
 

 

University of Nevada, Reno 

 

 

 

Genetic Engineering of Plant Seeds to Increase Thiamin (Vitamin B1) 

Content 

 

 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Cell and Molecular Biology 

 

 

by  

Mohammad Yazdani 

 

 Dr. David Shintani/Dissertation Advisor  

 

December, 2015



 

 

 
 

 

We recommend that the dissertation 

prepared under our supervision by 

 

MOHAMMAD YAZDANI 

 

Entitled 

 

Genetic Engineering of Plant Seeds to Increase Thiamin (Vitamin B1) Content 

 

be accepted in partial fulfillment of the  

requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

 

David Shintani, Advisor 

 

 

Jeff Harper, Committee Member 

 

 

Ian Wallace, Committee Member 

 

 

Gary Blomquist, Committee Member 

 

 

Stanley Omaye, Graduate School Representative 

 

 

David W. Zeh, Ph. D., Dean, Graduate School 

 

   December,  2015 

 

THE GRADUATE SCHOOL 



 

 
 

i 

ABSTRACT 

Thiamine (Vitamin B1) in the form of thiamine pyrophosphate (TPP) is an essential 

cofactor for the function of numerous enzymes which are involved in central metabolism 

such as citric acid cycle, pentose phosphate pathway, Calvin cycle, isoprenoid 

biosynthesis, and branched-chain amino acid biosynthesis. All living organisms need 

thiamine. However, human and animals can synthesize TPP from thiamine, but they are 

not able to synthesize thiamine de novo. Therefore, human and animals must obtain 

thiamine from their diet to maintain a normal metabolism. Severe thiamine deficiency 

causes the lethal disease beriberi and Wernicke-Korsakoff syndrome in humans. The 

enzymes involved in thiamine de novo biosynthesis pathway are well known in 

microorganisms and plants, but little is known regarding the salvage pathways in plants. 

In order to have better insight about the thiamine salvage pathways in plants, the 

homologs of bacterial ThiM (thiazole kinase) were analyzed. It has been revealed that 

this protein in plants has thazole kinase activity which is important for thiamine salvage. 

In addition, analyzing the TenA_E proteins in plants shows that these proteins have 

amidohydrolase and aminohydrolase activity to form 4-amino-5-hydroxymethyl-2-

methylpyrimidine (HMP) from the salvage of thiamine breakdown products. Thiamine 

plays a vital role in resistance against biotic and abiotic stresses in plants in addition to its 

role as a cofactor. It has been shown that elevated levels of thiamine content achieved by 

the seed overexpression of Thi4, ThiC, and ThiE genes can enhance the seed germination 

and seedlings viability under abiotic stress conditions. Additionally, thiamine and TPP 

over-producing lines shows altered seed carbon partitioning. 
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CHAPTER 1 

Overview of thiamin metabolism in living organisms 

 

INTRODUCTION 
Thiamin (Vitamin B1) in the form of cofactor thiamin pyrophosphate (TPP) is an 

essential metabolite for the function of numerous enzymes involved in carbohydrate, 

isoprenoid, lipid, and amino acid metabolism in living organisms (Krampitz, 1969; 

Jordan, 2003; LeClere et al., 2004; Nosaka, 2006; Goyer, 2010).  

While thiamin can be synthesized by plants and microorganisms but animals are 

not able to synthesize this vitamin de novo. Hence, it must be taken up from their diet to 

drive their metabolism properly (Jurgenson et al., 2009; Yazdani et al., 2013). The 

enzymes in the human body can convert thiamin mono- and pyrophosphate into free 

thiamin which is the absorbable form of thiamin (Said and Mohammed, 2006). Vitamin 

B1deficiency have been associated with human disorders including beriberi (Lonsdale, 

2006), alcoholic ketoacidosis, Wernicke-Korsakoff syndrome and Alzheimer’s disease 

(Mimori et al., 1996).  

Thiamin biosynthesis in various organisms 

In organisms with the capability of synthesizing Vitamin B1, thiamin 

monophosphate (TMP) is produces by combining 4-amino-5-hydroxymethyl-2-

methylpyrimidine pyrophosphate (HMP-PP) and 4-methyl-5-(β-hydroxyethyl) thiazole 

phosphate (HET-P) (Begley et al., 1999). TMP is then converted to the cofactor form, 

TPP, either by direct phosphorylation in enteric bacteria (rod-shaped Gram-negative 
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bacteria) (Cummings and MacFarlane, 1997) or by de-phosphorylation to thiamin 

followed by pyrophosphorylation in aerobic bacteria, yeast (Spenser e al., 1997) and 

plants (Roje, 2007). The two heterocyclic precursors of thiamin pyrophosphate, HMP-PP 

and HET-P, are biosynthesized through independent pathways. 

Bacteria:  

In enteric bacteria, (i.e. E.coli), HMP-PP is derived from 5-aminoimidazole 

ribonucleotide (AIR), a precursor shared between thiamin and de novo purine 

biosynthesis (Estramareix and Therisod, 1984; Estramareix and David, 1990). 

Hydroxymethylpyrimidine phosphate (HMP-P) synthase (ThiC) is essential for the 

conversion of AIR to HMP-P (Vanderhorn et al., 1993). HMP-P is subsequently 

phosphorylated to HMP-PP by ThiD (ThiE) which is a bifunctional enzyme with kinase 

activity (Roje, 2007).  

Bacteria can synthesize HET-P using cysteine, 1-deoxy-D-xylulose-5-phosphate 

(DXP), and tyrosine (in E. coli and Salmonella typhimurium) or glycine (in Bacillus 

subtilis) in a complex reaction catalyzed by several enzymes (Settembre et al., 2003; 

Dorrestein et al., 2004; Begley, 2006). The enzymes ThiFSGH (Begley et al., 1999), ThiI 

(Palenchar et al., 2000), and IscS (Lauhon et al., 2000) are involved in thiazole formation 

(figure 2). Cys has been identified as the precursor of the thiazole sulfur atom. The sulfur 

atom is initially transferred to IscS, a cysteine desulfurase (Zheng et al., 1994), in the 

form of a persulfide of an active site Cys residue (Flint, 1996). The sulfur atom is then 

passed to ThiI (Webb et al., 1997) as a persulfide of residue Cys-456 (Palenchar et al., 

2000). The sulfur atom is then transferred to the C terminus of ThiS, converting it to a 

thiocarboxylate. This final sulfur transfer reaction requires the activation of ThiS as its 



 

 
 

3 

acyladenylate. The adenylation reaction is catalyzed by ThiF, which has been observed to 

form a complex with ThiS (Taylor et al., 1998a). Finally, tyrosine is converted to 

dehydroglycine by ThiH (tyrosine lyase). The thiocarboxy C terminus of ThiS, DXP, and 

dehydroglycine are all combined together by ThiG (thiazole synthase) to form thiazole 

phosphate (Jurgenson et al., 2009). 

 

 

 

Figure 1: De novo HET-P biosynthesis pathway in bacteria. In contrast to yeast and 

plants, in bacteria six different enzymes are involved to synthesize thiazole phosphate.  
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Yeast: 

Like all thiamin-synthesizing organisms, yeasts first separately synthesize two 

precursors, HET-P and HMP-PP, which are then condensed into TMP. This organism can 

use cysteine as a sulfur donor, glycine, and D-pentulose-5-phosphate as substrates for 

thiazole synthesis enzyme to synthesize HET-P. The D-pentulose-5-phosphate can be 

substitute with D-ribulose-5-phosphate or DXP, which show the link between thiamin 

biosynthesis and the pentose phosphate pathway (Hohmann and Meacock, 1998). A 

mechanism of thiazole synthesis was also proposed by Chatterjee et al. (2007).  In this 

mechanism NAD
+
 is a source for a five-carbon carbohydrate and the intermediate is an 

ADP adduct of 5-(2-hydroxyethyl)-4-methylthiazole-2-carboxylic acid.  

HMP-P is synthesized in yeast cells by the enzyme Thi5 (Hohmann and Meacock, 

1998) from histidine and pyridoxal-5-phosphate. The thiamin and vitamin B6 

biosynthesis pathways are linked by Pyridoxal-5-phosphate (Zeidler et al., 2003). The 

next step is the phosphorylation by Thi20 enzyme to produce HMP-PP which is 

condensed with HET-P by a bifunctional enzyme Thi6 to form TMP (Hohmann and 

Meacock, 1998).  

Yeasts are not able to do direct phosphorylation of TMP to obtain the TPP. 

Hence, TMP first is dephosphorylated to thiamin. The thiamin is then phosphorylated to 

form TPP (Nosaka et al., 1993). Yeast can also uptake the free thiamin from the 

environment to produce TPP (Enjo et al., 1997).  

Plants:  

In plants, the pyrimidine moiety of thiamin is synthesized via a pathway which is 

identical to bacterial pathway. The first step is the conversion of AIR to HMP-P which is 
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catalyzed by ThiC and requires S-adenosylmethionine (SAM) and reduced nicotinamide. 

The HET-P biosynthesis pathway in plants and yeasts is similar (Chatterjee et al., 2007, 

2008b). Thi4 is the only enzyme involved in thiazole biosynthesis which has been 

identified so far in eukaryotes. Sequence homologs of the yeast Thi4 were also found in 

some plants such as Zea mays (Belanger et al., 1995), Alnus glutinosa (Ribeiro et al., 

1996), Arabidopsis thaliana (Machado et al., 1996), and Oryza sativa (Wang et al., 

2006). Thi4 cDNAs from Z. mays, A. glutinosa, and A. thaliana could complement the 

Thi4 yeast mutant deficient in Thi4. In addition, Arabidopsis tz (thiazole requirement) 

mutants are chlorotic and die early during development unless supplemented with 

thiazole or thiamin (Feenstra, 1964; Redei, 1965). Experimental evidence supports 

localization of HET-P biosynthesis in plastids via the yeast pathway (Julliard and Douce, 

1991), as putative Thi4 from Z. mays (Belanger et al., 1995) and A. thaliana (Chabregas 

et al., 2001) were detected in these organelles using immunogold labeling. Thi4 was also 

detected in mitochondria in A. thaliana (Chabregas et al., 2001, 2003), suggesting these 

organelles as another site of HET-P biosynthesis in some plants.  

In addition to their role in thiamin biosynthesis, Thi4 from Arabidopsis and yeast 

were shown to be involved in mitochondrial DNA damage tolerance (Machado et al., 

1996, 1997). Therefore, the dual targeting of Thi4 enables this enzyme to function in 

protection against DNA damage when targeted to mitochondria (Chabregas et al., 2001, 

2003) and to function in thiamin biosynthesis when targeted to chloroplasts (Julliard and 

Douce, 1991; Belanger et al., 1995; Chabregas et al., 2001).  
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 Figure 2: Thiamin biosynthesis pathways in different organisms. Plants synthesize HET-

P and HMP-PP via the yeast and bacterial pathway, respectively. The noticeable feature 

of the pathway is that the Thi4 uses itself as sulphur donor for thiazole formation 

(Chatterjee et al., 2011).  

 

 

THIAMIN DEGRADATION AND SALVAGE 

Two classes of enzymes responsible for the thiamin degradation were identified in 

bacteria. These two enzymes are different in sequence and structure and comprise 

TPK 
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thiaminase I and II (TenA) which are able to break the thiamin down to its thiazole and 

pyrimidine moieties (Jurgenson et al., 2009). In addition, thiaminases have different 

substrates for cleavage of the C-N bond between thiazole and pyrimidine heterocyclic 

rings in thiamin structure (Jurgenson et al., 2009). While thiaminase II only uses H2O for 

thiamin degradation, thiaminase I degrades thiamin using the exchange of the thiazole 

ring with some molecules such as pyridine, cysteine, aniline, quinolone and dithiothreitol 

(Lienhard, 1970; Costello et al., 1996; Jurgenson et al., 2009). In bacteria such as 

Bacillus subtilis it has been shown that thiaminase II functions in the regeneration of the 

pyrimidine moiety of thiamin rather than in thiamin degradation (Jenkins et al., 2007). 

Although the significance of thiaminase II in salvaging of pyrimidine has been shown in 

bacteria (Jenkins et al., 2007) and yeast (Onozuka et al., 2008), the physiological 

significance of thiamin degradation has not been fully identified in bacteria (Fitzpatrick 

and Thore, 2014) and plants (Goyer, 2010).  

Because of thiamin and TPP instability (McCourt et al., 2006, Fitzpatrick et al., 

2012), microorganisms and plants have developed salvage mechanism to re-use the 

thiamin degradation products (thiazole and pyrimidine) for thiamin biosynthesis 

(Jurgenson et al., 2009)to save the metabolic cost of HET-P and HMP-PP re-synthetizing. 

Resent studies in fungi have shown that the Thi4 (HET-P synthase) is a single turnover 

(suicidal) enzyme which donates a sulfur atom from an active site Cys residue to the 

synthesis of HET-P (Chatterjee et al., 2011) therefore the production of a single thiazole 

molecule irreversibly inactivates HET-P synthase. Consequently, this makes de novo 

thiazole biosynthesis though Thi4 costly in metabolic terms (Praekelt et al., 1994). As 

http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0090
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0045
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0045
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such, thiazole salvage in fungi and plants is highly energetically beneficial (Chatterjee et 

al., 2011; Gerdes et al., 2012; Yazdani et al., 2013).  

Toward this end, the enzyme, thiazole kinase (ThiM) has been shown to convert 

salvaged thiazole to thiazole phosphate which can be condensed with HMP-PP to reform 

thiamin monophosphate (Jurgenson et al., 2009). HET kinase has been thoroughly 

biochemically characterized in Bacillus subtilis (Zhang et al., 1997; Campobasso et al, 

2000) and Salmonella typhimurium (Petersen and Downs, 1997). The gene encoding the 

plant HET kinase has recently been identified and the corresponding enzyme has been 

functionally characterized (Yazdani et al, 2013).  

Enzymes involved in HMP-PP recycling have also just recently identified in 

plants. These enzymes share a high degree of amino acid sequence similarity with the 

TenA protein family. In Arabidopsis, TenA_E has been shown catalyze the convertion of 

the thiamin degradation products N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine 

(formylamino-HMP) and 4-amino-5-aminomethyl-2-methylpyrimidine (amino-HMP) to 

HMP (Zallot et al., 2014).  

ROLE OF THIAMIN IN STRESS TOLERANCE 

Abiotic stresses such as drought, salinity, extreme temperatures, chemical toxicity 

and oxidative stress are serious threats to agriculture. Abiotic stress is the main cause of 

crop loss and is attributed to reducing crop yields globally by more than 50% (Boyer, 

1982; Bray et al., 2000). Furthermore, these stresses can cause morphological, 

physiological, biochemical and molecular changes which adversely affect plant growth 

and productivity (Wang et al. 2001a).  
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In addition to its role as a cofactor, thiamin has been demonstrated to play a key 

role in biotic and abiotic stresses in plants (Ahn et al., 2005; Dong et al., 2015; Sayed and 

Gadallah, 2002; Tunc-Ozdemir et al., 2009; Conrath et al., 2002).  In relashonship to 

biotic stresss, Ahn and co-workers (2005) defined a novel function for thiamin in plants 

as a defense activator against biotic stresses. They reported that application of thiamin to 

rice, tobacco, tomato, cucumber, and Arabidopsis triggers the expression of the genes 

involved in systemic acquired resistance and could inhibit diseases caused by 

semibiotrophic and biotrophic pathogens. Additionally, it has been recently reported that 

overexpression of Thi4 and ThiC genes using constitutive promoters in Arabidopsis 

plants could increase the leaves total thiamin content up to 3.4-fold and after inoculation 

of these plants with Pseudomonas syringae, the plants had lower populations of this 

pathogen compared to the wild type plants (Dong et al., 2015). 

Regarding abiotic stresses, several studies have shown that plants respond to 

stress by increasing thiamin biosynthesis. Tunc-Ozdemir et al, (2009) demonstrated that 

various abiotic stress treatments including high salt, drought, high_light and, paraquat 

treatment; include plants to synthesize elevated levels of thiamin. This stress induced 

increase thiamin was shown to correlate with increased gene expression of thiamin 

biosynthetic genes. Additionally, Rapala-Kozik et al, (2008) showed that the thiamin 

content of Zea mays seedlings increased under drought, high salt, and oxidative stress 

conditions and this increase was accompanied by an increase in the activity of some 

thiamin biosynthetic enzymes. 

These observations suggest a rolr for thiamin in abiotic stress tolerance. In 

support this idea, Sayed and Gadallah, (2002) showed that the application of thiamin on 
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shoot and root of salt-stressed sunflower plants could alleviate the detrimental effects of 

salt stress on plant growth by improving of cell membrane integrity and K
+ 

uptake. Tunc-

Ozdemir et al. (2009) later showed that the exogenous application of thiamin could 

protect Arabidopsis from paraquat induced oxidative damage. The authors discuss the 

possibility that thiamin pyrophosphate (TPP) could be a critical factor in plant stress 

tolerance as its levels were higher than the free thiamin and TMP. This could be related 

to the role of TPP in the production of the reductants NADH and NADPH to combat 

oxidative stress damage (Tunc-Ozdemir et al., 2009; Rapala-Kozik et al., 2012).   

Taken together, the data regarding the effects of thiamin on biotic and abiotic 

stress tolerance is mostly based on the results obtained from feeding studies using the 

exogenous thiamin in bacteria, yeasts, and plants growth medium and also based on the 

complementation assays using thiamin biosynthetic genes in the thiamin mutants of 

various living organisms.      
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ABSTRACT 

The breakdown of thiamin (vitamin B1) and its phosphates releases a thiazole 

moiety, 4-methyl-5-(2-hydroxyethyl)thiazole (THZ), that microorganisms and plants are 

able to salvage for re-use in thiamin synthesis. The salvage process starts with the ATP-

dependent phosphorylation of THZ, which in bacteria is mediated by ThiM. The 

Arabidopsis and maize genomes encode homologs of ThiM (At3g24030 and 

GRMZM2G094558, respectively). Plasmid-driven expression of either plant homolog 

restored the ability of THZ to rescue Escherichia coli thiM deletant strains, showing that 

the plant proteins have ThiM activity in vivo. Enzymatic assays with purified 

recombinant proteins confirmed the presence of THZ kinase activity. Furthermore, 

ablating the Arabidopsis At3g24030 gene in a thiazole synthesis mutant severely 

impaired rescue by THZ. Collectively, these results show that ThiM homologs are the 

main source of THZ kinase activity in plants and are consequently crucial for thiamin 

salvage. 

http://www.sciencedirect.com/science/article/pii/S0031942213001994
http://www.sciencedirect.com/science/article/pii/S0031942213001994
http://www.sciencedirect.com/science/article/pii/S0031942213001994
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http://www.sciencedirect.com/science/article/pii/S0031942213001994
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INTRODUCTION 

Thiamin (vitamin B1), as its active diphosphate form, is an essential cofactor for 

various enzymes that make or break C–C bonds (Müller et al., 2009b). Plants and most 

microorganisms can synthesize thiamin de novo, but animals cannot and thus require it in 

the diet (Jurgenson et al., 2009). The de novo biosynthesis pathway and most of the 

enzymes involved are known in microorganisms and plants (Jurgenson et al., 

2009 and Goyer, 2010). In this pathway, the thiazole and pyrimidine moieties of thiamin 

are made separately and coupled together to form thiamin phosphate, which is then 

converted to the diphosphate. The plant thiamin biosynthesis pathway is shown in Figure 

1.  

Thiamin and thiamin diphosphate are chemically and enzymatically labile 

(McCourt et al., 2006, Goyer, 2010 and Fitzpatrick et al., 2012), and microorganisms and 

plants have the capacity to re-use the thiazole and pyrimidine fragments from thiamin 

breakdown for thiamin synthesis (Li and Rédei, 1969 and Jurgenson et al., 2009). For the 

thiazole moiety, 4-methyl-5-(2-hydroxyethyl)thiazole (THZ), the key salvage step is 

phosphorylation to give 4-methyl-5-(2-phosphonooxyethyl)thiazole (THZ-P) (Figure. 1). 

http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0105
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0065
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0065
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0065
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0055
http://www.sciencedirect.com/science/article/pii/S0031942213001994#f0005
http://www.sciencedirect.com/science/article/pii/S0031942213001994#f0005
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0090
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0055
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0045
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0085
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0065
http://www.sciencedirect.com/science/article/pii/S0031942213001994#f0005
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Figure 1: Thiamin biosynthesis and salvage pathways that occur in plants. Enzymes are 

identified by their gene names in E. coli or yeast, as follows: ThiC, 

phosphomethylpyrimidine synthase; ThiD, phosphomethylpyrimidine kinase; ThiE, 

thiamin-phosphate diphosphorylase; THI4, single turnover thiazole biosynthesis enzyme; 

ThiM, thiazole kinase; THI80, thiamin diphosphokinase. Compounds: AIR, 5-

aminoimidazole ribotide; HMP-P, 4-amino-5-hydroxymethyl-2-methylpyrimidine 

phosphate; HMP-PP, 4-amino-5-hydroxymethyl-2-methylpyrimidine diphosphate; THZ, 

4-methyl-5-(2-hydroxyethyl)-thiazole; THZ-P, 4-methyl-5-(2-

phosphonooxyethyl)thiazole; Thiamin-P, thiamin monophosphate; Thiamin-PP, thiamin 

diphosphate (9). Note that in E. coli THZ-P is made by a different route (not shown) that 

involves ThiG, ThiH, and ThiS. 
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The THZ kinase (EC 2.7.1.50) responsible for this step is encoded by thiM in 

Escherichia coli and other bacteria, and by the 3′ region of THI6 in Saccharomyces 

cerevisiae (Mizote and Nakayama, 1989, Nosaka et al., 1994, Jurgenson et al., 

2009 and Paul et al., 2010). Nothing is yet known, however, about the THZ kinase 

enzyme in plants and the plant THZ kinase gene has not been identified (Goyer, 2010). 

Identifying this gene has become particularly worthwhile in light of the recent realization 

that THZ salvage in fungi and plants is highly energetically beneficial (Chatterjee et al., 

2011 and Gerdes et al., 2012). The THZ synthesis protein THI4 (Figure 1) is a single-

turnover enzyme from which a cysteine residue provides the THZ sulfur atom (Chatterjee 

et al., 2011), so that producing a single THZ molecule irreversibly inactivates a THI4 

polypeptide, comprised of ∼350 amino acids. Therefore, each THZ molecule salvaged in 

effect saves the energy cost of re-synthesizing a whole 350-residue protein. 

Here, the Arabidopsis and maize (Zea mays) THZ kinase genes were identified by 

demonstrating that ThiM homologs from these plants can functionally replace E. coli 

ThiM, that the recombinant plant proteins have THZ kinase activity, and that ablating the 

Arabidopsis gene results in severe loss of ability to salvage THZ from the medium. 

EXPERIMENTAL 

Bioinformatics 

The sequence of maize ThiM was from Maizesequence.org 

(http://maizesequence.org/index.html); other sequences were from NCBI or the Joint 

Genome Institute (http://www.jgi.doe.gov/). Sequence alignments were made with 

ClustalW and phylogenetic trees were constructed using MEGA5 (Tamura et al., 2011). 

Comparative analysis of bacterial genomes was made using the SEED database and its 

http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0095
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0115
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0065
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0065
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0125
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0055
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0025
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0025
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0050
http://www.sciencedirect.com/science/article/pii/S0031942213001994#f0005
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0025
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0025
http://maizesequence.org/index.html
http://www.jgi.doe.gov/
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0150
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tools (http://pubseed.theseed.org/) (Aziz et al., 2012). Arabidopsis transcript data were 

from CSB.DB (http://csbdb.mpimp-golm.mpg.de/csbdb/dbxp/ath/int/ath_xpsgq.html); 

maize transcript data were from qTeller (http://qteller.com/qteller3/). 

E. coli strains and growth conditions 

E. coli strains were grown in Luria–Bertani medium (LB) at 37 °C. Media were 

solidified with 15 g/l of agar. Kanamycin (Kan, 50 μg/ml) and ampicillin (Amp, 

100 μg/ml) were added as required. M9 medium containing 0.4% glucose, prepared as 

described (Sambrook and Russell, 2001), was supplemented with 3.5 μM thiamin. HCl 

(Sigma–Aldrich) or 3.5 μM THZ (Sigma–Aldrich). Strains ΔthiM JW2091-2, ΔthiG 

JW5549-1, and ΔthiH JW3953-2 and the corresponding wild type strain BW25113 were 

from the Keio collection (Baba et al., 2006). These strains were checked by PCR (primers 

are listed in Table S1), and for growth on M9 medium with and without thiamin. The 

ΔthiM strain was used to make the double mutants ΔthiG ΔthiM and ΔthiH ΔthiM by 

recombineering (Datsenko and Wanner, 2000). Briefly, the ΔthiM strain was first 

transformed with pCP20 to eliminate the Kan
R
 cassette by Flp recombinase (Cherepanov 

and Wackernagel, 1995). Transformants were selected on LB plus Amp at 30 °C, 

restreaked twice on LB, grown at 42 °C, and then checked for absence of Kan and Amp 

resistance. A ΔthiM strain that had lost Kan resistance was transformed with pKD46 and 

grown at 30 °C on LB plus Amp. After selection and restreaking of transformants, 

expression of the Red genes (γ, β, and exo) was induced in liquid culture (LB plus Amp) 

with 1 mM arabinose. Cells were then transformed separately with two PCR products 

obtained by amplifying the ΔthiG and ΔthiH Kan deletion cassette plus flanking regions, 

allowing recombination of these amplicons, and generating the double deletants ΔthiG 
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ΔthiM and ΔthiH ΔthiM (primers are listed in Table S1). Transformants were restreaked 

and selected on LB plus Kan at 42 °C and then checked for their phenotype. The double 

deletant strains were checked for growth on M9 medium alone or plus 3.5 μM THZ or 

3.5 μM thiamin. 

Construction of complementation vectors 

E. coli (strain MG1655) thiM (EcThiM) was amplified from genomic DNA. The 

Arabidopsis At3g24030 cDNA (AtThiM) was amplified from clone U61784 obtained 

from ABRC. The maize GRMZM2G094558 cDNA (ZmThiM) was amplified from a 

tassel primordium cDNA library obtained from R.J. Schmidt (University of California 

San Diego). Primers used for amplifications are listed in Table S1. For functional 

complementation assays, coding sequences were cloned into pBAD24 (Guzman et al., 

1995). EcThiM was cloned into the NcoI and HindIII restriction sites and used as a 

positive control; cloning into the NcoI site changed the second codon from CAA (Gln) to 

GAA (Glu). AtThiM and ZmThiM were cloned into NcoI and HindIII sites. The resulting 

constructs (pBAD24::EcThiM, pBAD24::AtThiM, and pBAD24::ZmThiM) were 

confirmed by sequencing. 

Functional complementation experiments 

The ΔthiG ΔthiM and ΔthiH ΔthiM double deletants were transformed with 

pBAD24 alone (negative control) or with pBAD24 containing EcThiM (positive control), 

AtThiM, or ZmThiM. Complementation tests were made by streaking selected 

transformants on M9 plates containing 0.4% glucose, minus or plus 3.5 μM THZ or 

3.5 μM thiamin. Arabinose was not added to induce gene expression as the basal 
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expression level sufficed. To avoid THZ or thiamin carry-over, two successive restreaks 

were made. Images are from the second restreak, after incubation for 32 h at 37 °C. 

Production of recombinant ThiM proteins 

The Arabidopsis and maize ThiM sequences were amplified by PCR using 

primers given in Table S1 and cloned between the NcoI and XhoI sites of pET28b (+) for 

Arabidopsis and EcoRI and XhoI sites of pET28b (+) for maize, which adds a C-terminal 

hexahistidine tag. Sequence-verified constructs were electroporated into E. coli strain 

BL21 (DE3). For protein isolation, transformants were grown at 37 °C in LB medium 

until OD600 reached about 0.6, at which point isopropyl β-d-1-thiogalactopyranoside was 

added to give a final concentration of 1 mM. After a further 6 h at 30 °C, cells were 

harvested by centrifugation and disrupted using a sonicator (60 Sonic Dismembrator, 

Fisher Scientific) in lysis buffer (50 mM sodium phosphate, pH 8.0, 0.5 M NaCl). After 

centrifugation to clear, proteins were purified using ProBond™ nickel-chelating resin 

(Invitrogen) according to the manufacturer’s protocol. Eluted fractions were desalted 

using PD-10 columns (GE Healthcare) equilibrated in 50 mM Tris–HCl, pH 8.0; freshly 

desalted proteins were used for activity assays. 

Thiazole kinase assays 

Activity was assayed at 25 °C either spectrophotometrically using a pyruvate 

kinase-lactate dehydrogenase-coupled system or radiometrically using labeled THZ. The 

coupled spectrophotometric assay (Reddick et al., 1998) uses ADP and NADH as 

substrates, and THZ-dependent consumption of NADH is measured by monitoring the 

decrease in absorbance at 340 nm. The assay buffer was 100 mM Tris–HCl, pH 8.0. The 

radiometric assay uses [
14

C]THZ as substrate and measures the phosphate ester product, 
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THZ-P, after ion exchange separation (Atkins and Canvin, 1971). Assays (100 μl) 

contained 50 mM Tris–HCl, pH 8.0, 10 mM ATP, 10 mM MgCl2, 0.2 mM THZ 

containing 0.1 μCi hydroxyethyl[2-
14

C]thiazole (Moravek Biochemicals, Inc.), and 

100 μg of Arabidopsis ThiM or 30 μg of maize ThiM. Reactions were run for 1 h, then 

held on ice until they were applied to 0.5 cm (diameter) × 1 cm (height) columns of AG1-

X8, 200–400 mesh, in the formate form. After washing the columns with H2O 3 ml, 

THZ-P was eluted with 1 M ammonium formate (3 ml) and quantified by scintillation 

counting. 

Arabidopsis mutants and growth conditions 

The SALK_123358C homozygous T-DNA knockout line for ThiM (At3g24030) 

was obtained from the Arabidopsis Biological Resource Center (ABRC) and verified by 

semiquantitative RT-PCR. The tz-1 ( Li and Rédei, 1969) THI4 mutant was obtained 

from ABRC (stock number CS3375) and crossed with the ThiM knockout; the resulting 

F1 plants were then selfed to produce the double homozygous mutant. Seed of the single 

and double mutants, and wild type Columbia, were cultured on MS medium (Murashige 

and Skoog, 1962) supplemented with 2% sucrose, 100 mg/l inositol, 0.5 mg/l nicotinic 

acid and 0.5 mg/l pyridoxine, with or without 100 μM thiamin or various concentrations 

of THZ. The plated seeds were vernalized at 4 °C for two days and germinated at 25 °C 

under constant light (150 μE m
−2 

s
−1

). Plants had grown for 15 days when pictures were 

taken. 

ThiM transcript analysis 

Wild type Columbia plants were grown for two weeks as above with thiamin or 

THZ supplements at the indicated levels. RNA was extracted and ThiM transcript levels 
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were quantified as described (Tunc-Ozdemir et al., 2009). In brief, mRNA was extracted 

using the RNeasy plant mini kit (Qiagen). First-strand cDNA was synthesized using 

(2 μg) of total RNA, GeneRacer oligo dT Primer, and SuperScript II RNase H−reverse 

transcriptase (Invitrogen). Amplification and detection of the transcript levels were 

performed with an ABI7000 real-time PCR system (PE Biosystems) using the primers 

given in Table S1. The reaction conditions were 55 °C for 2 min, followed by 95 °C for 

15 min and then 50 cycles of 76 °C for 45 s, 94 °C for 45 s, and 56 °C for 45 s. The eEF-

1α gene tagged with VIC dye (Qiagen) was included in every well as an internal control. 

Relative-fold changes in expression levels were calculated using the 2
−ΔΔCT

 method as 

described in Applied Biosystems User Bulletin No. 2 (P/N 4303859). PCR for each 

sample was repeated at least in duplicate. The significance of differences between data 

sets was evaluated by Student’s t test. 

RESULTS and DISCUSION 

Identification of plant ThiM homologs 

BlastP searches of Arabidopsis and maize protein databases using the E. coli 

ThiM sequence detected single homologs (At3g24030 and GRMZM2G094558) that are 

42% identical to the E. coli protein and 61% identical to each other. Neither protein has 

apparent targeting signals or has so far been detected in organelles (Sun et al., 

2009 and Tanz et al., 2013). Similar ThiM homologs were found in other angiosperms, 

gymnosperms, and lower plants (Figure 2A). The phylogeny of the plant sequences 

generally tracks organismal phylogeny (Figure 2A). These observations indicate that a 

ThiM-like protein, probably located in the cytosol, has been present in plants since their 

origin and has persisted throughout their subsequent radiation. 
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Figure 2: Phylogenetic analysis of plant and microbial ThiM proteins and comparative 

genomic evidence connecting them with the thiamin pathway. (A) Phylogenetic tree of 

plant ThiM homologs (highlighted in green) and four microbial ThiM proteins with 

experimentally proven THZ kinase activity. Sequences were aligned with ClustalW; the 

tree was constructed by the neighbor joining method with MEGA5. Bootstrap values (%) 
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for 1,000 replicates are shown next to nodes. Only tree topology is shown. Rhizobium, 

Rhizobium leguminosarum bv. viciae 3841; Saccharomyces, Saccharomyces cerevisiae. 

(B) Clustering in operonic structures of bacterial thiM genes with thiE (thiamin-

phosphate diphosphorylase) and/or thiD (phosphomethylpyrimidine kinase) genes, and 

the thiE-thiM (THI6) fusion gene in yeast. (C) Correlations between expression in various 

organs of the Arabidopsis (At) and maize (Zm) ThiM homolog genes (At3g24030, 

GRMZM2G094558) and the genes encoding the ThiD/ThiE fusion enzyme (At1g22940, 

GRMZM2G401934) or the THI4 thiazole synthesis enzyme, of which Arabidopsis has 

one (At5g54770) and maize has two (Zm1, GRMZM2G018375; Zm2, 

GRMZM2G074097). Asterisks indicate rank correlation coefficient values that are 

significant at ∗∗P < 0.01 or ∗∗∗P < 0.001. 

 

 

 

 

Apart from experimental evidence (Mizote and Nakayama, 1989, Nosaka et al., 

1994, Zhang et al., 1997 and Karunakaran et al., 2006), comparative genomic evidence 

robustly links microbial thiM genes with thiamin, based on chromosomal clustering, or 

fusion, of thiM with the thiamin synthesis/salvage genes thiD or thiE (Figure 2B). The 

clustering of these genes in operonic structures, or their fusion, results in co-expression. 

There is analogous evidence for co-expression of the plant ThiM homologs with the same 

thiamin genes. Thus, expression of the Arabidopsis homolog is strongly positively 

correlated (P < 0.001) with that of the bifunctional ThiD-ThiE gene, and there is a similar 

correlation in maize (Figure 2C). Moreover, the expression of the Arabidopsis ThiM 

homolog is highly correlated with that of the de novo THZ synthesis gene THI4 (Figure 

2C), and there are comparable correlations in maize between ThiM and both of its THI4 

genes (Figure 2C). These comparative transcriptomic data reinforce the evidence from 

sequence homology that plant ThiM homologs are good candidates for the missing THZ 

kinase genes. 
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Plant ThiM proteins can functionally replace ThiM in E. coli 

A functional complementation assay for ThiM (thiazole kinase) activity was 

developed in E. coli by deleting either of two de novo THZ synthesis genes, thiG or thiH 

(Leonardi et al., 2003), as well as thiM. The resulting double deletant strains can neither 

synthesize nor salvage THZ and consequently can be rescued by thiamin but not by THZ 

(Figure 3).  

 

 

Figure 3: Growth phenotypes of the double deletant strains used for complementation 

assays. Wild type (WT) E. coli BW25113, ΔthiG, ΔthiH, and ΔthiM single deletant 

strains, and ΔthiG ΔthiM and ΔthiH ΔthiM double deletant strains were streaked twice in 

succession (to avoid THZ or thiamin carry-over) on M9 minimal medium alone or 

supplemented with 3.5 µM THZ or 3.5 µM thiamin. Images are for the second streak 

after incubation for 32 h at 37ºC. 

 

 

As expected, expression of the native E. coli thiM gene from a plasmid restored 

the capacity of both strains for rescue by THZ (Figure 4), establishing that the ΔthiG 

ΔthiM and ΔthiH ΔthiM strains are suitable for complementation tests of ThiM activity. 

Both strains were used to test Arabidopsis At3g24030 and maize GRMZM2G094558 

expression constructs. Each construct restored growth on THZ as effectively as the E. 

coli thiM positive control in both the ΔthiG ΔthiM strain (Figure 4A) and the ΔthiH 
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ΔthiM strain (Figure 4B). These results establish that either plant gene can functionally 

replace thiM in E. coli. 

 

 

 

Figure 4: Functional complementation of the E. coli ΔthiG ΔthiM and ΔthiH ΔthiM 

double deletant strains by ThiM homologs from Arabidopsis and maize. The wild type 

(WT) strain BW25113 and the ΔthiG ΔthiM strain (A) or the ΔthiH ΔthiM strain (B) 

harboring pBAD24 alone (vector, negative control) or encoding E. coli ThiM (ThiM, 

positive control), At3g24030 (At) or GRMZM2G094558 (Zm) were streaked on M9 

minimal medium alone or plus 3.5 μM THZ or 3.5 μM thiamin. 

 

 

Recombinant plant ThiM proteins have THZ kinase activity 

To directly test whether Arabidopsis and maize ThiM homologs have THZ kinase 

activity, both proteins, with a C-terminal hexahistidine tag, were expressed in E. coli, 

purified by Ni
2+

-affinity chromatography (Figure 5), and assayed for THZ kinase activity.  
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Figure 5:  Ni2+-affinity purification of recombinant Arabidopsis ThiM (A) and maize 

ThiM (B). Whole cell lysate, the column flow-through, and sucessive wash (W) and 

elution (E) fractions were separated by SDS-PAGE. Gels were stained with Coomassie 

blue. M, molecular mass markers.  

 

 

Activity was measured using a coupled spectrophotometric assay in which 

thiazole-dependent ADP formation is coupled via pyruvate kinase and lactate 

dehydrogenase to NADH consumption (Reddick et al., 1998), or using a radiometric 

assay in which the THZ-P product is quantified after ion-exchange separation (Atkins and 
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Canvin, 1971). Both assays detected activity with both enzymes; the activity of the maize 

enzyme was much higher than that of the Arabidopsis enzyme (Figure 6).  

 

 

Figure 6: Detection of thiazole kinase activity of Arabidopsis and maize ThiM proteins. 

(A) Spectrophotometric assay in which ADP production is coupled to NADH 

consumption. Assays contained 80 μg of Arabidopsis ThiM, 1 μg of maize ThiM, or no 

enzyme as a control. Note the far higher activity of the maize enzyme. (B) Radiometric 

assay in which THZ-P formation is measured after separating it from THZ using an ion 

exchange column. The fraction containing THZ-P also contains traces of labeled THZ 

breakdown products, which result in a low level of radioactivity in control assays without 

enzyme (−Enz) or without ATP (−ATP). Complete assays (Com) contained [
14

C]thiazole, 

ATP, and enzyme (100 μg for Arabidopsis, 30 μg for maize). Data are mean values of 

triplicate determinations ± SE. [
14

C]THZ-P formation significantly exceeded the 
14

C 

activity detected in the blank assays at P < 0.01 (**) for Arabidopsis and P < 0.001 (***) 

for maize (Student’s t-test). 
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The coupled assay was used for kinetic characterization of both enzymes (Table 

1). Their Km values for THZ fell within the range (6-68 μM) found for other THZ 

kinases; the kcat value for maize was in the middle of the reported range (0.14-2.2 s
−1

) and 

that for Arabidopsis was just below it (Kawasaki, 1993, Campobasso et al., 2000, 

Wrenger et al., 2006 and Müller et al., 2009a). In connection with the low kcat value for 

Arabidopsis ThiM, it may be noted that the value for another thiamin salvage kinase 

(hydroxymethylpyrimidine kinase) is equally low (Reddick et al., 1998). Overall, the 

plant ThiM enzymes can be categorized as typical THZ kinases. 

 

 

 

Arabidopsis ThiM is important for THZ salvage in planta 

In order to determine the role of ThiM in vivo, we first confirmed by RT-PCR 

analysis that a Salk homozygous T-DNA knockout line for At3g24030 lacked detectable 

ThiM mRNA (Figure 7), and crossed this line with a THI4 (TZ, At5g54770) mutant 

known to require THZ (Li and Rédei, 1969) in order to obtain a double homozygous 

mutant. 
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Figure 7: Characterization of Arabidopsis ThiM knockout lines. (A) Scheme showing the 

position of the T-DNA insertion (gray arrow) in the ThiM gene (At3g24030) in the 

SALK_123358C line. Introns are represented by lines and exons by boxes; 5 ́- and 3 ́-

untranslated regions are in black. The positions of primers used for genomic PCR are 

shown by black arrows. (B) PCR analysis of genomic DNA of representative wild type 

(WT), thiM mutant, and thiM tz-1 double mutant plants. (C) RT-PCR analysis of the full 

length ThiM transcript in representative wild type and thiM mutant plants. M, molecular 

size markers (bp). 

 

 

 The single and double mutants, plus a wild type control, were then cultured on 

MS medium plus or minus thiamin or THZ. In the absence of thiamin or THZ, the THI4 
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and the ThiM/THI4 mutants did not grow, as was expected, and the ThiM single mutant 

grew normally (Figure 8). That this single mutant shows no obvious phenotype indicates 

that salvage of endogenous THZ is not required for normal growth of cultured 

Arabidopsis plantlets, as is the case for bacterial ThiM mutants grown in favorable 

conditions (Figure 3) (Mizote and Nakayama, 1989 and Petersen and Downs, 1997). 

 

Figure 8: Effect of ablating Arabidopsis ThiM on salvage of supplied THZ. Wild type 

Arabidopsis, the THI4 mutant, the ThiM mutant, and the double mutant were cultured for 

15 days on MS medium alone or supplemented with 0.1 mM thiamin or 0.4 mM THZ. 

The experiment was repeated with 0.8 mM and 1 mM THZ, with similar results; lower 

THZ concentrations (40 μM or 4 μM) allowed almost no growth of the double mutant 

(Figure 9). 
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The single THI4 mutant was rescued by thiamin or THZ, whereas the ThiM/THI4 

double mutant was rescued completely by thiamin but only partially by THZ (Figure 8). 

Even at very high THZ concentrations (0.4 to 1 mM), the double mutant remained 

stunted and chlorotic; lower THZ levels (4 μM or 40 μM) allowed almost no growth 

(Figure 9).  

 

 

 

Figure 9:  Effect of increasing concentrations of supplied THZ on the growth of the 

Arabidopsis thiM-/thi4- double mutant. Wild type (WT) Arabidopsis and double mutant 

plantlets were cultured for 15 days on MS medium alone or supplemented with 4, 40, or 

400 μM THZ. 

http://www.sciencedirect.com/science/article/pii/S0031942213001994#f0025
http://www.sciencedirect.com/science/article/pii/S0031942213001994#s0095


 

 
 

35 

These results establish that ThiM has an important role in the salvage of THZ, at 

least when it is exogenously supplied. That the double mutant is not completely inviable 

when supplied with a high level of THZ indicates that it retains some vestigial ability to 

phosphorylate THZ. In this connection, it may be noted that another thiamin salvage 

kinase activity, that for 4-amino-5-hydroxymethyl-2-methylpyrimidine, resides both in a 

dedicated enzyme and-as a minor side-activity- in an enzyme from a different B vitamin 

pathway, pyridoxal kinase (Park et al., 2004). More generally, because the hydroxyethyl 

group that THZ kinase phosphorylates (Figure 1) is a structural motif common to various 

phosphorylated metabolites (e.g. phosphoethanolamine, 5-phosphomevalonate), THZ 

might well be a poor alternative substrate for kinases that form these metabolites. It may 

also be noted that the Arabidopsis single ThiM mutant does not require thiamin, whereas 

the corresponding mutant in Chamydomonas reinhardtii (thi-10) does (Ferris, 1995). 

While this contrast could reflect differences in the thiamin biosynthesis pathway between 

C. reinhardtii and higher plants it could also arise simply from greater reliance on 

salvage in the thiamin economy of C. reinhardtii. Consistent with the latter possibility, 

the thi-10 mutant dies back less readily than other auxotrophs when thiamin is withheld 

(Ferris, 1995). 

Arabidopsis ThiM is not transcriptionally regulated by thiamin or THZ 

As transcript levels of other thiamin synthesis or salvage genes respond to thiamin 

in plants (Goyer, 2010) and bacteria (Petersen and Downs, 1997 and Müller et al., 2009a) 

we tested whether levels of the Arabidopsis ThiM transcript were affected by culturing 

plantlets in media containing thiamin or THZ at various concentrations. No significant 

effects were seen for either compound at any concentration tested (Figure 10). The lack 

http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0120
http://www.sciencedirect.com/science/article/pii/S0031942213001994#f0005
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0040
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0040
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0055
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0130
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0100
http://www.sciencedirect.com/science/article/pii/S0031942213001994#s0095


 

 
 

36 

of effects cannot be ascribed to non-absorption, as exogenous thiamin and THZ are both 

able to rescue thiamin auxotrophs (Figure 8) (Li and Rédei, 1969). 

 

Figure 10:  Transcriptional profiling of ThiM (At3g24030) expression in Arabidopsis 

leaves. Wild type plantlets were cultured on MS medium containing the indicated 

concentrations of thiamin (A) or THZ (B). ThiM transcript levels were determined by 

qRT-PCR and are expressed relative to those in untreated plants. Data are means of three 

biological replicates ±SE; treatment means were not significantly different from those of 

controls (P = 0.05).  
 

CONCLUSIONS 

This work demonstrates that plants have strong ThiM homologs and that those of 

Arabidopsis and maize function as thiazole kinases in vitro and in vivo. More generally, 

http://www.sciencedirect.com/science/article/pii/S0031942213001994#f0020
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0085
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the conservation of plant ThiM sequences enables this functional assignment to be 

confidently propagated by homology to other plants. Finally, since the plant thiamin 

synthesis pathway is localized in plastids (Goyer, 2010 and Gerdes et al., 2012) and 

ThiM proteins seem most likely to be cytosolic (based on lack of bioinformatic or 

experimental evidence to the contrary), it would appear that plastids have a THZ 

phosphate transporter that remains to be identified. 

 

 

Underlined, restriction site; F, forward; R, reverse; * and ‡, were respectively used for 

generating amplicons and for recombineering of EcThiG and EcThiH in the ΔthiM 

mutant background. 

 

http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0055
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0050
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ABSTRACT 

The TenA protein family occurs in prokaryotes, plants and fungi; it has two 

subfamilies, one (TenA_C) having an active-site cysteine, the other (TenA_E) not. 

TenA_C proteins participate in thiamin salvage by hydrolysing the thiamin breakdown 

product amino-HMP (4-amino-5-aminomethyl-2-methylpyrimidine) to HMP (4-amino-5-

hydroxymethyl-2-methylpyrimidine); the function of TenA_E proteins is unknown. 

Comparative analysis of prokaryote and plant genomes predicted that (i) TenA_E has a 

salvage role similar to, but not identical with, that of TenA_C and (ii) that TenA_E and 

TenA_C also have non-salvage roles since they occur in organisms that cannot make 

thiamin. Recombinant Arabidopsis and maize TenA_E proteins (At3g16990, 

GRMZM2G080501) hydrolysed amino-HMP to HMP and, far more actively, hydrolysed 

the N-formyl derivative of amino-HMP to amino-HMP. Ablating the At3g16990 gene in 
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a line with a null mutation in the HMP biosynthesis gene ThiC prevented its rescue by 

amino-HMP. Ablating At3g16990 in the wild-type increased sensitivity to paraquat-

induced oxidative stress; HMP overcame this increased sensitivity. Furthermore, the 

expression of TenA_E and ThiC genes in Arabidopsis and maize was inversely correlated. 

These results indicate that TenA_E proteins mediate amidohydrolase and aminohydrolase 

steps in the salvage of thiamin breakdown products. As such products can be toxic, 

TenA_E proteins may also pre-empt toxicity. 

Abbreviations: amino-HMP, 4-amino-5-aminomethyl-2-methylpyrimidine; 

formylamino-HMP, N-formyl-4-amino-5-aminomethyl-2-methylpyrimidine; HMP, 4-

amino-5-hydroxymethyl-2-methylpyrimidine; qRT-PCR, quantitative reverse 

transcription–PCR; THZ, 4-methyl-5-(2-hydroxyethyl) thiazole; wat, crystallographically 

ordered water molecule  

 

INTRODUCTION 

Thiamin, in its diphosphate form, is an essential cofactor for central metabolic 

enzymes such as transketolase and the pyruvate and α-ketoglutarate dehydrogenase 

complexes [1]. Thiamin consists of HMP (4-amino-5-hydroxymethyl-2-

methylpyrimidine) and THZ [4-methyl-5-(2-hydroxyethyl) thiazole] moieties (Figure 

1A). Plants, fungi and most prokaryotes synthesize both of these moieties de novo and 

couple them to give thiamin [2]. These organisms can also salvage HMP and THZ 

derived from thiamin breakdown for re-use in thiamin synthesis [2,3], whereas certain 

prokaryotes rely totally on salvage of exogenous HMP and/or THZ because they do not 

make these compounds [4]. Even in organisms that do make HMP and THZ, salvage can 

http://www.biochemj.org/content/463/1/145#ref-1
http://www.biochemj.org/content/463/1/145#F1
http://www.biochemj.org/content/463/1/145#F1
http://www.biochemj.org/content/463/1/145#ref-2
http://www.biochemj.org/content/463/1/145#ref-2
http://www.biochemj.org/content/463/1/145#ref-3
http://www.biochemj.org/content/463/1/145#ref-4
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be crucial to the thiamin economy because thiamin is chemically and metabolically labile 

[5,6] and HMP and THZ are costly to make [2,7].  

 

 

Figure 1: Thiamin synthesis, degradation and salvage routes. (A) Bacterial thiamin 

synthesis and salvage pathways. The plant pathways are the same except that the THZ 

moiety is synthesized by a single enzyme (THI4) from NAD and glycine, and ThiL and 

ThiK are absent. AIR, 5-aminoimidazole ribotide; DHGly, dehydroglycine; DXP, deoxy-

D-xylulose 5-phosphate; -P, phosphate; -PP, diphosphate; ThiS-COSH, ThiS 

thiocarboxylate. (B) Selected chemical and enzymatic thiamin degradation reactions. The 

sequential actions of YlmB (formylamino-HMP amidohydrolase) and TenA_C (amino-

HMP aminohydrolase) convert the breakdown product formylamino-HMP into HMP, 

which can re-enter the synthesis pathway as shown in (A) (HMP is highlighted in A and 

B to show this connection). Other reactions (not shown) include oxidation of the alcohol 

groups of oxothiamin, THZ and HMP to the respective acids, cleavage of oxothiamin to 

HMP and the oxo derivative of THZ, and cleavage of thiamin thiol form to amino-HMP 

and a thioketone. Various other uncharacterized breakdown products have been reported, 

including some that retain both rings or large parts thereof [11,52]. 

http://www.biochemj.org/content/463/1/145#ref-5
http://www.biochemj.org/content/463/1/145#ref-6
http://www.biochemj.org/content/463/1/145#ref-2
http://www.biochemj.org/content/463/1/145#ref-7
http://www.biochemj.org/content/463/1/145#ref-11
http://www.biochemj.org/content/463/1/145#ref-52
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Thiamin biosynthesis is now largely understood in bacteria, plants and yeast [1–3] 

(Figure 1A). Thiamin salvage is less understood, in part because thiamin breakdown 

products are numerous, incompletely characterized and vary with environmental 

conditions [5,8–12] (Figure 1B). What is clear so far is that: (i) thiamin can be split into 

its HMP and THZ moieties chemically, photochemically or enzymatically; (ii) these 

moieties, separately or as parts of the thiamin molecule, undergo various degradation 

reactions; (iii) the HMP moiety is generally more stable than the THZ moiety; and (iv) 

intact HMP and THZ can be phosphorylated and then re-enter the synthesis pathway 

[2,4,6,13,14] (Figure 1A). In bacteria, yeast and plants, HMP is converted into its mono- 

and di-phosphates by HMP (phosphate) kinase (ThiD), and THZ is phosphorylated by 

THZ kinase (ThiM) [2,15,16]. 

Among the things that are unclear about breakdown and salvage is how HMP is 

formed. One route involves hydrolysis of intact thiamin by the thiaminase II activity of 

microbial TenA family proteins [17–19]. However, previous work in bacteria and yeast 

indicates that a more important source of HMP in vivo is hydrolysis of amino-HMP (4-

amino-5-aminomethyl-2-methylpyrimidine) by the amino-HMP hydrolase activity of 

TenA proteins [8,19]. Amino-HMP itself can come from deconstructing thiamin, after 

damage to its THZ ring, via a route whose last intermediate is the N-formyl derivative of 

amino-HMP (referred to as formylamino-HMP) and whose last enzyme is formylamino-

HMP amidohydrolase (YlmB) [8] (Figure 1B). Breakdown products that retain more of 

the THZ ring than formylamino-HMP (some of which are shown in Figure 1B) could also 

be TenA substrates, but this has yet to be proven [8,20]. 

http://www.biochemj.org/content/463/1/145#ref-1
http://www.biochemj.org/content/463/1/145#ref-3
http://www.biochemj.org/content/463/1/145#F1
http://www.biochemj.org/content/463/1/145#ref-5
http://www.biochemj.org/content/463/1/145#ref-8
http://www.biochemj.org/content/463/1/145#ref-12
http://www.biochemj.org/content/463/1/145#F1
http://www.biochemj.org/content/463/1/145#ref-2
http://www.biochemj.org/content/463/1/145#ref-4
http://www.biochemj.org/content/463/1/145#ref-6
http://www.biochemj.org/content/463/1/145#ref-13
http://www.biochemj.org/content/463/1/145#ref-14
http://www.biochemj.org/content/463/1/145#F1
http://www.biochemj.org/content/463/1/145#ref-2
http://www.biochemj.org/content/463/1/145#ref-15
http://www.biochemj.org/content/463/1/145#ref-16
http://www.biochemj.org/content/463/1/145#ref-17
http://www.biochemj.org/content/463/1/145#ref-19
http://www.biochemj.org/content/463/1/145#ref-8
http://www.biochemj.org/content/463/1/145#ref-19
http://www.biochemj.org/content/463/1/145#ref-8
http://www.biochemj.org/content/463/1/145#F1
http://www.biochemj.org/content/463/1/145#F1
http://www.biochemj.org/content/463/1/145#ref-8
http://www.biochemj.org/content/463/1/145#ref-20
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Also unclear is which TenA family proteins have amino-HMP aminohydrolase 

and thiaminase II activities. TenA proteins fall into two widely distributed subfamilies: 

one has an active-site cysteine residue, the other does not, but often has two conserved 

glutamate residues [21]. We call these subfamilies TenA_C and TenA_E respectively, 

based on the one-letter codes for cysteine and glutamate. Crystal structures are available 

for representatives from both families [17,21–24]. TenA_C proteins from Bacillus 

subtilis [8,17], yeast [19] and Helicobacter pylori [20] have been assayed for enzyme 

activities; all three have amino-HMP aminohydrolase activity, whereas the first two also 

have low thiaminase II activity. In contrast, no TenA_E proteins seem to have been tested 

for activity in published literature. An activity related to thiamin salvage is, however, 

implied by the HMP [23,25] or HMP-phosphate [24] ligands that co-purified with the 

Pyrococcus furiosus and Arabidopsis TenA_E proteins and were visualized in their 

crystal structures. 

If the TenA_E protein encoded in the Arabidopsis genome (At3g16990) [21,23] 

has such an activity, it could explain why Arabidopsis mutants blocked in HMP synthesis 

can be rescued by amino-HMP [26,27], because such rescue requires amino-HMP 

aminohydrolase activity. Arabidopsis encodes a TenA_C domain in another protein 

(At5g32470) [3] that alternatively could account for salvage of amino-HMP. However, 

this protein has a haloacid dehalogenase family domain fused to its TenA_C domain, 

unlike other members of the TenA family, and this unusual structure creates uncertainty 

as to the enzymatic function of this fusion protein. 

In the present study, we present a comparative genomic analysis of the TenA 

family in prokaryotes and plants that predicts a thiamin salvage function for the TenA_E 

http://www.biochemj.org/content/463/1/145#ref-21
http://www.biochemj.org/content/463/1/145#ref-17
http://www.biochemj.org/content/463/1/145#ref-21
http://www.biochemj.org/content/463/1/145#ref-24
http://www.biochemj.org/content/463/1/145#ref-8
http://www.biochemj.org/content/463/1/145#ref-17
http://www.biochemj.org/content/463/1/145#ref-19
http://www.biochemj.org/content/463/1/145#ref-20
http://www.biochemj.org/content/463/1/145#ref-23
http://www.biochemj.org/content/463/1/145#ref-25
http://www.biochemj.org/content/463/1/145#ref-24
http://www.biochemj.org/content/463/1/145#ref-21
http://www.biochemj.org/content/463/1/145#ref-23
http://www.biochemj.org/content/463/1/145#ref-26
http://www.biochemj.org/content/463/1/145#ref-27
http://www.biochemj.org/content/463/1/145#ref-3
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subfamily. We then validate this prediction by demonstrating that: (i) Arabidopsis 

TenA_E and its maize orthologue have amino-HMP aminohydrolase activity; (ii) both 

proteins also have high formylamino-HMP amidohydrolase activity; and (iii) the 

Arabidopsis and maize TenA_E genes are strongly expressed when the HMP biosynthesis 

gene ThiC is not. The comparative genomic analysis also suggests that, besides 

functioning in thiamin salvage, TenA_E and TenA_C proteins can pre-empt metabolic 

damage from thiamin breakdown products. 

EXPERIMENTAL 

Bioinformatics and gene expression analysis 

Protein sequences were taken from GenBank, MaizeSeqence.org and the SEED 

database [28]. Comparative analyses of prokaryotic and plant genomes were made using 

SEED tools [28]; the full results of this analysis are encoded in the SEED subsystem 

named ‘TenA’ (available at 

http://pubseed.theseed.org//SubsysEditor.cgi?page=ShowSpreadsheet&subsystem=TenA)

. Sequences were aligned using Muscle [29]. Phylogenetic trees were constructed by the 

neighbour-joining method using MEGA5 [30]. Arabidopsis microarray gene expression 

data were taken from CSB.DB [31] and maize RNA-seq data were taken from qTeller 

(http://qteller.com/) [32]. Gene expression data for B73 endosperm tissue harvested at 

various times were obtained by qRT-PCR (quantitative reverse transcription–PCR) as 

described [33], and were expressed relative to the value at 14 days after pollination 

(= 1.0). 

http://www.biochemj.org/content/463/1/145#ref-28
http://www.biochemj.org/content/463/1/145#ref-28
http://pubseed.theseed.org/SubsysEditor.cgi?page=ShowSpreadsheet&subsystem=TenA
http://www.biochemj.org/content/463/1/145#ref-29
http://www.biochemj.org/content/463/1/145#ref-30
http://www.biochemj.org/content/463/1/145#ref-31
http://qteller.com/
http://www.biochemj.org/content/463/1/145#ref-32
http://www.biochemj.org/content/463/1/145#ref-33
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Chemicals 

Thiamin hydrochloride, thiamin monophosphate chloride dihydrate, thiamin 

pyrophosphate, oxythiamin chloride hydrochloride and thiochrome were obtained from 

Sigma–Aldrich. HMP, amino-HMP and oxothiamin {3-[(4-amino-2-methyl-5-

pyrimidinyl)methyl]-5-(2-hydroxyethyl)-4-methyl-2(3H)-thiazolone} were from Toronto 

Research Chemicals. Thiamin disulfide hydrate and 1H-benzotriazole-1-carboxal-dehyde 

were from TCI. Oxy-HMP [5-(hydroxymethyl)-2-methylpyrimidin-4(1H)-one] was from 

CGeneTech. Formylamino-HMP was prepared from amino-HMP as described [8]. The 

preparation was 92.7% pure and contained 0.4% amino-HMP, as judged from HPLC 

analysis. Desthiothiamin was prepared as described previously [34]. Briefly, 10 ml of a 

1.5 M solution of thiamin (15 mmol) in 3 M sodium hydroxide was mixed with 7.5 ml of 

a 1.55 M solution of glycine (12 mmol) in 1.55 M sodium hydroxide, and stirred at room 

temperature for 3 days. White crystals were obtained, and washed with ice-cold ethanol. 

The preparation was 95.8% pure, and contained ≤0.02% thiamin, as judged from HPLC 

analysis. 

Constructs for expression in Escherichia coli 

The At3g16990 (AtTenA_E) and GRMZM2G080501 (ZmTenA_E) coding 

sequences were amplified by PCR from leaf cDNA libraries using Phusion DNA 

polymerase (New England BioLabs). For At3g16990, the amplicons were treated with 

Taq DNA polymerase to add A-overhangs before cloning into pYES2.1 TOPO 

(Invitrogen) and this construct served as a PCR template for subsequent cloning into 

pET28b (Novagen). BSU11650 (BsTenA_C) was amplified by colony PCR using 

Phusion DNA polymerase. All three amplified coding sequences were cloned into 

http://www.biochemj.org/content/463/1/145#ref-8
http://www.biochemj.org/content/463/1/145#ref-34
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pET28b between the NcoI and NotI sites, which adds a C-terminal His6 tag. All 

constructs were sequence-verified. The primers used are given in Supplementary Table 

S1 (at http://www.biochemj.org/bj/463/bj4630145add.htm). 

Production and purification of recombinant proteins 

The AtTenA_E and BsTenA_C pET28b constructs were introduced into the E. 

coli strain BL21-CodonPlus (DE3)-RIPLand the ZmTenA_E pET28b construct was 

introduced into Rosetta-gami™ 2. Cultures (250 ml for AtTenA_E and BsTenA_C, and 2 

litres for ZmTenA_E) were grown at 37°C in LB medium containing 50 μg·ml
−1

 

kanamycin. When the OD600 reached 0.6, IPTG (final concentration of 1 mM) was added; 

incubation was continued for 3 h at 37°C for BsTenA_C and AtTenA_E. For 

ZmTenA_E, induction was preceded by a 30-min ethanol shock (final concentration of 

5%, v/v), and incubation was continued overnight at 22°C. The subsequent steps were at 

4°C. Cells were harvested by centrifugation, resuspended in 50 mM NaH2PO4, 300 mM 

NaCl and 10 mM imidazole, pH 8.0, and then sonicated. To the cleared supernatant, 

0.5 ml of Ni
2+

-nitrilotriacetic acid agarose 50% slurry (Qiagen) was added, followed by 

rotary shaking for 1 h at 4°C. The mixture was then poured into a column and allowed to 

drain by gravity. After washing with 16 ml of 50 mM NaH2PO4, 300 mM NaCl and 

20 mM imidazole, pH 8.0, proteins were eluted with 2 ml of this buffer containing 

250 mM imidazole, desalted on PD-10 columns (GE Healthcare) equilibrated in 50 mM 

Tris/HCl (pH 7.5), 1 mM DTT and 500 mM glycinebetaine, and concentrated with an 

Amicon Ultra 0.5 ml 10K unit (Millipore). Purified proteins were frozen in liquid N2 and 

stored at −80°C. Protein was estimated by dye binding [35] with BSA as standard. As 

http://www.biochemj.org/bj/463/bj4630145add.htm
http://www.biochemj.org/content/463/1/145#ref-35


 

 
 

50 

pilot tests showed that very little ZmTenA_E could be obtained in soluble form, 

AtTenA_E was used for characterization work; BsTenA_C served as a benchmark. 

Enzyme assays 

Assays were routinely made in triplicate in 100 μl reaction mixtures containing 

45 mM Tris/HCl, pH 7.5, 0.9 mM DTT, 450 mM glycinebetaine, and the specified 

concentrations of substrates. Assays were run at 30°C for 30–300 min and stopped on ice, 

and then deproteinized at 4°C using Amicon Ultra 0.5 ml 10K units. Samples (typically 

40 μl) of the flow-through were analysed by HPLC with UV detection (Waters 2695 

Separation module and Waters 2998 PDA detector). HPLC analysis used a C18 column 

(ACE Excel SuperC18, 5 μm, 250×4.6 mm) with a column guard, equilibrated with 

100 mM potassium phosphate, pH 6.6. The elution gradient (1 ml·min
−1

) was as follows, 

steps being linear transitions except where noted: 0–4 min −20% potassium phosphate 

(100 mM, pH 6.6), 80% water; 4–10 min −20% potassium phosphate, 7% methanol, 73% 

water; 10–15 min, held at 20% potassium phosphate, 7% methanol, 73% water; 15–

20 min −10% potassium phosphate, 60% water, 30% methanol; 20–30 min −20% 

potassium phosphate, 7% methanol, 73% water; and 30–35 min −20% potassium 

phosphate, 80% water. Detection was by absorbance at 235 nm. Values of kcat and Km 

were estimated by non-linear fitting using GraphPad Prism version 6.00. 

LC-MS 

The amino-HMP and HMP reaction products of AtTenA_E action on 

formylamino-HMP were analysed using a Thermo LTQ Velos mass spectrometer with an 

Accela 600 UPLC apparatus and Accela open autosampler (Thermo Fisher). The 

spectrometer was operated in positive heated-electrospray mode under the following 
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conditions: 3500 V for the spray needle, 325°C for the source temperature, flow rates of 

40 arbitrary units sheath gas, 10 arbitrary units auxiliary gas and 325°C capillary 

temperature. Gradient elution was employed on the above C18 column equilibrated with 

100 mM ammonium acetate, pH 6.6, using a flow rate of 1 ml·min
−1

. The flow was split 

to 0.3 ml·min
−1

 after separation to avoid salt build-up on the ion source. The elution 

gradient was as follows: 0–4 min −20% ammonium acetate buffer (100 mM, pH 6.6), and 

80% water; 4–14 min −10% ammonium acetate, 30% water and 60% methanol; 14–

18 min −10% ammonium acetate, 30% water and 60% methanol; 18–25 min −20% 

ammonium acetate and 80% water; 25–28 min −20% ammonium acetate and 80% water. 

The injections were of 5 μl and 1 μl for enzyme assays and standards diluted in enzyme 

assay buffer respectively. Full scan spectra were collected from m/z 100 to 600. 

Experiments with Arabidopsis mutants 

Seeds of the wild-type Columbia, the SALK-062985 homozygous At3g16990 

knockout line, and the py-1 (ThiC) mutant (stock number CS3491) were obtained from 

the Arabidopsis Biological Resource Center, OH, U.S.A. The TenA_E knockout was 

verified by PCR, using gene-specific primers located 5′ or 3′ of the T-DNA and a T-

DNA-specific primer. Amplicons were sequenced to confirm the insertion site. Semi-

qRT-PCR was performed as follows: total RNA was extracted from triplicate samples of 

knockout and wild-type leaves using RNeasy Kits (Qiagen) and treated with DNase 

(DNA-free™ Kit, Ambion). Total RNA was used for first-strand cDNA synthesis using 

M-MuLV (New England BioLabs), followed by PCR with primers designed to amplify a 

fragment of the TenA_E transcript or a fragment of the actin transcript. Amplicons were 

analysed by agarose gel electrophoresis. The primers used are given in Supplementary 
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Table S1. Seeds of the py-1 mutant line were grown on Murashige and Skoog medium 

[36] plates supplemented with 2% sucrose, 100 mg·l
−1

 inositol, 0.5 mg·l
−1

 nicotinic acid 

and 0.5 mg·l
−1

 pyridoxine, but not thiamin, and mutant plants were selected based on 

their phenotype [27] and crossed with the TenA_E knockout line. The resulting F1 plants 

were selfed to generate the double homozygous mutant. Seed of the wild-type, single and 

double mutants were cultured on Murashige and Skoog medium as above with or without 

100 μM thiamin, HMP or amino-HMP. The plated seeds were vernalized at 4°C for 

5 days, germinated at 21°C in continuous light (100 μmol·m
−2

·s
−1

), and imaged at 

2 weeks. For paraquat (methyl viologen) stress experiments, wild-type and TenA_E 

knockout seeds were grown on Murashige and Skoog medium as above containing 

0.1 μM paraquat or 0.1 μM paraquat supplemented with the specified concentrations of 

HMP or thiamin. Seeds were vernalized and grown as above except that plates were 

arranged vertically. The total root length was measured at 9 days. Stress experiments 

were performed with five to seven technical replications, each containing six seedlings 

per line, and were repeated at least three times. 

Molecular modelling 

The crystal structure of Arabidopsis TenA_E complexed with HMP at 2.1 Å (1 

Å=0.1 nm) resolution (PDB ID 2F2G) [23] was used as a template for modelling, and the 

structure of HMP already present in the active site of Arabidopsis TenA_E was used as a 

starting point for modelling the conformations of formylamino-HMP and amino-HMP. 

The program COOT [37] was used to manually dock the formylamino-HMP or amino-

HMP molecules in the active site of Arabidopsis TenA_E based on alignment of the 

aromatic moiety of HMP as a reference. The most favourable conformations visualized 

http://www.biochemj.org/content/463/1/145#ref-36
http://www.biochemj.org/content/463/1/145#ref-27
http://www.biochemj.org/content/463/1/145#ref-23
http://www.biochemj.org/content/463/1/145#ref-37
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for formylamino-HMP and amino-HMP in Arabidopsis TenA_E are shown. PyMOL 

Molecular Graphics System version 1.6 (Schrödinger) was used to generate all molecular 

graphics images shown in the present paper. The same approach was used to manually 

dock a molecule of formylamino-HMP in the active site of B. subtilis TenA_C; in this 

case, the crystal structure of the complex of B. subtilis TenA_C with HMP (PDB ID 

1YAK) [17] was used as a template for modelling. 

qRT-PCR analysis of maize gene expression 

For analysis of maize TenA_E (GRMZM2G080501) and ThiC 

(GRMZM2G027663) expression, kernels from field-grown W22 inbred plants (Citra, 

Florida, spring 2013) at the stage indicated were harvested and their endosperms were 

immediately frozen in liquid N2 and held at −80°C until use. After grinding in liquid N2, 

total RNA was extracted with RLT buffer (2 ml per 20 mg) and purified using plant 

RNeasy Kits. RNAs were quantified using a NanoDrop 1000 (Thermo Fisher Scientific), 

and 5.5 μg of RNA from each sample was treated with RQ1 RNase-free DNase 

(Promega). Negative RT controls confirmed that there was no carryover of genomic 

DNA. For quantitative PCR, a Power SYBR green RNA-to-CT 1-Step Kit (Applied 

Biosystems) was used with an iCycler iQ real-time PCR detection system (Bio-Rad 

Laboratories). The 18S rRNA was used as an internal reference for relative quantitative 

expression analysis [38]. The primers used are given in Supplementary Table S1. 

RESULTS 

Sequence and phylogenetic analysis of TenA proteins 

We first verified that simple presence/absence of a conserved active-site cysteine 

residue (Cys
135

 in B.subtilis TenA) splits a full range of TenA proteins into two 

http://www.biochemj.org/content/463/1/145#ref-17
http://www.biochemj.org/content/463/1/145#ref-17
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biologically meaningful subfamilies because the correlation with the presence of cysteine 

had previously been proposed based on an analysis of just a small set of TenA sequences 

[21]. A set of 39 diverse TenA proteins from bacteria, archaea, plants and yeast was 

identified using Blastp and Conserved Domain tools at NCBI. These sequences were 

separated into plus-cysteine (TenA_C) and minus-cysteine (TenA_E) classes, aligned and 

subjected to phylogenetic analysis (Supplementary Figures S1 and S2 at 

http://www.biochemj.org/bj/463/bj4630145add.htm). The plus- and minus-cysteine 

sequences fell neatly into two different clades, even when they came from the same 

organism. This result supports the active-site cysteine residue as a convenient marker that 

distinguishes two distinct subfamilies. It also suggests that these subfamilies are anciently 

diverged and are likely to be functionally distinct. A further point worth noting is that the 

second Arabidopsis TenA protein (At5g32470) and its maize orthologues [3] are of the 

TenA_C class, so that plants are among the organisms that encode both TenA_E and 

TenA_C proteins. Plant TenA_E and TenA_C proteins are phylogenetically closest to the 

respective cyanobacterial proteins. 

Comparative genomics connects both TenA_E and TenA_C with thiamin 

metabolism 

We next surveyed the distribution of TenA family genes among >12000 

prokaryote genomes, using the SEED database and its tools [28]. This survey showed that 

TenA proteins are common in Crenarchaeota and Euryarchaeota, Bacteroidetes, 

Cyanobacteria, Firmicutes and Proteobacteria, and occur at least occasionally in all other 

major taxa except Aquificae, Acidobacteria and Thermotogae. A subset of 345 high-

quality genomes from taxonomically and ecologically diverse organisms was then chosen 

http://www.biochemj.org/content/463/1/145#ref-21
http://www.biochemj.org/bj/463/bj4630145add.htm
http://www.biochemj.org/content/463/1/145#ref-3
http://www.biochemj.org/content/463/1/145#ref-28
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for further analysis. Results are summarized below, and are available in full in the SEED 

database 

(http://pubseed.theseed.org//SubsysEditor.cgi?page=ShowSpreadsheet&subsystem=TenA). 

Among the 345 selected genomes, 40% had at least one TenA gene: 27% had only 

TenA_C, 3% had only TenA_E and 10% had both (Supplementary Table S2 at 

http://www.biochemj.org/bj/463/bj4630145add.htm). TenA_E is thus less common than 

TenA_C, and occurs much more often with TenA_C than alone. This pattern reinforces 

the inference from sequence and phylogeny that the two subfamilies do not have identical 

functions. Consistent with functions in HMP salvage, TenA_C and TenA_E are found 

more than twice as often in organisms whose thiamin synthesis pathway depends on 

salvaging HMP from exogenous sources than in those that can make HMP, i.e. in 

organisms that respectively lack or have ThiC, and have otherwise complete suites of 

thiamin synthesis genes. 

Further evidence that TenA_E and TenA_C have non-identical functions in 

thiamin salvage comes from gene-clustering and gene-fusion analyses. Genes of each 

subfamily commonly cluster on the chromosome with genes for thiamin synthesis and 

salvage enzymes or transporters, often in predicted operons. Furthermore, TenA_E and 

TenA_C quite commonly cluster with each other, again in putative operons (Figure 2A). 

The co-regulation of TenA_E and TenA_C implied by these operonic structures connotes 

non-redundant functions even more strongly than co-occurrence in the same genomes. 

Genes encoding TenA_C are fused to thiD, or thiD and thiE, in certain Actinobacteria 

(Figure 1A), fungi [19], protozoa (e.g. Perkinsus marinus) and green algae (e.g. Chlorella 

http://pubseed.theseed.org/SubsysEditor.cgi?page=ShowSpreadsheet&subsystem=TenA
http://www.biochemj.org/bj/463/bj4630145add.htm
http://www.biochemj.org/content/463/1/145#F2
http://www.biochemj.org/content/463/1/145#F1
http://www.biochemj.org/content/463/1/145#ref-19
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variabilis) (results not shown). Genes coding for TenA_E seem not to be fused to other 

genes in any sequenced genome. 

 

 

Figure 2: Comparative genomic analysis of the TenA family in prokaryotes. (A) 

Chromosomal clustering of genes encoding TenA_C (C) and TenA_E (E) with thiamin 

synthesis and salvage genes, and genes encoding components of formylamino-HMP 

transporter ThiXYZ [8] or predicted thiamin salvage-related transporters ThiW and CytX 

[4]. Genes are shown as arrows pointing in the direction of transcription; overlaps denote 

translational coupling. Black arrows are TenA protein genes, grey arrows are thiamin-

related genes and white arrows are other genes. Horizontal braces mark gene fusions. The 

14 species used as examples represent seven major taxa: Actinobacteria, Cyanobacteria, 

http://www.biochemj.org/content/463/1/145#ref-8
http://www.biochemj.org/content/463/1/145#ref-4
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Euryarcheota, Fusobacteria, and Alphaproteobacteria, Betaproteobacteria and 

Gammaproteobacteria. (B) Categorization of prokaryotes whose genomes encode 

TenA_E (without or with TenA_C) according to their physiology and ecology. The 45 

organisms (see Supplementary Table S2 at 

http://www.biochemj.org/bj/463/bj4630145add.htm) were sorted into five classes: (i) 

thermophiles; (ii) resistant to UV or ionizing radiation, or colonizing light-exposed 

surfaces; (iii) photosynthetic; (iv) plant symbionts or plant biomass degraders; and (v) 

other lifestyles. The chart shows the percentage of each class. (C) The distribution of 

genes coding for TenA_C, TenA_E and thiamin synthesis and salvage enzymes. The top 

seven rows show typical patterns for organisms that can make thiamin, either entirely de 

novo or from HMP and THZ precursors. The bottom four rows show patterns for 

organisms that are completely unable to make thiamin but have genes for TenA_C or 

TenA_E. Plus signs in grey boxes indicate presence of a gene or genes, open boxes 

indicate absence of a gene. 

 

 

To get clues to the functional differences between TenA_E and TenA_C, we 

compared the lifestyles of the prokaryotes in which they occur. For TenA_C, no lifestyle 

bias was evident, but TenA_E was concentrated in thermophiles, phototrophs, plant-

associated bacteria and organisms resistant to UV or ionizing radiation (Figure 2B). 

Given the established lability of thiamin to heat, light and radiation, and that these 

stresses lead to products that can differ from each other and from those formed 

metabolically or at high pH [5,10–14], the lifestyle evidence raises the possibility that 

TenA_E proteins prefer as substrates certain thermo-, photo- or radio-decomposition 

products formed from thiamin either intra- or extra-cellularly. 

Comparative genomics points to non-salvage roles for TenA proteins 

TenA genes usually occur in organisms that can make thiamin from HMP and 

THZ moieties, based on their having genes encoding ThiD, ThiE, ThiG or ThiM, and 

ThiL or ThiN (Figure 2C). However, TenA_E or TenA_C genes also occur in a small 

disparate group of bacteria that have no biosynthetic genes except those for ThiN, or 

http://www.biochemj.org/bj/463/bj4630145add.htm
http://www.biochemj.org/content/463/1/145#F2
http://www.biochemj.org/content/463/1/145#ref-5
http://www.biochemj.org/content/463/1/145#ref-10
http://www.biochemj.org/content/463/1/145#ref-14
http://www.biochemj.org/content/463/1/145#F2
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ThiN plus ThiL, and therefore have no thiamin biosynthesis capacity and require 

preformed thiamin (or its monophosphate) (Figure 2C). This group includes the radiation-

resistant extremophile Truepera radiovictrix and the hydrothermal vent thermophile 

Oceanithermus profundus, which have TenA_E, as well as strains of the obligate 

intracellular bacteria Wolbachia and Parachlamydia acanthamoebae, which have 

TenA_C. Wolbachia genomes are highly reduced in size [39] and P. acanthamoebae 

genomes are somewhat reduced [40]. The presence of TenA_E or TenA_C in diverse 

organisms that cannot re-use thiamin breakdown products for thiamin biosynthesis 

implies that these enzymes have some function other than thiamin salvage. This 

implication is particularly strong for the obligate intracellular bacteria, in which genome 

reduction has jettisoned many other enzyme encoding genes. One possible non-salvage 

function might be simply to catabolize thiamin breakdown products (as discussed below). 

Enzymatic activities of recombinant plant TenA_E proteins 

Among the organisms with TenA_E, only plants such as Arabidopsis and maize 

are genetically tractable and have experimentally characterized thiamin synthesis 

pathways for which mutants are available [3]. We therefore targeted Arabidopsis TenA_E 

(At3g16990) and its maize orthologue (GRMZM2G080501) for experimental 

characterization. These proteins are predicted to be cytosolic and have not been detected 

in organelles [41]. Both proteins were expressed in E. coli in His6-tagged form and 

isolated by Ni
2+

-affinity chromatography (Supplementary Figure S3 at 

http://www.biochemj.org/bj/463/bj4630145add.htm), along with the well-studied B. 

subtilis TenA_C protein as a benchmark. All three proteins were then tested for activity 

http://www.biochemj.org/content/463/1/145#F2
http://www.biochemj.org/content/463/1/145#ref-39
http://www.biochemj.org/content/463/1/145#ref-40
http://www.biochemj.org/content/463/1/145#ref-3
http://www.biochemj.org/content/463/1/145#ref-41
http://www.biochemj.org/bj/463/bj4630145add.htm
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against most of the thiamin degradation products shown in Figure 1(B), as well as against 

thiamin and its phosphates (Table 1). 

 

 

 

As expected for TenA_C proteins [2,19], B. subtilis TenA_C hydrolysed amino-

HMP, thiamin, oxythiamin and oxothiamin, but not formylamino-HMP or thiamin 

phosphates, thus validating our procedures. In contrast, although both plant TenA_E 

proteins had some activity against amino-HMP, they had 20-fold more activity against 

formylamino-HMP, and none against the other compounds tested (Figures 3A and 3B 

and Table 1). The initial product of plant TenA_E action on formylamino-HMP was 

amino-HMP, which was then slowly hydrolysed to HMP (Figure 3B). The identities of 

the successive reaction products were confirmed by MS (Figure 3C). These results 

demonstrate that plant TenA_E proteins are bifunctional enzymes with formylamino-

HMP amidohydrolase and amino-HMP aminohydrolase activities, and that they lack 

detectable thiaminase II activity. Kinetic characterization of the formylamino-HMP 

http://www.biochemj.org/content/463/1/145#F1
http://www.biochemj.org/content/463/1/145#T1
http://www.biochemj.org/content/463/1/145#ref-2
http://www.biochemj.org/content/463/1/145#ref-19
http://www.biochemj.org/content/463/1/145#F3
http://www.biochemj.org/content/463/1/145#F3
http://www.biochemj.org/content/463/1/145#T1
http://www.biochemj.org/content/463/1/145#F3
http://www.biochemj.org/content/463/1/145#F3
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amidohydrolase and amino-HMP aminohydrolase activities of the Arabidopsis enzyme 

showed that formylamino-HMP was very strongly preferred over amino-HMP, as 

demonstrated by a 19-fold higher kcat value and a 26-fold lower Km value (Table 2). 

However, even for the preferred substrate formylamino-HMP, the kcat value was quite 

low for a metabolic enzyme (2.81×10
−3

s
−1

). 

 

 

http://www.biochemj.org/content/463/1/145#T2
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Figure 3: Evidence that plant TenA_E proteins have amino-HMP aminohydrolase and 

formylamino-HMP amidohydrolase activities. (A) HPLC analyses of reaction mixtures 

(40 μl) in which amino-HMP (100 nmol) was incubated for 4 h at 30°C with Arabidopsis 

or maize TenA_E (50 μg), or B. subtilis TenA_C (0.5 μg) as a benchmark. A control 

incubated without enzyme is included. (B) HPLC analyses of reaction mixtures (40 μl) in 

which formylamino-HMP (100 nmol) was incubated for 4 h at 30°C with Arabidopsis or 

maize TenA_E (50 μg), or B. subtilis TenA_C (0.5 μg). The Arabidopsis reaction mixture 

was also incubated for 8 h. A control incubated without enzyme is included. Note that the 

formylamino-HMP preparation contained a trace (0.4%) of amino-HMP. (C) 

Electrospray mass spectra of authentic HMP (molecular ion [M
+
H

+
]=m/z 140.1) and 

amino-HMP (molecular ion [M
+
H

+
]=m/z 139.1) (upper panels), and the two products 

formed by Arabidopsis TenA_E from formylamino-HMP (lower panels). The signals at 

m/z 176 are solvent-related. 

 

 

 

 

 

 

 

 

Arabidopsis TenA_E acts as an amino-HMP aminohydrolase in planta 

To test the in vivo function of TenA_E in thiamin salvage, we first identified a 

homozygous TenA_E knockout line (062985.53.80.x) in the Salk Arabidopsis T-DNA 

mutant collection. Plants of this mutant line were confirmed to have a T-DNA insertion 

in exon two and to lack detectable TenA_E mRNA, i.e. to be knockouts (Supplementary 

Figure S4 at http://www.biochemj.org/bj/463/bj4630145add.htm). The TenA_E mutant 

was then crossed with a ThiC (py) mutant (which cannot synthesize the thiamin HMP 

moiety) [27] to give the double mutant. 

http://www.biochemj.org/bj/463/bj4630145add.htm
http://www.biochemj.org/content/463/1/145#ref-27
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The growth of the single and double mutants and of the wild-type (Col-0) was 

then compared on Murashige and Skoog medium alone, or supplemented with thiamin, 

HMP or amino-HMP (Figure 4A). The growth of the TenA_E mutant was 

indistinguishable from that of the wild-type on all four media. The HMP-supplemented 

medium gave slightly poorer growth than the other three, possibly because HMP is 

phosphorylated by ThiD and the resulting phospho-HMP, an analogue of the cofactor 

pyridoxal 5′-phosphate, can be toxic at high levels [42]. As expected [27], the ThiC single 

and TenA_E ThiC double mutants showed little or no growth on Murashige and Skoog 

medium alone, and fairly good growth on Murashige and Skoog medium containing 

HMP. Most importantly, the ThiC mutant grew well on medium containing amino-HMP, 

whereas the double mutant hardly grew at all on this medium. This result demonstrates 

that TenA_E is required for the hydrolysis of amino-HMP to HMP in vivo. This 

requirement prevented use of the TenA_E mutant to test whether TenA_E is also needed 

for formylamino-HMP hydrolysis because this step is upstream of amino-HMP 

hydrolysis. 

http://www.biochemj.org/content/463/1/145#F4
http://www.biochemj.org/content/463/1/145#ref-42
http://www.biochemj.org/content/463/1/145#ref-27
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Figure 4: Genetic evidence that Arabidopsis TenA_E can convert amino-HMP into HMP 

in vivo. (A) WT (wild-type), TenA_E single mutant, ThiC single mutant and TenA_E 

ThiC double mutant plants were cultured for 2 weeks on Murashige and Skoog medium 

alone or containing 100 μM thiamin, HMP or amino-HMP. Nine plants of each genotype 

occupy a quadrant on each plate. That the double mutant showed somewhat more growth 

in the absence of thiamin than the ThiC single mutant may be attributable to differences 

in thiamin content of the seeds, i.e. the amount of thiamin received from the maternal 
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parent plants, which were irrigated with a 0.01% thiamin solution. (B) WT and TenA_E 

single mutant seeds were germinated on Murashige and Skoog medium containing 

0.1 μM paraquat. Seedlings were grown vertically, and root length was measured after 

9 days. Results are means±S.E.M. for 12–21 replicate plants. Root lengths of WT and 

TenA_E mutant plants grown on Murashige and Skoog medium without paraquat were 

42.5±8.7 and 44.0±6.7 mm respectively. **P<0.002 was considered significant for the 

difference between WT and TenA_E mutant. 

 

 

Because paraquat-induced oxidative stress and thiamin status are intertwined [43] 

and thiamin can be oxidatively degraded (Figure 1B), we compared the effect of paraquat 

on wild-type and TenA_E mutant plants by measuring root growth, which paraquat 

strongly inhibits [43]. The TenA_E mutant was found to be significantly more sensitive to 

paraquat than the wild-type (Figure 4B). Supplementation of the medium with 25 μM 

HMP eliminated this difference, as did supplementation with 25 μM thiamin (Figure 4B). 

However, although increasing the HMP concentration to 50 or 100 μM had no further 

effect on the mutant or wild-type, increasing the thiamin concentration caused a 

proportional increase in growth, as noted previously for wild-type roots [43]. 

Collectively, these data are consistent with the salvage of the thiamin HMP moiety by 

TenA_E. Thus oxidative stress is likely to promote thiamin degradation, so that salvage 

of the degradation products becomes a larger factor in maintaining thiamin pool levels, 

and TenA_E-mediated reclamation of HMP becomes more crucial. The observation that 

thiamin increases growth of both wild-type and mutant, whereas HMP does not, suggests 

that THZ becomes more limiting than HMP during oxidative stress, which fits with the 

greater stability of the latter compound [5]. 

http://www.biochemj.org/content/463/1/145#ref-43
http://www.biochemj.org/content/463/1/145#F1
http://www.biochemj.org/content/463/1/145#ref-43
http://www.biochemj.org/content/463/1/145#F4
http://www.biochemj.org/content/463/1/145#F4
http://www.biochemj.org/content/463/1/145#ref-43
http://www.biochemj.org/content/463/1/145#ref-5
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Modelling of formylamino-HMP and amino-HMP in the active site of Arabidopsis 

TenA_E and B. subtilis TenA_C 

Because a crystal structure is available for Arabidopsis TenA_E with bound HMP 

[23,25], it was straightforward to manually model formylamino-HMP (Figure 5A) and 

amino-HMP (Figure 5B) in the active site. As for other TenA proteins [17,20,24], the 

active site of Arabidopsis TenA_E is largely sequestered from the bulk solvent and only a 

very narrow passage into the active site is observed when calculating the solvent 

accessible surface of the protein (Figure 5A). This ground-state structure implies that the 

enzyme is likely to have to undergo a conformational fluctuation of substantial magnitude 

in order to bind the substrate and release the product. Such a requirement could explain 

the relatively low turnover rates (kcat values) exhibited by the enzyme (Table 2). 
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Figure 5: Formylamino-HMP or amino-HMP modelled in the active site of Arabidopsis 

TenA_E. The indicated HMP derivatives were manually docked into the experimentally 

determined crystal structure of Arabidopsis TenA_E containing bound HMP that co-

purified with the enzyme (PDB code 2F2G). (A) The solvent-accessible surface of 

AtTenA_E with formylamino-HMP docked in the active site. The protein (cyan) is 

represented in both cartoon and stick formats. Note the narrow channel into the active site 

on the right. (B) The environment of formylamino-HMP docked in the active site of 

Arabidopsis TenA_E. Residues within 4 Å of the formylamino-HMP molecule are shown 

in stick representation. The blue broken lines show possible hydrogen bond interactions 

and the grey broken lines show other interatomic distances (in Å). Carbon atoms are 

green, nitrogen atoms are blue and oxygen atoms are red. Crystallographically ordered 

water (WAT) molecules are depicted as red spheres. (C) The environment of amino-

HMP docked in the active site of Arabidopsis TenA_E, displayed in an equivalent 

manner to that shown in (A). 

 

 

The structural models preserve the previously observed π–π interactions between 

Tyr
143

, Phe
50

 and the pyrimidine ring, and the hydrogen bonds between Asp
47

 and the ring 

N4 and amino groups of the pyrimidine [23,25]. In the case of formylamino-HMP 

(Figure 5B), our model shows that the carboxylate groups of residues Glu
88

 and Glu
140

 

are located within hydrogen-bonding distances of the carbonyl moiety of the formyl 

group of this ligand. This stereochemistry would enable Glu
88

 and Glu
140

 to participate in 
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the amidohydrolase reaction mechanism and potentially act as general base catalysts. 

Although neither of these glutamate residues is conserved in all TenA_E orthologues, one 

or the other is always present (Supplementary Figure S1). Furthermore, a pair of 

crystallographically ordered water molecules (wat-1612 and wat-1481) proximal to 

residues Glu
88

 and Glu
140

 in the active site could also participate in the amidohydrolase 

reaction mechanism. 

These water molecules are preserved in their locations in our manual model with 

bound amino-HMP (Figure 5C), which also contains an additional crystallographically 

ordered water molecule (wat-1437) that had to be removed to model the formylamino-

HMP molecule in the active site. This third water molecule could play a functional role in 

the amidohydrolase reaction, because it makes strong interactions with Glu
88

/Glu
140

 and 

also the amino group of the aminomethyl moiety of amino-HMP. 

Because B. subtilis TenA_C cannot hydrolyse formylamino-HMP, but can 

hydrolyse the larger molecule thiamin (Table 1), it was of interest to model formylamino-

HMP in the TenA_C active site. Manual modelling of formylamino-HMP into the HMP-

bound structure of B. subtilis TenA_C [17] showed that it is possible to form a good 

hydrogen bond between the formyl group of formylamino-HMP and the hydroxyl group 

on the side chain of residue Tyr
163

. Formation of this hydrogen bond results in the 

nitrogen atom of formylamino-HMP being positioned 4.5 Å away from thiol group of the 

catalytic Cys
135

 (Supplementary Figure S5 at 

http://www.biochemj.org/bj/463/bj4630145add.htm), which is likely to be too far away to 

catalyse cleavage. If this modelled structure is stable, formylamino-HMP could act as a 

competitive inhibitor of amino-HMP or thiamin hydrolysis by TenA_C enzymes. (No 

http://www.biochemj.org/content/463/1/145#F5
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equivalent in silico docking exercise could be performed for a plant TenA_C because a 

structure has not yet been determined for any of these enzymes.) 

Complementary expression patterns of TenA_E and ThiC genes in Arabidopsis and 

maize 

Because salvage of formylamino-HMP and amino-HMP via TenA_E is a 

potential alternative to de novo HMP synthesis via ThiC, and because ThiC expression 

varies greatly between tissues [44,45], we investigated whether the expression of TenA_E 

is inversely correlated with that of ThiC. We used CSB.DB microarray data for 

Arabidopsis [31], and a combination of qTeller RNA-seq [32] data and our own qRT-

PCR data for maize. The Arabidopsis data showed that ThiC is expressed far more 

strongly in shoots than in roots, as previously reported [44], and that TenA_E is expressed 

modestly more in roots than in shoots (Figure 5A). The same pattern was evident in 

maize shoots and roots (Figure 6B). During Arabidopsis seed development, ThiC 

expression declined markedly, whereas TenA_E expression increased (Figure 6A), and 

the same pattern was seen in the maize endosperm (Figure 6B). These opposite trends in 

TenA_E and ThiC expression in various organs are consistent with the idea that TenA_E 

has an in vivo salvage function that complements, and may sometimes partially replace, 

the capacity for de novo HMP synthesis. 
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Figure 6: Complementary expression patterns of plant TenA_E and ThiC genes. (A) 

Expression of TenA_E and ThiC (At2g29630) genes in roots and shoots (above ground 

tissues) of 3-day-old plants, and developing seeds of Arabidopsis. Data were extracted 

from the CSB. DB microarray database and are expressed on a log2 scale. (B) Expression 

of TenA_E and ThiC (GRMZM2G027663) genes in roots and shoots of seedlings, and 

developing endosperm of maize. FPKM (fragments per kilobase of exon per million 

fragments mapped) values were from seedling root and shoot libraries in the qTeller 

RNA-seq database and were normalized to the mean value for each gene in 25 qTeller 

datasets derived from diverse maize tissues. Endosperm data were obtained by qRT-PCR 

and are expressed relative to the value at 14 days after pollination (= 1.0). Data points are 

means±S.E.M. for three replicates. Where no error bars appear they were smaller than the 

symbols. 
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DISCUSSION 

To our knowledge, the present study is the first to demonstrate a biochemical 

function for the TenA_E subfamily of TenA proteins. The plant TenA_E proteins we 

tested exhibit dual formylamino-HMP amidohydrolase and amino-HMP aminohydrolase 

activities. Therefore, they are able to carry out two successive steps in the salvage of the 

thiamin breakdown product formylamino-HMP, whereas two separate enzymes, the 

amidohydrolase YlmB and the aminohydrolase TenA_C, mediate these steps in Bacillus 

species [8] (Figure 7). The amidohydrolase and aminohydrolase reactions catalysed by 

plant TenA_E proteins are chemically quite distinct, as discussed further below. 

 

 

Figure 7: Salvage of the HMP moiety of thiamin in plants and Bacillus species. 

Formylamino-HMP derived from thiamin degradation is hydrolysed first to amino-HMP, 

and then to HMP, by different enzymes in plants and Bacillus species. In plants, the 

TenA_E protein catalyses both steps. In Bacillus, the YlmB protein mediates the first 

(amidohydrolase) step, whereas the TenA_C protein mediates the second 

(aminohydrolase) step [8]. 

 

 

Although both plant TenA_E proteins prefer formylamino-HMP to amino-HMP 

in vitro, the Arabidopsis mutant data show that the activity against amino-HMP is 

physiologically significant. Thus that the TenA_E ThiC double mutant can be rescued by 

HMP, but not amino-HMP, proves that the amino-HMP aminohydrolase activity of 

TenA_E is functionally important in vivo, at least when HMP synthesis is blocked by a 

ThiC mutation. That TenA_E functions similarly during normal development, waxing 
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important in HMP salvage when HMP synthesis wanes, is suggested by the opposing 

expression patterns of TenA_E and ThiC. Because Arabidopsis has TenA_C as well as 

TenA_E, the failure of amino-HMP to rescue the double mutant also indicates that 

TenA_C cannot replace TenA_E amino-HMP aminohydrolase activity. Whether this is 

because Arabidopsis TenA_C lacks aminohydrolase activity, lacks expression or lacks 

access to exogenous amino-HMP remains to be tested. 

Our comparative analysis of prokaryotic genomes predicted the function of 

TenA_E so neatly that it could serve as a textbook example. Thus the analysis predicted a 

role for TenA_E in thiamin salvage that is similar, but not identical, to that of TenA_C, 

and this exactly matches the experimental findings that plant TenA_E proteins have both 

aminohydrolase activity (like TenA_C) and amidohydrolase activity (unlike TenA_C). 

This correspondence between prediction and observation makes it probable that 

prokaryotic TenA_E proteins are also formyl-HMP amidohydrolases. TenA_E proteins 

may therefore be the ‘missing’ amidohydrolases [8] that substitute for YlmB in the many 

prokaryotes whose genomes encode TenA, but not YlmB. If prokaryotic TenA_E 

proteins are amidohydrolases, and TenA_C proteins aminohydrolases (as in B. subtilis 

and H. pylori [8,20]), then the co-occurrence and chromosomal clustering of TenA_E and 

TenA_C genes would be explicable based on their specifying adjacent steps in thiamin 

salvage. Our data may also explain why the yeast TenA_E protein Pet18 can functionally 

replace E. coli ThiC when cells are cultured on minimal agar medium [46]. Agar has 

been shown to contain traces of HMP moieties [47], and these could be salvaged by 

amidohydrolase and/or aminohydrolase activities of Pet18. 
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Besides predicting a role for TenA_E in thiamin salvage, comparative genomic 

analysis pointed to connections between TenA_E and prokaryote lifestyles involving 

light, heat, ionizing radiation or plants. If prokaryotic TenA_E proteins have activities 

similar to those of their plant counterparts, these connections are readily explained 

because: (i) UV photolysis [5] and probably thermolysis [13] of thiamin produce amino-

HMP; (ii) radiolysis produces a formylamino-HMP analogue [48,49]; and (iii) amino-

HMP and formylamino-HMP from plants could be available to phytobacteria. 

Comparative genomics also pointed to a non-salvage role for TenA_E (and TenA_C) 

because they occur in thiamin auxotrophs that rely on thiamin uptake from the 

environment or host. A plausible rationale for such occurrences is that some thiamin 

breakdown products are toxic and TenA renders them harmless. Amino-HMP is known 

to inhibit the thiamin transporter in yeast [50]; were this true of thiamin auxotrophs, 

hydrolysing amino-HMP could clearly benefit them. Whatever the case, as amino-HMP 

and formylamino-HMP are analogues of thiamin and of pyrimidine nucleobases, they are 

potential metabolic inhibitors. It is therefore reasonable to infer that TenA proteins can 

serve a damage pre-emption function [51] by hydrolysing products that would otherwise 

do harm. 

Although formylamino-HMP and amino-HMP were the only TenA_E substrates 

found in the panel of thiamin degradation products tested (Figure 1B), there is a wide 

range of other potential products, of which many may have a corrupt THZ moiety but an 

intact, and therefore salvageable, HMP moiety [5,8,11]. Such products could also be 

TenA_E substrates. Unfortunately, they are complex, poorly known and in some cases 

reactive, making them problematic to test in enzymatic assays in vitro. 
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Figure S1: Alignment analysis of representative TenA family proteins. The sequences 

analysed come from genomes representing the major taxa in which TenA proteins occur. 

Ten of these genomes (eight prokaryotic and two plant genomes) encode both TenA_C 

and TenA_E proteins. Proteins for which crystal structures are available are indicated 

with an asterisk. Black arrowheads mark the foundational Bacillus subtilis TenA_C and 

Pyrococcusfuriosus TenA_E sequences [21]. Red, blue and magenta colours indicate the 

diagnostic active site cysteine residue (Cys135 in B. subtilis TenA_C) and two glutamate 
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residues, of which one (Glu210 in Arabidopsis TenA_E) is conserved in all TenA_E and 

TenA_C proteins and the other (Glu88 in Arabidopsis TenA_E) is not. 

 

 

 

 

 

 
 

 

Figure S2: Phylogenetic analysis of representative TenA family proteins. Neighbour-

joining phylogenetic tree. The sequences analysed come from genomes representing the 

major taxa in which TenA proteins occur. Ten of these genomes (eight prokaryotic and 

two plant genomes) encode both TenA_C and TenA_E proteins. Proteins for which 

crystal structures are available are indicated with an asterisk. Bootstrap values (%) for 

1000 replicates are shown next to nodes; values <50% are omitted. Only tree topology is 

shown; branch lengths are not proportional to estimated numbers of amino acid 

substitutions. Plant and cyanobacterial TenA_C and TenA_E sequences are boxed. 
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Figure S3: Isolation of recombinant B. subtilis TenA_C and plant TenA_E proteins. 

Purification to near-homogeneity of recombinant proteins used in the present study. Fiven 

micrograms of Ni2+ -affinity purified (Ni) and desalted and concentrated (DC) B. subtilis 

TenA_C (Bs), Arabidopsis TenA_E (At) and maize TenA_E (Zm) were analysed by 

SDS/PAGE (12% gel) with Coomassie Blue staining. The B. subtilis and Arabidopsis 

protein preparations were estimated to be_90% pure. Molecular mass markers are shown 

on the left of each gel. 
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Figure S4: Characterization of an Arabidopsis T-DNA insertional knockout mutant of 

TenA_E. (A) Genotyping the TenA_E (At3g16990) homozygous T-DNA knockout line 

(Salk 062985.53.80.x). Genomic DNA from the knockout line and the corresponding 

wild-type (wt) (Col-0) was used as a template for PCR with wild-type allele primers or T-

DNA insertion allele primers. Amplicons were analysed by agarose-gel electrophoresis. 

(B) Testing for the presence of the TenA_E transcript. Total RNA was used for first-

strand cDNA synthesis, followed by PCR with primers designed to amplify a fragment of 

the TenA_E transcript or a fragment of the actin transcript. Amplicons were analysed by 

agarose-gel electrophoresis. (C) Confirmation of the T-DNA insertion site in the TenA_E 

gene. PCR amplicons obtained with the T-DNA insertion allele primers in (A) above 

were cloned and sequenced. The gene model is drawn to scale with exons as black boxes, 

introns as black lines, and 5_- and 3_-UTRs as grey boxes. The T-DNA insertion site is 

indicated (Salk 062985). The positions of the start and stop codons are indicated. 
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Figure S5: The environment of a formylamino-HMP molecule bound to Bacillus subtilis 

TenA_C. The indicated formylamino-HMP molecule was manually docked into the 

experimentally determined crystal structure of B. subtilis TenA_C containing bound 

HMP (PDB code 1YAK) [17]. Residues within 4A° of the formylamino-HMP molecule 

are shown in stick representation. Blue broken lines show possible hydrogen bond 

interactions; grey broken lines are interatomic distances. Distances are in A°. Carbon 

atoms are green, nitrogen atoms are blue and oxygen atoms are red. Water (WAT) 

molecules are depicted as red spheres. Note the hydrogen bond involving the formyl 

group of formylamino-HMP and Tyr163 that could position the nitrogen atom of 

formylamino-HMP too far (4.5A°) from the catalytic residue Cys135 to allow the 

cleavage reaction to take place. 
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CHAPTER 4 

Genetic engineering of Arabidopsis plant to increase thiamin and stress tolerance 

 

ABSTRACT 

Thiamin and thiamin pyrophosphate (TPP) are essential components for the 

function of numerous enzymes involved in the metabolism of carbohydrates and amino 

acids in living organisms. In addition to its role as a cofactor, thiamin plays a key role in 

resistance against biotic and abiotic stresses in plants. Most of the studies used exogenous 

thiamin to enhance stress tolerance in plants. However, we could achieve this objective 

through the genetic engineering of the Arabidopsis (Arabidopsis thaliana) by 

overexpressing of the thiamin biosynthetic genes Thi4, ThiC, and ThiE using strong seed-

specific promoters. Elevated thiamin content in transgenic plants was accompanied by 

enhanced expression of transcripts encoding thiamin cofactor-dependent enzymes. 

Furthermore, seed germination and root growth in thiamin over-producing lines were 

more tolerant to oxidative stress caused by salt and paraquat treatments. The transgenic 

seeds could also accumulate more oil and carbohydrate but less protein than the control 

plants. The same results were also observed in TPP over-producing plants generated by 

the seed-specific overexpression of TPK1 gene in this study. Taken together, our findings 

suggest that thiamin and TPP over-production in transgenic lines could confer a boosted 

abiotic stress tolerance as well as could alter the seed carbon partitioning.     
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INTRODUCTION 

Thiamin (Vitamin B1) in the form of thiamin pyrophosphate (TPP) is an essential 

component for the function of numerous enzymes such as transketolase (TK), pyruvate 

dehydrogenase (PDH), and α-ketoglutarate dehydrogenase (α-KGDH) which are 

involved in central metabolism in all organisms (Jordan, 2003; Nosaka, 2006; Zallot et 

al., 2014). Human and animals can synthesize TPP from thiamin but they are not able to 

synthesize thiamin de novo. Hence, they must take it up from their diet to maintain a 

normal metabolism (Roje, 2007; Kowalska
 

and Kozik, 2008). Severe vitamin B1 

deficiency causes the lethal disease beriberi in humans (Lonsdale, 2006; Roje, 2007). 

Most of the key enzymes involved in thiamin de novo biosynthesis were identified in 

plants and bacteria (Jurgenson et al., 2009; Goyer, 2010). In plants, thiamin is 

synthesized by the condensation of 4-amino-5-hydroxymethyl-2-methylpyrimidine 

pyrophosphate (HMP-PP) and 4-methyl-5-(β-hydroxyethyl)thiazole phosphate (HET-P) 

which is mediated by a bifunctional enzyme known as thiamin-phosphate 

pyrophosphorylase or ThiE (Roje, 2007; Goyer, 2010; Yazdani et al., 2013). These 

precursors of TPP are biosynthesized through two independent pathways mediated by 

thiazolephosphate synthase and phosphomethylpyrimidine synthase enzymes which are 

known as Thi4 and ThiC, respectively. Likewise, at the end of the pathway, free thiamin 

is pyrophosphorylated by thiamin pyrophosphokinase (TPK) enzyme (Ajjawi et al, 2007) 

to produce its active form TPP.  

TPP has been demonstrated to play a vital role other than cofactor function in 

resistance against biotic and abiotic stress conditions in different plant species (Sayed and 

Gadallah, 2002; Ahn et al., 2005; Tunc-Ozdemir et al., 2009). Abiotic stress, which is the 

mailto:ewa.b.kowalska@uj.edu.pl
mailto:
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0065
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0055
http://www.sciencedirect.com/science/article/pii/S0031942213001994#b0055
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major cause of crop loss worldwide, can reduce average yield for most staple crops by 

more than 50% (Boyer, 1982; Bray et al., 2000). Recent studies showed that total thiamin 

content is elevated in plant seedlings subjected to osmotic, salt, and oxidative stress 

conditions (Rapala-Kozik et al., 2008; Tunc-Ozdemir et al., 2009).  

Plants subjected to high salinity can suffer from water stress, ion toxicity, 

nutritional imbalance, oxidative stress, and/or a combination of these adverse factors 

(Ashraf, 1994; Hernandez and Almansa, 2002). When exposed to high salinity, vital 

activities in plants such as photosynthesis, protein, and lipid metolisms can be affected 

(Parida and Das 2005) by the production of reactive oxygen species (ROS) (Imlay, 2003). 

ROS production have shown to have detrimental effects on lipids, proteins and nucleic 

acids (Mc Kersie and Leshem, 1994). Salt stress can produce superoxide radicals, which 

can be removed by antioxidant enzymes such as superoxide dismutase and ascorbate 

peroxidase (Hernandez and Almansa, 2002). It is also well-documented that high salinity 

can cause osmotic and ionic stresses wich trigger oxidative stress and plants combat with 

these unfavorable conditions by the induction of their antioxidant systems (Parida and 

Das, 2005). 

Paraquat can also induce oxidative stress and reduce plant productivity (Bowler et 

al., 1992; Koca et al., 2007). In chloroplasts, the herbicide paraquat (1,1'-dimethyl-4,4'-

bipyridylium) plays its role in the light reaction of photosynthesis by the production of 

superoxide radicals (Dodge, 1994). These noxious molecules are then scavenged by a 

chain reaction mediated by antioxidant enzymes such as superoxide dismutase (Asada 

and Kiso, 1973), ascorbate peroxidase, and glutathione reductase (Foyer and Mullineaux, 

1994). 
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In addition to the accumulation of thiamin in plants subjected to various abiotic 

stresses, its exogenous application conferred some degree of resistance to salt and 

oxidative stresses. Sayed and Gadallah (2002) reported that in sunflower plants, either 

sprayed on shoots or applied to roots, thiamin alleviates the adverse effects of salinity on 

shoot and root growth. 

Transcriptome and proteome analysis were also performed in recent years to gain 

more insight about the relationship between thiamin biosynthesis and stress tolerance in 

plants. Transcriptomic studies have been reported on the accumulation of some thiamin 

biosynthesis enzymes transcripts under heat and drought stress conditions in plants 

(Rizhsky et al., 2004). Moreover, leaf proteome analysis of Populus euphratica plant 

subjected to heat stress condition showed changes in the abundance of thiamin 

biosynthesis enzymes (Ferreira et al., 2006). Proteomic analysis on rice seedlings has also 

revealed that thiamin has an important role in this plant in response to cold stress (Cui et 

al., 2005).  

Although the role of thiamin in the elevation of plant responses to biotic and 

abiotic stress conditions has been confirmed, there are fewer studies regarding the 

evaluation of the response of thiamin biosynthetic genes in stress conditions (Pourcel et 

al., 2013). It has been shown that combinational application of hydroxyethylthiazole 

(HET) and hydroxymethylpyrimidine (HMP) in the medium of wild type and ThiC 

mutants could augment the level of thiamin and its phosphate esters in Arabidopsis plant, 

while the solo application of these precursors did not show significant increase. These 

findings propose that thiamin biosynthesis is limited by the availability of both thiazole 

and pyrimidine (Pourcel et al., 2013). In contrast, the level of thiamin monophosphate 
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(TMP) and TTP did not show dramatic difference in the wild type plants by dual 

application of HET and HMP suggesting that ThiE and phosphatase are not limiting in 

thiamin biosynthesis pathway (Pourcel et al., 2013).  

Taken together, these evidences confirm that thiamin plays an important role to 

sustain normal functioning of plants subjected to various environmental stresses. 

Therefore, the aim of this research is to generate transgenic plants with improved thiamin 

content in the seeds in order to: 1- boost seed nutritional value, 2- increase abiotic stress 

tolerance and 3- determine the possible impact of excess amount of thiamin on some 

metabolic pathways in plants. To achieve these goals, we took advantage of molecular 

biology and biochemistry approaches for overexpression of Thi4, ThiC, ThiE, and TPK1 

genes under the control of seed specific promoters and analyzing the transgenic 

Arabidopsis seeds. Ultimately, we will have the transgenic plants with improved 

nutritional content and also increased abiotic stress tolerance which are important for 

food crops.   

 

EXPERIMENTAL 

Plant materials and growth conditions 

Seeds of wild type Arabidopsis plants (ecotype Columbia) were provided from 

Arabidopsis Biological Resource Center (ABRC). Wild type seeds were then being 

grown on 1x MS (Murashige and Skoog, 1962) agar plates at 21°C under 100 µmol m
−2

 

s
−1

 constant light for 10 days. They were then transplanted to the soil for growth under 

130 µmol m
−2

 s
−1

 light with 16 h light/8 h dark period in a growth chamber. Twenty five-
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day old plants were used for floral dip transformation by Agrobacterium tumefaciens 

(Clough and Bent., 1998). 

Constructs for overexpression of thiamin biosynthesis genes 

To overexpress the cDNAs of the Thi4 (At5G54770) and ThiC (At2G29630) 

genes in wild type Arabidopsis seed, two gene expression cassettes were made (Figure 1) 

in which the Thi4 and ThiC open reading frames (ORF) were cloned into the NotI site of 

pMS4 and pKMS2 under the control of Brassica napin (Ellerström et al., 1996) and 

oleosin (Keddie et al., 1994) promoters, respectively. The pMS4 and pKMS2 vectors 

were then excised in their AscI sites to remove the fragments of napin 

promoter::Thi4::glycinin 3′UTR and oleosin promoter::ThiC::oleosin terminater, 

respectively. These two expression cassettes were then sub-cloned into the AscI and MluI 

sites of the RS3GseedDSredMSC binary vector, respectively. The ThiE (At1G22940) 

ORF was cloned directly into the XmaI site of RS3GseedDSredMSC vector under the 

control of soybean glycinin promoter (Iida et al., 1995). The binary vector harboring 

these 3 genes was transformed into Agrobacterium tumefaciens strain GV3101. 

Transgenic Arabidopsis seeds (T1) were produced using Agrobacterium-mediated 

transformation by the floral dip method (Clough and Bent., 1998). The T1 seeds were 

then selfed to produce the T2 seeds. To identify the homozygous lines, T2 plants were 

grown and segregation analysis was performed on the siliques containing the T3 seeds 

against the DSRed gene using fluorescent microscope. More than twenty homozygous 

lines were obtained and eight independent homozygous lines were used for this study. In 

parallel, homozygous plants harboring the empty vector control were produced to be used 

for further analysis.  

https://naes.agnt.unr.edu/PMS/GPRS/Faculty/Priority_Add_Project3.aspx#_ENREF_5
https://naes.agnt.unr.edu/PMS/GPRS/Faculty/Priority_Add_Project3.aspx#_ENREF_8
https://naes.agnt.unr.edu/PMS/GPRS/Faculty/Priority_Add_Project3.aspx#_ENREF_7
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For the overexpression of TPK1 (At1g02880) gene, TPK1 ORF was cloned into 

the XmaI site of the RS3GseedDSredMSC binary vector to have soybean glycinin 

promoter::TPK1::glycinin terminator. PCR was performed to amplify the TPK1 gene 

with the glycinin promoter and terminator. This fragment was next sub-cloned into the 

NotI site of the pART27 binary vector (Figure 12). The homozygous transgenic and 

empty vector control lines were produced as described for 3-gene overexpressor plants, 

except we used kanamycin to select the transgenic lines. 

HPLC analysis 

Dry seeds (~ 5 mg) from wild type, empty vector control, and transgenic lines 

were ground in 300 mL of 2% (w/v) trichloroacetic acid (TCA). Samples were incubated 

at 95 °C for 30 min and kept on ice for 2 min, and then centrifuged at 14,000g for 5 min. 

The supernatant was centrifuged using Nanosep Centrifugal Filter Device (0.2 mm) 

columns (Pall Life Sciences) for 3 minutes. Free thiamin and TPP in 2% TCA were then 

converted into thiochrome using cyanogen bromide (Kim et al., 1998). Thiochrome peaks 

were identified by HP 1046A fluorescence detector (Agilent Technologies, Palo Alto, 

CA) at 370 nm excitation and 430 nm emission using HP 1100 HPLC (Agilent 

Technologies, Palo Alto, CA) equipped with a Capcell Pak NH2 column 

(150 mm × 4.6 mm i.d., Shiseido, Tokyo). A 4:6 (v/v) solution of 90 mM potassium 

phosphate buffer, pH 8.4 and acetonitrile was used as the mobile phase (Ajjawi et al. 

2007a).  

RNA isolation and Real-Time Quantitative RT-PCR 

Total RNA was isolated from 9-day old developing Arabidopsis siliques (Van Erp 

et al., 2014) using the Spectrum
TM

 Plant Total RNA Kit (Sigma-Aldrich). The isolated 
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total RNA was then treated with DNase I (Amplification Grade, Sigma-Aldrich) 

according to manufacturer’s protocol.  First strand cDNA was synthesized utilizing 2 µg 

of total RNA and iScript
TM 

cDNA Synthesis Kit (Bio-Rad). A fraction (0.75 μg) of the 

cDNA was used as the template in 10 μl reaction mixture per well in real-time PCR. 

TaqMan probes were purchased for Thi4, ThiC, ThiE, TPK1, TK (AT245290), TK 

(AT3G60750), PDH (AT1G24180), PDH (AT2G34590), α-KGDH (AT3G55410), α-

KGDH (AT5G65750), DXPS (AT5G11380) and DXPS (AT4G15560) (Assay ID. No. 

At02243600_g1, At02252013_g1, At02305767_g1, At02333096_gH, At02263110_g1, 

At02197798_g1, At02306409_g1, At02216989_g1, At02189484_g1, At02283104_g1, 

At02273275_g1 and At02221416_g1, respectively) from Applied Biosystems (Life 

Technologies, Carlsbad, CA).  The Arabidopsis eEF-1 α (Assay ID. No. At02337969_g1) 

gene tagged with VIC dye (Life Technologies, Carlsbad, CA) was added in each well as 

an internal control. PCR thermal cycling conditions used for amplification was 95 °C for 

2 min followed by 39 cycles of 95 °C for 15 sec., 60 °C for 1 min.  Gene expression 

levels were quantified by CFX96 Real-Time System (Bio-Rad).  Data was analyzed using 

2
-∆∆CT

 method (Tunc-Ozdemir et al., 2009). 

Stress assays 

In all stress experiments the seeds were surface sterilized and kept at 4 °C for 2 

days in complete darkness and then germinated at 22 °C under 100 µmol m
-2

 S
-1

 constant 

light in growth chamber. Germination assays were performed with at least five technical 

replications, each containing 50 seeds per line, and repeated at least three times.  For seed 

germination assay, the seeds were grown on 1× MS agar plates without thiamin and 

containing the different concentrations of NaCl and paraquat (methyl viologen) for 5 days 

http://www.bio-rad.com/en-us/product/iscript-cdna-synthesis-kit
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and the number of germinated seeds were counted each day. As a morphological marker, 

visible penetration of the radicles into the seed coat was considered for seed germination 

(Kim et al., 2008). These plates were also kept in the growth chamber for 4 more days to 

evaluate the number of viable seedlings for each genotype.    

For root growth assay, the seedlings (5 seeds per line with at least 10 technical 

replications) were grown vertically on 1× MS agar plates without thiamin and 

supplemented with various concentrations of NaCl and paraquat and the increase in root 

length was measured each day for 9 days. The RGR was then calculated as described by 

Lupini et al. (2010).  

Lipid analysis 

Seed oil analysis was performed according to Li et al. (2006). To measure seed oil 

content, 2 mg of seed was measured out and aliquoted to glass tubes. A 300 µl of the 

mixture of toluene and triheptadecanoin (total of 96 µg triheptadecanoin per sample) was 

added to each sample, then 25 µl of butylated hydroxytoluene solution (0.2% butylated 

hydroxytoluene in MeOH), and finally 1 ml of sulfuric acid (5% H2SO4 in MeOH). The 

samples were incubated at 95 °C for 1.5 h and then allowed to cool to room temperature 

for 30 minutes. A 1.5 ml of 0.9% NaCl (W/V) was added to each sample. Finally, a 2 ml 

hexane extraction was performed on each sample twice by vortexing to mix and then 

centrifugation for phase separation. The top supernatant layer of each extraction was 

removed and pooled into a fresh glass tube and then dried down using a stream of N2 (g). 

Samples were then re-suspended in 400 µl of the hexane and transferred to a GC vial. 

Oxidative air was purged from each GC vial using a gentle stream of N2 (g).   
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Samples were run through a DB-23 column (Agilent Technologies, Santa Clara, 

CA) using 2 µl injections in a 25:1 split ratio. Injector and FID temps set to 260 °C. Prior 

to starting the run, the column was conditioned at 240 °C for 2 hours. For each sample, 

the oven temperature started at 50 °C for each run and was ramped up to 150 °C at 

25°C/minute and then held at 150 °C for 3 minutes. The oven was then ramped to 240 °C 

at 10 °C/minute, and then the temperature was held at 240 °C for 5 minutes. 

For oil data analysis, the raw data for each chromatogram was transferred to an 

excel format. The data was processed by labeling each Major FAME peak using the 

external standards as a guide. Analysis was performed by normalizing the area under 

each peak to the area of the C17 internal standard peak to produce a normalized peak 

area. The normalized peak area was multiplied by the mass of internal standard added to 

each sample (0.096 mg) for an amount of lipid per peak, which was then divided by the 

total sample weight (2 mg) and multiplied by 100% to produce an oil content relative to 

dry weight. The peaks for each sample were summed to produce a total lipid content for 

that sample. The data for each sample was analyzed for an average value, standard error, 

and a 95% confidence interval. 

Protein and carbohydrate assay 

Seed protein content was measured as described by Focks and Benning (1998). 

Briefly, 20 to 50 seeds were weighed out and homogenized in 250 µl of acetone in a 1.5-

ml tube. Following centrifugation at 16,000g, the supernatant was discarded and the 

vacuum-dried pellet was resuspended in 250 µl of extraction buffer containing 50 mM 

Tris-HCl, pH 8.0, 250 mM NaCl, 1 mM EDTA, and 1% (w/v) SDS. Following a 2 h 

incubation at 25 °C, the homogenate was centrifuged at 16,000g for 5 min and 5 µl of the 
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supernatant was used for protein measurement in a microplate format utilizing the Lowry 

DC protein assay kit and γ-globulin for generating standard curve (Bio-Rad). 

For quantification of total carbohydrate, 50 seeds were homogenized in 500 µL of 

80% (v/v) ethanol in a 1.5-ml tube and incubated at 70 °C for 90 min (Focks and Benning 

1998). The total sugar was measured using the phenol-sulfuric acid method in microplate 

format and glucose was used to generate standard curve (Masuko et al., 2005). Soluble 

sugars were analyzed according to Focks and Benning (1998). 

Hypocotyl length assay    

Hypocotyl length assay was performed as described in Gantlet website 

(www.gantlet.org). In brief, surface sterilized seeds were plated on agar plates containing 

0.5 × MS salt without thiamin and sucrose. The seeds of each genotype were plated in 

different positions to minimize the plate position effects.  The edge of the plates was then 

wrapped with 3M surgical tape.  Following wrapping the plates in aluminum foil, they 

were kept in 4 °C for 2 days in complete darkness to break the seed dormancy. The 

aluminum foil was then removed and the plates were placed in 22 °C under 100 µmol m
-2

 

S
-1

 constant light for 24 h. After 24 h, the plates re-wrapped in aluminum foil individually 

and placed vertically in 22 °C. The hypocotyl length was measured for 8 days.   

Statistical analysis 

Data analysis was performed using Student’s t test (Suzuki et al., 2008) to show 

the significance of differences between data sets.  

 

http://www.gantlet.org/


 

 
 

95 

 

 

 

RESULTS 

Overexpression of thiamin biosynthesis genes in the seed of wild type Arabidopsis 

In order to overexpress the Thi4, ThiC, and ThiE cDNAs in wild type Arabidopsis 

seed, two gene expression cassettes were made (Figure 1) in which the Thi4, ThiC genes 

were under the control of Brassica napin (Ellerström et al., 1996) and Oleosin promoters 

(Keddie et al., 1994) promoters, respectively, as described in the “Materials and 

Methods” section. The ThiE gene was cloned directly into the binary vector under the 

control of soybean glycinin promoter (Iida et al., 1995). These three promoters were 

chosen because all three promoters are known to be expressed in both the endosperm and 

embryo tissues of seeds from various dicot and monocot species (Ellerström et al., 1996; 

Iida et al., 1995; Keddie et al., 1994).Transgenic Arabidopsis seeds (T1) were produced 

using Agrobacterium-mediated transformation. The T1 seeds were grown to have the T2 

seeds. To identify the homozygous lines, T2 plants were grown and segregation analysis 

was performed on the T3 generation. More than twenty homozygous lines were obtained 

and eight independent homozygous lines were used for this study. In parallel, 

https://naes.agnt.unr.edu/PMS/GPRS/Faculty/Priority_Add_Project3.aspx#_ENREF_5
https://naes.agnt.unr.edu/PMS/GPRS/Faculty/Priority_Add_Project3.aspx#_ENREF_8
https://naes.agnt.unr.edu/PMS/GPRS/Faculty/Priority_Add_Project3.aspx#_ENREF_7
https://naes.agnt.unr.edu/PMS/GPRS/Faculty/Priority_Add_Project3.aspx#_ENREF_5
https://naes.agnt.unr.edu/PMS/GPRS/Faculty/Priority_Add_Project3.aspx#_ENREF_7
https://naes.agnt.unr.edu/PMS/GPRS/Faculty/Priority_Add_Project3.aspx#_ENREF_8
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homozygous plants harboring the empty vector control were produced to be used for 

further analysis. 

 

 

Figure 1: Simplified diagram depicting Thi4 and ThiC gene cassettes in pMS4 and 

pKMS2 vectors.  RS 3GSeedDSredMCS binary vector was used to clone ThiE gene. Thi4 

and ThiC gene cassettes were also sub-cloned into RS 3GSeedDSredMCS binary vector. 

Nap-p, Oleo-p, and Gly-p are napin, oleosin, and glycinin promoters, respectively. Ter.: 

terminator, LB: left border, RB: right border. 

 

 

Transgenic Arabidopsis plants showed greater thiamin content in the seeds  

Thiamin content analysis of control and transgenic plants by HPLC method 

revealed that overexpression of Thi4, ThiC, and ThiE genes under the control of seed-

specific promoters could significantly boost the thiamin level in transgenic Arabidopsis 

seeds. All transgenic lines have greater abundance of this metabolite in comparison to the 

wild type and empty vector control plants (Figure 2). The thiamin level in the seed of 

transgenic lines ranged from 81.2 (line 6-5) to 130.8 ng per mg seed weight (line 13-15) 

which is approximately 4.2 to 7-fold greater of those in control plants. Interestingly, 

thiamin in the form of cofactor was not detectable in either transgenic or control seeds. 
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Figure 2: HPLC analysis shows increased seed thiamin content of homozygous 

transgenic Arabidopsis plants (3-gene overexpressors). Values represent mean±SE. 

Student t tests were carried out to compare the seed thiamin content in transgenic and WT 

plants. ** indicates significant difference at P<0.001 and * indicates significant 

difference at P<0.05. WT: wild type, EV: empty vector control. 

 

 

   

Expression pattern of Thi4, ThiC, and ThiE genes in transgenic plants 

We performed quantitative reverse transcription polymerase chain reaction (qRT-

PCR) analysis to determine the expression pattern of thiamin biosynthesis genes in 9-day-

old developing siliques. The results showed that all three transcripts were increased 

significantly in transgenic plants. The highest expression (>7-fold) was observed for the 

ThiC and ThiE genes while for the Thi4 the transcript abundance level was approximately 

4-fold more in comparison to the control plants (Figure 3).  
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Figure 3: Transcript abundance of thiamin biosynthetic genes in 3-gene overexpressing 

Arabidopsis plants. Values are mean±SE. Student t tests were carried out to compare the 

transcript levels in transgenic and WT plants. ** indicates significant difference at 

P<0.001. WT: wild type, EV: empty vector control. 
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Transgenic Arabidopsis plants have enhanced oxidative stress tolerance  

To test the hypothesis that transgenic plants are more tolerant to oxidative stress, 

root growth assay was carried out using the seeds of transgenic and control plants grown 

on agar medium supplemented with various concentration of paraquat. Root growth assay 

was chosen because it is fast, accurate, and easy to perform (Ciftci-Yilmaz et al., 2007; 

Verslues et al., 2006). Paraquat was also used because it can induce the production of 

superoxide radical which has detrimental effects on electron transfer mechanism in the 

chloroplast and mitochondrion (Bowler et al., 1983; Tunc-Ozdemir et al., 2009).  

Our results showed that root growth rate (RGR) in transgenic seedlings was 

significantly increased relative to the control plants. The RGR for the transgenic plants 

grown on agar medium supplemented with 0.05 and 0.1 µM paraquat showed 

approximately 26% increase compared to control plants, while this value for the 

transgenic plants grown on agar medium supplemented with 0.25 µM paraquat was 

approximately 58% (Figure 4).  

https://naes.agnt.unr.edu/PMS/GPRS/Faculty/Priority_Add_Project3.aspx#_ENREF_3
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Figure 4: Effect of paraquat on root growth rate (RGR) of 9-day old Arabidopsis 

seedlings overexpressing 3 genes in the seed. 100% of the WT in 0.05, 0.1, and 0.25 µM 

paraquat equals 18.9, 14.2, and 6.6 mm, respectively. Values are mean±SE. Student t 

tests were carried out to compare the RGR in transgenic and WT plants. ** indicates 

significant difference at P<0.001 and * indicates significant difference at P<0.05. WT: 

wild type, EV: empty vector control. 

 

 

 

 Transgenic seeds accumulating high-thiamin levels show higher germination rate 

and seedling viability in salt and oxidative stress conditions 

 

To investigate how thiamin over-producing lines react to the abiotic stress 

conditions, the seeds of transgenic plants were grown on agar plates supplemented with 

various concentrations of NaCl and paraquat, separately. The results showed that the 

germination of transgenic seeds was more tolerant to salt treatment than wild type and 

empty vector control seeds in the presence of 50 and 100 mM NaCl. At 50 mM NaCl, 
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more than 97% of the seeds in line 13-15 were germinated at day 2 compared with 

approximately 55 and 58% seed germination for the wild type and empty vector controls, 

rpectively (Figure 5). These values for the seeds treated with 100 mM NaCl were 

approximately 15, 16, and 46% for the wild type, empty vector control, and transgenic 

line 13-15, respectively (Figure 5). At day 3, the germination rate of transgenic seeds was 

significantly higher than that of the controls and it could reach to about 100% in 

transgenic lines grown on 50 mM NaCl and 88-96% in high-thiamin lines grown on 100 

mM NaCl relative to the 88% in 50 mM NaCl and 65% in 100 mM NaCl in control plants 

(Figure 5).    

 

 

 

Figure 5: Effects of salt on the germination of 3-gene overexpressing Arabidopsis seeds. 

Radicle emergence was used as a marker for seed germination. Germination assays were 
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carried out using four replicates each consisting of 30-45 seeds. Student t tests were 

performed to compare the germination in transgenic and WT plants. Bars denote 

mean±SE. WT: wild type, EV: empty vector control. 

 

 

 

Regarding paraquat treatment, germination of control seeds was inhibited 

significantly at day 1.  The results showed that about 46% of control seeds were 

germinated compared to more than 80% germination in transgenic lines grown on agar 

medium supplemented with 0.1 µM paraquat (Figure 6). The germination was continued 

at day 2 with significant difference between the controls and transgenic seeds 

(approximately 78 % vs. 99% in line 13-5) then it reached to about 100% germination in 

all genotypes at day 3. The seeds grown on 0.25 µM paraquat were germinated 

approximately 53% for control ones and 81-94% for high-thiamin lines (Figure 6). 

Although seeds of all genotypes continued to germinate at day 2 and 3, the germination 

rate of high-thiamin lines were significantly higher than the controls (Figure 6). 

Nonetheless, in contrast to 0.1 µM paraquat treatment, both wild type and empty vector 

control seeds did not show 100% germination for 0.25 µM paraquat treatment at day 3, 

the germination was approximately 80 and 100% at day 3 for controls and transgenic 

lines, respectively (Figure 6).   
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Figure 6: Effects of paraquat on the germination of 3-gene overexpressing Arabidopsis 

seeds. Radicle emergence was used as a marker for seed germination. For germination 

assays, four replicates each consisting of 30-45 seeds, were averaged and statistically 

treated using the Student’s t test. Bars denote mean±SE. WT: wild type, EV: empty 

vector control. 

 

 

  To assess whether the seeds are able to generate seedling after day 5 on agar 

plates supplemented with 100 mM NaCl and 0.25 µM paraquat, the corresponding plates 

were kept in growth chamber for 9 days and the number of seedlings were counted. The 

results revealed that although about 88% of control seeds could germinate by day 5 in 

both 100 mM NaCl and 0.25 µM paraquat treatments, only 18% of them were able to 
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form seedlings under 100 mM NaCl condition (Figure 7). In contrast, approximately 42-

47% of transgenic seeds could form seedling. These values for the seeds grown on agar 

plate containing 0.25 µM paraquat were 65 and 99% for control and high-thiamin lines, 

respectively (Figure 7). 

 

 

 

Figure 7: Effects of salt and paraquat on seedling formation of 3-gene overexpressing 

Arabidopsis seeds. Seeds were grown on MS plates containing 100 mM NaCl and 0.25 

µM paraquat, separately. The assays were performed in three replicates each consisting 

of 45 seeds. 100% of the WT in MS+100 mM NaCl and MS+0.25 µM Paraquat were 8.3 

and 29 seeds, respectively. Student t tests were performed to compare the seedling 

viability in transgenic and WT plants. Bars denote mean±SE. ** indicates significant 

difference at P<0.001. WT: wild type, EV: empty vector control. 
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High-thiamin transgenic lines showed altered seed phenotype in comparison to 

control seeds  

To the best of our knowledge, this is the first report regarding the effect of 

thiamin on fatty acid biosynthesis pathway in plants. Seeds of Arabidopsis plants produce 

triacylglycerols (TAG) which are the esterified form of the fatty acids (Li et al, 2006). To 

evaluate the seed oil content in our study, we used direct methylation method of intact 

seeds described by Li et al., (2006) followed by gas chromatography (GC) analysis of 

fatty acid methyl esters (FAMSs). Surprisingly, we observed that transgenic seeds could 

accumulate more oil in the form of FAME than those of the control seeds. The level of oil 

content ranged from 42.1% in line 6-5 to 46.1% in line 13-15 per seed dry weight which 

are approximately 6-16.5% over the wild type seeds (Table 2). To assess whether over-

production of thiamin could alter the metabolic pathways in high-thiamin lines, seed total 

protein and carbohydrate content were also measured. As shown in Table 2, the striking 

difference in the amount of total protein was observed between high-thiamin lines and 

controls.  For instance, the total protein content of the high-thiamin line 13-15 was 

approximately 2.6-fold less than the wild type seeds which represent 21.9 % decrease per 

seed dry weight compare to its wild type counterpart. In contrast, in transgenic lines the 

total carbohydrate level was elevated. The level of total sugar in line 13-15 was almost 

1.6-fold greater than the wild type which is 4.4% increase in total sugar per seed dry 

weight (Table 2). In addition, soluble sugars and seed weight analyses showed that 

thiamin over-producing lines significantly contained more soluble sugars (Figure 8) and 

had greater weight than the control plants (Figure 9).    
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Figure 8: Seed soluble sugars content of transgenic Arabidopsis plants overexpressing 3 

thiamin biosynthetic genes. Values are mean±SE. Student t tests were carried out to 

compare the soluble sugars content in transgenic and WT plants. ** indicates significant 

difference at P<0.001 and * indicates significant difference at P<0.05. WT: wild type, 

EV: empty vector control. 
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Figure 9: Seed weight analysis of thiamin-overproducing lines overexpressing 3 genes. 

The analysis was performed using 100 seeds for each line in triplicates. Values are 

mean±SE. Student t tests were carried out to compare the seed weight in transgenic and 

WT plants. * indicates significant difference at P<0.05 and *** indicates significant 

difference at P<0.05<0.1. WT: wild type, EV: empty vector control.  

 

 

 

 

Thiamin cofactor-dependent enzymes showed enhanced gene expression pattern in 

3-gene overexpressor plants 

We next addressed whether over-production of thiamin in transgenic lines is able 

to up-regulate the gene expression of some essential thiamin cofactor-requiring enzymes, 

which are involved in plant core metabolism such as TCA cycle, pentose phosphate 

pathway, and isoprenoid pathway. To test this hypothesis, qRT-PCR analysis was carried 

out for transketolase (TK; AT2G45290 and AT3G60750), pyrovate dehydrogenase 

(PDH; AT1G24180 and AT2G34590), α-ketoglutarate dehydrogenase (α-KGDH; 

AT3G55410 and AT5G65750), and deoxy-xylulose phosphate synthase (DXPS; 

AT5G11380 and AT4G15560) using 9-day-old developing siliques. Our results indicated 



 

 
 

108 

that transcript abundance level in high-thiamin lines for all aforementioned enzymes were 

approximately 1.5 to 2.5-folds greater than the corresponding controls (Figure 10). 
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Figure 10: Transcript levels of thiamin cofactor-dependent enzymes. TK: transketolase, 

PDH: pyruvate dehydrogenase, α-KGDH: α-ketoglutarate dehydrogenase, DXPS: deoxy-

xylulose phosphate synthase. Bars represent mean±SE. ** indicates significant difference 

at P<0.001 and * indicates significant difference at P<0.05. WT: wild type, EV: empty 

vector control. 

  

 

Hypocotyl elongation assay 

The requirement of the plants to thiamin for their growth and development raised 

the question whether the high-thiamin phenotypes in transgenic seeds can help their 

germination and growth on the medium which is lack of thiamin and sucrose. To address 

this question, we performed hypocotyl elongation assay according to Gantlet website 

(www.gantlet.org). The results obtained from this assay revealed that there was not a 

significant difference in hypocotyle length between transgenic and wild type seeds grown 

on MS plates supplemented with thiamin and sucrose (Figure 11A), but the hypocotyl 

elongation in high-thiamin lines were affected by their higher thiamin pools when grown 

on MS plates without thiamin and sucrose as they could form longer hypocotyls 

compared to the wild type controls (Figure 11B and C). As shown in Figure 11B, 

although the hypocotyl elongation was continued from day 2 through day 6 for both 

transgenic and control seeds, the transgenic lines could form longer hypocotyls than the 

http://www.gantlet.org/
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controls. In line 13-15 for instance, at day 2 hypocotyl length was approximately 62% 

longer than the controls. This value for day 4, 6, and 8 was 43, 43, and 30%, respectively. 

After day 6, hypocotyl elongation reached to plateau for all genotypes (Figure 11B and 

C). 

 

 

 

 

Figure 11: Hypocotyl elongation in Arabidopsis seeds. Seeds were plated on agar plates 

containing 0.5× MS salt with thiamin and sucrose (A) or without thiamin and sucrose (B 

and C) and were kept in 4 °C for 2 days in complete darkness. Plates were then placed in 

22 °C under 100 µmol m
-2

 S
-1

 constant light for 24 h. After 24 h, the plates wrapped in 

aluminum foil individually and placed vertically in 22 °C. The hypocotyl length was 

measured for 8 days. 
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Overexpression of thiamin biosynthesis gene TPK1 in the seed of wild type 

Arabidopsis 

In order to confirm our previous results regarding seed phenotypes obtained from 

3-gene overexpressor plants, we tried to overexpress the TPK1 gene which is the last 

gene in thiamin biosynthesis pathway (Figure 1 in chapter1) and catalyzes the conversion 

of free thiamin to its cofactor form, TPP. To achieve this objective, a gene cassette was 

made in which TPK1 cDNA was under the control of the glycinin promoter (Figure 12).   

 

 

 

Figure 12: Simplified diagram representing TPK1 gene cassette in pART27 binary 

vector under the control of glycinin promoter (Gly-p) and terminator (Ter.). LB: left 

border, RB: right border. 

 

 

We chose TPK1 gene because it has been shown that this gene has stronger 

expression in various parts of the Arabidopsis plant than TPK2 (Ajjawi et al., 2007). The 

homozygous transgenic and empty vector lines were also produced as described for 3-

genes overexpressor plants for further analysis. 

TPK1 transgenic plants accumulate both free thiamin and TPP in their seeds  

HPLC analysis was performed to determine the thiamin content of the TPK1 

overexpressors and control plants. The HPLC results showed that unlike TPK1 transgenic 

lines, TPP was not detectable in control plants (Figure 13A). The TPP content in 

transgenic seeds was close to each other ranged from 2.2 in line 16-1 to 2.3 ng per mg 
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seed weight in line 13-3. Surprisingly, the total thiamin content in TPK1 transgenic lines 

was about 2-folds greater than the controls (Figure 13A). Additionally, qRT-PCR 

analysis showed that transcript abundance in TPK1 transgenic lines is approximately 4 to 

7-folds greater than the controls (Figure 13B).    
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Figure 13: A) HPLC analysis of seed thiamin content of homozygous transgenic 

Arabidopsis plants (TPK1 overexpressors). B) Transcript abundance in TPK1 

overexpressing Arabidopsis plants. Values are mean±SE. Student t tests were carried out 

to compare the seed thiamin content and transcript levels in transgenic and control plants. 

** represent significant difference at P<0.001 and * indicates significant difference at 

P<0.05. WT: wild type, EV: empty vector control. 

 

 

 

Overexpression of TPK1 gene up-regulated the expression of the upstream genes 

involved in thiamin biosynthesis pathway 

As described in previous section, the sum of free thiamin and TPP content in 

TPK1 transgenic lines was about 2-folds greater than the controls. These results raised the 

question if the overexpression of TPK1 gene is able to alter the expression of the other 

genes involved in thiamin biosynthesis pathway. To find the answer, we carried out qRT-

PCR to determine the Thi4, ThiC, and ThiE genes expression level in transgenic and 

control plants.  The results revealed that the expression pattern of Thi4 and ThiC genes 

could be affected by the overexpression of TPK1 gene and they were up-regulated 
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between 1.5 to 2.5-folds more than that of the controls. On the contrary, no significant 

changes were observed in ThiE gene expression (Figure 14). 

 

 

     

 

   

Figure 14: Transcript abundance of thiamin biosynthetic genes in TPK1 overexpressing 

Arabidopsis plants. Values are mean±SE. Student t tests were carried out to compare the 

transcript levels in transgenic and control plants. * indicates significant difference at 

P<0.05. WT: wild type, EV: empty vector control. 

 

 

 

TPK1 transgenic plants show altered seed oil, protein, and sugar content in 

comparision to control seeds  

As we described previously regarding the seed phenotypes of 3-gene 

overexpressor plants, they showed greater amount of oil and carbohydrate but lesser 
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amount of protein in the seeds. To confirm these results and see whether thiamin or TPP 

are responsible for these results, we performed oil, carbohydrate, and protein analysis of 

TPK1 transgenic seeds. Interestingly, oil and carbohydrate level were boosted in TPK1 

transgenic seeds. The GC results showed that although it was in lesser amount than 3-

gene overexpressors, the oil level of TPK1 transgenic seeds were elevated approximately 

between 2.1% in line 18-5 to 9% in line 13-3 more than control seeds. The carbohydrate 

level was also increased between 20.2 to 58% more than the controls in lines 18-3 and 2-

4, respectively. Consistent with the results for protein level in 3-gene overexpressor 

plants, TPK1 transgenic plants stored 1.3-folds (line 18-5) to 1.6-folds (line 2-4) lesser 

amount of protein than the controls in their seeds (Table 3).  

 

  

 

DISCUSION  

Thiamin in the form of its cofactor, TPP, plays a key role in the core metabolism 

of living organisms through the participation in metabolic pathways such as: Calvin 
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cycle, acetyl-CoA formation, TCA cycle, pentose phosphate pathway (PPP), and the 

branched-chain amino acid biosynthesis pathway (Friedrich, 1987). Although the thiamin 

biosynthetic pathway and its regulation mechanism have been recently well-characterized 

(Begley et al., 1999; Nosaks, 2006; Wachter et al., 2007; Ajjawi et al., 2007; Yazdani et 

al., 2013; Zallot et al., 2014), there have been no reports regarding the generation of the 

transgenic plants with the elevated level of thiamin in the seed through genetic 

engineering. In this study, we showed that using strong seed-specific promoters, the free 

thiamin level in the plant seeds could be boosted significantly by the overexpression of 

the Thi4 and ThiC genes which are responsible to produce thiazole and pyrimidine 

moieties of the thiamin and also ThiE gene which can combine these two products into 

the TMP (Figure 2). These results suggest that overexpressing these three genes is 

sufficient to elevate the thiamin level in plant seeds. On the other hand, overexpression of 

the TPK1 gene led to accumulation of TPP in transgenic seeds (Figure 13A). Indeed, 

TPK1 gene overexpression could up-regulate the expression of Thi4 and ThiC genes 

(Figure 14) to increase free thiamin level required for producing more TPP in TPK1 gene 

overexpressors. These findings propose that Thi4 and ThiC genes are limiting the thiamin 

biosynthesis pathway (Pourcel et al., 2013). Like the wild type plants, thiamin over-

producing plants also showed the normal growth. This suggests that thiamin in higher 

amounts does not have adverse effects on plant growth and development. This result is 

consistent with the results obtained from the feeding studies reported by Pourcel et al, 

(2013). 

Our data shows that both control plants and transgenic lines (3-gene 

overexpressors) prefer to store the thiamin in the form of free thiamin (Figure 2). These 
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results are in agreement with the previously reported data indicating the absence of 

phosphorylated forms of thiamin in mature seeds of some monocots and dicots such as 

rice, corn, soybean, and pea (Yusa, 1961; Molin et al, 1980; Golda et al, 2004).  

Oxidative stress is the major damage for plants under environmental stresses 

because of the imbalance between reactive oxygen species (ROS) production and the 

activity of antioxidant systems (Scandalios 1993).  When plants are exposed to abiotic 

stress conditions, they switch on some genes that increase the level of certain metabolites 

which contest these stresses. Thiamin has been proven to be a metabolite that enhances 

tolerance to abiotic stresses such as heat, cold, salinity, and paraquat (PQ) in plants 

(Tunc-Ozdemir et al. 2009). Although several studies in animal cells (Lukienko et al. 

2000; Ba, 2008) and yeast (Wolak et al. 2014) have given credit to thiamin as a potent 

antioxidant, there is not enough evidence to support this idea in plants. Most of the data 

regarding the role of thiamin in biotic and abiotic stress conditions is relied on feeding 

studies by using exogenous thiamin in the plants medium (Sayed and Gadallah, 2002; 

Conrath et al., 2002; Ahn et al., 2005; Tunc-Ozdemir et al., 2009). This suggests an 

indirect role for thiamin in scavenging ROS in plants by provision of NADH and 

NADPH to combat oxidative stress (Tunc-Ozdemir et al., 2009; Asensi-Fabado and 

Munne-Bosch, 2010). In our study the root growth assay showed that genetically 

engineered Arabiopsis seeds (3-gene overexpressors) had significantly increased RGR 

than that of the control plants under the PQ treatment (Figure 4). PQ is a well-known 

wildly used herbicide to control weeds in agriculture (Babbs et al., 1989). As a powerful 

ROS producer PQ can cause loss of photosynthetic activity via inhibition of ferredoxin 

reduction, generating the NADPH, regeneration of antioxidant enzymes (Lascano et al., 
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2012.), and loss of cell membrane integrity as well (Kunert and Dodge 1989). The 

increased RGR in transgenic plants might be due to the elevation of free thiamin pool 

which can be subsequently converted to TPP cofactor (Tunc-Ozdemir et al., 2009). It has 

been shown that plants under stress conditions have a high demand for TPP, which 

activates enzymes such as TK, PDH, and α-KGDH that are involved in plants core 

metabolism including PPP and TCA cycle to produce more NADH and NADPH required 

for scavenging the PQ-generated ROS (Tunc-Ozdemir et al., 2009; Rapala-Kozik, 2012). 

In our study it is noteworthy that in thiamin over-producing lines, the TK, PDH, and α-

KGDH gene expression were also up-regulated (Figure 10). It is consistent with the fact 

that TPP-dependent enzymes have a high demand for this cofactor to produce reducing 

molecules in stress conditions (Rapala-Kozik et al., 2008). It has been shown that when 

plants are exposed to abiotic stress conditions these reducing molecules are required for 

the activity of several NAD(P)H-dependent enzymes such as glutathione reductase and 

mono-dehydro-ascorbate reductases as well as the recycling of the oxidized form of 

vitamin E, which play a crucial role to combat oxidative stresses (Arora et al. 2002; 

Miller et al. 2010). Furthermore, Tunc-Ozdemir et al. (2009) reported that the application 

of thiamin alleviated PQ sensitivity in both wild type and ascorbate peroxidase1 (apx1) 

mutant which is highly sensitive to oxidative damage. These results suggest that thiamin 

can complement the function of APX1 enzyme and the thiamin may have a direct role in 

reducing oxidative stresses (Tunc-Ozdemir et al., 2009).  

Interestingly, our transgenic seeds showed the greater total carbohydrates and 

soluble sugar content (Table 1and Figure 8, respectively) compare to the control seeds 

possibly due to the higher activity of TK in Calvin cycle. Hare et al. (1998) reported that 
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accumulation of sugar is a common response of organisms to abiotic stress and can 

function as osmoprotectant and biomolecule stabilizer. Aditionally, Kerepesi and Galiba 

(2000) indicated that wheat plants accumulate more water-soluble carbohydrates during 

osmotic and salt stresses. Although the role of some soluble sugars including glucose and 

fructose in stress tolerance is controversial (Kerepesi and Galiba, 2000), it has been 

shown that other soluble carbohydrates such as sucrose and fructans have potential role in 

adaptation to drought and salt stresses (McKersie and Leshem, 1994). Sucrose can 

prevent structural changes in soluble proteins in abiotic stress conditions (Kerepesi and 

Galiba, 2000). The exact mechanism of fructans in conferring stress tolerance is not clear. 

It may protect the cell membrane or other cellular component from the detrimental 

impacts of abiotic stresses (Pilon-Smits et al., 1995). 

It has also been shown that ROS scavenging enzymes in animal cells and yeast 

have high demand for NADPH generated by the PPP under oxidative stress conditions 

(Palmer, 1999; Larochelle et al., 2006). These results indicate that TK, which is a TPP-

dependent enzyme in PPP, has an important role in producing NADPH required by 

antioxidant enzymes. On the other hand, our results showed up-regulation of the 1-deoxy-

D-xylulose-5-phosphate syntase (DXPS) in thiamin over-producing lines (Figure 10). 

DXPS can also serve as a defense agent in high-thiamin lines against ROS in stress 

conditions. It is well documented that carotenoids, which are a vital class of antioxidants 

are produced in chloroplasts by a TPP-dependent enzyme DXPS, play an important role 

in detoxifying the ROS within thylakoid membranes (Asensi-Fabado and Munne-Bosch, 

2010).   
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Our results showed that seed germination was delayed by both salt and PQ 

stresses (Figure 5 and 6, respectively). Transgenic lines also showed increased seedling 

viability under salt and PQ treatments (Figure 7). Inhibition of seed germination could be 

attributed to osmotic stress and ion toxicity caused by NaCl (Huang and Redmann, 1995). 

Likewise, Agarwal and Pandey, (2004) reported that salinity has detrimental effects on 

seed germination and seedling root and shoot length. Water stress caused by salt stress 

has been reported to reduce stromal volume in chloroplasts as well as to generate ROS, 

which both play a critical role in photosynthesis inhibition (Price and Hendry, 1991). 

Oxidative damage generated by ROS can be alleviated by antioxidant systems that can 

elevate plant tolerance to salt stress. Yoshimura et al. (2004) reported that overexpression 

of Chlamydomonas glutathione peroxidase in the cytosol and chloroplast of the tobacco 

plants could boost oxidative stress tolerance brought by salt and PQ stresses. This would 

suggest that excess amounts of thiamin in our transgenic lines could help plants to 

alleviate the oxidative stress caused by salt and PQ. 

We used Arabidopsis in this study because it is a model plant for biology research 

(Meyerowitz and Somerville, 1994; Li et al., 2006) and it is also a close relative of 

rapeseed (Brassica napus) which is an important oilseed crop (Li et al., 2006). We 

showed that free thiamin and TPP-over-producing lines had altered carbon partitioning in 

the seeds. Seed phenotype analysis revealed that these seeds accumulate more oil and 

carbohydrate, but less protein than the control plants (Table 2 and 3). To date, the 

attempts in order to increase seed oil content in plants were mostly focused on changing 

the expression level of the genes involved in oil biosynthetic pathway (Zou et al., 1997; 

Jako et al., 2001; Vigeolas et al., 2007; Kim et al., 2014; Van Erp et al., 2014). It has 

http://www.sciencedirect.com/science/article/pii/S0031942206001142#bib23
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been shown that the fatty acid biosynthesis pathway is highly dependent upon NADH and 

NADPH supplies (Geer et al., 1979; Slabas and Fawcett, 1992). However, the sources of 

reducing molecules have not been identified yet (Schwender et al., 2003). Rawsthorne 

(2002) reported that NADPH generated in the chloroplasts might be a potential source for 

oil biosynthesis. Additionally, Kang and Rawsthorne (1996) reported that NADPH 

generated by oxidative PPP possibly provides reducing power for fatty acid biosynthesis. 

On the other hand, using a quantitative metabolic flux model, Schwender et al. (2003) 

suggested that glycolysis and the oxidative PPP can provide the reductant required for 

fatty acid biosynthesis. In our study the significant increase observed in Arabidopsis seed 

oil content in thiamin and TPP over-producing lines might be due to the presence of the 

high amounts of reductants produced by thiamin cofactor-dependent enzymes such as 

TK, PDH, and α-KGDH (Jordan, 2003; Nosaka, 2006; Zallot et al., 2014), as their 

transcript level was also significantly increased in high-thiamin lines (Figure 10). 

Additionally, the oil biosynthetic pathway is dependent on acetyl-CoA supply which is 

required for growing the acyl chain in the pathway (Slabas and Fawcett, 1992). The 

significant increase of PDH gene expression indicated in this study might be a possible 

way to elevate the acetyl-CoA level needed for producing more oil in transgenic lines.  

It has been shown that overexpression of DIACYLGLYCEROL ACYL 

TRANSFERASE1 (DGAT1) and WRINKLED1 (WRI1) along with the RNAi suppression 

of the lipase SUGAR-DEPENDENT1 (SDP1) could increase the oil content of the 

Arabidopsis seeds; however, a significant decrease in seed protein and sugar content was 

observed (Van Erp et al., 2014). Additionally, using mutational analysis Focks and 

Benning (1998) reported that WRI1 has an indirect effect on fatty acid biosynthesis. They 

http://link.springer.com/search?facet-creator=%22Antoni+R.+Slabas%22
http://link.springer.com/search?facet-creator=%22Tony+Fawcett%22
http://link.springer.com/search?facet-creator=%22Antoni+R.+Slabas%22
http://link.springer.com/search?facet-creator=%22Tony+Fawcett%22
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suggested that wri1 mutants have aborted the conversion of glucose into fatty acid 

precursors and sucrose and hexoses concentrations were increased in developing wri1 

mutant seeds. These results indicate that plants use protein and sugar as the carbon source 

for oil biosynthesis (Focks and Benning, 1998) and also show the competition between 

the metabolic pathways for the substrates (Schwender and Hay, 2012; Van Erp et al., 

2014). Increased seed oil content in both thiamin and TPP over-producing lines in this 

study might also be a consequence of increased carbohydrate levels generated by the up-

regulation of TK gene expression due to high level of thiamin cofactor. In Calvin cycle, it 

has been demonstrated that TK has a significant role to carbon flux (Stitt and Schulze 

1994; Haake et al. 1999; Raines et al. 2000). Using antisense technology in tobacco 

plants, Henkes et al. (2001) suggested a pivotal role for TK in plant metabolism and 

showed that its activity is a limiting factor for photosynthesis and sucrose production. 

They showed that 20 to 50% suppression in TK expression in tobacco plants could 

remarkably inhibit photosynthesis rate, sugar content, and growth rate as well. Elevated 

sugar content in our transformants might be the consequence of the increased 

regeneration level of ribulose-1, 5-bisphosphate which is a substrate for the activity of 

Rubisco enzyme in Calvin cycle by TK enzyme. This is consistent with the fact that in 

tobacco plants antisense TK transformants displayed reduced photosynthesis due to the 

inhibition of ribulose-1, 5-bisphosphate regeneration (Henkes et al. 2001). These results 

suggest that plastid TK is a key enzyme in the core metabolism of plants and several 

metabolic pathways which rely on TK are highly sensitive to slight changes in plastid TK 

expression (Henkes et al. 2001). 
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Because of the participation of N and S atoms in thiamin structure (Jurgenson et 

al. 2009), the substantial decrease in seed protein level in our high-thiamin and TPP 

transformants can be partly attributed to the fact that these plants use protein as N and S 

sources to produce pyrimidine and thiazole rings of the thiamin. In fact, these results 

suggest that various metabolic pathways compete together for the substrates (Schwender 

and Hay, 2012; Van Erp et al., 2014). Maisonneuve et al. (2010) also reported that 

increased oil content in transgenic plants overexpressing rapeseed lysophosphatidic acid 

acyltransferase (LPAAT) could be at the expense of seed storage reserve content such as 

storage proteins. 

Oil, storage proteins, and carbohydrates in the form of starch are the major 

constituent in the seeds of flowering plants such as Arabidopsis (Baud et al. 2002; Wang 

et al. 2007). Seed reserves provide initial carbon and energy source for growing seedlings 

(Bradbeer, 1988). During morphogenesis, oil in the form of triacylglycerol (TAG) is 

accumulated in Arabidopsis embryos to be used for seed germination and seedlings 

establishment (Mansfield and Briarty, 1992; Eastmond et al., 2000). Analysis of 

hypocotyl growth in control and thiamin over-producing lines revealed that transgenic 

plants could produce a longer hypocotyl in comparison to the control plants (Figure 11). 

These results can be attributed to the fact that higher levels of thiamin provide more TPP 

essential for carbohydrate, oil, and protein metabolism which is required for hypocotyl 

growth when photosynthesis is blocked by complete darkness in transgenic lines.     

Seed mass was another trait that was analyzed in this study. Indeed, seed weight 

of the thiamin over-producing genotypes was significantly greater than the control lines 

(Figure 9). Using seed-specific promoters, Van Erp et al. (2014) reported that 
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overexpression of the genes pertaining to the oil biosynthetic pathway such as DGAT1 

and WRI1 could significantly increase the seed weight. Additionally, Jako et al. (2001) 

for the first time reported that increasing in seed weight ranged from 40% to 100% was 

achieved by the overexpression of DGAT gene in Arabidopsis. Moreover, overexpression 

of rapeseed lysophosphatidic acid acyltransferase (LPAAT), an important enzyme to 

synthesize phosphatidic acid required for storage lipids biosynthesis in developing seeds, 

led to a boost in oil content and seed mass in Arabidopsis without any significant 

difference in fatty acid composition of TAG between transgenic and control plants 

(Maisonneuve et al., 2010). Likewise, expression of yeast LPAAT isozymes in 

Arabidopsis and rapeseed remarkably enhanced seed oil and seed weight (Zou et al., 

1997). On the other hand, Zhang et al. (2005) reported that silencing of DGAT1 gene in 

tobacco reduced mature seed oil content accompanied by reduction in the average seed 

weight. On the contrary, an increase in protein and soluble sugars content of the mature 

transgenic seeds was observed. These results suggest that plants use protein and 

carbohydrate to produce more oil. 

In conclusion, our data demonstrates a critical role for thiamin and TPP cofactor 

in the alleviation of oxidative stress in plant cells. It will be interesting to determine 

whether thiamin functions as a direct antioxidant against abiotic stresses. Additionally, 

our results show that thiamin and its cofactor are able to alter the carbon partitioning in 

plant cells which can have biotechnological application to produce crop plants with 

favorite traits.  

  

 



 

 
 

125 

REFERENCES: 

Agarwal, S., Pandey, V. (2004). Antioxidant enzyme responses to NaCl stress in Cassia 

angustifolia. Biol. Plantarum. 48: 555-560.  

 

Ahn, I.P., Kim, S., Lee, Y.H. (2005). Vitamin B1 functions as an activator of plant 

disease resistance. Plant Physiol. 138: 1505-1515.  

 

Ajjawi, I., Rodriguez Milla, M.A., Cushman, J., Shintani, D.K. (2007). Thiamine 

pyrophosphokinase is required for thiamine cofactor activation in Arabidopsis. Plant Mol. 

Biol. 65: 151-162.  

 

Ajjawi, I., Tsegaye, Y., Shintani, D. (2007a). Determination of the genetic, molecular, 

and biochemical basis of the Arabidopsis thaliana thiamine auxotroph th1. Arch. 

Biochem. Biophys. 459: 107-114. 

 

Arora, A., Sairam, R.K., Srivastava, G.C. (2002). Oxidative stress and antioxidative 

system in plants. Curr. Sci. 82: 1227-1238. 

 

Asada, K., Kiso, K. (1973). Initiation of aerobic oxidation of sulfite by illuminated 

spinach chloroplasts. Eur. J. Biochem. 33: 253-257 

 

Asensi-Fabado, M.A, Munné-Bosch, S. (2010). Vitamins in plants: occurrence, 

biosynthesis and antioxidant function. Trends plant Sci. 15: 582-592. 

 

Ashraf, M. (1994). Organic substances responsible for salt tolerance in Eruca sativa. 

Biol. Plant. 36: 255-259. 

 

Ba, A. (2008). Metabolic and structural role of thiamine in nervous tissues. Cell Mol. 

Neurobiol. 28: 923-931. 

 

Babbs, C.F., Pham, J.A., Coolbaugh, R.C. (1989). Lethal Hydroxyl Radical Production in 

Paraquat-Treated Plants. Plant Physiol. 90: 1267-1270.  

 

Baud, S., Boutin, J.P., Miquel, M., Lepiniec, L., Rochat, C. (2002). An integrated 

overview of seed development in Arabidopsis thaliana ecotype WS. Plant Physiol. 

Biochem. 40: 151-160.  

 

Begley, T.P., Downs, D.M, Ealick, S.E., McLafferty, F.W., Van Loon, A.P.G.M., Taylor, 

S., Campobasso, N., Chiu, H.J., Kinsland, C., Reddick, J.J., Xi, J. (1999).  Thiamine 

biosynthesis in prokaryotes. Arch. Microbiol. 171: 293-300.  

 

Bowler, C., Slooten, L., Vandenbranden, S., De Rycke, R., Botterman, J., Sybesma, C., 

Van Montagu, M., Inze, D. (1983). Manganese superoxide dismutase can reduce cellular 

damage mediated by oxygen radicals in transgenic plants. EMBO J. 10: 1723-1732. 

 

http://link.springer.com/article/10.1023/B:BIOP.0000047152.07878.e7
http://link.springer.com/article/10.1023/B:BIOP.0000047152.07878.e7
http://link.springer.com/journal/10535
http://www.sciencedirect.com/science/article/pii/S0003986106004504
http://www.sciencedirect.com/science/article/pii/S0003986106004504
http://www.sciencedirect.com/science/article/pii/S0003986106004504
http://www.sciencedirect.com/science/journal/00039861
http://www.sciencedirect.com/science/journal/00039861
http://www.sciencedirect.com/science/article/pii/S1360138510001561
http://www.sciencedirect.com/science/article/pii/S1360138510001561
http://link.springer.com/journal/203


 

 
 

126 

Bowler, C., van Montagu, M., Inze, D. (1992). Superoxide dismutase and stress 

tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43: 83-116 

 

Boyer, J.S. (1982). Plant productivity and environment. Science, 218: 443-448. 

 

Bradbeer, J.W. (1988). Seed Dormancy and Germination. Blackie, Glasgow. 

 

Bray, E.A., Bailey-Serres, J., Weretilnyk, E. (2000). Responses to abiotic stresses. In: 

Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. 

American Society of Plant Physiologists, Rockville, MD, pp 1158-1249. 

 

Ciftci-Yilmaz, S., Morsy, M. R., Song, L., Coutu, A., Krizek, B. A., Lewis, M.W., 

Warren, D., Cushman, J., Connolly, E.L., and Mittler, R. (2007). The EAR-motif of the 

Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of 

Arabidopsis to salinity stress. J. Biol. Chem. 282: 9260-9268. 

 

Clough, S.J., Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-

mediated transformation of Arabidopsis thaliana. Plant J. 16: 735-743. 

 

Conrath, U., Pieterse, C.M., Mauch-Mani, B. (2002). Priming in plant-pathogen 

interactions. Trends Plant Sci. 7: 210-216. 

 

Cui, S., Huang, F., Wang, J., Ma, X., Cheng, Y., Liu, J. (2005). A proteomic analysis of 

cold stress responses in rice seedlings. Proteomics, 5: 3162-3172. 

 

Dodge, A. (1994). Herbicide action and effects on detoxification processes. In CH Foyer, 

PM Mullineaux, eds, Causes of Photooxidative Stress and Amelioration of Defense 

Systems in Plants. CRC, Boca Raton, FL, pp 219-236 

 

Eastmond, P.J., Germain, V., Lange, P.R., Bryce, J.H., Smith, S.M., Graham, I.A. (2000). 

Postgerminative growth and lipid catabolism in oilseeds lacking the glyoxylate cycle. 

PNAS. 97: 5669-5674.  

 

Ellerström, M., Stålberg, K., Ezcurra, I., Rask, L. (1996). Functional dissection of a napin 

gene promoter: identification of promoter elements required for embryo and endosperm-

specific transcription. Plant Mol. Biol. 32: 1019-1027. 

 

Ferreira, S., Hjerno, K., Larsen, M., Wingsle, G., Larsen, P., Fey, S., Roepstorff, P., 

Salome Pais, M. (2006). Proteome profiling of Populus euphratica Oliv. upon heat stress. 

Ann. Bot. 98: 361-377. 

 

Focks, N., Benning, C. (1998). wrinkled1: A Novel, Low-Seed-Oil Mutant of 

Arabidopsis with a Deficiency in the Seed-Specific Regulation of Carbohydrate 

Metabolism. Plant Physiol. 118: 91-101. 

 



 

 
 

127 

Foyer, C., Mullineaux, P. (1994). Causes of photooxidative stress and amelioration of 

defense systems in plants. CRC, Boca Raton, FL 

 

Friedrich, W. Handbuch der Vitamine. Munich: Urban and Schwartzenberg; (1987). 

Thiamine (Vitamin B1, aneurin); p. 240-258. 

 

Geer, B.W., Lindel, D.L., Lindel, D.M. (1979). Relationship of the oxidative pentose 

shunt pathway to lipid synthesis in Drosophila melanogaster. Biochem. Genet. 17: 881-

895. 

 

Golda, A., Szyniarowski, P., Ostrowska, K., Kozik, A., Rapala-Kozik, M. (2004). 

Thiamine binding and metabolism in germinating seeds of selected cereals and legumes. 

Plant Physiol. Biochem. 42: 187-195. 

 

Goyer, A. (2010). Thiamine in plants: Aspects of its metabolism and functions. 

Phytochemistry, 71: 1615-1624. 

 

Haake, V., Geiger M, Walch-Liu, P., Engels, C., Zrenner, R., Stitt, M. (1999). Changes in 

aldolase activity in wild-type potato plants are important for acclimation to growth 

irradiance and carbon dioxide concentration, because plastid aldolase exerts control over 

the ambient rate of photosynthesis across a range of growth conditions. Plant J. 17: 479-

489. 

 

Hare, P.D., Cress, W.A., Van Staden, J. (1998). Dissecting the roles of osmolyte 

accumulation during stress. Plant Cell Environ. 21: 535-553. 

 

Henkes, S., Sonnewald, U., Badur, R., Flachmann, R., Stitt, M. (2001). A small decrease 

of plastid transketolase activity in antisense tobacco transformants has dramatic effects 

on photosynthesis and phenylpropanoid metabolism. Plant Cell. 13: 535-551. 

 

Hernandez, J.A., Almansa, M.S. (2002). Short-term effects of salt stress on antioxidant 

systems and leaf water relations of pea leaves. Physiol. Plantarum. 115: 251-257.  

 

Huang, J., Redmann, R.E. (1995). Salt tolerance of Hordeum and Brassica species during 

germination and early seedling growth. Can. J. Plant Sci. 75: 815-819. 

 

Iida, A., Nagasawa, A., Oeda, K. (1995). Positive and negative cis-regulatory regions in 

the soybean glycinin promoter identified by quantitative transient gene expression. Plant 

Cell Rep. 14: 539-544. 

 

Imlay, J.A. (2003). Pathways of oxidative damage. Annu. Rev. Microbiol. 57: 395-418. 

 

Jako, C., Kumar, A., Wei, Y., Zou, J., Barton, D.L., Giblin, E.M., Covello, P.S., Taylor, 

D.C. (2001). Seed-specific over-expression of an Arabidopsis cDNA encoding a 

http://link.springer.com/article/10.1007/BF00504310
http://link.springer.com/article/10.1007/BF00504310


 

 
 

128 

diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol. 

126: 861-874. 

 

Jordan, F. (2003). Current mechanistic understanding of thiamine diphosphate-dependent 

enzymatic reactions. Nat. Prod. Rep. 20: 184-201. 

 

Jurgenson, C.T., Begley, T.P., Ealick, S.E. (2009). The Structural and Biochemical 

Foundations of Thiamine Biosynthesis Annu. Rev. Biochem. 78:569-603. 

 

Kang, F., Rawsthorne, S. (1996).  Metabolism of glucose-6-phosphate and utilization of 

multiple metabolites for fatty acid synthesis by plastids from developing oil seed rape 

embryos. Planta, 199: 321-327. 

 

Keddie, J.S., Tsiantis, M., Piffanelli, P., Cella, R., Hatzopoulos, P., Murphy, D.J. (1994). 

A seed-specific Brassica napus oleosin promoter interacts with a G-box-specific protein 

and may be bi-directional . Plant Mol. Biol. 24: 327-340. 

 

Kerepesi, I., Galiba, G. (2000). Osmotic and Salt Stress-Induced Alteration in Soluble 

Carbohydrate Content in Wheat Seedlings. Crop Sci. 40: 482-487. 

 

Kim, M.J., Yang, S.W, Mao, H.Z., Veena, S.P., Yin, J.L., Chua, N.H. (2014). Gene 

silencing of Sugar-dependent 1 (JcSDP1), encoding a patatin-domain triacylglycerol 

lipase, enhances seed oil accumulation in Jatropha curcas. Biotechnol. Biofuels. 7: 36.   

 

Kim, S.G., Lee, A.K., Yoon, H.K., Park, C.M. (2008). A membrane‐bound NAC 

transcription factor NTL8 regulates gibberellic acid‐mediated salt signaling in 

Arabidopsis seed germination. Plant J. 55:77-88.  
 

Kim, Y.S., Nosaka, K., Downs, D.M., Kwak, J.M., Park, D., Chung, I.K., Nam, H.G. 

(1998). A Brassica cDNA clone encoding a bifunctional hydroxymethylpyrimidine 

kinase/thiamin-phosphate pyrophosphorylase involved in thiamine biosynthesis.  Plant 

Mol. Biol. 37: 955-966. 

 

Koca, M., Bor, M., Ozdemir, F., Turkan, I. (2007). The effect of salt stress on lipid 

peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ. 

Exp. Bot. 60: 344-351. 
 

Kowalska, E., 
 
  Kozik, A. (2008). The genes and enzymes involved in the biosynthesis of 

thiamine and thiamine diphosphate in yeasts. Cell Mol. Biol. Lett. 13: 271-282. 

 

Kunert, K.J., Dodge, A.D. (1989) Herbicide-induced radical damage and antioxidative 

systems. In: Boger P, Sandmann G (eds) Target Sites of Herbicide Action. CRC Press 

Inc, Boca Raton, Fl, pp 45-63. 

 

http://link.springer.com/article/10.1007/BF00020171
http://link.springer.com/article/10.1007/BF00020171
https://dl.sciencesocieties.org/publications/cs
http://scholar.google.com/citations?user=tX8M1w0AAAAJ&hl=en&oi=sra
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2008.03493.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2008.03493.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-313X.2008.03493.x/full
mailto:ewa.b.kowalska@uj.edu.pl
mailto:


 

 
 

129 

Larochelle, M., Drouin, S., Robert, F., Turcotte, B. (2006). Oxidative stress-activated 

zinc cluster protein Stb5 has dual activator/repressor functions required for pentose 

phosphate pathway regulation and NADPH production. Mol. Cell Biol. 26: 6690-6701. 

 

Lascano, R., Munoz, N., Robert, G., Rodriguez, M., Melchiorre, M., Trippi, V., Quero, 

G. (2012). Paraquat: an oxidative stress inducer. INTECH Open Access Publisher.  

 

 Li, Y., Beisson, F., Pollard, M., Ohlrogge, J. (2006). Oil content of Arabidopsis seeds: 

The influence of seed anatomy, light and plant-to-plant variation. Phytochsemistry, 67: 

904-915. 

 

Lonsdale, D. (2006). A review of the biochemistry, metabolism and clinical benefits of 

thiamine and its derivatives. eCAM, 3: 49-59. 

 

Lukienko, P.I.,  Mel'nichenko, N.G.,  Zverinskii, I.V.,  Zabrodskaya, S.V. (2000).  

Antioxidant properties of thiamine. B. Exp. Biol. Med. 130: 874-876. 

 

Lupini, A., Sorgonà, A., Miller, A.J., Abenavoli, M.R. (2010). Short-term effects of 

coumarin along the maize primary root axis. Plant Signal. Behav. 5: 1395-1400. 
 

Maisonneuve, S., Bessoule, J.J., Lessire, R., Delseny, M., Roscoe, T.J. (2010). 

Expression of Rapeseed Microsomal Lysophosphatidic Acid Acyltransferase Isozymes 

Enhances Seed Oil Content in Arabidopsis. Plant Physiol. 152: 670-684. 

 

Mansfield, S.G., Briarty, L.G. (1992). Cotyledon cell development in Arabidopsis 

thaliana during reserve deposition. Can. J. Bot. 70: 151-164. 

 

Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S.I., Lee, Y.C. (2005). 

Carbohydrate analysis by a phenol-sulforic acid method in microplate format. Anal. 

Biochem. 339: 69-72. 

 

Meyerowitz, E.M., Somerville, C.R. (1994). Arabidopsis.  CSHL Press, New York. 

 

Mc Kersie, B.D., Leshem, Y.Y. (1994). Stress and stress coping in cultivated plants. 

Kluwer Academic Publishers, Dordrecht, The Netherlands, 256 pp. 

 

Miller, G., Suzuki, N., Ciftci-Yilmaz, S., Mittler, R. (2010). Reactive oxygen species 

homeostasis and signaling during drought and salinity stresses. Plant Cell Environ. 33: 

453-467. 

 

Molin, W.T., Wilkerson, C.G., Fites, R.C. (1980). Thiamine Phosphorylation by thiamine 

pyrophosphotransferase during seed germination. Plant Physiol. 66: 313-315. 

 

Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bio-assays with 

tobacco tissue cultures. Physiol. Plant. 15: 473-497. 

http://www.sciencedirect.com/science/article/pii/S0031942206001142
http://www.sciencedirect.com/science/article/pii/S0031942206001142
http://www.sciencedirect.com/science/article/pii/S0031942206001142
http://www.sciencedirect.com/science/article/pii/S0031942206001142
http://www.sciencedirect.com/science/journal/00319422
http://link.springer.com/search?facet-creator=%22P.+I.+Lukienko%22
http://link.springer.com/search?facet-creator=%22N.+G.+Mel%27nichenko%22
http://link.springer.com/search?facet-creator=%22I.+V.+Zverinskii%22
http://link.springer.com/search?facet-creator=%22S.+V.+Zabrodskaya%22
http://link.springer.com/journal/10517


 

 
 

130 

Nosaka, K. (2006). Recent progress in understanding thiamine biosynthesis and its 

genetic regulation in Saccharomyces cerevisiae. Appl. Microbiol. Biot. 72: 30-40. 

 

Palmer, A.M. (1999). The activity of pentose phosphate pathway is increased in response 

to oxidative stress in Alzheimer’s disease. J. Neural Transm. 106:317-328. 

 

Parida, A.K., Das, A.B. (2005). Salt tolerance and salinity effect on plants: a review. 

Ecotoxicol. Environ. Saf. 60: 324-349. 

 

Pilon-Smits, E.A.H., Ebskamp, M.J.M., Paul, M.J., Jeuken, M.J.W., Weisbeek, P.J., 

Smeekens, S.C.M. (1995). Improved performance of transgenic fructan-accumulating 

tobacco under drought stress. Plant Physiol. 107: 125-130. 

 

Pourcel, L., Moulin, M., Fitzpatrick, T.B. (2013). Examining strategies to facilitate 

vitamin B1 biofortification of plants by genetic engineering. Front. Plant Sci. 4: 1-8. 

 

Price, A.H., Hendry, G.A.F. (1991). Iron-catalyzed oxygen radical formation and its 

possible contribution to drought damage in nine native grasses and three cereals. Plant 

Cell Environ. 14: 477-484. 

 

Raines, C.A., Harrison, E.P., Olcer, H., Lloyd, J.C. (2000). Investigating the role of the 

thiol-regulated enzyme sedoheptulose-1, 7-bisphosphatase in the control of 

photosynthesis. Physiol. Plant. 110: 303-308. 

 

Rapala-Kozik, M., Kowalska, E., Ostrowska, K. (2008). Modulation of thiamine 

metabolism in Zea mays seedlings under conditions of abiotic stress. J. Exp. Bot. 59: 

4133-4143. 

 

Rapala-Kozik, M., Wolak, N., Kujda, M., Banas, A.K. (2012). The upregulation of 

thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and 

osmotic stress conditions is mediated by abscisic acid at the early stages of this stress 

response. BMC Plant Biol. 12: 1-14. 

 

Rawsthorne, S. (2002). Carbon flux and fatty acid synthesis in plants. Prog. Lipid Res. 

41: 182-196. 

 

Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., Mittler, R. (2004). When 

defense pathways collide. The response of Arabidopsis to a combination of drought and 

heat stress. Plant Physiol. 134: 1683-1696. 

 

Roje, S. (2007). Vitamin B biosynthesis in plants. Phytochemistry, 68: 1904-1921.  

 

Sayed, S.A., Gadallah, M.A.A. (2002). Effects of shoot and root application of thiamine 

on salt-stressed sunflower plants. Plant Growth Regul. 36: 71-80. 

 

http://link.springer.com/search?facet-creator=%22Kazuto+Nosaka%22
http://link.springer.com/journal/253
http://www.ncbi.nlm.nih.gov/pubmed/?term=Pourcel%20L%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moulin%20M%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Fitzpatrick%20TB%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Rapala-Kozik%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22214485
http://www.ncbi.nlm.nih.gov/pubmed/?term=Wolak%20N%5BAuthor%5D&cauthor=true&cauthor_uid=22214485
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kujda%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22214485
http://www.ncbi.nlm.nih.gov/pubmed/?term=Banas%20AK%5BAuthor%5D&cauthor=true&cauthor_uid=22214485
http://www.sciencedirect.com/science/article/pii/S0163782701000236
http://www.sciencedirect.com/science/journal/01637827


 

 
 

131 

Scandalios, J.G. (1993). Oxygen stress and superoxide dismutase. Plant Physiol. 101: 7-

12. 

 

Schwender, J., Hay, J.O. (2012). Predictive modeling of biomass component tradeoffs in 

Brassica napus developing oilseeds based on in silico manipulation of storage 

metabolism. Plant Physiol. 160: 1218-1236. 

 

Schwender, J., Ohlrogge, J.B., Shachar-Hill, Y. (2003). A Flux Model of Glycolysis and 

the Oxidative Pentosephosphate Pathway in Developing Brassica napus Embryos. J. Biol. 

Chem. 278: 29442-29453. 

 

 Slabas, A.R., Fawcett, T. (1992). The biochemistry and molecular biology of plant lipid 

biosynthesis. Plant Mol. Biol. 19: 161-191. 

 

Stitt, M., Schulze, E.D. (1994). Does Rubisco control the rate of photosynthesis and plant 

growth? An exercise in molecular ecophysiology. Plant Cell Environ. 17: 465-487. 

 

Suzuki, N., Bajad, S., Shuman, J., Shulaev, V., Mittler, R. (2008).  The transcriptional co-

activator MBF1c is a key regulator of thermotolerance in Arabidopsis thaliana. J. Biol. 

Chem. 283: 9269-9275. 

 

Tunc-Ozdemir, M., Miller, G., Song, L., Kim, J., Sodek, A., Koussevitzky, S., Misra, 

A.N., Mittler, R., Shintani, D. (2009). Thiamine confers enhanced tolerance to oxidative 

stress in Arabidopsis. Plant Physiol. 151: 421-432. 

 

Van Erp, H., Kelly, A.A., Menard, G., Eastmond, P.J. (2014). Multigene engineering of 

triacylglycerol metabolism boosts seed oil content in Arabidopsis. Plant Physiol. 165: 30-

36. 

 

Verslues, P.E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., Zhu, J.K. (2006). Methods and 

concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect 

plant water status. Plant J. 45: 523-539. 

 

Vigeolas, H., Waldeck, P., Zank, T., Geigenberger, P. (2007). Increasing seed oil content 

in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate 

dehydrogenase under the control of a seed-specific promoter. Plant Biotechnol. J. 5: 431-

441. 

 

Wachter, A., Tunc-Ozdemir, M., Grove, B.C., Green, P.J., Shintani, D.K., Breaker, R.R. 

(2007). Riboswitch control of gene expression in plants by splicing and alternative 3′ end 

processing of mRNAs. Plant Cell. 19: 3437-3450.  

 

Wang, H., Guo, J., Lambert, K.N., Lin, Y. (2007). Developmental control of Arabidopsis 

seed oil biosynthesis. Planta, 226: 773-783. 

 

http://link.springer.com/search?facet-creator=%22Antoni+R.+Slabas%22
http://link.springer.com/search?facet-creator=%22Tony+Fawcett%22


 

 
 

132 

Wolak, N., Kowalska, E., Kozik, A., Rapala-Kozik, M. (2014). Thiamine increases the 

resistance of baker's yeast Saccharomyces cerevisiae against oxidative, osmotic and 

thermal stress, through mechanisms partly independent of thiamine diphosphate-bound 

enzymes. FEMS Yeast Res. 14: 

1249-1262. 

 

Yazdani, M., Zallot, R., Tunc-Ozdemir, M., De Crécy-Lagard, V., Shintani D.K., 

Hanson, A.D. (2013). Identification of the thiamine salvage enzyme thiazole kinase in 

Arabidopsis and maize. Phytochemistry, 94: 68-73. 

 

Yoshimura, K., Miyao, K., Gaber, A., Takeda, T., Kanaboshi, H., Miyasaka, H., 

Shigeoka, S. (2004). Enhancement of stress tolerance in transgenic tobacco plants 

overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. Plant 

J. 37: 21-33. 

 

Yusa, T. (1961). Thiamine triphosphate in yeasts and some plant materials. Plant Cell 

Physiol. 2: 471-474. 

 

Zallot, R., Yazdani, M., Goyer, A., Ziemak, M.J., Guan, J.C., McCarty, D.R., De Crécy-

Lagard, V., Gerdes, S., Garrett, T.J., Benach, J., Hunt, J.F., Shintani, D.K., Hanson, A.D. 

(2014). Salvage of the thiamine pyrimidine moiety by plant TenA proteins lacking an 

active-site cysteine. Biochem. J. 463: 145-155. 

 

Zhang, F.Y., Yang, M.F., Xu, Y.N. (2005). Silencing of DGAT1 in tobacco causes a 

reduction in seed oil content. Plant Sci. 169: 689-694. 

 

Zou, J., Katavic, V., Giblin, E.M., Barton, D.L., MacKenzie, S.L., Keller, W.A., Hu, X., 

Taylor, D.C. (1997). Modification of seed oil content and acyl composition in the 

Brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell. 9: 909-923. 
 

 

 

 

 

 

 

 

 

 

 

http://hos.ufl.edu/meteng/HansonWebpagecontents/SelectedPublications.html
http://www.ncbi.nlm.nih.gov/pubmed/23816351
http://www.ncbi.nlm.nih.gov/pubmed/23816351


 

 
 

133 

CHAPTER 5 

Concluding remarks and future directions 

 

Elucidation of thiamin salvage pathway in plants 

Although the genes and enzymes involved in thiamin de novo biosynthetic 

pathways have been identified and characterized in microorganisms and plants in several 

studies (Jurgenson et al., 2009; Goyer, 2010; Gerdes et al, 2012), there is not enough 

information regarding thiamin breakdown and the fate of its degradation products i.e. 

thiazole and pyrimidine (Goyer, 2010). Because thiamin and its phosphate esters are 

chemically and enzymatically unstable (McCourt et al., 2006, Goyer, 2010; Fitzpatrick et 

al., 2012), plants and microorganisms have developed alternative pathways to re-use the 

thiamin degradation products for thiamin biosynthesis (Li and Rédei, 1969; Jurgenson et 

al., 2009).  

Our study showed that the Arabidopsis and maize genomes encode homologs of 

ThiM with HET kinase activity. These results were confirmed via enzymatic assays using 

purified recombinant proteins. The results demonstrated that ThiM homologs in plants 

play an important role in thiamin salvage.  

Because thiamin biosynthesis in plants occurs in plastids (Goyer, 

2010 and Gerdes et al., 2012) and ThiM proteins seem to be cytosolic, plastids might 

have a transporter for thiazole phosphate that remains to be identified. Finally, it is also 

worth to investigate the effects of ThiM on the expression pattern of thiamin biosynthetic 

genes involved in de novo pathway. 
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Thiaminase II (TenA) is another enzyme with a dual role in thiamin degradation 

and salvage pathway. However, it has been reported that TenA function in bacteria is 

mostly the regeneration of the pyrimidine moiety of thiamin rather than thiamin 

degradation (Jenkins et al., 2007).  

Our study showed that plants possess TenA_E subfamily of TenA proteins. Using 

amino-HMP in plant growth medium, our experiments demonstrated that ThiC/TenA_E 

double mutant Arabidopsis plants were not able to grow. However, ThiC and TenA_E 

single mutants could grow normally on medium supplemented with amino-HMP. These 

results show that TenA_E protein is an important factor in thiamin salvage pathway by 

converting of the amino-HMP to HMP. Additionally, stress experiments using paraquat-

induced oxidative stress showed that in TenA_E single mutants root growth was 

significantly more sensitive to oxidative stress compare to the wild type plants. Although 

this sensitivity could be eliminated by the adding of HMP or thiamin to the growth 

medium, thiamin had stronger effect in removing the oxidative stress.   

In conclusion, our data demonstrated that salvage pathways mediated by ThiM 

and TenA_E enzymes play an important role in both conserving energy and stress 

tolerance in plants. Additionally, it is worth investigating whether ThiM protein would be 

able to boost plant stress tolerance like what was shown for TenA_E protein in our study. 

It would also be interesting to investigate if plants are able to store more thiamin by the 

suppression of TenA_E, which has been shown to have thiamin degradation activity in 

bacteria in addition to its role in thiamin salvage pathway.   
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Genetic engineering of Arabidopsis seeds to increase nutritional value and abiotic 

stress tolerance 

Plants are one of the main sources of nutrients for animals and humans. Because 

the world population is booming rapidly, it is critical to improve not only the quantity but 

also the quality of the crop plants. Genetic engineering is one of the ways to boost 

valuable nutrient content in plants especially staple crop plants such as rice, maize, and 

wheat. It can also be used to increase plant resistant against unfavorable conditions such 

as biotic and abiotic stresses. 

In our research, by seed overexpression of thiamin biosynthetic genes (Thi4, ThiC 

and ThiE) we could achieve to up to 7-fold increase in total thiamin content in transgenic 

seeds. This achievement was much higher than the thiamin-overproduction using the 

overexpression of thiamin biosynthetic genes (Thi4 and ThiC) by constitutive promoters 

reported by Dong et al, (2015) with up to 2.6-fold increase in seed thiamin content. The 

greater amount of thiamin in our study could be as a result of using strong seed-specific 

promoters i.e. glycinin, oleosin, and napin (Ellerström et al., 1996; Iida et al., 1995; 

Keddie et al., 1994) and overexpression of ThiE gene beside the overexpression of the 

two other genes, as well.  

The fact that thiamin can alleviate the adverse effects of abiotic stresses in plants 

has been proven in several studies (Sayed and Gadallah, 2002; Rapala-Kozik et al., 2008; 

Tunc-Ozdemir et al., 2009). These results were obtained from the feeding studies by the 

adding of thiamin to the plants growth medium. To the best of our knowledge, this is the 

first report showing that the over-production of thiamin in plant seeds could increase the 

seeds germination and seedlings viability against salt and paraquat stresses. These results 

were inconsistent with the results reported by Dong et al, (2015) in which 2.6-fold 
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136 

increase in Arabidopsis seed thiamin could not confer stress tolerance to the plants under 

salt and paraquat treatments. One possibility could be that 2.6-fold increase might be 

below the minimum thiamin threshold required for abiotic stress resistance. Additionally, 

using tissue-specific promoters can reduce energy drain on the whole plant (Pourcel et 

al., 2013) which has not been considered in Dong et al, (2015) study in which constitutive 

promoters were used to overexpress the Thi4 and ThiC genes in Arabidopsis. 

As mentioned in chapter 4, thiamin over-producing seed showed the altered seed 

phenotypes compared to the control plants. This is a novel finding showing that the high-

thiamin lines contained more oil and carbohydrates but less total protein. These results 

clearly show that the carbon flux in transgenic seeds could be significantly affected by 

the increased thiamin levels in the seeds. This shift in carbon flux could be a result of the 

increased levels of reducing power in the cell by the thiamin cofactor-requiring enzymes 

such as transketolase, pyruvate dehydrogenase, and α-ketoglutarate dehydrogenase which 

are involved in the production of NAD(P)H, as the expression of the genes corresponding 

to these enzymes in high-thiamin lines were significantly higher than the control plants.    

In addition, we hypothesized that altered seed phenotypes in transgenic lines 

could be an impact of high levels of thiamin in these seeds which could led to an increase 

in TPP levels. TPP is an important cofactor for the activity of TPP-requiring enzymes. To 

test this hypothesis TPK1 transformants were analyzed for oil, carbohydrate, and protein 

content. Interestingly, the results were in agreement with the results obtained from 3-gene 

transformants. In TPK1 transformants the total seed thiamin content was increased in 

comparison to the control seeds. Expression pattern analysis of thiamin biosynthetic 

genes revealed that overexpression of TPK1 could upregulate the expression of Thi4 and 
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ThiC genes in TPK1 transgenic plants. These results confirm that both branches of the 

thiamin biosynthetic pathway are important to produce high-thiamin transgenic plants 

(Pourcel et al., 2013).  

Taken together, this thesis focuses on plant metabolic engineering to increase both 

seed nutritional value by the overexpression of thiamin biosynthetic genes and plant 

abiotic stress tolerance. The results obtained from this study will provide valuable tools 

not only to improve the nutritional content of food crops such as rice, wheat, maize, and 

soybean but also to increase the tolerance of plants against abiotic stress conditions which 

are important in agriculture and industry in both developed and developing counties. It is 

also important to consider the seed thiamin binding proteins which play a critical role 

during seed maturation and germination (Watanabe et al., 2004; Pourcel et al., 2013). In 

addition, it is worth investigating the cross of the 3-gene overexpressors with the TPK1 

transformants to assess thiamin, TPP, and the other metabolite derivatives, and its 

possible effect on plant stress tolerance. It would also be interesting to investigate if 

thiamin plays a direct role in abiotic stress tolerance by the detoxification of ROS. This 

idea could be tested by the exposuring plants to abiotic stress conditions and then 

measuring the levels of oxidized form of thiamin, thiochrome by HPLC, as Lukienko et 

al. (2000) showed that in animal cells thiamin could be oxidized to thiochrome by the 

direct interaction with free radicals and hydroperoxides.  Furthermore, it is important to 

investigate how high-thiamin levels can affect the signal transduction pathways in plants 

in both biotic and abiotic stress conditions. This idea could be evaluated by the measuring 

of the activity of plasma membrane NAD(P)H-oxidase, levels of produced ROS, and the 
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activity of Mitogen-Activated Protein Kinases (MAPKs) in wild type and transgenic 

plants subjected to various biotic and abiotic stresses.   

Last but not least, transcriptome and metabolome profiling of thiamin over-

producing seeds will help us to have better insight about the impact of high-thiamin on 

the expression pattern of the genes and metabolic flux in plant cells.    
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