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ABSTRACT 

Renewable energy-based generation causes uncertainties in power system operation 

and planning due to its stochastic nature. The load uncertainties combined with the 

increasing penetration of renewable energy-based generation lead to more complicated 

power system operations. In power system operation, optimal power flow (OPF) is a 

widely-used tool in Energy Management System (EMS), for scheduling power 

generation of power plants, to operate the power system with least cost of generation 

and to ensure the security and reliability of power transmission grids. On the other hand, 

in order to deal with the stochastic variables (e.g., renewable energy-based generation 

and load uncertainties), probabilistic optimal power flow (POPF) has been instituted.  

This thesis introduces a new Unscented Transformation (UT)-based POPF algorithm. 

UT-based OPF has a key advantage in handling the correlated random variables, and 

has become an open research area. Integrated wind power and independent or correlated 

loads are represented using a Gaussian probability distribution function (PDF). The UT 

is utilized to generate the sigma points that represent the PDF with a limited number of 

points. The generated sigma points are then used in the deterministic OPF algorithm. 

The statistical characteristics (i.e. means and variances) of the UT-based POPF 

solutions are calculated according to the inputs and their corresponding weights. 

Different UT methods with their corresponding sigma point selection processes are 

evaluated and compared with Monte Carlo Simulation (MCS) as the solution 

benchmark. In the thesis, Locational Marginal Price (LMP) in the transmission network 

is evaluated as the output of the UT-based POPF. The proposed algorithm is 

successfully verified on the standard IEEE 30- and 118-bus power transmission systems 

with wind power generation and unspecified loads. These two test cases represent a 

portion of American Electric Power (AEP) transmission grid.    
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CHAPTER 1 

INTRODUCTION 

1.1.Motivation 

Power flow (PF) is an important tool to calculate power system operating conditions 

(i.e. voltage magnitude and angle). Optimal power flow (OPF) was introduced to 

minimize the cost of power system operation and to ensure the reliability of the power 

transmission network. It is commonly used to find the least-cost solution while 

satisfying all operational constraints, including line flow, bus voltages, generation 

constraints etc. Different objective functions have been selected in the optimization 

process, such as the total generation cost minimization, the social welfare 

maximization, and power loss minimization. However, minimizing the generation cost 

is the common objective function for power Utilities, Independent System Operators 

(ISOs), and Regional Transmission Organization (RTO). The optimization process 

includes equality constraints and inequality constraints. The equality constraints are the 

power balance equations between the generation and the load demands, and the 

inequality constraints are generation constraints, transmission line capacities etc. 

Although OPF provides relatively accurate results, it is not easy to take the system 

uncertainties into consideration.  

The uncertainties in power system are caused by random variables, which are the 

load demands and renewable energy-based generation. Due to the adopted renewable 

portfolio standard (RPS), renewable energy resources, and particularly wind power, 

have been increasingly used by power companies to meet the load demand. 

Probabilistic optimal power flow (POPF) was proposed to deal with the stochastic 

uncertainties in power systems. In POPF, the random variables are represented by 
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probability distribution functions (PDF) based on the daily routine or historical data 

and are nonlinearly transformed (i.e. OPF) to obtain the distribution function of the 

output variables (e.g., voltage, line flows etc.).  

The proposed POPF methods are classified into two categories: (i) simulation 

methods, and (ii) analytical methods. Monte Carlo Simulation (MCS) is the commonly 

used simulation approach in POPF. Numerous samples from different combinations of 

all the random input variables are transformed into the nonlinear system to get their 

corresponding outputs. This method gives results with acceptable accuracy. However, 

the large number of simulation cases makes the process time consuming and impractical 

for industry use. Nevertheless, due to its accuracy, MCS results are often used as the 

benchmark to compare and test the effectiveness of other analytical methods. In 

analytical methods, different algorithms are used to simplify the calculation and reduce 

the computational burden. However, most of them utilize linearization for power flow 

equations and lead to inaccurate results. Therefore, point estimation (PE) has been 

proposed to represent PDFs with fewer sample points. The results obtained from PE are 

within the acceptable accuracy range but it is not easy to handle the correlated random 

variables.   

In this thesis, the unscented transformation (UT) is utilized to solve probabilistic 

optimal power flow (POPF). The proposed method has two advantages: (i) there is no 

need for linearization, and (ii) randomly distributed input variables (i.e., independent 

and correlated) and other system constraints are considered. Different UTs are 

simulated and tested on the IEEE 30- and 118-bus systems. The mean and standard 

deviation of locational marginal prices (LMPs) are compared to MCS method.  
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1.2.Contribution 

The contribution of this thesis is two-fold: 1). the UT requires fewer sigma points to 

represent PDFs of the random variables. Therefore the computation burden associated 

with the POPF is reduced; 2). UT-based POPF results (e.g., voltage, power flows, etc) 

are more accurate since the sigma points, are selected through UT to represent PDFs of 

random variables and no linearization is used.  

The proposed UT-based POPF algorithm is evaluated by simulating the effects of 

different random variables on the standard IEEE 30- and 118-bus power transmission 

systems. These two test cases represent a portion of the American Electric Power (AEP) 

transmission system in the Midwestern US. In this thesis, LMPs that are widely used 

by power Utilities to represent the electricity price in wholesale market, and to evaluate 

the performance of the UT-based POPF in different case studies.  

Basic and General UT methods are applied with independent and correlated random 

variables and the results are compared to the corresponding MCS results. The mean and 

standard deviation errors are assessed with respect to wind farm locations and wind 

power penetration levels. Furthermore, performance of the method is evaluated for 

independent and correlated random variables.  

1.3.Chapters Organizations 

The thesis is structured as follows: Chapter 2 illustrates the POPF problem and the 

review of recent POPF literature, Chapter 3 presents UT and its application to POPF, 

and in Chapter 4, different simulation scenarios are presented based on the standard 

IEEE 30- and 118-bus system to demonstrate the effectiveness of the proposed 

algorithm. The proposed UT-based POPF algorithm results are discussed and compared 

with MCS for accuracy assessment. Lastly, Chapter 5 is the conclusion and proposed 

future work. 
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CHAPTER 2 

POWER SYSTEM OPERATION 

2.1. Introduction  

  Electric energy is not storable in large quantities and must be consumed immediately 

after it is generated, transmitted and distributed through an interconnected power grid. 

In order to achieve a reliable power system operation, continuous power balance 

between generation and load is required. Day-ahead, hour-ahead, and 5-minutes ahead 

generation scheduling are common practices by power grid operators to meet power 

supply and demand with the least-cost generation, and in regards to all operation 

constraints, line flows, voltage limits, generation constraints, etc. Increasing number of 

customers and uncertain power demands, combined with renewable energy-based 

generation proliferation adds more complexity to power system operation. Therefore, 

the probabilistic methods for power system analysis are needed to deal with the 

stochastic load and renewable generation.  

This Chapter has four sections. First, the principles of power system and renewable 

energy integration are described. Then, power flow (PF) and optimal power flow (OPF) 

with their corresponding formulations, methods and characteristics are presented in 

Sections 2.3 and 2.4, respectively. Probabilistic optimal power flow (POPF) is reviewed 

in Section 2.5. 

2.2. Power Systems and Renewable Energy Integration 

Electric power is the essential element of any modern society. A power system is an 

interconnected large network that generates, transmits and distributes the electric 

power. The planning, operation and control of power system is becoming more 

important with the increasing load demand. The objective of a power system operation 
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is to supply electricity to all the customers continuously and reliably, while minimizing 

the total cost of generation.  

A power system network is mainly divided into three sub-systems: the generation 

system, the transmission system and the distribution system [1]. Electricity is generated 

in generation plants using conventional resources, such as, coal and nuclear energy, or 

renewable energy resources, such as wind and solar power. After generated, electricity 

is boosted to a high voltage level by step-up transformers before it is transmitted over 

long distance in the transmission lines. The purpose of using high transmission voltage 

is to reduce the current and minimize power loss in form of heat, since power loss in 

the transmission lines is proportional to the square of the current (𝑃 = 𝐼2𝑅 ) [1]. 

Transmission lines deliver electricity to either transmission customers requiring high 

level voltage or regional substations that serve lower voltage customers. When 

electricity is transmitted to the end of the transmission system that is close to residential 

customers, step-down transformers are used to decrease the voltage and supply loads in 

the distribution system, as showing in Figure 1 [2]. 

 

Figure 1. Power system network (Energy.gov, 2003) 

Electricity cannot be stored in large amount. Once generated, it is transmitted to the 

end user at a speed of 200,000 kilometers per second. Therefore, accurate state 

forecasting is necessary to ensure system reliability and high quality electricity, before 
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power is transmitted. Steady state power flow is a fundamental and significant 

calculation to determine the bus voltage, generation and load conditions. The solutions 

are used in system planning and operation to ensure the power balance and system 

stability, i.e. the power generated should be equal to the load demands plus power loss 

[1].  

In recent years, increasing amounts of renewable energy, especially wind power, has 

been integrated into the system [3]. Wind power is clean and does not generate 

greenhouse gases and air pollution, and is sustainable, unlike coal, oil and gas whose 

reserves are drastically decreasing. Wind power is particularly promising among 

current available renewable energy generation sources, the potential is enormous and 

the operation cost is decreasing. The price of wind power has decreased by over 80% 

since 1980, and some large wind turbines are capable of generating enough electricity 

to serve 600 homes [4]. All of these advantages make wind energy an attractive 

alternative power source in the long-run, especially in areas with less conventional 

energy sources.  

  Wind energy is already widely used in many countries. An increasing number of wind 

turbines has been built to provide electrical power in both developed and developing 

countries. In the United States, wind turbines are being built at a growing rate each year. 

In 2013, over 4% of the total electricity demand was provided by wind power and that 

number is rising rapidly [4]. According to the Department of Energy (DOE), 20% of 

the total electricity consumed in the U.S. will come from wind energy by 2030, and the 

number will increase to 35% by 2050. In China, wind power generation was over 150 

billion kilowatt hours (kWh) and wind power capacity has reached 1360 GW by the 

end of 2014 [4].  
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Wind energy is considered as a promising alternative clean energy source all over 

the world. Wind power penetration has been greatly improved with refined wind turbine 

technology, as shown in Figure 2 [5]. In 2012, wind generation capacity increased to 

60 GW globally, and wind power installation in the U. S was 90% higher compared to 

2011. In 2013, wind power penetration increased by 269 MW in California and 61 GW 

were installed across 39 states [6]. 
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Figure 2 (a). Global wind power cumulative capacity (GWEC, 2011); 

      (b). Annual U.S. wind power installation (Delphi234, 2013) 

Renewable energy-based generation proliferation complicates power system 

operation and planning due to the stochastic nature of the renewable energy [3]. It is 

difficult to calculate power system states when power system calculation process 

involves unspecified resources. The biggest challenge in using wind power is the 

instability due to its intermittent and fluctuation characteristics. Wind power integrated 

into the power system must be predicted regularly. In Midcontinent Independent 

System Operator (MISO), wind power forecasting is updated hourly, as shown in 

Figure 3 [7].  

 

Figure 3. MISO day-ahead wind forecast (MISO, 2015) 

 

2.3. Power Flow (PF) 

To analyze the power system states, PF is widely used to determine the operating 

conditions for system planning and operation. PF is based on Kirchhoff's current law 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=0CDQQFjAHahUKEwjnyK2Rt9nGAhWPfpIKHcTeBA0&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMidcontinent_Independent_System_Operator&ei=i2CkVafXKY_9yQTEvZNo&usg=AFQjCNG3MgibZloodZk9hKfWALr2k94vGw&sig2=G_bfq6tfCEKECKu-jwvhUw&bvm=bv.97653015,d.aWw
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=8&cad=rja&uact=8&ved=0CDQQFjAHahUKEwjnyK2Rt9nGAhWPfpIKHcTeBA0&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FMidcontinent_Independent_System_Operator&ei=i2CkVafXKY_9yQTEvZNo&usg=AFQjCNG3MgibZloodZk9hKfWALr2k94vGw&sig2=G_bfq6tfCEKECKu-jwvhUw&bvm=bv.97653015,d.aWw
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and the power balance equations, which equate power generated to power consumed. 

According to Kirchhoff’s current law, for each node in an electrical circuit, the sum of 

currents flowing into that node is equal to the sum of currents flowing out of that node. 

Combined with other power analysis equations, power balance equations are then 

formed to solve for the system states.  

Power flow is the fundamental in determining how to operate the power system and 

how to plan its future expansion. The goal of PF is to establish steady-state operation 

conditions in a network and to ensure that the system is continuously reliable and secure 

to serve all customers. PF solutions are also used as the initial condition for other types 

of power system analysis, such as transient stability.  

Each bus has four variables, voltage magnitude, voltage phase angle, real and 

reactive power. Two of the four variables are specified as the input variables to compute 

the other two unknown variables, using the power flow calculation [8]. All the buses in 

the network are categorized into three types: swing bus, or slack bus, voltage controlled 

(PV) bus and load (PQ) bus. The known variables in each bus is dependent on the type 

of the bus. Only one bus is selected as the slack bus, which works as the reference bus 

with known voltage magnitude and phase angle, i.e. 1.0∠0o. Real power (P) and voltage 

magnitude (V) are the known variables in PV buses. A bus with a generator or a 

switched shunt capacitors connected to it, is selected as the PV bus. In PQ buses, or 

load buses, real and reactive power are known, whereas the voltage magnitude and 

phase angle are unknowns. Once one bus is selected as the slack bus, other buses are 

either PV bus or PQ bus. Most of the buses within the power system are PQ buses [9].  

  PF equations are used to ensure the power balance at each bus in power grids. Before 

setting up power flow equations, the admittance matrix must be determined. In an 𝑛-
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bus system, the admittance matrix 𝑌 is of size 𝑛 × 𝑛 and its entries are the equivalent 

circuit elements that model the system: 

𝑌 = [

𝑌11 𝑌12
𝑌21 𝑌22

⋯ 𝑌1𝑛
⋯ 𝑌2𝑛

⋯ ⋯
𝑌𝑛1 𝑌𝑛2

⋯ ⋯
⋯ 𝑌𝑛𝑛

]                   (2.1) 

Each diagonal element in the admittance matrix represents the admittance between a 

particular bus and all other buses connected to it. The off-diagonal elements represent 

the admittances between different buses. The admittance matrix is symmetric and its 

elements are given by the following equation [1]: 

𝑌𝑖𝑗 = {
𝑦𝑖𝑖 + ∑ 𝑦𝑖𝑘𝑘≠𝑖 ,        𝑖𝑓 𝑗 = 𝑖
−𝑦𝑖𝑗 ,                          𝑖𝑓 𝑗 ≠ 𝑖

                 (2.2) 

where 𝑦𝑖𝑗 is the admittance between two buses, and can be represented as 𝑦𝑖𝑗 = 𝑔𝑖𝑗 +

𝑗𝑏𝑖𝑗, 𝑔𝑖𝑗 is the conductance and 𝑏𝑖𝑗 is the susceptance.  

Power flow equations are used to obtain the feasible solutions by balancing power 

between generators and customers. It is important to note that power loss is ignored in 

this study. Power flow equations are also used to solve for the unknown variables in the 

equations:  

           𝑃𝑖 = ∑ |𝑉𝑖||𝑉𝑘|(𝐺𝑖𝑘𝑐𝑜𝑠𝜃𝑖𝑘 + 𝐵𝑖𝑘𝑠𝑖𝑛𝜃𝑖𝑘)
𝑛
𝑘=1              (2.3) 

           𝑄𝑖 = ∑ |𝑉𝑖||𝑉𝑘|(𝐺𝑖𝑘𝑠𝑖𝑛𝜃𝑖𝑘 − 𝐵𝑖𝑘𝑐𝑜𝑠𝜃𝑖𝑘)
𝑛
𝑘=1              (2.4) 

where, 𝑃𝑖  and 𝑄𝑖 are the injected real and reactive power at bus 𝑖, 𝐺𝑖𝑘 and 𝐵𝑖𝑘 are the 

real and imaginary parts of the admittance corresponding to the 𝑖𝑡ℎ  row and 𝑘𝑡ℎ 

column in the 𝑌 bus matrix. 𝜃𝑖𝑘 is the voltage angle difference between bus 𝑖 and bus 

𝑘.  

There are two types of variables in the power flow study: the control variables and 

the state variables. Control variables include real power of the generators, voltage of 
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the generators, transformers tap setting, and inductance of the parallel elements. State 

variables are the bus voltage magnitudes and phase angles, non-controlled MV and 

MVAR of loads, fixed bus voltages, and line parameters. Once the control variables are 

specified, the state variables can be determined through power flow calculation. 

Feasible solutions from power flow problem can be applied as the initial conditions in 

solving other types of power system problems, such as fault location and contingency 

analysis.  

Several methods are used to solve the nonlinear power flow calculation, among 

which Newton-Raphson is more often used. An initial solution is guessed and a series 

of successive approximations to the solutions are required in Newton-Raphson method. 

The “old” solution is updated and a “new” one is obtained that is closer to the correct 

solution in each iteration. The number of iteration in Newton-Raphson method is 

independent of the dimension, and the calculations converge in fewer than 10 iterations 

[10]. 

In Newton-Raphson’s method, Jacobian matrix is formed,  

J =

[
 
 
 
 
 
 
 
 
𝜕𝑃2

𝜕𝛿2
⋯

𝜕𝑃2

𝜕𝛿𝑛

⋮ … ⋮
𝜕𝑃𝑛

𝜕𝛿2
…

𝜕𝑃𝑛

𝜕𝛿𝑛

𝜕𝑃2

𝜕𝑉2
…

𝜕𝑃2

𝜕𝑉𝑁

⋮ … ⋮
𝜕𝑃𝑛

𝜕𝑉2
…

𝜕𝑃𝑛

𝜕𝑉𝑛
𝜕𝑄2

𝜕𝛿2
…

𝜕𝑄2

𝜕𝛿𝑛

⋮ … ⋮
𝜕𝑄𝑛

𝜕𝛿2
…

𝜕𝑄𝑛

𝜕𝛿𝑛

𝜕𝑄2

𝜕𝑉2
…

𝜕𝑄2

𝜕𝑉𝑛

⋮ … ⋮
𝜕𝑄𝑛

𝜕𝑉2
…

𝜕𝑄𝑛

𝜕𝑉𝑛]
 
 
 
 
 
 
 
 

                (2. 5) 

Where J, the Jacobian matrix is the partial derivatives of active and reactive power 

injection equations with respect to the state variables (i.e., voltage magnitude and 

angle). Steps for Newton-Raphson are as follows:  

1. Set x = [
𝛿(𝑖)
𝑉(𝑖)

], and assume an initial solution 𝑥(0). 
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2. Determine the Jacobian matrix J 

3. Solve the power flow equations to get Δ𝑥(0), [
Δ𝑃
Δ𝑄
] = 𝐽 ∗ Δ𝑥. 

4. Check whether ‖Δ𝑥‖ < 휀 . If not, continue to the next step, otherwise the 

problem is solved. 

5. Update the solution 𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 − ∆𝑥, and go back to step 2. 

∆P and ∆Q are expressed by equations, 

∆P = −𝑃𝑘 + 𝑉𝑘 ∑ 𝑌𝑘𝑛 𝑉𝑛cos (𝛿𝑘 − 𝛿𝑛 − 𝜃𝑘𝑛)
𝑛
𝑛=1   k=2,3,…n.   (2.6) 

∆Q = −𝑄𝑘 + 𝑉𝑘 ∑ 𝑌𝑘𝑛 𝑉𝑛sin (𝛿𝑘 − 𝛿𝑛 − 𝜃𝑘𝑛)
𝑛
𝑛=1   k=2,3,…n.   (2.7) 

The iteration stops when all the mismatch are within the desired tolerance. Other 

assumptions and different algorithms are used to simplify the calculation, such as the 

utilization of the per-unit system.   

In per-unit system, variables, such as voltage, current, power and impedance are 

expressed as per-unit quantities rather than their actual values. With the specified base 

quantities, power system can be simplified to the equivalent circuit. One of the most 

important advantages of per-unit system is that the ideal transformer winding is 

eliminated, and the transformer are replaced by equivalent impedances. There is no 

need to change the voltage, current or the other quantities referred to the other side of 

the transformers. Both the per-unit quantities and the elimination of the transformers 

significantly reduce power system calculation. Per-unit values of the parameters are 

defined as: 

𝑃𝑒𝑟 − 𝑢𝑛𝑖𝑡 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 =
𝐴𝑐𝑡𝑢𝑎𝑙 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦

𝐵𝑎𝑠𝑒 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦
         (2.8) 

where, the actual quantity is the variables in actual unit, the base value is a real number 

used as the reference to compute the per-unit quantity. Since both actual and base 

quantities are real numbers, voltage angle is the same as the angle of the actual quantity 
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in per-unit system [10]. The commonly used parameters are the impedance, voltage and 

current. The per-unit system can be used in both single phase and three phase power 

systems. Based on the definition, in single phase system, per-unit quantities are:  

𝑉𝑝𝑢 =
𝑉

𝑉𝑏𝑎𝑠𝑒
                            (2.9) 

𝐼𝑝𝑢 =
𝐼

𝐼𝑏𝑎𝑠𝑒
                           (2.10) 

𝑆𝑝𝑢 =
𝑆

𝑆𝑏𝑎𝑠𝑒
                           (2.11) 

𝑍𝑝𝑢 =
𝑍

𝑍𝑏𝑎𝑠𝑒
                           (2.12) 

  Once two of the variables are established, then the other two variables can be 

determined from the following equations.  

𝐼𝑏𝑎𝑠𝑒 =
𝑆𝑏𝑎𝑠𝑒

𝑉𝑏𝑎𝑠𝑒
                          (2.13) 

𝑍𝑏𝑎𝑠𝑒 =
𝑉𝑏𝑎𝑠𝑒

𝐼𝑏𝑎𝑠𝑒
=

𝑉𝑏𝑎𝑠𝑒
2

𝑆𝑏𝑎𝑠𝑒
                       (2.14) 

  Voltage magnitude V and complex power S are usually selected as the base variables 

because voltage value does not deviate significantly from rated value when the loads 

change, and the power quantity is related to the voltage, which is also expected to be in 

a given range. In addition, base complex power is the same for the entire power system 

and the impedance remains the same when referred from one side of the transformer to 

the other side [10]. 

Power system problems can be challenging when system constraints or limitations 

are taken into account. There are numerous constraints in the system, such as bus 

voltage, generation power and transmission line limitations. Various hypothetical 

conditions are made in order to simplify the problem. In most cases, the system is 

assumed to be in steady state and the frequency is assumed to be constant. Other 

assumptions are used either to make the problem close to practical conditions or to 
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simplify calculations. However, to ensure power system security and stability, 

uncertainties resulting from loads fluctuation and un-dispatchable renewable energy 

sources must be taken into account when determining the operation states. 

2.4 Optimal Power Flow (OPF) 

Optimal power flow (OPF) was first proposed by Carpentier in 1962, and now 

becoming widely used by power system operators to analysis power systems. In OPF, 

system constraints, such as the transmission line limitations, power distribution range 

from the generators and load changes are taken into account to give optimal and more 

practical solutions. 

One objective function is created and need to be optimized in OPF. The objective 

function has various forms, such as total generation cost, total transmission losses or 

reactive source allocation. For power utilities, minimization of the total generation cost 

is commonly used as the objective function. The optimization calculation in OPF helps 

to obtain the optimal solutions to operate the system while ensuring its security and 

reliability. Both equality and inequality constraint are taken into account in OPF 

calculation. 

Inequality constraints represent the limitations of the generators and the transmission 

lines of the system. For example, the voltage of each bus must remain in a specific 

range:  

 

        𝑉𝑖𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ Vimax                       (2.15) 

 

The real power of the transmission line must remain in a prescribed range:      

 

              𝑃𝑙𝑚𝑖𝑛 ≤ 𝑃𝑙 ≤ 𝑃𝑙𝑚𝑎𝑥                       (2.16) 

 

The real and reactive power of the generator must be limited to its rating:  
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            𝑃𝐺𝑚𝑖𝑛 ≤ 𝑃𝐺 ≤ 𝑃𝐺𝑚𝑎𝑥                     (2.17)       

         𝑄𝐺𝑚𝑖𝑛 ≤ 𝑄𝐺 ≤ 𝑄𝐺𝑚𝑎𝑥                        (2.18) 

Several methods and optimization techniques have been proposed to solve the OPF. 

The primary methods in power flow calculation are generally classified into two types: 

conventional methods and intelligent methods. Conventional Methods include: linear 

programming, gradient algorithms, Newton’s method, quadratic programming, and 

interior point algorithms. All these methods have long been used to effectively solve 

OPF.  

The reduced gradient method was proposed by Dommel and Tinney in 1968 [1]. 

Newton’s method was then introduced and widely used because of its fast convergence 

rate. Lagrange techniques combined with the necessary conditions (Kuhn-Tucker 

condition) are used in these methods to minimize the objective function. This technique 

is effectively used in dealing with the constraints to linearize the problem. Although 

many intelligent methods such as, genetic algorithms, artificial neural network and 

particle swarm optimization have been recently studied, the classical methods are still 

used in solving the OPF. The reduced gradient method converges fast, but the speed of 

convergence is greatly influenced by the value of the step factor. The number of 

iteration increases if the value of the variable is too small, and causes fluctuations about 

the optimal solution if the value is too high. The limitation in gradient method is that 

the oscillation phenomena cannot be avoid completely [36].  

In order to minimize the objective function, subject to the constraints, the gradient of 

Lagrange function is set to be zero in Newton’s method. The necessary condition to 

minimize the cost function is to set the derivative of the function with respect to the 

state variables to be zero, which is ∇ℒ = 0. Initial condition is set and updated in the 
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nonlinear process to obtain the optimal solution, through iteration calculation based on 

the following equations: 

ℒ(𝑥, 𝜇, 𝜆 ) = 𝑓(𝑥) + 𝜇𝑇ℎ(𝑥) + 𝜆𝑇𝑔(𝑥)             (2.19) 

∇2ℒ(𝑥(𝑘)) ∗ ∆𝑥(𝑘) = −∇ℒ(𝑥(𝑘))                (2.20) 

 ∆𝑥(𝑘) = −∇ℒ(𝑥(𝑘)) ∗ [∇2ℒ(𝑥(𝑘))]
−1
= −[H(𝑥(𝑘))]

−1
∗ ∇ℒ(𝑥(𝑘))     (2.21)                                                                                   

𝑥(𝑘+1) = 𝑥(𝑘) + ∆𝑥(𝑘)                    (2.22) 

where ℒ is the Lagrange function, f is the objective function, h and g are the equality 

and inequality constraints. 𝑥 is the state vector and, 𝜇  and 𝜆  are the Lagrange 

coefficients. k is the order of the iteration. The second order of partial derivative with 

respect to the state variables is called Hessian (H) matrix. Jacobian and Hessian matrix 

used in OPF are represented by the following matrix:  

𝐽(𝑥) =

[
 
 
 
 
 
𝜕𝑓1(𝑥)

𝜕𝑥1

𝜕𝑓1(𝑥)

𝜕𝑥2
𝜕𝑓2(𝑥)

𝜕𝑥1

𝜕𝑓2(𝑥)

𝜕𝑥2

…
𝜕𝑓1(𝑥)

𝜕𝑥𝑛

…
𝜕𝑓2(𝑥)

𝜕𝑥𝑛

⋮ ⋱
𝜕𝑓𝑛(𝑥)

𝜕𝑥1

𝜕𝑓𝑛(𝑥)

𝜕𝑥2

⋱ ⋮

…
𝜕𝑓𝑛(𝑥)

𝜕𝑥𝑛 ]
 
 
 
 
 

                  (2.23) 

𝐻(𝑥) = ∇2ℒ(𝑥) =

[
 
 
 
 
 
𝜕2ℒ

𝜕𝑥𝑖𝜕𝑥𝑗

𝜕2ℒ

𝜕𝑥𝑖𝜕𝜇𝑗

𝜕2ℒ

𝜕𝑥𝑖𝜕𝜆𝑗

𝜕2ℒ

𝜕𝜇𝑖𝜕𝑥𝑗
0 0

𝜕2ℒ

𝜕𝜆 𝑖𝜕𝑥𝑗
0 0

]
 
 
 
 
 

            (2.24) 

The feasible solution is updated in the iterative process until the variables are within 

their specified tolerance. Newton’s method has been widely used for decades to solve 

OPF. The disadvantages of these methods are that they converge slowly and may get 

stuck at a local optimum, which makes them difficult to use in large-scale system.   

The standard procedure for solving OPF is to create the bus admittance matrix based 

on the network parameters, and to make initial estimation of the voltage at each bus. 

Solutions are determined by substituting the initial conditions into the power flow 
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equations and iterating the process. The estimated voltages are updated according to the 

corresponding numerical algorithms. This process is repeated until the tolerances are 

within acceptable ranges. In practice, OPF is used by power companies to calculate the 

state variables to operate the system and determine the electricity price in different 

locations. These voltage magnitudes, angles and locational electricity price are used to 

obtain assess predict the working operating condition of conditions for the existing 

system or for the future transmission system expansion plans prediction.  

  Intelligent Evolutionary-based OPF methods include the genetic algorithms, 

artificial neural network, particle swarm optimization, and colony algorithms. 

Compared to the conventional methods, intelligent evolutionary-based methods can 

find multiple optimal solutions in a single run much faster. Also, it is easy to get the 

global optimal solution using intelligent such methods. However, there are some 

disadvantages to intelligent method, such as their large dimensionality and the 

computational burden. 

By guessing the initial OPF solution and evaluating the inequality constraints, 

solution is updated until the acceptable error is satisfied. OPF solution minimizes the 

total generation cost while meeting the power system demands, ensuring that all the 

constraints are within their desired operation ranges, and maintaining the system 

security. OPF is capable of determining the locational marginal price that includes the 

transactions and auxiliary service cost, and widely used by power utilities [10]. OPF 

calculation has many applications in power system, such as real-time control, 

operational planning, and other areas in modern EMS.  

The OPF can be used regularly (every five minutes) to find the optimal operation 

state for the system, including the voltage and reactive power of generators and 

transformer tap position. The electricity market enables to balance the supply and 
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demand and set the price to purchase and sale electricity effectively. The operators are 

required to ensure the reliability and efficiency of the system. In the competitive 

electricity market, it is critical to evaluate power system states and establish a 

sustainable electrical power cost. The electricity price function should reflect the real-

time cost regulation. In order to meet the demands of the electricity market, powerful 

OPF tools with high convergence speed are required to accurately estimate the 

continuous cost of running the generators and meet the operation requirements during 

the worst conditions. Currently, OPF estimation is one of the most important methods 

in electricity market with frequent changes in bid and offer. 

In OPF formulation, optimal solutions can be established and the security of the 

system can be ensured by setting the controllable variables (e.g., power generation, 

voltage set point) within a specified range [1]. However, when some of the variables in 

the formulation are randomly distributed, it is not easy to predict all the possible 

distributions and optimize system operation. 

2.5. Probabilistic Optimal Power Flow 

Probabilistic optimal power flow (POPF) was proposed by Borkowska in 1974 to 

determine the statistical characteristics of the output variables considering the random 

input variables [6]. All the random variables are represented by their probability 

distribution functions derived from the history data or reasonable assumptions. The 

random variables are assumed to be mutually independent. Statistical characteristics of 

the corresponding output variables are determined by running the optimal power flow. 

Various values of the random input variables, such as the voltages at all buses and the 

power flow of the transmission lines, are converted into power flow equations to obtain 

the corresponding states of the output variables. In this thesis, random variables are the 
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loads and wind power. These variables are assumed to be normally distributed and are 

nonlinearly transformed to determine the output variables. Analyzing the statistics of 

the optimal power flow results, PDFs of the output variables are obtained [11-12].  

In practice, the system variables are not easy to forecast due to many reasons, such 

as random load fluctuations. Also, with renewable power sources integrated into the 

system, such as hydro, solar, and wind, the system can become unstable and their 

stochastic nature need to be taken into consideration [1]. Particularly, in recent decades 

the capacity of wind power generating has increased significantly due to increasing 

number of wind farms built. As a result of the stochastic characteristics of wind power, 

power systems are becoming more uncertain with the increasing wind power 

penetration [13]. For system planning and forecasting related to the operation states, 

uncertainties from both loads and wind power should be considered to ensure the 

system stability and reliability. 

Probabilistic optimal power flow (POPF) was proposed to solve the OPF problem, 

while representing the random variables using the probability distribution function. PF 

with a specific objective function and adjustable variables forms the POPF problem. 

POPF methods compute the random input variables, represented by their PDFs, to 

obtain the characteristics of the output variables, such as power loss, LMP and power 

generation, which are also random variables with probability density functions. Unlike 

OPF, POPF includes random variables with known PDFs. In system with uncertainties 

from loads or renewable energy, POPF is more accurate in simulating the system. This 

is convenient to get all the possible results of power flow within specific ranges. By 

using PDF, all combinations of possible values within a given range of loads and 

generators can be computed.  
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Numerous methods have been proposed to solve the POPF including simulation 

methods and linearization methods [8]. To ensure system reliability, different variables 

should be controlled in a specified range. However, system outputs depend on the input 

variables, and different characteristics of the input variables will lead to different 

results. In order to predict system states accurately, all possible combinations of the 

input variables need to be taken into account. Large numbers of possible output are 

generated according to the various random input variables. Given all the possible 

combinations of the input variables and the large number of buses in a practical 

network, the calculation can get extremely complicated. Furthermore, the power flow 

transformation computation process is complex due to the nonlinear equations. The 

calculation steps and time can be enormous and impractical. One of the methods to 

reduce the calculation load is to select specific values of loads around their mean value, 

which yields a precise output within a short time.  

Without a particular way to predict the states of all the random variables, the accuracy 

of the results depends on the applied algorithms. However, the accuracy of the results 

is still not reliable and needs to be improved.  

2.5.1. Probability Distribution Functions (PDF) 

In a mathematic model, the values of the random variables are represented by PDFs. 

For a continuous random variable, the PDF is a function describing the relative 

likelihood of the random variable to take a given value [12]. It is expressed as the 

integral of the variable’s density between two boundary limits (or the area below):  

                𝑃(𝑎 < 𝑥 < 𝑏) = ∫ 𝑓𝑋(𝑥)𝑑𝑥
𝑏

𝑎
                 (2.25) 

where, P is the integral distribution function and f (x) is the probability density function. 

PDF properties include:  
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∫ 𝑓𝑋(𝑥)𝑑𝑥
∞

−∞
= 1                       (2.26) 

𝑓𝑋(𝑥) ≥ 0, ∀𝑥                        (2.27) 

𝑓𝑋(𝑥) =
𝑑𝐹𝑋(𝑥)

𝑑𝑥
  𝐹𝑋  is the cumulative distribution function of x  (2.28) 

To represent the random variables, PDFs with known properties are used to describe 

and predict the values of input random variables. To represent the uncertainty in loads, 

expected values and their deviation are estimated based on the distribution functions. 

Based on a typical PDF algorithm, fixed values of the loads, generations and other 

parameters with expected values are used in the power flow equations to estimate power 

flow and other variables. 

2.5.2. Probabilistic Optimal Power Flow Formulation  

Although the loads and wind power are random variables, they still change in a 

certain range that can be determined. It is assumed that the expected outputs of these 

uncertain variables originate from the historical data and vary within specific ranges. 

Variables are then represented by PDFs, and the parameters in the functions are 

determined from past datasets. The standard function for the probability power flow is: 

𝑌 = 𝑓(𝑋)                          (2.29) 

𝑍 = 𝑔(𝑋)                          (2.30) 

where, 𝑌 is the input power vector for the buses, 𝑋 is the state random vector, 𝑍 is 

the output line flow vector, and 𝑓 and 𝑔 are the nonlinear power flow equations and 

power injections involved. Once the power injections are determined, state variables 

can be established and line flow values can also be obtained.  

2.5.3. Probabilistic Optimal Power Flow Methods 

The main issue regarding POPF is to obtain the statistical moments or PDFs of the 

output of a nonlinear system having random input variables. Several methods have been 

proposed to solve the POPF problem, and the methods are categorized into two types: 
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simulation methods and analytical methods. Analytical methods use mathematical 

solutions to assess the system performance, and simulation methods evaluate the system 

by running PF with adequate input variable combinations.  

2.5.3.1. Monte Carlo Simulation 

The commonly used simulation method is the Monte Carlo Simulation (MCS). MCS 

is a straightforward computational method mainly used in optimization, numerical 

integration and generation draws from probability distributions [14]. Input variables are 

pseudo random numbers generated according to a distribution function. Random 

samples carrying properties of specified distributions are the utilized as the input and 

simulated in MCS to obtain the consistent results. Numerous simulation results are then 

obtained based on the different input combinations. By analyzing the properties of the 

outcomes statistically, the statistical parameters of the output variables are obtained. 

The number of simulations depends on the size of the system. MCS is a stochastic 

process that is commonly used in power system evaluations.  

MCS is extremely useful in multidimensional integration and simulation of 

stochastic natural phenomena.  

  The advantages of using MCS methods are: 

1. Free from the restrictions of solving Newton’s equation of motion. 

2. Faster and efficient. 

3. Easily parallelizable. 

4. Independent of dimension, according to central limit theorem, the variance of 

the integrand is finite. Approximately useful for dimension >8.  

MCS directly solves the POPF by generating different combinations of input 

variables. The PDF of the input variables are usually assumed to be normally distributed 



23 

and represented by pseudo-random numbers. The method directly uses non-linear 

power flow equations and provides highly accurate results by using a large number of 

simulations. However, the numerous simulations make it costly, time-consuming, and 

impractical, especially for large power networks. It is not easy to find a balance between 

statistical error and systematic errors. Because of its accuracy, MCS is widely used as 

the standard to test the effectiveness and accuracy of other proposed methods.  

2.5.3.2. Linearization Methods 

Solving POPF is so complex that no simple algorithm can be used to get the solution. 

In large power system network with larger number of buses, more work is needed for 

the analysis. In order to reduce the computation load, various analytical methods are 

proposed to approximate the solution. Assumptions are made to simplify the complex 

calculation from the non-linear power flow equations and the uncertainty of the input 

variables. Linearization is commonly used in various methods to simplify the system 

by linearizing power flow equations around the expected range. Power flow equations 

are linearized by using a first-order approximation of the Taylor expansion. Distribution 

functions of the input random variables are linearly transformed to determine the 

distribution functions of the output variables. 

2.5.3.3. Convolution Method 

Let X and Y be two independent discrete random variables with probability density 

functions 𝑓𝑥 and𝑓𝑦. If 

𝑍 = 𝑋 + 𝑌                         (2.31) 

  Then the distribution function of Z, 𝑓𝑍, can be determined as: 

𝑓𝑧(𝑧) = ∫ 𝑓𝑋(𝑧 − 𝑦)𝑓𝑌(𝑦)𝑑𝑦
∝

−∝
                (2.32) 
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This operation is called the convolution. If 𝑀 is the sample sum of the independent 

random variables 𝑋𝑖, 𝑖 = 1,2, … , 𝑛, with different density function 𝑓i , 𝑖 = 1,2, … , 𝑛, 

respectively, then the probability distribution function of 𝑀 is the convolution of all 

the pdfs: 

𝑓𝑚 = 𝑓1 ∗ 𝑓2 ∗ …∗ 𝑓𝑛                    (2.33) 

  Independent random variables can be combined to form new random variables 

through addition with suitable coefficients. In [15], a convolution method is applied to 

obtain the pdf of the sum of independent input variables. In [16], numerous inputs 

satisfying the system constraints are selected to simulate the system in order to improve 

the accuracy. Any value can be used as the input as long as they are within the 

boundaries of the constraints. Setting boundary limits simplifies the selection of input 

variables, however, the boundary algorithm can lead to slow and difficult convergence.  

  The convolution method can handle independent random variables that are linearly 

related and help reduce the computation load, however it is not simple to determine the 

PDFs of all the power injections. The Fast Fourier Transform (FFT) based on the 

convolution property was proposed in [15-16]. FFT based convolution algorithm is 

applied to implement the impulse process from the convolution by determining and 

separating the boundaries of the functions. Points in different regions are selected as 

the input values to estimate the states of the system. The FFT takes advantage of the 

exponential function properties, which makes the calculation faster and more accurate.  

2.5.3.4. Moment and Cumulant Method 

  Taylor expansion includes a series of moments that can help identify the probability 

distribution of a random variable. The first moment of 𝑋, 𝜇1 or 𝐸(𝑋), is also called the 

mean or expected value of a random variable X, 
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𝜇1 = 𝐸(𝑋) = ∫ 𝑥𝑓(𝑥)𝑑𝑥
∞

−∝
                  (2.34) 

  Higher moments of X is 𝜇𝑟 or 𝐸(𝑋𝑛), n>1, and expressed by 

𝜇𝑟 = 𝐸(𝑋
𝑛) = ∫ 𝑥𝑛𝑓(𝑥)𝑑𝑥

∞

−∝
                (2.35) 

  The moments of a population are estimated by sample moments. Properties of 

moments are: 

1. 𝐸(𝑐) = 𝑐, c is a constant.                                     (2.36) 

2. 𝐸[𝑎𝑋 + 𝑏] = 𝑎𝐸[𝑋] + 𝑏, a and b are constants.                   (2.37) 

3. 𝑣𝑎𝑟(𝑋) = 𝐸[(𝑋 − 𝑥)2] = 𝐸(𝑋2) − [𝐸(𝑋)]2, x is the mean value.    (2.38) 

4. 𝑣𝑎𝑟(𝑎𝑋 + 𝑏) = 𝑎2𝑣𝑎𝑟(𝑋).                                   (2.39) 

  The cumulate function is the Laplace transform of a probability distribution. It can 

completely characterize the probability distribution due to the uniqueness of Laplace 

transformation. The cumulate algorithm requires less computation compared to the 

convolution computation.  

  The moment generating function, based on equation defining the moments, is given 

by 

𝐹(𝜃) = 𝐸(𝑒𝜃𝑋) = 𝐸 (1 + 𝜃𝑋 +⋯+
𝜃𝑟𝑋𝑛

𝑛!
+ ⋯) 

= ∑ 𝜇𝑟
∝
𝑛=0

𝜃𝑟

𝑛!
                          (2.40) 

𝐾(𝜃) = 𝑙𝑜𝑔𝐹(𝜃) = ∑ 𝑘𝑟𝑟
𝜃𝑛

𝑛!
                  (2.41) 

  The cumulants 𝑘𝑟  are the coefficients in the Taylor expansion of the cumulant 

generation function. 

  The relation between the first few moments and cumulant can be obtained by 

extracting coefficients from the expansion as following 

𝑘1 = 𝜇1                         (2.42) 

𝑘2 = 𝜇2 − 𝜇1
2                     (2.43) 
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𝑘3 = 𝜇3 − 3𝜇2𝜇1
2 + 2𝜇1

3             (2.44) 

𝑘4 = 𝜇4 − 4𝜇3𝜇1 − 3𝜇2
2 + 12𝜇2𝜇1

2 − 6𝜇1
4    (2.45) 

  Alternatively, we use the reverse direction 

𝜇2 = 𝑘2 + 𝑘1
2
                     (2.46) 

𝜇3 = 𝑘3 + 3𝑘2𝑘1
2 + 𝑘1

3
               (2.47)  

𝜇4 = 𝑘4 + 4𝑘3𝑘1 + 3𝑘2
2 + 6𝑘2𝑘1

2 + 𝑘1
4
       (2.48) 

where, 𝑘1 = 𝜇1 is the mean of X, 𝑘2 is the variance.  

  The cumulate is a nonlinear combination of moments obtained from the cumulant 

generating function. The cumulants of a probability distribution are a set of quantities 

providing an alternative to the moments of the distribution.  

  After linearization, cumulates are obtained by solving the equations in each order, 

and the random variables are then replaced by a combination of their cumulants. In 

[17], Hermite Polynomial expansion was proposed, to take advantage of the 

relationship between the moments and cumulates simplifying the distribution function. 

Corresponding cumulants are added to get convolved cumulants. Convergence problem 

can be solved by standardizing the process based on least square error. Cumulants are 

applied to independent random variables instead of moments for the following reasons:  

1. Cumulants accept any random variables. 

2. The cumulants of a sum are the sum of cumulants.  

3. Cross cumulants are zero. 

4. Other methods are easily applied based on cumulants. 

2.5.3.5. Gram-Charlier Method 

  Gram-Chalier approximates a probability distribution in terms of its cumulants. The 

main concept in the expansion is to express the distribution based on the characteristic 
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distribution with known properties. In addition to the first and second moments that 

describe the distribution function, Gram-Charlier expansion introduces the third and 

fourth (skewness and kurtosis) moments as additional parameters to improve the 

accuracy. For random variables that are assumed to be normally distributed, their PDF 

can be approximated as 

𝑔(𝑧) = 𝑃𝑛(𝑧)𝜑(𝑧)                     (2.49) 

where 𝜑(𝑧) is the standard normal distribution density and 𝑃𝑛(𝑧) is used to ensure 

that 𝑔(𝑧) has the same first moments as the PDF of z. 𝑃𝑛(𝑧) is approximated using  

𝑃𝑛(𝑧) = ∑ 𝑐𝑖𝐻𝑒𝑖(𝑧)
𝑛
𝑖=0                   (2.50) 

where  𝐻𝑒𝑖(𝑧)  are the Hermit polynomials. The 𝑖𝑡ℎ order Hermit polynomial 

is 𝐻𝑒𝑖(𝑧) = (−1)𝑖(𝜕𝑖𝜑/𝜕𝑧𝑖)/𝜑(𝑧). The standardized 𝑧 has the following properties:  

∫ 𝑧𝑔(𝑧)𝑑𝑧 = 0
∞

−∞
                     (2.51) 

∫ 𝑧2𝑔(𝑧)𝑑𝑧 = 1
∞

−∞
                     (2.52) 

∫ 𝑧3𝑔(𝑧)𝑑𝑧 = 𝛾1
∞

−∞
                    (2.53) 

∫ 𝑧4𝑔(𝑧)𝑑𝑧 = 3 + 𝛾2
∞

−∞
                  (2.54) 

The multivariate Gram-Charlier series (GCS) was proposed to represent the PDF of 

independent randomly distributed variables. The Gram-Charlier series approximates 

the probability distribution function. After computing the GCS, the PDF is then formed 

to represent the skewness, kurtosis and other high order coefficients [18-19].  

  With GCS, PDFs can be described using a finite number of terms. The precision of 

GCS can be extended up to the fifth order term, and convergence is faster when the 

approximate vector uses standard normal distribution and the respective derivatives. 

Other algorithms have been proposed to determine the Gram-Charlier expansion 

coefficients. Among these algorithms, the cumulant process was used based on the fact 
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that the inverse of Hessian is the logarithmic barrier of interior point linear mapping 

[18]. The cumulative distribution function and probabilistic distribution function of a 

normalized variable can be expressed as a series of standard normal distribution and 

their respective derivatives. A linear function is formed by combining the cumulants of 

random variables, however, this is not accurate in higher level uncertain systems.  

2.5.3.6. Cornish-Fisher Method 

  In Cornish-fisher method, the effects of skewness, kurtosis and higher moments in 

expanding the distribution function are taken into account. Cornish-fisher expansion is 

a formula that represents the random variable based on its first few cumulants. Cornish-

fisher expansion transforms a standard Gaussian random variable into non-Gaussian 

random variable.  

  The mean and standard deviation of a standard normally distributed variable X are 0 

and 1, and the expansion to approximate the q-quantile based on its cumulants 

is Φ𝑋
−1(𝑞). Considering the first five cumulants, the expansion is expressed as [20-21]:  

  (2.55) 

  In [19], Cornish-fisher expansion only uses the first 5 cumulants and reaches 

convergence by estimating CDF (cumulative distribution function). Unlike the Taylor 

series expansion which truncates at a specific point, Cornish-fisher use all terms. 

Regardless of the length of the expansion, using more than five cumulants does not 

necessarily produce better approximation. In Cornish-fisher expansion, the q-quantile 
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of a cumulative distribution is approximated in terms of the quantile of a normal 

distribution and the cumulants of the cumulantive distribution function.   

  Although the variables in Cornish-fisher are required to have a standard normal 

distribution, quantiles of other variables can be approximated by normalization. If the 

mean and standard deviation of variable 𝑋 is μ and σ, 𝑋 can be standardized using 

the equation: 

𝑋∗ =
𝑋−𝜇

𝜎
                        (2.56) 

to have mean 0 and standard deviation of 1. Also the central moments of 𝑋∗ can be 

expressed using:  

𝜇𝑟
∗ =

𝜇𝑟

𝜎𝑟
                         (2.57) 

  By applying the Cornish-Fisher expansion to determine the q-quantile 𝑥∗of 𝑋∗, q-

quantile 𝑥 of 𝑋 is calculated as 

𝑥 = 𝑥∗𝜎 + 𝜇                       (2.58) 

  Through the central moments of normalized random variables, q-quantiles of random 

variables can be determined. However, all linearization methods transform the points 

from the distribution function inaccurately, especially in the tail region. Besides, the 

linearization of uncertain input variables can lead to inaccurate transformation 

especially for variables with high level of uncertainty.  

  The discussion above shows the effectiveness of more accurate method in handling 

the random variables. However, the linearization in these methods requires a Jacobian 

matrix, which increases the computational load and errors. Also, some of the 

linearization methods do not take into account the correlation between the variables. In 

power systems, different loads or generators are correlated. The loads are mutually 
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correlated because of environmental and social factors. In some areas wind farms are 

affected by similar factors and perform with similar characteristics. 

2.5.3.7. Point Estimation Method 

  Point estimation (PE) is another method in solving the POPF. PE estimates the 

parameters of a probability distribution function based on the data observed. Expected 

points are determined by linearization to represent the normal distribution functions.  

  Several PE methods are used to analyze the stochastic process, such as Hong’s, Lin’s 

and Harr’s [22]. Among these methods, Hong’s point estimation method is the most 

effective since it can handle multiple random variables without increasing the 

computational load. For example, the original 2PE method with n variables will run for 

2n times to generate results, whereas, Hong’s method will generate accurate results in 

2n runs. The method uses only the first three moments of the distribution function, 

which reduces the computational load without compromising the accuracy of the 

results. 

The main concept of the point estimation method is to evaluate the function 

(𝐹) several times for each variable 𝑃𝑙. 𝑃𝑙,𝑘 is the k𝑡ℎ value of 𝑃𝑙. evaluated. 

𝐹 = (𝜇𝑝1, 𝜇𝑝2,…𝑝𝑙,𝑘, … , 𝜇𝑝𝑛)                (2.59) 

Each of the variables, 𝑃𝑙  will be evaluated 𝑘  times. Then the function is 

determined using the mean of other input variables. The total calculation runs is 𝑘 ∗ 𝑛. 

Juan. M. Morales, and Juan. Pérez-Ruiz’s paper utilized Hong’s PEM as [23]: 

𝑃𝑙,𝑘 = 𝜇𝑃𝑙 + 𝜉𝑙,𝑘𝜎𝑃𝑙                    (2.60) 

𝜇𝑝𝑙 𝑎𝑛𝑑 𝜎𝑝𝑙 are the mean and standard deviation of 𝑓𝑝𝑙. Parameter 휀𝑙,𝑘 is from the 

equation:  

𝜉𝑙,𝑘 = 𝜆𝑙,3/2 + (−1)
3−𝑘 ∗ √𝑚 + (𝜆𝑙.3/2)2         (2.61) 
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This can be applied when k=1 and 2. 

𝜆𝑙,3 =
𝐸[(𝑃𝑙−𝜇𝑃𝑙)

3]

(𝜎𝑃𝑙)
3                     (2.62) 

where, 𝐸 [(𝑃𝑙 − 𝜇𝑃𝑙)
3
] = ∑ (𝑃𝑙,𝑡 − 𝜇𝑃𝑙)

3 ∗ 𝑃𝑟𝑜𝑏(𝑃𝑙,𝑡)
𝑁
𝑡=1 . 

The weights are from  

𝑤𝑙,𝑘 =
1

𝑛
(−1)𝑘

𝜉𝑙,3−𝑘

𝜁𝑙
                  (2.63) 

where 휁 = 2√𝑚 + (𝜆𝑙.3/2)2. 𝜉𝑙,𝑘 is the standard location of the variable. The weight 

(w) is established using  

∑ 𝑤𝑙,𝑘 =
1

𝑚

𝐾
𝑘=1                       (2.64) 

∑ 𝑤𝑙,𝑘(𝜉𝑙,𝑘)
𝑗 = 𝜆𝑙,𝑗       𝑗 = 1,… 2𝐾 − 1𝐾

𝑘=1           (2.65) 

where the standard central moment 𝜆𝑙,𝑗 is  

𝜆𝑙,𝑗 =
𝑀𝑗(𝑃𝑙)

(𝜎𝑃𝑙)
𝑗                        (2.66) 

𝑀𝑗(𝑃𝑙) = ∫ (𝑃𝑙 − 𝜇𝑃𝑙)
𝑗𝑓𝑃𝑙𝑑𝑃𝑙

∞

−∞
             (2.67) 

After generating all the 𝑃𝑙,𝑘 and the 𝑤𝑙,𝑘 values, the function 𝐹 is determined to 

calculate the results for 𝑍𝑙,𝑘. The moment of the output variable is  

𝜇𝑗
′ = 𝐸[𝑍𝑗] ≅ ∑ ∑ 𝑤𝑙,𝑘(𝑍(𝑙, 𝑘))

𝑗𝐾
𝑘=1

𝑚
𝑙=1          (2.68) 

  When 𝑘 = 2, then 2n calculations are used to get the output. 

  Chun-Lien Su used the two point estimation method to obtain the uncertainty [22]. 

In their study, 𝑃𝑙 is also the random variable from the PDF 𝑓𝑃𝑙. Two 𝑃𝑙 variables 𝑃𝑙,1 

and 𝑃𝑙,2 replace the 𝑓𝑃𝑙 following the equation: 

  In [22], point estimation through orthogonal transformation solved the dependent 

variables, such as load demands. With fewer moments, the first 4 concentration points 

are established. Each point determines three evaluations, and the total number of 

calculations with 𝑚  variables is  2𝑚 + 1 . The results are compared with MCS to 
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evaluate the effectiveness and accuracy of the method even with high wind power 

generation.  

  Point estimation [22-23] can solve multiple random variables without increasing the 

computing load. With only 2𝑛  points, results with acceptable accuracy can be 

achieved. However, it is not easy to deal with correlated random variables using PE 

method. 

2.6. Locational Marginal Price (LMP) 

In electricity market, OPF solution is extremely important in solving the power 

system challenges, such as the economic dispatch. OPF is utilized in the pricing 

mechanism to rationally fix the cost of the power system. Independent system operators 

(ISOs) need to apply OPF to manage power market intelligently in order to maintain 

the balance between generation and demands. In the real-time and day-ahead market, 

price of the system has to be forecasted in competitive power market.  

  Several constraints are considered in the formulation, such as the limitations from 

the loads, generators and transmission lines. Utilities establish the locational marginal 

price (LMP), or the nodal price, by solving the OPF problem. LMP is the cost to supply 

the next megawatt (MW) of electricity at a particular location in consideration of all 

constraints [8]. The node price is the cost of power increased by 1MW. It is composed 

of three elements: the cost to produce energy, congestion cost due to the constraints, 

and the cost of losses. Without system constraints and losses, the price of electricity at 

all buses would be the same. However, when all the factors are considered, the price to 

serve the loads varies in different locations.  

LMP is the result of economic dispatch and is used in electricity market to price 

electricity. LMP is calculated at each load zone for the external interface. By 
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considering the different prices of serving electricity in different areas, the energy 

source at lower cost is first used to meet the loads. Other nearby generators are then 

used to satisfy the remaining load demand subject to the transmission conditions. The 

states of the system, considering the uncertainties, are manifested by the electricity 

prices in different locations.  

LMP is one of the commonly used parameters to indicate the precision of the POPF 

algorithms. The parameters reflect the impact of a node on the stability problem, which 

can also be used to determine the apportioning electricity among market participants. 

By using the method of probabilistic optimal power flow, we can minimize the 

generations cost and improve the reliability. The optimal solution can then be used to 

determine the price and the amount of electricity to be generated in order to meet the 

demands of the different types of clients.   

  In a real-world power system, transmission line constraints ensure the safety and 

reliability of the system. An independent system operator (ISO) calculates the LMPs 

for the real-time and day-ahead market to determine the price of electricity for the 

wholesale market and the transmission costs, as described in Figure 4 [24]. In practice, 

OPF is utilized by ISO, such as MISO and California ISO, to regulate electricity for 

wholesale day-ahead or real-time market. 
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Figure 4. MISO LMP contour map (MISO, 2015) 

  In this thesis, the Unscented Transformation (UT) is used to solve POPF in a wind 

power integrated system. The UT method is used to accurately estimate the probability 

distribution of a nonlinearly transformed normal random variable based on a finite 

number of samples. The small data sample required in this method is an important 

attribute in large power systems. In this study, different scenarios are simulated in the 

IEEE standard test systems. Wind power is distributed as loads with negative power 

injection. The correlation between the loads and generators is also taken into account. 

The results from the study are compared with MCS. 
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CHAPTER 3 

UNSCENTED TRANSFORMATION AND ITS APPLICATION TO 

PROBABILISTIC OPF  

3.1. Introduction 

    One of the existing methods to estimate the statistical properties of a nonlinear 

system in response to random input variables is the Unscented Transformation (UT). 

The mean and covariance of the random variables are nonlinearly transformed to obtain 

the statistical properties of the output.  

  In the UT method, a set of weighted sigma points are selected so that certain 

properties of the input variables’ PDFs are represented by the sample points. The 

nonlinear transformation is applied to all the sigma points and the statistical properties 

of the output variables are calculated using the sigma points and their respective 

weights, as shown Figure 5. Compared to other methods, the sigma points are selected 

in the UT to provide more information on the input PDFs, and the corresponding 

weights are not bounded between 0 and 1 as in other methods.  

 

Figure 5. UT system model 
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  In this Chapter, four UT methods are reviewed and two of them are formulated for 

POPF application and the results are compared to MCS.  

3.2. Unscented Transformation  

  UT is based on a set of sample points known as sigma points that exhibit specific 

properties of PDFs. The sigma points and their corresponding weights are used to 

estimate the statistical properties of the output mean and covariance, with a limited 

number of computations. Selection of sigma points is a fundamental step to the success 

of the method. Four different UT methods are discussed in this section. Although UT 

is simple, it effectively solves nonlinear problems with less computation. The accuracy 

is the same as linearization to the second order. 

  A set of sigma points whose sample PDF approximates the true PDF are selected as 

the inputs of the nonlinear function to determine the corresponding output. The 

approximate mean and covariance of the output are determined with the weights using 

the following equations [25-27].   

                     y(i) = h(x(i))                           (3.1) 

   y̅ = ∑ W(i)y(i)n
i=0                          (3.2)                                 

 P = ∑ W(i)(y(i) − y̅)(y(i) − y)Tn
i=0                  (3.3) 

where, x and y are the input and output vectors of the nonlinear function h and n is the 

number of sigma points for each variable. W is the weight vector that satisfies the 

condition: 

             ∑ W(i) = 1,           i = 1,2,… , nn
i=0                  (3.4) 

  The results of the UT method match the true mean of the output up to third order [28-

30]. In this thesis, a UT-based POPF algorithm is used to estimate the mean and 

covariance of the output.  
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3.3. UT Methods 

3.3.1. Basic UT 

  In Basic UT, two points are selected to represent the distribution of each variable. 

The two points are such that one is greater and the other is lower than the mean value, 

with equal absolute difference from the mean value. 2n sigma points are formed using 

the following equations: 

x(i) = x̅ + P̃(i)   i = 1,… ,2n                      (3.5) 

P̃(i) = (√nP)(𝑖)
T
    i = 1,… , n                     (3.6) 

P̃(n+i) = −(√nP)(𝑖)
T
    i = 1,… , n                  (3.7) 

where P̃(i) is the ith row of the matrix √nP. To get P̃(i), P must be positive definite. In 

power system, the factorization process is reduced since the covariance matrix is sparse. 

The weights for Basic UT are the same for all n variables.  

 W(i) =
1

2n
, i = 1,… ,2n.                      (3.8) 

3.3.2. General UT 

  In this method, nonlinear transformation is achieved using 2n + 1 sigma points. 

Compared to Basic UT method, one addition point that represents the mean is required 

as follows: 

x(0) = x̅                           (3.9) 

x(i) = x̅ + P̃(i)   i = 1,… ,2n                 (3.10) 

P̃(i) = (√(n + k)P)T    i = 1,… , n               (3.11) 

 P̃(n+i) = −(√(n + k)P)
T
    i = 1,… , n             (3.12) 

The 2n+1 weighting coefficient are 

W(0) =
К

n+К
                        (3.13) 

W(i) =
К

2(n+К)
       i = 1,… ,2n                 (3.14) 

  Any  К value can be used as long as (n + К) ≠ 0. К can be used to reduce the high-

order errors of the mean and covariance approximation. Basic UT is a special case of 

General UT. 
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3.3.3. Simplex UT 

  When the computational cost is a paramount, then few sigma points can be selected, 

since cost is proportional to the number of sigma points. The order of estimation can be 

reduced to n+1 points, which is the minimum number of points comprising the fixed 

mean and covariance value.  

  Selection of the weight W(0) ∈ [0,1), will only affect the fourth and higher order 

moments of the set of sigma points. The rest weights are as follows: 

W(i) = {
2−n(1 −W(0))      i = 1,2

2i−2W(1)      i = 3,… , n + 1
              (3.15) 

Initialize the α vector  

α0
(1) = 0                       (3.16) 

α1
(1)
=

−1

√2W(1)
                    (3.17) 

α1
(1)
=

1

√2W(1)
                    (3.18) 

Recursively expand the σ vectors by performing the following steps for j = 2,… n 

αj
(i)
=

{
 
 
 
 

 
 
 
 [α0

(j−1)

0
] ,    i = 0

[
αi
(j−1)

−1

√2W(j+1)

] , i = 1,… , j

[
0j−1
j

√2W(j+1)

] , i = j + 1.

             (3.19) 

0jis the column vector containing j zeros. 

After the n-element vectors αi
(n)(i = 0,… , n + 1). The sigma points are as follows: 

x(i) = x̅ + √Pαi
(n)       (i = 0, … , n + 1)         (3.20) 

  In this method, n+1 sigma points are used since W(0) = 0. The weights for simplex 

UT increase geometrically. For a system of high-dimension, this method can cause 
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problems, such as overflow and quantization of errors. Therefore, the method saves 

computational time, but is not suitable for high-dimension nonlinear systems.  

3.3.4. Spherical UT 

  The spherical UT uses n+2 spherical sigma points. The algorithm is the same for 

finding the sigma points, except that 

 W(i) =
1−W(0)

n+1
,    i = 1,… , n + 1              (3.21) 

αj
(j)
=

{
 
 
 
 

 
 
 
 [

αj−1
(0)

0
] ,    i = 0

[

αj−1
(i)

−1

√j(j+1)W(1)

] , i = 1,… , j

[

0j−1
1

√j(j+1)W(1)

] , i = j + 1.

               (3.22) 

  Compared with simplex UT, spherical UT uses equal weights and is less 

computationally intensive.  

3.4. Unscented Transformation for Probabilistic Optimal Power Flow 

The standard model for the POPF is [28]: 

𝑌 = 𝑔(𝑋) 

𝑍 = ℎ(𝑋) 

where, X is the input vector, such as voltage magnitudes and angles. 𝑌 is the state 

random vector from normal distribution function [31], 𝑍 is output vector. 𝑔 is the 

power injection function, and ℎ is the OPF function. Z and Y can vary depending on 

the problem being evaluated. The mean and covariance of all the loads including 𝑃𝑤𝑖𝑛𝑑 

and 𝑃𝑙𝑜𝑎𝑑 are known. As shown in the following equations: 
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Z =

[
 
 
 
 
 
 
δ
V
PG
QG
𝑃𝑙𝑜𝑠𝑠
𝐿𝑀𝑃
… ]

 
 
 
 
 
 

                         (3.23) 

Y = [
𝑃𝑤𝑖𝑛𝑑
𝑃𝑙𝑜𝑎𝑑

]                         (3.24) 

where δ is the voltage angle, V is voltage magnitude, PG and QG are the real and 

reactive power of the generators. Ploss is the system real power loss and LMP is the 

locational marginal price. 𝑃𝑤𝑖𝑛𝑑 is the real power generated by the wind and 𝑃𝑙𝑜𝑎𝑑 is 

the real power of the load demand. 

  In this study, the simulation results are determined by LMPs which are mostly used 

in the power market by ISOs to operate the system and manage power balance. LMP 

are solved by running OPF, which facilitates the management of the power market and 

determines electricity pricing to the different Utilities ahead of time or in real-time.  

  Sigma points are obtained from the normal distribution function:  

                              𝑃(𝑥) =
1

𝜎√2𝜋
𝑒(𝑥−𝜇)

2/(2𝜎2)                   (3.25) 

where, 𝜇 and 𝜎 are the mean and variance.                           

  In an OPF problem, constraints are added to the objective function by using Lagrange 

multipliers. The optimization process yields optimal solutions for state variables in 

order to minimize the total cost while ensuring the system stability and security. Unlike 

OPF, input variables in POPF are represented by the sigma points from probability 

distribution functions, determined by the UT method, instead of using constant values. 

The POPF calculation steps are as follows:  

𝑆𝑡𝑒𝑝 1:  Set the input vector, including the mean vector x and covariance matrix P for 

all the loads power demand  
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X = [
𝑃𝑤𝑖𝑛𝑑
𝑃𝑙𝑜𝑎𝑑

] 

𝑆𝑡𝑒𝑝 2:  Determine the sigma points for all the loads and wind power using the UT 

methods. In this study, Basic and General UT methods are used to obtain the 

sigma points, in which 2n and 2n+1 sigma points are required respectively. 

𝑆𝑡𝑒𝑝 3:  Set the power of the loads using the sigma points obtained, and run OPF 

function using MATLAB. Data of the system is acquired from MATPOWER 

files. 

𝑆𝑡𝑒𝑝 4:  Use equations (3.1)-(3.3) to analyze the distribution of output LMP based on 

the output data. 

Note that the covariance matrix P for loads and wind power are obtained from the 

correlation matrix. The relationship is as follows  

S = D ∗ R ∗ D                            (3.26) 

where S is the covariance matrix, D is the diagonal matrix from standard deviation of 

all loads, and R is the correlation matrix that varies with the system network. 

  To verify the effectiveness of the method in estimating the statistical properties of the 

LMPs, results are compared with the simulation results from MCS. The relative errors 

of the calculated mean (μ) and standard deviation (σ) are calculated as 

휀𝜇 =
|𝜇𝑀𝐶𝑆−𝜇𝑈𝑇|

𝜇𝑀𝐶𝑆
× 100%                     (3.27) 

휀𝜎 =
|𝜎𝑀𝐶𝑆−𝜎𝑈𝑇|

𝜎𝑀𝐶𝑆
× 100%                     (3.28) 

where, 휀𝜇 and 휀𝜎 are the mean and standard deviation of the errors, 𝜇𝑀𝐶𝑆 and 𝜎𝑀𝐶𝑆  

are the mean and standard deviation values of LMPs from MCS, 𝜇𝑈𝑇 and  𝜎𝑈𝑇 are the 

mean and standard deviation values from UT-based POPF. 

The average error between the MCS and the UT method is also defined as  

휀𝜇
𝐴𝑉𝐺 =

1

𝑁𝑏𝑢𝑠
∑ 휀𝜇(𝑖)
𝑁𝑏𝑢𝑠
𝑖=1                          (3.29) 
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휀𝜎
𝐴𝑉𝐺 =

1

𝑁𝑏𝑢𝑠
∑ 휀𝜎(𝑖)
𝑁𝑏𝑢𝑠
𝑖=1                          (3.30) 

where 휀𝜇
𝐴𝑉𝐺  is the average error of the mean.  휀𝜎

𝐴𝑉𝐺  is the average error of the 

STD. 휀𝜇(𝑖) is the error in mean between MCS and UT at bus i. 휀𝜎(𝑖) is the error in 

STD between MCS and UT at bus i and N𝑏𝑢𝑠 is the number of bus. 

  The Basic and General UT-based POPF algorithm is evaluated through simulation 

results of the standard IEEE test cases. Different case studies are simulated to assess 

the performance of the proposed POPF with respect to wind power generation, location, 

and load correlations. The mean and variance of the UT-based POPF algorithm output 

(i.e. LMPs) are calculated and compared with MCS method. The simulation results and 

discussions are presented in the following chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 

CHAPTER 4 

SIMULATION RESULTS AND DISCUSSION 

4.1. Introduction 

  In this Chapter, POPF algorithm based on Basic and General UT method are 

evaluated on the IEEE 30- and 118-bus power transmission systems. Different case 

studies, including wind farm locations, wind power penetration levels are assessed to 

evaluate the performance of the proposed method. The LMP results simulated from 

MCS method are used as validation for the UT-based results. 

4.2. The IEEE Standard Test Systems 

  In this study, the loads are assumed to be random variables with normal PDF of 

known mean and variance. Load patterns are assumed to be the same within specified 

geographical areas, depending on the weather, seasons and other factors, such as peak 

hours of electricity demand. Integrated wind power is simulated as a negative load with 

a normal PDF. Several wind farms are located in the power grid, where they are 

modeled as independent or correlated random variables. The load demands and wind 

power integration are assumed to be mutually independent. In order to test the 

effectiveness of the UT-based POPF algorithm, different case scenarios are simulated 

on the IEEE 30- and 118-bus system in MATPOWER [32]. These IEEE test cases 

represent a portion of the American Electric Power (AEP) transmission system in the 

Midwestern US. 

4.2.1. The IEEE 30-bus System 

  The IEEE 30-bus system consists of 6 generators, 20 loads and 41 branches as shown 

in Figure 6 [33]. The total generator capacity is 335 MW and the total load is 189.2 

MW. The loads are modeled as a normal PDF with known means and variances (e.g. 

variance is 5% of the mean). The mean values of the loads are provided in Table 1.  
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Figure 6. Signal line diagram of the IEEE 30-bus test system 
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Table 1. Bus loads in the IEEE 30-bus system 

Bus Load(MW) Bus Load(MW) 

1 0.0 16 3.5 

2 21.7 17 9.0 

3 2.4 18 3.2 

4 67.6 19 9.5 

5 34.2 20 2.2 

6 0.0 21 17.5 

7 22.8 22 0.0 

8 30.0 23 3.2 

9 0.0 24 8.7 

10 5.8 25 0.0 

11 0.0 26 3.5 

12 11.2 27 0.0 

13 0.0 28 0.0 

14 6.2 29 2.4 

15 8.2 30 10.6 

  All the loads and wind power are represented by normal PDFs. Wind power 

generation is considered as a negative power input in forms of Gaussian PDF with 

known mean and variance.  

  Different case studies are carried out to evaluate the UT-based POPF with respect to 

wind farm location and wind power generation capacities. Both independent and 

correlated random variables (i.e., loads and wind generation) are studied. For the 

independent random variables, the mean and variance of each individual load and wind 

power capacities are selected accordingly. For the correlated random loads, we 

partitioned the IEEE 30-bus system into small parts to take into account the correlation 

between the loads within the same geographical locations, as shown in Figure 7.  
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Figure 7. The IEEE 30-bus system with correlated small parts 

  All the buses within the small partitions are mutually correlated and represented by a 

correlation matrix. Thus, several correlation matrices corresponding to each 

geographical location of the grid form the correlation matrices of the entire transmission 

system. The covariance matrix for each small location is calculated using equation 

(3.26). Working with a stacked covariance matrix developed for the entire system has 

two benefits: (i) increase in accuracy of the covariance matrix formation, and (ii) 

reduction in the computing burden. Note that each covariance matrix is a positive 

definite symmetric matrix and represents the covariance between the correlated loads.  

4.2.2. The IEEE 118-bus System 

  The IEEE 118-bus system includes 19 generators, 9 transformers, 99 loads and 186 

transmission lines, as shown in Figure 8 [33]. Bus 69 is the reference bus (i.e. voltage 
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magnitude is 1 pu and voltage angle is 0) and the voltage angles at all other buses are 

calculated with respect to the reference bus. The total load demand of the system is 

4519 MW, and the total generator capacity is 5859 MW, of which the actual power 

generated is 4319.4 MW at one snap-shot. 

  Different case studies are used to evaluate the proposed POPF in different conditions. 

In all scenarios, the loads and wind power are mutually independent. However in case 

studies with correlated loads, a correlation matrix is used to show the relationship 

between the neighboring loads. The IEEE 118-bus system is also divided into small 

parts to simplify the calculation of the correlation matrices associated with each 

neighboring area. In each small parts, nearby buses are correlated with each other and 

their relationship is represented by equation (3.26). 

 

Figure 8. Signal line diagram of the IEEE 118-bus test system 
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4.3. Case Studies  

  For all case studies, the results are obtained by running the POPF in MATLAB. The 

results of the Basic and General UT-based POPF are compared with simulation results 

from MCS methods to assess the performance of the proposed algorithm. 

Case 1: Load Uncertainty  

  On the IEEE 30-bus system, two wind farms are located at bus 8 and 15, as shown in 

the green circles in Figure 6, in order to disperse the wind power generation [34-35]. 

The capacities of the wind farms are 200 and 150 MW, respectively. At a given snap-

shot, the means for the wind power are 15% and 30% of their power capacities and the 

variances are 15% and 17% of their mean values. 

  On the IEEE 118-bus system, two wind farms are located at bus 33 and 81, shown in 

green circles in Figure 8. The capacity of the two wind farms are 2500 and 3500 MW. 

At the studied snap-shot, the means for the wind generations are 636.3 and 1272.6 MW, 

respectively. The variances are 15% and 17% of the mean values, respectively. Case 1 

is used as the reference for other case studies, when the distribution of the loads is 

changed. In both test cases, uncorrelated loads are modeled as mutually Gaussian PDFs 

with known mean and the variance that are 5% of the mean values. 

Case 2: Wind Farm Location 

  To assess the effect of wind farm locations on the proposed POPF performance, wind 

farm locations are changed. With more wind power integrated into the system to supply 

the loads, price of electricity can be reduced. However, the uncertainties in wind power 

complicate the forecasting of the system states. Loads that are located near to the wind 

farms can be impacted by the fluctuation of wind power. Different locations of the wind 

farms have significant influences to the POPF output. In the IEEE-30 bus system, wind 
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farms are assumed to be located at bus 5 and 13 shown in yellow circles of Figure 6. 

These are located at the periphery of the system in order to reduce the forecasting errors. 

In the IEEE-118 bus system, wind farms are connected to bus 10 and 59, as shown in 

the yellow circles of Figure 8. The calculated statistical properties of the LMPs are 

provided to assess the performance of the method. 

Case 3. Wind Power Generation 

  Wind power generation is varied to evaluate the performance of the proposed 

algorithm with respect to the wind power generation levels. Low variance of LMPs is 

expected when the amount of wind power is reduced. 

  In the IEEE-30 bus system, two wind farms are connected to bus 8 and 15, similar to 

case 1. The total load is reduced to 260 MW. The wind farm with 150 MW capacity 

generates power with the mean = 22.5 MW and variance = 3.375 MW. The other wind 

farm with 200 MW capacity generates power with the mean = 16 MW and variance = 

2.72 MW. On the IEEE 118-bus system, one of the wind farms stays constant and the 

other one is varied to have the power mean and variance of 339.36 MW and 57.6912 

MW respectively. 

4.4. Results and Discussions 

  The Basic UT and General UT methods are used for the case studies. Both 

independent and correlated loads are included in the studies. Different bus systems are 

used to simulate the system, in which the loads were assumed to be normally distributed 

with known mean and variance. Wind power is also assumed to be normally distributed 

and treated as a negative load. For the independent load conditions, there is no 

correlation between the loads, and the wind farms are also mutually independent. For 
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system with correlated loads, correlation matrices are formed between nearby loads 

depending on their locations in the network. 

  MCS is used to evaluate the accuracy and performance of the UT-based POPF 

algorithm. Similar network configurations and parameters were used to operate the 

power flow process for both UT-based POPF and MCS. Results from the UT-based 

methods are compared to the results from MCS using equations (3.27-3.28). 

Performance of the methods are assessed and tested on the IEEE 30- and 118-bus 

system. 

4.4.1. Independent Loads  

● The IEEE-30 bus system 

  Results from the IEEE 30-bus study using the Basic and General UT method with 

independent loads are shown in Figures 9 and 10. The average of the mean and standard 

deviation errors calculated using (3.29) and (3.30) for all three case studies are 

presented in Table 2. Figure 9 shows the mean error of the Basic UT method on the 

IEEE 30-bus system compared with the results from MCS methods. Mean errors are 

relatively small in Cases 1 and 3 with most points are within 2% error. Thus, the 

measurement errors are acceptable. The results of Case 3 show that wind farm locations 

can influence the system performance and that the closer locations to the wind farm 

lead to larger errors.  
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Figure 9. Mean error of basic UT with independent loads on the 

IEEE 30-bus system 

 

Figure 10. Mean error of general UT with independent loads on the 

IEEE 30-bus system 
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Table 2. Average mean error with independent loads on the IEEE 

30-bus system 

Method Case 1 Case 2 Case 3 

Mean STD Mean STD Mean STD 

Basic UT 0.0116 0.4184 0.0468 0.7451 0.0002 0.2281 

General 

UT 
0.0116 0.4068 0.0469 0.7415 2.4e-05 0.1990 

Figure 10 shows the results of the General UT-based POPF on the IEEE 30-bus 

system. As shown in Figure10, the mean errors from the General UT method are 

comparable to the MCS method. Similar to the results of the Basic UT method, both 

Case 1 and Case 3 have smaller errors within 2% error range, whereas, errors from Case 

2 are bigger due to the changes of the wind farm locations. There are also slightly larger 

errors in the buses that are directly connected to the wind farms in all the cases. For 

example, the trend for the General UT method in Figure 10 shows that the errors are 

larger for the buses closer to the wind farms (i.e., bus 8 and 15).  

● The IEEE 118-bus System  

  Errors between the calculated mean using the UT-based and the MCS are shown in 

Figures11 and 12. The results in Figure 11 show that most of the mean errors for LMP 

in the Basic UT-based POPF are within 5% of MCS results. With a lower level of wind 

power penetration in Case 3, the mean errors become smaller. However, locations of 

the wind farms have more impact on the LMPs as shown in Figure 11, Case 2.  
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Figure 11. Mean error of the basic UT with correlated loads on the 

IEEE 118-bus system 

   

Figure 12. Mean error of the general UT with independent loads on 

the IEEE 118-bus system 
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  Figure 12 shows the mean errors of LMPs obtained from the General UT relative to 

MCS results. For most of the buses in Case 1 and Case 3, the mean errors of LMPs are 

smaller and within 5% range of MCS, which demonstrates the effectiveness of the 

General UT method. Similar to the IEEE 30-bus system, wind farm locations change 

the LMPs and introduced larger mean errors in Case 2. The results for both Basic and 

General UT indicate that mean errors of LMPs for buses located closer to the wind 

farms are larger than other buses. 

4.4.2. Correlated Loads  

● The IEEE 30-bus System 

  Neighboring loads are typically mutually correlated since they are affected by the 

same factors, such as the weather. Resolving all the correlated variables adds to the 

computing burden. To solve this problem, the IEEE 30 bus system is divided into small 

parts as shown in Figure 1. This is justifiable since closely connected buses have 

stronger correlation patterns, and the covariance of loads that are far apart are 

negligible. With each small part analyzed separately, the problem is simplified and the 

computing burden is reduced. It is also assumed that there is no correlation between the 

wind power and the loads.  

  A positive definite correlation matrix is formed based on the configuration of the 

IEEE test system. On the IEEE 30-bus system, the correlation matrix of the small parts 

consisting of buses 1, 2, 3 and 4 is  

𝑅 = [

1 0.38
0.38 1

0.47 0.41
0.45 0.47

0.47 0.45
0.41 0.47

1 0.55
0.55 1

] 
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  This covariance matrix shows the relationship between all the variables obtained 

from equation (3.26). Results of the Basic and General UT with correlated load are 

provided in Figures 13 and 14. 

 

Figure 13. Mean error of basic UT with correlated loads on the 

IEEE 30-bus system 

   As observed in Figure 13, the relative errors in Case 1 and 3 are around 8%, which 

is within the acceptable range. In Case 2, the errors are bigger due to the changes in 

locations of the wind farms. By comparing the independent and correlated loads in 

Figure 10 and 14, it is observed that the Basic UT-based method lead to bigger relative 

errors with correlated loads compared to independent loads.  
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Figure 14. Mean error of general UT with correlated loads on the 

IEEE 30-bus system 

  However, as it is observed in Figure 14, the relative errors of the General UT-based 

POPF are smaller on the IEEE 30-bus system with correlated loads compared to the 

one with independent loads. Furthermore, in both Basic and General UT methods, the 

errors are less than 10%, especially in Cases 1 and 3. With less wind power penetration, 

the mean errors decreased to less than 5%, which demonstrates the influence of wind 

farm locations on the LMPs. Increased wind power penetration and the closeness of the 

wind farm locations have significant influence on market variability as captured by 

LMPs. 

● The IEEE 118-bus System 

  The IEEE 118-bus system is also divided into small parts to show the correlation 

between the nearby loads. The relative errors of the estimated LMP mean at all the 

buses are shown in Figures 15 and 16. Most of the buses have relative errors less than 
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5% in all three cases, and are greater for the buses located closer to the wind farms. By 

comparing the three cases, it is observed that Case 2 has larger relative errors, further 

demonstrating that the locations of wind farms have significant influence on the 

accuracy of the LMP estimation. In Case 3, when wind power generation is decreased, 

the reduction in wind power fluctuations lead to less uncertainty in LMP estimation. 

  

Figure 15. Mean error of the basic UT with correlated loads on the 

IEEE 118-bus system 

  The average of the mean and standard deviation errors calculated using (3.29) and 

(3.30) for all three case studies are presented in Table 3. The UT-based POPF method 

is capable of estimating the statistical properties of LMP (i.e., mean and variance) with 

an acceptable error range for practical power system operations.  
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Figure 16. Mean error of the general UT with correlated loads on 

the IEEE 118-bus system 

 

Table 3. Average mean errors with correlated loads on the IEEE 

118-bus system 

Method Case 1 Case 2 Case 3 

Mean STD Mean STD Mean STD 

Basic UT 0.0369 0.2810 0.1342 0.4564 0.0168 0.9874 

General UT 0.0394 0.2757 0.1348 0.4304 0.0143 0.2659 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

  The increasing proliferation of large-scaled renewable energy-based power 

generation has added more challenges to secure power system operation. The stochastic 

nature of renewable-based energy sources adds more uncertainty to the output of power 

system operation tools, such as optimal power flow (OPF). Therefore, probabilistic 

optimal power flow (POPF) was introduced in power systems community to deal with 

the stochastic variables (e.g., renewable resources and uncertain loads). In this study, a 

new POPF algorithm is proposed that is based on the Unscented Transformation (UT). 

Basic and General UT methods are evaluated for POPF and are then compared to Monte 

Carlo Simulation (MCS). The input random variables are assumed to have a normal 

probability distribution function (PDF). The UT-based algorithm uses fewer sampling 

points to represent the PDFs and since no linearization process is involved in its 

formulation, it reduces the computation load. In this study, the accuracy of the UT-

based POPF algorithm was evaluated using locational marginal price (LMP) in the 

power transmission network. LMP is the price of electricity in high-voltage 

transmission market, which is calculated by a non-profit organization for power system 

and market operation referred to as the independent system operator (ISO). ISOs are 

responsible for clearing the day-ahead and real-time market for all market participants 

including power generators, load serving entities (LSE), transmission owners (TO) etc. 

  Different test cases of the IEEE 30- and 118-bus transmission systems were simulated 

to assess the uncertainties from input random variables (e.g., wind power output, load), 

wind farm locations and different levels of wind power penetration. It was observed 

that the proposed algorithm matched the simulation from MCS, which were regarded 

as the benchmark. For the next step, the performance of the algorithm was evaluated 
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for several wind farms locations. The wind farm locations significantly influenced the 

results as depicted by the mean errors of the LMP. It was observed that the estimated 

mean and variance of the LMPs at the buses that were located near the wind farms, had 

more errors relative to MCS. In addition, the extensive case studies proved that the 

LMP mean and variance errors were smaller in systems with correlated loads than in 

the systems with independent loads.  

  While UT-based POPF is demonstrated and simulated in this thesis, future research 

is required to utilize all four type of UTs for POPF in large transmission grids (e.g., The 

IEEE 300-bus and NV Energy 340-bus systems) to evaluate the efficiency and accuracy 

of the proposed algorithm, and select the UT with the optimal performance. Moreover, 

other POPF output (e.g., total generation cost, total lost) should also be considered to 

evaluate the UT-based POPF algorithm. Future work is also necessary to identify the 

best locations for the renewable energy generation to minimize the total generation cost.  
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APPENDIX 

 

DATA OF THE IEEE 30-BUS SYSTEM 

Table I.  Bus Load of the IEEE 30-bus System  

Bus Load (MW) Bus Load(MW) 

1 0.0 16 3.5 

2 21.7 17 9.0 

3 2.4 18 3.2 

4 67.6 19 9.5 

5 34.2 20 2.2 

6 0.0 21 17.5 

7 22.8 22 0.0 

8 30.0 23 3.2 

9 0.0 24 8.7 

10 5.8 25 0.0 

11 0.0 26 3.5 

12 11.2 27 0.0 

13 0.0 28 0.0 

14 6.2 29 2.4 

15 8.2 30 10.6 
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Table II.  Line Parameters of the IEEE 30-bus System 

Line From Bus To Bus R (p.u) X (p.u) Tap Ratio Rating (p.u) 

1 1 2 0.0192 0.0575  0.300 

2 1 3 0.0452 0.1852 0.9610 0.300 

3 2 4 0.0570 0.1737  0.300 

4 3 4 0.0132 0.0379  0.300 

5 2 5 0.0472 0.1983  0.300 

6 2 6 0.0581 0.1763  0.300 

7 4 6 0.0119 0.0414  0.300 

8 5 7 0.0460 0.1160  0.300 

9 6 7 0.0267 0.0820  0.300 

10 6 8 0.0120 0.0420  0.300 

11 6 9 0.0000 0.2080  0.300 

12 6 10 0.0000 0.5560  0.300 

13 9 11 0.0000 0.2080  0.300 

14 9 10 0.0000 0.1100 0.9700 0.300 

15 4 12 0.0000 0.2560 0.9650 0.650 

16 12 13 0.0000 0.1400 0.9635 0.650 

17 12 14 0.1231 0.2559  0.320 

18 12 15 0.0662 0.1304  0.320 

19 12 16 0.0945 0.1987  0.320 

20 14 15 0.2210 0.1997  0.160 

21 16 17 0.0824 0.1932  0.160 

22 15 18 0.1070 0.2185  0.160 

23 18 19 0.0639 0.1293 0.9590 0.170 

24 19 20 0.0340 0.0680  0.320 

25 10 20 0.0936 0.2090  0.320 

26 10 17 0.0324 0.0845 0.9850 0.320 

27 10 21 0.0348 0.0749  0.300 

28 10 22 0.0727 0.1499  0.300 

29 21 22 0.0116 0.0236  0.300 

30 15 23 0.1000 0.2020  0.160 

31 22 24 0.1150 0.1790  0.300 

32 23 24 0.1320 0.2700 0.9655 0.160 

33 24 25 0.1885 0.3292  0.300 

34 25 26 0.2544 0.3800  0.300 

35 25 27 0.1093 0.2087  0.300 

36 28 27 0.0000 0.3960  0.300 

37 27 29 0.2198 0.4153 0.9810 0.300 

38 27 30 0.3202 0.6027  0.300 

39 29 30 0.2399 0.4533  0.300 
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DATA OF THE IEEE 118-BUS SYSTEM 

Table I.  Bus Load of the IEEE 118-bus System  

Bus Load (MW) Bus Load(MW) 

1 54.14 60 78 

2 21.23 61 0 

3 
41.4 

62 77 

4 31.85 63 0 

5 0 64 0 

6 55.2 65 0 

7 20.17 66 39 

8 0 67 28 

9 0 68 0 

10 0 69 0 

11 74.31 70 66 

12 49.89 71 0 

13 36.09 72 0 

14 14.86 73 0 

15 95.54 74 68 

16 26.54 75 47 

17 11.68 76 68 

18 63.69 77 61 

19 47.77 78 71 

20 19.11 79 39 

21 14.86 80 130 

22 10.62 81 0 

23 7.43 82 54 

24 0 83 20 

25 0 84 11 

26 0 85 24 

27 65.82 86 21 

28 18.05 87 0 

29 25.48 88 48 

30 0 89 0 

31 45.65 90 78 

32 62.63 91 0 

33 24.42 92 65 

34 62.63 93 12 

35 35.03 94 30 

36 32.91 95 42 

37 0 96 38 

38 0 97 15 

39 27 98 34 

40 20 99 0 

41 37 100 37 

42 37 101 22 

43 18 102 5 

44 16 103 23 

45 53 104 38 

46 28 105 31 

47 34 106 43 

48 20 107 28 

49 87 108 2 

50 17 109 8 
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51 17 110 39 

52 18 111 0 

53 23 112 25 

54 113 113 0 

55 63 114 8.49 

56 84 115 23.35 

57 12 116 0 

58 12 117 21.23 

59 277 118 33 
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Table II.  Line Parameters of the IEEE 118-bus System 

Line No. From Bus To Bus R (pu) X (pu) B (pu) Flow Limit (MW) 
1 1 2 0.0303 0.0999 0.0254 175 
2 1 3 0.0129 0.0424 0.01082 175 
3 4 5 0.00176 0.00798 0.0021 500 
4 3 5 0.0241 0.108 0.0284 175 
5 5 6 0.0119 0.054 0.01426 175 
6 6 7 0.00459 0.0208 0.0055 175 
7 8 9 0.00244 0.0305 1.162 500 
8 8 5 0 0.0267 0 500 
9 9 10 0.00258 0.0322 1.23 500 
10 4 11 0.0209 0.0688 0.01748 175 
11 5 11 0.0203 0.0682 0.01738 175 
12 11 12 0.00595 0.0196 0.00502 175 
13 2 12 0.0187 0.0616 0.01572 175 
14 3 12 0.0484 0.16 0.0406 175 
15 7 12 0.00862 0.034 0.00874 175 
16 11 13 0.02225 0.0731 0.01876 175 
17 12 14 0.0215 0.0707 0.01816 175 
18 13 15 0.0744 0.2444 0.06268 175 
19 14 15 0.0595 0.195 0.0502 175 
20 12 16 0.0212 0.0834 0.0214 175 
21 15 17 0.0132 0.0437 0.0444 500 
22 16 17 0.0454 0.1801 0.0466 175 
23 17 18 0.0123 0.0505 0.01298 175 
24 18 19 0.01119 0.0493 0.01142 175 
25 19 20 0.0252 0.117 0.0298 175 
26 15 19 0.012 0.0394 0.0101 175 
27 20 21 0.0183 0.0849 0.0216 175 
28 21 22 0.0209 0.097 0.0246 175 
29 22 23 0.0342 0.159 0.0404 175 
30 23 24 0.0135 0.0492 0.0498 175 
31 23 25 0.0156 0.08 0.0864 500 
32 26 25 0 0.0382 0 500 
33 25 27 0.0318 0.163 0.1764 500 
34 27 28 0.01913 0.0855 0.0216 175 
35 28 29 0.0237 0.0943 0.0238 175 
36 30 17 0 0.0388 0 500 
37 8 30 0.00431 0.0504 0.514 175 
38 26 30 0.00799 0.086 0.908 500 
39 17 31 0.0474 0.1563 0.0399 175 
40 29 31 0.0108 0.0331 0.0083 175 
41 23 32 0.0317 0.1153 0.1173 140 
42 31 32 0.0298 0.0985 0.0251 175 
43 27 32 0.0229 0.0755 0.01926 175 
44 15 33 0.038 0.1244 0.03194 175 
45 19 34 0.0752 0.247 0.0632 175 
46 35 36 0.00224 0.0102 0.00268 175 
47 35 37 0.011 0.0497 0.01318 175 
48 33 37 0.0415 0.142 0.0366 175 
49 34 36 0.00871 0.0268 0.00568 175 
50 34 37 0.00256 0.0094 0.00984 500 
51 38 37 0 0.0375 0 500 
52 37 39 0.0321 0.106 0.027 175 
53 37 40 0.0593 0.168 0.042 175 
54 30 38 0.00464 0.054 0.422 175 
55 39 40 0.0184 0.0605 0.01552 175 
56 40 41 0.0145 0.0487 0.01222 175 
57 40 42 0.0555 0.183 0.0466 175 
58 41 42 0.041 0.135 0.0344 175 
59 43 44 0.0608 0.2454 0.06068 175 
60 34 43 0.0413 0.1681 0.04226 175 
61 44 45 0.0224 0.0901 0.0224 175 
62 45 46 0.04 0.1356 0.0332 175 
63 46 47 0.038 0.127 0.0316 175 
64 46 48 0.0601 0.189 0.0472 175 
65 47 49 0.0191 0.0625 0.01604 175 
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66 42 49 0.0715 0.323 0.086 175 
67 42 49 0.0715 0.323 0.086 175 
68 45 49 0.0684 0.186 0.0444 175 
69 48 49 0.0179 0.0505 0.01258 175 
70 49 50 0.0267 0.0752 0.01874 175 
71 49 51 0.0486 0.137 0.0342 175 
72 51 52 0.0203 0.0588 0.01396 175 
73 52 53 0.0405 0.1635 0.04058 175 
74 53 54 0.0263 0.122 0.031 175 
75 49 54 0.073 0.289 0.0738 175 
76 49 54 0.0869 0.291 0.073 175 
77 54 55 0.0169 0.0707 0.0202 175 
78 54 56 0.00275 0.00955 0.00732 175 
79 55 56 0.00488 0.0151 0.00374 175 
80 56 57 0.0343 0.0966 0.0242 175 
81 50 57 0.0474 0.134 0.0332 175 
82 56 58 0.0343 0.0966 0.0242 175 
83 51 58 0.0255 0.0719 0.01788 175 
84 54 59 0.0503 0.2293 0.0598 175 
85 56 59 0.0825 0.251 0.0569 175 
86 56 59 0.0803 0.239 0.0536 175 
87 55 59 0.04739 0.2158 0.05646 175 
88 59 60 0.0317 0.145 0.0376 175 
89 59 61 0.0328 0.15 0.0388 175 
90 60 61 0.00264 0.0135 0.01456 500 
91 60 62 0.0123 0.0561 0.01468 175 
92 61 62 0.00824 0.0376 0.0098 175 
93 63 59 0 0.0386 0 500 
94 63 64 0.00172 0.02 0.216 500 
95 64 61 0 0.0268 0 500 
96 38 65 0.00901 0.0986 1.046 500 
97 64 65 0.00269 0.0302 0.38 500 
98 49 66 0.018 0.0919 0.0248 500 
99 49 66 0.018 0.0919 0.0248 500 

100 62 66 0.0482 0.218 0.0578 175 
101 62 67 0.0258 0.117 0.031 175 
102 65 66 0 0.037 0 500 
103 66 67 0.0224 0.1015 0.02682 175 
104 65 68 0.00138 0.016 0.638 500 
105 47 69 0.0844 0.2778 0.07092 175 
106 49 69 0.0985 0.324 0.0828 175 
107 68 69 0 0.037 0 500 
108 69 70 0.03 0.127 0.122 500 
109 24 70 0.00221 0.4115 0.10198 175 
110 70 71 0.00882 0.0355 0.00878 175 
111 24 72 0.0488 0.196 0.0488 175 
112 71 72 0.0446 0.18 0.04444 175 
113 71 73 0.00866 0.0454 0.01178 175 
114 70 74 0.0401 0.1323 0.03368 175 
115 70 75 0.0428 0.141 0.036 175 
116 69 75 0.0405 0.122 0.124 500 
117 74 75 0.0123 0.0406 0.01034 175 
118 76 77 0.0444 0.148 0.0368 175 
119 69 77 0.0309 0.101 0.1038 175 
120 75 77 0.0601 0.1999 0.04978 175 
121 77 78 0.00376 0.0124 0.01264 175 
122 78 79 0.00546 0.0244 0.00648 175 
123 77 80 0.017 0.0485 0.0472 500 
124 77 80 0.0294 0.105 0.0228 500 
125 79 80 0.0156 0.0704 0.0187 175 
126 68 81 0.00175 0.0202 0.808 500 
127 81 80 0 0.037 0 500 
128 77 82 0.0298 0.0853 0.08174 200 
129 82 83 0.0112 0.03665 0.03796 200 
130 83 84 0.0625 0.132 0.0258 175 
131 83 85 0.043 0.148 0.0348 175 
132 84 85 0.0302 0.0641 0.01234 175 



71 

133 85 86 0.035 0.123 0.0276 500 
134 86 87 0.02828 0.2074 0.0445 500 
135 85 88 0.02 0.102 0.0276 175 
136 85 89 0.0239 0.173 0.047 175 
137 88 89 0.0139 0.0712 0.01934 500 
138 89 90 0.0518 0.188 0.0528 500 
139 89 90 0.0238 0.0997 0.106 500 
140 90 91 0.0254 0.0836 0.0214 175 
141 89 92 0.0099 0.0505 0.0548 500 
142 89 92 0.0393 0.1581 0.0414 500 
143 91 92 0.0387 0.1272 0.03268 175 
144 92 93 0.0258 0.0848 0.0218 175 
145 92 94 0.0481 0.158 0.0406 175 
146 93 94 0.0223 0.0732 0.01876 175 
147 94 95 0.0132 0.0434 0.0111 175 
148 80 96 0.0356 0.182 0.0494 175 
149 82 96 0.0162 0.053 0.0544 175 
150 94 96 0.0269 0.0869 0.023 175 
151 80 97 0.0183 0.0934 0.0254 175 
152 80 98 0.0238 0.108 0.0286 175 
153 80 99 0.0454 0.206 0.0546 200 
154 92 100 0.0648 0.295 0.0472 175 
155 94 100 0.0178 0.058 0.0604 175 
156 95 96 0.0171 0.0547 0.01474 175 
157 96 97 0.0173 0.0885 0.024 175 
158 98 100 0.0397 0.179 0.0476 175 
159 99 100 0.018 0.0813 0.0216 175 
160 100 101 0.0277 0.1262 0.0328 175 
161 92 102 0.0123 0.0559 0.01464 175 
162 101 102 0.0246 0.112 0.0294 175 
163 100 103 0.016 0.0525 0.0536 500 
164 100 104 0.0451 0.204 0.0541 175 
165 103 104 0.0466 0.1584 0.0407 175 
166 103 105 0.0535 0.1625 0.0408 175 
167 100 106 0.0605 0.229 0.062 175 
168 104 105 0.00994 0.0378 0.00986 175 
169 105 106 0.014 0.0547 0.01434 175 
170 105 107 0.053 0.183 0.0472 175 
171 105 108 0.0261 0.0703 0.01844 175 
172 106 107 0.053 0.183 0.0472 175 
173 108 109 0.0105 0.0288 0.0076 175 
174 103 110 0.03906 0.1813 0.0461 175 
175 109 110 0.0278 0.0762 0.0202 175 
176 110 111 0.022 0.0755 0.02 175 
177 110 112 0.0247 0.064 0.062 175 
178 17 113 0.00913 0.0301 0.00768 175 
179 32 113 0.0615 0.203 0.0518 500 
180 32 114 0.0135 0.0612 0.01628 175 
181 27 115 0.0164 0.0741 0.01972 175 
182 114 115 0.0023 0.0104 0.00276 175 
183 68 116 0.00034 0.00405 0.164 500 
184 12 117 0.0329 0.14 0.0358 175 
185 75 118 0.0145 0.0481 0.01198 175 
186 76 118 0.0164 0.0544 0.01356 175 

 


