it is designed to estimate FRM or FEM concentration 

measurements when operated according to the manual24. The E-BAM also had a smart 

heater that maintained RH, at the measurement point, at or below 45% to address 

measurement biases due to RH24. The system was set up to measure for 24 h. The 

reported detection limit of the E-BAM was <1.2 µg m-3 for 24 h averaged 

measurements24. Operational limitations, listed in the manual, include an elevated 

particulate concentration value during increased levels of RH. An E-BAM PM2.5 unit was 
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operated at GBNP by the Nevada Division of Environmental Protection (NDEP) during 

this study. 

3) The Clean Air Act requires the National Park Service and other Federal Land 

Managers to protect visibility in Class I areas. This includes National Parks and 

Wilderness Areas. IMPROVE is considered an FRM for PM2.5 measurements. According 

to IMPROVE data analyses, reconstructed particulate mass correlates well with 

gravimetric mass, and accounts for most of the fine mass, however about 20% of the 

missing mass could be nitrate or residual water on the particles25. Data from the inlet with 

a Teflon filter that collects most of the PM2.5 data were used here25. Ambient air was 

sampled each week on Wednesday and Saturday from midnight to midnight, local time. 

Sample filters are weighed in temperature- and RH- controlled laboratories before and 

after sampling, the difference being PM2.5 mass that is divided by sample volume to attain 

the air concentration21. 

 

Mercury Measurements 

Two TAPI instruments ID#s 131 and 135 were used. CEM in these instruments 

were used to quantify RM after PM2.5 measurements. Cation exchange membranes are 

generally used for separation purposes in aqueous phase applications26, 27; however, 

recent studies have used CEM for measurement of atmospheric Hg5, 28, 29. CEM in this 

study were a hydrophilic, polyethersulfone membrane with a neutral surface designed for 

proton exchange5. TAPI samples were collected every 24 h automatically by the 

instrument and stored. 
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 The UNRRMAS measured RM by continuously pulling sample air, at 1 Lpm, 

through two CEM filters in-line held in separate filter packs5, 15 An adjustable t-joint was 

used to adjust flow to 1 Lpm (Fig. SI 2). The flow rate was measured before and after 

sampling by a calibrated flow meter (Sierra Instruments Top Trak 820). Filters were 

collected every one to four weeks using clean tweezers, stored in individual 125 mL 

soda-lime glass jars until analyzed.  

CEM filters were digested and then analyzed using an automated Tekran 2600 

instrument following EPA method 1631 for total Hg concentrations. See SI for more 

detailed information. The method detection limit for the CEM (3 x standard deviation of 

blanks, excluding outliers using the 75th percentile as a specific value) was 0.3 ng15. 

 The Tekran Hg measurement system consists of separate units for analyzing GEM 

(2537), GOM (1130), and PBM (1135) concentrations as operationally defined. The 

Tekran 2537 is a semi-continuous Hg analyzer that uses gold amalgamation to pre-

concentrate ambient GEM on two gold traps sequentially for 5 min. Traps were heated to 

thermally desorb the GEM into a stream of inert carrier gas (argon) for analysis via cold 

vapor atomic fluorescence spectroscopy (CVAFS). The Tekran 2537 has a reported 

detection limit of 0.1 ng m-3 at a 5 min time resolution30. 

 The Tekran 1130 consists of a KCl-coated annular denuder that collected GOM 

from ambient air for 1 h. Mercury on the denuder is then desorbed at 500 ºC to remove 

GOM from the denuder as GEM and then analyzed by the 2537 unit. The Tekran 1135 

collected PBM on quartz chips in a pyrolyzer that was heated to 800 ºC to convert PBM 

to GEM, again analyzed by the 2537 unit. The desorption cycle was 1 h, creating a 2 h 

sample cycle. The reported detection limit for the 1130 and 1135 is 2 pg m-3 for a 2 h 
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sample30. There are significant concerns with measurements from these instruments as 

discussed in the introduction7. 

 

CEM tests 

To test for the potential loss of RM to the TAPI inlet, tests were performed to 

compare measurements made with shorter inlets using filter packs designed to hold two 

filters inline (Savillex, Eden Praire, MN, USA, P/N: 402-21-47-22-21-2) deployed 

adjacent to the TAPI inlet. Filter pack inlets consisted of a 2.5 cm length Teflon tube to 

reduce surface area for RM and PM2.5 to deposit. A vacuum pressure pump (Thermo 

Scientific, P/N: 420-1901) pulled ambient air through the two CEM in each filter pack at 

16.7 Lpm. An adjustable t-joint controlled flow, measured by a flow meter (BGI 

MesaLabs, Butler, NJ, USA, TetraCal). Filters were collected after 24 h using clean 

tweezers and stored in individual 125 mL soda-lime glass jars at -22 °C until analyzed. 

Experiments were performed to understand breakthrough behavior of RM on the 

CEM. Due to the 0.2 µm pore size of the filters, breakthrough will most likely consist of 

volatile GOM species, not PBM. Breakthrough on this system is therefore an effective 

breakthrough that will differ due to possible differences in chemical species with space 

and time. This effective breakthrough will be referred to as breakthrough for the 

remainder of the study. Breakthrough was calculated as the percent of total RM collected 

on the second filter in the UNRRMAS. Gustin et al. found this to be 25%15. This was 

checked using an automated calibrator developed by Lyman et al.14. This instrument 

allowed automatic permeation of two different RM compounds (HgCl2 and HgBr2) in 

ambient air with two CEM filters in two separate filter packs in-line. A vacuum pressure 
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pump pulled ambient air and the permeation flow through the filters at 1 Lpm for 

different lengths of time, creating different concentrations of RM. Breakthrough greater 

than 40% of the total RM collected was considered bad data most likely due to a ripped 

filter or a loose filter pack (see SI for more detail). 

 Retention of RM on the CEM over time was investigated by loading filters using 

the automated calibration system. Fifteen CEM filters were loaded with HgCl2 for 20 

seconds using the calibrator. Three filters were analyzed immediately to determine how 

much HgCl2 was collected on the filters. Three blank filters were also analyzed 

immediately. Three of the loaded filters were kept in jars for one week, and three for two 

weeks. Six inlets (ambient air at 1 Lpm) were setup to collect ambient air through three 

loaded filters for one week and three inlets for two weeks with unloaded back up filters 

(total of six loaded CEM and six back up unloaded CEM). The UNRRMAS system was 

setup to collect ambient air through three inlets for one week and three inlets for two 

weeks with back up filters (total of six ambient CEM and six back up CEM). This 

allowed us to compare ambient measurements to measurements from the loaded filters 

with ambient air pulled through for the same sample period (one week and two weeks). 

Filters were analyzed immediately after collection to determine RM concentrations. 

 

Meteorological data 

Meteorological data at the UNRG were obtained from the Western Regional 

Climate Center (WRCC) UNR Valley Road Weather Station in hourly and daily averages 

(Figure SI 1). The WRCC station was located on the north and opposite side of the 
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UNRG from the TAPI instruments and highways. Specific humidity (SH) was calculated 

using RH, temperature, and pressure from the WRCC and TAPI data (See Eq. SI 2). 

 

Data processing 

 Python, Microsoft Excel, the R program, and Adobe Illustrator provided data 

visualization and statistical analysis. ArcGIS provided map visualization. Although 

ambient air data in this study were not normally distributed (See Fig. SI 3 and Table SI 1, 

2, and 3), ANOVA tests compare means and are generally robust to the assumption of 

normality with large enough datasets. 

 

Results and Discussion 

Table 1 contains median and concentration ranges for PM2.5 and RM at all sites. 

 

Tests of the TAPI reconfiguration for PM2.5 measurements 

 ANOVA single factor tests for the TAPI instruments at UNRG compared to the 

BAM-1020 located at the WCAQ Galletti and Reno locations had p-values >0.05 

indicating that the PM2.5 data were similar. Data from TAPI 131 and 135, and the WCAQ 

stations were significantly correlated. Data from TAPI 131 and the WCAQ Galletti and 

Reno stations had r2 of 0.89 (p-value<0.05, n=141, Fig. SI 4a) and 0.84 (p-value<0.05, 

n=385, Fig. SI 4b), respectively. The TAPI 135 and the WCAQ Galletti and Reno had 

r2=0.83 (p-value<0.05, n=25, Fig. SI 4c) and 0.63 (p-value<0.05, n=114, Fig. SI 4d), 

respectively. 
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The TAPI 135 and the EBAM run by NDEP at GBNP means were similar 

(ANOVA p>0.05) and had good correlation (r2=0.63, p-value<0.05, n=120, Fig. SI 5). 

The TAPI 135 at GBNP and IMPROVE data had good correlation (r2=0.96, p-

value<0.05, n=59, Fig. SI 6) and similar means (ANOVA p-value>0.05). 

These PM2.5 similarities and correlations support the first hypothesis that the 

CEM in the TAPI measured PM2.5 accurately compared to established methods. The 

second hypothesis could then be tested with respect to whether data collected on these 

filters could be used to quantify different constituents present in the PM2.5 samples, such 

as RM. 

 

Comparison of the UNRG TAPI PM2.5 and RM data 

Flow rate and length of measurement (24 h versus 4 day) affected the RM 

concentrations on the TAPI system. When the TAPI operated for 24 h, RM 

concentrations were higher than when the TAPI operated at longer time intervals (three 

or four day periods, ANOVA, p-value<0.01, n=9, data not shown). Because of the 

apparent loss of RM over time, 24 h measurements were carried out for the remainder of 

the study.  

The two TAPI instruments showed good agreement measuring PM2.5 when both 

instruments were located at UNRG (r2=0.87, p-value < 0.05, n=77, Fig. SI 7a). The two 

instruments operated for 24 h sample periods in April 2014 (r2=0.80, p-value < 0.05, n=6, 

Fig. SI 7b) and in November 2014 to March 2015 (r2=0.88, p-value<0.05, n=71, Fig. SI 

7c). In addition, means for PM2.5 were similar (ANOVA p>0.05). 
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However, comparison of RM measured with the two instruments indicated poor 

correlation and different means (r2 of 0.28, p-value<0.05, n=57, single-factor ANOVA p-

value<0.05, Fig. SI 8). The TAPI 135 had higher RM concentrations (75% of the time, 43 

of 57 data points) compared to the TAPI 131. The greater RM concentrations for TAPI 

135 were attributed to positioning of the two TAPIs (Fig. SI 1). Due to power and space 

constraints, TAPI 135 was located in a temporary trailer between two of the UNR 

Greenhouse bays, where significant RM sources were handled (mine tailings)31. Wind 

speed did not affect the concentrations of TAPI 135 RM (Fig SI 9), however we believe 

this was due to the positioning of the TAPI 135 temporary trailer (Fig. SI 1). TAPI 131 

was located in a permanent trailer setup away from the UNRG bays and closer to the 

highway. Since the two TAPIs measured statistically similar PM2.5 concentrations, this 

indicated that GOM emanating from the surrounding area was influencing TAPI 135 

data. 

There was no correlation between all PM2.5 and RM data when both TAPIs (131 

and 135) were located at UNRG (Fig. SI 10 and 11). Spring and winter (Fig. SI 10b and 

e) had lower RM and PM2.5 concentrations compared to summer and fall (Fig. SI 10c and 

d) for TAPI 131. Limited data for TAPI 135 at UNRG showed a slight correlation 

(r2=0.24, p-value<0.05, n=77) between PM2.5 and RM in the winter (Fig. SI 11d). 

 

Comparison of the PEAV TAPI PM2.5 and RM data 

When TAPI 135 was moved to Peavine Peak, the high elevation site (2515 m) just 

outside the urban Reno area, the single factor ANOVA p-value was <0.05 when 

comparing the PM2.5 data from the instrument at UNRG, indicating that the means were 
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different. UNRG PM2.5 mass concentrations were weakly correlated (r2=0.33, p-

value<0.05, n=131, Fig. SI 12) and higher than concentrations at PEAV (84% of the time, 

110 of 131 data points), likely due to proximity to the two highways. On several 

occasions PEAV PM2.5 mass concentration was higher than UNRG (16% of the time, 21 

of 131 data points), likely due to transport of pollution aloft that does not reach UNRG15. 

RM concentrations were correlated between UNRG and PEAV (r2=0.5, p-

value<0.05, n=134, Fig. 2a). The single factor ANOVA p-value was >0.05 indicating the 

mean RM concentrations for the two datasets were similar15. 

There was no correlation between PM2.5 and RM data when located at PEAV 

(Fig. SI 13a). Summer and fall (Fig. SI 13b and d) at PEAV had similar patterns and 

ranges (summer PM2.5: 1-57 µg m-3 range, median=5, n=88; summer RM: 15-140 pg m-3 

range, median=41, n=88; fall PM2.5: 0-75 µg m-3 range, median=4, n=70; fall RM: 1-147 

pg m-3 range, median=27, n=73). When data points impacted by fires were removed (Fig. 

SI 13c and e) the PM2.5 range decreased and the RM was unaffected (summer PM2.5: 1-11 

µg m-3 range, median=5, n=64; summer RM: 16-140 pg m-3 range, median=47, n=60; fall 

PM2.5: 0-13 µg m-3 range, median=2, n=44; fall RM: 1-147 pg m-3 range, median=24, 

n=33). 

 

Comparison of the GBNP TAPI PM2.5 and RM data 

TAPI 135 was located at GBNP (2061 m) from March to October 2015. UNRG 

PM2.5 mass concentrations were typically > GBNP (82% of the time, 98 of 120 data 

points). The single factor ANOVA p-value was <0.01 indicating that PM2.5 mean 

concentrations for the two datasets were different and the two sites were not correlated 
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(r2=0.06, p-value<0.05, n=120, Fig. SI 14). Days with higher PM2.5 at GBNP occurred 

more frequently during March, April, and May than in June, July, and September (not 

enough data in August to compare) when compared to UNRG data. This may be due to 

long-range transport of aerosols associated with free tropospheric air movement in the 

spring23, 32. 

RM concentrations were correlated between UNRG and GBNP (r2=0.58, p-

value<0.05, n=118, Fig. 2b). The single factor ANOVA p-value was <0.05 indicating the 

mean RM concentrations for the two datasets were different. GBNP RM was higher 65% 

of the time (77 of 118 data points). GBNP’s location provides a unique setting for 

impacts by regional and global pollution23, 33. 

There was no correlation between PM2.5 and RM concentrations at GBNP (Fig. SI 

15a). In spring (Fig. SI 15b), GBNP PM2.5 ranged from 0.3 to 12 µg m-3 with a median of 

3 µg m-3 while RM ranged from 3 to 70 pg m-3 with a median of 12 pg m-3. Highest RM 

concentrations occurred in May. In summer (Fig. SI 15c), GBNP PM2.5 ranged from 1 to 

21 µg m-3 with a median of 4 µg m-3 while RM ranged from 17 to 134 pg m-3 with a 

median of 59 pg m-3. Days with the highest PM2.5 concentrations occurred at GBNP in 

the summer time during the month of August when smoke from wildfires in the region 

was impacting the site. If these points are removed (Fig. SI 15d), the PM2.5 range changed 

to 1 to 7 µg m-3 with a median of 4 µg m-3 while RM concentrations did not change. 
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a)  b)  

Figure 2: a) Linear regression for UNRG TAPI RM and PEAV TAPI RM and b) linear 

regression for UNRG TAPI RM and GBNP TAPI RM. 

 

CEM tests 

 Despite limited data here, observed trends are interesting and future investigation 

is needed. Means between the TAPI and two CEM filters in a single filter pack with 

shorter inlet (2.5 cm length Teflon tube with ambient air pulled through two CEM at 16.7 

Lpm) were statistically different (single factor ANOVA p-value<0.05). Relative percent 

difference between the TAPI RM and co-located inlet CEM filter RM concentrations 

ranged from 5 to 105% (n=7) with only one instance where the inlet CEM mean 

concentration had less RM than the TAPI on the same day (Fig. SI 16). Since the short 

inlet CEM had no PM 10 µm pre-impactor or PM 2.5 µm cyclone, we expected 

measurements from this system to be higher than the TAPI. 

Total RM collected with the short inlet setup increased with WRCC SH (r2=0.6, 

p-value<0.05, Fig. SI 17c), while breakthrough decreased with increasing WRCC SH 
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(r2=0.2, p-value>0.05, Fig. SI 17d). This indicated more efficient collection of RM by the 

short inlet CEM with higher SH. 

During this time TAPI RH measured at the inlet (external) and within the 

measurement container (internal) was used with external and internal pressure and 

temperature measurements to calculate SH. TAPI RM increased with internal SH 

(r2=0.53, p=value=0.06, Fig. SI 18a) and increased with internal temperature (r2=0.77, 

p=value<0.05, Fig. SI 18b). TAPI RM increased with external SH (r2=0.84, 

p=value<0.05, Fig. SI 18c) and increased with external temperature (r2=0.80, 

p=value<0.05, Fig. SI 18d). According to the TAPI RH measurements, the smart heater 

on the inlet never came on to adjust RH in the sample line. Due to the location of the 

WRCC UNRG meteorological station, the internal and external monitors on the TAPI 

were more informative for instrument behavior. These indicated that TAPI RM 

concentrations increased with SH and temperature. Increased uptake of RM by the CEM 

has previously been observed with increasing RH4. 

 Breakthrough tests using the calibration system (1 Lpm) to permeate RM 

compounds ranged from 0 to 27% of total RM collected (n=18, Fig. SI 19). However, 

permeations occurred for 20, 30, and 40 s and flushed for a total of 130, 140, and 160 s 

into ambient air whereas ambient measurements were made for 24 h to two weeks. Inlet 

tests with two membranes in one filter pack with a flow rate of 16.7 Lpm resulted in 

median breakthrough of 15% (range: 7 to 36%). 

Median breakthrough with the UNRRMAS at a flow rate of 1 Lpm was 25% 

(range: 0-40%) at UNRG and 13% (range: 2-26%) at PEAV. This may be due to different 

RM compounds at each location with different polarizability; Hg-sulfur and -nitrogen 
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compounds were prevalent at UNRG, while HgCl2/HgBr2 compounds were prevalent at 

PEAV15. 

 For GOM retention tests, ~0.2 ng of HgCl2 was permeated onto the filters. For a 

one-week period of ambient air measurements 0.2 ng is ~10% of the total RM collected. 

For a two-week period of ambient air measurements, that is ~5% of the total RM 

collected. Blanks were consistent and did not increase in RM when held in jars for one- 

and two-week periods. Loaded filters in jars averaged 0.25 ± 0.09 ng (mean ± 1 std, n = 

9) for the one-week period and 0.18 ± 0.01 ng (n = 4) for the two-week period. Total 

ambient RM for one-week was 2.3 ± 0.15 ng. Total ambient RM collected for 2 two-

week periods was 4.6 ± 0.3 and 3.6 ± 0.4 ng. Total RM from loaded filters with ambient 

air for the same periods were 3.8 ± 0.7, 6.8 ± 0.7, and 4.6 ± 0.2 ng. Expected total RM on 

the loaded filters after ambient air for these periods was 2.5, 4.9, and 3.8 ng. 

Breakthrough ranged from 4 to 10% of total RM collected and was not affected by loaded 

filters. These preliminary tests showed that RM was not gained or lost from loaded filters, 

held in jars, over one- and two-week periods. When loaded filters had ambient air drawn 

through, total RM was statistically higher (two sample t-test assuming equal variances for 

all three periods, p-value < 0.05) than expected based on the amount of RM permeated 

and the ambient air membrane concentrations collected at the same time, indicating that 

filters with loaded RM may take up more RM over time. Loaded filters did not affect 

breakthrough in this setup. More tests are needed to understand these processes. 

 

Comparison of the RM measurement methods 
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 Comparison of data collected at UNRG indicated that the Tekran speciation unit 

measured statistically different RM concentrations relative to the TAPI 131 over 24 h 

(two-factor ANOVA without replication; r2=0.02, p-value<0.05, n=216, Fig. 3a) and over 

weekly samples (two-factor ANOVA without replication; r2=0.06, p-value<0.05, n=28, 

Fig. 3b) corresponding to UNRRMAS sample periods. In the winter-spring (January to 

May 2014; n=73), Tekran RM concentrations were higher than those measured by the 

TAPI (two-factor ANOVA p-value<0.05), the median SH was 0.0046 kg kg-1 (RH=41%). 

In summer (June to August 2014; n=107) Tekran RM concentrations were lower than the 

TAPI (two-factor ANOVA p-value<0.05), the median SH was 0.0065 kg kg-1 (RH=33%). 

In fall to winter (September to December 2014; n=34) the two-factor ANOVA p-value 

was >0.05, indicating the means were similar for Tekran RM and the TAPI, the median 

SH was 0.0055 kg kg-1 (RH=36%). 

 

 

Figure 3: a) Scatter plot for UNRG TAPI 131 and Tekran RM for 24 h data and b) 

scatter plot for UNRG TAPI 131 and Tekran RM for weekly data corresponding to 

UNRRMAS sample periods. 

 

a) b) 
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 The TAPI 131 and the UNRRMAS at UNRG compare well in general trends of 

RM concentrations, however the UNRRMAS consistently measured higher 

concentrations than the TAPI 131 (p-value<0.05, n=31) and were significantly correlated 

(r2=0.52, p-value<0.05, Fig. 4a). This difference was also the case at PEAV where the 

UNRRMAS measured higher RM concentrations than the TAPI 135 (p-value<0.05, 

n=12) and were significantly correlated (r2=0.58, p-value<0.05, Fig. 4b). When the two 

datasets are combined the slope was 2.4, the intercept was 30 pg m-3 with an r2 of 0.57 

and a p-value<0.05. 

 

 

Figure 4: a) Linear regression for UNRG TAPI 131 RM and UNRG UNRRMAS RM 

weekly data and b) linear regression for PEAV TAPI 135 RM and the PEAV UNRRMAS 

RM weekly data. 

 

At UNRG the three Hg systems measured different RM concentrations overall. 

These differences changed depending on season. Theoretically, both the TAPI system 

and the UNRRMAS should collect RM on the CEM filters; however, the TAPI, as 

a) b) 
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configured, had the following collection issues: lost RM to the inlet and the CEM could 

have measured PBM or only certain forms of GOM. The two systems should be 

correlated as they both used CEM. The intercepts for the TAPI compared to the 

UNRRMAS at UNRG and PEAV were similar indicating that the UNRRMAS measured 

~30 pg m-3 of RM above the TAPI when the data from both sites were combined. These 

two sites have been shown to have different dominant forms of GOM (HgBr2/HgCl2 at 

PEAV and Hg-sulfur and -nitrogen compounds at UNRG15). These data support our 

second hypothesis that due to different analytical configurations, different RM 

concentrations were measured. The equation (r2 = 0.57) between the TAPI and 

UNRRMAS for both locations combined was: 

 

TAPI (pg m-3) + 30 (pg m-3) + breakthrough = ambient RM (pg m-3)             Eq. 1 

 

There was significant breakthrough on the CEM in both configurations 

(UNRRMAS and TAPI). The TAPI, with only one CEM filter inline, under collects 0 to 

40% of the total RM due to breakthrough. Breakthrough should be quantified at each 

sample location as it may differ from site to site depending on prevalent forms of RM and 

environmental conditions. 

 

Implications 

This study demonstrated that the TAPI using CEM measured PM2.5 statistically 

similar to FEM and FRM measurements, as well as between two TAPI instruments. Due 

to this similarity in PM2.5, differences in the RM concentrations were attributed to 
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proximity to local RM emissions from mining material and not differences between the 

two TAPI instruments. The advantage of the TAPI instrument for sampling RM is the 

higher temporal resolution compared to the UNRRMAS. Higher temporal resolution is 

important for understanding sources of pollution to an area. However, this method 

significantly underestimated RM due to high flow rate and inlet configuration, and 

possibly differences in RM compounds at different sites. In addition, there were seasonal 

differences associated with TAPI RM concentrations and those measured by the Tekran 

associated with SH. Higher SH (0.0065 kg kg-1) occurred in the summer when the TAPI 

measured higher concentrations relative to the Tekran RM and lower SH (0.0046 kg kg-1) 

in the winter-spring when the TAPI measured lower than the Tekran RM. Intermediate 

SH values (0.0055 kg kg-1) in the fall to winter occurred when the TAPI and Tekran RM 

measured statistically similar values. Thus, seasonal variation in meteorological 

conditions affected not only Tekran measurements, but also TAPI data. However, 

seasonal RM concentration ranges were not affected by the presence or absence of fires, a 

finding that supports previous studies indicating fires influence GEM and PBM, but not 

GOM34. This finding and the lack of correlation between PM2.5 and RM suggests that we 

are measuring primarily GOM. 

Preliminary GOM retention tests indicated that CEM do not gain or lose RM over 

time when held in jars. Loaded filters may retain more RM than expected, which may 

impact samples with high RM concentrations early in a sample period. A better 

understanding of breakthrough and retention of RM on the CEM along with the 

difference between the UNRRMAS and the TAPI could improve measurements while 

giving a higher temporal resolution. The CEM show higher collection efficiency for RM 
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than the Tekran in the UNRRMAS system and during high specific humidity in the TAPI 

system. Future studies should include more long-term behavior and breakthrough tests of 

the CEM. The calibrator system is a useful tool for permeating repeatable concentrations 

of different RM compounds for testing methods for measuring RM. Understanding the 

surface chemistry on the filters is also important for understanding the SH effects, the 

behavior of different RM compounds, and the retention of RM at different flow rates. 

 

Appendix A: Supplemental Information, 25 pages, 3 Tables, and 19 Figures. 
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 The lower USA EPA NAAQS for O3 (70 ppbv) will affect attainment in many 

areas. 

 24 h PM2.5 was collected on two filter types for Hg and Pb to trace O3 sources. 

 Trans-Pacific, regional, and local sources affected O3 in spring and fall. 

 Reactive Hg was negatively correlated with trans-Pacific air masses and Asian 

lead. 

 Comprehensive studies in Western USA are needed to understand complex 

dynamics. 
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Abstract: 

Ambient air particulate matter (<2.5 µm in diameter) samples were collected on 

two different filter types in 2014 and 2015 over 24 h periods and analyzed for reactive 

mercury (gaseous oxidized mercury + particulate bound mercury) concentrations and lead 

isotopes to determine sources of pollution to three sites in Nevada, USA. Two sites were 

located on the western edge of Nevada (Reno, urban, 1370 m and Peavine Peak, rural, 

high elevation, 2515 m); the third location was ~485 km east in rural Great Basin 

National Park, NV (2061 m). Reactive mercury samples were collected on cation 

exchange membranes simultaneously with lead samples, collected on Teflon membranes. 

Lead isotopic ratios have previously identified trans-Pacific lead sources based on 

the 206/207 and 208/207 lead ratios. Influence from trans-Pacific air masses was higher 

from March to June associated with long-range transport of pollutants. Spring months are 

well known for increased transport across the Pacific; however, fall months were also 

influenced by trans-Pacific air masses in this study. 

Western North American background ozone concentrations have been measured 

and modeled at 50 to 55 ppbv. Median ozone concentrations at both rural sites in Nevada 

were within this range. Sources leading to enhancements in ozone of 2 to 18 ppbv above 

monthly medians in Nevada included emissions from Eurasia, regional urban centers, and 

global and regional wildfires, resulting in concentrations close to the USA air quality 

standard. At the high elevation locations, ozone was derived from pollutants being 

transported in the free troposphere that originate around the globe; however, Eurasia and 

Asia were dominant sources to the Western USA. 
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 Negative correlations between reactive mercury and percent Asian lead, Northern 

Eurasia and East Asia trajectories indicated reactive mercury concentrations at the two 

high elevation sites were produced by oxidants from local, regional, and marine boundary 

layer sources. 

 

Keywords: 

PM2.5, MC-ICPMS, Long-range transport, Pollution sources, Complex terrain 
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1. Introduction: 

 Determining sources of pollution in complex terrains, such as the Western United 

States of America (USA), is difficult due to a combination of complicated meteorological 

conditions (e.g. complex planetary boundary layer processes, El Niño/Southern 

oscillation, and jet streams), stratospheric-tropospheric exchange (STE), and long-range 

transport of air masses. Moreover, determining sources of ozone (O3) is particularly 

complex as it is a secondary pollutant that forms downwind of primary pollution sources. 

These factors provide multiple challenges for regulators given the task of determining 

measures for meeting the National Ambient Air Quality Standard (NAAQS) for O3 in the 

Western USA (Cooper et al., 2015). This research was conducted with the purpose of 

understanding sources of O3 and reactive mercury (RM) to Nevada, USA in 2014 and 

2015, using lead (Pb) isotopes and a suite of other measurements. 

In the troposphere, O3 is a harmful oxidant that has detrimental effects on 

materials (such as rubber), leaves and therefore crops and forests, and mucous 

membranes and respiratory tissues in organisms (U.S. EPA, 2017). Ozone also affects 

climate change because it absorbs infrared radiation (Finlayson-Pitts and Pitts Jr, 2000a; 

Finlayson-Pitts and Pitts Jr, 2000b). The current USA Environmental Protection Agency 

(EPA) NAAQS is set to 70 parts per billion (ppbv) 8 h maximum (max) daily average 

(MDA8) concentration and determined based on the 3-year running average of the annual 

fourth-highest MDA8 (called the design value, U.S. EPA, 2017). The European Union 

standard is set to 60 ppbv MDA8 with 25 exceedance days averaged over 3 years 

(European Commission, 2016). Washoe County, in which two field sites in this study, 



83 
 

Reno and Peavine Peak reside, was out of attainment for O3 for the 2014 to 2016 

averaging years, due to several large fires during this time (EPA, 2017). 

Spring and summer maximums of O3 are often observed across the Northern 

Hemisphere due to increased photochemical reactions with accumulated NOx, increased 

STE, and long-range transport of precursors from other continents (Prinn, 2014; 

Vingarzan, 2004; Wilkening et al., 2000; Zhang et al., 2014). Springtime O3 

concentrations in mid-latitudes are also influenced by El Niño/Southern Oscillation, 

especially during strong El Niño events in which O3 is transported from the tropics to the 

extra-tropics (Lin et al., 2012; Rieder et al., 2013). Stratospheric-tropospheric exchange is 

greatest over North America in the spring, due to increased storm activity and a low 

tropopause allowing for better vertical down mixing from the stratosphere (Ambrose et 

al., 2011; Dempsey, 2014; Fine et al., 2015a; Johnson and Viezee, 1981; Langford et al., 

2012; Langford et al., 2015a; Langford et al., 2015b; Langford, 2017; Lin et al., 2015; 

Stohl et al., 2000; Tang and Prather, 2010; Viezee et al., 1983; Vingarzan, 2004). 

Summer in the Western USA also means increased wildfires, which can increase summer 

mean MDA8 O3 by 0.3-1.5 ppbv with episodic increases of 10-20 ppbv (Lu et al., 2016). 

Research has demonstrated that long-range transport of gases and particulate 

matter (PM) from Eurasia impacts air quality in the Northeast Pacific and North America 

(Bertschi and Jaffe, 2005; Christensen et al., 2015; Ewing et al., 2010; Fine et al., 2014; 

Jaffe et al., 1999; Jaffe et al., 1997; Jaffe et al., 2003; Lin et al., 2012; Price et al., 2004; 

Teakles et al., 2017; VanCuren, 2003; VanCuren et al., 2005; Weiss-Penzias et al., 2007; 

Weiss-Penzias et al., 2006). Trans-Pacific atmospheric pollutants are predominant in the 

spring due to increased storm, and frontal activity in Eurasia, facilitating transport of air 
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across the Pacific (Cooper et al., 2010; Knowland et al., 2015; Kunz and Speth, 1997; 

Vingarzan, 2004). Increased fires in Eurasia in the spring also add pollutants to the 

atmosphere for trans-Pacific transport (Cooper et al., 2010; Vingarzan, 2004). Total 

annual area burned of boreal fires in Eurasia has been shown to significantly impact O3 

and CO summer seasonal means, explaining 42 to 86% inter-annual variability across 

sites in Western North America (Jaffe et al., 2004). To understand contributions to North 

American O3 concentrations baseline and background levels need to be quantified. 

Baseline O3 is defined as that which does not include recent local emissions, but includes 

aged domestic emissions, while North American Background is a modeled value 

constructed with zero North America emissions that does include man made precursor 

sources outside of North America (U.S. EPA, 2017). In the Western USA, trans-Pacific 

O3 has been estimated with models and shown with observations to increase surface O3 

concentrations by 3 to 15 ppbv and contributed to exceedances of 70 ppbv springtime 

MDA8 O3 concentrations (Fiore et al., 2002; Fiore et al., 2014; Jacob et al., 1999; Jaffe et 

al., 2004; Jaffe et al., 2003; Langford et al., 2015b; Lin et al., 2012; Vingarzan, 2004). 

This influence will increase as Asian countries continue to develop, affecting Western 

USA, rural O3 by ~0.5 ppbv/yr (Christensen et al., 2015; Cooper et al., 2010; Gratz et al., 

2015).  

Higher O3 concentrations have been measured at high elevation sites in Western 

USA, compared to nearby lower elevations, due to layers of polluted trans-Pacific air, 

lofting of pollution produced in California into the free troposphere, and stratospheric 

intrusions (Brodin et al., 2010; Burley and Bytnerowicz, 2011; Fine et al., 2015a; Fine et 

al., 2015b; Fiore et al., 2002; Gustin et al., 2015b; Jaffe et al., 2003; Lin et al., 2012; 
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VanCuren, 2015; Vingarzan, 2004). Sites in California and Nevada have shown a strong 

relationship between site altitude and maximum (max) 1 h O3 indicating an increase of 13 

ppbv for every km of elevation in the summer, and 7 to 10 ppbv/km in other seasons 

(Fine et al., 2015b). Previous data and models indicated that high elevation, rural sites in 

Western USA, such as Great Basin National Park, NV, exceeded the NAAQS design 

value concentration and will continue to exceed if sources and processes remain constant 

or increase (Fine et al., 2015a; Lin et al., 2012). 

Mercury (Hg) is a global pollutant and neurotoxin that can negatively affect 

ecosystems as it bio-accumulates in the food web. The Global Mercury Assessment, 

updated in 2015, estimated that ~40% of global anthropogenic Hg emissions come from 

East and Southeast Asia generally in the form of gaseous elemental Hg (GEM, 

AMAP/UNEP, 2015; Jaffe et al., 2005). Reactive Hg (RM), considered to be gaseous 

oxidized Hg (GOM) and particulate bound Hg (PBM), has a shorter residence time in the 

boundary layer (a day to a week, Schroeder and Munthe, 1998) compared to GEM (6 

months to a year). GEM is considered a global pollutant that is transported far from 

sources and can then be oxidized by a variety of gases and deposited (Weiss-Penzias et 

al., 2003). RM will undergo reactions or deposit close to sources and can also be formed 

in dry upper altitude air due to photo-oxidation of GEM near the tropopause and in the 

stratosphere (Lyman and Jaffe, 2012). Positive correlations between RM and O3 have 

been previously observed and interpreted as photo-oxidation in upper altitude air (Weiss-

Penzias, 2015). It has also been demonstrated that RM dry deposition is higher at higher 

elevation sites in California and Nevada (Huang and Gustin, 2015). 
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The Minamata Convention, adopted in 2013, commits signatories to better 

understanding atmospheric Hg sources and to reducing emissions to the environment 

(UNEP, 2017). RM measurements are currently under review due to uncertainties in 

widely used, commercially available, measurement methods (Gustin et al., 2015a; Gustin 

et al., 2013; Huang and Gustin, 2015; Huang et al., 2013; Jaffe et al., 2014). A better 

understanding of the atmospheric cycling of Hg, the main pathway into environments, is 

necessary for fulfilling the goals of the Minamata Convention. 

Lead isotope analysis has previously been used to identify sources of pollution 

(Ewing et al., 2010), and specifically O3, to the Western USA (Christensen et al., 2015). 

Using Pb isotopic ratios in particulate matter, collected on filters, provides a means of 

identifying sources. As air masses move away from sources, pollutant chemistry changes 

but Pb isotope ratios do not. There are systematic, geographic differences in Pb isotopic 

compositions of the four stable isotopes; 208Pb (52%), 207Pb (23%), 206Pb (24%), and 

204Pb (1%), of which the three heaviest are produced from radioactive decay that occurs 

over billions of years (Komárek et al., 2008). Pb associated with Asian aerosols has been 

shown to have an isotopic composition distinct from Pb in Western North America 

(Bollhöfer and Rosman, 2002; Ewing et al., 2010), specifically, a higher proportion of 

208Pb in 208Pb/207Pb versus 206Pb/207Pb isotopic ratios (Bollhöfer and Rosman, 2001). 

Analysis of PM collected on filters for Pb isotope ratios can therefore elucidate where air 

masses originate. 

From 2001 to 2009, coal combustion was the largest emission source of Pb in 

China (Li et al., 2012). The USA is a net exporter of coal, of which ~20% goes to Asia 

(2014: exports = 88 billion kg, imports = 10 billion kg, 2015: exports = 67 billion kg, 
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imports = 10 billion kg of coal, U.S. Energy Information Administration, 2017). 

Although imported coal is a small amount of the total coal used in the USA (<2%) or in 

Asia (<0.5%), transport in isolated parcels of air (Fine et al., 2015b) may complicate the 

Pb isotopic signature by adding isotopes that are not representative of the source region 

(U.S. Energy Information Administration, 2017). In addition, some coals are low in Pb 

and will therefore, not have discernable isotopic signatures. 

In 2011, data collection for the Nevada Rural Ozone Initiative (NVROI) was 

initiated. The goal of this study was to understand sources of O3 to the complex terrain 

and rural areas of the Western USA (Gustin et al., 2015b). This component of the project 

investigated the use of aerosol concentration and chemistry to understand sources of air 

masses. Three of the NVROI sites housed modified Teledyne Advanced Pollution 

Instrumentation (TAPI) particulate measurement systems to quantify particulate matter 

<2.5 µm in diameter (PM2.5), RM (GOM+PBM) concentrations, and Pb concentration 

and isotopes. Multiple sources of data were used to understand sources of pollutants in air 

masses delivered to Nevada in summer through fall 2014 and spring to fall 2015. Given 

that Nevada, with the exception of Reno and Las Vegas, is a rural state with complex 

terrain, high elevation, and limited sources of O3 precursors, we hypothesized a 

component of the O3 and RM was from long-range transport across the Pacific Ocean. 

 

2. Site descriptions: 

Data were collected at three sites with two sites being simultaneously operated at a 

time. The goal was to understand sources of O3 to individual locations. More detailed site 

descriptions are provided in Fine et al. (2015a), Gustin et al. (2015b), Miller et al. (2015), 
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and in Table 1. The Nevada Agricultural Experiment Station Greenhouse Facility 

(UNRG; 1371 m, Table 1) is located at the Valley Road field laboratory and Greenhouse 

complex of the University of Nevada, Reno (UNR) in the topographic bowl of the 

Reno/Sparks metropolitan area. Data collected from April 2014 to October 2015 were 

used from this site. The Peavine Peak (PEAV; 2515 m, Table 1) site is situated above the 

tree line at the peak summit, just east of the Sierra Nevada Mountains (~15 km) and 

northwest of Reno (~12 km). Data from June to November 2014 were used from this site. 

The third site, Great Basin National Park (GBNP; 2060 m, Table 1), is located ~485 km 

due east of Reno in eastern NV at the Utah border. The measurement station is located on 

the east side of the Snake Range in a forested area, mainly pinyon-juniper, near the 

Lehman Visitor Center where two canyons merge in a slight topographic bowl. Data were 

collected from March to October 2015 at this location. 

 

Site Code 
Elevation 

(m asl) 
Measurements Other 

Latitude 

(N) 

Longitude 

(W) 

Great Basin National Park, 

NV, USA 
GBNP 2060 

TAPI, CO, SO2, 

NOx, NOy, Met, 

E-BAM 

IMPROVE 

(speciated PM2.5), 

CASTNET (O3) 

39.0050 114.2161 

Nevada Agricultural 

Experiment Station 

Greenhouse Facilities, Reno. 

NV, USA 

UNRG 1371 
TAPI, O3, CO, 

NOx 

WCAQ (Reno3, 
O3, CO, NOx), 

WRCC (Met) 

39.5374 119.8044 

Peavine Peak, Reno, NV, USA PEAV 2515 
TAPI, O3, CO, 

Met 
 39.5895 119.9290 

Table 1: Measurement sites and the measurements made at each. Abbreviations are 

explained under the table with sample resolution in parentheses. 
asl – above sea level 

CASTNET - Clean Air Status and Trends Network (1 h) 

CO – carbon monoxide (1 h) 
E-BAM – Environmental Beta Attenuation Monitor (PM2.5, 1 h) 

IMPROVE - Interagency Monitoring of Protected Visual Environments (24 h once every 3 days) 

Met – meteorological data (1 h) 
NO – nitrogen oxide (1 h) 

NOx – nitrogen oxide compounds (1 h) 

NOy – total reactive nitrogen (1 h) 
SO2 – sulfur dioxide (1 h) 

TAPI – Teledyne Advanced Pollution Instrumentation Model 602 BetaPlus PM2.5 monitor (24 h) 

WCAQ – Washoe County Air Quality (1 h) 
WRCC – Western Regional Climate Center (1 h) 
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3. Methods: 

Data from multiple platforms (described below) were collected for each site at 

hourly, 24 h, or once daily resolution and compared at 24 h, 1 h max values, or 8 h max 

running averages. Filters collected using two TAPI BetaPlus particulate measurement 

systems for PM2.5 samples were post-processed for Pb isotopic composition and RM 

concentrations. Statistical tests were performed to illustrate differences between sites and 

to identify significant relationships. Trajectory analyses were applied to identify possible 

sources of air masses. Specific periods based on exceedances of monthly medians were 

then chosen for more in depth analysis. 

 

3.1 Teledyne Advanced Pollution Instrumentation (TAPI) BetaPlus Particulate Monitor 

Two TAPI BetaPlus particulate measurement systems (Model 602, San Diego, CA, 

USA) were used to collect PM2.5. RM concentrations, and Pb concentrations and isotope 

ratios were determined. The TAPI BetaPlus particulate measurement system was modified 

to collect RM on 47 mm cation exchange membranes (CEM; Pall Corporation, PN: 

MSTGS3R) and Pb on 47 mm Teflon (Pall Corporation, PN: EW-36329-08) for 24 h. 

Mass concentration was measured using beta attenuation, leaving filters intact and 

available for further processing (see SI and Gustin (2016) for more detail). Pierce and 

Gustin (2017) showed that PM2.5 measurements using CEM filters were statistically 

similar to Federal Reference (FRM) and Federal Equivalent methods (FEM). At 24 h the 

TAPI BetaPlus particulate measurement system has a PM2.5 detection limit of 0.3 µg m-3 

(TAPI, 2012). 
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3.2 Lead isotope analysis 

 Teflon filters were processed at Lawrence Berkeley National laboratory (LBNL) 

in class 100 laminar fume hoods, following Ewing et al. (2010) and Christensen et al. 

(2015) and analyzed with a multi-collector inductively coupled plasma mass spectrometer 

(MC-ICPMS Neptune). See SI for details on sample processing. 

 Percent of Pb attributed to Asia was calculated using methodology developed in 

Ewing et al. (2010) and applied in Christensen et al. (2015). Wintertime aerosol samples 

from the Chabot Observatory in California define the “California Array” (blue line and 

blue squares, Fig. 1, slope = 1.22). Chinese aerosol and loess data define the “Asia 

Array” (black line and black triangles and squares, Fig 1, slope = 1.09). The horizontal 

divergence (Δ208Pb) from California array 208Pb/207Pb isotope data towards Asia array 

208Pb/207Pb isotope data at a specific observed 206Pb/207Pb isotope value is calculated. The 

Δ208Pb is then divided by the total distance between the two arrays to determine the 

percent of the Pb that can be attributed to Asian sources (Ewing et al., 2010). Data from 

previous studies collected from aerosol and ore samples were used to compare to samples 

collected in this study. Aerosol samples from different years may have differing isotope 

ratios over time and direct isotopic composition comparison of ores to aerosols, due to 

source and supplier differences, is difficult, however these provide an estimate of isotopic 

ratios in different areas. 

 

3.3 Ozone 

Hourly O3 concentrations were measured at all three sites using UV absorption 

instruments. O3 measurements at PEAV were made using a TAPI T400E UV absorption 
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O3 analyzer. UNRG had a Thermo 49i (Thermo Fisher Scientific, Inc. Franklin, MA, 

USA). When O3 data were missing from UNRG it was supplemented with data from a 

TAPI 400E at the Reno site (Reno3, site ID: 32-031-0016, 301A State St. Reno) of 

Washoe County Air Quality Management (WCAQ). At GBNP, O3 data were collected 

using a TAPI T400E UV absorption O3 analyzer operated by the Nevada Department of 

Environmental Protection (NDEP) and a Thermo 49c operated by the National Park 

Service (NPS) Clean Air Statuses and Trends Network (CASTNET).  

WCAQ and UNRG O3 data were statistically different (ANOVA p<0.05), but 

positively correlated (r2 = 0.72, p<0.05), this is due to distance from a highway 

(manuscript in preparation). Due to the positive correlation, variations in daily means 

compared to monthly medians at WCAQ reflect the overall trends in the valley housing 

Reno, if not the specific concentrations at UNRG, and were used to supplement when 

UNRG data were unavailable. At GBNP, CASTNET and NDEP O3 were statistically 

similar and therefore positively correlated (ANOVA p>0.05, r2 = 0.93, p<0.05), 

CASTNET data supplemented periods when NDEP data were not available. 

Here we discuss MDA8 as the max 8 h average for a day, but do not compare to 

the MDA8 NAAQS design value (3-year running average of the annual fourth highest 

MDA8). Ozone data were compiled and compared with other data as 24 h daily averages, 

MDA8 values for each day, and the max 1 h O3 values for each day. The second two 

values are more likely to capture transport events that may occur within a shorter time 

scale than a 24 h daily average and are not affected by the smoothing effect that 24 h 

daily averages have on concentrations (Fine et al., 2015b; Langford, 2017). 
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3.4 Mercury 

CEM filters were digested and then analyzed using an automated Tekran 2600 Hg 

analyzer following EPA method 1631 for total Hg concentrations. The RM method 

detection limit was 0.3 ng. See SI and Pierce & Gustin (2017) for further detail. 

 

3.5 Auxiliary Gas and Meteorological data 

 Measured auxiliary gases are listed in Table 1 and described in Fine et al. (2015a), 

Gustin et al. (2015b), and Miller et al. (2015), as is meteorological data. All gas 

instruments at PEAV and GBNP (NDEP) were trace level. Vertical potential temperature 

from atmospheric balloon soundings were used to calculate the height of the atmospheric 

boundary layer, termed the atmospheric boundary layer height (ABLH). This data came 

from soundings released from the National Weather Service in Reno, NV (REV) at 16:00 

PST. Late afternoon vertical profiles illustrate the maximum height that the ABLH can 

potentially reach. Data collected by other organizations, including Washoe County Air 

Quality Management (WCAQ), Western Regional Climate Center (WRCC), Interagency 

Monitoring of Protected Visual Environments (IMPROVE), and the Clean Air Status and 

Trends Network (CASTNET) monitoring networks were also used (Table 1). 

 

3.6 Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model 

The NOAA Air Resources Lab HYSPLIT v.4 model (Draxler and Hess, 1997) 

using the 1° Global Data Assimilation System (GDAS, 23 vertical layers) from the 

National Center for Environmental Prediction (NCEP, 

http://ready.arl.noaa.gov/archives.php) was used to compile 240 h back trajectories from 
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all three sites. Back trajectories were initiated every 4 h (00:00, 04:00, 08:00, 12:00, 

16:00, 20:00 PST) from 9 points within a 0.5°x0.5° horizontal grid centered on each site 

with four arrival heights (500, 1000, 1500, 2000 m agl), generating 216 trajectories a day, 

or 51,840 hourly trajectory points. Back trajectories give a general indication of a source 

region and are less useful for vertical motion: however, generating large numbers of 

trajectories gives a general representation of air mass transport (Stohl et al., 2002; Stohl 

et al., 2003; Weiss-Penzias et al., 2006). 

Trajectory residence times (TRT) were calculated as the percent of the total 

hourly trajectory points (out of 240 h) that a trajectory resided in a 3 dimensional source 

box. There were five defined source boxes (see TOC graphic and SI Table 1): Northern 

Eurasia (N. Eurasia), East Asia (E. Asia), San Francisco, CA (SF), Los Angeles, CA 

(LA), and Las Vegas, NV (LV). Trajectory resident times for air parcels occurring <3 

km, total (<10 km), and >3 km were used for N. Eurasia and E. Asia source boxes. Due 

to difficulties the HYSPLIT model has with resolving boundary layer to free troposphere 

exchange in distant source boxes, <3 km, total (<10 km), and >3 km trajectory residence 

times were used to represent air masses in direct and indirect contact with these source 

regions (Stohl, 1998; Weiss-Penzias et al., 2006). Trajectory points <1 km over SF, LA, 

and LV were used as indicators of sources from those areas. Trajectory residence times 

>3 km over SF were used as an indicator of transport from over the marine boundary 

layer (MBL) and of high-altitude air, where China has been shown to be a dominant 

source of O3 precursors (Cooper et al., 2011). TRT percentages were used in the Pearson 

correlation (R), discussed in section 3.8, to determine influence from the different source 

boxes on the three measurement sites. 
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3.7 Moderate Resolution Imaging Spectroradiometer (MODIS) 

 Fire Radiative Power (FRP) retrievals from the Terra (morning overpass) and 

Aqua (afternoon overpass) satellites were used as an indicator of fire frequency and 

intensity from the N. Eurasia source box and from Western North America including 

Canada (latitude: 30 to 60 and longitude: -124 to -100°). FRP retrievals from the two 

satellites were averaged for each day. Daily number (n), minimum (min), maximum 

(max), mean, standard deviation, and median were calculated for the sample periods. FRP 

days were chosen based on the first and last day during a 10-day back trajectory in which 

a trajectory resided in the N. Eurasia source box or Western North America. If a 

trajectory was within the Western North America bounds for 240 h, the middle day in 

that time was also used. 

 

3.8 Data analyses: 

 Data were processed using Python, the R program, Matlab, and Excel. ESRI 

ArcGIS was used for map creation. Monthly means, daily means, and maximums were 

calculated from hourly data for each sample period. Data were used if >50% of the data 

were available. When NVROI data were unavailable, they were supplemented by other 

data sources (WCAQ, CASTNET). Monthly means were compared using ANOVA (two 

factor without replication) to determine if the two sites differed. Pearson correlation was 

used to assess correlation and significance for variables for the sample period at each site 

and for observations at the sites for days with Pb data using daily means for each 

variable. Statistical tests were considered significant at α<0.05, unless otherwise noted. 
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4. Results: 

During both study periods, median PM2.5 concentrations were higher at the urban 

location than at PEAV or GBNP (Table 1). Median concentrations of RM were higher at 

GBNP than UNRG. The higher elevation locations (PEAV and GBNP) had higher 24 h 

average O3 compared to UNRG. PEAV had higher max 1 h and MDA8 O3 than UNRG. 

Average Δ208 Pb for all samples was 7.2±4.7 with an average uncertainty of 0.12±0.080, 

which corresponds to an average % Asian Pb of 29±19% and an average uncertainty of 

0.47±0.32%. Uncertainty for individual measurements can be found in SI Table 2. Pb 

concentrations were less than the concentration used for the NAAQS design value (0.15 

µg m-3 or 150 ng m-3) at all sites. 
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Table 2: Sample statistics for a) PEAV and UNRG June to November 2014 and GBNP 

and UNRG March to October 2015 and b) for all sites June to October. Site means ± one 

standard deviation, medians, number of days (n), and range of data. 

a) All data 

Site Statistics 
PM2.5 

(µg m-3) 

RM 

(pg m-3) 

O3 

(ppbv) 

Max 1 h 

O3 

(ppbv) 

MDA8 

O3 

(ppbv) 

Total Pb 

(ng m-3) 

Asian Pb 

(ng m-3) 

% Asian 

Pb 

PEAV 

2014 

Mean ± StDev 5.94±6.1 43±27 48±7.2 56±8.4 53±7.6 0.34±0.15 0.090±0.089 26±15 

Median 

(n) 

4.9 

(141) 

38 

(153) 

49 

(158) 

56 

(158) 

53 

(158) 

0.32 

(19) 

0.065 

(19) 

23 

(19) 

Range 0.0-42 1.4-147 25-69 40-80 39-78 0.13-0.72 0.0025-0.38 0.51-58 

UNRG 

2014 

Mean ± StDev 8.9±7.7 41±23 26±10 46±14 40±12 0.76±0.61 0.24±0.43 24±17 

Median 

(n) 

7.1 

(133) 

34 

(132) 

26 

(117) 

48 

(117) 

42 

(117) 

0.60 

(19) 

0.11 

(19) 

21 

(19) 

Range 0.0-63 8.4-106 2.6-49 7.4-77 13-65 0.20-3.1 -0.024-1.9 -2.4-63 

 

GBNP 

2015 

Mean ± StDev 4.4±2.9 45±33 48±7.2 56±8.0 53±7.5 0.26±0.13 0.081±0.071 31±22 

Median 

(n) 

3.8 
(171) 

38 
(174) 

47 
(169) 

54 
(169) 

52 
(169) 

0.25 
(23) 

0.062 
(23) 

30 
(23) 

Range 0.30-21 2.5-134 32-81 35-82 35-82 0.12-0.70 -0.069-0.27 -28-74 

UNRG 

2015 

Mean ± StDev 6.7±3.9 30±24 36±11 58±12 52±12 1.5±1.2 0.69±0.88 35±23 

Median 

(n) 

6.1 
(162) 

22 
(154) 

34 
(194) 

57 
(194) 

50 
(194) 

1.1 
(11) 

0.34 
(11) 

25 
(11) 

Range 1.7-35 1.5-121 15-71 29-92 25-85 0.35-4.4 0.032-2.9 9.0-74 

b) June-October 

Site Statistics 
PM2.5 

(µg m-3) 

RM 

(pg m-3) 

O3 

(ppbv) 

Max 1 h 

O3 

(ppbv) 

MDA8 

O3 

(ppbv) 

Total Pb 

(ng m-3) 

Asian Pb 

(ng m-3) 

% Asian 

Pb 

PEAV 

2014 

Mean ± StDev 10±6.6 48±26 50±6.6 58±8.1 55±7.5 0.33±0.13 0.070±0.060 23±14 

Median 

(n) 

5.3 
(105) 

42 
(117) 

50 
(119) 

57 
(119) 

54 
(119) 

0.33 
(16) 

0.06 
(16) 

20 
(16) 

Range 0.80-42 1.9-140 34-69 42-80 39-78 0.13-0.63 0.0-0.26 0.51-58 

UNRG 

2014 

Mean ± StDev 9.6±8.7 48±22 27±9.9 47±15 41±13 0.62±0.24 0.13±0.12 21±15 

Median 

(n) 

7.4 

(98) 

44 

(98) 

29 

(86) 

48 

(86) 

42 

(86) 

0.59 

(16) 

0.10 

(16) 

21 

(16) 

Range 0.0-63 8.4-106 8.9-49 19-77 14-65 0.20-1.0 -0.024-0.40 -2.4-47 

 

GBNP 

2015 

Mean ± StDev 4.76±3.4 64±28 48±7.9 56±8.7 54±8.2 
0.25±0.09

0 
0.080±0.055 32±18 

Median 

(n) 

4.1 

(107) 

59 

(107) 

47 

(120) 

54 

(120) 

52 

(120) 

0.26 

(19) 

0.062 

(19) 

26 

(19) 

Range 1.1-21 17-134 32-81 35-82 35-82 0.12-0.46 0.022-0.21 6.68-74 

UNRG 

2015 

Mean ± StDev 7.9±5.1 50±20 32±6.8 53±9.6 46±7.9 1.2±0.88 0.42±0.56 27±21 

Median 

(n) 

6.7 

(73) 

49 

(73) 

31 

(122) 

53 

(122) 

46 

(122) 

0.82 

(8) 

0.24 

(8) 

21 

(8) 

Range 2.7-35 21-121 19-44 34-85 29-65 0.35-2.4 0.032-1.7 9.0-74 

GBNP – Great Basin National Park, NV, USA 
Max 1 h O3 – maximum 1 h average of each day 

MDA8 O3 – maximum daily average (8 h) for each day 

O3 – ozone 
Pb - lead. 

PEAV – Peavine Peak, Reno, NV, USA 

PM2.5 – particulate matter <2.5 µm in diameter 
ppbv – parts per billion by volume 

RM – reactive Hg 
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UNRG – University of Nevada, Reno, Greenhouse, USA 

 

4.1 PEAV and UNRG 2014 

During summer and fall (June to November 2014) when TAPI BetaPlus particulate 

measurement systems were located at UNRG and at PEAV, O3 monthly means and 

monthly MDA8 O3 means were statistically higher at PEAV for all months. PM2.5 and 

RM monthly means were not statistically different between the two sites. Chemical 

composition of RM (except for mid-to-late June) at UNRG were primarily nitrogen and 

sulfur compounds, while at PEAV compounds were primarily halogen based Hg 

compounds with periodic appearances of Hg-O, nitrogen-, and sulfur-based compounds, 

indicating the sites were often isolated from each other. 

Daily PM2.5 mass concentrations were statistically higher at UNRG. CO monthly 

means were lower at PEAV. Percent Asian Pb for the two sites was similar, median Pb 

mass concentration was higher at UNRG. Wind speed monthly means were higher at 

PEAV. Monthly mean temperature was lower at PEAV, while RH monthly means were 

not statistically different between the two sites. These comparisons reflect the fact that 

PEAV is a high elevation location impacted by the free troposphere and that UNRG is 

adjacent to a highway, where increased levels of PM2.5, Pb, and other pollutants (e.g. CO, 

NOx, SO2) are experienced. 

Diel patterns of CO at PEAV (SI Fig. 1) indicate upslope convective mixing; 

increasing CO by ~60 ppbv in the afternoon. There was a small increase in O3 (by ~2 

ppbv) at this time as well. Positive correlation between O3 and <1 km trajectories from 

San Francisco and negative correlation with RH indicate that for this period, regional air 

from the west (prevailing wind direction) transported O3 (SI Tables 3-6). Positive 
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correlations between O3 and ABLH and the diel patterns indicate impacts from upslope 

flow of pollutants from Reno, NV as the valley warmed (SI Fig. 1). However, given the 

small increase in O3 (3%), PEAV likely had access to O3 aloft and limited photochemical 

production of O3, indicating the Reno/Sparks valley was not the primary source. Long-

range transport and southern Nevada did not increase daily averages of O3. Max 1 h and 

MDA8 O3 often occurred with increased pollutants (PM2.5 and CO), and drier, high, fast 

moving conditions, indicating long-range transport events occurred at a shorter time scale 

than 24 h. 

RM at PEAV (SI Table 3) was positively correlated with O3 and negatively 

correlated with N. Eurasia trajectories. This indicates the importance of local and regional 

sources of oxidants for formation. The >3 km trajectories from San Francisco and 

halogenated RM species (HgBr2 and HgCl2) measured at PEAV indicate that reactions in 

the marine boundary layer during this time influenced this site (Gustin et al., 2016; 

Timonen et al., 2013). Positive correlations between O3 (daily average, max 1 h, MDA8 

[p<0.1]), temperature, pressure, and ABLH also indicate that local sources could 

periodically influence RM, bringing up pollutants from the Reno/Sparks valley. 

For the days with Pb isotope analysis at PEAV (19 days, SI Tables 7-11), % 

Asian Pb was correlated with trajectories from E. Asia; however, this was not correlated 

with O3. Total Asian Pb and % Asian Pb were derived using data from Asia (China), a 

large emitter of Pb due to industrial processes, so the positive correlation with E. Asia 

trajectories is reasonable. This correlation demonstrates that Asia was a significant source 

of Pb to this high elevation site. Pb isotopes measured at PEAV during this time were 

located on the California Array and on a mixing line that had a slope of 0.92 (r2 = 0.90) 
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and intercepted and overlapped ores from Russia, Mongolia, and Kazakhstan (Fig. 1a). 

Based on meteorology, other sites in Nevada will also experience significant amounts of 

Pb from Asia (Christensen et al., 2015; Gustin et al., 2015b). RM was not correlated with 

% Asian Pb further supporting regional impacts of oxidants on RM concentrations and 

formation. 

At UNRG, CO and NOx increased during the morning commute (05:00 to 08:00 

PST); O3 started to increase at 07:00 and stayed elevated until 20:00 (SI Fig. 2). The 

morning increase was due to local sources, while the afternoon elevation was due to 

down mixing from the free troposphere, similar to what has been observed in valleys of 

Nevada, including Reno (Gustin et al., 2015b; Gustin et al., 2013) and in California 

(Burley and Bytnerowicz, 2011). The same diel pattern was observed at UNRG in 2014 

and 2015 (SI Fig. 2 and 3). This site is located <30 m from a highway and the pattern of 

criteria pollutants at this location show an association with local mobile sources (SI Fig. 2 

and SI Tables 12-15). During the 2014 sample period at UNRG, O3 (daily average) was 

impacted by regional transport bringing air pollution from San Francisco, Sacramento, 

and the San Joaquin Valley up the I-80 corridor (CARB, 2001) and through the Yuba 

River gap, indicated by the short-term O3 measurements (max 1 h, MDA8) being 

positively correlated with SO2 and NO. O3 (daily average, max 1 h, MDA8) was also 

impacted by long-range transport, indicated by positive correlations with N. Eurasia and 

E. Asia trajectories. 

 RM compounds at UNRG were primarily indicative of quick oxidation reactions 

associated with highway pollutants (nitrogen and sulfur compounds, Gustin et al., 2016); 

however, a mixture of compounds was observed, including halogenated compounds 
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(HgBr2 and HgCl2). RM was negatively correlated with all trajectories from N. Eurasia 

and E. Asia, and with O3 (p<0.1), max 1 h O3, MDA8 O3 (SI Table 12) indicating RM did 

not arrive with trans-Pacific air masses, but halogenated compounds suggest a marine 

boundary contribution and local and regional oxidants impacting concentrations. Both 

PEAV and UNRG had little influence from the Las Vegas source box. 

For the days with Pb isotope data at UNRG (19 days, SI Tables 16-20), Pb 

measured at UNRG was also impacted by long-range transport from E. Asia. Pb isotopes 

measured at UNRG during this time were located on the California Array, again on a 

mixing line that had a different slope from PEAV (slope=1.04, r2 = 0.83) and overlapped 

ores from Russia, Mongolia, and Kazakhstan towards the Asia array (Fig. 1a). UNRG 

and PEAV Pb days were analyzed for the same day at both sites due to the proximity of 

the two sites. UNRG had ~1.9 times the amount of Pb and ~1.5 times the amount of 

Asian Pb compared to PEAV, confirming that PEAV is more rural but may intercept 

long-range air masses. Additional Pb isotopic data from Eurasia (Fig. 1 grey data points 

from: Bollhöfer and Rosman, 2001; Bollhöfer and Rosman, 2002; Brown, 1962; Doe, 

1970; Hopper and Ross, 1991) show that N. Eurasian sources need to be considered.  
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Figure 1: Plot of 206Pb/207Pb vs. 208Pb/207Pb for 2014 data at a) UNRG and PEAV 2014, 

and b) UNRG and GBNP 2015, including data from previous studies. Data from 

California is in blue, Asia in black, UNRG in yellow, PEAV in red, GBNP in green, and 

N. Eurasia in grey. Data include Mt. Tamalpais, Chabot science center, CA, central CA, 

Chinese Loess and Hefei, China (Ewing et al., 2010), Eurasian aerosols (Bollhöfer and 

Rosman, 2001; Bollhöfer and Rosman, 2002), Chinese coal (Díaz-Somoano et al., 2009; 

Tan et al., 2006), Chinese Loess (Jones et al., 2000), Russian ores (Brown, 1962; Doe, 

1970; Hopper and Ross, 1991), and Great Basin National Park, NV (Christensen et al., 

2015). Red circle indicates anomalous data point. 

 

4.2 GBNP and UNRG 2015 

The diel pattern at GPNP during spring and fall 2015 (SI Fig. 4), shows an 

increase in O3 of ~6 ppbv starting at 05:00 to 11:00 PST that stayed elevated until 16:00 

as air was mixed down to this high elevation location. When looking at the fine resolution 

data (SI Fig. 4b), CO (120 ppb) and NOx (0.55 ppb) concentrations increased by 12 ppb 

and 0.6 ppb, respectively, at 06:00 PST, then declined and increased again mid-morning 

(10:00 PST), and then declined and increased again mid-afternoon (16:00 and 18:00 PST, 

respectively), suggesting local source impacts, also seen in previous work (Miller et al., 
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2015). Mean O3 at GBNP during this period (48±9 ppbv) was also similar to previous 

studies (46±9 ppbv, Miller et al., 2015). 

For this sample period at GBNP (SI Tables 21-24), O3 (daily average, max 1 h, 

MDA8) was positively correlated with PM2.5, CO, temperature, solar radiation, total and 

>3 km trajectories from N. Eurasia, >3 km trajectories from E. Asia, and >3 km 

trajectories from over San Francisco and negatively correlated with NOx and RH. This 

indicates that GBNP O3 was impacted by long-range transport, with some impact from 

regional and local sources. GBNP experiences differing conditions based on season (Fine 

et al., 2015a; Fine et al., 2015b; Gustin et al., 2015b). Air masses often approach GBNP 

from the southwest in the spring, particularly during cyclonic flow that disrupts 

prevailing westerly wind patterns (Fine et al., 2015a; Fine et al., 2015b; VanCuren and 

Gustin, 2015), bringing regional pollution from Los Angeles and Las Vegas (SI Table 

25). In summer, GBNP has more local tourist activity. Increased photochemical reactions 

and convective mixing in the summer also facilitate interception of trans-Pacific air 

masses, and stronger positive correlations with long-range air masses (SI Table 26) 

RM at GBNP (SI Table 21) was positively correlated with PM2.5, O3 (daily 

average, max 1 h, MDA8), temperature, solar radiation, and trajectories from Los 

Angeles and Las Vegas. RM was negatively correlated with NOx, RH, and all trajectories 

from N. Eurasia and E. Asia. This indicates that regional sources were facilitating 

production of RM and that RM from Eurasia was lost due to deposition or conversion to 

GEM, this is also supported by the a negative correlation between % Asian Pb and RM 

(SI Table 24). 
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For the days with Pb isotope analysis at GBNP (22 days, SI Tables 27-31), total 

Pb mass and total Asian Pb mass were positively correlated with O3. Percent Asian Pb 

was positively correlated with total and >3 km trajectories from E. Asia, and negatively 

correlated with <1 km trajectories from Los Angeles and <1 km (p<0.1) trajectories from 

Las Vegas, indicating the importance of Asian sources of Pb to GBNP. Pb isotopes 

measured at GBNP during this time were located on the California Array and on a mixing 

line towards the Asia array that had a slope of 0.79 (r2 = 0.44, Fig. 1b) 

For this sample period, at UNRG (SI Tables 32-35), significant positive 

correlations between O3 and ABLH, N. Eurasia and E. Asia indicated that daily average, 

max 1 h, MDA8 O3 at UNRG during this period were influenced by long-range transport 

(SI Table 35). PM2.5 was positively correlated with other pollutants (RM, CO, NOx, and 

NO), highlighting the urban nature of this site. 

RM at UNRG during this period (SI Table 32) was positively correlated with 

PM2.5, solar radiation, temperature, and <1 km trajectories from San Francisco. RM was 

negatively correlated with O3 (daily average, max 1 h, MDA8), and all trajectories from 

N. Eurasia, and from E. Asia. Again, indicating local and regional impacts were greater 

than long-range impacts, supported by nitrogen and sulfur based RM compounds 

measured during this time (Gustin et al., 2016). 

For days with Pb isotope analysis at UNRG (11 days, SI Tables 36-40), daily average O3, 

max 1 h O3 (p<0.1), and MDA8 O3 were positively correlated with % Asian Pb. Filters 

analyzed for Pb were biased towards understanding O3 events (noted below), so this 

correlation makes sense. At UNRG during this time, total and Asian Pb mass was greater, 

but the % Asian Pb was similar to that measured at GBNP. It is important to note the 
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differences in samples between UNRG (n=11) and GBNP (n=23). Pb isotope ratios for 

UNRG lie between the Asia and California arrays on a mixing line that had a slope of 

1.17 (r2 = 0.77), and indicate a Eurasian influence (Fig. 1b). There is one anomalous point 

from GBNP on September 3, 2015 with -28% Asian Pb (circled in red in Fig. 1b). 

Trajectories for this time (SI Fig. 5) remain over the Pacific Ocean, southern California, 

and western Mexico, with minor transport from N. Eurasia and central USA. It is 

uncommon to have trajectories in this area track over central USA, which could explain 

the anomalous data; however, HYSPLIT only indicates two trajectories out of 216 from 

this area. Two days at UNRG during the same time (August 31 and September 2) had 

similar high 208/207 Pb ratios but lower 206/207 Pb ratios, and previous data from 

California (Fig. 1, blue squares) also occur to the left of the California array. The 

September 3, 2015 data point was not included in the Pearson correlation analyses or in 

the linear fit in the data but is included in Table 2 and Fig 1b. 

 

5. Discussion: 

5.1 Case studies 

 Complex weather dynamics affect the transport of atmospheric pollutants in the 

Western USA. To understand this phenomenon, specific events were assessed as case 

studies. These case studies were selected based on % Asian Pb, concentrations of O3 

(daily average, max 1 h, MDA8), RM, CO, and RH values. Days were selected when 

these values were above the monthly median (RH below monthly median), indicating 

pollution transport events and compared to days below the monthly median. 
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5.1.1 June 2014 

Pb samples were analyzed for June 6, 12, and 17, 2014 at PEAV and UNRG (SI 

Fig. 6). During this time, weather maps indicated a low-pressure system at the surface (SI 

Fig. 7a-d) and cyclonic flow at 500 mb moved from W to E across the top of Nevada (SI 

Fig. 8a-d), while a cold front associated with the low moved W to E across Nevada. 

Pressure measured at PEAV dropped across this period and temperature decreased (16, 

12, and 3° C on the 3 days). ABLH measured at 16:00 PST lowered from 3.2 to 1.9 km, 

and then returned to 3.5 km. Wind speed at PEAV and UNRG was higher on June 12 at 

16 m s-1 and 3.7 m s-1 compared to median monthly values of 3.1 m s-1 and 2.0 m s-1, 

respectively. RH was lower than the monthly median on June 6 and 12 at both PEAV and 

UNRG and higher than the monthly median on June 17 (SI Fig. 9 and 10). Influence from 

the total E. Asia trajectory box on these days, decreased from 1.0% to 0.019%, and then 

increased to 0.15%. At the same time, influence from N. Eurasia decreased and increased 

5.0%, 1.8%, and 16%. Trajectories for June 12 (Fig. 2a and 3b) resided mainly over the 

Pacific Ocean. On June 9 and 10 at PEAV, there was an increase in PM2.5, O3 (daily 

average, max 1 h, MDA8), RM, CO, and influence from N. Eurasia and E. Asia 

trajectories (SI Fig. 9). Influence from N. Eurasia remained elevated through June. It is 

likely that air masses being transported over the Pacific Ocean at this time were polluted 

and the low-pressure system and associated cold front brought this air to the surface 

along with air from the San Francisco area. 

On June 12, % Asian Pb was 41%, higher than the 75th percentile (36%) at PEAV. 

PM2.5, O3 (daily average, max 1 h, MDA8), and RM increased on June 12 above the 

monthly medians for each measurement. During this period, RM compounds differed 
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slightly between the two sites with HgO, HgCl2, and HgBr2 seen at PEAV, and HgCl2 

and HgBr2 at UNRG (Gustin et al., 2016). RM compounds appear to be influenced by 

interaction with the MBL. CO at PEAV was below the monthly median for all 3 days as 

the front moved through (SI Fig. 9b). 

On June 12 at UNRG, % Asian Pb was 47%, higher than the 75th percentile (42%) 

for Pb samples at UNRG in 2014. PM2.5, WCAQ O3 (daily average, max 1 h, MDA8), 

and RM increased on June 12 above the monthly medians for each measurement. CO was 

above the monthly median for June 6 and 12, and below on June 17 (SI Fig. 10b). This is 

an example of input of Trans-Pacific pollution associated with frontal activity as 

described by Knowland et al. and VanCuren et al. (2015; 2005). For June 2014, both 

PEAV and UNRG had halogenated RM compounds and elevated influence from >3 km 

trajectories from over San Francisco. MDA8 O3 was enhanced by 2 to 7 ppbv above the 

monthly median at PEAV and 4 to 9 ppbv at UNRG. 
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a) 

 
b) 

 
Figure 2a and b: HYSPLIT 10-day back trajectories for a) PEAV and b) UNRG June 12, 

2014. Trajectory points are colored by altitude height (m agl). FRP points are sized 

based on power (MW), white circles indicate the most recent day back, light grey circles 

indicate an intermediate day back, and grey circles indicate the furthest day back. Black 

boxes indicate the five source boxes. 
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5.1.2 September/October 2014 

 From September 13 to October 31, 2014, the King Fire burned over 390 km2 in 

California, southwest of Reno, NV (CA, 2017). On September 22 and 24, PM2.5, O3, CO 

were all above monthly medians (SI Fig. 11 and 12) at PEAV and at UNRG on 

September 22 due to influence from this fire, seen in SI Fig. 13 from the Naval Research 

Laboratory Aerosol Analysis and Prediction System (NAAPS, 

https://www.nrlmry.navy.mil/aerosol/). RH on September 22 was higher than the 

monthly median at PEAV and UNRG due to emission of water vapor associated with 

biomass burning (SI Fig. 11a & 12a, Parmar et al., 2008). RM at both sites was lower 

than the monthly median. RM compounds at the end of September were not discernible at 

PEAV. At this time, UNRG had nitrogen and sulfur RM compounds (Gustin et al., 2016). 

Influence from local (King fire) and regional sources dominated this period. Previous 

large fires west of Nevada have also impacted air quality in Nevada (Rim Fire 2013, 

Miller et al., 2015). 

On September 27, October 15, and 17, Pb samples at PEAV were > 36% Asian 

Pb (SI Fig. 14). September 27, October 9, and October 17 Pb samples at UNRG were 

greater than or equal to 42% (SI Fig. 14). Although September 27 had high % Asian Pb 

(58% at PEAV and 42% at UNRG), there was moderate input of air from N. Eurasia and 

San Francisco, which may reflect previously deposited Asian Pb being re-mobilized 

during the fire and mixed with local and regional sources. Precipitation was observed that 

day, likely lowering pollutant concentrations; PM2.5, O3, CO, and RM were all below 

monthly medians. RM compounds were different during the end of September and start 

of October, PEAV had HgCl2, HgBr2, and nitrogen compounds indicating input from the 
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marine boundary layer, while UNRG had nitrogen and sulfur RM compounds (Gustin et 

al., 2016). October 15 and 17 at PEAV had PM2.5, above the monthly median and RM 

below the monthly median. October 17 had O3 (daily average, max 1 h, MDA8) and CO 

concentrations higher than the monthly medians (there were no CO measurements for 

October 15). Temperature on October 17 was higher, while wind speed was lower than 

October 15. N. Eurasia and E. Asia TRTs doubled from October 15 to October 17 (Fig. 

3a and b). A low-pressure system and cold front moved through the area between 

October 15 and 17 (SI Fig. 15), bringing down drier air from the free troposphere and 

stratosphere, demonstrating that trans-Pacific air masses can influence the Western USA 

in the fall. In September 2014, MDA O3 at PEAV was initially suppressed ~12 ppbv 

while UNRG stayed at the monthly median during heavy fire impacts and then enhanced 

~18 ppbv at PEAV and UNRG as the fire plume aged. In October, PEAV MDA O3 was 

enhanced 5 to 7 ppbv, while UNRG saw little enhancement during this time. 
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a) 

 
b) 

 
Figure 3a and b: HYSPLIT 10-day back trajectories for a) PEAV and b) UNRG October 

17, 2014. Trajectory points are colored by altitude height (m agl). FRP points are sized 

based on power (MW), white circles indicate the most recent day back, light grey circles 

indicate an intermediate day back, and grey circles indicate the furthest day back. Black 

boxes indicate the five source boxes. 
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5.1.3 March 2015 

Two low-pressure systems moved NW to SE, and an associated cold front moved 

across the state from March 28 to 29, and March 31 to April 1 (SI Fig. 16). There were no 

CO or NOx measurements for this period at GBNP. March 27 at GBNP had lower PM2.5, 

O3 (daily average, max 1 h, MDA8), and RM than monthly medians and RH only slightly 

lower than the monthly median. March 31 had higher PM2.5, O3 (daily average, max 1 h, 

MDA8), and RM than the monthly median and RH was half of the monthly median (SI 

Fig. 17). On March 31, there was influence from the E. Asia source box greater than the 

75th percentile for the site and three times March 27, which doubled the next day as the 

low continued to move through. There was also influence from the San Francisco source 

box above the 75th percentile on March 31. March 31 had the highest Pb mass (0.70 ng m-

3) of the 22 days analyzed for Pb, but was only 38% Asian Pb compared to March 27 

(0.15 ng m-3), which was 65% Asian Pb (SI Fig. 18). As the low-pressure system moved 

west to east, there was an increase in trans-Pacific, Los Angeles, and Las Vegas 

trajectory influence at GBNP while UNRG had increases in trans-Pacific and >3 km 

trajectories from over San Francisco.  

UNRG had a similar pattern for March 28 and March 31 for PM2.5 and CO. O3 

(daily average, max 1 h, MDA8) for both days was higher than the monthly median (SI 

Fig. 19). RH was lower than the monthly median for both days. RM was higher than the 

monthly median on March 31. Influence from N. Eurasia and E. Asia were both higher 

than the 75th percentile for this period, there was elevated influence from San Francisco 

as well. 
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HYSPLIT back trajectories for March 27 from GBNP and March 28 from UNRG 

(Fig. 4a and 4b) show minimal trajectories through E. Asia and most of the trajectories 

stayed low above the Pacific Ocean. The NAAPS optical depth maps (SI Fig. 20) show a 

plume with moderately high optical depth moving from W to E across the Pacific towards 

Western North America, March 30 to March 31, 2015. HYSPLIT back trajectories for 

March 31 at GBNP and UNRG (Fig. 4c and 4d) show air masses moving very quickly, 

several of which made it around from Greenland and Eastern North America. Trajectories 

coming into GBNP stayed mostly south of the N. Eurasian source box in the E. Asian 

source box while trajectories coming into UNRG had a mix of E. Asia and N. Eurasian 

influence. Percent Asian Pb was lower on March 31 due to the combination of local 

sources and long-range transport from Eurasia as well as the Eastern USA. 

MODIS FRP (Fig. 4c and 5d) shows multiple large fires in the N. Eurasia source 

box and east of Nevada, occurring during this time. IMPROVE data (SI Fig. 21) for 

March 31 at GBNP shows elevated potassium (K) over the monthly mean, a tracer for 

biomass burning, as well as aluminum (Al), chloride (Cl-), chlorine (Cl), iron (Fe), 

magnesium (Mg), sea salt, silicon (Si), sodium (Na), and soil. Although March 31 was 

influenced by trans-Pacific air, the fast moving air likely picked up many sources of 

pollution including local and regional (SI Fig. 22), contributing to O3 concentrations at 

GBNP and UNRG (67 and 69 ppbv, respectively) approaching the NAAQS concentration 

for the design value. MDA8 O3 was enhanced by 2 to 16 ppbv above the monthly median 

at GBNP and 5 to 14 ppbv at UNRG during these events.  
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a) 

 
b) 

 
c) 
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d) 

 
Figure 4a, b, c, and d: HYSPLIT 10-day back trajectories for GBNP March 27 (a), 31 (c) 

and UNRG March 28 (b), 31 (d), 2015. Trajectory points are colored by altitude height 

(m agl). FRP points are sized based on power (MW), white circles indicate the most 

recent day back, light grey circles indicate an intermediate day back, and grey circles 

indicate the furthest day back. Black boxes indicate the five source boxes. 
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5.1.4 June 2015 

June had the highest mean monthly O3 (56 ppbv daily, 65 ppbv max 1 h, 62 ppbv 

MDA8) concentrations of the six-month study period at GBNP. Eight days in June were 

analyzed for Pb isotopes (SI Fig. 23). On June 8 and 9 at GBNP MDA8 was above the 70 

ppbv concentration used for the NAAQS, decreasing from June 8 to June 9. CO, NOx, 

and NO were all above the monthly median. PM2.5 was below the monthly median but 

decreased further on June 9, RM also decreased. RH dropped from 38% on June 8 to 29% 

on June 9; both days were below the monthly median (SI Fig. 24), there was a small 

amount of precipitation on June 8. Influence from the N. Eurasia and E. Asia source 

boxes decreased by half, both below the 75th percentile. There was no influence from the 

<1 km San Francisco box and minimal influence from the <1 km Los Angeles and Las 

Vegas boxes, air mainly arrived >3 km over these source boxes (Fig. 5a and b). From 

June 8 to June 9, a high-pressure area stagnated over Nevada and the rest of the inland 

Western USA, while low pressure occurred over California and a weak cyclonic system 

remained at the 500 mb level over Nevada (SI Fig. 25 and 26), bringing air aloft down to 

the surface. Speciated PM2.5 IMPROVE data (SI Fig. 27) had elevated sulfate (SO4, 

NH4SO4), Si, and sulfur (S) on June 8, generally considered tracers of long-range 

transport of pollutants associated with combustion from Asia (Christensen et al., 2015). 

Total Pb mass decreased slightly, but percent Asian Pb stayed the same (61%) for both 

days. 

At UNRG, as the high-pressure system remained over Nevada (PM2.5, O3 daily 

average, max 1 h O3, MDA8 O3, and CO), pollutant concentrations increased from June 8 

to June 9 (SI Fig. 28). NOx decreased and RH increased with some precipitation. Solar 
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radiation decreased, wind speed and temperature were similar. RM concentrations did not 

change between the two days. Influence from N. Eurasia and E. Asia decreased over the 

two days at similar magnitudes as the TRTs for GBNP. Influence from San Francisco 

trajectories increased. Trajectories from Las Vegas and Los Angeles were similar for the 

two days (~1.1% and 0.03%, respectively), both were higher than the 75th percentile for 

the sample period (~0.03% and 0.0%, respectively). Total Pb mass increased and % 

Asian Pb went from 40% to 74% between the two days. During this period, the Western 

USA was influenced by regional sources, long-range transport and possibly STE as air 

aloft subsided. 

At GBNP, on June 17 and 18, max 1 h O3 was over 70 pbb and MDA8 O3 was 67 

and 68 ppbv respectively, all higher than the monthly medians. PM2.5 on June 17 was 

slightly higher than the monthly median and dropped below on June 18. CO, NOx, and 

NO increased across the two days, NOx on the second day and NO on both days were 

above the monthly medians. RH was below the monthly median on both days (SI Fig. 

24). Influence from >3 km trajectories over the N. Eurasia source box dropped by half 

over the two days but were ~3 and 2 times higher than the 75th percentile value (Fig. 5c). 

Influence from <1 km from San Francisco decreased over the two days but was higher 

than the 75th percentile on both. Trajectories <1 km from Los Angeles and Las Vegas 

decreased but were below the 75th percentile. Total Pb mass was similar on the two days 

as was % Asian Pb (~40%). There was a high-pressure system that moved across the 

state, June 16 to 17, and lows surrounding the state. Cyclonic flow at the 500 mb pressure 

height remained over the state on June 17 and 18 (SI Fig. 29 and 30). IMPROVE data (SI 

Fig. 31) from June 17 had elevated Al, nitrates (NH4NO3, NO3), sulfates (NH4SO4, SO4), 
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calcium (Ca), Cl-, Fe, Mg, sea salt, Si, and soil, above the monthly mean, pointing to 

local and long-range pollution sources. During this period, the Western USA was 

influenced by long-range transport and possibly STE as air aloft subsided as well as 

regional pollutants from Los Angeles and Las Vegas (SI Fig. 24c and 28c). The trajectory 

residences times clearly illustrate trans-Pacific air masses peaking at UNRG ~2 days 

before peaking at GBNP (SI Fig. 24c and 28c) as the high-pressure system moved across 

the state. In June 2015, MDA8 O3 was enhanced by 4 to 10 ppbv above the monthly 

median at GBNP, and 7 to 9 ppbv at UNRG. 

 

a) 
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b) 

 
c) 

 
Figure 5: HYSPLIT 10-day back trajectories for (a) GBNP June 9, (b) UNRG June 9, 

and (c) GBNP June 17, 2015. Trajectory points are colored by altitude height (m agl). 

FRP points are sized based on power (MW), white circles indicate the most recent day 

back, light grey circles indicate an intermediate day back, and grey circles indicate the 

furthest day back. Black boxes indicate the five source boxes. 
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5.1.5 September 2015 

On September 10, 2015 at GBNP, PM2.5, O3 (daily average, max 1 h, MDA8), 

CO, RM were all elevated above the monthly medians (SI Fig. 32). RH was below the 

monthly median. N. Eurasia trajectories were above the 75th percentile. TRT from the E. 

Asia source box decreased from the previous two days; however, percent Asian Pb was 

74% (SI Fig. 32c and 33). TRTs from San Francisco were greater than the 75th percentile 

while trajectories from Los Angeles and Las Vegas (<1 km) were zero (SI Fig. 32c). FRP 

data show several fires in the trajectory paths with high FRP in the N. Eurasia source box 

and large FRP values in California (Fig. 6). Trajectories also arrived from over Canada 

and Alaska. 

Surface weather maps show a high (SI Fig. 34) over Nevada and a weak cyclonic 

flow at the 500 mb level (SI Fig. 35); indicating that air aloft was mixed down to the 

ground. Before the high-pressure formed, Los Angeles trajectories had a strong influence 

on GBNP, which decreased with the high-pressure system (SI Fig. 32c). IMPROVE data 

(SI Fig. 36) shows elevated organic mass (OMC), due to local smoke (SI Fig. 37). 

Although O3 concentrations were not approaching the NAAQS concentration on this day, 

concentrations were elevated above the monthly medians (SI Fig. 32), again 

demonstrating that long-range transport of air masses can influence pollutants in the 

Western USA outside of the spring months. Local sources, such as wildfires, may 

complicate the signature of long-range transport. In September 2015, MDA O3 was 

enhanced by 17 ppbv above monthly medians at GBNP, with little enhancement at 

UNRG (SI Fig. 38). 
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Figure 6: HYSPLIT 10-day back trajectories for GBNP September 10, 2015. Trajectory 

points are colored by altitude height (m agl). FRP points are sized based on power 

(MW), white circles indicate the most recent day back, light grey circles indicate an 

intermediate day back, and grey circles indicate the furthest day back. Black boxes 

indicate the five source boxes. 

 

6. Conclusions: 

Diel patterns of O3 at the two high elevation sites had smaller ranges (<10 ppbv) 

and elevated O3 compared to the lower elevation, urban site (>30 ppbv) similar to 

previous studies (Fine et al., 2015a). At both high elevation sites, max 1 h O3 was 

positively correlated with PM2.5 and CO, indicative of transport of pollutants from 

regional and long-range sources. Lower concentrations of PM2.5 and CO at the two high 

elevation sites illustrated the rural nature compared to UNRG. Ozone was positively 

correlated with RM at both sites while RM was negatively correlated with RH, similar to 

free tropospheric data from Weiss-Penzias et al. (2015), indicating formation of RM from 

photo-oxidation of GEM in dry upper altitude air. Total Pb mass, total Asian Pb mass, 

and % Asian Pb were generally positively correlated with trajectories from E. Asia. 
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GBNP air was influenced by Las Vegas and Los Angeles during the sample period, while 

western Nevada sites were not. 

UNRG had different conditions between the sample year (2014 versus 2015), and 

from the two high elevation sites. Ozone (daily average, max 1 h, MDA8) was negatively 

correlated with RM for both sample periods at UNRG. This may be due to rapid 

deposition of HgO, created as O3 increased, reducing measured RM. RM at UNRG was 

generally negatively correlated with N. Eurasia and E. Asia trajectories and positively 

correlated with >3 km (2014) and <1 km (2015) trajectories from San Francisco. RM 

measurements consisted of nitrogen- and sulfur-based compounds with periodic halogen 

species, indicating influence from regional sources and the MBL. At UNRG in 2014 

(summer and fall), total Pb mass, total Asian Pb mass, and % Asian Pb were positively 

correlated with trajectories from E. Asia; however, this was not the case in 2015 (spring-

summer-fall) sample period, possibly due to the difference in sample period. Differences 

in RM compounds at PEAV and UNRG further support that the high elevation site differs 

from the urban, lower elevation site and that air quality can differ between two sites 

located close together (~12 km) due to differences in transport between a valley and a 

high elevation site. 

The case studies demonstrated that in a 240 h back trajectory period, air masses 

can pass though the E. Asia source box as well as through other parts of Eurasia and 

Eastern North America. Trans-Pacific air masses not only influenced the Western USA in 

spring, but also in the fall (September 2014 and 2015). Ozone was often elevated 

following passage of low-pressure systems and associated cold front also seen in 

Knowland et al. (2015) and Lin et al. (2012) and when there was a high-pressure system 
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at the surface and cyclonic flow aloft, bringing O3 down to the surface seen in Cooper et 

al. (2011). Increased trans-Pacific air masses contributed to elevated O3 above monthly 

medians. The ubiquitous influence of Eurasian Pb and positive correlations between Pb 

mass and O3 at the two high elevation sites indicates long-range transport of pollutants. 

During pollution events, long-range transport not only affects baseline and background 

concentrations, but can also be the primary reason for increased concentrations associated 

with discrete pollution plumes traveling in the free troposphere that may or may not be 

delivered to the surface in the Western USA (Fine et al., 2015b; Langford et al., 2015b). 

In spring (end of March 2015), low-pressure systems moved west to east with 

associated cold fronts impacting measurements at GBNP and UNRG, marked by a 

decrease in RH and increases in RM, O3, and PM2.5 concentrations all above monthly 

medians. Increased frontal activity in the Western USA facilitated entrainment of drier air 

aloft combined with increasing temperatures and photochemical reactions. In summer, 

higher overall concentrations of O3 occurred in both years. In June 2014 there was frontal 

activity causing entrainment, while June 2015 was characterized by high-pressure 

systems in the area causing subsidence of air bringing pollutants aloft to the surface. In 

fall, September/October 2014, a low-pressure system and cold front also moved through 

the area, bringing down drier air from the free troposphere and stratosphere, 

demonstrating that trans-Pacific air masses can influence the Western USA in the fall. In 

September 2015, there was a high over Nevada and a weak cyclonic flow at the 500 mb 

level; indicating that air aloft was mixed down to the ground, supported by the large 

influence of >3 km trajectories from over San Francisco at UNRG. 
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Fiore et al. (2014) modeled baseline O3 (no recent local emissions, but includes 

aged domestic emissions) and North American Background (NAB, constructed with zero 

North America emissions, but includes manmade sources outside of North America) 

MDA8 O3 for a typical year at high elevation intermountain western sites (>1.5 km). 

Baseline was modeled at 60 ± 7 while NAB was 48 ± 8 using the GFDL AM3 model and 

54 ± 6 and 42 ± 5 respectively for the GEOS-Chem model. These modeled baseline and 

background numbers agree well with other observational and modeling studies (Baylon et 

al., 2016; Cooper et al., 2011; Dolwick et al., 2015; Fine et al., 2015a; Fiore et al., 2003; 

Lin et al., 2012; Zhang et al., 2011). Asian enhancement events to surface observations 

and modeled Asian enhancements can contribute 8 to 15 ppbv at high-elevation sites in 

the Western USA when MDA8 O3 exceeds 60 ppbv (Lin et al., 2012). Observed 

enhancements during strong trans-Pacific events, such as in March 2015, agree with this 

enhancement range. 

Negative correlations between RM and % Asian Pb, N. Eurasia trajectories, and 

E. Asia trajectories suggests RM was removed from these air masses before reaching the 

sample sites due to deposition or conversion to GEM as suggested by Weiss-Penzias et 

al. (2015). RM at GBNP was also positively correlated with trajectories from Los 

Angeles and Las Vegas, indicating that regional oxidant sources facilitated production of 

RM. Reinemann et al. (2014), using sediment cores, also found that lakes in the Great 

Basin area were influenced by regional sources of Hg. Ozone at GBNP has also 

previously been shown to correlate better with southern Nevada sites (Fine et al., 2015a). 

Monitoring sites are typically concentrated in urban centers or sensitive natural 

environments, leaving significant data gaps in rural areas, such as much of Nevada. This 
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gap in data leads to poor understanding of air pollution sources influencing a region. 

Long-term monitoring sites with regular measurements are necessary for quantifying 

international atmospheric inputs that affect national standards and goals for international 

conventions. The TAPI BetaPlus particulate measurement system may be too elaborate for 

long-term measurements at higher spatial density; however, it is useful for targeted 

experiments. Filter measurements are useful, low-cost methods for making multiple 

measurements (PM2.5, RM, and Pb isotopes) simultaneously. Better understanding of the 

global cycling of pollutants will affect national and global policies, as standards to protect 

human and ecosystem health become more stringent, it will be necessary to understand 

the sources and processes influencing production and transport of atmospheric pollutants, 

particularly in areas far from sources, located in complex terrain, such as the Western 

USA. 
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Abstract: 

 A new statistical method, the quadrant method, was developed to aid in 

identifying different conditions affecting the relationship between columnar aerosol 

optical depth (τext) and concentrations of particulate matter (< 2.5 µg m-3 in aerodynamic 

diameter, PM2.5) at the surface. Understanding this relationship has the potential to 

improve our ability to estimate surface PM2.5 concentrations from satellite retrievals of 

τext in the Western USA, where complex terrain, diverse climates, and large fluctuations 

in the planetary boundary layer height affect the vertical distribution of aerosol 

concentrations. The objective of this study was to identify air pollution sources and 

atmospheric physics affecting gradients of atmospheric pollutants observed at two valley 

sites (~1370 m) and a high elevation site (2515 m) located in and adjacent to Reno, 

Nevada, USA. The two valley sites were used to investigate the horizontal gradient of 

pollutants associated with mobile sources from high volume highways. Results indicate 

statistically significant differences in concentrations of criteria air pollutants between the 

valley sites, where one site is located 0.03 km from a major highway.  

Meteorological variables, aerosol optical properties, vertical structure of the 

atmosphere, measures of atmospheric stability, and ozone concentrations were used to 

determine the conditions influencing the relationship between τext and surface PM2.5 

concentrations. Vertical gradients were impacted by air pollution sources and 

atmospheric boundary layer stability. During periods when τext and surface PM2.5 

concentrations were associated, emissions from wildfires and local pollutants in a well-

mixed boundary layer dominated the relationship. During periods of no association, 

stable boundary layer conditions and pollution aloft created vertical heterogeneity. 
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Transport of trans-Pacific pollutants and regional wildfire plumes aloft created challenges 

for separating these sources of pollutants at the measurement sites, therefore use of other 

indicators of air pollution sources above the atmospheric boundary layer are necessary. 

Results show that the quadrant method, developed for hourly data, can be used with 24 h 

data and that it is a useful tool for identifying air pollution sources and atmospheric 

physics driving pollution gradients. 

 

Keywords: 

Quadrant method; aerosol optical depth; PM2.5; atmospheric stability; vertical 

heterogeneity; near-road pollution gradients  



135 
 

Highlights: 

 Statistical analysis of atmospheric sources and physics affecting pollution 

gradients 

 A method used to understand relationships between τext and surface PM2.5 

 Horizontal pollution gradients in the valley were influenced by highways 

 Stability, transport aloft, and wildfires drove vertical heterogeneity of pollution 

 Quadrant method was successfully applied to 24 h data 
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Abbreviations: 

AEE – Ångström Extinction Exponent 

AERONET - AErosol RObotic NETwork 

AOD – Aerosol Optical Depth (τext) 

AOH – Apparent Optical Height (km) 

AQS – Air Quality Station 

CO – Carbon monoxide (ppbv) 

DRI – Desert Research Institute, Reno, NV, USA 

FARM – Nevada Agricultural Experiment Station Farm Facilities of the University of 

Nevada, Reno, NV, USA 

GALE – Galena, NV, USA 

HD – Heat Deficit (MJ m-2) 

Max 1 h O3 – Maximum 1 h ozone for each day (ppbv) 

MDA8 O3 – Maximum daily 8 h average (ppbv) 

NAAQS - National Ambient Air Quality Standards 

NO – Nitrogen monoxide (ppbv) 

NOx – Oxides of nitrogen (ppbv) 

NRL NAAPS – Naval Research Laboratory Aerosol Analysis and Prediction System 

NWS – National Weather Service 

O3 – Ozone (ppbv) 

PBL – Planetary Boundary Layer 

PBLH – Planetary Boundary Layer Height 

PEAV – Peavine Peak, NV, USA 

PM2.5 – Particulate Matter < 2.5 µg m-3 in diameter 

PM10 – Particulate Matter < 10 µg m-3 in diameter 

RH – Relative Humidity (%) 

SO2 – Sulfur dioxide (ppbv) 

UNRG – Nevada Agricultural Experiment Station Greenhouse Facilities of the University 

of Nevada, Reno, USA 

U.S. EPA – United States Environmental Protection Agency 

VOCs – Volatile Organic Compounds  

WCAQ – Washoe County Air Quality Management 

WHO – World Health Organization 

WRCC – Western Regional Climate Center 

WS – Wind speed (m s-1) 
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1. Introduction 

Many urban centers in the intermountain west are located in valleys and 

experience horizontal and vertical gradients of atmospheric pollution. The atmospheric 

processes affecting boundary layer stability and, therefore, transport and accumulation of 

air pollution in intermountain areas is influenced by synoptic flow patterns and mesoscale 

thermal circulation, such as local heating and cooling, generating valley and 

up/downslope flows (Fernando, 2010; Li et al, 2015). The large number of mountain 

ranges, high solar radiation, and semi-arid climate of Nevada, USA, contribute to 

planetary boundary layer heights (PBLH) that vary widely between seasons (Fine et al, 

2015; Gustin et al, 2015; McMurdie & Houze, 2006; Nguyen et al, 2016; Pierce et al, 

2017). 

Mobile sources are dominant sources of atmospheric pollutants in urban areas and 

contribute to strong horizontal gradients of atmospheric pollution near major roadways. 

Motor vehicles contribute to elevated pollutant concentrations of both primary and 

secondary pollutants in the atmosphere (Colvile et al, 2001; HEI, 2010). Exposure to 

pollutants from mobile sources has adverse health effects related to respiratory, 

cardiovascular, cognitive functioning, and birth outcomes (Hao H. et al, 2016; HEI, 

2010). Spatial gradients of air pollution concentrations, and therefore exposures, in urban 

areas are important to quantify as ~54% of the total population in 2014 lived in urban 

areas (WHO, 2017). 

During winter, stable atmospheric conditions and persistent temperature 

inversions cause cold, denser air to sink to the valley floor, trapping pollutants near the 

surface. These events, are referred to as cold air pools, and are characterized by low 
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temperatures, wind speeds, and PBLH, as well as high surface pressure and relative 

humidity (RH) in the valley (Chemel et al, 2016; Whiteman et al, 2001). The difference 

in temperature, relative to the upper atmosphere, results in decoupling of air in valleys 

from air aloft, isolating the valleys from stronger, prevailing winds and suppressing 

vertical mixing, sometimes for multiple days (Chemel et al, 2016). Cold air pools, 

enhanced by cloud and snow cover, allow pollutants to buildup, at times to 

concentrations above the United States Environmental Protection Agency (U.S. EPA) 

National Ambient Air Quality Standards (NAAQS), specifically for particulate matter 

([PM], Chemel et al, 2016; Chen et al, 2012; Green et al, 2015; Silcox et al, 2012; 

Whiteman et al, 2014). 

Atmospheric pollutants, such as PM2.5 (particulate matter < 2.5 µm in 

aerodynamic diameter), can exist within the planetary boundary layer (PBL) (e.g. in cold 

air pools), and above the PBL, (e.g. long-range transport in the free troposphere). This 

vertical heterogeneity makes it challenging to reconcile ground and columnar 

observations (Bergin et al, 2000; Corbin et al, 2002; Fine et al, 2015; Langford et al, 

2015; Li et al, 2015; Loría-Salazar, 2014). PM2.5 aloft will increase columnar aerosol 

optical depth (τext) but will not necessarily increase surface PM2.5, creating periods when 

the two observations are not associated (Campbell et al, 2003; Crosbie et al, 2014; Loría-

Salazar et al, 2017). Satellite retrievals of τext have been used to estimate surface PM2.5 

concentrations because of the large spatial coverage. However, vertical heterogeneity of 

atmospheric pollution caused by complex terrain, diverse climates, and large fluctuations 

in PBL creates challenges for using retrievals of τext to estimate surface PM2.5 

concentrations in the Western USA (Levy et al, 2013; Loría-Salazar et al, 2017; Nguyen 
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et al, 2016). Statistical models of satellite-derived PM2.5 often rely on linear relationships 

between τext and surface PM2.5 observations, however there are large biases in the 

estimated PM2.5 (Engel-Cox et al, 2004; Gupta et al, 2006; Lee et al, 2016; Liu et al, 

2009; Sorek-Hamer et al, 2013; Sorek-Hamer et al, 2015). Therefore, an examination of 

the physical processes in the atmosphere is required prior to using health effects studies 

or risk assessments that rely on statistical data fusion models and retrievals from satellite 

remote sensing. To address some of these challenges, Loría-Salazar et al. (2017) 

developed a statistical data exploration technique, called the quadrant method, to identify 

atmospheric physics influencing the relationship between τext and surface PM2.5 

observations without prior knowledge of the measurement sites. 

Results from Loría-Salazar et al. (2017) at three inland sites in the Western USA 

found four relationships between τext and surface PM2.5 observations: 1) low aerosol 

pollution at the surface and in the column, related to local sources of pollution in a well-

mixed PBL; 2) high aerosol pollution at the surface and low aerosol pollution in the 

column, identified as stable conditions and local pollution sources; 3) high aerosol 

pollution at the surface and in the column, identified as wildfire plumes transported at the 

surface in a well-mixed PBL; and 4) low aerosol pollution at the surface and high aerosol 

pollution in the column, identified as transport of regional or global pollution aloft and/or 

entrainment of pollution, due to a poorly mixed PBL and interactions with complex 

terrain. This method proved useful for investigating the atmospheric physics affecting the 

relationship between τext and surface PM2.5 concentrations in the Western USA. 

The main goal of the current study was to identify atmospheric physics affecting 

air pollution gradients at three sites in and adjacent to Reno, Nevada, USA. Two valley 
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sites were located in a metropolitan area in close proximity (~0.03 to 2.1 km) to two, high 

volume, interstate highways. A mountain peak site was located ~12 km northwest and 

~1.2 km higher in elevation than the valley sites. We first investigated horizontal 

gradients of atmospheric pollutant concentrations different distances from the highways. 

We then apply the quadrant method, developed by Loría-Salazar et al. (2017), to 24 h 

data from the two valley sites to categorize air pollution sources and physical processes 

affecting the vertical heterogeneity of pollutants into four conditions: unstable conditions 

and mixing of local pollution sources, stable atmospheric conditions and accumulation of 

local pollutants, transport and mixing of smoke plumes, and transport of pollution aloft. 

 

2. Site descriptions and instrumentation 

 

Figure 1: Map of the data sites and elevation (m asl). Checkered area indicates Truckee 

Meadows (Hydrographic Area 87). Bold black lines indicate Interstate-80 that runs 

east/west and Interstate-580 (U.S. 395) that runs north/south. Abbreviations for each 

location are identified in Table 1  
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Site Code 
Elevation asl 

(m) 
Measurements Other Latitude (N) Longitude (W) 

Nevada Agricultural 

Experiment station 

Farm Facilities, Reno, 

NV, USA (WRCC) 

FARM 1342 Met  39.5029 119.7379 

Nevada Agricultural 

Experiment Station 

Greenhouse Facilities, 

Reno, NV, USA 

UNRG 1367 
O3, CO, NOx, SO2, 

TAPI PM2.5 
WRCC Met 39.5373 119.8043 

Washoe County Air 

Quality, Reno3, NV, 

USA 

WCAQ 1371 
O3, CO, NOx, SO2, 

PM2.5, Met 
SLAMS, 
NCore 

39.5250 119.8077 

Desert Research 

Institute, Reno, NV, 

USA (WRCC) 

DRI 1516 Met 
NWS Balloon 

soundings 
39.5708 119.8016 

Galena, NV, USA 

(WRCC) 
GALE 1772 Met RAWS 39.3816 119.8150 

Peavine Peak, NV, USA PEAV 2515 
CO, O3, TAPI PM2.5, 

Met 
 39.5895 119.9290 

Table 1: Measurement sites in order of increasing elevation and the measurements made 

at each.  
Met – Meteorological data 
NCore – National Core Multi-Pollutant Monitoring Station 

NWS – National Weather Service 
RAWS – Wildland Fire Remote Automated Weather Stations 

SLAMS – State and Local Air Monitoring Station 

TAPI PM2.5 - Teledyne Advanced Pollution Instrumentation BetaPlus particulate monitor 
WRCC – Western Regional Climate Center 

 

2.1 Site descriptions 

The Truckee Meadows area, defined by Hydrographic Area 87 (HA 87, ~500 

km2, Fig. 1), includes the Reno/Sparks metropolitan area (population of ~3.0x105 in 

2014) and part of unincorporated Washoe County (www.census.gov, 2017). One valley 

site was located at the Nevada Agricultural Experiment Station Greenhouse Facility 

located at the Valley Road field labs and Greenhouse complex of the University of 

Nevada, Reno, USA (UNRG, Table 1). UNRG is located ~0.03 km north of Interstate-80 

(I-80) and 1.5 km west of Interstate-580 (I-580/U.S. Route 395). In addition to local 

highway pollution, regional transport from San Francisco, CA, USA, and long-range 

transport of air masses have previously been observed at UNRG in 2014 from June to 

November (Pierce et al, 2017). See Pierce and Gustin (2017) for more detail on this 

measurement site. 
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Washoe County Air Quality Management (WCAQ) operates the second valley 

site (site ID: 32-031-0016 Reno3, 301A State St. Reno, NV, USA, Table 1) as part of the 

regulatory monitoring network (U.S. EPA Air Quality System). The WCAQ site is 

located ~1.2 km south of I-80, ~1.4 km south of UNRG, and 2.1 km west of I-580 in a 

mixed residential and commercial neighborhood. 

The Peavine Peak measurement site (PEAV, Table 1) is located at the summit, 

above tree line, ~15 km east of the Sierra Nevada Mountain range and ~12 km northwest 

of downtown Reno, NV, USA at the border of the Truckee Meadows area. The site is 

accessed by a dirt road from the southwest. Traffic in the area consists mainly of service 

vehicles to the relay station located at the peak, off-road recreational vehicles, and non-

motorized traffic. More detail on this site can be found in Gustin et al. (2015) and Pierce 

and Gustin (2017). The PEAV site is generally above the PBLH in winter and below the 

PBLH in the summer. Due to its location, PEAV experiences free tropospheric air as well 

as upslope flow of air and pollutants in the afternoon from the Reno/Sparks metropolitan 

area when convective mixing increases the depth of the mixed layer above PEAV (Pierce 

et al, 2017). Long-range transport was observed at PEAV, June to November 2014 

(Pierce et al, 2017). PEAV and UNRG were setup as part of the Nevada Rural Ozone 

Initiative (NVROI, Gustin et al, 2015; Pierce et al, 2017). 

All three sites experience regional (urban areas and wildfires in surrounding 

states) and long-range (trans-Pacific) transport of pollution (Pierce et al, 2017). The 

valley sites experience local urban sources of pollutants from the Reno/Sparks 

metropolitan area and experience thermal circulation creating up- and downslope flows 
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that can mix tropospheric and stratospheric air down to the valley (Gustin et al, 2015; 

Pierce et al, 2017). 

 

2.2 Particulate monitors 

The Teledyne Advanced Pollution Instrumentation (TAPI) BetaPlus particulate 

monitor (Model 602, San Diego, CA, USA) measures particulate matter < 2.5 µm in 

aerodynamic diameter (PM2.5) through two separate inlets. Mass concentration is 

measured using beta attenuation. At 24 h the TAPI 602 BetaPlus has a detection limit of 

0.3 µg m-3 (TAPI, 2012). Lead (Pb) concentrations and isotopic composition were also 

measured using this instrument and were used to asses long-range transport in this study 

(for more detail see Pierce & Gustin, 2017; Pierce et al, 2017). One TAPI was located at 

Peavine Peak and one was located at UNRG in the Reno/Sparks metropolitan area in the 

Truckee Meadows. 

Washoe County Air Quality Management (WCAQ), following regulations for 

monitoring criteria pollutants set by the U.S. EPA, operated a Beta Attenuation Monitor 

(BAM-1020, MetOne Instruments, Grants Pass, OR, USA) during this time in the 

Reno/Sparks metropolitan area in Truckee Meadows. The relative uncertainty of PM2.5 

concentrations is ~ ±0.1µg m-3 per hour (EPA, 2017a). Previous studies have shown that 

PM2.5 measured at WCAQ and UNRG are positively correlated (r2 = 0.84, p-value < 

0.01) and have significantly similar (ANOVA one-way p-value < 0.05) concentrations 

(Pierce & Gustin, 2017). Hourly data was used to average to 24 h. Data were used if > 

50% of the data were available. 
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2.3 Aerosol optical properties 

The Cimel sun photometer (CE-318), the standard instrument used in the AErosol 

RObotic NETwork (AERONET), measures direct solar and sky irradiance at nine 

wavelengths (Holben et al, 1998). AERONET retrieves columnar aerosol optical 

properties through direct-Sun and almucantar scans at three levels of data. This study 

used hourly average data retrieved from direct-Sun scan at level 1 (raw data) for periods 

during smoke plumes and level 2 (quality assurance) for non-smoke plume periods using 

algorithms from Loría-Salazar et al. (2016) to retain τext. Retaining level 1 data is 

necessary during smoke plumes because level 2 data will remove periods of smoke due to 

the similarity of the data to cloud periods in the current version 2 of the AERONET 

algorithm. Hourly data was used with no restriction on available data in a 1 h sample 

period. τext (440 nm) and fine and coarse mode aerosol fractions (500 nm), retrieved from 

AERONET, were used. The relative uncertainty of τext from AERONET is estimated to 

be in the range of ~ ±0.01 and ~ ±0.02 (Eck, 2010; Eck et al, 1999). Ångström Extinction 

Exponent (AEE, 440-870 nm) was also collected from AERONET and is used as a 

qualitative indicator of particle size: AEE ~ 1 or less is indicative of coarse mode 

aerosols (dust and sea salt) while AEE close to or > 2 is indicative of fine mode aerosols 

from biomass burning or urban pollution (Eck et al, 1999). Periods when AEE was > 1.8 

were flagged as fire periods (Loría-Salazar et al, 2016).  

A dual wavelength Photoacoustic and Integrated Nephelometer (PIN) was used to 

measure βext (surface-level aerosol light scattering [βsca] + absorption [βabs]) at 405 nm. 

Hourly averages of βext were used. The relative uncertainty of the scattering and 

absorption observations are 15% and 5% respectively (Lewis et al, 2008). The Cimel and 
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PIN are collocated on top of a four-story building at the University of Nevada, Reno 

(UNR) campus. 

 

2.4 Gaseous data 

At UNRG, O3 was measured with a Thermo 49i (Thermo Fisher Scientific, Inc. 

Franklin, MA, USA) every 15 min with a reported detection limit of 0.5 ppbv. WCAQ 

operated a TAPI 400E with a 1 h average time and a reported detection limit of 5 ppbv. 

Ozone at PEAV was measured every 15 min using a TAPI T400E UV absorption O3 

trace level analyzer with a reported detection limit of 0.6 ppbv. Ozone measurements 

were used for hourly averages, 24 h averages, maximum (max) daily 1 h O3, and max 

daily 8 h averages (MDA8). Data were used if > 50% of the data were available. 

Other instruments operated at UNRG included Thermo Fisher Scientific 

(Waltham, MA, USA) gas analyzers for CO (48i), NOx and NO (42i), and SO2 (43i). 

PEAV had a Thermo gas analyzer for CO (48i). All gas analyzers at UNRG and PEAV 

were mounted in a climate-controlled shelter; sample air was pulled in through a single 

Teflon tube and split to supply ambient sample air to the analyzer. CO, NOx and NO, and 

SO2 were collected from the U.S. EPA Air Quality Station (AQS) WCAQ site. Data were 

used if > 50% of the data were available. 

 

2.5 Meteorological data 

One-hour meteorological data (temperature, RH, wind speed, pressure) were 

collected from the Western Regional Climate Center (WRCC) site, located ~0.2 km north 

of UNRG in the same Greenhouse complex, and from the WCAQ site. Meteorological 



146 
 

data collected at PEAV included 5 min temperature and RH (hmp45c Campbell 

Scientific, ± 0.2 ºC and ± 2% RH), 5 min wind speed (RM Young 05305 ± 0.2 m s-1), 

and 5 min barometric pressure (Vaisala PTB110, ±0.3 hPa at 20 °C). The 5 min data were 

averaged for 1 h and 24 h values. Temperature and pressure data were collected from the 

Nevada Agricultural Experiment Station Farm Facilities, Reno, NV, USA (FARM, 

WRCC) and Galena, NV, USA (GALE, WRCC) for use in vertical temperature 

difference and in the surface layer of the heat deficit calculations discussed in sect. 3.1. 

Data were used if > 50% of the data were available. Meteorological data were also 

collected from atmospheric balloon soundings released by the National Weather Service 

(NWS) at 04:00 PST and 16:00 PST, discussed further in sect. 3.2.  

 

3. Data analysis 

3.1 Atmospheric stability 

Temperature data from GALE and the FARM were used to calculate the 

difference in temperature between a site at higher elevation and a site at the valley floor 

(ΔT=TGALE-TFARM, 𝑑𝑧 = 792 m) to characterize temperature inversions in the Truckee 

Meadows valley, similar to Chen et al. (2012). 

Valley heat deficit was calculated following Whiteman et al. (1999; 2014) as 

𝐻𝐷(𝑧) =  𝑐𝑝 ∫ 𝜌(𝑧)[𝜃ℎ − 𝜃(𝑧)]𝑑𝑧
ℎ

ℎ0
 [J m-2]                                                             

(1) 

where 𝑐𝑝 = the specific heat of air at constant pressure (1005 J Kg-1 K-1), 𝑧 = 

height above valley floor, ℎ0 = valley floor (1342 m), ℎ = height of surrounding 
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mountain ridge above valley floor (2134 m), 𝜌(𝑧) = density of air at height 𝑧, 𝜃ℎ = 

potential temperature at ridge height, and 𝜃(𝑧) potential temperature at height 𝑧. Heat 

deficit was calculated twice a day at 04:00 PST and 16:00 PST using balloon soundings 

released from the NWS and supplemented with data from the valley floor (FARM, Table 

1) for the lowest height layer. The morning and afternoon total heat deficit values were 

averaged for a daily average heat deficit. 

Heat deficit (HD) has previously been used as a measure of atmospheric stability 

in valleys to characterize cold air pools (Chemel et al, 2016; Green et al, 2015; Whiteman 

et al, 1999). Valley heat deficit is the energy required to mix a layer of air from the valley 

floor to the potential temperature (θ) at a ridge line (Whiteman et al, 1999). Generally, 

higher heat deficit values are associated with stable atmospheric boundary layers, and 

therefore more energy is required to mix the air in the valley. 

 

3.2 Vertical structure 

Balloon soundings released at 04:00 and 16:00 PST were used to estimate the 

PBLH. The vertical potential temperature gradient method to find the inversion layer was 

used during periods of high convective mixing (Stull, 1988). The height at which virtual 

potential temperature exceeds the surface temperature by 1.5 K was used for periods with 

low convective mixing (Holzworth, 1964; Seibert et al, 2000). 

βext from the PIN was used with τext from AERONET to calculate Apparent 

Optical Height (AOH, eq. 1). 

𝐴𝑂𝐻 (440, 405) =
𝜏𝑒𝑥𝑡(440 𝑛𝑚)

𝛽𝑒𝑥𝑡(405 𝑛𝑚)
                                                                        (2) 
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AOH is a measure of the maximum depth that aerosol pollution resides in the atmosphere 

(Loría-Salazar, 2014). AOH was compared to PBLH to determine if PM2.5 was confined 

within or was present above the PBL. If AOH and PBLH were not similar, than it was 

assumed that conditions in the column did not reflect conditions at the surface. 

 

3.3 Statistical analysis 

3.3.1 Spatial gradients 

Statistical testing using ANOVA (one-way) was applied to determine statistically 

significant differences in the means of atmospheric pollutant concentrations observed at 

the three measurement sites to aid in investigating the spatial gradients for each pollutant. 

Statistical tests were considered significant at α < 0.05. 

 

3.3.2 Quadrant method 

The quadrant method was developed as a data exploration tool to understand the 

relationship between τext and surface PM2.5 observations. τext and surface PM2.5 were 

separated into four quadrants using threshold values for τext and PM2.5 to identify clean 

and polluted periods. When AERONET τext and surface PM2.5 are visualized on a scatter 

plot the quadrants are as follows: quadrant 1 (Q1) is the lower left quadrant with low τext 

and PM2.5; quadrant 2 (Q2) is the upper left quadrant with high PM2.5 at the surface but 

not in the column; quadrant 3 (Q3) is the upper right quadrant with high τext and PM2.5; 

and quadrant 4 (Q4) is the lower right quadrant with low PM2.5 at the surface but not in 

the column. Quadrant 1 and Q3 had a positive association between τext and surface PM2.5. 
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In Q2 and Q4, there was vertical heterogeneity of aerosol concentrations and therefore no 

association between surface τext and PM2.5 observations. 

Hourly and 24 h PM2.5 concentrations from WCAQ and 24 h data from UNRG 

were used. To increase the sample size (from n = 139 to n = 356) and improve the 

statistical robustness for the quadrant method analysis all 24 h data available from both 

the UNRG and WCAQ sites were used for statistical testing with Tukey’s simultaneous 

95% confidence intervals. These two sites were close together (~1.4 km) and generally 

experienced similar aerosol sources and physical processes during the sampling period, 

based on preliminary ANOVA testing (data not shown here). 

Threshold values for 1 h WCAQ data were 25 µg m-3 (WHO 24 h standard) and 

0.2 τext (at 440 nm) following Loría-Salazar et al. (2017). For 24 h data, threshold values 

were the 75th percentile values for 24 h τext retrievals and PM2.5 concentrations. Values 

above the 75th percentile were considered reasonably polluted values specific to the sites. 

Values lower than the 50th percentile may not indicate polluted periods, while values 

greater than the 75th percentile would indicate heavily polluted periods, but may not 

identify pollution present in filamentous layers aloft. Each τext and PM2.5 pair had 

corresponding meteorological and aerosol data measured at each site. These additional 

data were selected for statistical analysis, and included meteorological variables (RH, 

temperature, wind speed), aerosol optical properties (AEE, fine and coarse mode fraction 

aerosols), vertical structure (PBLH, AOH), measures of stability (ΔT, heat deficit), and 

O3 concentrations (24 h average, max 1 h, MDA8). Variables that were not available in 1 

h temporal resolution (PBLH, heat deficit, max 1 h, MDA8) were not used in the 

comparison between 1 h and 24 h WCAQ data. Other variables used to aid in 
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identification of atmospheric pollution sources and processes in the quadrants, but not 

used in the statistical analysis, included fire flags identified using AERONET data, 

presence of temperature inversions, and presence of strong temperature inversions 

following Chen et al. (2012).  

ANOVA one-way statistical analysis was used to characterize statistically 

significant differences in the means of meteorological variables, aerosol optical 

properties, vertical structure, stability measures, and ozone concentrations in the 

quadrants. Tukey’s simultaneous 95% confidence intervals were used to determine if the 

difference between the means of a variable in two quadrants was statistically significant 

(e.g. the mean of all the wind speed data points associated with the τext and PM2.5 points 

classified in Q1 compared to the mean of all the wind speed data points associated with 

the τext and PM2.5 points classified in Q2). Confidence intervals were calculated, for each 

pair of quadrants (e.g. Q1 vs Q2) for each variable, to quantify statistically significant 

differences in the variable means. If the confidence interval did not span zero, then the 

difference between the mean of the variables in Q1 and the mean of the variables in Q2 

was determined to be statistically significant. The differences in the means of the 

meteorological variables, aerosol optical properties, vertical structure, stability measures, 

and ozone concentrations associated with the τext and PM2.5, separated into each quadrant, 

could then be used to identify the atmospheric sources and processes related to a positive 

association between τext and PM2.5 and periods when there was vertical heterogeneity and 

therefore no association between τext and PM2.5. 

Hourly and 24 h data from WCAQ were both separated into quadrants and 

compared qualitatively to determine if the quadrant method could be applied to 24 h data. 
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Regulatory monitoring networks often use 24 h PM2.5 measurements due to resource and 

access constraints and use of the quadrant method for 24 h PM2.5 data could increase the 

use of this method for rural sites that only have 24 h measurements. Statistically different 

means between quadrants, based on the Tukey pairwise comparison, were noted and the 

means were qualitatively labeled as low, moderate, or high compared to the means of that 

variable in other quadrants that were statistically significant. Qualitative labeling of the 

statistical results was used to compare the overall results in each quadrant between 1 h 

and 24 h WCAQ data to identify large discrepancies (low vs. high labels) between the 

two datasets that would indicate that 24 h data was not suitable for use in the quadrant 

method. 

The statistical results for each quadrant of the 24 h data from UNRG and WCAQ 

were then analyzed to identify differences in variable means between quadrants to 

determine the different sources and physical processes affecting the relationship between 

τext and PM2.5 in each quadrant. Results from this study and from Loría-Salazar et al. 

(2017) were compared because Reno is an inland site in the Western USA, and it was 

previously used in Loría-Salazar et al. (2017). Where available, data from PEAV were 

used to compare the concentrations of atmospheric pollutants at a higher elevation site to 

the concentrations at the valley sites. 

 

4. Results and Discussion 

4.1 Atmospheric stability 

Valley heat deficit, used as a measure of the bulk stability of the Truckee 

Meadows valley, had a seasonal cycle. Total heat deficit (total, 1342 m to 2134 m), heat 



152 
 

deficit in the surface layer (surface, 1342 m to 1516 m, SI Fig. 1a and 1b), and morning 

heat deficit had higher values in winter and fall, lower values in summer, and the lowest 

values in spring (SI Table 4). Afternoon heat deficit had the highest values in winter, the 

lowest values in fall, and similar values in spring and summer (SI Table 4). High heat 

deficit in winter indicates higher stability and therefore less mixing, which is expected in 

winter due to lower solar radiation and temperatures. Morning heat deficit (SI Fig. 1c) 

was higher than the afternoon heat deficit (SI Fig. 1d) 99% of the days during the sample 

period (SI Fig. 1e), indicating higher stability in the morning compared to the afternoon, 

in agreement with daily periods of low and high convective mixing associated with solar 

radiation. 

 The difference in temperature (ΔT) between GALE and the FARM, used to 

characterize temperature inversions in the Truckee Meadows valley, was high in the fall 

and low in the spring (fall > winter > summer > spring, SI Table 4). Green at al. (2015) 

found that ΔT and heat deficit were positively correlated (r2 = 0.48) in winter in Reno. In 

the current study, heat deficit was positively correlated with ΔT for all data (r2 = 0.57, p-

value < 0.05, SI Fig. 2a), 24 h average heat deficit and ΔT (r2 = 0.40, p-value < 0.05, SI 

Fig. 2b), and morning heat deficit and ΔT (r2 = 0.58, p-value < 0.05, SI Fig. 2c), but not 

for afternoon heat deficit and ΔT (r2 = 0.055, p-value < 0.05, SI Fig. 2d). Heat deficit and 

ΔT were positively correlated for all seasons except summer (SI Fig. 3). These results 

indicate that ΔT and heat deficit were correlated and either could be used as measures of 

atmospheric stability outside of summer months. 
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Heat deficit and PM2.5 concentrations were also previously shown to be positively 

correlated in winter (r2 = 0.53 to 0.59, Green et al, 2015). The relationship between daily 

average heat deficit and PM2.5 concentrations (r2 = 0.49, p-value < 0.05, SI Fig. 6) in 

Reno in the winter compares well to the previous work. Daily average heat deficit was 

not well correlated with average PM2.5 concentrations, unless days with fires were 

removed (SI Fig. 4 and 5). Days with fire flags, determined using AEE, were only 

available when the Cimel was operating, therefore some days during fires may not have 

been removed, due to missing Cimel data. However, removing data with available fire 

flags improved the positive correlation between total 24 h average heat deficit (r2 = 0.29, 

p-value < 0.05), morning heat deficit (r2 = 0.24, p-value < 0.05), and afternoon heat 

deficit (r2 = 0.26, p-value < 0.05) with PM2.5 (SI Fig. 5). Heat deficit and PM2.5 were 

positively correlated for all seasons except summer (SI Fig. 6). A similar improvement of 

ΔT and PM2.5 correlation occurred when fire data were removed (data not shown). This 

indicates that measures of stability were useful for understanding PM2.5 concentrations 

during certain conditions, but were not useful during conditions influenced by other 

factors, such as wildfire emissions. A period of elevated heat deficit that occurred in 

January 2015 is discussed in sect. 4.3.4. 

 

4.2 Vertical structure 

 PBLH was high in the summer (median: 2.5 km) and low in the winter (median: 

0.75 km) with spring and fall median values of 1.7 km and 1.9 km, respectively. As 

expected, PBLH was only correlated with heat deficit (r2 = 0.21, p-value < 0.05) and 
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WCAQ PM2.5 (r
2 = 0.11, p-value < 0.05) in the winter when there was less convective 

mixing, higher stability, and enhanced PM2.5 at the surface (SI Fig. 10, 11, 12, and 13). 

Calculated AOH was higher in the summer (median: 3.8 km) than in the fall (median: 2.4 

km). There were only three data points for spring and no winter data available due to lack 

of Cimel data during instrument calibration (SI Table 5 and SI Fig. 7). High values of 

PBLH and AOH in the summer were expected due to higher convective mixing and 

aerosols present aloft. However, PBLH and AOH were not well correlated (r2 = 0.029, SI 

Fig. 8 and 9). Because AOH is a measure of the maximum depth that aerosol pollution 

resides in the atmosphere based on columnar and surface extinction, it will not 

necessarily be related to PBLH or atmospheric stability. Secondary aerosol formation and 

lofting of pollutants into the free atmosphere over the Sierra Nevada Mountains affect 

AOH independently of the PBLH (Loria-Salazar et al, 2014) 

 

4.3 Statistical analysis 

4.3.1 Spatial gradients  

Ozone (1 h average and MDA8) increased significantly (ANOVA p-value < 0.01, 

Table 2) in concentration further from the highways (UNRG < WCAQ < PEAV). For 

June 2014 to October 2015, the valley sites (UNRG and WCAQ) did not have 

significantly different max 1 h O3 concentrations (p-value = 0.07). June to November 

2014, max 1 h O3 concentrations at the two sites furthest from the highways (WCAQ and 

PEAV) were not significantly different (ANOVA p-value > 0.05), but both were 

significantly higher than UNRG (ANOVA p-value < 0.01, for both). The formation of O3 

from photochemical reactions between VOCs and NOx explains the higher concentration 
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at WCAQ, which is further from the highways, compared to UNRG. In Truckee 

Meadows, on-road mobile emissions, dominated by truck emissions, were the largest 

sources of NOx (68% of total emissions) in 2011 (Washoe County, 2012). The highways 

were a dominant source of NOx emissions, where photochemical reactions were the main 

source of O3 at the valley sites. Ozone at PEAV is not necessarily dependent on distance 

from the highways as the site experiences limited photochemical production of O3 during 

the day and is influenced by stratospheric mixing of O3 and long-range transport (Pierce 

et al, 2017).  

PM2.5 at the valley sites was not significantly different, while PEAV was 

significantly lower than both valley sites (ANOVA p-value < 0.01, for both, Table 2). 

Distance to the highway will affect primary PM2.5 concentrations. However, non-point 

sources account for 87% of PM2.5 emissions in Truckee Meadows and will affect PM2.5 

concentrations independently of distance to highways, as will secondary formation of 

PM2.5 (Washoe County, 2012). Primary PM2.5 emissions will be higher closer to 

highways, while secondary formation with be enhanced further from highways. 

Miscellaneous area sources, which include wildfires, were the main non-point source of 

PM2.5, and have been shown to degrade air quality in the area (EPA, 2017b; Loría-Salazar 

et al, 2017; Miller et al, 2015; Pierce et al, 2017).  

CO was significantly lower in concentration (ANOVA p-value < 0.01, Table 2) 

further from the highways (UNRG > WCAQ > PEAV). This is not surprising, as on-road 

mobile emissions from passenger cars and trucks were the largest sources (44% of total 

emissions) of CO. Non-road mobile sources including non-road vehicles, non-road 

engines, and railroads, emit another 27% of total CO emissions, and non-point sources 
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(e.g. wildfires) of CO account for 28% of total emissions (Washoe County, 2012). CO 

can then undergo chemical reactions leading to O3 formation. 

NOx, NO, and SO2 were only measured at the valley sites. UNRG had 

significantly higher concentrations of NOx and NO than WCAQ (ANOVA p-value < 

0.01, Table 2). On-road mobile emissions, dominated by truck emissions, were the largest 

sources of NOx (68% of total emissions), while non-road mobile sources accounted for 

another 20% of total NOx emissions (Washoe County, 2012). NOx can then also 

contribute to O3 formation. Based on the dominant sources of CO and NOx, 

concentrations were influenced by proximity to the highways at the two valley sites, with 

higher concentrations at UNRG. 

WCAQ had significantly higher SO2 than UNRG (ANOVA p-value < 0.01, Table 

2). Non-point emissions (external and internal stationary fuel combustion and 

miscellaneous area sources, such as wildfires) were the largest sources of SO2 (76% of 

total emissions) in Truckee Meadows (Washoe County, 2012). Proximity to sources of 

SO2, such as highways and point sources, will affect SO2 concentrations; however, non-

point sources will have a larger contribution. 

To compare our roadway gradients of pollutants to previous results, background 

normalization is calculated by dividing the near-road concentrations by a concentration 

far enough from the highways to be considered background. Karner et al. (2010) found 

that CO, NOx, NO returned to background concentrations between 0.16 and 0.57 km 

from a highway, while Riley et al. (2014) found that NOx returned to background 

concentrations by ~0.30 km from a highway. Based on these findings the median 

concentration of hourly WCAQ data was used as the background concentration since it is 
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located 1.2 and 2.1 km from the highways. Hourly data from days classified in Q1 had 

average enhancements of CO, NOx, and NO at UNRG by 1.6, 2.9, and 8.3 times WCAQ 

compared to 21, 1.8, 3.3, respectively, in Karner et al. (2010) and 3.5 times for NOx in 

Riley et al. (2014). O3 and SO2 were on average 0.72 and 0.52 times less at UNRG than 

at WCAQ. Karner et al. (2010) and Riley et al. (2014) had similar results (~0.5 and 0.7, 

respectively) for O3 but did not report values for SO2. Both studies had measurements 

closer to the highway or calculated the edge-of-highway values, which may account for 

the differences in this study (e.g., UNRG is 0.03 km from the highway), due to the rapid 

decrease of some pollutants, such as CO, with distance from the highway (Karner et al, 

2010). Differences in the gradients may also be due to the volume and type of traffic on 

the highways. 

 

Variable 
Site comparison (x-

y) 
Slope p-value r ANOVA p-value Higher 

Jun-Nov 

2014 

O3 

(1 h) 

UNRG-WCAQ 0.79 <0.01 0.85 <0.01 WCAQ  

UNRG-PEAV 0.12 <0.01 0.31 <0.01 PEAV  

WCAQ-PEAV 0.21 <0.01 0.49 <0.01 PEAV  

O3 

(max 1 h) 

UNRG-WCAQ 0.64 <0.01 0.69 0.07  
<0.01 

WCAQ 

UNRG-PEAV 0.26 <0.01 0.48 <0.01 PEAV  

WCAQ-PEAV 0.49 <0.01 0.79 <0.01 PEAV 0.35 

O3 

(MDA8) 

UNRG-WCAQ 0.68 <0.01 0.72 <0.01 WCAQ  

UNRG-PEAV 0.23 <0.01 0.48 <0.01 PEAV  

WCAQ-PEAV 0.42 <0.01 0.77 <0.01 PEAV  

CO 

(1 h) 

UNRG-WCAQ 0.75 <0.01 0.84 <0.01 UNRG  

UNRG-PEAV 0.026 <0.01 0.09 <0.01 UNRG  

WCAQ-PEAV 0.035 <0.01 0.10 <0.01 WCAQ  

PM2.5 

(24 h) 

UNRG-WCAQ 0.90 <0.01 0.91 >0.05   

UNRG-PEAV 0.60 <0.01 0.69 <0.01 UNRG  

WCAQ-PEAV 0.61 <0.01 0.77 <0.01 WCAQ  

NOx (1 h) UNRG-WCAQ 0.72 <0.01 0.80 <0.01 UNRG  

NO (1 h) UNRG-WCAQ 0.66 <0.01 0.81 <0.01 UNRG  

SO2 (1 h) UNRG-WCAQ 1.2 <0.01 0.72 <0.01 WCAQ  

Table 2: Slope, p-value of linear regression, correlation coefficient (r), one-way ANOVA 

p-values for each site comparison, and the site that has higher values for all data 

available. The last column indicates differences in ANOVA p-values and the site that is 

higher for June to November 2014. 
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4.3.2 Evaluation of the quadrant method using 24 h data 

Because the quadrant method was developed for 1 h data, the method was applied 

to both 1 h and 24 h data at WCAQ to determine if the method could be used with 24 h 

data. It is expected that the statistical quadrant method will provide more robust results 

using the hourly data with more data points. However, at many locations throughout the 

USA only 24 h PM2.5 data is available, including UNRG and PEAV. Using 24 h data 

required selecting new threshold values for τext and PM2.5 based on 75th percentile values 

at the site to identify site specific clean and polluted periods (SI Tables 1, 2, and 3). 

Statistical results identified in each quadrant will therefore change depending on the site 

τext and PM2.5 values, and the variables selected for the ANOVA statistical testing. 

Statistically significant differences, based on Tukey pairwise comparison, between the 

means of variables in different quadrants were labeled as low, moderate, and high based 

on the mean values (Fig. 2). This was done to investigate how the results in each quadrant 

compared and not to compare the absolute means in each quadrant, as the absolute means 

will differ between 1 h and 24 h data (see SI Table 6 for absolute values). 

Differences in the means of the variables in each quadrant generally identified 

similar sources and physical processes for the 1 h and 24 h datasets (Fig. 2). Quadrant 1 

contained a majority of the data points for 1 h and 24 h data. Quadrant 2 had the highest 

percentage of temperature inversions, while Q3 had the highest percentage of days with 

fire flags for both datasets. Aerosol modes were similar between the 1 h and 24 h data, 

except Q4, which had some coarse mode aerosols in the 24 h data, but was dominated by 

fine mode aerosols in the 1 h data. There were differences in mean RH in Q1 and Q4 for 

the 1 h data, but mean RH was not significantly different in these two quadrants for the 
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24 h data. There were also differences in mean wind speed for Q1, where there was high 

mean wind speed for the 24 h data and moderate mean wind speed for the 1 h data in Q1. 

There was a difference in the mean ΔT for Q3, where there was moderate mean ΔT for 

the 24 h data and low mean ΔT for 1 h data. Mean wind speed was not significantly 

different in Q3 or Q4 for the 24 h data but was statistically different for the 1 h data. In 

Q4, mean ΔT was low for the 24 h data and moderate for the 1 h data and mean 

temperatures and O3 concentrations were moderate in the 24 h data and high in the 1 h 

data. 

 

 a) WCAQ (24 h data, n=370)  b) WCAQ (1 h data, n=2122) 
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Figure 2: Significant meteorological variables, aerosol optical properties, vertical 

structure, atmospheric stability measures, and ozone (O3) concentrations for a) 24 h data 

and b) 1 h data at WCAQ in each quadrant (Q1-Q4). 

 

 If there were large discrepancies (e.g. low vs. high means) between observed 

differences in the variable means when comparing the quadrants for 1 h vs 24 h, then the 
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quadrant method for 24 h data identified different sources and physical processes 

compared to the 1 h data and may indicate issues using the method for 24 h data. Other 

differences in variable means occurred when variable means considered significantly 

different between two quadrants for the 1 h data were not significantly different between 

the same two quadrants for the 24 h data, this difference between 1 h and 24 h quadrants 

did not change the overall source or physical process identified for those quadrants. 

Differences between means for 1 h and 24 h data were expected due to the nature 

of the τext retrievals only occurring during daylight hours, removing nighttime PM2.5 

measurements from the 1 h ANOVA testing, while 24 h PM2.5 samples will include day- 

and nighttime concentrations. VanCuren et al. (2005) found that nighttime fumigation is 

an important source of free tropospheric air to surface monitoring sites at high elevation 

and often contains Asian aerosols. This nighttime fumigation would be lost in the 1 h data 

but retained in the 24 h PM2.5 measurements. Additionally, discreet transport events may 

occur on shorter time scales than 24 h due to filamentous layers of pollution aloft (Fine et 

al, 2015; Lin et al, 2012; Stohl et al, 2003). 

However, due to the similarities in the results of the statistical analysis between the 1 h 

and 24 h quadrants, the quadrant method was used for 24 h data. 

 

4.3.3 Quadrant method results for 24 h combined UNRG and WCAQ data 

The 75th percentile thresholds for all 24 h data from UNRG and WCAQ were 0.12 

for τext and 8.8 µg m-3 for PM2.5. For days with quadrant classification, UNRG had 138 

days and WCAQ had 218 days available. There were 129 days with quadrant 

classification at both sites between June 2014 and October 2015. There were 19 days in 
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which UNRG and WCAQ were classified in different quadrants. On 9 of those days, 

UNRG had higher PM2.5 concentrations; the other 10 days WCAQ had higher 

concentrations, indicating that one site was not consistently higher than the other. 

There was no winter data due to calibration of the Cimel, and very few data points 

in spring due to cloud cover. There was a positive correlation between τext and PM2.5 for 

all data (r2 = 0.35, p-value < 0.01, Fig. 3) and good correlation between τext and PM2.5 (r
2 

= 0.65, p-value < 0.01, SI Fig. 14) in the summer. Although there was higher positive 

correlation between τext and PM2.5 for the 24 h data at these sites compared to the hourly 

data in Loría-Salazar et al. (2017), there were still periods that were not explained by a 

linear relationship (Fig. 3 and SI Fig. 14). 

 

 

Figure 3: Scatter plot of all AERONET τext and PM2.5 (µg m-3) 24 h data available from 

UNRG and WCAQ. Solid grey lines indicate τext: 0.12 and PM2.5: 8.8 µg m-3, dashed grey 

lines indicate τext: 0.2 and PM2.5: 25 µg m-3, dotted grey line is the linear fit line.  
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Figure 4: Significant meteorological variables, aerosol optical properties, vertical 

structure, atmospheric stability measures, and ozone (O3) concentrations for all 24 h 

data from UNRG and WCAQ in each quadrant (Q1-Q4). 

 

 Quadrants 1, 2, and 4 had similar AEE and fine mode with some coarse mode 

fraction aerosols (SI Table 7). There were differences between Q1 and Q4 in the means 

of wind speed, temperature, and max 1 h O3. There were also differences in PBLH and 

AOH between Q1 and Q4. The low measures of atmospheric stability (heat deficit and 

ΔT), high wind speed, and high O3 but moderate max 1 h and MDA8 O3 in Q1 indicated 

unstable conditions and a well-mixed PBL with low τext and PM2.5 concentrations. The 

differences in the means of PBLH and AOH in Q4 indicated more aerosols higher in the 

column than the PBLH. High mean max 1 h O3 in Q4 but similar 24 h average mean O3 

to Q1 also indicated short-term increases in pollutants occurring in Q4 and a PBL that 

was not well mixed. Quadrant 2 had high measures of atmospheric stability (heat deficit 

and ΔT), low temperatures, low O3, and aerosols confined within the PBLH 
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(AOH~PBLH, SI Table 7 and 8), indicating a stable atmosphere and local pollutants 

accumulating at the surface leading to reduction in O3 through titration with NO. The 

highest AEE and fine mode fraction aerosols dominated in Q3, along with high O3, max 1 

h O3 and MDA8 O3, and a high percentage of days with fires, indicated aerosols from 

fires affected this quadrant (Fig. 4 and 5). 
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Figure 5: Summary of conditions in each quadrant at the two valley sites, UNRG and 

WCAQ. 

 

There were differences in the statistically significant means of certain variables 

and aerosols modes between the quadrants identified in Loría-Salazar et al. (2017) for 

inland sites in the Western USA and the quadrants identified in this study. Differences in 

means are expected between sites and sample periods. However, because the current 

study used data from Reno, NV, USA, which is also a site used in the previous study, the 

differences are worth noting. Q1, Q2, and Q4 all had higher fine mode fraction aerosols 

compared to the previous study. Q1 and Q2 also had higher values of AEE than the 

previous study. Q3 in the previous study had higher RH, used as an indicator of wildfire 

plumes (Parmar et al, 2008), however in this study, Q3 had RH similar to Q1 and Q4, 

which were all significantly less than Q2, making the wildfire determination less distinct 

in this study. 
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Differences in aerosol fraction are important because coarse mode fraction 

aerosols were used as evidence for local pollutants for Q1 and Q2 in the previous study. 

The similarity in fine mode fraction between Q1, Q2, and Q4 in the current study 

indicates aerosol optical properties were less useful in understanding the processes 

affecting the variables in those quadrants for the 24 h data. Gustin et al. (2015) found that 

valley structure, i.e. size of the valley, height of surrounding topography, and distance to 

surrounding topography impacts air quality due to the differences in surface area for 

deposition and in convective mixing. Inland sites in Loría-Salazar et al. (2017) included 

Reno and Frenchman Flat, NV, and Fresno, CA. Frenchman flat (940 m asl) and Fresno 

(94 m asl) are both lower in elevation than Reno (1341 m asl), therefore both sites will 

experience different convective mixing and influence from entrainment of pollutants 

aloft. Fresno (population: 5.0x105), located in the southern half of the Central Valley 

(47,000 km2) of California, west of the Sierra Nevada Mountains and is not considered 

part of the intermountain west. Fresno is influenced by high population density and the 

agricultural industry that dominates the area (www.census.gov, 2017). The lower 

elevation and large valley size, high population density, and agricultural sources of 

atmospheric pollutants would lead to differences in convective mixing and in the fine and 

coarse mode fraction aerosols present, compared to Truckee Meadows. 

The Frenchman Flat hydrographic area is 1200 km2, more than twice the size of 

the Truckee Meadows hydrographic area, lower in elevation, located on a dry riverbed 

with topographic surroundings lower in elevation than Reno (NV, 2017). Frenchman Flat 

is part of the Nevada National Security Site and does not have a permanent population, 

and would therefore have limited local sources of fine urban aerosols. The surface PM2.5 
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measurements are from the Las Vegas, NV U.S. EPA AQS. The Las Vegas U.S. EPA 

AQS site is located on the northwest border of the Las Vegas metropolitan area 

(population: ~2 mill), 71 km southeast of the AERONET τext observed in Frenchman Flat 

(www.census.gov, 2017). Using τext observations from Frenchman Flat and PM2.5 

concentrations near Las Vegas for the quadrant method in this area, likely would have 

different statistical results than collocated observations of τext and PM2.5 due to the 

difference in urban and non-urban pollutants. Both Frenchman Flat and Fresno are likely 

impacted by coarse mode fraction aerosols due to locations in a dry lakebed and 

agricultural area. These two sites may have skewed the aerosol mode fraction toward 

higher levels of coarse mode fraction aerosols in the previous study than was observed in 

Reno for this study. 

 

4.3.4 Analysis of quadrant method results 

Individual quadrants for the 24 h UNRG and WCAQ data were analyzed to 

understand the statistical results for each classified quadrant. All data in Q1 was analyzed 

together. Case studies were analyzed for Q2 and Q3. Days that classified in Q4 and that 

had data from PEAV were analyzed. Days with high input of trans-Pacific pollutants, but 

were not necessarily classified in Q4 were also analyzed. Data from PEAV, surface and 

500 mb weather maps, the MODIS visible product, and Naval Research Laboratory 

Aerosol Analysis and Prediction System (NRL NAAPS) aerosol surfaces were used to 

corroborate quadrant classification. 
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Quadrant 1 (Q1): unstable conditions and mixing of local pollutants 

Quadrant 1 contained the majority of data points (n=231, 65%) for 24 h data. 

Median PM2.5 concentration for Q1 data in the valley (5.9 µg m-3) was lower than the 

median concentration (6.7 µg m-3) for the sample period (SI Table 2 and 7). The median 

PM2.5 concentration (3.8 µg m-3) at PEAV, for days (n=62) classified as Q1 in the valley, 

was lower than the median PM2.5 concentration (4.5 µg m-3) at PEAV, June to November 

2014 (SI Table 9). τext was similar to Q2 but AOH was higher in Q1. Because Q1 

contained a majority of the data points, characterized by low measures of atmospheric 

stability, it was analyzed in bulk as the quadrant representative of the base state of the 

measurement sites. 

For days classified in Q1, pollutant concentrations were higher and the ranges of 

the diel patterns (Fig. 6) were larger for CO (174 to 458 ppbv), NOx (14 to 54 ppbv), and 

NO (1.7 to 29 ppbv) at UNRG compared to WCAQ (CO: 145 to 309 ppbv, NOx: 5.6 to 

32 ppbv, and NO: 1.4 to 15 ppbv). Ozone (8.2 to 44 ppbv) and SO2 (0.061 to 0.38 ppbv) 

concentrations were lower at UNRG compared to WCAQ (O3: 21 to 53ppbv, SO2: 0.16 to 

0.51 ppbv). Morning peaks in concentrations coincided with rush hour traffic. CO, NO, 

and SO2 peaked at 07:00 PST and then dropped below nighttime levels until 21:00 PST 

when concentrations returned to nighttime levels at both sites, except for SO2 at WCAQ, 

which remained elevated above nighttime levels until 21:00 PST. The morning peak in 

SO2 at both sites indicates that vehicles were a source of SO2; however, the elevated 

concentration throughout the day at WCAQ indicated another source of SO2 was also 

present. Major point sources of SO2 in Truckee Meadows include the Reno-Tahoe 

International Airport located ~5.1 km southeast of UNRG and ~4.3 km southeast of 
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WCAQ. Major non-point sources include commercial and industrial fuel combustion and 

wildfires. NOx concentrations at UNRG were 54 ppb from 06:00 to 07:00 PST but were 

lower during this time at WCAQ (30 to 32 ppb) indicative of on-road sources dominating 

NOx emissions. Ozone concentrations were lowest at both sites at 05:00 PST and peaked 

between 13:00 and 14:00 PST. This pattern is similar to that measured previously in 

Reno, suggested to be due to mixing from the free troposphere (Gustin et al, 2015; Gustin 

et al, 2013; Pierce et al, 2017). AERONET τext had a small peak at 07:00 PST, a 

minimum at 14:00 PST and maximum peak (0.074) at 18:00 PST (τext was only available 

at UNR and during daylight hours 06:00 to 19:00 PST). The maximum peak was later 

than seen in June (16:00 PST) and July (14:00 PST) of 2012 at this site (Loría-Salazar, 

2014) and was attributed to secondary aerosol formation. PM2.5 started to increase at 

05:00 PST, peaked at 09:00 PST (9.5 µg m-3), and then decreased until 19:00 PST 

(hourly PM2.5 was only available at WCAQ, Fig. 6). This is similar to findings in Loría-

Salazar (Loría-Salazar, 2014) that showed primary pollutants at the surface in the 

morning and secondary aerosol formation present in the atmospheric column in the 

afternoon, indicating no association between τext and PM2.5 in the afternoons. 
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Figure 6: Average ozone (O3, ppbv), carbon monoxide (CO, ppbv), oxides of nitrogen 

(NOx, ppbv), nitrogen monoxide (NO, ppbv), sulfur dioxide (SO2, ppbv), AERONET 

aerosol optical depth (τext, at 440 nm), and particulate matter (PM2.5, µg m-3) for each 

hour of the day (PST) of the days classified in Q1 at UNRG and WCAQ. 

 

Quadrant 2 (Q2): Stable conditions, shallow PBLH, and local pollutants 

Quadrant 2 had the least amount of available data (n=29, 8%) due to a 

combination of missing Cimel data during the winter, cloudy conditions, and the extent 

of the sample period. The median PM2.5 concentration for Q2 (10 µg m-3) was higher than 

the median concentration for the sample period (6.7 µg m-3) while the median 

concentration at PEAV (1.9 µg m-3), for available days (n=8) where the valley was 

classified as Q2, was less than the median concentration (4.5 µg m-3) at PEAV, June to 

November 2014. Similar τext and lower AOH than Q1 and lower PM2.5 concentrations at 

PEAV support the confinement of aerosols within the PBLH in the valley. A case study 

in January 2015 was analyzed as a representative of a cold pool event, though the Cimel 

was not operating at this time. 

From January 1 to January 9, 2015, total average heat deficit was > 4 MJ m-2, 

except on January 4 (3.6 MJ m-2). Total morning heat deficit was > 5 MJ m-2 from 
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January 2 to 9. January 2 to 5 and January 8 and 9 had maximum ΔT > 5 °C and 

minimum ΔT > -2 °C and would be considered strong temperature inversion periods 

following criteria from Chen et al. (2012). Although these days were not categorized into 

quadrants, due to missing Cimel data, it is clear that it was an extended period of a stable 

atmospheric boundary layer in which pollutants accumulated and a cold air pool was 

present. 

Elevated PM2.5 concentrations above the 8.8 µg m-3 threshold occurred during this 

time; PM2.5 reached 26 µg m-3 on January 2 at UNRG. There were no PM2.5 data at 

UNRG for January 7 to 9. At UNRG, 24 h average CO reached over 1000 ppbv, NOx 

was over 100 pbbv and NO was over 80 ppbv. O3 at UNRG, dropped to < 2 ppbv by the 

end of the 9 days while max 1 h O3 dropped below 10 ppbv and MDA8 O3 dropped to 5 

ppbv or below. Ozone concentrations were depressed due to the accumulation of NOx and 

NO causing NOx titration and removal of O3 through reaction with NO. Wind speeds 

were > 1 m s-1 before and after this period and < 0.5 m s-1 during. Temperatures started at 

-7 °C, and gradually rose to 7 °C by the end of the period. RH increased from 66% to 

76% and pressure was elevated, starting to drop the last day of the period as air in the 

valley began to mix. PBLH was less than 1 km on all days except on January 4 (1.5 km). 

WCAQ had almost identical patterns, the only differences were that max PM2.5 was 22 

µg m-3, January 6 had higher wind speeds (1.1 m s-1), and RH ranged from 58% to 69%. 

There were no PM2.5, CO, or meteorological measurements at PEAV during this time. O3 

at PEAV was similar to the median monthly concentrations for 24 h average O3 (38 ppb), 

max 1 h O3 (43 ppb), and MDA8 O3 (41 ppb) for January 2015. PEAV did not experience 
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a change in O3 concentrations and remained above the PBLH for the entire period, except 

on January 4. 

An inverted trough of low pressure was present along the coast of California (SI 

Fig. 15a) until January 4 when a high-pressure area was present over Northern California 

and the trough was less pronounced (SI Fig. 15b). High pressure remained over most of 

Nevada for this period. Strong winds aloft started out east northeasterly on December 31, 

2014 due to cyclonic flow aloft centered over southern California (SI Fig. 16a), which 

dissipated by January 4. The winds shifted northerly (SI Fig. 16b), northwesterly (SI Fig. 

16c), westerly and weakened (SI Fig. 16d), until January 9 when they become southerly 

(SI Fig. 16e) and pollutant levels began to decrease and heat deficit and ΔT decreased. 

This analysis demonstrated the usefulness of the measures of stability in the quadrant 

method for understanding processes affecting atmospheric pollutants during periods 

when τext and PM2.5 were not associated. 

 

Quadrant 3 (Q3): transport and mixing of smoke plumes 

 Quadrant 3 had the highest median τext (0.26), PM2.5 concentration (13 µg m-3, 

n=64, 18% of data), AEE (1.8), and fine mode fraction aerosols (0.92) and the highest 

percentage of days with fires (83%) identified by the AERONET data. Median PM2.5 

concentration for days available at PEAV (n=17) during days classified as Q3 for the 

valley also had the highest median concentration (11 µg m-3). The similarity between the 

valley and PEAV supports a well-mixed column, while high AEE and percentage of days 

with fires indicates wildfire aerosols were dominant in this quadrant. One day in 

September 2014 classified in Q3 was further analyzed. 
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On September 19, 2014, the two valley sites were classified as Q3. The King Fire 

burned 390 km2 in El Dorado County, CA, ~100 km southwest of Reno, NV, from 

September 13 to October 31, 2014 (CA, 2017). The smoke plume from this fire can be 

seen in the MODIS visible images (SI Fig. 17a and 17b), when the plume was transported 

downwind to Reno. 

In the valley (SI Table 10), τext (0.85 to 0.37), coarse mode fraction, PBLH (3.2 to 

1.6 km), and heat deficit decreased from the day before while fine mode fraction, ΔT, 

AOH (0.83 to 3.7 km), and AEE (1.83 to 1.96) increased. AOH was << PBLH on 

September 18 and >> PBLH on September 19. There was a fire flag from the AERONET 

data during this time. At UNRG (SI Table 10), wind speed, O3, max 1 h O3, MDA8 O3, 

CO, and SO2 decreased from the previous day, while pressure, NOx, and NO increased. 

Temperature and RH were similar to the previous day. PM2.5 was 23.7 µg m-3, higher 

than the 75th percentile (9.4 µg m-3) for this site (there was no PM2.5 data for 2 days 

prior).  

At WCAQ (SI Table 10), wind speed, O3, max 1 h O3, MDA8 O3, CO, and SO2 

decreased from the day before, while NOx and NO increased, and temperature and RH 

were similar. PM2.5 was 27 µg m-3, a decrease from 101 µg m-3 the previous day, both 

higher than the 75th percentile (8.4 µg m-3) for this site. No hourly or daily pressure 

measurements are reported for WCAQ. 

At PEAV, RH, wind speed, CO, O3, max 1 h O3, and MDA8 O3 decreased from 

the previous day while temperature and pressure increased. PM2.5 was 6.7 µg m-3, higher 

than the 75th percentile (6.0 µg m-3) for this site. No PM2.5 data was measured for 6 days 

prior and no NOx measurements occurred at PEAV. 
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On September 18 and 19, low-pressure systems resided off the coast of California 

(SI Fig. 18a, 18b, and 18c). Winds at the surface shifted from southwesterly on 

September 18 to northeasterly on September 19, to northeasterly and southeasterly on 

September 20. Winds at 500 mb shifted from prevailing westerly flows to south and 

easterly flows (SI Fig. 19a, 19b, 19c, and 19d). This shift in wind direction briefly 

directed smoke to the west, away from the Truckee Meadows area (SI Fig. 17c). This 

shift is also seen in the NRL NAAPS smoke surface (SI Fig. 20a, 20b, and 20c), 

particularly on September 19 (SI Fig. 20b, 10:00 PST) 

For this case, all three sites had similar behavior for variables measured at all 

three sites, except temperature and RH, which were different between PEAV and the 

valley sites. Decreases in CO across all three sites and of PM2.5 at WCAQ indicated that 

the smoke plume had less impact on the measurement sites on September 19 compared to 

previous days. The decrease in RH at PEAV that did not occur at either valley site may 

indicate that PEAV was intercepting drier free tropospheric air. AOH increased from 0.83 

km to 3.6 km while PBLH decreased from 3.2 to 1.6 km from September 18 to 19 

indicating that the height of aerosols in the atmospheric column was within the PBLH on 

September 18 and that aerosols were present above the PBLH on September 19 (SI Table 

8). PEAV was likely experiencing residual smoke in the early morning (SI Fig. 17c and 

SI Fig. 20a) that was pushed further west as the day continued (SI Fig. 17d and SI Fig. 

20b and 20c). Although PEAV had a lower PM2.5 concentration than the two valley sites, 

the concentration was higher than the 75th percentile for the site. This day supports the 

identification of Q3 influenced by wildfire plumes. Changing conditions when smoke 
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plumes are transported aloft and are not confined to the surface may present difficulties in 

quadrant classification (see Q4). 

 

Quadrant 4 (Q4): Pollution aloft 

The median PM2.5 concentration (7.1 µg m-3, n = 32, 9% of data) for Q4 was 

similar to the median concentration (6.7 µg m-3) for the sample period. The median 

concentration (4.3 µg m-3) for days (n=7) available at PEAV when the valley was 

classified as Q4 was similar to the median concentration (4.5 µg m-3) for the PEAV 

sample period. Due to cloud cover and short sample period, the lack of data during spring 

hinders a full assessment of Q4. In spring, we would expect to see an increase in 

pollution aloft due to increased frontal activity and long-range transport (Cooper et al, 

2010; Fiore et al, 2014; Jacob et al, 1999; Langford et al, 2015; Lin et al, 2012; 

Vingarzan, 2004). Data from a previous study (Pierce et al, 2017) was used to identify 

days with moderate to high trans-Pacific input based on Pb isotopic ratios. 

There were 9 days from June to November 2014 in which one of the valley sites 

was classified in Q4 (Table 3). Days in June, July, and the beginning of August had 

clouds causing some daylight hours (<50%) to be lost to cloud cover, affecting available 

retrievals of τext and therefore classification on those days. On August 20 and 21, UNRG 

was classified in Q3 while WCAQ was classified in Q4. August 20 had some clouds in 

the area (SI Fig. 21a and 21b) and winds aloft from the west that strengthened on August 

21 and shifted to the northwest (SI Fig. 22). Both days were likely impacted by smoke 

from the Happy Camp Complex Fire from Northern California, ~400 km northwest of 

Reno, NV that burned 543 km2 from August 14 to October 31, making it the largest fire 
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of 2014, in California (SI Fig. 21, CA, 2017). PEAV PM2.5 concentrations were above the 

monthly median on August 21 (no PM2.5 measurements on August 20 at PEAV). The 

mixing of smoke aloft increased PM2.5 at PEAV but had lower influence at the surface, 

increasing PM2.5 concentrations just to the threshold value (8.8 µg m-3). Smoke present 

aloft, instead of at the surface as observed in Loría-Salazar (2017), likely made quadrant 

classification on this day difficult. 

On September 12, both valley sites were classified in Q4. PEAV had PM2.5 

concentrations below the monthly median. PBLH was higher than PEAV but there were 

no AOH observations. Data from Pierce et al. (2017) indicate some trans-Pacific 

influence on this day. The NRL NAAPS images show smoke coverage from California, 

USA (SI Fig. 23). Smoke plumes traveling aloft from regional wildfires will increase τext 

in some cases mixing with trans-Pacific aerosols. 

 

  2014 

  Jun. 2 Jul. 6 Jul. 10 Jul. 31 Aug. 11 Aug. 20 Aug. 21 Aug. 28 Sep. 12 

UNRG 
Quadrant NA Q4 NA Q4 NA Q3 Q3 Q3 Q4 

PM2.5 NA 5.6 NA 8.5 NA 9.9 8.8 11 7.7 

WCAQ 
Quadrant Q4 Q4 Q4 Q3 Q4 Q4 Q4 Q4 Q4 

PM2.5 8.7 7.8 7.2 9.8 7.2 7.3 6.9 8.4 6.0 

PEAV PM2.5 NA 4.9 4.1 3.1 4.3 NA 6.9 6.0 3.9 

τext 0.14 0.13 0.13 0.16 0.13 0.16 0.12 0.15 0.12 

PBLH 1.6 3.8 3.6 4.1 1.7 3.4 2.3 3.5 3.7 

AOH 4.1 5.6 4.7 3.2 NA 4.4 3.4 2.7 NA 

Table 3: Days with at least one valley site classified in quadrant 4 (Q4) from June to 

November 2014. 

 

Several days in 2014 experienced moderate to high levels of trans-Pacific 

influence based on Pb isotope ratios from Pierce et al. (2017), but were not classified in 

Q4. Table 4 lists the days that had Pb isotope measurements with a percentage of Pb 
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attributable to Eurasia above the 50th and 75th percentile values for Eurasian Pb samples 

available at UNRG. For days that classified as Q1 and had measurements at PEAV (June 

6, July 25, and October 9, 2014), the PBLH was higher than PEAV. AOH was at or 

above PBLH on July 6 and October 9 (AOH was not available for July 25). June 6 and 

October 9 had similar PM2.5 concentrations at all three sites, while July 25 had PM2.5 

concentrations at PEAV below the 25th percentile values for the site. The height of the 

PBLH, indicative of high convective mixing may have entrained pollutants transported in 

filamentous layers in the free troposphere that contributed to Eurasian Pb influence but 

did not increase PM2.5 consistently through the column, complicating quadrant 

classification on these days. 

For days that classified in Q3 (August 7 and September 22, 2014), it is likely that 

PM2.5 from fires was much greater, at all sites, than aerosols at the surface or aloft. For 

days with no τext observations and therefore no quadrant classification we can only 

speculate on a quadrant, September 26 and 27, 2014 had low PM2.5 concentrations and 

therefore could only be classified in Q1 or Q4. The PM2.5 concentration at PEAV on 

September 27 was below the 25th percentile concentration for this sample period. October 

17, 2014 quadrants for UNRG and WCAQ would have been different based on PM2.5 

concentrations above the 8.8 µg m-3 threshold at UNRG and below the threshold at 

WCAQ. The sources and physical processes identified in Q4 were difficult to reconcile 

with measurements in the valley and at the high elevation site.  
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>50th percentile Eurasian 

Pb 

2014 2015 

June 6 July 25 August 7 
September 

22 

September 

26 

June 

8 

September 

2 

UNRG 
Quadrant Q1 Q1 Q3 Q3 NA Q1 Q2 

PM2.5 8.7 5.7 18 63 1.9 4.6 10 

WCAQ 
Quadrant Q1 Q1 Q3 Q3 NA Q1 Q2 

PM2.5 7.8 5.2 16 62 5.3 6.3 11 

PEAV PM2.5 7.1 1.3 15 42 NA NA NA 

τext 0.099 0.052 0.32 0.40 NA 0.074 0.083 

PBLH 3.2 2.6 1.8 2.6 1.1 0.98 2.9 

AOH 4.2 NA NA 1.4 NA 4.7 1.8 

>75th percentile Eurasian 

Pb 

2014 2015 

June 

12 

September 

27 

October 

9 
October 17  

June 

9 
 

UNRG 
Quadrant Q1 NA Q1 NA  Q1  

PM2.5 8.4 2.7 4.9 10  7.0  

WCAQ 
Quadrant Q1 NA Q1 NA  Q1  

PM2.5 6.3 4.3 2.6 8.3  7.1  

PEAV PM2.5 NA 1.7 3.4 5.6  NA  

τext 0.063 NA 0.036 NA  0.082  

PBLH 1.9 0.92 2.2 0.31  1.7  

AOH 3.6 NA 2.3 3.9  1.5  

Table 4: Days with > 50th percentile and > 75th percentile values for Eurasian lead (Pb) 

indicating days with high trans-Pacific influence. 

 

5. Conclusions 

The purpose of this study was to investigate the horizontal and vertical pollution 

gradients affecting three sites in Reno, NV, USA. Horizontal gradients of criteria air 

pollutants were characterized to determine the impact of different air pollution sources in 

the Truckee Meadows Valley. The quadrant method was then applied to 24 h τext and 

PM2.5 observations using meteorological variables, aerosol optical properties, vertical 

structure of the atmosphere, measures of atmospheric stability, and ozone concentrations 

to identify four specific conditions affecting the relationship between columnar and 

surface aerosol concentrations. 

The site observations (Table 2) indicated that sites further from the highways had 

statistically lower concentrations of primary pollutants and higher concentrations of 

secondary pollutants and pollutants from non-point sources. This horizontal gradient is 

important for understanding exposure to near-road pollutants. The U.S. EPA monitors 
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near-road pollutants (CO and PM2.5) in a limited capacity in cities with > 500,000 people 

(Batterman, 2013; EPA, 2016); however, smaller metropolitan areas such as Reno, NV, 

USA will also experience significant pollutant gradients near heavily traveled roads. Diel 

patterns for Q1 data show that pollutants from the morning commute (Fig. 6) affect both 

valley sites. 

Similarities in the results of the statistical analysis for the quadrants for 1 h vs 24 

h data at WCAQ (Table 3) support using the quadrant method for 24 h data, with several 

limitations. First, retrievals of AERONET τext was not possible at all three sites, 

necessitating the use of τext from UNR for the two valley sites to perform columnar 

versus surface comparisons. Second, retrievals of τext only occur during daylight hours 

and comparing a daily τext average to 24 h PM2.5 measurements may make quadrant 

classification for 24 h data less accurate than for 1 h data, this is particularly important 

for days with partial cloud cover. Third, use of 24 h data reduces the number of data 

points and therefore reduces the power of the statistical testing, longer sample periods are 

necessary. Fourth, retrieval of τext only occurs during clear sky periods, which excludes a 

large amount of winter and spring data, particularly in the Western USA. Interference 

from clouds may also cause issues with hourly data, if a 1 h period does not have enough 

data available it may not be representative of the conditions in that hour. Hourly data 

used for the quadrant method in future studies, like the 24 h data in this study, should 

have a restriction on the data used if a certain percentage of the data is not available. 

Evaluating the results of the statistical analysis of the quadrants, using valley and 

peak sample sites in Reno, NV, USA indicated that the quadrant method is applicable for 

understanding τext and PM2.5 relationships for 24 h data. Use of the quadrant method for 



178 
 

24 h PM2.5 data could improve the application of this method over a larger spatial extent 

in rural and remote areas, such as National Parks and Wilderness Areas where conditions 

influencing atmospheric pollution are not well quantified (Fine et al, 2015a; 

Mioduszewski et al, 2011). Use of the quadrant method to characterize concentrations of 

gases (e.g. O3), based on the relationship between columnar and surface aerosol 

observations was also demonstrated. 

The quadrant method, used for all available 24 h data from UNRG and WCAQ, 

identified four quadrants with different sources and physical processes. Quadrant 1 

contained a majority of the data, had low measures of atmospheric stability, and was 

dominated by local sources of pollution in a well-mixed PBL. Quadrant 2 had the highest 

measures of atmospheric stability and temperature inversions. The use of measures of 

atmospheric stability in the quadrant method for understanding processes affecting 

atmospheric pollutants during periods when τext and PM2.5 were not associated was 

demonstrated. Quadrant 3 had the highest PM2.5, AEE, fire flags, and was the only 

quadrant dominated by fine mode aerosols. Measurements at PEAV supported the 

conclusion that wildfire plumes influenced this quadrant. Quadrant 4 had low measures 

of atmospheric stability and aerosols higher in the atmospheric column than the PBLH, 

indicating pollution aloft. Because spring data was minimal, a time when an increase in 

pollution aloft due to frontal activity and long-range transport, data from a previous study 

was used to identify periods of trans-Pacific input. The sources and processes identified 

in Q4 were difficult to reconcile with measurements in the valley and at the high 

elevation site, particularly without enough data. It may be necessary to identify another 

variable for future studies that would better characterize pollution aloft. 
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The mix of complex terrain, long-range transport, and wildfires can make 

quadrant classification for specific events difficult to resolve. Q1 and Q4 results are 

confounded by the fact that during summer and fall, when convective mixing is high, 

there is a semi-continuous contribution of trans-Pacific pollution (VanCuren, 2003; 

VanCuren et al, 2005), but in low enough concentrations or present in filamentous air 

masses, that it may not be easily distinguishable from local pollutants. Wildfire plumes 

traveling aloft will also be difficult to separate between Q3 and Q4. Differences in the 

quadrant results between the current and previous study, with a site in common, highlight 

the importance of topography, local sources, and the locations of the τext instrument in 

relation to the location of the PM2.5 instrument. Ideally, τext and surface PM2.5 

observations should be collocated to characterize the specific processes affecting 

observations at a site.  

Using τext and surface PM2.5 observations, aids in performing statistical 

investigations of the atmospheric processes affecting the transport of aerosols in complex 

terrain. The 24 h data threshold values for τext and PM2.5 need to be site specific to 

identify clean or polluted periods and the sources and physical processes affecting 

different sites, particularly in diverse topographic surroundings. Future studies should 

focus on sites in the intermountain west with different elevations and during different fire 

regimes. A better understanding of these relationships will help to improve the use of 

satellite τext retrievals for estimating surface PM2.5 conditions over large spatial scales. 

Furthermore, identifying measurement periods affected by specific processes, such as 

wildfires and temperature inversions, will aid regulatory agencies in identifying 

controllable and non-controllable pollution events.   
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Abstract. Previous studies have indicated that superaggregates, clusters of aggregates 

of soot primary particles, can be formed in large-scale turbulent fires. High intensity 

fires may also produce the right circumstances to inject plumes into the upper 

troposphere and lower stratosphere during pyrocumulonimbus thunderstorms, where 

the superaggregates can then be transported long distances. Due to lower effective 

densities, higher porosity, and lower aerodynamic diameters, superaggregates may be 

deposited past inlets designed to stop particles < 2.5 µm in aerodynamic diameter 

(PM2.5). Ambient particulate matter samples were collected at Peavine Peak, NV, USA 

(2515 m) northwest of Reno, NV, USA from June to November 2014. The Teledyne 

Advanced Pollution Instrumentation (TAPI) 602 BetaPlus particulate monitor was used 

to collect PM2.5 on two filter types. During this time, particles > 2.5 µm in aerodynamic 

diameter were collected on 36 days. On preliminary analysis, it was thought that these 

particles were superaggregates, depositing past PM10 (particles < 10 µm in aerodynamic 

diameter) pre-impactors and PM2.5 cyclones. However, further analysis revealed that 

these particles were dissimilar to superaggregates observed in previous studies. To 

determine if the particles were superaggregates or an instrument artifact, elemental 

analysis, presence of fires, high relative humidity and wind speeds, as well as the use 

of generators onsite were investigated. Samples with aggregates were analyzed using a 

scanning electron microscope for size and shape of the aggregates and energy-
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dispersive x-ray spectroscopy was used for elemental analysis. It was determined that 

a sampling artifact associated with sample inlet setup and prolonged, high wind events 

were the probably reason for the observed aggregates. 
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1 Introduction 

When primary particles collide and stick together, agglomerates or aggregates 

can form, creating complex structures (Kulkarni et al, 2011a). Agglomerate particles 

can be categorized as branched-chain or compact aggregates (Kulkarni et al, 2011a). 

Branched-chain particles with internal voids between branches and compact aggregates 

with internal voids have mass equivalent diameters that are less than the volume 

equivalent diameter, which implies lower densities than an equivalent ideal spherical 

particle (Kulkarni et al, 2011a). Soot particles are fractal-like, chain aggregates 

produced from incomplete combustion (Kulkarni et al, 2011a; Wang et al, 2017). 

Large-scale turbulent fires provide vortices where soot aggregates (~100s of 

monomers) can be trapped in a high particle volume fraction, creating superaggregates 

consisting of thousands of monomers (Chakrabarty et al, 2014; Kearney & Pierce, 

2012; Kulkarni et al, 2011a). Large, turbulent fires can cause pyrocumulonimbus 

thunderstorm formation, which promote injection of superaggregates into the upper 

troposphere and lower stratosphere where they can then be transported long distances 

(Fromm et al, 2010; Peterson et al, 2014; Peterson, 2014). Superaggregates tend to have 

larger lengths and mobility diameters than smaller particles; however, they have low 

aerodynamic diameters (a measure of their terminal settling velocity), lower effective 
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densities, and are more porous, causing different behavior than primary particles or 

smaller aggregates (Chakrabarty et al, 2014; Kulkarni et al, 2011a).  

Superaggregates were observed, from several wildfires in Chakrabarty et al. 

(2014) and from a laboratory fire in Kearney and Pierce (2012), with fractal dimensions 

(Df) of ~2.6 and lengths of 10 to 20 µm (Chakrabarty et al, 2014; Kearney & Pierce, 

2012). These superaggregates had “wispy” or “fluffy” appearances when observed 

using a scanning electron microscope (SEM, Chakrabarty et al, 2014; Kearney & 

Pierce, 2012). The elemental composition, using energy-dispersive x-ray spectroscopy 

(EDS), was found to be mainly carbon and oxygen (Chakrabarty et al, 2014).  

Superaggregates are of concern due to the mobility of the particles. In 

Chakrabarty (2014), superaggregates were collected in the third stage of an aerosol 

impactor with a cut point of < 0.3 µm aerodynamic diameter (Da). Measurement of 

superaggregates would therefore require different size conventions, beyond the widely 

used aerodynamic diameter, for detection and measurement (Chakrabarty et al, 2014; 

Marple & Olson, 2011). From a health perspective, these aerosols could also be 

deposited deep in the lungs of organisms (John, 2011; Kleinstreuer & Zhang, 2009). 

The optical properties of the superaggregates are also different, due to the complex 

morphology, and may contribute 90% more atmospheric warming compared to a 
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volume-equivalent Mie-sphere (Chakrabarty et al, 2014; Sorensen et al, 2011), 

requiring models to adjust estimates of climate forcing. 

Ambient particulate matter (PM) samples were collected as part of a project to 

develop and apply a new particulate monitor configured for the measurement of 

atmospheric mercury (Hg) and lead (Pb) isotopes (Pierce & Gustin, 2016; Pierce et al, 

2017). One Teledyne Advanced Pollution Instrumentation (TAPI) 602 BetaPlus 

particulate monitor was located at Peavine Peak, NV, USA (PEAV, 2515 m) and 

another TAPI was located ~12 km southeast in Reno, NV, USA (UNRG, 1367 m), to 

collect particles < 2.5 µm in aerodynamic diameter (PM2.5). During the sampling 

campaign, when instruments were deployed simultaneously at PEAV and UNRG, June 

to November of 2014, 36 days had particles > 2.5 µm in aerodynamic diameter on 

sample filters at PEAV, but these were not observed at the lower elevation site (Table 

1, Fig. 1 and 2). A season of drought leading to high intensity wildfires in the Western 

USA (CA, 2017) resulted in numerous smoke events, and preliminary images of the 

filters with SEM seemed to support the hypothesis that these particles were fire-

generated superaggregates (Fig. 3). The observation of aggregates that did not conform 

to the description of superaggregates from previous studies led us to wonder if the 

observed aggregates may in fact be an artifact of the instrument setup and not an 

ambient air phenomenon. Possible explanations for the aggregates, including elemental 
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composition, presence of fires and fire indicators, correlations with relative humidity 

(RH) and wind speed, as well as the use of generators onsite, were investigated. SEM 

and EDS were used to determine the shape and elemental composition. This paper 

presents the results of this investigation and the most probable cause for the observed 

aggregates. 

2 Site descriptions 

The Peavine Peak, NV, USA (PEAV, 2515 m asl, 39.5895 N, -119.9290 W) 

measurement site was located above tree line in a sage/steppe ecosystem at the summit, 

~15 km east of the Sierra Nevada Mountain range and ~12 km northwest of downtown 

Reno, NV, USA. The measurement trailer was located within a fenced area that also 

contained a radio and cellular relay station. The fence restricted unauthorized visitors 

from approaching within ~15 m of the measurement trailer. There were weekly visits 

to the site for maintenance of the relay station. There is one dirt road that leads up to 

the site from the southwest, all other dirt roads and trails are >500 m away from the site 

and lower in elevation. Traffic in the area consists of off-road gas and diesel vehicles 

(trucks, ATVs, and dirt bikes), as well as non-motorized traffic. Back-up power diesel 

generators, for the relay station, were periodically operated at the site. During June to 
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October 2014, PEAV was, on average, within the planetary boundary layer from the 

valley and was influenced by upslope mixing from the valley and free tropospheric air 

(Pierce et al, 2017). In November 2014, the average planetary boundary layer height 

was below PEAV and thus, air from the free troposphere primarily influenced the site. 

The lower elevation site was located near the valley floor at the University of 

Nevada, Reno Greenhouse complex (UNRG) at the Nevada Agricultural Experiment 

Station Greenhouse Facility (1367 m asl, 39.5374 N, -119.8044 W) in Reno, NV, USA 

near the intersection of two major highways, Interstate-80 and Interstate-580 (U.S. 

Route 395). UNRG and PEAV are ~1 km different in elevation. 

Great Basin National Park, NV (GBNP, 2061 m asl, 39.0052 N, -114.2161 W) 

is located on the eastern side of Nevada. Measurements occurred from March to 

October 2015. The measurement trailer was collocated with a Clean Air Statuses and 

Trends Network (CASTNET) site. 

3 Instrumentation and data sources 

3.1 Particulate measurements 

The TAPI was configured to measure PM2.5 through two separate inlets each 

with a 10 µm pre-impactor (FAI Instrument S.R.L. Fonte Nuova, Rome) and a 2.5 µm 
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cyclone (VSCC-A, BGI inc. Waltham, Ma, USA) in-line to prevent particles < 2.5 µm 

in aerodynamic diameter from continuing in the sample stream (Fig 4). Ambient air 

was sampled at 16.7 Lpm for 24 h (00:00 to 00:00 PST) simultaneously through two 

filter mediums: 47 mm cation exchange membranes (CEM; Pall Corporation, PN: 

MSTGS3R, Line A), and 47 mm Teflon (Pall Corporation, PN: EW-36329-08, Line B). 

Particulate matter mass concentration on the filters was measured using β attenuation 

(Sohirripa Spagnolo, 1987). At 24 h resolution the TAPI has a detection limit of 0.3 µg 

m-3 (TAPI, 2012). CEM filters were destructively analyzed for total Hg (Pierce & 

Gustin, 2017), Teflon filters were used for Pb isotope (Pierce et al, 2017) and aggregate 

analysis. Teflon membranes are made of polytetrafluoroethylene (PTFE), a 

hydrophobic fluorocarbon. 

Inlets were connected to the instrument by 2.1 m (CEM filter line) and 1.7 m 

(Teflon filter line) anodized aluminum sample tubes (2.54 cm outer diameter), supplied 

with the instrument, that passed into the temperature-controlled trailer to the TAPI 

housed inside (Fig. 4). Inside the temperature-controlled trailer, the sample lines 

connected to condensation water traps on each line to collect any water droplets that 

formed on the inside of the sample tubes due to condensation. Just below the 

condensation water traps were sample line heaters (Fig. 4). The sample line heaters on 

each line were set to only heat the line if the RH in the sample air stream exceeded 40% 
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RH and would stop heating once the RH reached 30%. A CEM reference filter was also 

used automatically throughout the sample process to account for humidity effects on 

the sample filters (TAPI, 2012).  

The pressure drop across the CEM filters was higher than the pressure drop 

across the Teflon filters due to difference in material. The higher-pressure drop on the 

CEM filters (Pierce & Gustin, 2017; TAPI, 2012) necessitated a different sample line 

inlet nozzle (located where the sample line enters the TAPI measurement box, Fig. 4), 

tested and adjusted by Teledyne before the instruments were operated. The inlet nozzle 

was therefore a different size (smaller in diameter) for the CEM sample line (0.75 cm 

diameter) compared to the Teflon sample line (1.9 cm diameter) and may have caused 

different flow dynamics for the CEM sample line. Constrictions in sample air flow 

causes gases in the sample stream to increase in velocity and focus in the center of the 

tube, this dynamic causes increased particle deposition (Kulkarni et al, 2011b). The 

different inlet nozzle sizes required a different β sample area (CEM: 4.7 cm2 β sample 

area, Teflon: 12 cm2 β sample area), or the area of the filter used for β attenuation. The 

filters were supported in different filter cartridges for the CEM and Teflon filters due 

to the difference in β sample area. Filters were automatically loaded and unloaded, and 

then held in an unloader tube until collection every 1 to 2 weeks. Sample inlets were 
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cleaned monthly, following instructions from the instrument manual, and pumps were 

rebuilt every 6 to 8 months. 

Calibration of the operating flow rate regulation system, β source span checks, 

and pneumatic circuit leak tests automatically occurred at the start of each sampling 

period for both sample lines. There were three days during the sample period in October 

2014 when data validation was not passing after the automatic tests were performed. 

These days are discussed in sect. 4.5. On 25 days, of 158 in the sample period, there 

were warnings related to pump valve, span tests, leak tests, or internal cooling fan 

failure. These warnings cleared and the sample passed data validation for the day. Six 

days with warnings occurred on days with aggregates. Four days, June 13, 16, 19, and 

September 16, were pneumatic leak test warnings; 2 days, September 18 and 23, were 

pump valve warnings. Aggregates on the June warning days occurred only on the CEM 

inlet, aggregates on the September warning days occurred on both inlets. 

3.2 Shape, size, and elemental composition 

Teflon filters were analyzed at Macquarie University in Sydney, Australia using 

a scanning electron microscope (SEM, JEOL USA Inc. model: 6480 LA, Peabody, MA, 

USA) for size, shape, and elemental composition. Preliminary SEM analysis was 

performed with backscattered electron imaging on un-coated filter segments in low 
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vacuum to avoid charging and breakdown of the aggregates. Elemental analysis using 

energy-dispersive x-ray spectroscopy (EDS) was also performed with backscattered 

electron imaging in low vacuum mode. A second SEM analysis with secondary electron 

imaging, using a different filter segment from the initial SEM, was performed with gold 

coating, to prevent charging during analysis in high vacuum. The second SEM analysis 

was a more in depth exploration of the morphology of the aggregates. 

3.3 Fire indicators using aerosol optical properties 

Aerosol Optical Depth (AOD, 440 nm) and Ångström Extinction Exponent 

(AEE, 440-870 nm) were collected from a Cimel (CE-318) sun photometer used in the 

AErosol RObotic NETwork, located at the University of Nevada, Reno (UNR) campus 

on top of a four-story building (Loría-Salazar et al, 2017; Loría-Salazar, 2014). One 

hour data were collected and averaged for 24 h. AOD is a measure of the columnar 

aerosol loading and when compared with surface PM2.5 measurements can aid in 

identifying periods of wildfires (Loría-Salazar et al, 2017). AEE is used as a qualitative 

indicator of particle size; AEE ~ 1 is indicative of coarse mode aerosols (i.e. dust and 

sea salt) while AEE ≥ 2 is indicative of fine mode aerosols from biomass burning or 

urban pollution (Eck et al., 1999). Data with AEE >1.8 were flagged as fire periods 

(Loría-Salazar et al, 2016). 
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3.4 Meteorological data 

At PEAV, RH was measured by an HMP45c model Campbell Scientific RH 

monitor (± 0.2 ºC and ± 2% RH), wind speed was measured by an RM Young 05305 

wind vane (± 0.2 m s-1). Wind speed at UNRG was collected from the Western Regional 

Climate Center. Wind speed at GBNP was collected from the CASTNET site. Hourly 

meteorological data was used for 1 h max values and 2 h averages. 

3.5 Generator use 

From October 20 (Monday) to October 24 (Friday), multiple diesel generators 

were operated at PEAV while maintenance was occurring on the power lines at the 

relay station. A back-up power, diesel generator was also located on site and was 

operated periodically throughout the sample period. The back-up generator was located 

~10 m southeast and around the corner of the relay station building from the 

measurement trailer. Exact timing of back-up generator use is not available.  
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4 Results 

4.1 Particulate measurements 

Of the 36 days with aggregates > 2.5 µm in aerodynamic diameter at the PEAV 

site, aggregates were observed on both inlets 22 days, the other 14 days, aggregates 

were observed on one inlet (Table 1). All single inlet days, except for one, occurred on 

the CEM inlet. This may be due to the higher-pressure drop across the CEM filter and 

higher flow constriction causing different flow dynamics for the CEM sample line. 

Aggregates, when observed only on a single inlet, had light loading, only two of the 14 

single inlet days exceeded the 75th percentile concentration (7.1 µg m-3) for the sample 

period and both of those days had visually high PM2.5 loading, a fire flag, and minimal 

aggregates. Presence of aggregates in some cases were associated with high PM2.5 

concentrations, 20 days of the 36 had concentrations >7.1 µg m-3; however, due to 

aerosols from fires, this was not always related to aggregate loading.  

This instrument was located at the lower elevation site (UNRG) with another 

TAPI instrument, before and after it was located at PEAV. Correlation between this 

instrument and the TAPI instrument located at UNRG was high before (r2 = 0.8, p < 

0.05, n = 6) and after (r2 = 0.88, p < 0.05, n = 71) it was located at PEAV, indicating 

that the two instruments were operating similarly (Pierce & Gustin, 2017). Furthermore, 



200 

 

no aggregates were observed when the TAPI was moved to GBNP from March to 

October 2015, where the instrument was also impacted by fire plumes (Pierce & Gustin, 

2017).  

Black aggregates occurred on filters on days when inlets were cleaned and on 

days before and after cleaning (Fig. 2). Black particles were not observed in the PM10 

pre-impactor or PM2.5 cyclone inlets during routine inlet cleaning; brown dust 

particulates were observed (Fig. 5). During a thorough cleaning on October 3, 2014, 

after aggregates had been observed for multiple days in September, black particulate 

matter was noticed in the condensation water traps (Fig. 6). After cleaning the 

condensation water traps and reassembling the inlets, aggregates were again observed 

on multiple days in October. 

4.2 Shape, size, and elemental composition 

During the second, in depth look at the aggregates using the SEM, it became 

apparent that the aggregates were not predominantly “fluffy” (Fig. 3) like those 

observed in Chakrabarty et al. (2014) or Kearney and Pierce (2012), but more compact 

and did not resemble chain-aggregates (Fig. 7, Table 1). On eight of the 12 filters 

analyzed on the SEM, aggregates that were fluffy could be located; however, they were 

outnumbered by compact aggregates such as those in Fig. 7 and Fig. 8. The fluffy 
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aggregates observed were 10 to 20 µm in length (Fig. 3), compact aggregates observed 

were 10 to >100 µm in length (Fig. 7). 

Blank Teflon filters were 25 to 41% carbon (C), 0 to 8% oxygen (O), and 51 to 

75% fluorine (F) identified by EDS. Filter segments with PM2.5 but no aggregates, had 

a range of elements including C, O, F, sodium (Na), magnesium (Mg), Al, Si, S, Cl, K, 

Ca, and Fe. For these segments, F (21 to 68%) and C (22 to 61%) with some O (3.4 to 

19%) and small amounts of the remaining elements dominated the chemical 

composition. Aggregate chemical composition on the other hand consisted of C, O, F, 

Mg, Al, Si, S, Cl, K, Ca, and Cu, dominated by F (11 to 59 %), C (15 to 60%), O (4.6 

to 38%), Al (0.19 to 42 %) and small amounts of the remaining elements (Table 3). 

4.3 Fire indicators using aerosol optical properties 

 There was a drought in the Western USA from 2012 to 2016 that contributed to 

dry conditions and many wildfires throughout 2014 (CA, 2017). There were ~52 fires 

that exceeded 1 km2 of burned area in California and ~63 fires that exceeded 4 km2 of 

burned area in Oregon and Washington in 2014. There were two large fires during the 

measurement campaign. The first and largest in California for 2014, the Happy Camp 

Complex Fire, located in northern California, ~400 km northwest of PEAV, burned 543 

km2 from August 14 to October 31 (CA, 2017). The King Fire burned 390 km2 in El 
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Dorado County, California, ~100 km southwest of PEAV from September 13 to 

October 9, 2014 (CA, 2017). Several fire plumes throughout the measurement 

campaign affected PEAV (Pierce et al, 2017), and aggregates occurred more frequently 

in September 2014 when the fire plume from the King Fire was heavily impacting the 

area (Fig. 2). 

Aerosol Optical Depth (AOD, at 440 nm), a measure of the columnar aerosol 

loading, was positively correlated with PM2.5 at PEAV for all data (r2 = 0.33, p < 0.05, 

Fig. 9a) and higher if only days with aggregates are used (r2 = 0.49, p < 0.05, Fig. 9b). 

If aggregate days were removed, the correlation increased to 0.58 for all data. The 

positive correlation for AOD and PM2.5 for aggregates days was influenced by one point 

with AOD > 0.8 (highest AOD observed for the entire sample period) that occurred on 

September 18, when smoke from the King Fire was heavily influencing the sites (Fig. 

9b). When that point is removed the correlation decreased to 0.36. 

AEE was used here as a general indicator of particle size to identify biomass 

burning in the region (Fig. 10). For 31 aggregate days with AEE available, 24 days 

occur during days with fires (Fig. 10b). Of 158 days during the sample period with data 

from the Cimel, 120 days had fire flags. There was no correlation between AEE and all 

PM2.5 nor between AEE and days with aggregates. 
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4.4 Meteorological data 

 Ambient RH was measured at PEAV, as well as inside the instrument box of 

the TAPI during sample collection and sample analysis with β attenuation (Fig. 11). 

Same day RH was not correlated with PM2.5 for all data or days with aggregates for any 

of the RH measurements (outside RH, internal TAPI RH during sample collection, and 

internal TAPI RH during sample analysis). The in-line heaters did not turn on during 

this time, as RH during sampling (Fig. 11c and 11d) did not exceed 40% RH. RH also 

did not exceed 40% during sample analysis with β attenuation (Fig. 11e and 11f). It is 

possible that the RH effect on hygroscopic growth of particles was lagged and same 

day RH would therefore not be an effective measure. However, lagging the RH by 1, 2, 

and 5 days did not improve the correlation with aggregate days. 

 Higher wind speeds were observed at PEAV (median: 2.5 m s-1, range: 0.0 to 

36 m s-1) relative to UNRG (median: 1.4 m s-1, range: 0.0 to 9.6 m s-1). PEAV also had 

higher wind speeds than GBNP (median: 2.4 m s-1, range: 0.0 to 13 m s-1) where the 

TAPI was later located during the fire season of 2015 with no aggregates observed. 

Wind speed was weakly, positively correlated with PM2.5 for all data (r2 = 0.33, p-value 

< 0.05, n= 152, Fig. 12a). This correlation increased only slightly when only days with 

aggregates were used in the analyses (r2 = 0.39, p-values < 0.05, n=36, Fig. 12b). 
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Maximum (max) 1 h wind speed was also only weakly correlated with PM2.5 (r
2 = 0.26, 

p-value < 0.05, Fig. 12c) for all data and analyses using only days with aggregates (r2 

= 0.25, p-value < 0.05, Fig. 12d).  

There were 49 days out of 155 at PEAV with wind speed measurements, when 

wind speed exceeded 10 m s-1 for at least one hour of the day. Twenty-seven out of 36 

days with aggregates occurred on days with hourly wind speeds >10 m s-1 and 33 out 

of 36 days with aggregates occurred on days with wind speeds >5 m s-1. Of the nine 

days with observed aggregates that did not occur on high wind days, seven days 

aggregates only occurred on one inlet, which always had light loading. On the 13 

aggregate days labelled as medium or heavy loading (Table 1), wind speeds exceeded 

20 m s-1 for at least one hour of the day or wind speeds exceeded 10 m s-1 for 10 h or 

longer leading up to or during that day. Five days with high wind speed occurred during 

the week of generator use (October 20 to 24), and it is unclear if aggregates were present 

due to the high loading on these filters. Of the remaining 17 days with high wind speeds, 

12 days occurred either before or after an aggregate day or had only one hour of the day 

that exceeded 10 m s-1. 
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4.5 Generator use 

 From October 20 (Monday) to October 24 (Friday), multiple generators were 

operated. On October 22 to 24, the data from the TAPI located at PEAV did not pass 

data validation due to two errors related to flow rate and pump valve. The heavy loading 

observed on the filters (Fig. 13a) caused the TAPI to be unable to sample through these 

filters for the full sample period. This loading quickly cleared from the sample line once 

the generators were removed (Fig. 13b). A back-up power generator was located on site 

and was operated periodically throughout the sample period. We do not have exact 

timing for generator use but most likely, the generator would have been operated on 

weekdays when maintenance was performed. Aggregates occurred on weekends five 

times (both inlets 3 days and on one inlet 2 days).  

5 Discussion 

 Potential causes of the particles > 2.5 µm in aerodynamic diameter investigated 

here include presence of fires, high RH potentially causing hygroscopic growth of 

particulates in the sample stream, high wind events causing degradation of the Al 

tubing, and exhaust from generators operated on site. The large number of fires in the 

Western USA and days with fire flags (120 days out of 158 with data available) 
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throughout the measurement campaign and the increase in aggregates during September 

2014 when the fire plume from the King Fire was heavily impacting the area (Fig. 2) 

seemed to support superaggregates generated by high intensity fires. The moderate 

correlation between AOD and PM2.5 (r
2 = 0.33 for all data and r2 = 0.49 for aggregate 

days, Fig. 9) indicated that high aerosol loading in the atmospheric column may 

influence the occurrence of aggregates. If aggregate days were removed, however, the 

correlation increased to 0.58 for all data. The removal of the one point with AOD > 0.8 

decreased the correlation for aggregate days to 0.36. AEE, used here as a general 

indicator of particle size to identify biomass burning in the region (Fig. 10), 

demonstrated that many days with fires occur with no aggregates. Based on findings in 

Loría-Salazar et al. (2017), we would expect PM2.5 and AOD to be positively correlated 

in certain conditions (unstable conditions in a well-mixed boundary layer and during 

wildfires). Given the high frequency of fires, if the aggregates were generated and 

transported in fire plumes, we would expect the correlation with AOD and AEE to be 

higher. 

 It is possible that high RH could promote hygroscopic growth of aerosols in 

ambient air or in the sample stream. Hygroscopic growth factors (diameter of a particle 

at a certain RH/dry diameter) are estimated for ammonium sulfate, ammonium nitrate, 

and sea salt aerosols, for use in the national network, IMPROVE light extinction 
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algorithm (Pitchford et al, 2007). Pure ammonium sulfate crystallizes at 37% RH, and 

it is assumed no hygroscopic growth occurs below 37% RH, based on the efflorescence 

or hysteresis branch of the ammonium sulfate growth curve (Clegg et al, 1998; 

Pitchford et al, 2007). Sea salt aerosols are assumed to have no hygroscopic growth 

below 47% RH and ambient organic mass particulates are assumed to have limited to 

no hygroscopic growth (Pitchford et al, 2007). 

The Western USA generally has higher ambient organic carbonaceous mass 

particulates, lower mass concentration of inorganic species known to impact 

hygroscopic growth (sulfates and nitrates), and strong seasonal fluctuations in boundary 

layer RH compared to the Eastern USA (Buseck & Schwartz, 2003; Malm et al, 2011; 

Malm et al, 2004; Malm & Sisler, 2000; Nguyen et al, 2016). Wintertime build-up of 

particulate nitrate has been observed in Western USA valleys (Green et al, 2015), but 

PEAV would likely not be affected by this build-up due to elevation and sample period. 

Furthermore, Loría-Salazar et al. (2017) found no correlation between AOD 

measurements and RH in the boundary layer in Reno, NV for a yearlong sample period 

in 2013. Outside RH did at times exceed 37%; however, internal TAPI RH 

measurements indicated that the RH in the sample stream did not exceed 37%. Due to 

the higher ambient organic mass particulates in the West and RH < 37% in the sample 

line, it does not seem likely that this was the cause of the aggregates.  
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High wind speed may have caused sections of anodized Al tubing to rub 

together, also known as fretting corrosion (Davis, 1999; Waterhouse, 1992). Fretting is 

defined as small-amplitude movement that can occur between contacting surfaces, 

usually due to external vibration (Waterhouse, 1992). Fretting corrosion arises when 

dry oxidation during rubbing occurs, producing a black powder of aluminum oxide, 

more likely to occur when aluminum contacts aluminum (Davis, 1999). Aluminum 

tubing was in contact with another surface in four places: where the sample tubes 

connected to the base of the PM2.5 cyclones, before and after the water condensation 

water traps, and where the sample tubes entered the TAPI measurement box (marked 

in red, Fig. 4). On several occasions during site visits, it was noticed that the PM10 and 

PM2.5 inlets were in different positions from the last site visit, indicating that high wind 

speeds had caused the inlets to rotate on the sample tubes. The observation of a black 

powder in the condensation water traps (Fig. 6) and not in the PM10 pre-impactor (Fig. 

5) or PM2.5 cyclone supports the generation of aggregates in the sample line after the 

inlets and before the condensation water traps. The increase of Al and O in the aggregate 

samples indicated that the anodized coating on the sample lines was possibly 

undergoing fretting corrosion. Anodized Al coatings are ~80% aluminium oxide, ~18% 

aluminium sulfate, and ~2% water. 
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 The samples from October 20 (Monday) to October 24 (Friday), when multiple 

generators were running at PEAV indicate that aggregates may have been caused by 

generator exhaust, due to the similarity of the filter at the end of the period to other 

aggregate filters. Smits et al. (2012) measured generator exhaust emissions at different 

loadings for a small-scale generator using a low-sulfur fuel. Diesel generators emit 

nitrogen oxides (NOx), volatile organic compounds (VOCs), carbon monoxide (CO), 

and PM (Smits et al, 2012). Elements found in the generator exhaust included potassium 

(K), calcium (Ca), titanium (Ti), strontium (Sr), chromium (Cr), iron (Fe), nickel (Ni), 

manganese (Mn), copper (Cu), zinc (Zn), lead (Pb), sulfur (S), and chlorine (Cl). 

Elements that were not detected included silicon (Si), vanadium (V), selenium (Se), 

cadmium (Cd), antimony (Sb), and aluminum (Al). SEM from Smits et al. (c.f. Fig. 4 

of Smits et al, 2012) look similar to the SEM we have collected in this study, however, 

the absence of Al in Smits et al. (2012) differs from our findings (Table 2 and 3). 

Aluminum was assumed to be a tracer for environmental atmospheric samples in Smits 

et al. (2012), filters with ambient PM2.5 from PEAV are consistent with this assumption 

with small amounts of Al (Table 2). Aggregate samples however had much higher Al 

(Table 3), indicating these samples were not background environmental PM2.5. 

Aluminum is not a common additive to diesel fuel or lubricating oil. Aggregates on 
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weekends, when it is unlikely that maintenance was occurring, and the large percentage 

of Al present indicated that generator exhaust was likely not the cause of the aggregates. 

6 Conclusions 

 During the sampling campaign at PEAV from June to November 2014, the 

presence of fires and fire indicators, high RH, high wind speeds, and use of generators 

onsite were investigated to understand the presence of ambient particles that exceeded 

2.5 µm in aerodynamic diameter on 36 measurement days. Particles > 2.5 µm in 

aerodynamic diameter were not observed on samples from the same days at the lower 

elevation site, from the TAPI before and after it was deployed at PEAV, nor when it 

was moved to another high elevation site, GBNP impacted by fires in 2015. RH and 

AEE were not correlated with aggregate measurements, indicating RH and indicators 

of fire did not predict aggregate formation. The presence of aerosols in the column 

(AOD) was correlated with PM2.5, however, the positive correlation was heavily 

influenced by one data point and AOD did not fully explain the presence of aggregates. 

Linear regression may not be adequate to identify the cause due to mass concentration 

of the filters being a combination of PM2.5 and aggregate mass. Generator use at the site 

could be the source of the aggregates and would be an interesting area of further 
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research if particulates from the exhaust were able to deposit past the PM10 pre-impactor 

and PM2.5 cyclones, however chemical composition did not support generator exhaust 

as the source of aggregates.  

High concentrations of Al and O observed in the EDS elemental analysis 

suggested that the anodized Al sample tube coating contributed aggregates to the 

samples. Fretting corrosion, occurring where two sections of Al tubing were rubbing 

together, caused by prolonged, high wind events at PEAV seems to be the most likely 

explanation of the observed aggregates. Aluminum tubing was in contact with another 

surface in four places: the base of the PM10 pre-impactor, before and after the 

condensation water trap, and where the sample tubes enter the TAPI measurement box 

(marked in red in Fig 4). The observation of black particles in the condensation water 

traps (Fig. 6) but not on the PM10 pre-impactor plates (Fig. 5) or in the PM2.5 cyclones 

also supports fretting corrosion occurring in the sample line downstream of the PM10 

pre-impactor plates and the PM2.5 cyclones. More experiments to test this theory are 

needed to understand the specific conditions promoting fretting corrosion.  

In other particulate monitors, such as the Beta Attenuation Monitor (BAM-

1020), used in regulatory networks, filter tape is automatically advanced, without post-

processing. The BAM uses a similar inlet setup to the TAPI. At sites with high wind 

speeds, if there are sections of Al tubing susceptible to fretting corrosion, a similar 
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situation could occur and go unnoticed and potentially impact measured PM2.5 

concentrations. The observations presented suggest inlet configuration is important to 

consider for sites with high wind events. 
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Figures 

(a)  (b)  

Figure 1: Filter (a) is from the higher elevation, rural site (PEAV) and filter (b) is from the lower elevation, 

urban site (UNRG) on September 16, 2014. Aggregates were observed at PEAV but not at UNRG. 
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4  

Figure 2: PM2.5 (µg m-3) at PEAV (red) and UNRG (black) for June to November 2014. Vertical dark blue 

lines are days with aggregates on one inlet, vertical light blue lines are days with aggregates on two inlets, 

dashed grey lines are days when the inlets were cleaned. 
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Figure 3: SEM (uncoated, backscattered electron imaging, low vacuum) image of an aggregate on a Teflon 

filter from the higher elevation, rural site (PEAV) on September 18, 2014.  



219 

 

 

Figure 4: Diagram of Teledyne Advanced Pollution Instrumentation (TAPI) 602 BetaPlus particulate monitor 

(modified from Pierce & Gustin, 2017). Blue indicates the airflow through the instrument. Red indicates 

where aluminum tubing is in contact with another surface: the base of the PM2.5 cyclones, before and after 

the condensation water traps, and where the sample tubes entered the TAPI measurement box above the inlet 

nozzles.  
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Figure 5: PM10 pre-impactor plate from the CEM inlet (Line A, Fig. 4) during a routine cleaning after a 

high wind event. 

 

   
Figure 6: Condensation water trap during a cleaning on October 3, 2014. Black powder was visible in the 

condensation water trap. The black around the outside of the trap is insulating foam. 
 



221 

 

(a)  (b)  

Figure 7: SEM images of aggregates (gold-coated, secondary electron imaging, high vacuum) for (a) 

September 16, 2014 (b) higher magnification of same aggregate. 

 

 
 

Figure 8: SEM image (uncoated, backscattered electron imaging, low vacuum) of aggregates on September 

16, 2014. 
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(a) (b)  

Figure 9: Aerosol Optical Depth (AOD, τext) from the Cimel sun photometer located in the valley plotted 

against PM2.5 (µg m-3) at PEAV for (a) all data and (b) days with aggregates. 

 

(a) (b)  

Figure 10: Ångström Extinction Exponent (AEE) from the Cimel sun photometer located in the valley 

plotted against PM2.5 (µg m-3) at PEAV grouped by days with (open points) and without (filled points) fires 

for (a) all data and (b) days with aggregates. 

 

 

 



223 

 

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 11: Relative Humidity (%) and PM2.5 (µg m-3) measured June to November 2014 for (a) ambient RH 

for all data, (b) ambient RH on aggregate days, (c) average instrument RH during sampling for all data, (d) 

average instrument RH during sampling for days with aggregates, (e) average instrument RH during β-

attenuation collection for all data, and (f) average instrument RH during β-attenuation collection for days 

with aggregates.  
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(a)  (b)  

(c)  (d)  

Figure 12: Wind speed (m s-1) and PM2.5 (µg m-3) at PEAV for (a) all data and (b) days with aggregates and 

for maximum 1 h wind speed for (c) all data and (d) days with aggregates. 
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(a)  (b)  

Figure 13: Teflon filters from (a) October 21, 2014 during multiple generators running at PEAV and (b) 

October 25, 2014 the day after multiple generators were running at PEAV. 
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Tables 

Filter Inlet Visual loading 

Mass 

concentration 

>7.1 µg m-3 

Fire? 
SEM/

EDS? 
Description 

Wind speed 

>20 m s-1 

or 

>10 m s-1 for 

>10 hours 

12-Jun Both Medium to heavy     >20 m s-1 

13-Jun CEM Light      

16-Jun CEM Light      

19-Jun CEM Light      

25-Jun Both Light to medium    Compact, some fluffy >10 h 

1-Jul CEM Light      

22-Jul Both Light      

23-Jul Both Light to medium    Compact, some fluffy >10 h 

28-Jul Teflon Light    
Compact, some more 

diffuse 
 

12-Aug Both Medium    
Compact and some larger 

structures 
>10 h 

13-Aug Both Medium to heavy     >20m s-1 

14-Aug Both Light      

18-Aug CEM Light      

19-Aug CEM Light      

20-Aug CEM Light      

22-Aug Both Light    Compact and fluffy  

7-Sep CEM Light      

8-Sep CEM Light      

11-Sep Both Light    Compact, some fluffy  

14-Sep Both Light      

15-Sep Both Light    Compact and fluffy  

16-Sep Both Medium    Compact >10h, >20m s-1 

17-Sep Both Medium     >10h, >20m s-1 

18-Sep Both Light    Compact, some fluffy >10h 

20-Sep CEM Light      

23-Sep Both Light to medium    
Compact, some fluffy, 

some spores/pollen 
>10h 

24-Sep Both Medium to heavy     >10h, >20m s-1 

25-Sep Both Light to medium    Compact, some fluffy >10h 

26-Sep CEM Light  NA    

3-Oct Both Light      
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13-Oct CEM Light      

14-Oct Both Heavy  NA  Compact, disperse >10h, >20m s-1 

15-Oct Both Medium  NA   >10h, >20m s-1 

19-Oct Both Light      

25-Oct Both Light to medium     >10h, >20m s-1 

30-Oct CEM Light  NA   >20m s-1 

Table 1: Days at PEAV in 2014 with visible aggregates on filters, the inlet with aggregates, and the loading on 

the filters, whether mass concentration exceeded 75th percentile value for the sample period (7.1 µg m-3), 

presence of fire flag, SEM and EDS analysis, subjective description of the shape, and whether wind speed 
exceeded 20 m s-1 for at least one hour of the sample day or wind speed exceeded 10 m s-1 for 10 h or longer 

leading up to or during the sample day.  
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  Composition filter with PM2.5 not aggregates (range, %) 

Filter Inlet C O F 
N

a 
Mg Al Si S Cl K Ca Fe 

Blan

k 
 25-

41 
0-8 

51-

75 
         

25-

Jun 
Both 

27-

29 

4.5-

5.0 
65   2.0-

2.2 
0.15      

28-

Jul 

Tefl

on 

29-

30 

3.4-

11 

50-

67 

6.

5 
0.79 

0.54-

2.2 
 0.18-

0.65 

0.0-

0.19 
0.28 0.31  

12-

Aug 
Both 

24-
38 

3.6-
8.7 

56-
68 

  0.31-
3.5 

 0.21-
0.64 

    

22-

Aug 
Both 

24-

37 

4.6-

10 

58-

60 
  0.19-

6.0 

0.0-

0.14 

0.13-

0.29 
    

11-

Sep 
Both 

29-

39 

4.7-

8.7 

54-

65 
 0.0-

0.14 

0.26-

3.1 

0.12-

0.60 
     

15-

Sep 
Both 

44-
55 

7.1-
10 

34-
46 

 0.0-
0.14 

0.0-
1.4 

 0.21-
0.75 

 0.0-
0.46 

0.0-
0.79 

 

16-

Sep 
Both 

35-

48 

13-

14 

35-

46 
  2.9-

5.1 
 0.33-

0.55 
 0.0-

0.27 
  

18-

Sep 
Both 

52-

53 
19 

21-

25 
  2.4-

4.8 
0.0-2.1 

0.37-

0.57 
 0.0-

0.58 
  

23-

Sep 
Both 

45-
61 

12-
16 

23-
40 

  1.0-
5.2 

 0.0-
0.25 

 0.18-
0.19 

  

25-

Sep 
Both 

34-

29 

4.7-

16 

49-

65 
 0.0-

0.34 

1.5-

5.6 
0.0-2.1 

0.0-

0.30 
 0.0-

0.62 
 0.0-

3.2 

14-

Oct 
Both 

22-

26 

14-

18 

45-

53 
  8.4-10 

0.26-

0.35 

0.31-

0.42 
    

Table 2: Elemental composition of sections of Teflon with particulate matter. 
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  Composition of aggregates (range, %) 

Filter Inlet C O F Mg Al Si S Cl K Ca Cu 

Blank  25-
41 

0-8 
51-
75 

        

25-

Jun 
Both 

17-

22 

17-

29 

33-

43 
 18-21  0.0-

0.24 

0.0-

0.23 
   

23-

Jul 
Both 

18-

28 

5.2-

25 

37-

58 

0.0-

0.32 
8.3-26 

0.0-

3.3 

0.0-

0.42 

0.0-

0.16 

0.0-

0.89 
  

28-

Jul 

Teflo
n 

20-
28 

8.1-
22 

39-
43 

 14-25  0.19-
0.33 

0.0-
0.92 

   

12-

Aug 
Both 

16-

26 

12-

34 

36-

52 

0.0-

0.36 
6.0-17  1.0-3.5   0.0-

0.23 
 

22-

Aug 
Both 

16-

37 

4.6-

28 

29-

59 
 0.19-

29 
 0.13-

0.32 

0.0-

0.29 
   

11-

Sep 
Both 

16-
20 

17-
31 

31-
38 

0.0-
0.29 

17-28 
0.0-
0.37 

0.0-
0.26 

0.22-
0.52 

   

15-

Sep 
Both 

29-

34 

18-

26 

29-

32 
 15-16  0.19-

0.26 
 0.0-

0.22 
  

16-

Sep 
Both 

20-

46 

11-

34 

15-

46 

0.0-

0.24 
2.2-42 

0.0-

0.23 

0.0-

0.63 
 0.0-

0.25 
  

18-

Sep 
Both 

36-
60 

15-
38 

11-
30 

0.0-
0.13 

1.7-16  0.18-
0.55 

0.0-
0.38 

0.0-
0.13 

  

23-

Sep 
Both 

34-

45 

13-

31 

16-

41 
 1.8-23  0.0-

0.26 

0.0-

0.24 
   

25-

Sep 
Both 

18-

21 

21-

25 

39-

47 
 11-17  0.0-

0.15 

0.0-

0.44 
   

14-

Oct 
Both 

15-
21 

22-
37 

24-
29 

 22-32 
0.0-
0.37 

0.26-
0.97 

   0.0-
0.76 

Table 3: Elemental composition of sections of Teflon with visible aggregates. 
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Chapter 6 

Summary, Conclusions, and Recommendations 

1. Summary 

This research was directed at further refining and supporting conclusions 

presented in the initial stage of the Nevada Rural Ozone Initiative (NVROI): 1) Ozone 

(O3) concentrations measured at rural sites in Nevada approach the National Ambient Air 

Quality Standard (NAAQS) for O3 regardless of the lack of large sources in the State; 2) 

industrialization in Eurasia and the observed trans-Pacific pollution will continue to be a 

source of atmospheric pollutants in this area; 3) understanding discreet pollution events in 

complex terrain requires a suite of measurements; and 4) monitoring sites in rural 

Nevada, used for tracking regional air quality trends, should be sustained. Several 

research gaps were also addressed: 1) improved methods for measuring ambient reactive 

mercury (RM) are needed due to the underestimation of RM measurements from the 

commercially available analytical instrument; and 2) additional measurements and 

effective methods for identifying sources and source regions of air masses intercepted in 

rural Nevada and other parts of the Western USA are needed. 

The goal of this research was to identify sources affecting the concentration of 

atmospheric pollutants in Nevada, specifically particulate matter < 2.5 µm in 

aerodynamic diameter (PM2.5), ozone (O3), and RM, using lead (Pb) isotopic ratios and a 

suite of measurements, including gaseous data, meteorological data, and aerosol optical 

properties. Statistical and back trajectory analyses were also used. The four research 

objectives were directed at developing and deploying a new method for quantifying RM, 

applying the data collected with this method to identify sources of atmospheric 
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pollutants, source regions, and atmospheric processes using Pb isotope data and a 

statistical method, and investigating data anomalies observed during the sample 

campaign. 

 

2. Summary, conclusions, and recommendations for the specific research objectives 

2.1 Research objective 1 

The first research objective was to develop a method to quantify PM2.5 on two 

filter materials that allowed for post-processing of filter samples for RM concentrations, 

Pb concentrations, and Pb isotopic ratios using the Teledyne Advanced Pollution 

Instrumentation (TAPI) model 602 BetaPlus particulate monitor. PM2.5 concentrations 

measured with the TAPI were statistically similar to those obtained from PM2.5 Federal 

Reference and Federal Equivalent Methods (FRM and FEM), when located at two 

different measurement sites, indicating reliable measurements of PM2.5 by the TAPI, as 

configured for this study. Simultaneous measurements at high and low elevation sites 

showed that PM2.5 concentrations were higher at the lower elevation site located next to 

two highways in Reno, NV, USA than at the two higher elevation sites located on the 

west (Peavine Peak) and east side (Great Basin National Park) of Nevada. RM was 

statistically higher at Great Basin National Park on the east side of Nevada and 

statistically similar between the Reno and Peavine Peak sites. 

The TAPI allowed for finer temporal resolution (24 h) of RM measurements at a 

higher sample flow (16.7 Lpm) than measurements using the same cation exchange 

membranes (CEM) from the University of Nevada, Reno Reactive Mercury Active 

System (UNRRMAS) with a two-week sample period at lower sample flow (1 Lpm). 
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However, the TAPI consistently underestimated RM compared to the two-week 

UNRRMAS measurements. These differences are not surprising, due to inlet differences 

and sample flow. However, this instrument also measured higher RM in the summer, 

lower RM concentrations in the winter/spring, and similar RM concentrations in the 

fall/early winter compared to measurements from the commercially available instrument 

(Tekran), with known differences in RM collection efficiency and known interferences. 

The seasonal difference corresponded to similar behavior in atmospheric water vapor, 

which was high in the summer, low in the winter/spring, and intermediate in the fall/early 

winter. Increases in RM retention on filter surfaces with increasing water vapor and 

decreases in breakthrough indicate that water vapor affects ambient RM measurements 

on these filters. This finding is consistent with previous studies indicating that water 

vapor increases retention of RM on CEM (Huang and Gustin, 2015; Huang et al., 2013; 

Peterson et al., 2012).  

A statistically significant relationship was found for 24 h versus two-week 

UNRRMAS filter measurements; however, differences in RM concentrations collected at 

low flow for longer sample periods and high flow for shorter sample periods need to be 

resolved in order to apply the filter material for shorter temporal resolution sampling. 

Preliminary tests using a newly developed calibrator system to address breakthrough and 

long-term sampling on the CEM were performed. CEM filters pre-loaded with RM, using 

the calibrator system, had higher concentrations after two weeks of ambient sampling 

than would be expected based on the initial concentration of RM loaded on to the filters 

and the concentration of ambient RM collected over the two week period. This 

discrepancy indicated that filters exposed to high concentrations of RM might collect 
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more RM over time than would be expected. Filters loaded with RM that were held in 

jars for two weeks did not have statistically different RM concentrations after two weeks, 

indicating that RM was not gained or lost in this time. Breakthrough was not consistent in 

ambient air for either filter method (24 h and two week). Inconsistent breakthrough and 

increased RM on two-week atmospheric samples that did not occur on samples held in 

jars indicated that other atmospheric constituents might affect measurements. 

Several improvements to this research objective include adding another TAPI, 

longer sampling periods, more tests of the CEM, heated inlets, and better collocation of 

the TAPI instruments. Access to three TAPIs would have been beneficial for both initial 

testing and deployment for longer sample periods at all three sites (UNR Greenhouse, 

Peavine Peak, and Great Basin National Park). Running all three TAPIs collocated in the 

same sample trailer at the start of the experiment for several months would have allowed 

for a better comparison between the instruments to determine if RM concentrations were 

statistically similar between instruments. This would also allow for continued testing of 

the 24 h vs multiple day measurements on the TAPI. 

Tests of the CEM surface chemistry would include use of a permeation system 

and the calibrator system used to load CEM filters. The permeation system would be used 

for laboratory tests, some of which have been started under a new National Science 

Foundation grant. These tests would include permeating different RM compounds (e.g. 

HgCl2, HgBr2, HgO) in dry clean air through two filters inline. This requires a setup with 

two sample lines, one with the CEM filters, and the other with a pyrolyzer inline to 

convert RM to GEM for analysis on a Tekran 2537 to determine permeation rate through 

the filters. GOM collection efficiency on the CEM has only been determined for passive 
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samplers (Lyman et al., 2009) and should be determined for active systems at 1 Lpm and 

higher flow rates. This will also address breakthrough of different compounds for periods 

relevant to sample collection (24 h to two weeks). Previous breakthrough tests were 

performed using the calibrator and only occurred for 20 to 40 s followed by a 130 to 160 

s flush. Further testing using this setup would include permeations of Hg compounds with 

varying water vapor contents and different gaseous constituents at varying concentrations 

in zero air to determine CEM behavior in controlled environments with known variables. 

Field-tests would include repeating the CEM tests already performed to increase 

sample size and therefore statistical analysis of the differences in RM concentrations. 

This would include use of the calibrator system to load filters to repeat long-term 

behavior and RM retention tests on filters loaded with RM and then held in jars or with 

ambient air drawn through. 

To test the differences in concentrations between 24 h samples and 3 day or two 

week samples an inlet system like the UNRRMAS should be setup and run for 24 h 

samples at 16.7 Lpm collocated with a TAPI and the UNRRMAS. This would allow for 

collection of samples without a PM inlet at 16.7 Lpm with a second filter inline to collect 

breakthrough. Comparing these 24 h measurements to the two week UNRRMAS samples 

would confirm if the inlet was the main difference between TAPI and UNRRMAS 

measurements. If 24 h measurements from the modified UNRRMAS setup at 16.7 Lpm 

averaged to two weeks were still lower than the UNRRMAS this would indicate that the 

higher flow rate of the TAPI setup is likely altering RM retention on the CEM. Ambient 

tests could then be performed at varying sample lengths, flow rates, and CEM filter sizes 

to determine the relationship between sample length, flow rate, and RM retention. 
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To reduce loss of RM to the TAPI inlet, it would be necessary to heat the inlet. 

The Tekran sample line is heated to 50 °C, however several studies have indicated that 

100 °C is more efficient at reducing losses to inlets (Huang et al., 2013; McClure et al., 

2014). Heating the inlet could lead to loss of volatile PM2.5 (Deary et al., 2016). This 

would require either determining calibration factors to apply to heated line PM2.5 

measurements to correct for loss of volatile species, or reconfiguring the TAPI to use 

Teflon reference filters to measure PM2.5 mass concentrations on the unheated Teflon 

line.  

The UNRRMAS currently has no inlet in front of the filters. It is possible that the 

TAPI, with a PM2.5 inlet, would measure different RM concentrations from UNRRMAS 

even if loss of RM to the sample line was minimized. The UNRRMAS filters have visible 

particles on the surface of the filters and are therefore, collecting particulate matter, and 

likely some PBM. It is assumed that the UNRRMAS collects mainly GOM based on 

comparison with a Tekran system in ambient and laboratory air (Huang et al., 2013), 

however, this has not been empirically tested. To test this a Teflon filter could be 

installed in front of the UNRRMAS that would theoretically collect particulate matter 

and, therefore, PBM but not GOM. If there were differences in RM concentrations on the 

UNRRMAS CEM with and without a Teflon filter in front, the difference could 

theoretically be attributed to PBM. Care would need to be taken in addressing the 

difference in airflow the Teflon filter would create. 

These improvements and further tests would address several of the deficiencies 

reported for this research objective. Several of these improvements would also benefit the 

second and third research objective. 
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2.2 Research objective 2 

The second research objective was to use the Pb isotope data from the TAPI, in 

addition to a suite of other measurements, to identify sources of RM and elevated O3 to 

Nevada. At the two higher elevation rural sites, Peavine Peak and Great Basin National 

Park, RM was negatively correlated with indicators of trans-Pacific sources, suggesting 

that RM was removed from air masses due to deposition or conversion to elemental Hg 

before reaching the sample sites. Positive correlations between RM and O3, indicated 

formation of RM from photo-oxidation of GEM in dry upper altitude air. The positive 

correlations with regional indicators also indicated that regional sources of oxidants 

facilitated production of RM. 

Peavine Peak and Great Basin National Park also had higher concentrations of O3 

and smaller daily ranges in concentration than the lower elevation, urban site, indicating 

access to free tropospheric air and limited photochemical production during the day. 

Back trajectory analyses and Pb isotopic composition indicated that trans-Pacific air 

masses influenced the Western USA in spring through fall of 2014 and 2015. Sources of 

atmospheric pollutants to the measurement sites included regional urban centers and 

wildfires, and long-range transport of urban and wildfire emissions from Eurasia, 

enhancing O3 concentrations at the surface, at times approaching or exceeding the 

NAAQS. Regional sources (e.g. San Francisco, CA; marine boundary layer) to the high 

elevation site in western Nevada, Peavine Peak, differed from regional sources (e.g. Los 

Angeles, CA; Las Vegas, NV) to the high elevation site in eastern Nevada, Great Basin 

National Park.  
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Ozone was elevated following low-pressure systems with associated cold fronts, 

due to subsidence of cold air following the front. High-pressure systems and cyclonic 

flow aloft also facilitated subsidence of air with elevated O3. The high convective mixing 

in summer caused entrainment of free tropospheric air. Differences between the two sites 

on either side of the State indicate that multiple measurement sites are needed to 

characterize pollution events in Nevada.  

Objective two would also benefit from longer sample periods and three TAPI 

instruments located at each measurement site, allowing for Pearson correlations at the 

three sites on a seasonal basis. O3 concentrations have strong seasonal variation and 

correlations using seasonal data would have provided a clearer association between O3 

concentrations and sources. 

Comparing measurements of O3 from this study to longer-term measurements 

would have been helpful in determining if any changes in air quality trends had occurred. 

The initial years of O3 measurements by the NVROI were documented in Fine et al. 

(2015a; 2015b), Gustin et al. (2015), and Miller et al. (2015), while O3 and Pb 

measurements were documented in Christensen et al. (2015). Although most NVROI 

monitoring sites had been taken off line, O3 measurements from the Great Basin National 

Park CASTNET site are available for characterizing long-term trends in O3 to assess how 

the measurements from this study compared. 

Instead of choosing specific events for Pb isotope analysis, having Pb isotopes for 

longer, directed periods, for several months or for the whole sample period at all three 

sites would have aided in tracking air masses as they moved across Nevada and 

influenced the specific events identified in this objective. Choosing specific events for Pb 
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isotope analysis instead of having continuous samples hindered the ability to illustrate the 

progression of air masses across the State. More Pb isotope data would have also been 

useful in the Pearson correlations and would have reduced the bias towards O3 events 

inherent in analyzing limited samples. 

Determining whether O3 was contributed from the O3 rich stratosphere or was 

transported in the troposphere would aid in further identifying sources of O3 to the 

measurement sites. Stratospheric O3 contributions to the troposphere cannot be directly 

measured and are poorly constrained in atmospheric models due to the episodic nature 

and limited measurements to characterize events (Lin et al., 2012; Zhang et al., 2011). 

However, integrating tropospheric O3 measurements from satellites, aircraft, lidar, and 

ozonesondes with surface measurements and model outputs (e.g. GFDL AM3) would aid 

in improving vertical resolution and spatial coverage of O3 concentrations and chemistry. 

Isentropic Potential Vorticity (IPV) from the National Oceanic and Atmospheric 

Administration (NOAA) product, TOAST (Total Ozone Analysis using Solar Backscatter 

Ultrviolet Version 2 [SBUV/2] and Advanced Tiros-N Operational Vertical Sounder 

[TOVS]) has been used to characterize stratospheric intrusions (Sullivan et al., 2015). 

The stratosphere has higher potential vorticity than the troposphere due to the static 

stability of the stratosphere, and can therefore be used, along with low dew points and 

high O3 concentrations, to identify stratospheric intrusions (Wallace and Hobbs, 2006). 

Other measurements that would aid in identifying stratospheric intrusions include 

oxygen isotope measurements in CO2 and beryllium. Isotopic composition of the oxygen 

in CO2 is different when formed in the upper atmosphere with O3 and O2 photochemistry 

and can therefore be distinguished from the isotopic composition of oxygen in CO2 
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formed via biogenic and atmospheric processes at the surface (Liang and Mahata, 2015). 

Beryllium (7Be) is mainly produced above the tropopause and is therefore a good tracer 

of stratospheric air (Elbern et al., 1997). O3/CO ratios have also previously been used to 

identify upper troposphere/lower stratosphere influence (slope of -1.3 O3/CO with little 

influence from Asian long-range transport) and would aid in distinguishing between 

stratospheric input and long-range input or a mix of the two, based on the slope. This 

ratio would have been useful to asses in this study as O3 and CO were measured at all 

three measurement sites (Ambrose et al., 2011; Stohl et al., 2000). 

Total O3 products from NOAA’s Global Ozone Monitoring Experiment 2 

(GOME2) of Geostationary Operational Environmental Satellite (GOES) would be 

helpful in identifying high O3 events in upper levels of the atmosphere and could also be 

used to characterize subsidence of stratospheric O3. Longitudinal cross section data from 

the Real-Time Air Quality Modelling-system (RAQMS) for high O3 events would also 

aid in understanding entrainment and subsidence of air masses across Nevada. 

Measurements of reactive nitrogen oxides (NOy = NOx + nitric acid [HNO3] + 

nitrate radical [NO3] + nitrous acid [HONO] + peroxyacetyl nitrate [PAN] + other 

organic nitrogen compounds), hydroxyl radicals (OH), and volatile organic compounds 

(VOCs) would aid in understanding the atmospheric chemistry occurring at each 

measurement site. The ratio of NOx to NOy is indicative of the oxidant formation that has 

occurred in an air mass and therefore the relative age (NRC, 1991). Larger NOx to NOy 

ratios would indicate local sources. OH measurements would also be a good indication of 

the reactions occurring and the oxidizing capacity of the atmosphere. VOC concentration 

and species measurements would aid in identifying anthropogenic (mobile and stationary) 
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and biogenic sources of VOCs and the contribution to O3 production based on reactivity 

of the VOCs present. 

These improvements and added measurements would enhance source and source 

region identification in this research objective and would aid in better quantification of 

O3 enhancements during discreet events. Development of instruments that are low cost 

and easy to deploy, will continue to be necessary to understand sources of atmospheric 

pollutants in underrepresented rural sites. 

 

2.3 Research objective 3 

The third objective was to apply a statistical method to data collected by the TAPI 

to better understand the sources and physical processes affecting horizontal and vertical 

heterogeneity of atmospheric pollutants at adjacent valley and peak measurement sites in 

Reno, NV, USA. Air pollution gradients were observed between the two sites in the Reno 

valley and at higher elevation, Peavine Peak. The two valley sites, located ~1.4 km apart, 

had statistically different concentration of O3, carbon monoxide (CO), oxides of nitrogen 

(NOx), nitrogen oxide (NO), and sulfur dioxide (SO2). CO, NOx, and NO were enhanced 

close to the highways due to mobile sources, while O3 and SO2 were influenced by 

mobile sources but were also enhanced further from the highway due to chemical 

reactions and non-point sources. Peavine Peak, ~12 km away and ~1.2 km higher in 

elevation than the valley sites, had higher concentrations of O3, and lower concentrations 

of CO and PM2.5. Ozone at Peavine Peak was not necessarily dependent on distance from 

the highways as the site experienced limited photochemical production of O3 during the 

day and was influenced by stratospheric mixing of O3. Lower concentrations of CO and 
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PM2.5 at Peavine Peak were indicative of distance from sources (highways and non-point) 

in the valley. Horizontal gradients of pollutants, different distances from high volume 

highways, will affect exposure to pollutants in metropolitan areas with <500,000 people, 

such as Reno, NV, USA, and are therefore important to monitor. 

Major sources and physical processes affecting vertical gradients in Reno, NV, 

USA identified using the quadrant method were: 1) unstable conditions leading to a well-

mixed boundary layer and mixing of local pollutants; 2) stable atmospheric conditions 

with accumulation of local pollutants; 3) transport and mixing of smoke plumes; and 4) 

transport of pollution aloft. Use of the 24 h surface measurements with columnar 

measurements, aided in performing statistical investigations of the sources and 

atmospheric processes affecting the transport of aerosols in complex terrain. Applying the 

quadrant method to 24 h PM2.5 data increases the applicability of the method for rural and 

remote sites that often only have 24 h samples. Comparison to a previous study 

demonstrated the importance of site location of the ground-based, columnar aerosol 

optical depth and surface PM2.5 measurement instruments for use in the quadrant method. 

Complex terrain, long-range transport, and wildfires made it difficult to reconcile 

columnar and surface measurements for specific events. Difficulties arose when trans-

Pacific transport was present, due to the semi-continuous contribution of trans-Pacific 

pollution throughout the year (VanCuren, 2003; VanCuren et al., 2005), but in low 

concentrations or present in filamentous air masses, that were not easily distinguishable 

from local pollutants. Wildfire plumes transported aloft mixing with long-range pollution 

transported aloft will also present problems for separating influence specific to wildfires 

and to long-range sources. 
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Further testing of the quadrant method, across the Western USA, is necessary to 

characterize sources and atmospheric processes affecting the relationship between 

columnar and surface observations. Future studies should focus on inland sites in the 

Western USA, with different elevations, and during different fire regimes. Application of 

the quadrant method for other atmospheric pollutants, using a paired valley and peak site, 

would also be useful in identifying processes that affect other pollutants. Similarly to the 

aerosol column retrievals, column and surface observations of gases could be used to 

identify processes affecting the distribution of these gases, for example, column retrievals 

of O3 and surface measurements. Column O3 is retrieved from satellites (e.g. Total Ozone 

Mapping Spectrometer [TOMS], GOME2) and from ground-based instruments (e.g. 

Dobson spectrophotometers) much like aerosol optical depth (Cracknell and Varotsos, 

2012). O3 variability in stratospheric air due to latitude and longitude can be subtracted 

from total column O3, allowing for quantification of tropospheric O3 (Cracknell and 

Varotsos, 2012; Hudson et al., 1995; McKenzie et al., 1991). Differences in tropospheric 

O3 and surface O3 observations can then be used in a similar manner as columnar and 

surface aerosol optical depth observations in the quadrant method. O3 confined to the 

surface would indicate anthropogenic and biogenic sources, O3 aloft but not observed at 

the surface would indicate long-range transport and stratospheric input. Diel patterns of 

hourly O3 concentrations could also be used with ground-based columnar O3 retrievals to 

identify discreet pollution events that differ from daily processes. Measurement issues 

over bright surfaces and clouds would have to be taken into account for satellite column 

O3 retrievals (Fishman and Larsen, 1987; Hudson et al., 1995).  
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Measurements of the O3 vertical profile at each site would also aid in 

understanding the vertical distribution of column O3. These measurements include 

ozonesondes, instruments mounted on aircraft, or ground based measurements such as a 

Dobson or Brewer spectrophotometer that measures the ratio of zenith sky radiance 

during sunrise and sunset at two wavelengths that strongly and weakly absorb O3 to 

determine O3 concentrations at different heights (Cracknell and Varotsos, 2012).  

A major limitation of this study was the missing winter and spring data, therefore 

this objective would have also benefitted from longer sample periods when the Cimel 

was not out for calibration, with the TAPI located at Peavine Peak for the entire sample 

period. Aerosol optical depth measurements at each measurement site would be necessary 

to fully evaluate the statistical results for each site. Applying the quadrant method to 24 h 

data from more sites across the Western USA would have increased the use of the 

quadrant method and allowed for further evaluation of the statistical results. For 

horizontal gradients, a transect of measurement sites from the highways along the 

prevailing wind direction would have provided a clearer measure of the gradients of 

pollutants (Karner et al., 2010; Riley et al., 2014). 

Adding a variable to use in the quadrant method for distinguishing stratospheric 

and long-range inputs is necessary to better characterize data in the fourth quadrant 

(pollution aloft). This variable could be O3/CO ratios, which would be readily available at 

many sites, or any of the measurements discussed in the recommendations for objective 

two. 

It will also be necessary to develop a method for determining relationships 

between columnar and surface observations during nighttime and cloudy periods when 
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aerosol optical depth measurements are not available but sources and physical processes 

continue to affect measurement sites. Use of the quadrant method to identify different 

sources and processes at a site may also be used to identify periods when a site is 

impacted by an exceptional event, such as plumes from a wildfire. 

 

2.4 Research objective 4 

The fourth objective was to investigate possible sources of anomalous particulate 

matter collected at one of the sample sites during the sample period. The anomalous 

samples would either indicate that particles that behaved differently from ideal spherical 

particles were observed at this site or that the TAPI setup introduced an artifact to the 

samples. 

The presence of fires and fire indicators, high relative humidity, high wind 

speeds, use of diesel generators onsite, and elemental composition were investigated to 

understand the presence of ambient particles > 2.5 µm in aerodynamic diameter on 36 

measurement days from June to November 2014. High concentrations of certain elements 

(aluminum and oxygen) on the aggregate samples indicated that sections of aluminum 

sample tubing may have been rubbing together, due to prolonged, high wind speed 

events, causing particles of aluminum to form within the sample line and deposit on the 

sample filters. Other methods for measuring particulate matter, used as FEM, have 

similar inlet designs. Not all of these methods post-process the sample filters and 

therefore do not observe sample filter surfaces on a regular basis. At sites with high wind 

speeds, it is possible that a similar situation could be observed and would artificially 
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increase particulate matter concentrations. More experiments are needed to test this 

conclusion. 

It would be useful to collocate multiple particulate monitors (TAPI, FEM, FRM) 

at the Peavine Peak site, and other sites with high wind events, to determine if this 

phenomena could be replicated and observed using other instruments. This would require 

accurate measurements of wind speed and direction, which were challenging during this 

sample period due to high wind speeds and constraints on location of wind vanes at 

Peavine Peak. 

To determine if generator exhaust was the cause of aggregates, generator filters 

could be analyzed using scanning electron spectroscopy and energy dispersive x-ray 

spectroscopy to determine morphology and elemental composition of the samples 

collected during generator use. It would also be useful to have information on the 

generators used at the site (i.e. days that generators were in use, type of generator, fuel 

used, lubricating oil used, etc.) Fractal properties of the aggregates would also be useful 

in quantifying differences in the morphology of the aggregates. 

The results from this objective highlight the need to carefully pick site locations 

and to assess samples collected with a suite of other measurements to identify any issues 

that may arise. 

 

3. General conclusions and recommendations 

Since the current research began, the operation of the monitoring sites across 

Nevada has ended. Particulate matter is only monitored in the major urban centers and at 

three non-urban sites, while O3 is only monitored in the major urban centers and at two 
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non-urban sites in northern and eastern Nevada. However, monitoring across rural areas 

of the Western USA will continue to be essential for improving the understanding of the 

complex processes affecting atmospheric pollutants. Limited measurement sites across 

Nevada or the Western USA will not be sufficient for understanding sources and 

atmospheric processes affecting atmospheric pollutant concentrations in this large 

mountainous state. This is illustrated by the differences in regional sources to the west 

and east side of the State and the effects of frontal activity. Ozone concentrations will 

continue to approach or exceed the NAAQS across rural Nevada, and likely other parts of 

Western USA; however, regional or global sources of pollution are not reasonably 

controllable by the State. As industrialization and human population continue to grow 

both in the USA and globally, it is important to have measurements of atmospheric 

pollutants and an understanding of the processes affecting pollutants as sources increase 

and change. Rural Nevada intercepts regional and long-range transport, but has few local 

sources and is therefore an ideal area for measuring changes in regional air quality. 

A novel method for tracing sources of pollution was developed and deployed. The 

TAPI is useful in targeted campaigns but may be too complex and expensive to deploy 

for monitoring at finer spatial scales. In addition, possible instrument artifacts may occur 

at sites with prolonged, high wind events. Diversifying measurement methods of RM 

aided in understanding spatial and temporal differences in concentrations and identified 

areas of further research. The addition of Pb isotope data from the PM2.5 samples and use 

of back trajectory analyses improved the understanding of source regions affecting air 

pollution in Nevada. Refining our understanding of the relationship between columnar 

and surface measurements improved identification of atmospheric processes and sources 
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of pollutants. The results of this research could aid in identifying exceptional events, and 

could increase spatial coverage of surface measurements in rural areas, if used to improve 

estimates of surface concentrations of pollutants and therefore health exposures from 

satellite measurements. Due to lack of atmospheric boundaries and the chemistry that can 

occur downwind of a source, particularly in complex terrain, development and use of 

versatile and robust measurement platforms is necessary to identify sources and 

conditions affecting air pollution.  
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Site Description 

Nevada is located between 120º and 114 º W longitude, and 35 º and 42 º N 

latitude with and a mean elevation of 1676 m1. The main industries in Nevada include 

entertainment and tourism, mining (mainly gold and silver as well as other metals and 

minerals), and cattle ranching. Large pollution point sources consist of mines and energy 

generating facilities (three coal-fired and one gas-fired); smaller sources consist of 

mobile (e.g. transportation), line (e.g. highways and railways) and point sources (e.g. 

industrial). Nevada has few large sources of air pollution and generally clean, dry air. The 

State generally rises in baseline elevation from south and west (~600 m in southwest, 

~1240 m in northwest) to northeast and east (~1800 m in east), with more than 200 

mountain ranges that run north-to-south and peaks that reach close to 4000 m in some 

ranges. Prevailing winds from the west bring moist air up over the Sierra Mountains, 

where the air then cools and condenses, causing most of the moisture to precipitate out. 

Air moving into Nevada warms and sinks with little moisture (i.e. the rain shadow 

effect), which results in mainly desert and steppes in the lower elevations across the State 

with forests in the higher elevations1. High solar radiance across much of Nevada results 

in rapid surface heating, low annual precipitation and therefore large ranges of low and 

high daily temperatures1. Average annual precipitation varies across the State: less than 

13 cm in the south, ~46 cm in the northeast and ~102 cm in the west with heavy snowfall 

occurring in the northern mountains1. Given these conditions there is high convective 

mixing across the State that brings free tropospheric air to valley floors2. 

The population estimate for Nevada in 2015 was 2.89 million people, with about 

15 people per km2 compared to about 149 people per km2 in California3. The State has 
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two counties, Clark and Washoe County, containing ~87% of the population with the rest 

of the population spread across the state3. 

 

Figure SI 1: Diagram of University of Nevada, Reno Agricultural Station Greenhouse 

Facilities showing position next to Interstate 80 and U.S. Route 395 and location of the 

WRCC meteorological station (blue box), the TAPI 131 permanent trailer (yellow box), 

and the TAPI 135 temporary trailer (red box).  
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Methods: 

TAPI 

β particles (14C source, half-life: 5,730 yr.) were passed through a filter and 

measured, sample was then collected on the filter, and β rays are again passed through the 

filter. The decrease in β particles due to the absorption by the deposited particles was 

used to calculate the mass of particles deposited to the filter material. The number of β 

particles passing through absorbing matter decreases almost exponentially related to the 

mass collected on the filter. Equation SI 1, similar to Beer’s Law, relates the β-particle 

flux and the mass thickness of the filter and PM, which was then used to calculate the 

particulate mass concentration in air.  

𝐼 =  𝐼𝑜 ∙ 𝑒−𝑢𝑥                   Eq. SI 1 

 Where I = Beta counts through the filter with particulates 

  Io = Beta counts through the filter without particulates (blank) 

  u = Beta absorption constant 

  x = Density of absorbing matter 
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UNRRMAS 

 

Figure SI 2: Diagram of the UNRRMAS system. Dashed black line indicates the 

measurements used in this study. 

 

Total Hg analysis of CEM 

Individual filters were placed in 125 mL soda-lime glass jars that were then filled 

with 100 mL of 1% Optima hydrogen chloride (HCl) and MilliQ (18MΩ) water. Bromine 

monochloride (BrCl) solution was added to the samples to make a 2% by volume 

solution. Samples, calibration blanks, and standards then digest for at least 12 but less 

than 24 h. Prior to analyses, hydroxylamine (NH2OH) was added to an equivalent of 

0.2% of the volume and allowed to react for at least 5 min to remove any halogens before 

analysis. Hg(II) forms in the solution were reduced to GEM using stannous chloride 
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(SnCl2) and purged from the liquid using a phase separator and ultrahigh purity argon 

gas. GEM was then collected on gold traps, thermally desorbed, and measured by 

CVAFS. Reported detection limit for the Tekran 2600 is 0.2 ng L-1. The calibration curve 

was made using four calibration blanks followed by five standards (1, 5, 10, 25, 100 ng l-

1). At least four calibration standards must pass within ±5% to create a calibration curve. 

Ongoing Precision Recovery (OPR) samples were analyzed every ten samples and two of 

every ten samples were duplicates to ensure the instrument was running reliably. OPRs 

had to pass within ±10% in order to continue analysis. 

 

CEM tests 

The UNRG had 22 instances of breakthrough out of 149 samples that were >40%, 

of those 22, seven were greater than 50%. Of these 22 instances, 15 occurred during a 

period when a new operator of the system was starting. PEAV had no breakthrough 

greater than 40%; this site was started later (June 2014) than the UNRG (December 2013) 

and only had 29 samples.  
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Meteorological data 

Specific humidity calculation: 

𝑒𝑠(𝑇) =  𝑒𝑠0exp [(
𝐿𝑣(𝑇)

𝑅𝑣
) (

1

𝑇0
−

1

𝑇
)]                      Eq. SI 2a, b, c, d 

𝑅𝐻 =  
𝑒

𝑒𝑠
 

𝑤 =  
𝑒𝑅𝑑

𝑅𝑣(𝑝 − 𝑒)
 

𝑞 =  
𝑤

𝑤 + 1
 

 

𝑒𝑠(𝑇) : saturation vapor pressure (Pa) 

𝑒𝑠0 : saturation vapor pressure at 𝑇0 (Pa) 

𝑒 : actual vapor pressure (Pa) 

𝑇0 : reference temperature (273.16 K) 

𝑇 : temperature (K) 

𝐿𝑣(𝑇) : specific enthalpy of vaporization (J kg-1) 

𝑅𝑣 : specific gas constant for water vapor (J kg-1 K-1) 

𝑅𝑑 : specific gas constant for dry air (J kg-1 K-1) 

RH : relative humidity as a fraction (0 to 1) 

𝑤 : mass mixing ratio of water vapor to dry air (dimensionless) 

𝑝 : pressure (Pa) 

𝑞 : specific humidity (mass mixing ratio of water vapor to total air, dimensionless, kg kg-

1) 
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Results and Discussion 

Table SI 1: Descriptive statistics for PM2.5 data at each site, indicating data is not 

normally distributed. 

PM2.5 
WCAQ 
Galletti 

WCAQ 
Reno 

UNRG 
TAPI 131 

PM 

UNRG 
TAPI 135 

PM 

PEAV 
TAPI PM 

GBNP 
TAPI PM 

GBNP 
IMPROVE 

GBNP 
EBAM 

Median (µg m-3) 6.4 6.6 6.7 7.7 5 3.8 2.6 3 

Mean (µg m-3) 9.4 8.4 7.7 9.2 8.3 4.4 3.3 3.4 

Standard error of 
mean (µg m-3) 

0.5 0.3 0.3 0.6 0.9 0.2 0.4 0.1 

Confidence interval 
of mean (0.95) (µg m-

3) 
1.0 0.6 0.6 1.1 1.8 0.4 0.7 0.2 

Variance (µg m-3)2 106.1 63.1 31.1 37.9 135.7 8.7 9.1 3.6 

Std deviation (µg m-3) 10.3 7.9 5.6 6.2 11.6 2.9 3.0 1.9 

Variation coefficient 1.1 0.9 0.7 0.7 1.4 0.7 0.9 0.6 

Skewness 4.1 5.6 4.5 1.5 3.4 3.2 3.6 2.0 

Kurtosis 25.7 48.8 31.9 2.4 12.9 13.7 14.6 6.4 

Shapiro-Wilk (S-W) 
test of normality 

0.6 0.6 0.6 0.9 0.5 0.7 0.6 0.8 

S-W probability 5.23E-28 3.13E-38 1.11E-27 1.61E-08 4.49E-20 8.90E-18 3.13E-13 2.01E-19 
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Table SI 2: Descriptive statistics for RM data from TAPIs at UNRG, PEAV, GBNP, 

indicating data is not normally distributed. 

RM UNRG TAPI 131 RM UNRG TAPI 135 RM PEAV TAPI RM GBNP TAPI RM 

Median (pg m-3) 22.18 13.22 35.69 37.87 

Mean (pg m-3) 29.80 14.11 42.76 44.89 

Standard error of mean (pg m-3) 1.26 0.73 2.13 2.49 

Confidence interval of mean (0.95) (pg m-3) 2.48 1.46 4.20 4.92 

Variance (pg m-3)2 577.17 56.65 728.02 1088.22 

Std deviation (pg m-3) 24.02 7.53 26.98 32.99 

Variation coefficient 0.81 0.53 0.63 0.73 

Skewness 1.10 0.70 1.12 0.62 

Kurtosis 0.83 0.21 1.38 -0.63 

Shapiro-Wilk (S-W) test of normality 0.90 0.96 0.92 0.92 

S-W probability 4.94E-15 0.0053 1.20E-07 4.37E-08 

 

Table SI 3: Descriptive statistics for Tekran Hg data at each site, indicating data is not 

normally distributed. 

Hg Tekran GOM Tekran PBM Tekran RM 

Median (pg m-3) 12.8 9.2 23.5 

Mean (pg m-3) 16.6 12.5 29.1 

Standard error of mean (pg m-3) 0.7 0.8 1.3 

Confidence interval of mean (0.95) (pg m-3) 1.4 1.6 2.5 

Variance (pg m-3)2 147.7 204.0 499.3 

Std deviation (pg m-3) 12.2 14.3 22.4 

Variation coefficient 0.7 1.1 0.8 

Skewness 1.0 2.9 1.6 

Kurtosis 0.5 12.0 3.6 

Shapiro-Wilk (S-W) test of normality 0.9 0.7 0.9 

S-W probability 0.0 0.0 0.0 
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Figure SI 3: Histogram of average ambient relative humidity at UNRG 
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Tests of the TAPI reconfiguration for PM2.5 measurements 

 

 

 

Figure SI 4: a) Regression between PM2.5 concentration data from TAPI 131 at UNRG 

and the BAM-1020 at the WCAQ Galletti site, which went offline in November 2014. b) 

Regression between PM2.5 concentration data from TAPI 131 at UNRG and the BAM-

1020 at the WCAQ Reno site. c) Regression between PM2.5 concentration data from TAPI 

135 at UNRG and the BAM-1020 at the WCAQ Galletti site. d) Regression between PM2.5 

concentration data from TAPI 135 at UNRG and the BAM-1020 at the WCAQ Reno site. 

Grey line is the regression, black dashed line is the 1:1 line. 

 

c) d) 

a) b) 
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Figure SI 5: Regression for GBNP TAPI 135 and an EBAM run by NDEP at Great Basin 

National Park. Grey line is the regression, black dashed line is the 1:1 line. 

 

 

Figure SI 6: Regression for TAPI 135 and FRM IMPROVE site at Great Basin National 

Park. Grey line is the regression, black dashed line is the 1:1 line. 
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Comparison of the UNRG TAPI PM2.5 and RM data 

 

 

 

Figure SI 7: a) regression between both TAPI instruments located at UNRG in April 

2014 b) from November 2014 to March 2015 c) and all data from both periods together. 

Grey line is the regression, black dashed line is the 1:1 line. 

 

a) 

b) c) 
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Figure SI 8: Linear regression of TAPI 131 and TAPI 135 when located at UNRG. Grey 

line is the regression with a forced zero intercept, black dashed line is the 1:1 line. 

 

 
Figure SI 9: Wind speed at UNRG during a) TAPI 131 RM measurements and b) TAPI 

135 measurements. 

 

a) b) 
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a) 

b) c) 
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Figure SI 10: PM2.5 and RM at UNRG for TAPI 131 a) all data, b) spring data (2014, 

2015), c) summer data (2014, 2015), d) fall data (2014, 2015), and e) winter data (2014). 

d) e) 
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Figure SI 11: PM2.5 and RM at UNRG for TAPI 135 a) all data, b) fall data (2013), c) 

spring data (2014), d) winter data (2014). 

 

  

a) b) 

c) d) 
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Comparison of the PEAV TAPI PM2.5 and RM data 

 

Figure SI 12: Linear regression for UNRG (TAPI 131) and Peavine Peak PM2.5 data 

June to November 2014. Grey line is the regression, black dashed line is the 1:1 line. 

 

 

a) 
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Figure SI 13: PM2.5 and RM at PEAV a) all data, b) summer data (2014), c) summer data 

with no fire data (2014), d) fall data(2014), e) fall data with no fire data (2014). 

 

  

b) c) 

d) e) 
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Comparison of the GBNP TAPI PM2.5 and RM data 

 
Figure SI 14: Scatter plot for UNRG TAPI and GBNP TAPI data March to October 2015. 

Black dashed line is the 1:1 line. 

 

 

a) b) 
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Figure SI 15: PM2.5 and RM at GBNP a) all data, b) spring data (2015), c) summer data 

(2015) d) summer data without fire points in August, e) fall data (2015). 

 

  

e) 

c) d) 
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CEM tests 

Inlet testing to determine loss of RM to TAPI inlet 

 

Figure SI 16: Inlet tests in light grey (average of three inlets) were run using three filter 

packs that contained two inline CEM filters deployed adjacent to the TAPI inlet. Filter 

pack inlets consisted of a 2.5 cm length pulled, ambient air through the filter packs at 

16.7 Lpm, and were collected on the same time scale as the TAPI (dark grey, 24 h). Black 

circles indicate breakthrough on the inlet tests as percent of total RM collected and white 

diamonds indicate the average ambient specific humidity (SH). 
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Figure SI 17: a) Average specific humidity (kg kg-1) from WRCC and total RM from the 

TAPI at UNRG. b) Average outside temperature (K) from WRCC and total RM from the 

TAPI at UNRG. c) Average specific humidity and total RM from both filters from inlet 

setup. d) Average specific humidity and breakthrough percent of total RM from inlet 

setup. 

 

a) b) 

c) d) 
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Figure SI 18: a) Average internal TAPI specific humidity and total RM from the TAPI at 

UNRG. b) Average internal TAPI temperature (K) and total RM from the TAPI at UNRG. 

c) Average external TAPI specific humidity and total RM from the TAPI at UNRG. d) 

Average external TAPI temperature (K) and total RM from the TAPI at UNRG. 

 

  

a) b) 

c) d) 
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Figure SI 19: Percent breakthrough of total RM collected on two inline filters for three 

different permeation times (10, 20, and 30 sec) for a) HgCl2 and b) HgBr2  

 

  

a) b) 
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Methods: 

Teledyne Advanced Pollution Instrumentation (TAPI) BetaPlus Particulate Monitor 

Automatic pneumatic circuit leak tests, beta source span checks, and calibration 

of the operating flow rate regulation system occurred at the start of each sampling period 

for both sample lines. Sample pumps were rebuilt every 6-8 months and sample inlets 

were cleaned monthly, following instructions from the manufacturer. Filters were held in 

cartridges specific to the TAPI 602 BetaPlus and loaded into the TAPI. Filters were 

unloaded and held in the instrument unloader until collection every one to two weeks. 

Filters were then extracted using clean tweezers, into jars (CEM) and Petri dishes 

(Teflon) and stored in a freezer (-22 ºC) until further analysis.  

 

Lead isotope analysis 

Pb was leached from Teflon filters in clean Savillex vials using 6N HCl, sealed, 

and heated at 90 °C for 4 h. Filters were rinsed with 6N HCl and removed from the vials. 

Sample liquid collected in the vials was then evaporated at 100 °C and transferred to 

smaller Savillex vials to evaporate completely. Samples were then re-dissolved with 

concentrated HNO3 and evaporated again at 100 °C. 0.5N HBr was added to the samples 

and the samples were centrifuged. Samples were then loaded onto fresh AGI –X8 resin 

for standard ion exchange chemistry using 0.5N HBr to rinse and 6N HCl to strip Pb 

from the resin. Pb stripped from resin in 6N HCl was collected in Savillex sample vials 

and evaporated at 100 °C. Samples were then re-dissolved in 0.3N HNO3. Samples were 

spiked with thallium (5:1 ratio of Pb to Tl) with known isotopic composition (205Tl:203Tl) 

to adjust for instrumental mass fractionation of Pb during analysis with multi-collector 
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inductively coupled plasma mass spectrometry (MC-ICPMS; Neptune, Thermo 

Scientific, Ewing et al., 2010). Samples were introduced using a desolvation nebulization 

system (an Apex IR with ACM, by ESI). The MC-ICPMS instrument settings were 

optimized for 208Pb before sampling. Pb standards (NBS981) were evaluated for 

procedural recovery at the start and end of each sample set. 

 

Mercury 

Individual CEM filters were placed in 125 mL soda-lime glass jars with PTFE-

lined polypropylene caps and digested in 100 mL of 1% Optima hydrogen chloride (HCl) 

and MilliQ (18MΩ) water. Bromine monochloride (BrCl) solution was added to the 

samples to make a 2% by volume solution. Samples, calibration blanks, and standards 

digest for 24 h. Hydroxylamine (NH2OH) was added to an equivalent of 0.1% of the 

volume and reacted for at least 5 min to remove any halogens before analysis. Any RM in 

the solution was then reduced using stannous chloride (SnCl2) and removed from the 

liquid using a phase separator and ultra-high purity argon. The calibration curve was 

made using at least seven calibration blanks followed by five standards (1, 5, 10, 25, 100 

ng l-1). GEM was then collected on gold traps, thermally desorbed, and measured by cold 

vapor atomic fluorescence spectroscopy (CVAFS). 
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Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) 

Table 1: Trajectory residence time (TRT) source boxes. 

Source box Latitude Longitude Area (km2) Height (km) 

Northern Eurasia 

(N. Eurasia) 
78 to 45 30 to 180 28801728 10 

East Asia 

(E. Asia) 
45 to 20 100 to 150 12931786 10 

San Francisco, CA* 

(SF) 
39 to 37 -123 to -121 38971 

1 

(>3) 

Las Angeles, CA* 

(LA) 
35 to 32.5 -120 to -117 77098 1 

Las Vegas, NV* 

(LV) 
37 to 35 -116 to -114 40010 1 

*Following (Fine et al., 2015; Wright et al., 2014) 

 

Results: 

Table 2: Corrected and blank subtracted Pb isotopic ratios, calculated Δ208 Pb and % 

Asian Pb, and uncertainties (uncert). Expected 208/207 ratios are calculated using the 

slope of the California array (Fig 1 and 2 in manuscript) and measured 206/207 ratios 

and used to calculate the Δ208 Pb and % Asian Pb following Ewing et al. (2010). 

S
it

e 

Date 
206/ 

207 
uncert 

208/ 

207 
uncert 

expected 

208/207 

Δ208 

Pb 

uncert of 

Δ208Pb 

% Asian 

Pb 

uncert of  

% Asian 

Pb 

G
B

N
P

 

 

03/27/2015 1.1543 5.34E-05 2.4381 9.26E-05 2.4220 16.15 0.11 64.61 0.43 

03/31/2015 1.1566 4.19E-05 2.4334 6.81E-05 2.4239 9.51 0.08 38.03 0.32 

05/23/2015 1.1591 5.72E-05 2.4363 1.10E-04 2.4259 10.43 0.12 41.72 0.50 

06/08/2015 1.1582 4.49E-05 2.4403 6.95E-05 2.4252 15.12 0.08 60.49 0.33 

06/09/2015 1.1584 4.50E-05 2.4405 7.26E-05 2.4253 15.16 0.09 60.62 0.34 

06/14/2015 1.1531 5.55E-05 2.4316 9.33E-05 2.4210 10.66 0.11 42.62 0.43 

06/17/2015 1.1556 4.41E-05 2.4327 7.13E-05 2.4231 9.62 0.08 38.48 0.34 

06/18/2015 1.1471 4.71E-05 2.4261 7.21E-05 2.4161 10.08 0.09 40.30 0.34 

06/22/2015 1.1612 5.05E-05 2.4359 7.94E-05 2.4277 8.23 0.09 32.91 0.38 

06/24/2015 1.1666 4.58E-05 2.4362 7.74E-05 2.4321 4.12 0.09 16.47 0.36 

06/26/2015 1.1617 4.57E-05 2.4355 7.64E-05 2.4280 7.46 0.09 29.83 0.36 

07/05/2015 1.1486 8.85E-05 2.4227 2.09E-04 2.4173 5.44 0.23 21.76 0.91 

07/14/2015 1.1659 8.55E-05 2.4332 2.09E-04 2.4315 1.67 0.23 6.68 0.90 

07/17/2015 1.1504 9.77E-05 2.4231 2.62E-04 2.4188 4.25 0.28 17.00 1.12 

07/20/2015 1.1615 9.18E-05 2.4362 2.15E-04 2.4279 8.34 0.23 33.36 0.94 

07/25/2015 1.1531 8.50E-05 2.4274 2.18E-04 2.4210 6.44 0.23 25.76 0.94 

08/11/2015 1.1750 1.16E-04 2.4442 2.33E-04 2.4389 5.32 0.26 21.27 1.04 

08/20/2015 1.1611 7.53E-05 2.4336 1.40E-04 2.4276 6.06 0.16 24.25 0.64 

08/21/2015 1.1643 1.03E-04 2.4333 2.98E-04 2.4302 3.17 0.32 12.68 1.26 

08/26/2015 1.1629 8.37E-05 2.4344 1.63E-04 2.4290 5.40 0.18 21.62 0.73 

09/03/2015 1.2010 4.10E-05 2.4533 1.23E-04 2.4603 -6.99 0.13 -27.97 0.52 
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09/05/2015 1.1635 8.22E-05 2.4355 1.83E-04 2.4295 6.04 0.20 24.15 0.80 

09/10/2015 1.1541 7.48E-05 2.4403 1.27E-04 2.4218 18.46 0.15 73.85 0.59 

P
E

A
V

 

 

06/06/2014 1.1374 2.81E-05 2.4171 8.87E-05 2.4081 8.96 0.09 35.84 0.37 

06/12/2014 1.1551 2.58E-05 2.4329 6.14E-05 2.4226 10.25 0.07 41.00 0.27 

06/17/2014 1.1360 7.13E-05 2.4127 1.53E-04 2.4070 5.70 0.17 22.81 0.67 

06/22/2014 1.1379 1.15E-04 2.4152 2.61E-04 2.4085 6.69 0.29 26.75 1.14 

06/26/2014 1.1568 5.35E-05 2.4305 9.55E-05 2.4240 6.47 0.11 25.89 0.44 

06/28/2014 1.1405 4.39E-05 2.4186 7.64E-05 2.4107 7.92 0.09 31.68 0.35 

07/06/2014 1.1400 4.25E-05 2.4156 7.10E-05 2.4103 5.33 0.08 21.33 0.33 

07/15/2014 1.1385 4.75E-05 2.4130 9.93E-05 2.4090 4.06 0.11 16.25 0.44 

07/22/2014 1.1303 4.15E-05 2.4036 7.09E-05 2.4023 1.29 0.08 5.17 0.33 

07/25/2014 1.1299 2.95E-05 2.4065 6.05E-05 2.4020 4.50 0.07 17.98 0.27 

07/26/2014 1.1508 3.09E-05 2.4192 5.04E-05 2.4191 0.13 0.06 0.51 0.24 

08/07/2014 1.1377 4.06E-05 2.4126 7.87E-05 2.4083 4.26 0.09 17.06 0.35 

09/06/2014 1.1411 4.41E-05 2.4137 7.05E-05 2.4111 2.58 0.08 10.32 0.33 

09/22/2014 1.1636 2.55E-05 2.4334 5.56E-05 2.4296 3.86 0.06 15.44 0.24 

09/24/2014 1.1514 2.78E-05 2.4242 5.87E-05 2.4196 4.60 0.06 18.39 0.26 

09/27/2014 1.1581 4.55E-05 2.4395 8.09E-05 2.4250 14.43 0.09 57.71 0.37 

10/09/2014 1.1481 3.35E-05 2.4233 6.57E-05 2.4169 6.35 0.07 25.39 0.30 

10/15/2014 1.1563 2.62E-05 2.4343 5.54E-05 2.4236 10.65 0.06 42.62 0.24 

10/17/2014 1.1521 2.57E-05 2.4334 5.24E-05 2.4202 13.20 0.06 52.82 0.23 

U
N

R
G

 

04/14/2014 1.1507 2.51E-05 2.4263 4.43E-05 2.4191 7.26 0.05 29.05 0.20 

04/14/2014 1.1515 2.12E-05 2.4271 4.11E-05 2.4197 7.38 0.05 29.54 0.18 

04/17/2014 1.1527 3.17E-05 2.4328 5.77E-05 2.4207 12.11 0.07 48.43 0.26 

04/17/2014 1.1519 2.31E-05 2.4322 5.17E-05 2.4200 12.25 0.06 48.99 0.23 

06/06/2014 1.1436 2.35E-05 2.4217 5.74E-05 2.4132 8.46 0.06 33.86 0.25 

06/12/2014 1.1520 2.42E-05 2.4318 5.30E-05 2.4201 11.72 0.06 46.87 0.23 

06/17/2014 1.1615 3.60E-05 2.4290 6.35E-05 2.4279 1.13 0.07 4.53 0.29 

06/22/2014 1.1315 3.04E-05 2.4065 5.68E-05 2.4033 3.16 0.06 12.66 0.26 

06/26/2014 1.1470 5.46E-05 2.4211 9.65E-05 2.4160 5.19 0.11 20.77 0.44 

06/28/2014 1.1411 4.21E-05 2.4135 6.39E-05 2.4111 2.36 0.08 9.45 0.31 

07/06/2014 1.1334 3.78E-05 2.4099 6.58E-05 2.4048 5.08 0.08 20.32 0.30 

07/15/2014 1.1391 4.47E-05 2.4140 7.12E-05 2.4095 4.57 0.08 18.28 0.34 

07/22/2014 1.1430 2.22E-05 2.4143 5.61E-05 2.4127 1.65 0.06 6.62 0.24 

07/25/2014 1.1434 2.17E-05 2.4221 4.93E-05 2.4130 9.07 0.05 36.29 0.22 

07/26/2014 1.1227 2.85E-05 2.3955 6.44E-05 2.3961 -0.61 0.07 -2.42 0.28 

08/07/2014 1.1414 2.87E-05 2.4177 6.01E-05 2.4114 6.33 0.07 25.31 0.27 

09/06/2014 1.1369 3.25E-05 2.4087 4.72E-05 2.4077 1.02 0.06 4.06 0.23 

09/22/2014 1.1609 2.81E-05 2.4336 4.77E-05 2.4273 6.23 0.06 24.91 0.22 

09/26/2014 1.1553 2.69E-05 2.4302 6.02E-05 2.4228 7.40 0.07 29.60 0.26 

09/27/2014 1.1485 2.82E-05 2.4279 5.26E-05 2.4172 10.60 0.06 42.42 0.24 
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10/09/2014 1.1502 2.51E-05 2.4296 5.20E-05 2.4186 11.08 0.06 44.31 0.23 

10/15/2014 1.1580 3.25E-05 2.4303 7.29E-05 2.4250 5.26 0.08 21.03 0.32 

10/17/2014 1.1552 2.74E-05 2.4384 5.24E-05 2.4227 15.68 0.06 62.72 0.24 

02/21/2015 1.1672 4.24E-05 2.4351 7.31E-05 2.4325 2.57 0.08 10.30 0.34 

02/21/2015 1.1650 4.40E-05 2.4343 8.58E-05 2.4308 3.53 0.10 14.14 0.39 

03/28/2015 1.1540 4.11E-05 2.4379 8.54E-05 2.4217 16.21 0.09 64.86 0.38 

03/31/2015 1.1607 4.30E-05 2.4397 8.01E-05 2.4272 12.48 0.09 49.94 0.36 

05/28/2015 1.1447 4.24E-05 2.4276 6.90E-05 2.4141 13.53 0.08 54.13 0.32 

06/08/2015 1.1536 4.46E-05 2.4313 7.52E-05 2.4214 9.90 0.09 39.60 0.35 

06/09/2015 1.1520 4.51E-05 2.4386 6.62E-05 2.4201 18.56 0.08 74.25 0.32 

07/15/2015 1.1696 9.73E-05 2.4404 2.67E-04 2.4345 5.91 0.28 23.63 1.14 

08/19/2015 1.1557 1.22E-04 2.4260 4.45E-04 2.4231 2.87 0.46 11.48 1.85 

08/20/2015 1.1561 8.66E-05 2.4282 2.21E-04 2.4235 4.77 0.24 19.06 0.95 

08/29/2015 1.1505 8.51E-05 2.4211 2.07E-04 2.4189 2.26 0.22 9.03 0.90 

08/31/2015 1.1903 9.61E-05 2.4557 2.60E-04 2.4515 4.18 0.28 16.73 1.11 

09/02/2015 1.1892 7.61E-05 2.4568 1.71E-04 2.4506 6.22 0.19 24.90 0.75 
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PEAV 2014: 

Figure 1: Diel pattern of O3 and CO at PEAV averaged over the sample period for each 

hour for a) same y-axis scale as UNRG (Fig. 2 and 3 below) and b) y-axis scaled for 

PEAV data. 

a)  

b)  
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Pearson Correlation for site data: 

Table 3: Pearson correlations for PM2.5 and gas data at PEAV in 2014. Italic data 

indicates significance level p<0.1, bold italic data indicates significance level p<0.05, 

grey data indicates <50% of available data. 

PEAV PM2.5 RM O3 
Max 1 h 

O3 

MDA8 

O3 
CO 

O3 0.09 0.22  0.87 0.88 0.15 

Max 1 h O3 0.18 0.21 0.87  0.92 0.24 

MDA8 O3 0.07 0.15 0.88 0.92  0.15 

RM 0.11  0.22 0.21 0.15 0.09 

CO – carbon monoxide 

Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h O3) 
NO – nitrogen oxide 

NOx – nitrogen oxide compounds 

O3 – ozone 
PEAV – Peavine Peak, Reno, NV, USA 

PM2.5 – particulate matter <2.5 µm in diameter 

RM – reactive mercury 
SO2 – sulfur dioxide 

 

Table 4: Pearson correlations for meteorological data at PEAV in 2014. Italic data 

indicates significance level p<0.1, bold italic data indicates significance level p<0.05. 
PEAV Temp RH Wind speed Pressure ABLH 

O3 0.48 -0.42 -0.04 0.16 0.25 

Max 1 h O3 0.45 -0.41 0.05 0.11 0.33 

MDA8 O3 0.43 -0.42 0.01 0.11 0.25 

RM 0.63 -0.41 -0.08 0.51 0.48 

ABLH – atmospheric boundary layer height 

Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 
O3 – ozone 

PEAV – Peavine Peak, Reno, NV, USA 

RH – relative humidity 
RM – reactive mercury 

Temp – temperature 
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Table 5: Pearson correlations for source box trajectory residence time (TRT) analysis for 

PEAV in 2014. Italic data indicates significance level p<0.1, bold italic data indicates 

significance level p<0.05. 

PEAV 

N. Eurasia E. Asia SF LA LV 

<1 

km 

<2 

km 

<3 

km 

Tot

al 

>3 

km 

<1 

km 

<2 

km 

<3 

km 

Tot

al 

>3 

km 

<1 

km 

>3 

km 

<1 

km 

<1 

km 

O3 -0.15 -0.16 -0.19 0.02 0.07 0.05 0.02 0.01 
-

0.01 
-0.02 0.31 0.14 -0.12 -0.16 

Max 1 h 

O3 
-0.10 -0.12 -0.14 0.07 0.11 0.07 0.04 0.05 0.06 0.05 0.24 0.11 -0.21 -0.16 

MDA8 

O3 
-0.14 -0.15 -0.17 0.10 0.15 0.10 0.07 0.08 0.11 0.10 0.21 0.09 -0.18 -0.14 

RM -0.15 -0.19 -0.24 
-

0.29 
-0.27 -0.08 -0.08 -0.08 

-
0.05 

-0.02 0.00 0.33 -0.11 -0.12 

LA – Las Angeles, CA, USA 

LV – Las Vegas, NV, USA 
Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 

O3 – ozone 
PEAV – Peavine Peak, Reno, NV, USA 

RM – reactive mercury 

SF – San Francisco, CA, USA 
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Table 6: Positive and negative correlations for PEAV 2014. Bold + indicate α<0.05, 

italic + indicate α<0.1, while large ― indicate α<0.05, small - indicate α<0.1. 

PEAV 2014 

Positive Negative 

PM2.

5 

O

3 

Max 1 h 

O3 

MDA8 

O3 

R

M 

PM2.

5 

O

3 

Max 1 h 

O3 

MDA8 

O3 

R

M 

Filter 
PM2.5 

  +        

RM  + + +       

Gas CO +  +        

Meteorologic

al 

Temp  + + + +      

RH       ― ― ― ― 

Wind 

speed +          

Pressure     +      

Dew point +        -  

ABLH  + + + +      

N. Eurasia 

<3 km       ―  - ― 

Total      -    ― 

>3 km    +  -    ― 

SF 
<1 km  + + +       

>3 km     +      

LA <1 km +       ― ―  

LV <1 km       - -   

ABLH – atmospheric boundary layer height 
CO – carbon monoxide 

LA – Los Angeles, CA, USA 

LV – Las Vegas, NV, USA 
Max 1 h O3 – maximum 1 h average of each day averaged by site 

MDA8 O3 – maximum daily average (8 h) for each day averaged by site 

O3 – ozone 
PEAV – Peavine Peak, Reno, NV, USA 

PM2.5 – particulate matter <2.5 µm in diameter 

RH – relative humidity 
RM – reactive Hg 

SF – San Francisco, CA, USA 

 

PEAV 2014 (Pb days): 

Mean O3 concentration for the Pb sample days were higher at PEAV (50±10, 

range 34 to 69 ppb, n=19) than UNRG (30±10, range 12 to 49 ppb, n=14) and WCAQ 

(40±10, range 22 to 60 ppb, n=19). Ozone (daily average, Max 1 h, MDA8) was 

positively correlated with temperature, total Pb mass (MDA8 p<0.1), and with <3 km and 

total trajectories from San Francisco. MDA8 O3 was positively correlated with <3 km 
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trajectories from Northern Eurasia (p<0.1). Ozone (daily average, Max 1 h, MDA8) was 

negatively correlated with RH.  

Reactive mercury was positively correlated with temperature, pressure, ABLH, 

and trajectories arriving >3 km above San Francisco and Las Vegas. RM was negatively 

correlated with RH, percent Asian Pb, and total trajectories from East Asia. 

 

Table 7: Statistics for days with Pb samples at PEAV June to November 2014, a) filter 

samples and b) O3. 

a) 
PEAV 

2014 

Pb mass 

(ng) 
Δ208Pb 

% Asian 

Pb 

Total Pb (ng 

m-3) 

Asian Pb 

(ng m-3) 

RM (pg 

m-3) 

PM2.5 

(ug m-3) 

ng Pb ug-1 

PM2.5 

Min 3.24 0.1286 0.51 0.1346 0.0025 1.86 1.30 0.0103 

Mean 8.26 6.3809 26 0.3436 0.0897 52.14 10.46 0.0703 

Median 7.65 5.7018 23 0.3183 0.0651 37.86 5.40 0.0661 

Max 17.23 14.4269 58 0.7165 0.3784 139.65 42.10 0.1714 

StDev 3.71 3.7829 15 0.1542 0.0893 35.88 12.94 0.0471 

Count 19 19 19 19 19 19 19 19 

b) 

PEAV AvgO3 MaxHrO3 MDA8O3 

Min 33.83 42.05 39.05 

Mean 50.20 58.84 55.65 

Median 51.38 58.90 55.93 

Max 68.72 78.03 77.55 

Stdev 10.35 10.32 11.30 

Count 19 19 19 
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Pearson Correlation for Pb days: 

Table 8: Pearson correlations for PM2.5 and gas data on days with Pb samples at PEAV 

in 2014. Italic data indicates significance level p<0.1, bold italic data indicates 

significance level p<0.05, grey data indicates <50% of available data. 

PEAV PM2.5 RM O3 
Max 1 h 

O3 

MDA8 

O3 
CO 

O3 0.30 0.16    0.25 

Max 1 h O3 0.23 0.11    0.28 

MDA8 O3 0.23 0.20    0.32 

RM -0.19  0.16 0.11 0.20 -0.09 

Total Pb 0.52 -0.03 0.54 0.46 0.40 0.39 

Asian Pb 0.24 -0.37 0.16 0.12 0.06 0.01 

%Asian Pb -0.04 -0.57 -0.24 -0.23 -0.25 -0.25 

CO – carbon monoxide 
Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 

NO – nitrogen oxide 
NOx – nitrogen oxide compounds 

O3 – ozone 

PEAV – Peavine Peak, Reno, NV, USA 
PM2.5 – particulate matter <2.5 µm in diameter 

RM – reactive mercury 

SO2 – sulfur dioxide. 

 

Table 9: Pearson correlations for meteorological data on days with Pb samples at PEAV 

in 2014. Italic data indicates significance level p<0.1, bold italic data indicates 

significance level p<0.05. 

PEAV Temp RH Wind speed Pressure ABLH 

O3 0.54 -0.64 0.19 0.31 -0.03 

Max 1 h O3 0.52 -0.62 0.07 0.28 0.04 

MDA8 O3 0.60 -0.64 0.07 0.39 0.04 

RM 0.75 -0.57 -0.30 0.72 0.64 

Total Pb 0.23 -0.36 0.24 0.09 -0.19 

Asian Pb -0.26 -0.08 0.31 -0.48 -0.52 

%Asian Pb -0.65 0.32 0.26 -0.68 -0.63 

ABLH – atmospheric boundary layer height 
Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 

O3 – ozone 
PEAV – Peavine Peak, Reno, NV, USA 

RH – relative humidity 

RM – reactive mercury 
Temp – temperature 
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Table 10: Pearson correlations for source box trajectory residence time (TRT) analysis 

on days with Pb samples for PEAV in 2014. Italic data indicates significance level p<0.1, 

bold italic data indicates significance level p<0.05. 

PEAV 

N. Eurasia E. Asia SF LA LV 

<3 km Total >3 km <3 km Total >3 km 
<1 

km 

>3 

km 

<1 

km 

<1 

km 

O3 -0.34 0.20 0.33 0.08 0.22 0.25 0.20 0.35 
-

0.19 
0.04 

Max 1 h O3 -0.25 0.25 0.36 0.09 0.27 0.30 0.21 0.28 
-

0.22 
0.08 

MDA8 O3 -0.40 0.15 0.29 0.00 0.20 0.28 0.21 0.28 
-

0.21 
0.07 

RM -0.31 -0.37 -0.32 -0.38 -0.50 -0.40 -0.17 0.51 
-

0.14 
-

0.09 

Total Pb -0.22 -0.06 0.00 0.58 0.25 -0.09 -0.04 0.18 0.02 0.27 

Asian Pb 0.00 0.21 0.23 0.79 0.55 0.17 0.19 
-

0.29 

-

0.09 

-

0.03 

%Asian Pb 0.13 0.34 0.34 0.50 0.61 0.47 0.24 
-

0.48 

-

0.05 

-

0.15 

LA – Las Angeles, CA, USA 
LV – Las Vegas, NV, USA 

Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 
O3 – ozone 

PEAV – Peavine Peak, Reno, NV, USA 

RM – reactive mercury 
SF – San Francisco, CA, USA 
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Table 11: Positive and negative correlations for 19 days with Pb samples at PEAV 2014. 

Bold + indicate α<0.05, italic + indicate α<0.1, while large ― indicate α<0.05, small - 

indicate α<0.1. 

PEAV Pb 2014 

Positive Negative 

206

Pb

/207

Pb 

208

Pb

/207

Pb 

% 

Asian 

Pb 

total 

Pb 

mass 

Asian 

Pb 

mass 

ng 

Pb/u

g 

PM 

206Pb

/207P

b 

208Pb

/207P

b 

% 

Asia

n Pb 

total Pb 

mass 

Asia

n Pb 

mass 

ng 

Pb/u

g 

PM 

Filter 
PM2.5 + +  +        ― 

RM        ― ―    

Gas 

O3 
   +         

Max 1 

h O3 
   +         

MDA8 

O3 
   +         

Met 

Temp       ― ― ―    

RH  +           

Wind 

speed + +          - 
Pressur

e 
       ― ―  -  

Dew 

point 
           - 

ABLH       ― ― ―  ―  

N. 

Eurasi

a 

Total      +       

>3 km      +       

E. Asia 

<3 km   + + +        

Total   +  + +       

>3 km   +   +       

SF 
<1 km      +       

>3 km         ―    

LA <1 km            - 

LV <1 km +            

ABLH – atmospheric boundary layer height 
LA – Los Angeles, CA, USA 

LV – Las Vegas, NV, USA 

Max 1 h O3 – maximum 1 h average of each day averaged by site 
MDA8 O3 – maximum daily average (8 h) for each day averaged by site 

O3 – ozone 

PEAV – Peavine Peak, Reno, NV, USA 
PM2.5 – particulate matter <2.5 µm in diameter 

RH – relative humidity 

RM – reactive Hg 
SF – San Francisco, CA, USA 
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UNRG 2014: 

Figure 2: Diel pattern of O3, CO, and NOx at UNRG 2015 averaged over the sample 

period for each hour. 
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UNRG 2015: 

Figure 3: Diel pattern of O3, CO, and NOx at UNRG 2015 averaged over the sample 

period for each hour for a) March to October 2015 and b) June to October 2015 (similar 

time of year as UNRG 2014). 

a)  

b)  
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UNRG 2014: 

Table 12: Pearson correlations for PM2.5 and gas data at UNRG in 2014. Italic data 

indicates significance level p<0.1, bold italic data indicates significance level p<0.05, 

grey data indicates <50% of available data. 
UNRG 

2014 
PM2.5 RM O3 

Max 1 h 

O3 

MDA8 

O3 
CO SO2 NOx NO 

O3 -0.02 -0.21  0.84 0.86 -0.13 0.09 -0.66 -0.16 

Max 1 h O3 0.07 -0.29 0.84  0.98 0.14 0.33 -0.20 0.23 

MDA8 O3 0.03 -0.30 0.86 0.98  0.07 0.27 -0.23 0.21 

RM 0.20  -0.21 -0.29 -0.30 -0.07 -0.16 -0.09 -0.42 

CO – carbon monoxide 

Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 
NO – nitrogen oxide 

NOx – nitrogen oxide compounds 

O3 – ozone 
PM2.5 – particulate matter <2.5 µm in diameter 

RM – reactive mercury 

SO2 – sulfur dioxide 
UNRG – University of Nevada, Reno Greenhouse facility, USA 

 

Table 13: Pearson correlations for meteorological data at UNRG in 2014. Italic data 

indicates significance level p<0.1, bold italic data indicates significance level p<0.05. 
UNRG 

2014 
Temp RH Wind speed Pressure ABLH Solar radiation Precipitation 

O3 0.07 -0.42 0.37 -0.43 0.12 0.18 -0.27 

Max 1 h O3 -0.14 -0.36 -0.03 -0.15 0.00 0.08 -0.27 

MDA8 O3 -0.11 -0.39 0.00 -0.18 0.04 0.14 -0.31 

RM 0.63 -0.14 0.07 0.01 0.36 0.09 0.13 

ABLH – atmospheric boundary layer height. 
Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 

O3 – ozone 
RH – relative humidity 

RM – reactive mercury 

Temp – temperature 
UNRG – University of Nevada, Reno Greenhouse facility, USA 
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Table 14: Pearson correlations for source box trajectory residence time (TRT) analysis 

for UNRG in 2014. Italic data indicates significance level p<0.1, bold italic data 

indicates significance level p<0.05. 

UNRG 

2014 

N. Eurasia E. Asia SF LA LV 

<1 

km 

<2 

km 

<3 

km 

Tota

l 

>3 

km 

<1 

km 

<2 

km 

<3 

km 

Tota

l 

>3 

km 

<1 

km 

>3 

km 

<1 

km 

<1 

km 

O3 0.15 0.23 0.23 0.34 0.33 0.22 0.24 0.26 0.30 0.26 0.25 -0.21 -0.22 0.01 

Max 1 

h O3 
0.17 0.21 0.21 0.33 0.33 0.23 0.26 0.28 0.33 0.28 0.00 -0.20 -0.27 0.04 

MDA8 

O3 
0.19 0.22 0.22 0.35 0.35 0.25 0.27 0.29 0.34 0.29 0.02 -0.22 -0.28 0.03 

RM -0.23 
-

0.30 

-

0.35 

-

0.36 
-0.31 -0.13 -0.18 -0.22 -0.22 -0.20 0.14 0.28 0.04 -0.02 

LA – Las Angeles, CA, USA 
LV – Las Vegas, NV, USA 

Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 
O3 – ozone 

RM – reactive mercury 

SF – San Francisco, CA, USA 
UNRG – University of Nevada, Reno Greenhouse facility, USA 
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Table 15: Positive and negative correlations for UNRG 2014. Bold + indicate α<0.05, 

italic + indicate α<0.1, while large ― indicate α<0.05, and small - indicate α<0.1. Grey 

data indicate <50% of the data was available. 

UNRG 2014 

Positive Negative 

PM2.

5 

O

3 

Max 1 h 

O3 

MDA8 

O3 

R

M 

PM2.

5 
O3 

Max 1 h 

O3 

MDA8 

O3 

R

M 

Filter 
PM2.5 

    +      

RM +      - ― ―  

Gas 

O3 
         - 

Max 1 h O3 
         ― 

MDA8 O3 
         ― 

CO +          

SO2 +  + +       

NOx       ―  -  

NO   + +      ― 

Meteorologic

al 

Temp     +      

RH +      ― ― ―  

Wind speed  +    -     

Pressure       ―  -  

ABLH     +      

Solar 

radiation 
 +    ―     

Precipitation +      ― ― ―  

N. Eurasia 

<3 km  + + +  -    ― 

Total  + + +  ―    ― 

>3 km  + + +  ―    ― 

E. Asia 

<3 km  + + +      ― 

Total  + + +      ― 

>3 km  + + +      ― 

SF 
<1 km  +         

>3 km     +  ― ― ―  

LA <1 km +      ― ― ―  

LV <1 km +          

ABLH – atmospheric boundary layer height 
CO – carbon monoxide 

LA – Los Angeles, CA, USA 

LV – Las Vegas, NV, USA 
Max 1 h O3 – maximum 1 h average of each day averaged by site 

MDA8 O3 – maximum daily average (8 h) for each day averaged by site 

O3 – ozone 
PM2.5 – particulate matter <2.5 µm in diameter 

RH – relative humidity 

RM – reactive Hg 
SF – San Francisco, CA, USA 

UNRG – University of Nevada, Reno, Greenhouse, USA 
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UNRG 2014 (Pb days): 

Ozone (daily average) was positively correlated with <1 and <2 km trajectories 

(p<0.1) and <3, total, and >3 km trajectories from Northern Eurasia. Max 1 h O3 and 

MDA O3 were positively correlated with total and >3 km trajectories from Northern 

Eurasia. 

RM was positively correlated with solar radiation, temperature, Tekran GOM, 

ABLH (p<0.1), <1 km trajectories from San Francisco (p<0.1), <2, <3 km and total 

trajectories from San Francisco. RM was negatively correlated with RH, and <3 km 

(p<0.1) and total trajectories fro, Northern Eurasia (p<0.1), and <1 km trajectories 

(p<0.1) from East Asia. Tekran GEM was positively correlated with <1, <2 km 

trajectories and <3 km (p<0.1) trajectories from East Asia and negatively correlated with 

<1 and <2 km trajectories from San Francisco. Tekran GOM was positively correlated 

with <1, <2, <3, and total trajectories from San Francisco and Tekram RM was positively 

correlated with <1 (p<0.1) and <2 km trajectories from San Francisco. 
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Table 16: Statistics for days with Pb samples at UNRG June to November 2014, a) filter 

samples and b) O3. 

a) 

UNRG 

2014 

Pb mass 

(ng) 
Δ208Pb 

% Asian 

Pb 

Total Pb (ng 

m-3) 

Asian Pb 

(ng m-3) 

RM (pg 

m-3) 

PM2.5 

(ug m-

3) 

ng Pb ug-1 

PM2.5 

Min 4.81 -0.6053 -2.4 0.2000 -0.0240 8.38 1.90 0.0147 

Mean 18.19 6.0737 24 0.7563 0.2385 44.82 9.80 0.1130 

Median 14.53 5.2564 21 0.6043 0.1073 41.92 6.40 0.1105 

Max 73.92 15.6809 63 3.0738 1.9280 105.99 62.90 0.2956 

StDev 14.63 4.2644 17 0.6084 0.4296 26.12 13.41 0.0652 

Count 19 19 19 19 19 18 19 19 

b) 
UNRG 

2014 
AvgO3 MaxHrO3 MDA8O3 

WCAQ 

AvgO3 

WCAQ 

MaxHrO3 

WCAQ 

MDA8O3 

Min 12.24 23.59 19.16 22.05 43.00 37.38 

Mean 29.83 47.87 42.53 40.16 58.84 53.37 

Median 31.30 46.52 41.43 40.83 59.00 56.25 

Max 48.82 71.76 63.19 59.88 85.00 73.00 

Stdev 10.03 12.86 11.75 9.64 11.73 11.58 

Count 14 14 14 19 19 19 
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Pearson Correlation for Pb days: 

Table 17: Pearson correlations for PM2.5 and gas data on days with Pb samples at 

UNRG in 2014. Italic data indicates significance level p<0.1, bold italic data indicates 

significance level p<0.05, grey data indicates <50% of available data. 
UNRG 

2014 
PM2.5 RM O3 

Max 1 h 

O3 

MDA8 

O3 
CO SO2 NOx NO 

O3 0.03 -0.18    -0.04 0.03 -0.60 -0.29 

Max 1 h O3 0.32 -0.18    0.73 0.40 0.36 0.18 

MDA8 O3 0.27 -0.17    0.68 0.41 0.46 0.19 

RM 0.05  -0.18 -0.18 -0.17 -0.09 -0.33 0.04 -0.38 

Total Pb 0.06 -0.23 -0.13 0.24 0.22 0.53 0.39 0.85 0.88 

Asian Pb -0.01 -0.28 -0.14 0.17 0.17 0.43 0.36 0.77 0.88 

%Asian Pb -0.03 -0.18 -0.21 -0.02 -0.01 0.20 0.28 0.41 0.64 

CO – carbon monoxide 
Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 

NO – nitrogen oxide 
NOx – nitrogen oxide compounds 

O3 – ozone 

PM2.5 – particulate matter <2.5 µm in diameter 
RM – reactive mercury 

SO2 – sulfur dioxide 
UNRG – University of Nevada, Reno Greenhouse facility, USA 

 

Table 18: Pearson correlations for meteorological data on days with Pb samples at 

UNRG in 2014. Italic data indicates significance level p<0.1, bold italic data indicates 

significance level p<0.05. 
UNRG 

2014 
Temp RH 

Wind 

speed 
Pressure ABLH 

Solar 

radiation 
Precipitation 

O3 -0.26 -0.11 0.29 -0.39 -0.12 -0.09 0.13 

Max 1 h O3 -0.16 -0.21 -0.10 -0.05 -0.05 -0.09 -0.04 

MDA8 O3 -0.15 -0.28 -0.06 -0.12 0.02 -0.03 -0.09 

RM 0.77 -0.54 -0.02 -0.05 0.41 0.51 -0.12 

Total Pb -0.25 -0.05 -0.18 -0.16 -0.27 -0.17 -0.19 

Asian Pb -0.35 0.10 -0.11 -0.23 -0.40 -0.29 -0.09 

%Asian Pb -0.43 0.23 -0.03 -0.32 -0.50 -0.40 0.21 

ABLH – atmospheric boundary layer height. 

Max 1 h O3 – maximum 1 h O3 
MDA8 O3 – maximum daily average (8 h) O3 

O3 – ozone 

RH – relative humidity 

RM – reactive mercury 

Temp – temperature 

UNRG – University of Nevada, Reno Greenhouse facility, USA 
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Table 19: Pearson correlations for source box trajectory residence time (TRT) analysis 

on days with Pb samples for UNRG in 2014. Italic data indicates significance level 

p<0.1, bold italic data indicates significance level p<0.05. 

UNRG 

2014 

N. Eurasia E. Asia SF LA LV 

  
<3 

km 

Tota

l 

>3 

km 
  

<3 

km 

Tot

al 

>3 

km 

<1 

km 

>3 

km 

<1 

km 

<1 

km 

O3   0.54 0.75 0.72   0.11 0.43 0.45 0.37 
-

0.18 

-

0.06 
0.15 

Max 1 h O3   0.30 0.61 0.61   0.34 0.38 0.31 0.26 
-

0.13 
-

0.07 
0.36 

MDA8 O3   0.34 0.61 0.60   0.33 0.40 0.33 0.30 
-

0.23 

-

0.16 
0.33 

RM   -0.36 
-

0.38 

-

0.32 
  -0.26 

-

0.28 

-

0.29 
0.37 0.33 0.04 0.03 

Total Pb   -0.15 0.13 0.18   0.67 0.48 0.38 
-

0.17 

-

0.09 

-

0.10 
0.01 

Asian Pb   -0.13 0.10 0.14   0.63 0.44 0.34 
-

0.07 
-

0.23 
-

0.10 
-

0.03 

%Asian Pb   -0.31 
-

0.17 
-

0.11 
  0.46 0.38 0.33 

-
0.09 

-
0.37 

-
0.15 

0.01 

LA – Las Angeles, CA, USA 

LV – Las Vegas, NV, USA 
Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 

O3 – ozone 
RM – reactive mercury 

SF – San Francisco, CA, USA 

UNRG – University of Nevada, Reno Greenhouse facility, USA 

 

Table 20: Positive and negative correlations for 19 days with Pb samples at UNRG 2014. 

Bold + indicate α<0.05, italic + indicate α<0.1, while large ― indicate α<0.05, small - 

indicate α<0.1. Grey data indicate <50% of the data was available. 

UNRG Pb 2014 

Positive Negative 

206P

b/207

Pb 

208P

b/207

Pb 

%Asi
an Pb 

total 

Pb 

mass 

Asian 

Pb 

mass 

ng 

Pb/ug 

PM 

206P

b/207

Pb 

208P

b/207

Pb 

%Asi
an Pb 

total 

Pb 

mass 

Asian 

Pb 

mass 

ng 

Pb/ug 

PM 

Filter RM        ― ―     

Gas 
NOx    + +         

NO  + + + + +        

Meteor

ologica

l 

Temp        ― ― ―   ― 

RH + +            

Pressure             - 

ABLH        ― ― ―  -  

Solar 

radiation 
       ― ― -    

E. Asia 

<3 km  + + + + +        

Total   + + + +        

>3 km    +  +        

SF >3 km        ― ― -    

ABLH – atmospheric boundary layer height 

RH – relative humidity 
RM – reactive Hg 

SF – San Francisco, CA, USA 

UNRG – University of Nevada, Reno, Greenhouse, USA 
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GBNP 2015: 

Figure 4: Diel pattern of O3, CO, and NOx at GBNP averaged over the sample period for 

each hour for a) same y-axis scale as UNRG (Fig. 2 and 3) and b) y-axis scaled for 

GBNP data. There was only 3 months of CO data during this time. 

a)  

b)  
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Pearson Correlation for site data: 

Table 21: Pearson correlations for PM2.5 and gas data at GBNP in 2015. Italic data 

indicates significance level p<0.1, bold italic data indicates significance level p<0.05, 

grey data indicates <50% of available data. 
GBNP PM2.5 RM O3 Max 1 h O3 MDA8 O3 CO NOx NO NOy 

O3 0.25 0.30  0.90 0.94 0.57 -0.39 -0.16 0.06 

Max 1 h O3 0.22 0.25 0.90  0.96 0.56 -0.27 -0.08 0.28 

MDA8 O3 0.24 0.25 0.94 0.96  0.59 -0.29 -0.11 0.21 

RM 0.23  0.30 0.25 0.25 -0.05 -0.24 -0.12 -0.52 

CO – carbon monoxide 

GBNP – Great Basin National Park, NV, USA 
Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) 

NO – nitrogen oxide 
NOx – nitrogen oxide compounds 

NOy – total reactive nitrogen 

O3 – ozone 
PM2.5 – particulate matter <2.5 µm in diameter 

RM – reactive Hg 

 

Table 22: Pearson correlations for meteorological data at GBNP in 2015. Italic data 

indicates significance level p<0.1, bold italic data indicates significance level p<0.05, 

grey data indicates <50% of available data. 

GBNP Temp RH 
Wind 

speed 
Solar radiation Precipitation 

O3 0.27 -0.47 0.27 0.44 -0.19 

Max 1 h O3 0.18 -0.28 0.14 0.42 -0.11 

MDA8 O3 0.19 -0.32 0.16 0.40 -0.15 

RM 0.80 -0.55 0.14 0.38 -0.14 

ABLH – atmospheric boundary layer height. 

GBNP – Great Basin National Park, NV, USA 

Max 1 h O3 – maximum 1 h O3 
MDA8 O3 – maximum daily average (8 h) 

O3 – ozone 

RH – relative humidity 
RM – reactive mercury 

Temp – temperature 

  



302 
 

Table 23: Pearson correlations for source box trajectory residence time (TRT) analysis 

for GBNP in 2015. Italic data indicates significance level p<0.1, bold italic data 

indicates significance level p<0.05. 

GBNP 

N. Eurasia E. Asia SF LA LV 

<1 

km 

<2 

km 

<3 

km 

Tot

al 

>3 

km 

<1 

km 

<2 

km 

<3 

km 

Tot

al 

>3 

km 

<1 

km 

>3 

km 

<1 

km 

<1 

km 

O3 -0.02 0.03 0.06 0.25 0.28 0.09 0.09 0.08 0.14 0.15 0.12 0.20 0.06 0.02 

Max 1 h 

O3 
-0.06 -0.01 0.02 0.28 0.32 0.08 0.09 0.08 0.19 0.21 0.10 0.17 0.10 -0.01 

MDA8 

O3 
-0.05 0.00 0.03 0.24 0.28 0.08 0.08 0.07 0.14 0.15 0.08 0.15 0.08 0.00 

RM -0.28 -0.28 -0.29 
-

0.33 
-0.31 -0.25 -0.21 -0.19 

-

0.32 
-0.34 0.06 0.02 0.34 0.24 

GBNP – Great Basin National Park, NV, USA 
LA – Las Angeles, CA, USA 

LV – Las Vegas, NV, USA 

Max 1 h O3 – maximum 1 h O3 
MDA8 O3 – maximum daily average (8 h) 

O3 – ozone 

RM – reactive mercury 
SF – San Francisco, CA, USA 
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Table 24: Positive and negative correlations for GBNP 2015. Bold + indicate α<0.05, 

italic + indicate α<0.1, while large ― indicate α<0.05, and small - indicate α<0.1. Grey 

data indicate <50% of the data was available. 

GBNP 2015 

Positive Negative 

PM2.

5 

O

3 

Max 1 h 

O3 

MDA8 

O3 

R

M 

PM2.

5 
O3 

Max 1 h 

O3 

MDA8 

O3 

R

M 

Filter 
PM2.5 

 + + + +      

RM + + + +       

Gas 

O3 +    +      

Max 1 h O3 +    +      

MDA8 O3 +    +      

CO  + + +       

NOx +      ― ― ― ― 

NO       -    

NOy   + +      ― 

Meteorologic

al 

Temp + + + + +      

RH      ― ― ― ― ― 

Wind speed  +  +       

Solar 

radiation 
 + + + +      

Precipitation       ―  - - 

N. Eurasia 

<3 km          ― 

Total + + + +      ― 

>3 km + + + +      ― 

E. Asia 

<3 km          ― 

Total   +       ― 

>3 km  + + +      ― 

SF >3 km + + + +       

LA <1 km     +      

LV <1 km     +      
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Table 25: Positive and negative correlations for spring GBNP 2015. Bold + indicate 

α<0.05, italic + indicate α<0.1, while large ― indicate α<0.05, and small - indicate 

α<0.1. Grey data indicate <50% of the data was available. 

GBNP Spring 2015 

Positive Negative 

P
M

2
.5
 

O
3
 

M
a

x
 1

 h
 O

3
 

M
D

A
8

 O
3
 

C
A

S
T

 

O
3
 

C
A

S
T

M
a
x

 1
 

h
 O

3
 

C
A

S
T

M
D

A
8

 

O
3
 

R
M

 

P
M

2
.5
 

O
3
 

M
a

x
 1

 h
 O

3
 

M
D

A
8

 O
3
 

C
A

S
T

 

O
3
 

C
A

S
T

M
a
x

 1
 

h
 O

3
 

C
A

S
T

 

M
D

A
8

 O
3
 

R
M

 

Filter 
PM2.5   + + + + + + +           
RM + + + + + + +                   

Gas 

O3 +  + + + + + +           
Max 1 h O3 + +  + + + + +           
MDA8 O3 + + +  + + + +           

CO                   - 
NO                   - 
NOy             ― ― ― ― ― ―   

CAST O3 + + + +  + + +           
CASTMax 1 h 

O3 + + + + +  + +           
CASTMDA8 

O3 + + + + + +   +                 

Met 

Temp + + + + + + + +           
RH             ― ― ― ― ― ―   

Wind speed   + + + + + +             
Solar radiation      + + + +           
Precipitation                  ―   ― -       

N. 
Eurasia 

Total                   - 
>3 km                               - 

E. Asia 
<3 km   +                  
Total   +                             

SF >3 km   + + +       +                 
LA <1 km         + + +                   
LV <1 km + +     + + + +                 
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Table 26: Positive and negative correlations for summer GBNP 2015. Bold + indicate 

α<0.05, italic + indicate α<0.1, while large ― indicate α<0.05, and small - indicate 

α<0.1. Grey data indicate <50% of the data was available. 

GBNP Summer 2015 

Positive Negative 

P
M

2
.5
 

O
3
 

M
a

x
 1

 h
 O

3
 

M
D

A
8

 O
3
 

C
A

S
T

 

O
3
 

C
A

S
T

 

M
a

x
 1

 h
 O

3
 

C
A

S
T

M
D

A
8

 

O
3
 

R
M

 

P
M

2
.5
 

O
3
 

M
a

x
 1

 h
 O

3
 

M
D

A
8

 O
3
 

C
A

S
T

 O
3
 

C
A

S
T

M
a
x

 1
 

h
 O

3
 

C
A

S
T

M
D

A
8

 

O
3
 

R
M

 

Filter 
PM2.5   + + + + + +                   
RM   + + + + + +                   

Gas 

O3 +   + + + + + +                 
Max 1 h O3 + +  + + + + +           
MDA8 O3 + + +  + + + +           

CO 
 + + + + + +             

NOx +           ― ― ― ― ― ― ― 
NO 

           ―  ― -     
NOy 

  + + + + +           ― 
CAST O3 + + + +  + + +           

CASTMax 1 h 

O3 + + + + +  + +           
CAS 

MDA8 O3 + + + + + +   +                 

Met 

Temp + + + + + + + +                 
RH 

         - ― ― ― ― ― ― ― 
Wind speed 

 +                  
Solar 

radiation  + + + + + + +           
Precipitation                               ― 

N. 

Eurasia 

Total + + + + + + +                   
>3 km + + + + + + +                   

E. Asia 

<3 km +                               
Total 

  + +  + +             
>3 km   + + + + + +                   

SF 
<1 km   +     +     +                 
>3 km + +     + +                     

LA <1 km               + -               
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GBNP 2015 (Pb days): 

Mean O3 concentration for the Pb sample days were higher at GBNP (52±10, 

range 36 to 66 ppb, n=23) than UNRG (41±11, range 19 to 61 ppb, n=10). Ozone (daily 

average) at GBNP was positively correlated with CO and with trajectories >3 km from 

San Francisco. Ozone (daily average, Max 1 h, MDA8) at GBNP was positively 

correlated with temperature, solar radiation, total Pb mass, total trajectories and >3 km 

trajectories from Northern Eurasia, and trajectories <1, <2, and <3 km from Northern 

Eurasia (p<0.1). Ozone (daily average, Max 1 h, MDA8) at GBNP was negatively 

correlated with NOx, RH, and precipitation.  

RM at GBNP was positively correlated with temperature, solar radiation, and 

trajectories <2 and <3 km, and trajectories <1 km and total trajectories (p<0.1) from Las 

Angeles. RM was negatively correlated with NOy, RH, percent Asian Pb, total 

trajectories and >3 km trajectories from East Asia and >3 km trajectories from Las 

Vegas. 
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Table 27: Statistics for days with Pb samples at GBNP March to September 2015, a) 

filter samples and b) O3. 

a) 
GBNP 

2015 

Pb mass 

(ng) 
Δ208Pb 

% Asian 

Pb 

Total Pb (ng 

m-3) 

Asian Pb 

(ng m-3) 

Hg (pg m-

3) 

PM2.5 

(ug m-3) 

ng Pb ug-1 

PM2.5 

Min 2.83 -6.9914 -28 0.1178 -0.0685 6.03 1.10 0.0158 

Mean 6.32 7.8315 31 0.2628 0.0813 62.03 5.04 0.0705 

Median 5.89 7.4584 30 0.2451 0.0615 59.09 4.10 0.0493 

Max 16.89 18.4634 74 0.7022 0.2670 133.70 21.10 0.2589 

StDev 3.11 5.4259 22 0.1294 0.0712 35.89 4.09 0.0519 

Count 23 23 23 23 23 23 23 23 

b) 

GBNP 
NDEP 

AvgO3 
NDEP MaxHrO3 NDEP MDA8O3 CAST AvgO3 

CAST 

MaxHrO3 

CAST 

MDA8O3 

Min 35.74 43.01 40.92 34.46 39.00 38.88 

Mean 51.81 61.01 57.49 50.16 58.22 54.87 

Median 55.04 63.20 59.66 53.08 61.00 58.00 

Max 66.21 80.85 74.10 63.67 78.00 72.38 

Stdev 10.32 11.03 10.59 9.84 10.79 10.27 

Count 23 23 23 23 23 23 
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Pearson Correlation for Pb days: 

Table 28: Pearson correlations for PM2.5 and gas data on days with Pb samples at GBNP 

in 2015. Italic data indicates significance level p<0.1, bold italic data indicates 

significance level p<0.05, grey data indicates <50% of available data. 
GBNP PM2.5 RM O3 Max 1 h O3 MDA8 O3 CO NOx NO NOy 

O3 0.25 0.27    0.49 -0.46 0.19 -0.27 

Max 1 h O3 0.16 0.24    0.34 -0.46 0.25 -0.14 

MDA8 O3 0.18 0.27    0.38 -0.48 0.15 -0.16 

RM 0.15  0.27 0.24 0.27 -0.19 -0.41 -0.32 -0.75 

Total Pb 0.39 0.01 0.63 0.50 0.58 0.47 -0.12 -0.19 -0.04 

Asian Pb 0.03 -0.37 0.49 0.45 0.48 0.61 -0.21 0.23 0.37 

%Asian Pb -0.27 -0.48 0.02 0.04 0.03 0.44 -0.17 0.28 0.44 

CO – carbon monoxide 

GBNP – Great Basin National Park, NV, USA 

Max 1 h O3 – maximum 1 h O3 
MDA8 O3 – maximum daily average (8 h) O3 

NO – nitrogen oxide 

NOx – nitrogen oxide compounds 
NOy – total reactive nitrogen 

O3 – ozone 

PM2.5 – particulate matter <2.5 µm in diameter 
RM – reactive mercury 

SO2 – sulfur dioxide 
WCAQ – Washoe County Air Quality 

 

Table 29: Pearson correlations for meteorological data on days with Pb samples at 

GBNP in 2015. Italic data indicates significance level p<0.1, bold italic data indicates 

significance level p<0.05, grey data indicates <50% of available data. 
GBNP Temp RH Wind speed Solar radiation Precipitation 

O3 0.54 -0.79 0.52 0.66 -0.53 

Max 1 h O3 0.45 -0.68 0.49 0.61 -0.52 

MDA8 O3 0.46 -0.72 0.52 0.62 -0.55 

RM 0.71 -0.55 0.56 0.52 -0.29 

Total Pb 0.09 -0.43 0.17 0.09 -0.30 

Asian Pb -0.21 -0.21 0.10 0.04 -0.19 

%Asian Pb -0.39 0.11 0.04 -0.01 0.04 

ABLH – atmospheric boundary layer height. 
GBNP – Great Basin National Park, NV, USA 

Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 

O3 – ozone 

RH – relative humidity 

RM – reactive mercury 
Temp – temperature 
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Table 30: Pearson correlations for source box trajectory residence time (TRT) analysis 

on days with Pb samples for GBNP in 2015. Italic data indicates significance level 

p<0.1, bold italic data indicates significance level p<0.05. 

GBNP 

N. Eurasia E. Asia SF LA LV 

  
<3 

km 

Tota

l 

>3 

km 
  

<3 

km 

Tot

al 

>3 

km 

<1 

km 

>3 

km 

<1 

km 

<1 

km 

O3   0.42 0.45 0.43   0.31 0.24 0.19 0.24 0.44 0.05 0.05 

Max 1 h O3   0.43 0.53 0.52   0.35 0.29 0.24 0.17 0.32 0.15 
-

0.02 

MDA8 O3   0.37 0.44 0.43   0.30 0.31 0.28 0.11 0.34 0.14 
-

0.05 

RM   -0.07 0.03 0.05   -0.14 
-

0.51 

-

0.55 
0.26 

-

0.01 
0.41 0.10 

Total Pb   0.04 0.10 0.11   0.50 0.53 0.48 0.15 0.54 0.14 0.25 

Asian Pb   0.11 0.22 0.23   0.53 0.85 0.84 0.23 0.17 
-

0.32 
-

0.10 

%Asian Pb   0.10 0.17 0.17   0.16 0.56 0.61 0.16 
-

0.14 
-

0.54 

-

0.41 
GBNP – Great Basin National Park, NV, USA 

LA – Las Angeles, CA, USA 

LV – Las Vegas, NV, USA 
Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 

O3 – ozone 
RM – reactive mercury 

SF – San Francisco, CA, USA 
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Table 31: Positive and negative correlations for 22 days with Pb samples at GBNP 2015. 

Bold + indicate α<0.05, italic + indicate α<0.1, while large ― indicate α<0.05, small - 

indicate α<0.1. 

GBNP Pb 2015 

Positive Negative 

206Pb

/207P

b 

208Pb

/207P

b 

%Asi
an 
Pb 

total 

Pb 

mass 

Asian 

Pb 

mass 

ng 

Pb/ug 

PM 

206Pb

/207P

b 

208Pb

/207P

b 

%Asi
an 
Pb 

total 

Pb 

mass 

Asian 

Pb 

mass 

ng 

Pb/ug 

PM 

Filter 
PM2.5 

   +        ― 

RM         ―  -  

Gas 

O3 
   + + +       

Max 1 

h O3 
   + +        

MDA8 

O3 
   + + +       

CO   + + + +       

NOx + +           

Meteo

rologic

al 

Temp        - -    

RH          ―   

Solar 

radiati

on 

      - -     

N. 

Eurasi

a 

<3 km       ― -     

Total       -      

E. 

Asia 

<3 km    + +        

Total   + + + +       

>3 km   + + + +       

SF >3 km    +         

LA <1 km +        ―    

LV <1 km         -    

 

UNRG 2015: 

Table 32: Pearson correlations for PM2.5 and gas data at UNRG in 2015. Italic data 

indicates significance level p<0.1, bold italic data indicates significance level p<0.05, 

grey data indicates <50% of available data. 
UNRG 

2015 
PM2.5 RM O3 Max 1 hr O3 MDA8 O3 CO NOx NO 

O3 -0.15 -0.38  0.76 0.82 -0.47 -0.49 -0.83 

Max 1 h O3 0.00 -0.40 0.76  0.96 0.04 0.02 -0.40 

MDA8 O3 -0.05 -0.48 0.82 0.96   -0.07 -0.56 

RM 0.45  -0.38 -0.40 -0.48 0.12 -0.23 -0.06 

CO – carbon monoxide 
Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) 

NO – nitrogen oxide 
NOx – nitrogen oxide compounds 

NOy – total reactive nitrogen 

O3 – ozone 
PM2.5 – particulate matter <2.5 µm in diameter 

RM – reactive mercury 

UNRG – University of Nevada, Reno Greenhouse facility, USA 
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Table 33: Pearson correlations for meteorological data at UNRG in 2015. Italic data 

indicates significance level p<0.1, bold italic data indicates significance level p<0.05, 

grey data indicates <50% of available data. 
UNRG 

2015 
Temp RH Wind speed Solar radiation Precipitation Pressure ABLH 

O3 -0.22 -0.07 0.58 0.11 -0.13 -0.22 0.31 

Max 1 h O3 -0.25 -0.17 0.10 0.13 -0.13 0.06 0.49 

MDA8 O3 -0.32 -0.15 0.17 0.14 -0.18 0.06 0.47 

RM 0.77 -0.42 -0.12 0.22 -0.10 -0.32 0.06 

ABLH – atmospheric boundary layer height. 
Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) 

O3 – ozone 
RH – relative humidity 

RM – reactive mercury 

Temp – temperature 
UNRG – University of Nevada, Reno Greenhouse facility, USA 

 

Table 34: Pearson correlations for source box trajectory residence time (TRT) analysis 

for UNRG in 2015. Italic data indicates significance level p<0.1, bold italic data 

indicates significance level p<0.05. 

UNRG 

2015 

N. Eurasia E. Asia SF LA LV 

<1 

km 

<2 

km 

<3 

km 

Tot

al 

>3 

km 

<1 

km 

<2 

km 

<3 

km 

Tot

al 

>3 

km 

<1 

km 

>3 

km 

<1 

km 

<1 

km 

O3 0.22 0.27 0.30 0.35 0.32 0.02 0.01 0.01 
-

0.02 
-0.04 0.04 -0.03 0.03 -0.05 

Max 1 h 

O3 
0.21 0.24 0.26 0.35 0.34 0.18 0.18 0.20 0.22 0.22 -0.08 0.00 0.04 -0.08 

MDA8 

O3 
0.26 0.29 0.32 0.42 0.40 0.19 0.19 0.21 0.24 0.23 -0.15 -0.03 0.05 -0.08 

RM -0.21 -0.18 -0.15 
-

0.19 
-0.18 -0.35 -0.36 -0.37 

-

0.42 
-0.42 0.33 0.02 -0.01 -0.02 

LA – Las Angeles, CA, USA 
LV – Las Vegas, NV, USA 

Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) 
O3 – ozone 

RM – reactive mercury 

SF – San Francisco, CA, USA 
UNRG – University of Nevada, Reno Greenhouse facility, USA
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Table 35: Positive and negative correlations for UNRG 2015. Bold + indicate α<0.05, 

italic + indicate α<0.1, while large ― indicate α<0.05, and small - indicate α<0.1.  

UNRG 2015 

Positive Negative 

PM2.

5 

O

3 

Max 1 h 

O3 

MDA8 

O3 

R

M 

PM2.

5 
O3 

Max 1 h 

O3 

MDA8 

O3 

R

M 

Filter 
PM2.5 

    +  -    

RM +      ― ― ―  

Gas 

O3 
     -    ― 

Max 1 h O3 
         ― 

MDA8 O3 
         ― 

CO +      ―    

NOx +      ―   ― 

NO +      ― ― ―  

Meteorologic

al 

Temp +    +  ― ― ―  

RH      ―  ― ― ― 

Wind speed  +  +  ―     

Pressure       ―   ― 

ABLH  + + +       

Solar 

radiation 
  + + +      

Precipitation       - - ―  

N. Eurasia 

<3 km  + + +  -    - 

Total  + + +      ― 

>3 km  + + +      ― 

E. Asia 

<3 km   + +      ― 

Total   + +      ― 

>3 km   + +      ― 

SF <1 km     +    ―  
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UNRG 2015 (Pb days): 

Table 36: Statistics for days with Pb samples at UNRG March to September 2015, a) 

filter samples and b) O3. 

a) 

UNRG 

2015 

Pb mass 

(ng) 
Δ208Pb 

% Asian 

Pb 

Total Pb (ng 

m-3) 

Asian Pb 

(ng m-3) 

Hg (pg m-

3) 

PM2.5 

(ug m-

3) 

ng Pb ug-1 

PM2.5 

Min 8.46 2.2577 9.0 0.3517 0.0318 7.77 4.00 0.0360 

Mean 36.76 8.8088 35 1.5288 0.6879 43.74 7.85 0.2489 

Median 25.51 6.2240 25 1.0609 0.3389 46.50 7.00 0.1965 

Max 106.62 18.5625 74 4.4337 2.8755 103.86 15.00 1.1084 

StDev 29.92 5.6394 23 1.2443 0.8813 28.06 3.43 0.3008 

Count 11 11 11 11 11 11 11 11 

b) 
UNRG 

2015 
AvgO3 Max HrO3 MDA8O3 

WCAQ 

AvgO3 

WCAQ 

MaxHrO3 

WCAQ 

MDA8O3 

Min 19.35 38.94 28.88 29.75 48.00 40.13 

Mean 40.62 66.47 57.35 48.91 70.00 63.30 

Median 41.13 68.32 58.59 47.63 70.00 64.00 

Max 61.14 77.38 70.14 58.29 85.00 73.88 

Stdev 10.52 11.65 11.71 8.25 10.09 9.92 

Count 10 10 10 11 11 11 

 

Pearson Correlation for Pb days: 

Table 37: Pearson correlations for PM2.5 and gas data on days with Pb samples at 

UNRG in 2015. Italic data indicates significance level p<0.1, bold italic data indicates 

significance level p<0.05, grey data indicates <50% of available data. 

UNRG 

2015 
PM2.5 RM O3 Max 1 hr O3 MDA8 O3 CO NOx NO 

O3 0.23 -0.35    -0.32 -0.64 -0.97 

Max 1 h O3 0.32 -0.36    0.19 -0.64 -0.99 

MDA8 O3 0.03 -0.54    -0.12 -0.60 -0.97 

RM 0.61  -0.35 -0.36 -0.54 0.25 -0.55 -0.79 

Total Pb -0.08 -0.10 0.43 0.44 0.53 0.11 -0.24 -0.47 

Asian Pb -0.16 -0.29 0.49 0.49 0.58 0.14 -0.27 -0.51 

%Asian Pb -0.16 -0.35 0.65 0.54 0.66 -0.21 -0.52 -0.92 

CO – carbon monoxide 

Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 
NO – nitrogen oxide 

NOx – nitrogen oxide compounds 

NOy – total reactive nitrogen 
O3 – ozone 

PM2.5 – particulate matter <2.5 µm in diameter 

RM – reactive mercury 
SO2 – sulfur dioxide. 

UNRG – University of Nevada, Reno Greenhouse facility, USA 

WCAQ – Washoe County Air Quality 
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Table 38: Pearson correlations for meteorological data on days with Pb samples at 

UNRG in 2015. Italic data indicates significance level p<0.1, bold italic data indicates 

significance level p<0.05, grey data indicates <50% of available data. 

UNRG 

2015 
Temp RH Wind speed Solar radiation Precipitation Pressure 

O3 0.00 -0.40 0.18 0.53 0.16 0.09 

Max 1 h O3 0.08 -0.47 -0.19 0.56 0.20 0.09 

MDA8 O3 -0.10 -0.25 -0.27 0.54 0.22 0.16 

RM 0.67 -0.37 0.15 0.20 -0.06 -0.43 

Total Pb -0.12 -0.17 0.01 0.08 0.24 0.51 

Asian Pb -0.10 -0.05 0.00 0.07 0.41 0.48 

%Asian Pb 0.07 0.07 -0.08 0.38 0.57 0.17 

ABLH – atmospheric boundary layer height 
Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 

O3 – ozone 
RH – relative humidity 

RM – reactive mercury 

Temp – temperature 
UNRG – University of Nevada, Reno Greenhouse facility, USA 

 

Table 39: Pearson correlations for source box trajectory residence time (TRT) analysis 

on days with Pb samples for UNRG in 2015. Italic data indicates significance level 

p<0.1, bold italic data indicates significance level p<0.05. 

UNRG 

2015 

N. Eurasia E. Asia SF LA LV 

  
<3 

km 

Tota

l 

>3 

km 
  

<3 

km 

Tot

al 

>3 

km 

<1 

km 

>3 

km 

<1 

km 

<1 

km 

O3   -0.16 0.08 0.17   0.26 0.11 0.02 0.17 
-

0.20 
0.07 0.12 

Max 1 h O3   -0.14 
-

0.01 
0.04   0.09 0.00 

-
0.06 

0.28 0.03 0.01 0.08 

MDA8 O3   -0.14 0.01 0.06   0.21 0.13 0.07 0.07 0.04 0.16 0.23 

RM   0.46 0.20 0.10   -0.67 
-

0.65 

-

0.63 
0.30 0.04 

-

0.01 

-

0.09 

Total Pb   0.30 0.24 0.21   0.02 
-

0.10 

-

0.17 
-0.24 0.09 0.03 

-

0.01 

Asian Pb   -0.09 
-

0.12 

-

0.12 
  0.03 

-

0.07 

-

0.13 
-0.23 

-

0.12 
0.20 0.17 

%Asian Pb   -0.27 
-

0.22 
-

0.19 
  -0.04 

-
0.10 

-
0.14 

-0.32 
-

0.08 
0.47 0.48 

LA – Las Angeles, CA, USA 

LV – Las Vegas, NV, USA 
Max 1 h O3 – maximum 1 h O3 

MDA8 O3 – maximum daily average (8 h) O3 

O3 – ozone 
RM – reactive mercury 

SF – San Francisco, CA, USA 
UNRG – University of Nevada, Reno Greenhouse facility, USA 
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Table 40: Positive and negative correlations for days with Pb samples at UNRG 2015. 

Bold + indicate α<0.05, italic + indicate α<0.1, while large ― indicate α<0.05, small - 

indicate α<0.1. Grey data indicate <50% of the data was available. 

UNRG Pb 2015 

Positive  Negative 

206Pb/2

07Pb 

208Pb/
207Pb 

%Asia
n Pb 

total Pb 

mass 

Asian 

Pb mass 

 206Pb/
207Pb 

208Pb/
207Pb 

%Asia
n Pb 

total Pb 

mass 

Asian 

Pb mass 

Gas 

O3 
  +         

Max 1 

h O3 
  +         

MDA8 

O3 
  + + +       

NO         ―   

Met 

Pressur

e 
   + +       

ABLH        ―    

Precipi

tation 
  +         

N. 

Euras

ia 

<3 km + +          

Total + +          

>3 km + +          
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Figure 5: HYSPLIT 10-day back trajectories for GBNP September 3, 2015. Trajectory 

points are colored by altitude height (m agl). FRP points are sized based on power 

(MW), white circles indicate the most recent day back, light grey circles indicate an 

intermediate day back, and grey circles indicate the furthest day back. Black boxes 

indicate the five source boxes. 

 

Case studies: 

June 2014 

Figure 6: Percent Asian Pb for specific days in June 2014 at PEAV and UNRG. The 

horizontal grey line indicates the 75th percentile for PEAV (36%); the horizontal black 

line indicates the 75th percentile for UNRG (42%). 
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Figure 7: Surface weather maps from NOAA for a) June 6, b) 12, c) 13, and d) 17, 2014 

a)  b)   

c)  d)  
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Figure 8: 500 millibar weather maps from NOAA for a) June 6, b) 12, c) 13, and d) 17, 

2014 

a)  b)  

c)  d)  

 

Figure 9: Peavine Peak, NV, USA, June 2014 a) time series of pollutants and RH, b) time 

series of CO and NOx, and b) trajectory residence times. Dashed lines indicate the 

monthly median and the NAAQS for O3. Grey shading indicates pressure systems and 

frontal activity. 
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b) 

 
c) 
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Figure 10: University of Nevada, Reno Greenhouse, USA, June 2014 a) time series of 

pollutants and RH, b) time series of CO and NOx, and b) trajectory residence times. 

Dashed lines indicate the monthly median and the NAAQS for O3. Grey shading indicates 

pressure systems and frontal activity. 
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b) 
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c) 

 
 

September/October 2014 

Figure 11: Peavine Peak, Reno, NV, USA, September 2014 a) time series of pollutants 

and RH, b) CO and NOx time series, and c) trajectory residence times and October 2014 

c) time series of pollutants and RH, d) CO and NOx time series, e) trajectory residence 

times. Dashed lines indicate the monthly medians and the NAAQS for O3. Grey shading 

indicates frontal activity. 
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d) 

 
e) 
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f) 

 
Figure 12: University of Nevada, Reno, Greenhouse, USA, September 2014 a) time series 

of pollutants and RH, b) CO and NOx time series, and c) trajectory residence times and 

October 2014 c) time series of pollutants and RH, d) CO and NOx time series, e) 

trajectory residence times. Dashed lines indicate the monthly medians and the NAAQS 

for O3. Grey shading indicates low-pressure and frontal activity. 
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b) 

 

 
c) 
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d) 
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f) 

 
 

Figure 13: Naval Research Laboratory Aerosol Analysis and Prediction System (NRL 

NAAPS, https://www.nrlmry.navy.mil/aerosol/) smoke surface September 22 and 24, 

2014. 
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Figure 14: Percent Asian Pb for specific days in September and October 2014 at PEAV 

and UNRG. The horizontal grey line indicates the 75th percentile for PEAV (36%); the 

horizontal black line indicates the 75th percentile for UNRG (42%). Grey shading 

indicates the King Fire. 

 
 

Figure 15: Surface weather maps from NOAA for October 15 (a), 16 (b), and 17 (c), 

2014 

a)  b)  

c)  
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March 2015: 

Figure 16: Surface weather maps from NOAA for March 31 and April 1, 2015 

  
 

Figure 17: Great Basin National Park, NV, USA, March 2015 a) time series of pollutants 

and RH and b) trajectory residence times. Dashed lines indicate the monthly median and 

the NAAQS for O3. Grey shading indicates frontal activity. 
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Figure 18: Percent Asian Pb for specific days in March 2015 at GBNP and UNRG. The 

horizontal grey line indicates the 75th percentile for GBNP (42%); the horizontal black 

line indicates the 75th percentile for UNRG (52%). 

 
Figure 19: University of Nevada, Reno, Greenhouse, USA, March 2015 a) time series of 

pollutants and RH, b) time series of CO and NOx, and b) trajectory residence times. 

Dashed lines indicate the monthly median and the NAAQS for O3. Grey shading indicates 

frontal activity. 

a) 

0

2

4

6

8

10

12

14

16

18

3/27/2015 3/28/2015 3/29/2015 3/30/2015 3/31/2015 4/1/2015

T
ra

je
c
to

ry
 R

e
s
id

e
n

c
e
 T

im
e
 (

T
R

T
, 

%
)

GBNP March 2015

N.E. <3 N.E. >3 N.E. Tot E.A. <3 E.A. >3 E.A. Tot SF >3 SF <1 LA <1 LV <1



331 
 

 

0

10

20

30

40

50

60

70

80

3/24/2015 3/25/2015 3/26/2015 3/27/2015 3/28/2015 3/29/2015 3/30/2015 3/31/2015 4/1/2015 4/2/2015

UNRG March 2015NVROI MDA8 (ppb)

WCAQ MDA8 (ppb)

PM2.5 (µg m-3)

RM (ng m-3)

RH (%)

70 ppb NAAQS

59 ppb NVROI MDA8

7.4 ng m-3 RM

42% RH

4.8 µg m-3 PM2.5



332 
 

b) 
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Figure 20: NAAPS optical depth for March 30, 16:00 PST and March 31, 10:00 PST 
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Figure 21: IMPROVE PM2.5 chemical composition from GBNP on days with lead 

analysis (grey bars) compared to the monthly average (black bars). Grey graph 

backgrounds indicate IMPROVE data for a day near but not directly on the same day as 

a lead analysis, parantheses indicate day with lead analysis.  
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Figure 22: 1 h maximum and 8 h maximum ozone CMAQ forecasts 

(http://www.emc.ncep.noaa.gov/mmb/aq/prod/web/html/max_p6.html) 

  
 

http://www.emc.ncep.noaa.gov/mmb/aq/prod/web/html/max_p6.html
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June 2015 

Figure 23: Percent Asian Pb for specific days in June 2015 at GBNP and UNRG. The 

horizontal grey line indicates the 75th percentile for GBNP (42%); the horizontal black 

line indicates the 75th percentile for UNRG (52%). 

 
 

Figure 24: Great Basin National Park, NV, USA, June 2015 a) time series of pollutants 

and RH, b) CO and NOx time series, and c) trajectory residence times. Dashed lines 

indicate the monthly median and the NAAQS for O3. Grey shading indicates high 

pressure. 
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b) 

 
c) 
 

 
 

Figure 25: Surface weather maps from NOAA for June 8 and June 9, 2015. 
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Figure 26: 500 millibar weather maps from NOAA for June 8 and June 9, 2015. 

  
 

IMPROVE: 

Figure 27: IMPROVE PM2.5 chemical composition from GBNP on days with lead 

analysis (grey) compared to the monthly average (black).  
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Figure 28: University of Nevada, Reno, Greenhouse, USA June 2015 a) time series of 

pollutants and RH, b) CO and NOx time series, and c) trajectory residence times. Dashed 

lines indicate the monthly median and the NAAQS for O3. Grey shading indicates high-

pressure. 
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c) 

 

 

Figure 29: Surface weather maps from NOAA for June 16, 17 and 18, 2015. 
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Figure 30: 500 millibar weather maps from NOAA for June 8 and June 9, 2015. 

  
 

IMPROVE: 

Figure 31: IMPROVE PM2.5 chemical composition from GBNP on days with lead 

analysis (grey) compared to the monthly average (black).  
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September 2015 

Figure 32: Great Basin National Park, NV, USA, September 2015 a) time series of 

pollutants and RH, b) CO and NOx time series, and c) trajectory residence times. Dashed 

lines indicate the monthly median and the NAAQS for O3. Grey shading indicates frontal 

activity. 
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c) 

 
 

Figure 33: Percent Asian Pb for specific days in August and September 2015 at GBNP 

and UNRG. The horizontal grey line indicates the 75th percentile for GBNP (42%); the 

horizontal black line indicates the 75th percentile for UNRG (52%). 
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Figure 34: Surface weather maps from NOAA for September 10, 2015. 

 
Figure 35: 500 millibar weather maps from NOAA for September 10, 2015. 

 
 

IMPROVE: 

Figure 36: IMPROVE PM2.5 chemical composition from GBNP on days with lead 

analysis (grey) compared to the monthly average (black). Grey bar charts indicate 

IMPROVE data for a day near but not directly on the same day as a lead analysis, 

parantheses indicate day with lead analysis.  
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Figure 37: Naval Research Laboratory Aerosol Analysis and Prediction System (NRL 

NAAPS, https://www.nrlmry.navy.mil/aerosol/) smoke surface. 

 
 

Figure 38: University of Nevada, Reno, Greenhouse, USA, September 2015 a) time series 

of pollutants and RH, b) CO and NOx time series, and c) trajectory residence times. 

Dashed lines indicate the monthly median and the NAAQS for O3. Grey shading indicates 

frontal activity. 
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b) 

 
c) 
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Statistical analysis 

a) 
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10 
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4.5, 
5.9 

3.0, 

6.0, 
10 
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19 

1.2, 

3.4, 
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63 
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42 
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0.90
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0.0-3.8 0.0-3.2 

Numbe
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2263 3816 2751 135 160 121 3788 
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0 
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3 
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2 

3793 3303 3639 

Table 1: Summary statistics for each site for June to November 2014, a) ozone and b) 

other gaseous data. 
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a) 
Jun 2014 – Oct 

2015 
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25th,50th, 75th  
7.4, 28, 

44 

18, 35, 

48 

40, 46, 

52 

40, 49, 

57 

43, 54, 

63 

45, 52, 

59 

33, 44, 

52 

38, 49, 

57 

44, 50, 

56 
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0.0-63 
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0.0-
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0.0-
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0.0-240 
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Table 2: Summary statistics for each site for June 2014 to October 2015, a) ozone and b) 

other gaseous data and PM2.5. 

 

Jun-Nov 2014 AOD (τext, 1 h) AOD (τext, 24 h) 

Mean±Std 0.11±0.15 0.11±0.11 

25th, 50th, 75th 0.050, 0.070, 0.12 0.046, 0.070, 0.12 

Range 0.010-2.1 0.017-0.85 

Number 1382 121 

   

Jun 2014 – Oct 2015   
Mean±Std 0.12±0.17 0.12±0.13 

25th, 50th, 75th 0.050, 0.080, 0.12 0.049, 0.082, 0.12 

Range 0.0-2.5 0.014-1.1 

Number 2592 229 

Table 3: Summary statistics for AERONET aerosol optical depth (AOD, τext) 1 h and 24 h 

data for June to November 2014 and June 2014 to October 2015. 
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Results 

Atmospheric stability 

 

  
Total HD 

(MJ m-2) 

Surface layer HD 

(MJ m-2) 

AM HD 

(MJ m-2) 

PM HD 

(MJ m-2) 

ΔT 

(°C) 

Winter 

Median 

(n) 

1.6 

(n = 90) 

0.92 

(n = 90) 

3.0 

(n = 87) 

0.31 

(n = 88) 

0.77 

(n = 90) 

range -0.38 to 6.2 -0.25 to 2.8 0.30 to 8.1 -0.38 to 4.7 -3.9 to 5.2 

Spring 

Median 

(n) 

0.92 

(n = 92) 

0.56 

(n = 92) 

2.2 

(n = 92) 

-0.35 

(n = 91) 

-1.2 

(n = 92) 

range -0.048 to 2.6 -0.038 to 1.6 0.041 to 5.6 -0.82 to 1.1 -3.9 to 2.9 

Summer 

Median 

(n) 

1.2 

(n = 184) 

0.81 

(n = 184) 

2.6 

(n = 184) 

-0.33 

(n = 182) 

-0.060 

(n = 184) 

range 0.12 to 7.0 0.022 to 2.8 0.60 to 7.0 -0.75 to 2.1 -3.5 to 3.3 

Fall 

Median 

(n) 

1.4 

(n = 122) 

0.95 

(n = 122) 

2.9 

(n = 122) 

-0.038 

(n = 121) 

1.3 

(n = 122) 

range 0.027 to 5.9 -0.017 to 2.5 0.026 to 7.3 -0.51 to 4.4 -3.0 to 7.1 

Table 4: Median, number (n), and range of data for for average total heat deficit (Total 

HD, MJ m-2, 1342 m to 2134 m), heat deficit in the first layer (Surface layer HD, 1342 m 

to 1516 m), morning heat deficit (AM HD, 04:00 PST), afternoon heat deficit (PM HD, 

14:00 PST), and vertical temperature difference between FARM and GALE (ΔT, °C) for 

winter (DJF), spring (MAM), summer (JJA), and fall (SON) in Reno, NV, USA from June 

2014 to October 2015. 
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a) b)  

c)  d)  

e)  

Figure 1: Heat deficit (MJ m-2) for the Truckee Meadows valley calculated from balloon 

soundings twice daily and valley floor weather station data. Black data indicates total 

heat deficit from valley floor (1342 m) to ridge line (2134 m), blue data indicates heat 

deficit for the surface layer in the valley (1342 m to 1516 m) for a) all data, b) average 

data, c) morning data (04:00 PST), d) afternoon data (16:00 PST), and e) the difference 

between morning and afternoon total data in Reno, NV, USA from June 2014 to October 

2015. 
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a  b)  

c)  d)  

Figure 2: Heat deficit (MJ m-2) and vertical temperature differences (ΔT, ºC) from 

Western Regional Climate Center Stations (ΔT = TGALE-TFARM) for a) all data, b) 24 h 

average data, c) morning (04:00 PST) heat deficit and 24 h ΔT data, and d) afternoon 

(16:00 PST) heat deficit and 24 h average ΔT data in Reno, NV, USA from June 2014 to 

October 2015. 
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Figure 3: Total heat deficit (MJ m-2) and vertical temperature differences (ΔT, ºC) from 

Western Regional Climate Center Stations (ΔT = TGALE-TFARM) for winter (DJF), spring 

(MAM), summer (JJA), and fall (SON) in Reno, NV, USA from June 2014 to October 

2015. 
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a)  b)  

c)  d)  

Figure 4: Heat deficit (MJ m-2) and WCAQ PM2.5 (µg m-3) for a) all data, b) 24 h average 

data, c) morning (04:00 PST) heat deficit and 24 h PM2.5 data, and d) afternoon (16:00 

PST) heat deficit and 24 h PM2.5 data in Reno, NV, USA from June 2014 to October 

2015. 
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No Fire 

a)  b)  

c)  d)  

Figure 5: Heat deficit (MJ m-2) and WCAQ PM2.5 (µg m-3) with fire flagged data removed 

for a) all data, b) 24 h average data, c) morning (04:00 PST) heat deficit and 24 h PM2.5 

data, and d) afternoon (16:00 PST) heat deficit and 24 h PM2.5 data in Reno, NV, USA 

from June 2014 to October 2015. 



357 
 

 

Figure 6: Total heat deficit (MJ m-2) and 24 h WCAQ PM2.5 (µg m-3) with fire flagged 

data removed for winter (DJF), spring (MAM), summer (JJA), and fall (SON) in Reno, 

NV, USA from June 2014 to October 2015. 
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Vertical structure 

 

  PBLH AOH 

Winter 
Median 

0.75 

(n = 87) 
NA 

range 0.010 to 2.8 NA 

Spring 
Median 

1.7 
(n = 90) 

1.8 
(n = 3) 

range 0.31 to 3.5 1.6 to 5.2 

Summer 
Median 

2.5 

(n = 183) 

3.8 

(n = 113) 

range 0.031 to 4.8 0.64 to 9.7 

Fall 
Median 

1.9 
(n = 122) 

2.4 
(n = 63) 

range 0.31 to 5.7 0.25 to 10 

Table 5: Median, number (n), and range of data for planetary boundary layer height 

(PBLH, km) and apparent optical height (AOH, km) separated by winter (DJF, no AOH 

data), spring (MAM), summer (JJA), and fall (SON) in Reno, NV, USA from June 2014 to 

October 2015. 

 

 

Figure 7: Box and whisker plot of planetary boundary layer height (PBLH, light grey) 

and apparent optical height (AOH, dark grey) for winter (DJF, no AOH data), spring 

(MAM), summer (JJA), and fall (SON) in Reno, NV, USA from June 2014 to October 

2015. 
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Figure 8: Planetary boundary layer height (PBLH, km) and apparent optical height 

(AOH, km) 24 h average data for Reno, NV, USA from June 2014 to October 2015. 

 

 

Figure 9: Planetary boundary layer height (PBLH, km) and apparent optical height 

(AOH, km) for spring (MAM), summer (JJA), and fall (SON) in Reno, NV, USA from June 

2014 to October 2015. No winter data available. 
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a)  b)  

c)  

Figure 10: Heat deficit (HD, MJ m-2) and planetary boundary layer height (PBLH, km) 

for a) 24 h average, b) morning HD (04:00 PST), and c) afternoon HD (16:00 PST) data 

for Reno, NV, USA from June 2014 to October 2015. 
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Figure 11: Heat deficit (HD, MJ m-2) and planetary boundary layer height (PBLH, km) 

for winter (DJF), spring (MAM), summer (JJA), and fall (SON) in Reno, NV, USA from 

June 2014 to October 2015. 
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Figure 12: Planetary boundary layer height (PBLH, km) and WCAQ PM2.5 (µg m-3) for 

24 h average data from Reno, NV, USA from June 2014 to October 2015. 
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Figure 13: Planetary boundary layer height (PBLH, km) and WCAQ PM2.5 (µg m-3) for 

winter (DJF), spring (MAM), summer (JJA), and fall (SON) in Reno, NV, USA from June 

2014 to October 2015.  
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Statistical analysis 

Evaluation of the quadrant method using 24 h data 

  WCAQ 24 h data (n=308)  WCAQ 1 h data (n=2122) 

  Q2 (n=34) Q3 (n=50)  Q2 (n=25) Q3 (n=59) 

  
mean +/-

std 

media

n 

mean +/-

std 

media

n 
 

mean +/-

std 

media

n 

mean +/-

std 

media

n 

AEE (440-870 

nm): 
 1.5±0.27 1.4 1.7±0.31 1.7  1.6±0.27 1.6 1.8±0.29 1.8 

τext (440 nm):  
0.073±0.02

6 
0.067 0.29±0.19 0.24  

0.076±0.04

2 
0.055 0.74±0.46 0.64 

AOH (km):  1.9±1.3 1.6 3.6±1.8 3.6  0.77±1.1 0.43 2.4±2.3 2.1 

Coarse mode:  0.29±0.11 0.3 0.15±0.13 0.11  0.29±0.12 0.25 
0.054±0.08

2 
0.032 

Delta T (°C):  1.9±2.3 1.4 0.79±1.4 0.68  2.9±3.0 3 -0.55±1.9 -0.55 

Fine mode:  0.71±0.11 0.7 0.85±0.13 0.89  0.71±0.12 0.75 0.95±0.082 0.97 

Fire filter:  32% 72%  32% 46% 

O3 (ppb):  24±18 26 44±8.0 45  22±20 11 54±17 55 

PM (µg m-3):  12±4.9 10 19±19 13  34±11 29 70±54 47 

RH (%):  42±12 46 30±8.6 27  34±11 35 26±12 25 

Temperature 

(°C): 
 13±10 11 24±3.1 25  15±10 12 26±4.8 26 

Temp inversion 

(% of days): 
 79% 66%  84% 31% 

Temp inversion 

(strong, % of 

days): 

 29% 6%  16% 0% 

Wind speed (m s-

1): 
 1.1±0.27 1.1 1.2±0.22 1.1  0.88±1.1 0.51 1.5±1.0 1.2 

  Q1 (n=198) Q4 (n=26)  Q1 (n=1871) Q4 (n=167) 

  
mean +/-

std 

media

n 

mean +/-

std 

media

n 
 

mean +/-

std 

media

n 

mean +/-

std 

media

n 

AEE (440-870 

nm): 
 1.4±0.35 1.1 1.4±0.32 1.4  1.4±0.34 1.4 1.7±0.32 1.8 

τext (440 nm):  
0.064±0.02

7 
0.062 0.14±0.022 0.13  

0.078±0.04

1 
0.07 0.38±0.30 0.28 

AOH (km):  4.2±1.9 3.5 6.0±2.9 5.6  3.7±2.9 2.9 4.7±2.7 4.4 

Coarse mode:  0.31±0.13 0.3 0.27±0.13 0.26  0.28±0.15 0.27 0.090±0.14 0.039 

Delta T (°C):  0.018±1.7 -0.13 -0.57±1.2 -0.64  -0.61±2.1 -0.82 0.36±1.8 0.09 

Fine mode:  0.69±0.12 0.7 0.73±0.13 0.74  0.72±0.15 0.73 0.91±0.14 0.96 

Fire filter:  37% 31%  18% 47% 

O3 (ppb):  38±10 40 42±6.5 42  44±15 46 49±17 51 

PM (µg m-3):  5.1±1.8 5.3 6.6±1.2 6.9  7.8±5.3 7 15±5.2 15 

RH (%):  34±13 31 34±9.8 32  26±14 24 23±15 19 

Temperature 

(°C): 
 17±6.8 19 19±5.0 21  21±7.9 22 26±6.2 27 

Temp inversion 

(% of days): 
 48% 27%  31% 52% 

Temp inversion 

(strong, % of 

days): 

 2% 0%  2% 2% 

Wind speed (m s-

1): 
 1.4±0.39 1.3 1.3±0.28 1.3  1.4±1.0 0.98 0.96±0.74 0.72 

Table 6: 24 h data (τext: 0.12, PM2.5: 8.4 µg m-3, n=308) and 1 h data (τext: 0.2, PM2.5: 25 

µg m-3, n=370) for WCAQ. Mean ± one standard deviation and median. 
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Figure 14: Scatter plot of seasonal AERONET τext and PM2.5 (µg m-3) UNRG and WCAQ 

data for spring (March, April, May), summer (June, July, August), and fall (September, 

October, November). There was no data available in winter (December, January, 

February) and limited data in spring. Solid grey lines indicate τext: 0.12 and PM2.5: 8.8 

µg m-3, dashed grey lines indicate τext: 0.2 and PM2.5: 25 µg m-3, dotted grey line is the fit 

line. 
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N=356 
 Q2 (n=29) Q3 (n=64) 

P
M

2
.5  (µ

g
 m

-3) 

8
.8

 

 mean ± std median mean ± std median 

AEE (440-870 nm)  1.6±0.29 1.7 1.7±0.27 1.8 

τext (440 nm) 
 

0.073±0.027 0.077 0.30±0.19 0.26 

AOH (km)  2.0±1.3 1.8 3.9±2.1 3.7 

Coarse mode fraction  0.24±0.11 0.23 0.12±0.11 0.082 

Delta T (°C)  1.6±1.9 1.3 1.0±1.4 0.9 

Fine mode fraction  0.76±0.11 0.77 0.88±0.11 0.92 

fire flag (% of days)  62% 83% 

Heat Deficit (04:00 PST, total, MJ m-2)  3.7±1.4 3.2 2.9±0.77 2.9 

Heat Deficit (avg, total, MJ m-2)  1.9±0.97 1.6 1.4±0.40 1.1 

Max 1 h O3 (ppb)  47±17 52 62±13 65 

MDA8 O3 (ppb)  40±18 46 55±11 57 

O3 (ppb)  26±15 30 39±10 40 

PBLH (km)  2.1±1.1 1.8 2.9±0.79 2.9 

PM2.5 (µg m-3)  12±5.2 10 20±18 13 

RH (%)  42±13 37 31±9.2 30 

Temperature (°C)  16±8.4 21 24±2.7 24 

Temp inversion (% of days)  86% 73% 

Temp inversion (% of days, strong)  10% 8% 

Wind speed (m s-1)  1.1±0.55 1.1 1.3±0.40 1.2 
  Q1 (n=231) Q4 (n=32) 

  mean ± std median mean ± std median 

AEE (440-870 nm)  1.5±0.37 1.5 1.5±0.21 1.5 

τext (440 nm) 
 

0.063±0.028 0.059 0.14±0.031 0.13 

AOH (km)  4.0±2.2 3.5 5.2±2.7 4.5 

Coarse mode fraction  0.27±0.12 0.25 0.21±0.086 0.2 

Delta T (°C)  0.41±1.6 0.3 0.037±1.4 -0.41 

Fine mode fraction  0.73±0.12 0.75 0.79±0.086 0.8 

fire flag (% of days)  53% 44% 

Heat Deficit (04:00 PST, total, MJ m-2)  2.7±1.1 2.7 2.5±0.81 2.4 

Heat Deficit (avg, total, MJ m-2)  1.2±0.58 1.2 1.2±0.44 1.2 

Max 1 h O3 (ppb)  54±11 53 60±9.7 62 

MDA8 O3 (ppb)  49±10 48 54±8.8 55 

O3 (ppb)  35±10 35 39±9.1 41 

PBLH (km)  2.2±0.81 2.2 2.8±0.86 3.0 

PM2.5 (µg m-3)  5.7±1.6 5.9 6.8±1.5 7.1 

RH (%)  33±12 31 35±9.5 32 

Temperature (°C)  20±4.8 22 23±3.2 24 

Temp inversion (% of days)  58% 41% 

Temp inversion (% of days, strong)  3% 3% 

Wind speed (m s-1)  1.6±0.64 1.4 1.5±0.41 1.4 

 
 0.12 

AERONET τext (440 nm) 

 

Table 7: Mean ± standard deviation and median for 24 h combined data at UNRG and 

WCAQ June 2014 to October 2015 (n=356). 
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UNRG/WCAQ AOH  Q2 (n=44) Q3 (n=44) 

Mean±Std  2.0±1.3 3.9±2.1 

25th, 50th, 75th  0.94, 1.8, 2.9 2.8, 3.7, 4.4 

Range  0.25-5.8 0.83-10 
  Q1 (n=268) Q4 (n=39) 

Mean±Std  4.0±2.2 5.2±2.7 

25th, 50th, 75th  2.5, 3.5, 4.9 3.4, 4.5, 6.6 

Range  0.59-12 1.2-12 

Table 8: Summary statistics for AOH (km) for 24 h combined data at UNRG and WCAQ 

from June 2014 to October 2015. 

 
PEAV PM2.5  Q2 (n=8) Q3 (n=17) 

Mean±Std  2.9±2.6 12±8.9 

25th, 50th, 75th  0.80, 1.9, 5.9 6.0, 11, 13 

Range  0.0-6.2 3.1-42 
  Q1 (n=62) Q4 (n=7) 

Mean±Std  3.8±1.9 4.7±1.3 

25th, 50th, 75th  2.0, 3.8, 5.2 3.9, 4.3, 6.0 

Range  0.70-8.0 3.1-6.9 

Table 9: Summary statistics for PM2.5 (µg m-3) for 24 h data at PEAV from June 2014 to 

November 2014 separated by the valley quadrants. 

 

Quadrant 2 (Q2): Stable conditions, shallow PBLH, and local pollutants 

a)  b)  

Figure 15: Surface weather maps from NOAA for a) January 1, 2015 and b) January 4, 

2015. 
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a)  b)  

c)  d)  

e)  

Figure 16: 500 millibar weather maps from NOAA for a) December 31, 2014 (04:00 

PST), b) January 2, 2015 (04:00 PST), c) January 4, 2015 (04:00 PST), d) January 6, 

2015 (04:00 PST), and e) January 9, 2015 (04:00 PST). 
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Quadrant 3 (Q3): transport and mixing of smoke plumes 

September 2014 

 
 

 
 

a) September 17, 2014 

Terra MODIS 

b) September 18, 2014 

Terra MODIS 
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Figure 17: MODIS visible product for a) September 17, 2014 Terra (morning) overpass, 

b) September 18 Terra (morning) overpass, c) September 19, 2014 Terra (morning) 

overpass, and c) September 19, 2014 Aqua (afternoon) overpass. 

  

c) September 19, 2014 

Terra MODIS 

d) September 19, 2014 

Aqua MODIS 
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 September 18 to September 19 September 19 

 Decrease Increase Similar Quadrant 
AOH vs 

PBLH 

Fire 

flag? 

Truckee 

Meadows τext, coarse mode, PBLH, HD 
fine mode, ΔT, 

AOH, AEE 
  

AOH>> 

PBLH 
yes 

UNRGa 
WS, O3, max 1 h O3, MDA8 O3,  

CO, SO2  
NOx, NO, pressure 

Temp, 

RH 
NA to Q3   

WCAQ 
PM2.5, WS, O3, max 1 h O3, 

MDA8 O3,, CO, SO2 
NOx, NO 

Temp, 

RH 
Q3 to Q3   

PEAVa 
RH, WS, O3, max 1 h O3, MDA8 

O3, CO 
Temp, pressure    

Table 10: Trends at each site and in the Truckee Meadows valley for September 19, 2014 

compared to the previous day. Grey parameters indicate variables not measured at all 

three sites. 
aPM2.5 data is missing for the previous day for PEAV and UNRG. 

 

a)  b)  

c)  

Figure 18: Surface weather maps from NOAA for a) September 18, 2014, b) September 

19, 2014, and c) September 20, 2014 
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a)  b)  

c)  d)  

Figure 19: 500 millibar weather maps from NOAA for a) September 18, 2014 (04:00 

PST), b) September 18, 2014 (16:00 PST), c) September 19, 2014 (04:00 PST), and d) 

September 19, 2014 (16:00 PST). 
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a)  b)  

c)  

Figure 20: Naval Research Laboratory Aerosol Analysis and Prediction System (NRL 

NAAPS, https://www.nrlmry.navy.mil/aerosol/) smoke surface for a) September 19, 2014 

(04:00 PST), b) September 19, 2014 (10:00 PST), and c) September 19, 2014 (16:00 

PST). 
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Quadrant 4 (Q4): Pollution aloft 

 

 

a) August 20, 2014 

Terra MODIS 

b) August 20, 2014 

Aqua MODIS 
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c) August 21, 2014 

Terra MODIS 

d) August 21, 2014 

Aqua MODIS 
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Figure 21: MODIS visible product for a) August 20, 2014 Terra (morning) overpass, b) 

August 20, 2014 Agua (afternoon) overpass, c) August 21, 2014 Terra (morning) 

overpass, and c) August 21, 2014 Aqua (afternoon) overpass. 

a)  b)  

c)  d)  

Figure 22: 500 millibar weather maps from NOAA for a) August 20, 2014 (04:00 PST), 

b) August 20, 2014 (16:00 PST), c) August 21, 2014 (04:00 PST), and d) August 21, 2014 

(16:00 PST). 

 

a)  b)  

Figure 23: Naval Research Laboratory Aerosol Analysis and Prediction System (NRL 

NAAPS, https://www.nrlmry.navy.mil/aerosol/) smoke surface for a) August 12, 2014 

(04:00 PST) and b) August 12, 2014 (16:00 PST).  
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