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Abstract 

Environmental heterogeneity is known to affect phenotypic variation. Behavioral traits 

and the brain regions controlling these traits may be especially variable across 

environmental gradients as behavioral traits change rapidly in response to environment. 

Behavioral traits have been shown to differ across several environmental gradients of 

climatic harshness and novelty, such as latitudinal, elevational and urbanization 

gradients. This dissertation focuses on how cognition, behavior and the brain differ food-

caching specialists inhabiting environments that differ in climatic harshness (i.e. differ in 

elevation) and novelty (i.e. differ in anthropogenic activity). I found that, chickadees 

from harsher high elevations, when compared with low elevation chickadees, have better 

problem-solving abilities and that these chickadees with better cognition are less willing 

to take risks when perceived predation risk is high, which resulted in a reduced 

investment in current offspring. I also found that chickadees from urban environments 

had a suite of generalist traits (e.g. more active in exploring a novel environment, better 

problem-solving abilities and larger brains) and some food-caching specialist traits (e.g. 

better long-term spatial memory retention) when compared with forest chickadees. This 

dissertation highlights that unique suites of behavioral traits are associated with different 

environments and suggests that a better understanding of how specific environmental 

factors affect specific (suites of) traits is necessary. 
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Background 

The environment an organism inhabits is generally assumed to affect its phenotype (e.g. 

Endler 1986; Freas et al. 2012; Grant & Grant 2002; Roth et al. 2010; Roth & 

Pravosudov 2009; Via & Lande 1987). Environment-associated changes in phenotype 

can occur over multiple generations via natural selection or within an individual’s 

lifetime via phenotypic plasticity (e.g. Chevin et al. 2013; Miranda et al. 2013; Sol et al. 

2013). Regardless of the mechanism, populations of a given species throughout their 

geographic range may contend with a number of different environments, and therefore 

may be expected to differ in a suite of phenotypic traits associated with those particular 

environments.  

 Three environmental gradients in particular have received a tremendous amount of 

attention in the literature: 1) latitudinal, 2) elevational, and 3) anthropogenic disturbance 

gradients. Along all three of these gradients, differences in abiotic and biotic factors have 

been shown to alter a wide range of morphological and behavioral phenotypes(e.g. 

latitude: Griebeler et al. 2010; Riechert & Jones 2008; Robberecht et al. 1980; Roth et al. 

2010; Roth & Pravosudov 2009; Vandewoestijne & Van Dyck 2011; elevation: Badyeav 

& Ghalambor 2001; Cordell et al. 1998; Emery et al. 1994; Freas et al. 2013; Freas et al. 

2012; Johnson et al. 2006; urbanization: Evans et al. 2011; Kark et al. 2007; Maklakov et 

al. 2011; Mendes et al. 2011; Partecke & Gwinner 2007; Sih et al. 2011; Sol et al. 2013; 

Zhang et al. 2011). Differences in behavioral phenotypes, which are under control by the 

brain, may be especially important for how many animals cope with their environments. 

Behavior can allow animals to rapidly respond to their environment, and behavior can be 

rapidly altered by environmental changes (e.g. Carlton 1963; Cheil & Beer 1997). In light 
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of the instrumental role of behavior in mediating interactions between animals and the 

environment in which they dwell, my dissertation focuses on behavioral traits; 

specifically, those that pertain to cognition and the brain. Cognitive traits, defined as 

traits that allow animals to process, code, recall information and then behave based on 

this information (Shettleworth 1998), are a suite of behavioral traits thought to be 

especially important for animals in unpredictable, harsh, and novel environments (Sol et 

al. 2005; Roth & Pravosudov 2009; Roth et al. 2010). These cognitive traits are often 

thought to be associated with increased foraging success (e.g. Cole et al. 2012), but may 

also be costly to produce and maintain (Cole et al. 2013; Coppens et al. 2010; Dukas 

1999; Healy 2012; Kawecki 2010; Kotrschal et al. 2013; Kozlovsky et al. 2014a; 

Morand-Ferron et al. 2016; Niemela et al. 2013). As such, variation in cognition has 

strong implications for animals contending with different environmental conditions. 

Both latitudinal and elevational gradients are associated with differences in climatic 

severity, and thus climate-driven differences in behavioral responses (and the brain 

regions underlying these behaviors) may be expected (e.g. Croston et al. 2015; Freas et 

al. 2013; Freas et al. 2012; Kozlovsky et al. 2014a, b; Roth et al. 2010; Roth & 

Pravosudov 2009). Latitudinal gradients exist over large spatial scales and therefore, 

climate may not be the only variable that differs, while environmental differences across 

elevational gradients usually occur rapidly over extremely small spatial scales and may, 

therefore, present a more interesting and straightforward framework in which to 

investigate the relationship between the environment and phenotypic variation. 

Additionally, elevation gradients present the opportunity for logistically feasible 

replication both on different peaks within a mountain range and across different mountain 
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ranges, and this replication can be carried out within species or among closely related 

species with similar and different ecological niches. Our laboratory has previously 

focused on both latitudinal and elevation gradients, but this dissertation will focus 

specifically on the small spatial elevation gradient found along mountain slopes in the 

Sierra Nevada Mountains.  

Given the multitude of potentially competing biotic and abiotic factors that can drive 

differences in phenotype, it is often hard to tease apart the specific factors responsible for 

phenotypic differences (Endler 1986; Merila & Hendry 2014; Morand-Ferron et al. 

2016), and whether these phenotypic differences arise from selection on a particular trait 

(or a suite of traits) or from phenotypic plasticity (Croston et al. 2015; Lowry et al. 2013; 

Morand-Ferron et al. 2016), or both. For example, in our study system of food-caching 

Parids along a latitudinal gradient, high latitude black-capped chickadees (Poecile 

atricapillus) that contend with harsher winter environments have been shown to cache 

more food, to have better spatial memory acquisition and retention associated with larger 

hippocampi, and a larger total number of hippocampal neurons and increased adult 

hippocampal neurogenesis rates compared to lower latitude chickadees (Roth et al. 2010; 

Roth & Pravosudov 2009). While all indirect evidence suggests that these phenotypic 

differences are a result of natural selection, the methods employed could not rule out 

maternal effects or early developmental experiences (Croston et al. 2015). Regardless of 

these limitations, understanding, generally, how variation in environmental conditions 

can affect behavior and the associated brain structures and processes can provide clues to 

how behavior and the brain will respond to changing environments. Because behavior is 

highly sensitive to environmental conditions and can rapidly change in response to the 
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environment (e.g. Atwell et al. 2014), behavior may be a useful trait for the early 

detection of rapid environmental changes, such as those that may occur with human-

induced change.  Given that Black-capped chickadees along a latitudinal gradient of 

climatic severity differed in novel problem-solving and responses to novel stimuli, my 

first chapter focuses on how a closely-related species, mountain chickadees (Poecile 

gambeli), differ in these two cognitive traits at a short spatial scale in montane 

environments that differ in climatic severity.   

However, attributes of cognition and the brain are not the only traits expected to vary 

across environmental gradients. Differences in other phenotypes, including reproductive 

investment, are also predicted to change in response to unpredictable or challenging 

environmental conditions (e.g. Boretto et al. 2014; Giesel 1976; Marshall et al. 2008; 

Martin & Wiebe 2004; Holberton & Wingfield 2003). These differences in reproduction 

in, differences in environments have been widely assumed to affect the dynamics of life 

history (Badyaev & Ghalambor 2001; Balasubramaniam & Rotenberry 2016; Bears et al. 

2009; Boyle et al. 2016; Partridge & Harvey 1988; Southwood 1988; Williams 1966). 

Differences in environmental factors can affect both survival across different age classes 

and the ability of individuals to invest in growth and reproduction (see Badyaev & 

Ghalambor 2001). Life history theory predicts that longer-lived species should be less 

fecund and should invest less in current offspring and more in their own survival 

(Ghalambor & Martin 2000; Trivers 1974; Williams 1966). The reason is that longer-

lived species have the potential for many future reproductive events and therefore, can 

maximize their lifetime reproductive output by reducing risks associated with any 

particular reproductive event via allocating current energy for maintenance and growth, 
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allowing for successful future reproduction (Badyaev & Ghalambor 2001; Curio 1988; 

Ghalambir & Martin 2000, 2001; Ghalambor et al. 2013; Trivers 1974). Failing one 

reproductive event should still allow for future reproduction over multiple years, which 

should lead to greater fitness as compared to a single reproduction season. Short-lived 

species, on the other hand, are expected to maximize fitness by allocating all available 

resources to current offspring, potentially at the expense of their own life, as the chances 

of producing future offspring are lower. A classic example of this is seen in guppies, 

where differential predation risk in different environments led to differences in associated 

life history strategies (Endler 1995). Another example based on phylogenetically-paired 

species inhabiting different elevations suggested that high elevation parents produce 

fewer offspring, but invest more heavily in each individual offspring resulting in 

increased juvenile survival (Badyaev & Ghalambor 2001).Variation in the predictions of 

life history theory do occur both among and within species when accounting for the 

multitude of factors that can affect survival and/or reproduction (e.g. Bears et al. 2009; 

Boyle et al. 2016; Charnov 1991; Crespi et al. 2013; Dunkel et al. 2014; Liao et al. 2016), 

and in some cases, variation in cognition may explain these deviations. For example, it 

has been suggested that animals with enhanced cognitive traits have increased survival 

while animals with worse cognition have decreased survival (Pravosudov & Roth 2013; 

Sol et al. 2005, 2007), and cognition is not often considered when addressing differences 

in life history. If differences in cognition are associated with differences in survival, then 

animals with enhanced cognition may live longer and animals with worse cognition may 

be shorter-lived, providing one potential explanation to deviations from the predictions of 

life history theory. In chapter 2, I use this foundation of life history theory to test for 
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potential differences in parental risk taking in mountain chickadees that differ in 

cognitive traits living at two elevations, and contrast two hypotheses driven by the logic 

of life history theory to an alternative hypothesis relating to cognition and parental risk-

taking (Cole et al. 2012; Healy 2012).  

In addition to naturally occurring environmental gradients, rapidly expanding 

urbanization presents unique challenges but also opportunities for those animals that can 

invade and exploit these novel environments (Kark et al. 2007; Lowry et al. 2013; Moller 

2009). Urban environments are characterized by novel stimuli, altered landscapes, novel 

biotic interactions, and novel resources (Kark et al. 2007; Lowry et al. 2013). Animals 

that invade these novel urban environments must face unique features of these 

anthropogenic centers that can drive phenotypic changes in behavior and the brain 

resulting in successful invasion and establishment (e.g. Lowry et al. 2013; Maklakov et 

al. 2011; Miranda et al. 2013; Sol et al. 2013). Generalist species which have a broader 

environmental tolerance and can utilize a variety of resources are often thought to be 

more successful in urban environments compared to more specialist species which have a 

narrower environmental tolerance and specialize on relatively few resources (Bateman & 

Fleming 2012; Bonier et al. 2007; Chace & Walsh 2006; Evans et al. 2012; Lowry et al. 

2013; Marzluff 2017). This hypothesis is, in part, driven by the fact that specialists are 

expected to do best in environments that are relatively uniform in space and time 

compared to generalists (Devictor et al. 2008) and urban environments tend to be more 

heterogeneous both in space and time and are often associated with a reduction in native 

vegetation and an abundance of novel resources. While specialists might be expected to 

be less successful in invading and adjusting to novel and urban environments, in these 
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species behaviors related to their specialization may also be important contributors to 

their success in human-altered landscapes. Because urbanization is an ever-increasing 

phenomenon, it is important to understand how animals, especially those that are highly 

specialized (either by having a narrow ecological niche or a narrow environmental 

tolerance), might adjust to urban dwelling. At the same time, the novelty of the urban 

environments makes it hard to identify which behaviors might predispose some animals 

to be successful in the city and what effects city dwelling might have on phenotypes of 

urban animals. Chapter 3 of my dissertation seeks to understand what cognitive, 

behavioral, and neural traits are associated with the success of a specialized species in an 

urban center.                      

My dissertation aims to understand how different environments might affect animals 

in general, and food-caching specialist in particular by using a small, specialized, food-

storing species, mountain chickadees (Poecile gambeli), as a study system. Mountain 

chickadees are an abundant species in the Sierra Nevada Mountains and the nearby city 

of Reno, NV. Mountain chickadees are non-migratory resident passerines inhabiting the 

montane regions of Western North America that specialize on pine seeds, and store 

thousands of seeds during fall to survive the winter (Mccallum et al. 1999). Winter 

survival requires remembering numerous locations of these stores, which, in turn, relies 

on spatial memory and the hippocampus (the brain region involved in spatial memory; 

Sherry & Vaccarino 1989; Krebs et al. 1989; Pravosudov & Roth 2013). During winter, 

chickadees are highly social, forming stable winter flocks of unrelated individuals 

characterized by linear dominance hierarchy (Ekman 1989; Mccallum et al. 1999). Flocks 

are formed post-breeding and are maintained until the following breeding season (Ekman 
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1989; Mccallum et al. 1999). During the winter, pairs within the flock are formed so that 

when the breeding season begins anew, mates have already been chosen (Ekman 1989). 

During the breeding season, chickadees switch food resources to a diet consisting mainly 

of invertebrates, which are also the main resource fed to young (Mccallum et al. 1999). 

Mountain chickadees are quite common in the Sierra Nevada Mountains and my 

dissertation research takes advantage of our laboratory’s well-established field site along 

an elevation gradient in Tahoe National Forest, well-established protocols for behavioral 

and brain research in the laboratory, and the (relatively) new population of chickadees in 

Reno to address these research goals.  

   The purpose of this dissertation is to investigate cognitive and behavioral traits 

associated with animals inhabiting different environments and how these traits might 

impact aspects of parental investment. This dissertation focuses on food-caching animals 

as a study system, because of the strong theoretical foundation that links food-caching, 

certain aspects of cognition (e.g. spatial memory and the hippocampus), the environment, 

and fitness. The results, however, in many instances may be broadly applicable to other 

animals that utilize cognitive and behavioral traits differentially depending on the 

environmental context. 
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Ch. 1: Problem solving ability and response to novelty in mountain chickadees 

(Poecile gambeli) from different elevations 

 

Dovid Y. Kozlovsky, Carrie L. Branch, and Vladimir V. Pravosudov  

 

Abstract 

Animals inhabiting challenging and harsh environments are expected to benefit from 

certain phenotypic traits including cognitive abilities. In particular, innovation and 

habituation are traits thought to benefit animals in challenging environments and increase 

individual’s probability of survival via increased foraging success. Here we tested 

whether mountain chickadees from two elevations varying in winter climate severity 

differ in two traits involving innovation and habituation - problem-solving ability and 

response to novelty. Higher montane elevations are associated with a significantly longer 

winter period characterized by lower temperatures and more snow making winter 

survival more challenging due to a probable increase in foraging demands. Mountain 

chickadees inhabiting the harsher high elevation were significantly faster at solving a 

novel problem than their low elevation counterparts. Birds from both elevations 

responded with increased latency to approach the novel object, however, there were no 

elevation related differences. Male and female chickadees responded similarly on both 

tasks, suggesting no sex related differences in problem solving ability or neophobia. The 

problem solving results are consistent with the results for closely related black-capped 

chickadees along a longitudinal gradient of winter climatic harshness on a larger 

geographic scale, but the response to novelty data are not. Overall, our data supports the 
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hypothesis that enhanced problem solving ability might be associated with living in 

harsher environments either via natural selection or by plastic response to different 

environments and suggest that differences in problem solving ability do not have to be 

associated with differences in neophobia.  

 

Introduction 

Animals living in challenging (e.g. harsh and/or unpredictable) or novel environments (an 

environment to which an animal has had no prior exposure) are thought to benefit from 

having certain behavioral traits, which allow for increased foraging success (Sol et al. 

2005; Roth et al. 2009, 2010). Population and/or individual variation in these phenotypic 

traits may arise through natural selection or through phenotypic plasticity due to different 

experiences/environments. One group of traits that is thought to be favored in challenging 

and novel environments is increased cognitive abilities (Dukas 1998; Shettleworth 1998, 

2009; Roth et al. 2010; Wright et al. 2010). Enhanced cognitive abilities are suggested to 

be associated with increased survival via increased foraging success (Cole et al. 2012) 

and might be especially important in harsh environments where energetic demands might 

be higher (because of lower temperatures) and where food may be severely limited 

during winter season (Roth et al. 2010).  

Two of the most extensively studied traits that may be particularly important in 

challenging or novel environments are problem solving ability and response to novelty. 

While problem solving ability has been widely regarded as a cognitive trait (e.g. Roth et 

al. 2010; Cole et al. 2012) -- based on the definition of cognitive traits as traits that aid in 

information processing (Rowe and Healy 2014) -- there is a debate about whether 
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problem solving ability belongs to the cognitive domain (see Thornton et al. 2014). 

Problem solving can represent spontaneous innovation or, if trial and error is involved, it 

may be viewed as a form of learning, in which latency to complete the task is indicative 

of the ability to learn (Dukas 1998; Roth et al. 2010). Even if problem solving is 

considered innovation, innovation could still be defined as a behavioral trait that yields 

changes in learned behaviors (e.g. Biondi et al. 2010) and as such likely represents some 

aspect of cognition.  

Innovation (in the form of problem solving) has been implicated in successful 

colonization of novel environments (e.g. Sol et al. 2005, 2008; Wright et al. 2010) and in 

increased overall fitness (e.g. Cauchard et al. 2013). Problem solving ability and response 

to novelty are frequently the focus of studies investigating the relationship between traits 

that differ among individuals and may form behavioral syndromes (e.g. Webster and 

Lefebvre 2001; Boogert et al. 2006; Biondi et al. 2010; Cole et al. 2011, 2012).  

Response to novelty, which measures an animal’s response to novel stimuli, is 

frequently viewed as part of a behavioral syndrome or emotional state (i.e. neophobia: 

Sih et al. 2004), however, response to novelty can also be viewed as a form of habituation 

learning, where an animal’s exposure to the novel stimulus allows the animal to learn that 

the object does not represent a threat (e.g. Roth et al. 2010). Regardless of whether 

cognition underlies these two behaviors, they are always recognized as important for 

animals inhabiting challenging or novel environments (e.g. Sol et al. 2005, 2008).     

Previous findings looking at population differences in problem solving ability and 

response to novelty in a common garden experiment using food-caching black-capped 

chickadees (Poecile atricapillus) from the climatic extremes of their range (Alaska and 
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Kansas), showed significant differences in both traits (Roth et al. 2010). Chickadees from 

the harsher Alaska climate solved a novel problem faster and were less neophobic 

compared to the chickadees from the less harsh Kansas climate (Roth et al. 2010). In 

addition, wild-caught black-capped chickadees from more harsh winter climates have 

been shown to have both better spatial memory involved in recovery of food caches (they 

made fewer errors in recovering caches and learned the criteria faster in an associative 

learning task) -- especially critical in harsher environments and larger hippocampi (with 

more neurons) (Roth and Pravosudov 2009; Roth et al. 2011).  

In food-caching mountain chickadees (Poecile gambeli), an environmental gradient of 

harsh winter conditions exists over very small spatial scales along montane elevation 

(Freas et al. 2012). Similar to continental variation found in black-capped chickadees 

experiencing differences in winter conditions  mountain chickadees from harsher high 

elevations have superior spatial memory ability (made fewer errors in recovering caches 

and remembered the cache locations longer) and larger hippocampi with more and larger 

neurons than birds from lower elevations (Freas et al. 2012). Furthermore, these 

hippocampus differences remain evident even in captivity (Freas et al. 2013). The 

question, however, remains whether the same environmental factors associated with 

differences in problem solving ability and response to novelty along the large-scale 

climate gradient in black-capped chickadees are also associated with similar differences 

in mountain chickadees along the small-scale elevation gradient of winter climate 

severity. In other words, if problem solving ability and response to novelty are favored in 

harsher climates, do mountain chickadees inhabiting high and low elevations differ in 

these traits?  
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In a previous study, we failed to detect differences in neophobia between high and 

low elevation mountain chickadees (Kozlovsky et al. 2014), however, that study’s 

methodology differed from that of the black-capped chickadee study (Roth et al. 2010). 

Here, we tested for potential elevation related differences in response to novelty using a 

different group of mountain chickadees from the same two elevations as our previous 

study, but precisely replicated the methods and novel objects following Roth et al. 

(2010). Furthermore, we also tested for potential sex differences in problem solving and 

in response to novelty.  

Studies examining sex differences in problem solving and innovation have generally 

yielded equivocal results. In guppies (Poecilia reticulata), it appears that females are 

better innovators than males (Laland and Reader 1999). The ability to solve a novel 

problem in great tits (Parus major), on the other hand, does not appear to be associated 

with sex (Cole et al. 2011; Morand-Ferron et al. 2011; Cauchard et al. 2013). A study on 

innovativeness in meerkats (Suricata suricatta) reported that males appeared to be better 

innovators (Thornton and Samson 2012), as did a large-scale interspecific comparison of 

primate innovation (Reader and Laland 2001).     

Research on sex differences in response to novelty in avian species has also yielded 

equivocal results. In studies of latency to take a novel food item, female domestic chicks 

were faster at taking novel food than males (Jones 1986), while in robins (Erithacus 

rubecula) and blackbirds (Turdus merula) no significant differences in latency to take 

novel food were detected (Marples et al. 1998). When exposed to a novel object, house 

sparrow (Passer domesticus) sexes displayed similar degrees of neophobia (Ensminger 
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and Westneat 2012) while in blue tits (Cyanistes caeruleus) males appeared generally 

more neophobic than females (Arnold et al. 2007).  

In light of the results of Roth et al. (2010) and the plethora of mixed results on sex 

differences among species with different life histories and environments, here we tested 

whether problem solving and neophobia differ between mountain chickadees from 

different elevations and between sexes. We hypothesized that mountain chickadees from 

high and low elevations would differ in problem-solving ability and in response to a 

novel object, similar to black-capped chickadees from harsh and mild environments 

(Roth et al. 2010), with high elevation birds solving the novel problem faster and having 

less neophobia toward the novel object. We additionally hypothesized that there would be 

no sex differences in problem solving and response to novelty as there should be similar 

environmental pressures acting on both sexes at different elevations.  

 

Methods 

Study subjects and capture site  

Twenty-four juvenile mountain chickadees were captured at Sagehen Experimental 

Forest in Truckee, CA using mistnets in late November 2013 using the same elevations 

and exact same locations as our previous studies reporting elevation related differences in 

spatial memory and the hippocampus (Freas et al. 2012, 2013). Juveniles were identified 

based on tail feather tip characteristics as in our previous work (Freas et al. 2012, 2013; 

Kozlovsky et al. 2014). First year, juvenile birds were used in this study as we wanted to 

obtain birds that had yet to experience differential winter climates. Twelve birds (6 male 

and 6 female) were caught at low elevation (~1800 m) and 12 birds (6 male and 6 female) 
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were caught at high elevation (~2400 m), separated by approximately 10 km. Blood 

samples were collected from all birds upon capture. Birds were brought into our housing 

facilities at University of Nevada, Reno where males and females were kept in separate 

rooms and all birds were individually housed in 42 X 60 X 60 cm cages which were 

visually, but not acoustically isolated. Upon arrival sex was confirmed by CLB via PCR 

following procedures from Fox et al. (2009). Birds were fed a diet of sunflower seeds, 

pine seeds, crushed peanuts, meal worms and insect pate and maintained on a winter 

photoperiod of 10:14 light/dark cycle. Prior to testing, chickadees were maintained in the 

laboratory for approximately two months and were naive to all problem solving tasks and 

novel objects used for neophobia testing; however, these birds were being used for mate 

preference experiments during the same period. Before any experiment began chickadees 

were habituated to waxworms.    

 

Problem solving 

Problem solving testing began in January, 2014. Problem solving ability was tested in 

each chickadee home cage by adapting a method developed by Z. Nemeth et al. (personal 

comm.). An upside-down clear test tube was baited with a waxworm and the opening was 

plugged with a piece of cotton (see Fig. 1). The test tube was then secured to the front of 

the cage with a binder clip. This set up allowed chickadees to see their reward, but in 

order to solve the problem chickadees had to pull out the cotton stopper allowing the 

waxworm to fall to the floor of the cage. Waxworms are a highly preferred food and 

before problem solving testing began all chickadees were eating waxworms in under a 

minute (in most cases it was under 30 seconds) when placed on the bottom of the cage. 
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Chickadees were not food deprived prior to testing and the normal diet remained in the 

cage during problem solving trials as the purpose of the trials were to see differences in 

how chickadees from different elevations and sexes spontaneously solve a problem in the 

face of a high-value food item. Prior to problem solving trials chickadees were given a 

one hour habituation period to the test tube and clip without a cotton stopper and wax 

worm. Problem solving trials lasted for 1 h and no more than two trials (1 in the morning 

and 1 in the afternoon) were conducted per day with at least 4 hours separating the two 

trials. Once a chickadee solved the problem it was considered successful on that trial. 

However, to confirm that this was not a chance solution and to look at potential learning 

of the problem the chickadees were given additional trials until each bird solved the 

problem a second time (which occurred in the following trial in all but a single low 

elevation bird) or until the bird reached the ceiling (occurred in a single low elevation 

bird). A maximum of 25 trials were used to assess problem solving abilities in each 

individual.     

 

Novelty test 

  The novelty test began immediately following problem solving testing and was 

conducted in the home cage, in a feeding context following Roth et al. (2010) precisely. 

Both control trials and the neophobia trial were always conducted 1 trial per day on 3 

sequential days at approximately the same time of day for each trial. Trials were 

conducted over 3 consecutive days for several reasons. Most importantly, once a bird has 

eaten a waxworm it may be satiated and no longer motivated to return to the feeder in 

subsequent trials. Second, all trials were run early in the morning (half hour after lights 
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on) when chickadees would be the most motivated to satiate their hunger. Birds were 

given a pre-control trial of 300 s to assess latency to touch a familiar regular feeder on the 

floor, land on that feeder and take a waxworm from the feeder. The following day a 

novelty trial commenced with the regular feeder being replaced with a waxworm-baited, 

colored and spoked feeder placed in the same location as the regular feeder (exact same 

feeders used in Roth et al. 2010; see Fig. 2); and latency to touch the feeder, to land on 

the feeder, and to take the waxworm was recorded for 1800s. The spoked feeders came in 

4 colors: orange, lime green, pale pink, and dark pink and feeders were assigned to 

individuals randomly using a random number generator.  On the last of the 3 days, a post-

control trial was conducted in identical fashion to the pre-control trial, to test for any 

carry over effects (such as increased latency to go to a familiar feeder after being exposed 

to a novel feeder) of the novelty trial. In all trials birds were deprived of food 30 min 

prior to lights off the previous day as in Roth et al. (2010). 

 

Statistical analysis    

All data were analyzed using STATISTICA computational software. Problem solving 

was analyzed using a General Linear Model (GLM) with sex and elevation as the 

between-subject variables and number of trials to solve the problem as the response 

variable. An interaction of elevation by sex was also included in the model. Additionally, 

a repeated measures GLM was used to analyze how many trials were required to solve 

the problem a second time once the problem was solved initially. Response to novelty 

was analyzed using a repeated measure GLM with novelty treatment and two controls 

(pre and post novelty treatment) as repeated measures, and sex and elevation as the 
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between-subject variables. Latency to touch the feeder, land on the feeder and take a 

waxworm was measured for each of the three parts of the experiment (pre and post 

controls and well as the novelty test). This model included all possible interactions. In all 

cases the effect of sex was insignificant and so sex was removed from all further 

analyses. Lastly, we used a Spearman Rank Correlation to analyze whether the number of 

trials to solve the problem was correlated with degree of neophobia across both 

elevations, measured as the latency to take the waxworm from the novel feeder.      

 

Results 

Problem solving 

When problem solving was analyzed with sex and elevation, the effect of sex was not 

significant (F1,20 = 0.017, p = 0.89) while the effect of elevation was approaching 

significance (F1,20 = 3.95, p = 0.06) and the interaction between elevation and sex was not 

significant (F1,20 = 0.063; p = 0.80). When sex was removed from analysis, the effect of 

elevation was significant with high elevation birds taking fewer trials to solve a novel 

problem (F1,22 = 4.33, p = 0.049; Fig. 3). The number of trials to solve the same problem 

the second time was significantly smaller than the number of trials to solve it for the first 

time (First trial – high elevation: 3.67 ± 2.01 SE; low elevation: 9.58 ± 2.01 SE; Second 

trial – high elevation: 1.0 ± 1.41 SE; low elevation: 3.0 ± 1.41 SE; F1,22 = 13.20, p = 

0.0015), while the interaction between elevation and the difference in the number of trials 

used to solve the problem for the first and the second time was not significant (F1,22 = 

2.37, p = 0.14).  
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Novelty test 

    When response to novelty was analyzed including sex none of the between-subject 

variables were significant (elevation: F1,20 = 0.13, p = 0.72; sex: F1,20 = 1.27, p = 0.27) but 

all birds showed significant neophobic response to novel feeders (F8,160 = 14.04; p < 

0.001) and no interactions were significant (p > 0.23). When sex was dropped from 

analysis, the results were similar with the only significant variable being novelty 

treatment versus control (F8,176 = 13.91, p < 0.0001; Fig. 4). Planned comparisons showed 

that birds from both elevations did not differ significantly among the three components of 

each phase (touch, land, take worm) and between pre- and post-controls (Pre-control: p > 

0.98 for all comparisons; Post-control: p = 0.99 for all comparisons; Pre- vs. Post-control: 

p > 0.97 for all pairwise comparisons), but differed significantly between novel object 

phase (neophobia) and both pre- and post-controls (touch – p < 0.001; land – p < 0.001 

and take worm – p < 0.001 for all pairwise comparisons between all three stages of 

neophobia trial and both pre- and post-controls). Across birds from both elevations, there 

was a significant negative correlation between the number of trials it took to solve the 

novel problem and latency to take a worm from a novel feeder (rs = -0.44, p < 0.05; Fig. 

5); birds that solved the novel problem faster had a stronger neophobic response to the 

novel object.      

 

Discussion 

Mountain chickadees from high elevation solved the novel problem faster than birds from 

low elevation; however, chickadees from the two elevations did not differ significantly in 

their response to novelty. All birds reacted neophobically to the novel spoked feeder, but 
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there were no differences in the latency to touch the novel feeder, land on the feeder or 

take the waxworm from the feeder between birds from the two elevations. Male and 

female chickadees responded similarly on both tasks, suggesting no sex related 

differences in problem solving ability or neophobia.  

 While we propose that elevation related differences in problem solving are a result of 

differences in innovativeness it is important to consider alternative explanations such as 

motivation, neophobia, motor dexterity and general activity level. Chickadees from both 

elevations appeared to be highly and comparably motivated to solve the novel problem. 

Firstly, all birds rapidly consumed the waxworm during the waxworm habituation phase. 

Second, when first introduced to the novel problem all birds interacted with the test tube 

within the first trial and in most cases within the first few minutes of that trial. 

Additionally, the waxworm was highly visible through the transparent test tube. Third, as 

birds were not deprived for the problem solving task all birds had access to their usual 

food ad libitum and as such satiety motivation should have been comparable. Forth and 

perhaps most importantly, there were no differences in solving the task a second time. If 

chickadees were differentially motivated to solve the task then this would have been the 

case during first and second trial in which a chickadee solved the task and not just in the 

initial trial. Differences in response to novelty between elevations were not found for the 

novelty test and, furthermore, latency to take a waxworm from the novel feeder was 

negatively correlated with the number of trials to solve the problem regardless of 

elevation. Such results suggest that the chickadees with the stronger neophobic response 

to novel feeder solved the problem faster than the chickadees with a lesser neophobic 

response. Motor dexterity has been implicated as an important component of problem 
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solving (Griffin and Guez 2014), however, it is unlikely that this task challenged the 

motor dexterity of any of the birds from either location and the birds should be 

comparable in motor dexterity as there are no differences in head or beak morphology 

(DYK, CLB et al. unpublished data). Lastly, activity rate is also unlikely to have played a 

role in the problem solving task. Higher activity rates might yield more chance solutions 

to the problem than lower activity rates, however, based on our previous findings from 

the same populations, high elevation mountain chickadees actually have slower activity 

rates than low elevation chickadees (Kozlovsky et al. 2014). Overall, elevation related 

differences in problem solving do not appear to be explained by differences in 

motivation, neophobia, motor dexterity and activity rates.  

 The analysis comparing the first and second successful problem solving trials, 

suggests that learning might be involved in the problem solving process. Chickadees 

were faster to solve the problem the second time compared to the first time. In fact all 

birds, except one low elevation bird, solved the problem the second time in one trial 

immediately following the first successful trial. Furthermore, these two successful 

solutions are unlikely to be chance solutions as our observations indicate that the birds 

were interacting with the test tube in such a way that trial and error learning was likely 

occurring.   

 The results of the current study can be compared to a previous study of problem 

solving and response to novelty in hand-raised black-capped chickadees from the 

environmental extremes of their range (Roth et al. 2010). The problem solving results 

from our current study are in agreement with the problem solving differences observed in 

Roth et al. (2010) between Alaska and Kansas black-capped chickadees. Birds from the 
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climatically harsher Alaska population were faster to solve a novel problem than birds 

from the milder climate Kansas population (Roth et al. 2010) and similarly, mountain 

chickadees inhabiting the harsher high elevation were faster at solving a novel problem 

compared to their low elevation counterparts inhabiting a milder climate.  

However, unlike Roth et al. (2010), which reported that hand-reared black-capped 

chickadees from harsher environments were less neophobic, we detected no significant 

differences in response to novelty among mountain chickadees from different elevations. 

One possible explanation for the differences between the current study and Roth et al. 

(2010) is that the black-capped chickadees from Roth et al. (2010) were hand-raised in 

relatively restricted environments from a very young age, while the mountain chickadees 

from the current study were wild-caught birds, only in captivity for two months before 

being tested. It is reasonable to assume that birds which are hand-reared without 

enrichment to a wide variety of objects might be generally more neophobic than wild 

birds which are exposed to a wide range of objects, however, the only study to our 

knowledge addressing this failed to find any differences between hand-raised and wild 

starlings (Feenders et al. 2011). Alternatively, it is possible that mountain chickadees 

from different elevations, regardless of developmental environment, simply do not differ 

in neophobia. These results reinforce our previous conclusions based on data showing no 

elevation related differences in neophobia in mountain chickadees using different 

methods (Kozlovsky et al. 2014). 

 Another interesting difference between the current study and Roth et al. (2010) 

pertains to the relationship between problem solving ability and brain size. Many 

interspecific comparisons have suggested a direct relationship between general cognitive 
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ability (e.g. a suite of correlated cognitive traits, in primates referred to as Spearman’s g; 

Reader et al. 2011) and brain size (e.g. Gibson et al. 2001; Reader and Laland 2002; Sol 

et al. 2005, 2008; Deaner et al. 2007). Within species, black-capped chickadees from 

harsher environments have also been shown to have larger absolute brain size (Kozlovsky 

et al. 2014) in addition to better problem-solving abilities (Roth et al. 2010). In the 

current study, mountain chickadees from the harsher high elevation were better problem 

solvers than their low elevation counterparts, however, previous studies of chickadees 

from exactly the same elevations/populations detected no significant differences in 

telencephalon volume (Freas et al. 2012), which is known to be highly correlated with 

brain size (e.g. Krebs et al. 1989; Kozlovsky et al. 2014). Combined, these data on the 

same populations indirectly suggest that better problem solving ability in high elevation 

chickadees is not associated with differences in overall brain size. Hence, the relationship 

between (what we term) general cognition and brain size, at least as it pertains to problem 

solving, might not be as clear as suggested by some broad-scale comparisons (e.g. Healy 

and Rowe 2007; Chittka and Niven 2009; Pravosudov and Roth 2013).  Future studies 

should attempt to address this relationship more directly.    

Sex differences in problem solving ability have been shown for a few taxa (e.g. 

guppies: Laland and Reader 1999; primate: Reader and Laland 2001; meerkats: Thornton 

and Samson 2012), but the direction of such differences are not uniform. In avian taxa, 

however, available studies have failed to find sex differences in problem solving (e.g. 

Cole et al. 2011; Morand-Ferron et al. 2011; Cauchard et al. 2013), except with regards to 

social learning (Aplin et al. 2013). 
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A third interesting finding pertains to the correlation between problem solving and 

response to novelty. Based on previous research (Roth et al. 2010; Griffin and Guez 

2014), we predicted that across all chickadees problem solving would be positively 

correlated with response to novelty. However, the results were counter to this prediction, 

showing a negative correlation between problem solving and response to novelty. These 

data are hard to interpret given the plethora of research showing a positive relationship 

between these two traits. Firstly, the test tube was not truly novel in that the birds were 

habituated to it prior to testing. It is also possible that the problem solving task and the 

response to novelty task differ in the level of neophobia generated. It is possible that the 

brightly colored spoked feeders were considered a much more threatening novel stimulus 

than the transparent test tubes with silver wire wrapped around it. Alternatively, 

chickadees are hesitant about going to the ground in the wild and the floor of their cages, 

as this represents a potential predation risk and so the fact that the novel feeder was on 

the ground while the test tube was clipped to the cage near one of their perches could 

potentially explain the correlation observed. It would then be expected that chickadees 

would take longer to take the waxworm from the ground in the absence of the novel 

feeder. It is also possible that neophobilia is responsible for approaching the novel 

problem while neophobia is responsible for reduced latency to feed from the novel 

feeder, as it has been suggested that these two traits can vary independently (Griffin and 

Guez 2014). Whether one of the aforementioned factors or some unknown factor is 

driving the relationship observed here remains a topic for future investigation.     

Studies on sex differences in response to novelty, even within Aves, have also yielded 

equivocal results (e.g. domestic chicks: Jones 1986; blackbirds and robins: Marples et al. 
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1998; house sparrow: Ensminger and Westneat, 2012; blue tits: Arnold et al. 2007). Here, 

we failed to detect significant sex differences in problem-solving ability (a measure of 

innovation) or response to novelty (a measure of habituation) in mountain chickadees 

from different elevations. Sex differences are suggested to evolve over a long 

evolutionary time scale and require very strong differential selection pressures to evolve 

(Sherry et al. 1992), but male and female mountain chickadees at different elevations 

appear to experience similar selection pressures. However, if these traits change as a 

result of phenotypic plasticity, these results do not support the “necessity hypothesis” 

which would predict that female mountain chickadees would be better innovators than 

their male counterparts since they are less competitive at obtaining food. These results 

agree with the findings that sex was not associated with differences in innovativeness of 

great tits (e.g. Cole et al. 2011; Morand-Ferron et al. 2011). While the “necessity 

hypothesis” does not directly suggest differences in response to novelty, based on the 

logic of the hypothesis, one might expect female chickadees to be less neophobic as well, 

which was also not supported here. Even though the effect of sex on both problem 

solving and neophobia were highly non-significant, it is important to add that our sample 

size was fairly small and so it remains possible that our study lacks sufficient statistical 

power to detect significant differences. 

 While the impetus for this study was Roth et al (2010) which used hand-raised black-

capped chickadees taken from the nest around 10 days of age, the role of plasticity in 

shaping the differences in problem solving cannot be ruled out in the current study. With 

regards to spatial memory and the hippocampus, all indirect evidence points towards 

selection driving the observed differences (differences persisting in a common garden 
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experiment (Freas et al. 2013), no significant differences in developmental trajectories 

(Kozlovsky et al. 2015, Ch. 2); elevation specific female mate preference (Branch et al. 

2015). For problem solving, however, it is impossible to rule out any potential differences 

with prior experiences in mountain chickadees, even though in black-capped chickadees 

such differences existed in birds hand reared and maintained in the same lab environment 

from 10 days of age (Roth et al. 2010). In this study, juvenile birds were used prior to 

experiencing winter climate differences, which is the main selection event for juvenile 

chickadees (Freas et al. 2012). Additionally, birds were housed in identical conditions in 

captivity for two months prior to any testing and as such, immediate environmental 

effects are unlikely to produce the resulting differences in problem solving. During the 

breeding season, climate and food availability between the two elevations appear to be 

similar although data on are lacking. Potential differences in food availability or foraging 

locations, however, could potentially lead to selection or learned differences, which may 

translate into differences in problem solving ability between chickadees from different 

elevations.  

 In conclusion, mountain chickadees, like black-capped chickadees, show environment 

related differences in in problem-solving ability, with better problem-solving ability 

associated with harsher environments. Neophobia in mountain chickadees, however, did 

not differ between the two elevations, which suggests that population variation in 

problem solving ability might exist without corresponding variation in neophobia, even 

though in our case the two traits appear to correlate in a negative direction across all 

individuals tested (with a longer latency to feed from the novel object being associated 

with fewer trials to solve the problem). Such findings are counter to the idea that 
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neophobia and problem solving are fundamentally linked in a positive direction (e.g. 

Greenberg 2003). In addition, no significant sex differences existed among mountain 

chickadees in either problem solving or neophobia. Overall, our results are consistent 

with the idea that living in harsher environments might select for increased problem 

solving ability in chickadees, whether over a large or small-scale, yet decreased 

neophobia does not seem to be specifically associated with harsher environments or with 

variation in problem solving ability.   

 

Acknowledgments 

 

We would like to acknowledge Elena Pravosudova for help capturing birds and Shelby 

Brown, Frank Gonzalez, Kallie Kappes, and Emily Weissgerber for help with bird care 

and maintenance and University of Nevada, Reno’s EECB doctoral program for research 

funds. All authors were supported by NSF (IOS-1351295) to VVP.  

 

Ethical standards 

All experiments reported here comply with the current laws of the United States of 

America. Chickadees were collected under Federal (MB022532) and California (5210) 

scientific collecting permits. All animal procedures were in accordance with the 

University of Nevada Reno Animal Care and Use Protocol (00576) 

 References 

Arnold KE, Ramsay SL, Donaldson C, Adam A (2007) Parental prey selection affects  



28 
 

risk-taking behaviour and spatial learning in avian offspring. Proc R Soc Lond B 

274:2563-2569 

Biondi LM, Bo MS, Vassallo AI (2010) Inter-individual and age differences in 

exploration,  

neophobia, and problem-solving ability in Neotropical raptor (Milvago chimango). 

Anim Cogn 13:701-710 

Boogert NJ, Reader SM, Laland KN (2006) The relation between social rank,  

neophobia, and individual learning in starlings. Anim Behav 72:1229-1239   

Cauchard L, Boogert NJ, Lefebvre L, Dubois F, Doligez B (2013) Problem-solving  

performance is correlated with reproductive success in a wild bird population. Anim 

Behav 85:19-26 

Branch, CL, Kozlovsky DY, Pravosudov VV (2015) Elevation related differences in  

female mate preference in mountain chickadees: are 'smart' chickadees choosier. 

Anim Behav 99:89-94 

Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19:R995-R1008 

Cole EF, Cram DL, Quinn JL (2011) Individual variation in spontaneous problem- 

solving performance among wild great tits. Anim Behav 81:491-498 

Cole EF, Morand-Ferron J, Hinks AE, Quinn JL (2012) Cognitive ability influences  

reproductive life history variation in the wild. Curr Biol 22:1-5   

Deaner RO, Isler K, Burkart J, van Schaik C (2007) Overall brain size, and not  

ecephalization quotient, best predicts cognitive ability across non-human primates. 

Brain Behav Evol 70:115-124     

Dukas R (1998) Evolutionary ecology of learning. In: Dukas R (ed) Cognitive ecology,  



29 
 

University of Chicago Press, Chicago, IL, pp 129-174    

Dunlap AS, Chen BB, Bednekoff PA, Greene TM, Balda RP (2006) A state- 

dependent sex difference in spatial memory in pinyon jays, Gymnorhinus 

cyanocephalus: mated females forget as predicted by natural history. Anim behav 

72:401-411  

Ensminger AL, Westneat DF (2012) Individual and sex differences in habituation and  

neophobia in house sparrows (Passer domesticus). Ethology 118:1085-1095 

Feenders G, Klaus K, Bateson M (2011) Fear and exploration in european starlings  

(Sturnus vulgaris): a comparison of hand-reared and wild-caught birds. PLoS ONE 

6:e19074  

Fox RA, LaDage LD, Roth II TC, Pravosudov VV (2009) Behavioral profile  

predicts dominance status in mountain chickadees. Anim Behav 77:1441-1448 

Freas CA, Bingman K, LaDage LD, Pravosudov VV (2013) Untangling elevation- 

related differences in the hippocampus in food-caching mountain chickadees: the 

effect of a uniform captive environment. Brain Behav Evol 82:199-209 

Freas CA, LaDage LD, Roth II TC, Pravosudov VV (2012) Elevation-related  

differences in memory and the hippocampus in mountain chickadees (Poecile 

gambeli). Anim Behav 84:121-127 

Gibson KR, Rumbaugh D, Beran M (2001) Bigger is better: primate brain size in  

relationship to cognition. In: Falk D, Gibson KR (eds) Evolutionary Anatomy of 

Primate Cerebral Cortex, Cambridge University Press, New York, Oxford, pp 79-97   

Greenberg R (2003) The role of neophobia and neophilia in the development of  



30 
 

 innovative behaviour of birds. In: Reader SM, Laland  KN (eds) Animal innovation, 

 Oxford University Press, pp 175-196 

Griffin AS, Guez D (2014) Innovation and problem solving: a review of common  

 mechanisms. Behav Process 109:121-134 

Healy SD, Rowe C (2007) A critique of comparative studies of brain size. Proc  R Soc  

 Lond B 274:453-464 

Jones RB (1986) Responses of domestic chicks to novel food as a function of sex, strain  

 and previous experience. Behav Process 12:261-271 

Kozlovsky DY, Branch CL, Freas CA, Pravosudov VV (2014) Elevation-related  

 differences in novel environment exploration and social dominance in food-caching  

 mountain chickadees. Behav Ecol Sociobiol 68:1871-1881 

Kozlovsky DY, Branch Cl, Pravosudov VV (2015) Elevation related differences in  

 parental risk taking behavior are associated with cognitive variation in mountain 

 chickadees. Ethology In Press  

Kozlovsky DY, Brown SL, Branch CL, Roth II TC, Pravosudov VV (2014)  

Chickadees with bigger brains have smaller digestive tract: a multi-population 

comparison. Brain Behav Evol 84:172-180 

Krebs JR, Sherry DF, Healy SD, Perry H, Vaccarino AL (1989) Hippocampal  

specialization of food-storing birds. P Natl Acad Sci USA 86:1388-1392 

Laland KN, Reader SM (1999) Foraging innovation in the guppy. Anim Behav 57:331-

 340 

Marples NM, Roper TJ, Harper DGC (1998) Responses of wild birds to novel prey:  

evidence of dietary conservatism. Oikos 83:161-165 



31 
 

Morand-Ferron J, Cole EF, Rawles JEC, Quinn JL (2011) Who are the innovators? A  

 field experiment with two passerine species. Behav Ecol 22:1241-1248 

Pravosudov VV, Roth TC II (2013) Cognitive ecology of food hoarding: the evolution of  

spatial memory and the hippocampus. Annu Rev Ecol Evol S 44:173-193  

Reader SM, Hager Y, Laland KN (2011) The evolution of primate general and cultural  

intelligence. Philos T Roy Soc B 366:1017-1027 

Reader SM, Laland KN (2001) Primate innovatin: sex, age and social rank differences.  

Int J Primatol 22:787-805  

Reader SM, Laland KN (2002) Social intelligence, innovation, and enhanced brain size  

in primates. P Natl Acad Sci USA 99:4436-4441    

Roth TC II, LaDage LD, Pravosudov VV (2010) Learning capabilities enhanced in  

harsh environments: a common garden approach. Proc R Soc Lond B 277:3187-3193 

Roth TC II, LaDage LD, Pravosudov VV (2011) Variation in hippocampal morphology  

along an environmental gradient: controlling for the effect of day length. Proc R Soc 

Lond B 278:2662-2667 

Roth TC II, Pravosudov VV (2009) Hippocampal volume and neuron numbers increase  

along a gradient of environmental harshness: a large-scale comparison. Proc R Soc 

Lond B 276:401-405 

Rowe C, Healy SD (2014) Measuring variation in cognition. Behav Ecol 25:1287-1292 

Sherry DF, Jacobs LF, Gaulin SJ (1992) Spatial memory and adaptive specialization  

of the hippocampus. Trends Neurosci 15:298-303  

Shettleworth SJ (1998) Cognition, evolution, and behaviour. Oxford University  

Press, Oxford, UK   



32 
 

Shettleworth, SJ (2009) The evolution of comparative cognition: is the snark a boojum?  

Behav Process 80:210-217 

Sih A, Bell AM, Johnson JC, Ziemba RE (2004) Behavioral syndromes: an integrative  

 overview. Q Rev Biol 79:241-277  

Sol D, Bacher S, Reader SM, Lefebvre L (2008) Brain size predicts the success of  

mammal species introduced into novel environments. Am Nat 172:S63-S71 

Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L (2005) Big brains,  

enhanced cognition, and response of birds to novel environments. P Natl Acad Sci 

USA 102:5460-5465  

Thornton A, Isden J, Madden JR (2014) Toward wild psychometrics: linking individual  

cognitive differences to fitness. Behav Ecol (published online, doi: 

10.1093/beheco/aru095) 

Thornton A, Samson J (2012) Innovative problem solving in wild meerkats. Anim Behav  

83:1459-1468 

Webster SJ, Lefebvre L (2001) Problem solving and neophobia in a columbiform- 

passeriform assemblage in Barbados. Anim Behav 62:23-32 

Wright TF, Eberhard JR, Hobson EA, Avery ML, Russello MA (2010)  

Behavioral flexibility and species invasions: the adaptive flexibility hypothesis. Ethol 

Ecol Evol 22:393-404 

Yamaguchi A (2001) Sex differences in vocal learning in birds. Nature 411:257-258 

 

 

 



33 
 

Figure Legends  

Fig. 1  

Photograph of one of the problem solving apparatuses. Note that there is a mealworm 

inside the apparatus for display rather than the waxworms that were used during the 

actual experiment  

 

Fig. 2  

Photograph of the four novel feeders used for the response to novelty trial  

 

Fig. 3  

Number of trials to solve a novel problem in chickadees from high and low elevations. 

Sexes are pooled and bars represent SE 

Fig. 4 

Latency to touch a feeder, land on a feeder and take a waxworm from a feeder in pre-

control (pre), neophobia (neo), and post-control (post) trials in chickadees from high 

(closed circles) and low elevations (open circles). Sexes are pooled and bars represent SE 

 

Fig. 5 

The relationship between the number of trials to solve a novel problem and the latency to 

take a worm from a novel feeder 
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Fig. 3 

 

 

 

 

 

 

 

 

 

 



37 
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Ch. 2: Elevation related differences in parental risk taking behavior are associated 

with cognitive variation in mountain chickadees 

 

Dovid Y. Kozlovsky, Carrie L. Branch & Vladimir V. Pravosudov 

 

Abstract  

Breeding animals must balance their current reproductive effort with potential costs to 

their own survival and consequently to future reproduction. Life-history theory predicts 

that variation in reproductive investment should be based on fecundity and life 

expectancy with longer lived species favoring their own survival over parental 

investment. Recently, variation in parental risk taking was also linked with differences in 

cognition suggesting a trade-off between cognitive ability and risk taking. Here, we tested 

whether mountain chickadees from two different elevations with known differences in 

cognitive ability differ in their parental risk taking by comparing the responses of nesting 

birds to a potential predator. Higher elevations are associated with shorter breeding 

season limiting re-nesting opportunities, but chickadees at high elevations also have 

better cognitive abilities, which might be potentially associated with better survival. 

Compared to lower elevations, high elevation chickadees laid larger clutches, showed 

longer latencies to return to the nest in the presence of a hawk, had lower fledging 

success and exhibited higher rate of complete nest failures. Nestling development among 

successful nests, however, was similar between elevations. These data are not consistent 
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with life history hypothesis because birds at high elevation invest more in clutch, while at 

the same time take less risk when facing potential danger to themselves, which could 

jeopardize their current reproductive success. These data, however, are consistent with 

the hypothesis that better cognitive abilities might be associated with less parental risk 

taking.  

 

Introduction 

Breeding animals must partition their resources between investing in current reproductive 

effort or in their own survival, especially when facing increased risk of mortality 

(Williams 1966; Trivers 1972; Ghalambor & Martin 2000). According to life history 

theory, differences in parental effort should be reflected by parental risk taking when a 

parent could either provide parental care at a potential risk to its own survival or reduce 

its parental effort to increase its own probability of survival (Ghalambor & Martin 2000, 

2001; Ghalambor et al. 2013). In line with this theory, low fecundity and longer life span 

should be associated with parents favoring their own survival over parental investment in 

their current offspring (Curio 1988; Ghalambor & Martin 2000, 2001).  For example, 

longer-lived less fecund species have been hypothesized to invest less in current offspring 

in favor of self-survival and future reproduction compared to shorter-lived, more fecund 

species, which are expected to do the opposite (Trivers 1972; Linden & Moller 1989; 

Mauck & Grubb 1995; Ghalambor & Martin 2000, 2001). Similarly, the potential to 

successfully renest during the same season, which could be hypothetically expected in 

populations with a longer breeding season (e.g. Bears et al. 2009), might also be 
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predicted to be associated with a reduction in parental effort, especially in short-lived 

species. When there is only a single chance of reproduction within a season, individuals 

could be expected to favor investment in their current reproduction over future 

reproduction (e.g. Badyaev & Ghalambor 2001), especially when the probability of 

survival until next season is relatively low. When breeding season is sufficiently long to 

accommodate multiple reproductive events, individuals might be expected to favor their 

own survival, especially during the first reproduction of a given breeding season.  For 

example, northern birds limited to a single reproductive event per year have been 

reported to suppress physiological stress response in the face of inclement weather that 

might ultimately result in their death while their more southern conspecifics do show 

such response and abandon reproduction in favor for later re-nesting (Wingfield et al. 

1995; Silverin et al. 1997; Silverin & Wingfield 1998).  

 Recently, it has also been suggested that variation in at least some components of 

parental effort might be associated with the evolution of cognition and that better 

cognitive ability might be linked with reduced risk taking in parents, which might have a 

negative effect on reproductive success. Cole et al. (2012) recently reported that 

individual great tits (Parus major) with better problem solving ability laid larger clutches, 

but also deserted nests more frequently than their counterparts who were unable to solve 

the presented problem. Nest abandonment resulted in no overall fitness advantage for 

problem solvers. It appears that better cognitive ability of problem solvers allowed them 

to produce more offspring, but reduced parental effort may have negated such an effect 

via higher nest desertion rates. Cole et al. (2012) suggests that birds with enhanced 
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cognitive ability deserted their nests, as a result of human disturbance when handling 

adults that had young chicks that were not entirely viable. This result potentially points to 

a parental risk taking strategy resulting in nest abandonments.    

  The trade-offs between cognitive ability and reproductive effort might potentially be 

based on two different processes. First, it has been suggested that enhanced cognitive 

ability in animals is associated with a longer lifespan (e.g. Sol et al. 2007) by increasing 

the probability of survival via increased foraging efficiency in unpredictable 

environments (e.g. Roth et al. 2010). The life history trade-offs hypothesis then might 

predict that animals with superior cognitive ability, which live longer, might invest less in 

current offspring in favor of future reproduction relative to less intelligent, shorter-lived 

animals. Alternatively, enhanced cognitive ability may reflect a direct trade-off with 

other life history traits related to fitness if enhanced cognition can only be achieved by 

compromising some other traits (Cole et al. 2012; Healy 2012; Kotrschal et al. 2013). In 

other words, enhanced cognitive ability may be associated with reduced parental risk 

taking as part of a behavioral syndrome (e.g. van Oers et al. 2004; Carere & Locurto 

2011) in which case parental investment strategies might differ from those predicted by 

life history based on longevity and fecundity. 

 Here we compared responses of breeding mountain chickadees (Poecile gambeli) 

from high and low elevations to a potential predator for adults to assess parental risk 

taking behavior and hence at least one component of parental effort. We used two 

elevations which have been under intense investigation, allowing a comparison of 

potential differences in risk taking with previously established differences in spatial 

memory (Freas et al. 2012, 2013) and problem solving (Kozlovsy et al. 2015, Ch. 1). 
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Returning to the nest in the presence of a predator is likely associated with increased risk 

for the parents (Ghalambor & Martin 2000, 2001), but delayed nest attendance could 

have negative effects on reproductive success via its effect on incubation patterns or 

offspring feeding. Shorter latencies to enter the nest with increased risk for the parents 

would indicate higher parental effort associated with more risk taking at a potential cost 

to parents own survival (Ghalambor & Martin 2000, 2001). To control for potential 

differences in immediate environmental conditions, we also used a control – a dove 

model, which represents a non-threatening bird stimulus.  

 Mountain chickadees at different elevations provide a good case to test which of the 

three previously described evolutionary processes might generate potential differences in 

parental risk taking behavior. First, at our study area, chickadees at higher elevations 

experience longer periods of snow cover in the spring and receive snow fall sooner in the 

autumn, resulting in a significantly shorter breeding season with birds from high 

elevations less likely to succeed at re-nesting. Such differences in re-nesting opportunities 

might be associated with chickadees at higher elevations investing more in their current 

reproductive effort at an increasing risk to their own survival. Second, we have 

previously demonstrated that chickadees at high elevations cache more food, have 

significantly better spatial learning ability associated with successful recovery of food 

caches, have significantly different morphology of the hippocampus and have better 

problem solving ability (Freas et al. 2012; Freas et al. 2013a, 2013b; Kozlovsky et al. 

2015, Ch. 1), traits that might potentially result in higher survival probability at high 

elevations. If so, it might be expected that chickadees at high elevations should invest less 

in their current reproduction and exhibit less risk taking behavior. Finally, better 
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cognitive abilities in high elevation chickadees might be associated with reduced risk 

taking behavior as a trade-off resulting from selection on cognition associated with 

harsher winter climate at higher elevations demanding heavier reliance on food caches for 

survival (Freas et al. 2012). If that were the case, only parental risk-taking behavior might 

be affected, while other components of parental effort might reflect other life-history 

processes, and significant and persistent differences in cognition associated with 

elevation allow investigation of potential trade-offs without testing cognitive abilities in 

individuals.  

 We also compared nesting success and fledgling development (e.g. clutch size, brood 

size, fledgling mass, feather length, and within nest variation in development) to assess 

potential differences that might be associated with expected differences in parental risk 

taking and parental investment. If parental strategy in high elevation chickadees is 

associated with reduced breeding season, chickadees at high elevations should lay larger 

clutches and take more risks to insure successful reproduction. If parental strategy at high 

elevation is associated with increased survival, chickadees at high elevations should lay 

smaller clutches and take fewer risks, which would make future reproduction more likely. 

Finally, if selection on better spatial learning and problem-solving abilities at high 

elevations is associated with personality trade-off (e.g. better learning is linked with less 

risk taking), chickadees at high elevations should lay larger clutches (because of their 

superior ability to cache food and retrieve caches), but exhibit less parental risk-taking 

behavior, which might result in reduced overall breeding success  

 

Methods 
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Data were collected at Sagehen Experimental Forest in Tahoe National Forest just north 

of Truckee, California at two elevations (ca. 1800 m – low elevation and ca. 2400 – high 

elevation) used in our previous work showing significant elevation related differences in 

spatial memory and hippocampus morphology (Freas et al. 2012; Freas et al. 2013a,  

2013b). We specifically used these established elevations because of the previous work 

establishing differences in memory and brain morphology even though comparison of 

just two elevations unfortunately limits the scope of the study. Variation in elevation 

within the two established main elevations, however, was extremely small. Established 

nestboxes were monitored daily starting on May 2, 2013 to determine the start date of egg 

laying, the beginning of incubation, clutch size and brood size at day 16.  

 Mountain chickadees are secondary cavity nesters and do not excavate their own 

nests (Mccallum et al. 1999). We only used nestboxes in our study and so had no 

information about any nests in natural cavities; thus we could not estimate true nesting 

density at our study site. We tested chickadee responses during two nesting stages – 

during incubation (only female incubates) and during nestling provisioning by both males 

and females (Mccallum et al. 1999). As responses to the predator might vary depending 

on nesting stage, we tested all birds at the same time during their nesting and carefully 

monitored all critical nesting dates and events.  

 When the first egg was found the day was recorded as egg day 1 for that nest. When 

incubation had started clutch size and egg mass were recorded for each egg and that day 

was considered incubation day 1. The day a nest had any eggs hatched was recorded as 

nestling day 1. On nestling day 16 all surviving nestlings were counted as the final brood 

size and nestling mass, length of left and right outermost primaries and outermost 
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rectrices (to estimate fluctuating asymmetry) were measured. Following nestling 

measurements nests were monitored every other day for fledging day, in order to 

determine the length of the nestling stage. Finally, we analyzed within-nest coefficient of 

variation (CV) for all of the developmental parameters, as higher within-nest CV would 

indicate less favorable developmental conditions with large variation in nestling 

developmental condition. 

 All model presentation experiments during incubation (n = 16 nests at low elevation 

and n = 11 nests at high elevation) started between days 5 and 8 of incubation. We used a 

mounted sharp-shinned hawk (Accipiter striatus) specimen (sharp-shinned hawks are 

common in low densities at both elevations and appear to be primary avian predators for 

mountain chickadees; Mccallum et al. 1999) as a predator for adults and a dove model as 

a generic, non-threatening bird-control of a similar size. Both models were attached to a 

branch and placed on a tripod set at the height of nestboxes. All birds exhibited strong 

mobbing behavior directed at the hawk, but not the dove model, which suggests that 

chickadees perceived the hawk model as a predator. Pilot data showed that mountain 

chickadees did not react adversely to the tripod by itself. Order of presentation (e.g. hawk 

or dove) was determined randomly by coin-flip and only one model was presented to 

each nest on a given day at the same time of day. In all but four nests, models were 

presented on two consecutive days. Due to rain, one day elapsed between presentations in 

the other four nests. 

 Model presentations for the incubation period began when a female left the nestbox 

and the tree with the nestbox after a bout of incubation. Upon the female leaving the nest, 

the tripod was immediately placed 5 m from the nestbox with the hawk or the dove model 
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in front of the nest and facing the nestbox entrance. At both elevations models were 

placed in clear view of the nest in a similar fashion so that birds returning to the nest 

would have a similar view of the models. Bird behavior upon returning to the nest was 

observed through binoculars by DYK from 35 to 50 m away from the nestbox. Observer 

location was chosen so that the observer was as inconspicuous as possible, while 

maintaining a view of the nestbox and surrounding area. Chickadees did not appear to 

react to the observer being at the aforementioned distance and location. Once an observer 

location was chosen it was used for both hawk and dove presentations during both 

incubation and nestling stages (see below). Presentations ended and models were 

removed when the female went into the nestbox for a minimum of 5 min, indicating the 

start of a new bout of incubation or after 50 min if females did not enter the nest (which 

happened at one nest at low elevation and 4 nests at high elevation). Latency to enter the 

nestbox was recorded for all nests. Male chickadees do not incubate and never attempted 

to enter the nest during the experiment. 

 Model presentations during the nestling feeding stage (n = 12 nests at low elevation 

and n = 12 nests at high elevation) started between nestling day 5 and 8. Due to different 

logistical reasons, we tested different number of nests during nestling feeding stage and 

during incubation. Presentations during the nestling stage were conducted in the same 

fashion as during incubation with one exception. Models were presented when a parent 

(either male or female) had just left the nest after feeding the chicks and the second 

parent was greater than 20 m from the tree with the nestbox and actively foraging. When 

the second parent was within 20 m of the nestbox tree, model presentation did not begin 

until both parents had fed the chicks and left the tree with the nestbox. In most cases, 
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both parents came to the nestbox simultaneously and so presentations occurred after both 

parents had fed the chicks and left. Latency to enter the nestbox by any parent (which 

ever was the first) was again recorded for all nests. Birds were not individually marked 

and so we could not determine whether male or a female entered first, but we assume that 

any delay to enter the nest, regardless of potential gender differences, represent parental 

risk taking behavior. Presentations ended and models were removed when either of the 

parents went into the nestbox or after 30 min if either of the parents did not enter the nest 

(which happened at two nests at low elevation and 5 nests at high elevation). 

  Statistical analyses were conducted using STATISTICA software. We tested for 

specific effects associated with elevation and with model type and so all analyses used 

mixed General Linear Models (GLM) with model or control as the repeated measure and 

elevation as the between-subject variable. In all cases the response variable was latency 

to enter the nestbox and the GLM tested whether such latency was significantly 

associated with elevation and model type. As we had specific expectations that there 

should be significant differences between elevations specifically during the hawk, but not 

during the control (dove) presentations, we used planned comparisons to test for specific 

elevation effects whether there was a significant elevation by treatment interaction. To 

test for potential elevation related differences in all nesting parameters (e.g. clutch size, 

number of fledglings, fledgling mass) we used general linear models with elevation as the 

predictor variable and a nesting parameter (using nest mean as a sampling unit) as the 

response variable for each analysis. For means, but not for CVs, clutch or brood size was 

used as a covariate to control for any potential variation in clutch or brood size. The 

sample size is different for different parameters due to some nest failing at different 
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nesting stages. Variables that did not meet normality assumptions (e.g. hatching and 

fledging success) were log-transformed.    

 

Results 

First, we analyzed only the nests that were used during both nesting stages in the same 

model (Mixed General Linear Model with nest and nesting stage as repeated measure 

variables and elevation and model type as independent variables). In this analysis, 

elevation (F1,21 = 4.32, p = 0.05), nesting stage (incubation vs nestlings; F1,21 = 11.05, p = 

0.003), and model type (hawk vs control; F1,21 = 75.21, p < 0.0001) were significant 

predictors for the latency to enter the nest (Figures 1, 2). There also was a significant 

interaction between elevation and model type (F1,21 = 8.67, p = 0.008), but not between 

elevation and nesting stage (F1,21 = 0.01, p = 0.92). Planned comparisons showed that 

there were no significant elevation differences in response to the dove model (p’s > 0.5), 

but responses to the hawk model differed significantly (p’s < 0.05) with chickadees at 

high elevations taking significantly longer to enter the nest in the presence of the hawk 

during both incubation and nesting periods (Figures 1, 2). 

 Combining all data resulted in dropping several tested nests (4 from low elevation 

and 1 from high elevation) from the analyses as not all nests were used during both 

incubation and nestling stage due to various logistical reasons. When nests were analyzed 

separately for incubation and nestling stages to take advantage of larger sample sizes, the 

results were essentially the same. There was a significant difference in latency to enter 

the nestbox between the hawk and the dove model presentation during the incubation 

stage with birds from both elevations taking more time during the hawk presentation 
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(F1,25 = 35.80, p < 0.001, Figure 1). There was a significant elevation by model type 

interaction (F1,25 = 6.74, p = 0.02) even though elevation was not a significant general 

predictor for the latency to enter the nest during the incubation stage (F1,25 = 2.24, p = 

0.15). Planned comparisons showed high elevation chickadees took significantly more 

time to enter the nest during the hawk model presentations compared to low elevation 

chickadees (p = 0.006), but there were no significant elevation related differences in the 

latency to enter the nest during the dove model presentation (p = 0.5). During the nestling 

feeding stage, there was a significant difference in latency to enter the nestbox between 

the dove and the hawk presentations for birds from both elevations (F1,21 = 27.15, p < 

0.001, Figure 2). There was a significant effect of elevation (F1,21 = 4.67, p = 0.04, Figure 

2) on the latency to enter the nest with higher latencies for the high elevation birds, but an 

interaction between elevation and model type was not statistically significant (F1,21 = 

2.76, p = 0.11). Planned comparisons following specific a priori predictions confirmed 

that the general elevation effect was driven only by the response to the hawk model. 

Compared to low elevation chickadees, it took significantly more time for high elevation 

birds to enter the nest during the hawk presentation (p = 0.01), but the latency to enter the 

nest did not differ significantly between chickadees from high and low elevations during 

the dove presentation (p = 0.87).  

 High elevation chickadees laid significantly larger clutches than low elevation 

chickadees (Table 1) with date of the first egg as a significant covariate (F1,51 = 12.98, p 

< 0.001); later nests had smaller clutches. In contrast, there were no significant elevation 

related differences in brood size (Table 1) with date of the first egg having no significant 

effect as a covariate (F1,38 = 0.11, p = 74). Fledging success (proportion of young 
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fledged/clutch size), on the other hand, was significantly lower at high elevation (Table 

1), which potentially explains elevation differences between clutch size and brood size. 

The proportion of nests that completely failed prior to nestling age of 16 days was also 

significantly higher at high elevation (38% failed nests at high elevation based on total of 

21 nests vs 14.7% failed nests at low elevation based on total of 34 nests; x2 = 3.93, df=1, 

p = 0.047). In contrast, among the nests that succeeded (e.g. fledged at least 1 nestling or 

more), there were no significant differences in any of the measured developmental 

parameters between high and low elevation mountain chickadees whether using nest 

means or within nest coefficient of variation (Table 1).  Differences remain statistically 

non-significant even when we did not control for clutch or brood size. 

  

Discussion 

Our results showed that chickadees from high and low elevations differed significantly in 

their parental risk taking behavior in response to an elevated risk to the parents near the 

nest. High elevation chickadees took significantly longer to enter the nestbox in the 

presence of the hawk model, but not the dove, during both incubation and nestling 

feeding stages compared to birds from low elevation. Interestingly, high elevation 

chickadees also laid larger clutches, but fledged a similar number of young compared to 

low elevation birds due to significantly lower fledging success. Most importantly, the 

differences between clutch size and brood size appear to be related to nest failures rather 

than just to brood attrition. Proportion of complete nest failures was significantly higher 

at high elevation, but fledgling development indices in nests that succeeded were not 

statistically different between elevations suggesting that parents at high and low 
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elevations were similarly capable of rearing young. Overall, our data showed that 

elevation related differences in latency to enter the nest in the presence of the hawk is 

negatively associated with fledging success. One limitation of our study is that it focused 

on birds from just two elevations, but, at the same time focusing on specific elevations 

that have been under intense investigation for a long time (e.g. Freas et al. 2012, 2013; 

Kozlovsky et al. 2015, Ch. 1) allowed comparisons with multiple traits, most importantly 

cognition (spatial memory and problem solving). 

 Our results suggest that high elevation birds favor less parental risk taking and invest 

in their own survival over investing in their current offspring more than their conspecifics 

from lower elevation.  When these birds faced increased risk of predation associated with 

attending the nest, they showed more hesitation, compared to the low elevation 

chickadees, which would likely increase their probability of survival at a potential cost to 

their current reproductive success. Low elevation birds, on the other hand, appear more 

willing to take risks to invest in their current reproduction at a potential cost to their own 

survival.  

 Within elevations, latency to attend the nest in the presence of the predator had no 

significant association with either hatching or fledging success. Considering that the 

largest differences were present specifically between elevations, such result was not 

surprising as the variance within elevations was smaller than the variance between 

elevations. In addition, much larger sample sizes might be required to detect such 

association on an individual level, as it might not be expected that a single presentation of 

a predator will immediately have significant consequences. At the same time, elevation 

related association was significant for both latency to attend the nest in the presence of 
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the predator and fledging success – high elevations were characterized by longer 

latencies, lower fledging success and higher total nest failure rate.  

 It is important to note that chickadees expressed mobbing behavior when exposed to 

the hawk model and in some cases, mobbing might be considered a risky behavior. If that 

were the case, chickadees at high elevations could be considered engaging in more risky 

mobbing. We, however, do not think that in our case, mobbing should be considered 

more risky than entering the nest. First, sharp-shinned hawks are predominantly an 

ambush predator for small birds (Bildstein & Meyer 2000) that rely on surprise attacks. 

We could not find any published information on whether sharp-shinned hawks can be 

successful or even attempt to attack birds when mobbed while perched in the open. 

Second, when chickadees mobbed the hawk model, they always remained under cover in 

tree canopy where the risk of being killed by a hawk is likely very low. Finally, 

chickadees from both elevations exhibited the same mobbing behavior – the only 

difference was that it took longer to enter the nest at high elevations. In these cases, 

mobbing always attracts many other birds that could increase vigilance, diffuse the 

individual risk of predation, and help drive the predator away, yet the cost of mobbing 

avian predators are not well documented – except that birds engage in mobbing instead of 

doing something else, like attending the nest, which is likely the main cost. Flying to the 

nest, on the other hand, requires leaving protective cover and hence likely represent a 

much higher risk. Most importantly, not attending the nest in the presence of the hawk 

likely represents an important cost that might negatively affect reproductive success. 

 Our results are not fully consistent with predictions based on life-history theory 

associated with shorter breeding season at high elevations (see Figure 3). High elevation 
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chickadees start breeding on average 2 weeks later than low elevation chickadees despite 

being in close geographic proximity (ca. 10 km) due to differences in climate (Table 1). 

Winter also starts earlier at higher elevation, which, combined with a later breeding start 

provides a shorter reproductive season at higher elevation and might reduce the 

probability of re-nesting if first nesting attempts fail. Lower elevation birds, on the other 

hand, have a longer breeding season and are more likely to succeed at the second 

breeding attempt if the first one failed. Given such differences between high and low 

elevation, it might be hypothesized that high elevation chickadees should invest more in 

their current reproduction then their conspecifics from lower elevation because they 

might not be able to re-nest. Parental investment in larger clutch size at high elevation is 

consistent with this hypothesis, yet our results on parental risk taking are directly 

opposite to the predictions – compared to low elevation, chickadees at high elevation 

were more cautious when in presence of the hawk, which might have negative effect on 

current reproduction. Supporting this idea is the fact that fledging success was indeed 

lower and total nest failure rate higher at high elevation. 

 Our data are also not fully consistent with the idea that elevation related differences in 

parental risk taking might be associated with potential differences in probability of 

overwinter survival (see Figure 3). It has been suggested that greater cognitive abilities 

might be associated with increased survival probabilities (Sol et al. 2007) and increased 

survival might be expected to be associated with a decreased investment in current 

offspring in favor of increased investment in future offspring. If parental investment 

strategy in high elevation chickadees were based on higher survival probability due to 

their superior cognition, it would be expected that compared to low elevation, chickadees 
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from high elevation should lay smaller clutches in addition to taking less risks. Investing 

in larger clutches provides additional parental cost, which can be avoided when 

probability of survival is high (e.g. Trivers 1972; Linden & Moller 1989; Mauck & 

Grubb 1995; Ghalambor & Martin 2000, 2001). While being more cautions in the 

presence of the predator (less parental risk taking) is consistent with this hypothesis, 

significantly larger clutch sizes at high elevations are not. Unfortunately, neither Cole et 

al. (2012) nor our study have the data on potential differences in survival between birds 

with cognitive differences and future studies should attempt to address this gap. Overall, 

however, larger investment in clutches but lower parental risk taking in high elevation 

chickadees are not consistent with the life history theory based on potentially longer life 

span. 

 Our data, on the other hand, appear to be consistent with the hypothesis that enhanced 

cognition might be associated with cognition-parental-risk-taking trade-off suggesting 

that better cognitive abilities might be associated with some costs affecting reproduction 

(see Figure 3). Chickadees from high elevation with significantly better spatial learning 

ability associated with large morphological differences in the brain (Freas et al. 2012) and 

better problem solving ability (Kozlovsky et al. 2015, Ch. 1) laid larger clutches, possibly 

due to their superior cognition increasing foraging abilities, but had significantly lower 

fledging success associated with less parental risk taking during both incubation and 

rearing nestlings. Significantly lower fledging success appears to be mainly due to much 

higher rates of complete nest failure. Yet among the successful nests, young from high 

and low elevations appear to develop similarly suggesting birds at high elevation are just 

as capable of rearing young as birds at lower elevations, but they are less prone to risk 



56 
 

taking resulting in higher frequency of complete nest failures. Thus, different components 

of parental investment show the opposite patterns: on one hand, high elevation 

chickadees invest more into their clutches, but on the other hand, they appear willing to 

jeopardize their breeding success by being more cautious in the presence of the predator. 

These data are therefore consistent with the trade-off hypothesis suggesting enhanced 

cognitive ability might be associated with a reduced parental risk taking across different 

contexts of perceived risk, suggesting a trade-off between cognition and parental 

investment strategy (e.g. Healy 2012).  

 It remains possible that the link between parental risk taking and elevation might be 

mediated by other correlated traits not associated with cognition. For example, it has been 

suggested that more aggressive individuals have a greater dispersal tendency (e.g. 

Duckworth & Badyaev 2007), but also provide less parental care (Duckworth 2006). 

However, mountain chickadees at our high elevation are less aggressive than the low 

elevation chickadees (Branch et al. 2014), which is inconsistent with this hypothesis.   

 All of the above-discussed hypotheses imply that differences in behavior (both 

cognition and parental risk taking) have been produced by natural selection and are likely 

based on some heritable mechanisms. Our previous data on elevation related differences 

in cognition and the brain all indirectly suggest that such differences have been produced 

by differential selection pressures associated with different environmental conditions 

(Freas et al. 2012). While we do not see genetic population structure based on neutral 

genomics (Branch et al. 2017), we do not yet have a genetic basis of elevation related 

differences in behavior. Chickadees in our study were tested in different environments 

(high and low elevations) and so it might be possible that differences in parental 
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responses to increased predation risk might be due to some immediate environmental 

differences.   

 For example, it is potentially possible that birds at higher elevation have better 

foraging success either because they are better foragers or because of more abundant 

food, in which case they can afford to come to the nest at longer time intervals when 

feeding young. However, this explanation appears unlikely. First, high elevation 

chickadees laid larger clutches but also experienced higher rates of complete nest 

failures. At the same time developmental indices for young in successful nests did not 

differ significantly between elevations, which argues against better foraging conditions. 

Second, the same pattern with high elevation birds taking longer to enter the nest was 

present during both incubation and feeding young. Delaying entering the nest during 

incubation can lead to negative egg cooling effects (e.g. Olson et al. 2006), which are 

independent of foraging success and are not likely to be compensated for later. If a 

female can feed more efficiently she would actually be expected to return to the nest after 

a shorter rather than a longer interval (e.g. Chalfoun & Martin 2007). In addition, if 

chickadees from high elevation feed the young at longer intervals, it would be detectable 

during the dove presentation (dove was still a novel, albeit a non-dangerous object). Yet 

birds from different elevations did not differ in their latency to return to feed the young 

during the dove presentation, but exhibited significant differences specifically during the 

hawk presentation. Interruptions in feeding of rapidly developing nestlings are not likely 

to be compensated for later without any negative effects and so delaying feeding presents 

a risk to current reproduction (e.g. Konarzewski et al. 1996; Searcy et al. 2004). 

 Overall, the lack of differences found in response to the dove model generally argues 
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against potential effect of immediate ecological conditions, otherwise birds from different 

elevations should differ in their response to the dove model as well. There were also no 

significant differences in brood size between high and low elevations, which also argues 

against the idea that parents at high elevation might not need to attend the nest as 

frequently as birds from low elevation. Differences in foraging success, on the other 

hand, would be expected to produce the opposite outcome to predator presentation during 

incubation and during young feeding. Considering that we found no significant 

differences in brood size due to higher young attrition at high elevation, this explanation 

for higher latencies to return to the nest in the presence of the hawk specifically at high 

elevation appears unlikely. 

 Our finding that chickadees lay larger clutches at high elevations is in contrast to 

many previous studies suggesting that birds lay smaller clutches at high elevation (e.g. 

Kremetz & Handfored 1984; Badyaev, 1997; Badyaev & Ghalambor 2001; Fargallo 

2004; Lu et al. 2010). Yet, some previous reports showed no elevation differences in 

clutch size (e.g. Hamann et al. 1989; Bears et al., 2009) and still others reported that birds 

lay larger clutches at high elevations (e.g. Dunn et al. 2000; Camfield et al. 2010). Larger 

clutches produced at high elevation might suggest potentially better foraging conditions 

at our field site even though it is generally thought that food availability is lower at high 

elevation (e.g. Bears et al. 2009; Lu et al. 2010), but then it might also be expected that 

these birds should raise larger broods and have faster developing young, which was not 

the case. The fact that high elevation chickadees laid larger clutches but raised smaller 

broods, similar in size to those from low elevation, and had significantly higher rate of 

complete nest failures is more in line with the cognition-reproductive effort/parental risk 
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taking trade-off hypothesis. The ability to lay more eggs could be related to the birds’ 

ability to be successful foragers via better spatial learning ability rather than to greater 

food abundance. Overall greater food abundance would have allowed high elevation birds 

to successfully fledge more young, but reduced brood size and higher rate of nest failures 

suggests less risk taking resulting in reduced parental effort.    

 Our experiment tested birds’ responses to the predator specifically during the 

breeding season, when delay in attending the nest either during incubation or during 

feeding young might have a strong negative effect on current reproduction. We do not 

know if chickadees from high elevation show this response specifically during breeding 

or if they might also be more cautious during other non-breeding contexts, such as 

foraging. However, there are no differences in response to novelty (which is a form of 

risk-taking) between high and low elevation chickadees in a feeding context (Kozlovsky 

et al. 2014), suggesting that the difference in risk-taking may only apply to a breeding 

context. Nonetheless, even if high elevation chickadees showed less risk taking in the 

presence of the predator no matter the context, it would still mean that during breeding 

such extra caution could jeopardize their current nesting attempt. In addition, it might be 

expected that birds with better spatial learning ability should indeed be more cautious in 

the presence of the predator at all times compared to individuals with inferior learning 

ability because of their superior foraging success.  

 We do not know whether birds from high and low elevation had different amount of 

exposure to hawks or whether hawk density is significantly different between elevations, 

which might also potentially affect bird responses. Sharp-shinned hawks are fairly 

common at both elevations and so we do not think that this explanation is likely.  
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 It is theoretically possible that birds at higher elevation might experience higher 

predation risk causing them to be more cautious (even though we have no evidence or 

even a reason to suspect such differences). If this were the case, such extra caution would 

still mean higher self-investment at a cost to the current reproduction because predator-

related delays might result in negative effects to current reproduction and given that the 

probability of encountering a predator should be higher, selection should favor 

individuals taking more risks as they might have higher fitness, unless such extra caution 

is associated with better survival allowing for multiple reproductive events. However, 

higher predation risk would mean lower probability of survival, which should favor 

parental effort and more risk taking. Better survival, on the other hand, should be linked 

to better spatial memory and the ability to recover food caches critical during the winter. 

 Finally, chickadees at high elevation generally experience lower ambient temperature, 

as temperature varies predictably along an elevation gradient (Hopkins & Powell 2001; 

Shepson & Tinnes 2003; Cook 2012) and this is especially pronounced during the 

incubation stage. However, as in all examples described above, in this case chickadees at 

high elevation should enter the nest sooner and delays to resume incubation or to feed 

young should have stronger negative consequences compared to lower elevations. Yet 

our results were exactly the opposite of these predictions.   

 While we might have missed some other potential explanations, among the 

considered alternative hypotheses the ‘the enhanced cognition - reduced parental risk 

taking’ trade-off hypothesis appears most consistent with our results showing mixed 

parental investment strategy – investing more in producing larger clutches but less in 

properly caring for both eggs and young when such caring involves more risks to parents 
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own survival. Obviously our data cannot provide a causal link between better spatial 

learning ability and reduced risk taking, but they do tentatively support a potential 

association between these traits. Whereas we did not test spatial memory or problem 

solving in specific birds used in this study, significant elevation-related differences in 

spatial memory and the hippocampus have been previously well established at our study 

locations and such differences also persisted in a uniform captive environment (Freas et 

al. 2012; Freas et al. 2013a). Differences between high and low elevations were 

especially striking in the total number of hippocampal neurons with no overlap between 

elevations (Freas et al. 2012). Differences in problem solving were also found in different 

groups of birds from the same elevation in a different year (Kozlovsky et al. 2015, Ch. 1). 

Therefore, even though we cannot conclude that changes in memory and/or problem 

solving ability directly affect reproductive decisions, the birds from a population 

associated with better spatial memory, larger hippocampi, significantly more 

hippocampal neurons and better problem solving performance did show reduced risk 

taking in the presence of an adult predator associated with reduced fledging success 

despite investing more in larger clutches. Even though our inferences are based on 

comparing just two elevations rather than multiple elevations, these are intriguing 

preliminary results that fall in line with previous studies (e.g. Cole et al. 2012) and, at 

least indirectly, support the cognition-parental investment trade-off hypothesis. Future 

studies are necessary to directly test this hypothesis and to demonstrate that selection on 

better learning abilities also produce less risk taking personality trait.   
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Table 1.  

Breeding data and fledgling development indices in mountain chickadees from high and  

low elevations. All values are Least Square Means and Standard Errors produced by  

General Linear Models and n represents the number of nests. Brood size is measured at  

fledgling day 16. All statistical comparisons were made using the nest mean as an  

independent statistical unit. For all development variables (but not for within-nest CV’s),  

clutch or brood size were used as a covariates. 

 

 

Variable High Elevation  
[mean± SE (n)] 

Low Elevation 
[mean± SE (n) ] 

F, p 

Clutch size 8.32±0.28 (21) 6.52±0.21 (33) F1,51=19.59, p < 0.001 
First egg date May 31±0.92 (21) May 19±1.16(33) F1,52 = 69.15, p < 0.001 
Brood size 6.41±0.73 (13) 5.63±0.42 (28) F1,38 = 0.62, p = 0.43 
Fledging success 
(number of fledged 
young/clutch size) 

0.48±0.01 (21) 0.70±0.07 (33) F1,53 = 4.33, p = 0.042 

Body mass, g 12.62±0.20(13) 12.88±0.14(29) F1,39 = 1.12, p = 0.29 
Body mass CV 0.05±0.008(13) 0.05±0.005(29) F1,40 = 0.05, p = 0.83 
Primary length, mm 16.48±0.48(13) 16.76±0.32(29) F1,39 = 0.24, p = 0.63 
Primary length CV 0.07 ± 0.02(13) 0.08 ± 0.01(29) F1,40 = 0.23, p = 0.63 
Primary asymmetry, 
mm 

0.40±0.06(13) 0.47±0.04(29) F1,39 = 0.98, p = 0.33 

Primary asymmetry 
CV 

0.94 ± 0.09(13) 0.92 ± 0.06(29) F1,40 = 0.04, p = 0.84 

Tail length, mm 16.10±0.74(13) 17.47±0.49(29) F1,39 = 2.36, p = 0.13 
Tail length CV 0.11 ± 0.02(13) 0.10 ± 0.01(29) F1,40 = 0.13, p = 0.72 
Tail asymmetry, mm 0.79 ± 0.07(13) 0.69 ± 0.05(29) F1,39 = 1.32, p = 0.26 
Tail asymmetry CV 0.82 ± 0.08(13) 0.71±0.05(29) F1,40 = 1.34, p = 0.25 
Egg mass, g 1.29 ± 0.02(21) 1.26 ± 0.01(34) F1,52 = 2.83, p = 0.10 
Egg mass CV 0.04 ± 0.04(21) 0.04±0.04(34) F1,53 = 0.09, p = 0.76 
Incubation length, 
days 

12.72±0.20(18) 13.03±0.16(30) F1,46 = 1.45, p = 0.23 

Time in the nest, 
days 

21.85±0.46(13) 21.29±0.32(28) F1,39 = 0.99, p = 0.32 
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Figures 

Fig. 1. Mean latency to enter the nestbox in the presence of a hawk and a dove model 

during the incubation stage of the breeding cycle for chickadees from high and low 

elevation (closed circles - low elevation, open circles - high elevation). Error bars 

represent SEM.    
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Fig. 2. Mean latency to enter the nestbox in the presence of a hawk and a dove model 

during the nestling feeding stage of the breeding cycle for birds from high and low 

elevation (closed circles - low elevation, open circles - high elevation birds). Error bars 

represent SEM.      
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Fig. 3. Flow diagram of expected results for high elevation birds based on three potential 

hypotheses. An × means that our results are not in agreement with the expected results 

while a  means our results are in agreement with expected results.   
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Ch. 3: What makes specialized food-caching mountain chickadees successful city 

slickers? 

Dovid Y. Kozlovsky, Emily A. Weissgerber, Vladimir V. Pravosudov 

 

Abstract  

Anthropogenic environments are a dominant feature of the modern world, therefore, 

understanding which traits allow animals to succeed in these urban environments is 

especially important. Overall, generalist species are thought to be most successful in 

urban environments, with better general cognition and less neophobia as suggested 

critical traits. It is less clear, however, which traits would be favored in urban 

environments in highly specialized species. Here we compared highly specialized food-

caching mountain chickadees living in an urban environment (Reno, Nevada, USA) with 

those living in their natural environment to investigate what makes this species successful 

in the city. Using a 'common garden' paradigm we found that urban mountain chickadees 

tended to explore a novel environment faster and moved more frequently, were better at 

novel problem solving, had better long-term spatial memory retention and had a larger 

telencephalon volume compared to forest chickadees. There were no significant 

differences between urban and forest chickadees in neophobia, food-caching rates, spatial 

memory acquisition, hippocampus volume, or the total number of hippocampal neurons. 

Our results partially support the idea that some traits associated with behavioral 

flexibility and innovation are associated with successful establishment in urban 

environments, but differences in long-term spatial memory retention suggest that even 

this trait specialized for food-caching may be advantageous. Our results highlight the 
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importance of environmental context, species biology, and temporal aspects of invasion 

in understanding how urban environments are associated with behavioral and cognitive 

phenotypes and suggest that there is likely no one suite of traits that makes urban animals 

successful.         

 

Introduction 

In a world subjected to ever-increasing anthropogenic activity many organisms must 

contend with urbanization. Identifying phenotypes that allow animals to be successful in 

urban environments is vital for understanding how animals will adapt, flexibly change or 

perish in the face of anthropogenic alterations. Many studies have addressed what makes 

animals successful in urban environments, focusing on traits such as ecology [1–3], 

physiology [4–10], commonness of the species in native habitat [1,11], brain size 

[2,3,12–15], cognition [16–21], and behavior [2,4,8,17,21–24]. Since urban environments 

are especially novel compared to natural environments and are characterized by an 

abundance of novel stimuli and food resources, certain behavioral and cognitive traits 

may be especially important for successful urban invasion and dwelling [20].  It has been 

suggested that individuals with behavioral traits that are often associated with bold 

behavioral profiles (e.g. fast novel environment exploration and reduced response to 

novel stimuli) will be most successful in initially invading urban environments [4,8,20], 

but over time these traits may be lost in more established urban populations [8]. Loss of 

traits associated with initial invasion in established populations may, in part, explain 

equivocal results of research on neophobia in urban populations (e.g. [21,22,25–27]). 

Furthermore, cognitive traits associated with behavioral flexibility and innovation (e.g. 
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large overall brain size and faster novel problem-solving) are also thought to increase 

success in urban environments [13,14,16,18,20,21,28]. Overall, most research has 

focused on generalists species, which are most common in the cities, yet it is unclear 

whether and how highly specialized species can be successful in urban environments.  

 Mountain chickadees (Poecile gambeli) are a resident, specialized food-caching 

species that inhabit the coniferous forests of western North America [29]. They have 

recently (within the last 25 years according to local bird watchers and historic ebird.org 

records) invaded the city of Reno, NV and appear to represent a breeding population 

(DYK and VVP personal obs.). Food-caching chickadees are pine seed specialists in the 

winter. They use cached food and recovery of cached food via spatial memory to survive 

[30–33], therefore, urban environments present unique challenges to specialized 

chickadees compared to generalist species [2,3]. The city of Reno has few native 

coniferous tree species (the preferred food and caching resource of mountain chickadees) 

and urban centers are characterized by an abundance of supplemental food sources from 

baited feeders. As a result, it is possible that urban-dwelling relaxes the demands for 

food-caching and accompanying spatial memory in urban chickadees, while increasing 

the need for generalist traits often thought to be important in urban environments.  

 Here we investigated whether mountain chickadees inhabiting urban environments 

(urban) differ from chickadees inhabiting their natural environment (forest) in behaviors 

that are thought to be necessary for initial urban invasion and successful urban dwelling. 

Specifically, we predicted that mountain chickadees from urban environments should 

explore a novel environment faster and be more active, should be less neophobic and 

better novel problem solvers, should cache less food and have worse spatial memory 
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acquisition and retention associated with smaller hippocampus, but should have a larger 

telencephalon (a measure that is highly correlated to overall brain size in chickadees 

[31,34]) compared to forest chickadees.            

 

Methods 

Study subjects and capture sites 

 Starting in late October and concluding in early November 2014 thirteen mountain 

chickadees were captured from five locations around the city of Reno, NV (elevation 

range: ca. 1375-1525m; mean urbanization score = 1.68 based on the semi-automated 

scoring program detailed in [35]; see table S1) using both mistnets at established feeders 

and baited Potter traps. These locations included a park in the downtown core near the 

University of Nevada, Reno (4 birds) and from volunteers’ backyards in South (2 birds), 

North (3 birds) and Southwest Reno (4 birds) neighborhoods. In early November 2014, 

twelve birds were captured using mistnets surrounding established feeders from low 

elevation coniferous forest (elevation range: ca. 1800-1900m; mean urbanization score = 

-2.55; table S1) at Sagehen Experimental Forest near Truckee, CA. Upon capture, birds 

were transported to our laboratory at University of Nevada, Reno where they were color 

banded, weighed and measured. Birds were housed individually in visually but not 

acoustically isolated cages (42 x 60 x 60 cm). Cage order was alternated so that birds 

from the same site were never in adjacent cages. Prior to any testing birds were 

habituated to laboratory conditions for at least two weeks with a white sheet covering 

their cages and an additional week without the sheet. Birds were fed a mixed diet of 

sunflower seeds, pine seeds, crushed peanuts, mealworms and insect pate and kept on a 9 
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h : 15 h light/dark schedule approximating Reno’s shortest winter photoperiod. Two 

additional birds were brought in early January 2015. These chickadees were habituated 

and tested in an identical fashion to all previously captured birds. Overall, our samples 

had 9 males and 3 females from urban environment and 10 males and 3 females from 

forest environments. We were unable to identify the sex of 2 birds (these were excluded 

from any analyses where sex was significant).  

 

Behavioral Experiments 

Testing room 

The first four behavioral experiments were conducted in the same testing room 

(218×373×263 cm) used in our laboratory's previous behavioral experiments [36,37]. 

Briefly, the testing room was adjacent to the bird housing rooms and birds were allowed 

into the testing room via trap doors and light manipulation [38]. Within the testing room 

there were four artificial trees (just trunks) each containing 20 perches with 

corresponding cache sites distributed equidistantly along the height of the tree (see S1 for 

testing room details). Each tree also had a top and a base, which the birds frequently 

landed on. The room also contained 12 perching blocks (9.01×4.5×4.0 cm; 6 on each of 

the shorter walls, evenly spaced) with one cache site each, making for a total of 100 

intended perching and caching sites. Each cache site could be closed via a knotted white 

string that had to be removed to inspect the content of the site. Both of the longer walls 

had a one-way window through which all birds were observed.  

 

Novel environment exploration 
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 All birds were naïve to the testing room prior to the novel environment exploration 

experiment, which began in early December 2014 and followed the same procedures as in 

[37]. Testing began one hour after lights on and ran over the following two hours each 

morning until all birds were tested. Each bird was tested individually for a period of 30 

minutes and the number of macro-substrates (i.e. the trees, the walls and the floor), the 

number of micro-substrates (i.e. the perches, planters and tree tops) used by the birds, and 

the number of flights were recorded by DYK observing through the one-way window. In 

addition to the intended perching substrates there were incidental perching substrates that 

were also counted toward micro-substrate totals. Such incidental substrates included door 

hinges, door stoppers, hinges for the trap door that allowed birds into the testing room 

and the alcove through which the bird entered the room. The number of new macro- and 

micro-substrates used by each individual were recorded cumulatively in 2-min blocks 

during the first ten minutes of the trial. This protocol took into account that the number of 

substrates were limited and expected to plateau as the trial continued. The number of 

flights (which included landing on the same substrates) were recorded cumulatively in 2-

min blocks over the entire thirty minutes of the trial, as these measures are not limited by 

the number of substrates. Birds were returned to their cages via light manipulation after 

30 minutes in the testing room.    

  

Response to novelty 

 We tested response to novelty (e.g.neophobia) in each individual’s home cage using 

an A-B-A design (same protocol used in [39,40]). Individuals were food deprived for one 

hour prior to lights off and two hours the next morning following lights on before testing. 
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All trials were video recorded. In the pre- and post-trial a familiar white feeder was 

placed on the floor of the home cage baited with a waxworm. During the neophobia trial 

the white feeder was replaced by one of four randomly assigned colored feeders with 

spokes (lime green, orange, pale pink or dark pink; Fig. 2 in [40]). The three trials 

occurred over three consecutive days (one per day). Trials ended when an individual took 

the waxworm or after thirty minutes. Latency to touch the feeder, land on the feeder, and 

take the waxworm from the feeder was scored from videos by DYK.     

 

Problem-solving  

 Problem-solving trials were conducted in the homecage using a waxworm-baited 

upside-down test tube plugged with a cotton ball and clipped to the front of each bird’s 

cage following our previous protocols (Fig. 1 in [40]). Chickadees could see the 

waxworm, but in order to solve the problem the birds had to pull the cotton plug to let the 

waxworm drop to the cage floor where it could be retrieved. Problem-solving trials were 

conducted without food deprivation as the purpose of the experiment was to test how 

birds spontaneously solve a problem when faced with a highly valued food item. Each 

trial lasted 1 h and trials were conducted twice per day (one approx. one hour after lights 

on and one at approx.1400). All trials were separated by at least four hours. Ten trials 

were given to all birds and an additional ten trials were given to individuals that failed to 

solve the problem during the first ten trials. All trials were video recorded. DYK recorded 

latency to first interact with the apparatus, the trial in which a bird first solved the 

problem, and how long it took a bird to solve the problem on the first and second trial in 

which it was solved.     
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Caching rates 

 Caching experiment methods generally followed [36]. Prior to the actual caching 

experiment, birds were given three hour-long habituation periods (once every third day) 

in the testing room (excluding the half hour period during the novel environment 

exploration experiment). Birds were food deprived for one hour prior to lights off the 

previous day and for one hour the next morning prior to beginning the caching trials. 

Each chickadee was given four trials, each separated by three days. Daily trial order was 

randomly assigned using a random number generator. Chickadees were provided with 

pine seeds, crushed peanuts and sunflower seeds (with and without the shell) in two 

bowls on either side of the testing room. Chickadees were allowed to cache for twenty 

minutes during which DYK or EAW recorded what was eaten, what was cached and 

where an item was cached. Additionally, we recorded the number of false caches (when a 

chickadee had a food item in its beak and stuck its beak in a cache site but did not cache 

the item in that location) and the number of re-caches (when a chickadee cached a food 

item and then removed it and cached the item in a new cache location).  All food was 

removed from cached sites and the floor between trials. Each chickadee was given four 

trials, each separated by three days. The number of caches was averaged over the four 

trials.  

 

One-trial associative learning task 

 A one-trial associative spatial learning task was conducted in the testing room using 

similar methods to those in [36]. Birds were food deprived one hour before lights off and 
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two hours after lights on the following morning, when trials began. A randomly chosen 

cache site (of 100 available sites) was baited with a waxworm and all cache sites were in 

the open position (knotted string not covering the cache). During the pre-trial, each bird 

was allowed into the testing chamber and the trial concluded when the bird pecked at the 

worm. The lights were immediately shut off by the experimenter (either DYK or EAW) 

and the chickadee was not allowed to eat the waxworm. Chickadees were returned to 

their cages for a 20 min retention interval, after which the birds were allowed back into 

the testing room with all cache sites closed by the knotted string. The trial lasted until a 

bird found the baited cache or thirty minutes elapsed. The number and location of each 

incorrect cache site opened was recorded. Only trials where a chickadee was successful in 

finding the waxworm were counted. Each chickadee received four trials (one every fourth 

day) each one with a unique cache site. For those birds that never found the waxworm, a 

fifth and final trial was conducted. Performance was averaged over all successful trials.    

 

Repeated associative learning task 

 A repeated associative spatial learning task followed similar protocol as in [36]. Each 

bird had a randomly chosen unique cache site (never the same cache site used in the one-

trial experiment), which was openly baited with a waxworm and remained constant 

throughout the experiment. Every chickadee was given three pre-trials where all cache 

sites were open and in these three trials a chickadee was allowed to find and eat the 

waxworm (all birds rapidly found and ate the waxworm). Each chickadee received these 

trials and the subsequent repeated association trials every other day. During the repeated 

associative learning trials, chickadees were allowed into the testing room with all cache 
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locations closed and their unique cache site containing a waxworm. Trials lasted 25 min 

or until the chickadee opened the correct cache site and ate the waxworm. Once an 

individual found the worm they were given an additional 5 min to eat the worm 

undisturbed before being returned to their cage. DYK or EAW recorded all incorrect 

cache sites a bird opened until it found the rewarded site. If an individual did not find the 

reward in a 25 min trial that trial ended and was not considered its first trial (this occurred 

with two birds). Nine trials were conducted followed by a 10th long-term retention trial 

(that occurred seventeen days after the 9th trial).  

 

Brain Histology 

 Following all behavioral experiments chickadees were anaesthetized with an 

overdose of Nembutal© and their brains were prepared for histological analysis using our 

laboratory’s well-established protocols [36,41–43]. Chickadees had their brains removed 

following a transcardial perfusion with 10 minutes of 0.1 M phosphate-buffer solution, 

then 15 minutes of 4% paraformaldehyde phosphate-buffer solution. Following brain 

removal gonadal inspection of the abdominal cavity for each bird was conducted to 

determine sex. Brains were put through a series of post-fixation solutions starting with a 

4% paraformaldehyde solution for a week then two sucrose solutions until the brains sank 

(15% and 30% sucrose, respectively). The brains were then flash frozen in dry ice and 

stored in a -80°C freezer. Brains were sectioned at 40 µm sections with a Leica c 3050s 

cryostat and every 4th section was mounted for Nissl staining. The remaining sections 

were placed in cryoprotectant and stored in a -80°C freezer. Every 12th Nissl stained 

section was used for estimating hippocampus volume and neuron numbers. Additionally, 
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every 16th section was used for estimating telencephalon volume (a measure that is highly 

correlated to overall brain size in chickadees [31,34]) using Stereo Investigator software 

and a Leica microscope fitted with a camera and connected to a computer. DYK 

measured the telencephalon and hippocampus blind to the site of origin for all brains 

using a Cavalieri estimator with a grid size of 1200 mm and 200 mm, respectively, 

following our laboratory protocols [36,43]. The total number of neurons was estimated 

using the Optical Fractionator method with a 250mm grid, a 30x30 mm counting frame, a 

5mm dissector height and a 1mm guard following our previous work [44]. Brain cells 

were classified as neurons based on the following features: 1) having 1 or 2 dark stained 

nucleoli, 2) containing nucleoplasm, and 3) having dendrites projecting from the neuron 

soma. The two brain hemispheres were measured independently and summed together for 

the overall estimate.   

 

Statistical analysis 

 STATISTICA computational software was used for all analyses. All behavioral and 

brain data analyses used t-tests and repeatedmeasures General Linear Models (GLM) and 

GLMs without repeated measures. All GLMs initially included sex as a predictor, but sex 

was always removed if it was non-significant. Data that did not meet normality 

assumptions were log-transformed. 

 

Results 

Behavioral Experiments 

Novel environment exploration 
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 There was no significant difference between forest and urban birds in the number of 

substrates visited across the first ten minutes of exploring the testing room (Repeated-

measures GLM, F1,25 = 1.19, p = 0.29; Fig. 1A) and the interaction between time interval 

and site was not significant (F4,100 = 0.18, p = 0.95). When analyzing the first two minutes 

of exploration there was a non-significant trend for urban chickadees to land on more 

novel substrates (t-testt25 = 1.78, p = 0.09; Fig. 1A).  There was a significant difference 

between forest and urban birds in the number of flights (Repeated-measures GLM, F1,25 = 

13.02, p = 0.001; Fig. 1B). The interaction between time block and site for the number of 

flights was also significant (F14,350 = 9.59, p < 0.001) with urban chickadees flying 

significantly more than forest chickadees from the 8 min time block through the end of 

the trials (Fisher's Least Significant Difference: all p's < 0.05).   

 

Response to novelty 

 All chickadees responded to the novel treatment by taking significantly longer to 

approach the novel feeder compared to control trials (Repeated-measures GLM, F8,184 = 

20.19, p < 0.0001), but there were no significant differences between urban and forest 

chickadees (F1,23 = 0.004, p = 0.9) and the interaction between within-subject (novelty vs. 

control) and site was not significant (F8,184 = 0.04, p = 0.99; Fig. 2).  

Problem-solving  

 Both urban and forest chickadees interacted with the testing apparatus within the first 

two min of the first trial with no differences between the groups (t23 = 0.12, p = 0.9). 

Urban chickadees solved the novel problem for the first time in significantly fewer trials 
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than forest chickadees (log-transformed; t23 = 2.31, p = 0.03; table 1). All forest and 

urban birds solved the problem a second time in just one trial.  

 

Caching rates 

 No significant differences were found between forest and urban chickadees for the 

mean caching rates (t25 = 1.19, p = 0.24; table 1). However, urban chickadees false 

cached significantly more often than forest chickadees (t25 = 3.01, p = 0.006; table 1) and 

there was a non-significant trend for urban birds to re-cache more compared to forest 

birds (t25 = 1.96, p = 0.06l; table 1).     

 

One-trial associative learning task 

 There were no significant differences between urban and forest chickadees in the 

mean number of errors during the one-trial associative learning task (t19 = 1.32, p = 0.20; 

table 1)  

 

Repeated associative learning task 

 Chickadees from both urban and forest environments did not differ significantly in 

number of errors during the first four trials of the repeat associative learning task 

(Repeated-measures GLM, F1,23 =  0.18, p = 0.67; Fig. 3) and there was no significant 

interaction between trial and origin of birds (F1,23 =  1.11, p = 0.35). Chickadees did, 

however, significantly improve from one trial to the next (F4,92 = 3.70, p = 0.0078; Fig. 

3). The origin of birds was not a significant predictor when memory performance was 

compared during the 9th and 10th (e.g. long term) trials (F1,21 = 1.03 p = 0.32), but there 
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was a significant interaction between trial number and bird origin (F1,21 = 4.88, p = 0.04; 

Fig. 3). The number of errors during the 10th trial after the long-term retention interval 

was significantly lower for the urban birds (F1,21 = 10.14, p = 0.004) showing better 

memory retention. Planned comparisons additionally showed the number of errors for the 

urban birds was not significantly different between the 9th and 10th (long-term) trials (p = 

0.5), while the number of errors for forest chickadees was significantly higher after the 

long-term retention interval (e.g. difference between trial 9 and 10; p = 0.001). There 

were no significant differences between the forest and the urban chickadees in number of 

errors during trial 9 preceding the long-term retention interval (p = 0.6), but forest 

chickadees inspected significantly more incorrect cache sites than urban chickadees 

during trial 10 following the long-term retention (p = 0.01).    

     

Brain Morphology 

 Bird's origin was not a significant predictor for telencephalon volume (GLM, F1,21 = 

0.012, p = 0.91), however there was a significant difference between males and females 

(F1,21 = 7.60, p = 0.01) and the interaction between bird's origin and sex was also 

statistically significant (F1,21 = 6.70, p = 0.02; Fig. 4). Including body mass in the model 

as a covariate did not change the results (birds origin: F1,19 = 0.04, p = 0.85; sex: F1,19 = 

5.88, p = 0.03; sex*origin: F1,19 = 6.72, p = 0.02) and the effect of body mass was not 

significant (F1,19 = 0.85, p = 0.37). Urban males had significantly larger telencephalon 

volume than forest males (p = 0.02) and females from either environment (urban females: 

p = 0.001; forest females: p = 0.05), however, there were no significant differences 

between urban and forest females (p = 0.14), urban males and forest females (p = 0.08) or 
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forest males and forest females (p = 0.91; Fig. 4). When just analyzing males the results 

remained highly significant, with urban males having significantly larger telencephalon 

volume than forest males (t19 = 2.75, p = 0.01). Due to much smaller sample sizes, 

females were not analyzed separately.   

 There were no significant differences between urban and forest chickadees in the 

hippocampus volume, either relative to telencephalon volume or just raw hippocampus 

volume (F1,22 = 0.22, p = 0.64 and F1,23 = 0.88, p = 0.36, respectively; table 1). 

Telencephalon volume, however, was a significant covariate (F1,22 = 5.33, p = 0.03). 

There were also no significant differences between urban and forest chickadees in total 

number of hippocampal neurons (with telencephalon volume as a covariate) or in 

hippocampal neuron density (with hippocampus volume as a covariate) (F1,22 = 0.08, p = 

0.78 and F1,22 = 0.079, p = 0.78, respectively; table 1). Telencephalon volume was not a 

significant covariate for the total number of hippocampal neurons (F1,22 = 3.35, p = 0.08), 

but hippocampus volume was a highly significant covariate (F1,22 = 72.75, p < 0.0001).   

 

Discussion 

 We found that specialized food-caching mountain chickadees inhabiting the urban 

environment of Reno, NV possessed several generalist behavioral and cognitive traits 

thought to increase success in urban environments, while also being better at some 

specialized cognitive traits. Urban chickadees had a slight tendency to explore a novel 

environment faster while also exhibiting higher movement rates, solved a novel problem 

faster, and had a larger telencephalon compared to forest chickadees, albeit the last result 

being specific only to males. Additionally, urban chickadees false cached more, tended to 
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re-cache more and showed significantly better spatial memory retention compared to 

forest chickadees. On the other hand, there were no significant differences between urban 

and forest chickadees in neophobia, food-caching rates, spatial memory acquisition, 

hippocampus volume or the total number of hippocampal neurons.  

 Succeeding in highly novel urban environments is not trivial for animals adapted to 

their natural environment. Urban environments are substantially different compared to 

natural ones and are characterized by a tremendous amount of novel stimuli. As a result, 

it has been suggested that bold personality traits such as the ability to rapidly explore a 

novel environment and reduced neophobia are critical for successful invasion into urban 

environments [4,8,20]. Our results provided only partial support for this idea; urban 

chickadees had a slight tendency to be faster explorers, but we found no evidence that 

they were less neophobic. Neophobia and exploration have been suggested to form a 

behavioral syndrome [4,45], but our results combined with our previous data comparing 

chickadees from two elevation extremes [37,40] suggest that these two traits might be 

independent, at least in mountain chickadees. Interestingly, it has been suggested that 

boldness and aggression are also independent in urban song sparrows [24], suggesting 

that behavioral syndromes may not be stable across different environments.   

 Our results showing no reduced neophobia in urban environment are not unique as 

previous studies have yielded equivocal results [21,22,25–27]. One possible reason for 

such inconsistency might be because different studies tested animals at different stages of 

invasion and establishment in urban environments. It has been suggested that faster 

exploration and reduced neophobia may only be beneficial during the early stages of 

invading an urban environments, but may be lost as animals become established [8] and 
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learn that some of the novel stimuli may be associated with increased risk, which may 

favor an increase in neophobia. This idea, however, does not seem to be consistent with 

our data, as mountain chickadees appear to be relatively new invaders to the city of Reno 

(according to local bird watchers and historic ebird.org data), so it is unlikely that these 

traits have changed over such a short period of time. However, it remains unclear which 

traits may represent necessary traits for initial invasion and which traits can be expected 

to change as a result of establishment, especially within the confines of the current study. 

Population-level, longitudinal experiments at different stages of invasion may provide 

valuable data on this hypothesis and the temporal scale of such phenotypic changes. 

Another plausible explanation for these equivocal results is that these traits are highly 

dependent on the specific species ecology and life history as well as the specific urban 

environment in question. Studies addressing sister taxa with unique ecology or life 

history and studies of intraspecific populations inhabiting different urban environments 

are necessary to address these possibilities.            

 Once initial invasion has occurred animals must contend with unique challenges 

presented by urban environments. Generalist species have been suggested to be more 

likely to succeed in urban environments [2,3]. Increased behavioral flexibility, enhanced 

innovation (as measured by problem-solving; sensu [46,47]) and a larger brain 

(associated with the aforementioned traits; [48]) are thought to benefit generalists by 

allowing them to be flexible in the face of new challenges and by allowing access to 

otherwise inaccessible resources in novel urban environments [16,18,20,21,49,50]. 

Indeed, in our study, we found that urban chickadees were better at novel problem-

solving and had larger brains (e.g. telencephalon volume) than forest chickadees. The fact 
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that all birds that solved the problem the first time, regardless of bird's origin, solved the 

novel problem a second time in just one trial clearly demonstrates that learning did occur.  

Interestingly, we found that larger brain size in urban chickadees was only evident in 

males, but not females. It is not clear why females might have smaller brains, however, 

our sample sizes for males were much larger than that for females (19 males and 6 

females, with only 3 females per group) and such small sample sizes for females may 

potentially provide spurious results.  

   Mountain chickadees are thought to rely heavily on food caches and on spatial 

memory used to recover those caches to survive [30–33]. Considering the abundance of 

supplemental food and the lack of native pine seeds in the city of Reno, we expected 

urban chickadees to have reduced caching rates and worse spatial memory acquisition 

and retention. In contrast, we found no significant difference between urban and forest 

chickadees in caching rates and spatial memory acquisition. While it remains possible 

that urban chickadees rely on their caches and spatial memory as much as forest 

chickadees other explanations are also plausible. First, it is possible that the invasion of 

Reno by chickadees was so recent that caching and spatial memory have yet to be altered 

by the demands of Reno's urban environment and that chickadees that moved to Reno 

were not inferior in food caching propensity and spatial memory ability. Second, there 

are likely no disadvantages to caching in an urban environment and if birds moving to the 

city are not different than forest birds in these abilities, there may not be strong selection 

against food caching and spatial memory.  

 Most surprisingly and in contrast to our expectations, urban mountain chickadees 

showed better spatial memory retention compared to their forest counterparts. 
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Interestingly, chickadees from harsher, high elevations also exhibited better memory 

retention compared to the lower elevation chickadees [36], like those used for this study. 

These findings suggest that urban conditions may be harsh in some respects or that longer 

memory retention in urban and harsh environments may be favored by different demands. 

Considering that supplemental food at baited feeders is likely the main food source for 

urban chickadees during the winter and that such feeders are likely permanent but widely 

spaced, retaining memory of these distanced permanent feeders might be highly 

beneficial.  

 Urban chickadees false cached more and had a tendency to re-cache more than their 

forest counterparts. False and re-caching are strategies that may help prevent cache 

pilferage via the spread of misinformation [51]. While compared to natural chickadee 

environment, the number and density of chickadees appear lower in the city of Reno 

(DYK and VVP personal obs.), it is likely that the number of other potential species 

competitors for caches is higher in the city, especially during the crucial winter months 

and therefore, urban chickadees might engage in more cache protection.              

 Overall, urban chickadees appear to be more similar to chickadees from harsher, 

higher elevations in some traits while more similar to the lower elevation chickadees that 

surround the city in other traits. Urban and high elevation chickadees are both faster 

novel problem-solvers ([40] and this study) and have longer spatial memory retention 

compared to low elevation chickadees. On the other hand, urban chickadees had a (non-

significant) tendency to explore more during the first 2 minutes of novel environment 

exploration and had significantly higher movement activity in the novel environment 

compared to low elevation chickadees, which, in turn are also faster explorers than high 
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elevation chickadees [37]. At the same time, urban chickadees were similar to low 

elevation chickadees in food caching propensity, spatial memory acquisition and 

hippocampal morphology, while chickadees from harsher, high elevations cache 

significantly more, have better spatial memory acquisition and a larger hippocampus 

[36]. The similarities and differences between these three environments highlight the 

need to understand specific environmental-mediated abiotic and biotic factors associated 

with each of these traits and could be a fruitful avenue for future work.  

 It is important to note that the city of Reno is at a lower elevation than our low 

elevation forest sites. The difference between the highest point in Reno and the lowest 

point in the forest is ca. 275m. Due to Reno's geography it was impossible to choose 

urban sites that precisely matched the elevation of forest sites and therefore, it remains 

feasible that elevation-related factors might be contributing to some of our results. There 

are several reasons, however, that this is unlikely. For one, our previous study on 

elevation-related differences in traits involved in food-caching [36] found marginal to no 

differences in hippocampus volume, the total number of hippocampal neurons, or 

hippocampal neurogenesis rates between chickadees from ca.1200m elevation (lower 

than any urban site used for this study) and chickadees inhabiting the low elevation forest 

site used for this study (1800-1900m). Most dramatic and significant differences were 

found between birds from 1800-1900m and 2400m in elevation. This makes sense as it is 

typically thought that major climate-related elevation shifts (e.g. snow storms, lower 

temperature) occur above ca. 2100m in elevation. If elevation was mediating our results, 

it would be expected that all cache-related and cognitive traits for urban chickadees 

(caching, spatial memory, problem-solving and brain morphology) would be significantly 
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lower than those of forest chickadees. Instead, we either found more similarities between 

the urban and high elevation chickadees or no significant differences. Strikingly, urban 

chickadees had larger brain size while no such differences were detected between forest 

chickadees from all elevations [36,40]. Low elevation chickadees explore significantly 

more in a novel environment compared to high elevation chickadees, however the urban 

chickadees did not explore significantly more than forest chickadees (albeit there was a 

slight trend). Elevation effects are only consistent with the results for flight activity in a 

novel environment, however for the reasons stated above it seems more likely that urban 

effects are responsible for these data.        

 These data also pose the question of whether urban environments are 'harsh 

environments' as previously suggested (e.g. [13]). While there is little doubt that urban 

environments are novel and likely less predictable than forest habitats [13], the 

abundance of stable supplemental food resources suggests that at least in some regards 

urban environments may be less harsh than natural habitats, especially during the winter. 

Caution should be taken when qualitatively labelling an environment harsh and careful 

operationalization of the term 'harsh' is necessary. Indeed, it may be detrimental to lump 

novelty with unpredictability and harshness when addressing how environments might 

favor different behavioral and cognitive phenotypes.       

 In the current study, urban and forest chickadees were brought into a 'common 

garden' laboratory setting to test for potential differences independent of immediate 

environmental conditions. Nonetheless, such design does not allow us to unambiguously 

determine whether any detected differences are due to potential differences in 

development, previous environmentally-induced behavioral plasticity or produced by 
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natural selection. Variation in at least some of these traits have been suggested to be due 

to behavioral plasticity (e.g. problem solving; [52,53]), while variation in other traits have 

been hypothesized to be produced by selection (e.g. caching propensity and spatial 

memory: [30,32]; novel environment exploration: [54]; neophobia: [22]).  

 Overall, our results show that highly specialized species can be successful in invading 

novel urban environments and suggest that such success might be associated with some 

generalist traits (e.g. flexibility and innovation, larger brain size) and some specialists 

traits (spatial memory retention). Combined with our findings of no differences between 

urban and forest birds in other traits thought to be critical for novel environments, our 

results suggest that there might not be a single set of behavioral and cognitive traits that 

predict success in novel environments. Instead, such traits might vary depending on 

species natural history and specific novel environment context. 
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Table 1. Means, standard deviations (SD) and 95% confidence intervals (95% CI).  

 Urban Forest 
 Mean ± SD 95% CI Mean ± SD 95% CI 
Problem-solving (mean 
number of trials) 

6.08 ± 7.50 1.32 -10.85 13.23 ± 8.15 8.31 - 18.15 

Caching rates 13.63 ± 6.39 9.77 - 17.49 9.58 ± 10.58 3.47 - 15.69 
False caching rates 1.23 ± 0.90 0.684 - 1.78 0.434 ± 0.407 0.199 - 0.670 
Re-caching rates 1.04 ± 1.23 0.296 - 1.78 0.375 ± 0.447 0.117 - 0.633 
One-trial Learning 
(mean number of errors) 

5.65± 6.85 0.383 - 10.91 10.08 ± 8.15 4.90 - 15.26 

Hippocampus Volume 
(mm3) 

16.28 ± 2.64 14.60 - 17.96 15.26 ± 2.75 13.60 - 16.93 

Hippocampal Neurons 1467061 ± 280981.2 1288534 - 1645588 1387271 ± 303601.7 1203806 - 1570736 
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Figures 

Fig. 1. Mean cumulative number of  (A) new micro-substrates visited during 2-min 

blocks over a 10 min period and (B) flights (including return flights to the same 

substrates during 2-min blocks over a 30 min period for urban (closed circles, dashed 

line) and forest (open circles, solid line) chickadees. Error bars represent SE.   

A.  
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Fig. 2. Latency to touch, land and take a waxworm during neophobia and control trials in 

urban (closed circles, dashed lines) and forest (open circles, solid lines) chickadees. Error 

bars represent SE.  
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Fig. 3. Mean number of errors in a repeated-trial associative spatial learning task 

(including a long-term retention trial) for urban (closed circles, dashed lines) and forest 

chickadees (open circles, solid lines). Error bars represent SE. 
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Fig. 4. Telencephalon volume for male and female chickadees in urban (closed circles, 

dashed lines) and forest (open circles, solid lines) habitats. 
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Supplemental Materials 

 

Materials and Methods 

Testing room 

The first four behavioral experiments were conducted in the same testing room 

(218×373×263 cm) used in our laboratory's previous behavioral experiments [38,37]. 

Briefly, the testing room was adjacent to the bird housing rooms and birds were allowed 

into the testing room via trap doors and light manipulation [42]. Within the testing room 

there were four artificial trees (just trunks) each containing 20 perches with 

corresponding cache sites distributed equidistantly along the height of the tree (see S1 for 

testing room details). Each tree also had a top and a base, which the birds frequently 

landed on. The room also contained 12 perching blocks (9.01×4.5×4.0 cm; 6 on each of 

the shorter walls, evenly spaced) with one cache site each, making for a total of 100 

intended perching and caching sites. Each cache site could be closed via a knotted white 

string that had to be removed to inspect the content of the site. Both of the longer walls 

had a one-way window through which all birds were observed.  

 

Novel environment exploration 

 All birds were naïve to the testing room prior to the novel environment exploration 

experiment, which began in early December 2014 and followed the same procedures as in 

[37]. Testing began one hour after lights on and ran over the following two hours each 

morning until all birds were tested. Each bird was tested individually for a period of 30 

minutes and the number of macro-substrates (i.e. the trees, the walls and the floor), the 
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number of micro-substrates (i.e. the perches, planters and tree tops) used by the birds, and 

the number of flights were recorded by DYK observing through the one-way window. In 

addition to the intended perching substrates there were incidental perching substrates that 

were also counted toward micro-substrate totals. Such incidental substrates included door 

hinges, door stoppers, hinges for the trap door that allowed birds into the testing room 

and the alcove through which the bird entered the room. The number of new macro- and 

micro-substrates used by each individual were recorded cumulatively in 2-min blocks 

during the first ten minutes of the trial. This protocol took into account that the number of 

substrates were limited and expected to plateau as the trial continued. The number of 

flights (which included landing on the same substrates) were recorded cumulatively in 2-

min blocks over the entire thirty minutes of the trial, as these measures are not limited by 

the number of substrates. Birds were returned to their cages via light manipulation after 

30 minutes in the testing room.    

  

Response to novelty 

 We tested response to novelty (e.g.neophobia) in each individual’s home cage using 

an A-B-A design (same protocol used in [39,36]). Individuals were food deprived for one 

hour prior to lights off and two hours the next morning following lights on before testing. 

All trials were video recorded. In the pre- and post-trial a familiar white feeder was 

placed on the floor of the home cage baited with a waxworm. During the neophobia trial 

the white feeder was replaced by one of four randomly assigned colored feeders with 

spokes (lime green, orange, pale pink or dark pink; Fig. 2 in [36]). The three trials 

occurred over three consecutive days (one per day). Trials ended when an individual took 
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the waxworm or after thirty minutes. Latency to touch the feeder, land on the feeder, and 

take the waxworm from the feeder was scored from videos by DYK.     

 

Problem-solving  

 Problem-solving trials were conducted in the homecage using a waxworm-baited 

upside-down test tube plugged with a cotton ball and clipped to the front of each bird’s 

cage following our previous protocols (Fig. 1 in [36]). Chickadees could see the 

waxworm, but in order to solve the problem the birds had to pull the cotton plug to let the 

waxworm drop to the cage floor where it could be retrieved. Problem-solving trials were 

conducted without food deprivation as the purpose of the experiment was to test how 

birds spontaneously solve a problem when faced with a highly valued food item. Each 

trial lasted 1 h and trials were conducted twice per day (one approx. one hour after lights 

on and one at approx.1400). All trials were separated by at least four hours. Ten trials 

were given to all birds and an additional ten trials were given to individuals that failed to 

solve the problem during the first ten trials. All trials were video recorded. DYK recorded 

latency to first interact with the apparatus, the trial in which a bird first solved the 

problem, and how long it took a bird to solve the problem on the first and second trial in 

which it was solved.     

 

Caching rates 

 Caching experiment methods generally followed [38]. Prior to the actual caching 

experiment, birds were given three hour-long habituation periods (once every third day) 

in the testing room (excluding the half hour period during the novel environment 
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exploration experiment). Birds were food deprived for one hour prior to lights off the 

previous day and for one hour the next morning prior to beginning the caching trials. 

Each chickadee was given four trials, each separated by three days. Daily trial order was 

randomly assigned using a random number generator. Chickadees were provided with 

pine seeds, crushed peanuts and sunflower seeds (with and without the shell) in two 

bowls on either side of the testing room. Chickadees were allowed to cache for twenty 

minutes during which DYK or EAW recorded what was eaten, what was cached and 

where an item was cached. Additionally, we recorded the number of false caches (when a 

chickadee had a food item in its beak and stuck its beak in a cache site but did not cache 

the item in that location) and the number of re-caches (when a chickadee cached a food 

item and then removed it and cached the item in a new cache location).  All food was 

removed from cached sites and the floor between trials. Each chickadee was given four 

trials, each separated by three days. The number of caches was averaged over the four 

trials.  

 

One-trial associative learning task 

 A one-trial associative spatial learning task was conducted in the testing room using 

similar methods to those in [38]. Birds were food deprived one hour before lights off and 

two hours after lights on the following morning, when trials began. A randomly chosen 

cache site (of 100 available sites) was baited with a waxworm and all cache sites were in 

the open position (knotted string not covering the cache). During the pre-trial, each bird 

was allowed into the testing chamber and the trial concluded when the bird pecked at the 

worm. The lights were immediately shut off by the experimenter (either DYK or EAW) 



113 
 

and the chickadee was not allowed to eat the waxworm. Chickadees were returned to 

their cages for a 20 min retention interval, after which the birds were allowed back into 

the testing room with all cache sites closed by the knotted string. The trial lasted until a 

bird found the baited cache or thirty minutes elapsed. The number and location of each 

incorrect cache site opened was recorded. Only trials where a chickadee was successful in 

finding the waxworm were counted. Each chickadee received four trials (one every fourth 

day) each one with a unique cache site. For those birds that never found the waxworm, a 

fifth and final trial was conducted. Performance was averaged over all successful trials.    

 

Repeated associative learning task 

 A repeated associative spatial learning task followed similar protocol as in [38]. Each 

bird had a randomly chosen unique cache site (never the same cache site used in the one-

trial experiment), which was openly baited with a waxworm and remained constant 

throughout the experiment. Every chickadee was given three pre-trials where all cache 

sites were open and in these three trials a chickadee was allowed to find and eat the 

waxworm (all birds rapidly found and ate the waxworm). Each chickadee received these 

trials and the subsequent repeated association trials every other day. During the repeated 

associative learning trials, chickadees were allowed into the testing room with all cache 

locations closed and their unique cache site containing a waxworm. Trials lasted 25 min 

or until the chickadee opened the correct cache site and ate the waxworm. Once an 

individual found the worm they were given an additional 5 min to eat the worm 

undisturbed before being returned to their cage. DYK or EAW recorded all incorrect 

cache sites a bird opened until it found the rewarded site. If an individual did not find the 
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reward in a 25 min trial that trial ended and was not considered its first trial (this occurred 

with two birds). Nine trials were conducted followed by a 10th long-term retention trial 

(that occurred seventeen days after the 9th trial).  

 

Brain Histology 

 Following all behavioral experiments chickadees were anaesthetized with an 

overdose of Nembutal© and their brains were prepared for histological analysis using our 

laboratory’s well-established protocols [38,43,40,41]. Chickadees had their brains 

removed following a transcardial perfusion with 10 minutes of 0.1 M phosphate-buffer 

solution, then 15 minutes of 4% paraformaldehyde phosphate-buffer solution. Following 

brain removal gonadal inspection of the abdominal cavity for each bird was conducted to 

determine sex. Brains were put through a series of post-fixation solutions starting with a 

4% paraformaldehyde solution for a week then two sucrose solutions until the brains sank 

(15% and 30% sucrose, respectively). The brains were then flash frozen in dry ice and 

stored in a -80°C freezer. Brains were sectioned at 40 µm sections with a Leica c 3050s 

cryostat and every 4th section was mounted for Nissl staining. The remaining sections 

were placed in cryoprotectant and stored in a -80°C freezer. Every 12th Nissl stained 

section was used for estimating hippocampus volume and neuron numbers. Additionally, 

every 16th section was used for estimating telencephalon volume (a measure that is highly 

correlated to overall brain size in chickadees [31,34]) using Stereo Investigator software 

and a Leica microscope fitted with a camera and connected to a computer. DYK 

measured the telencephalon and hippocampus blind to the site of origin for all brains 

using a Cavalieri estimator with a grid size of 1200 mm and 200 mm, respectively, 
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following our laboratory protocols [38,41]. The total number of neurons was estimated 

using the Optical Fractionator method with a 250mm grid, a 30x30 mm counting frame, a 

5mm dissector height and a 1mm guard following our previous work [44]. Brain cells 

were classified as neurons based on the following features: 1) having 1 or 2 dark stained 

nucleoli, 2) containing nucleoplasm, and 3) having dendrites projecting from the neuron 

soma. The two brain hemispheres were measured independently and summed together for 

the overall estimate.   

 

Tables and Figures 

Figure ESM1. Labelled picture of the testing room.   
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Figure ESM2. Mean cumulative number of new micro-substrates visited during 2-min blocks 

over a 10 min period for urban (closed circles, dashed lines) and forest (open circles, 

solid lines). Error bars represent SE. 
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Figure ESM3. Latency to touch, land and take a waxworm during neophobia and control 

trials in urban (closed circles, dashed lines) and forest (open circles, solid lines) 

chickadees. Error bars represent SE  .  
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Table ESM1. The urbanization index used a semi-automated program designed by Seress et al. 

(2014). This index draws a 1 km x 1 km grid around a given location and breaks the grid into 10 

m x 10 m cells. Within each cell the proportion of buildings and vegetation is calculated and the 

presence (a score of 1) and absence (a score of 0) of paved surfaces (R) is determined. Buildings 

(B) and Vegetation (V) can have values of 0 (percent cover is 0), 1 (percent cover is 0 > and ≤ 

50%) and 2 (percent cover > 50%). Six summary statistics are calculate based on these values: 

the number of cells where B = 2 (>50%), number of cells where V = 2 (>50%), number of cells 

were paved surfaces are present (i.e. R = 1), mean building value (i.e. Avg. B; range = 0-2), mean 

vegetation value (i.e. Avg. V; range = 0-2) and an urbanization score (D; calculated as PC1 from a 

principal component analysis for the five aforementioned variables). For additional details see 

Seress et al. (2014).  

 At each location (5 urban and 3 forest) the program was trained by choosing 5 examples for 

each of the 3 land-cover characteristics (buildings, vegetation and paved surfaces). Table values 

represent the mean scores for the urban (range = 0.18 - 3.29) and the forest (all D's =   

-2.55).          

Site           B = 2             V = 2           R = 1           Avg. B          Avg. V          D 
Urban 52 35.25 71 1.34 1.3325 1.68 
Forest 0 100 0 0 2 -2.55 
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Table ESM2. Means, standard deviations (SD) and 95% confidence intervals (95% CI).  

 Urban Forest 
 Mean ± SD 95% CI Mean ± SD 95% CI 
Problem-solving (mean 
number of trials) 

6.08 ± 7.50 1.32 -10.85 13.23 ± 8.15 8.31 - 18.15 

Caching rates 13.63 ± 6.39 9.77 - 17.49 9.58 ± 10.58 3.47 - 15.69 
False caching rates 1.23 ± 0.90 0.684 - 1.78 0.434 ± 0.407 0.199 - 0.670 
Re-caching rates 1.04 ± 1.23 0.296 - 1.78 0.375 ± 0.447 0.117 - 0.633 
One-trial Learning (mean 
number of errors) 

5.65± 6.85 0.383 - 10.91 10.08 ± 8.15 4.90 - 15.26 

Hippocampus Volume 
(mm3) 

16.28 ± 2.64 14.60 - 17.96 15.26 ± 2.75 13.60 - 16.93 

Hippocampal Neurons 1467061 ± 280981.2 1288534 - 1645588 1387271 ± 303601.7 1203806 - 1570736 
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Table ESM3. Regression analyses between elevation within the urban environment and response variables. + is statistically significant 

 b* SE of b* t df p 

Novel environment 
exploration 

0.7 0.20 3.76 11 0.003+ 

Flights in novel environment 0.4 0.28 1.40 11 0.2 

Neophobia 0.2 0.31 0.81 10 0.4 

Problem-solving (log-
transformed) 

0.50 0.27 1.85 10 0.09 

Caching rates 0.020 0.30 0.066 11 0.9 

False caching rates -0.14 0.30 0.48 11 0.6 

Re-caching rates -0.26 0.29 0.88 11 0.4 

One-trial learning 0.13 0.37 0.34 7 0.7 

Long-term Retention -0.2 0.31 0.66 10 0.5 

Telencephalon Volume 0.43 0.28 1.52 10 0.16 

Hippocampus Volume 0.2 0.31 0.65 10 0.5 

Hippocampal Neurons 0.2 0.31 0.65 10 0.5 
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Conclusion 

The results of my dissertation demonstrate variation for some cognitive and behavioral 

traits in different environments, while other traits were similar across environmental 

contexts. This suggests that environments that have different environmental factors are 

associated with some unique and other overlapping traits. In chapter 1, I found that 

mountain chickadees from high elevation had better problem-solving ability compared to 

birds from low elevation but no significant difference in response to novelty was 

detected. In chapter 2, I tested three hypotheses related to parental investment vs. self-

investment when adults are faced with increased perceived risk of predation during 

reproduction and found that parents with better cognition (both spatial memory and 

problem-solving ability) at high elevation were less willing to take a risk to themselves 

even if that negatively impacted their reproductive opportunity compared to low 

elevation individuals. This suggests that there may exists a cognition and risk-taking 

trade-off. In chapter 3, I addressed what behavioral traits make specialized food-caching 

animals successful in an urban environment and the results suggested that many 

generalist behavioral traits as well as a couple specialist behavioral traits are associated 

with chickadee's success in the urban environment. 

 The results of this dissertation in combination with previous work on food-caching 

chickadees from different environments (Freas et al. 2012; Kozlovsky et al. 2014a, b; 

Roth et al. 2010; Roth & Pravosudov 2009) provide striking comparisons in cognitive 

and other behavioral traits between animals from environments that differ in climatic 

harshness and those that differ in anthropogenic activities. Some traits, such as response 

to novelty, were similar across short spatial scales (i.e. across urbanization and 
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elevational gradients), yet were different across latitudes (Roth et al. 2010). This suggests 

that some other feature of latitudes besides climatic harshness may be driving this 

difference across such a large spatial scale. Other traits (e.g. novel problem-solving 

ability, long-term spatial memory), appear to be associated with success in both highly 

urbanized environments and harsh environments, but not in more mild environments. 

While still others (e.g. food-caching rates, spatial memory acquisition, hippocampus 

morphology) are statistically similar between animals from urbanized environments and 

more mild environments, but success at high latitudes (Roth et al. 2010; Roth & 

Pravosudov 2009) and high elevations (Freas et al. 2012) are associated with 

enhancement in those traits. For novel environment exploration, urbanized animals 

appear to be more active than animals from milder environments which are more active 

than animals from harsher environments. Interestingly, overall brain size appears to be 

uniquely associated with each environment, with chickadees from high latitudes having 

large brains then those from low latitudes, chickadees from the two elevations having 

similar brain sizes and there being a sex difference in associations of brain size with 

urban and natural environments.   

 While the resulting comparisons across different environments provide clues to what 

traits may be beneficial under different environmental conditions, the exact association 

between these traits and the given multitude of environmental factors remains poorly 

understood. Future laboratory ‘common garden’ experiments, tightly controlled field 

experiments, longitudinal studies, and broad-scale comparative studies should attempt to 

tease apart what specific environmental factors cause changes in specific behavioral and 

cognitive traits (as well as other phenotypes). Understanding this causal relationship will 
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allow scientists to better identify and predict what species and populations are most likely 

to succeed and what traits these animals are likely to possess in environments that are 

changing naturally and anthropogenically across space and time. 

 Additional research is also needed to identify what traits are different across 

environmental gradients because of natural selection and what traits are different because 

of phenotypic plasticity. The difference is potentially important for many reasons. Firstly, 

the temporal dynamics of phenotypic changes are drastically different between the two 

mechanisms. Phenotypic plasticity occurs quickly within individuals, whereas the process 

of natural selection causes differences in the population norm of a given phenotype over 

generations (e.g. Chevin et al. 2013). These differences between plasticity and response 

to selection have potentially huge impacts on how organisms and populations can 

respond to rapid changes in the environment, as well as the ability of organisms or 

populations to establish in novel environments. A hypothetical example can be illustrated 

using an organism possessing a single trait with two forms. If one form of this trait is 

vital in natural environments and another is vital in urbanized environments and the 

difference between the two forms is a result of phenotypic plasticity, then most 

individuals that contend with the rapid onset of urbanization would quickly respond to 

this environmental perturbance and will therefore, have a high chance of successfully 

establishing in the new urban environment, resulting in a large and strong urban 

population. However, if these two forms differed because of natural selection then only 

those individuals that possess the genes for the urban-adapted behavior will be able to 

succeed and reproduce in the novel urban environment. Since the natural form is vital for 

the original environment, this urban form will likely be less common and therefore (at 
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least initially) the new urban population will likely be small and may only become a well-

established over successive generations. Obviously, this is a highly oversimplified 

example, however, it highlights a potential importance of understanding what traits are 

adaptive and what traits are phenotypically plastic. A second reason these differences are 

important is that phenotypic plasticity itself may affect an individual’s ability to survive 

and reproduce and therefore may impact what traits are selected and how individual’s 

may respond to selective forces (e.g. Grenier et al. 2016; Forsman 2015). A third reason 

is that certain environments (such as those that are predictably unpredictable or 

predictably variable) may be more often associated with phenotypically plastic traits than 

traits that are under strong selection, as drastic swings in environmental factors may relax 

selection on any one suite of rigid (non-plastic) traits which would therefore allow 

scientists to make better hypotheses about the mechanisms and types of traits associated 

with these different environments.  

 To conclude, spatial and temporal environmental heterogeneity are associated with 

differences in cognitive and other behavioral traits that have potentially important 

implications for an animal’s fitness. The impact of these behavioral differences depends 

on a multitude of factors such as, the specific environmental context, species ecology, 

and species life history. While environmental-associated differences in behavior, in 

general, and cognition in particular, are well studied both theoretically and empirically 

(including this dissertation), the causal relationship between environment, behavior, 

cognition, and fitness remain poorly understood.     
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