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Abstract 

 
 This dissertation is comprised of three different papers that all pertain to wildland 

fire applications. The first paper performs a verification analysis on mixing height, 

transport winds, and Haines Index from National Weather Service spot forecasts across 

the United States. The final two papers, which are closely related, examine atmospheric 

and ecological drivers of wildfire for the Southwest Area (SWA) (Arizona, New Mexico, 

west Texas, and Oklahoma panhandle) to better equip operational fire meteorologists and 

managers to make informed decisions on wildfire potential in this region.  

 The verification analysis here utilizes NWS spot forecasts of mixing height, 

transport winds and Haines Index from 2009-2013 issued for a location within 50 km of 

an upper sounding location and valid for the day of the fire event. Mixing height was 

calculated from the 0000 UTC sounding via the Stull, Holzworth, and Richardson 

methods. Transport wind speeds were determined by averaging the wind speed through 

the boundary layer as determined by the three mixing height methods from the 0000 UTC 

sounding. Haines Index was calculated at low, mid, and high elevation based on the 

elevation of the sounding and spot forecast locations. Mixing height forecasts exhibited 

large mean absolute errors and biased towards over forecasting. Forecasts of transport 

wind speeds and Haines Index outperformed mixing height forecasts with smaller errors 

relative to their respective means.  

 The rainfall and lightning associated with the North American Monsoon (NAM) 

can vary greatly intra- and inter-annually and has a large impact on wildfire activity 

across the SWA by igniting or suppressing wildfires. NAM onset thresholds and 

subsequent dates are determined for the SWA and each Predictive Service Area (PSA), 
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which are sub-regions used by operational fire meteorologists to predict wildfire potential 

within the SWA, April through September from 1995-2013. Various wildfire activity 

thresholds using the number of wildfires and large wildfires identified days or time 

periods with increased wildfire activity for each PSA and the SWA. Self-organizing maps 

utilizing 500 and 700 hPa geopotential heights and precipitable water were implemented 

to identify atmospheric patterns contributing to the NAM onset and busy days/periods for 

each PSA and the SWA. Resulting SOM map types also showed the transition to, during, 

and from the NAM. Northward and eastward displacements of the subtropical ridge (i.e., 

four-corners high) over the SWA were associated with NAM onset, and a suppressed 

subtropical ridge and breakdown of the subtropical ridge map types over the SWA were 

associated with increased wildfire activity.  

 We implemented boosted regression trees (BRT) to model wildfire occurrence for 

all and large wildfires for different wildfire types (i.e., lightning, human) across the SWA 

by PSA. BRT models for all wildfires demonstrated relatively small mean and mean 

absolute errors and showed better predictability on days with wildfires. Cross-validated 

accuracy assessments for large wildfires demonstrated the ability to discriminate between 

large wildfire and non-large wildfire days across all wildfire types. Measurements 

describing fuel conditions (i.e., 100 and 1000-hour dead fuel moisture, energy release 

component) were the most important predictors when considering all wildfire types and 

sizes. However, a combination of fuels and atmospheric predictors (i.e., lightning, 

temperature) proved most predictive for large wildfire occurrence, and the number of 

relevant predictors increases for large wildfires indicating more conditions need to align 

to support large wildfires. 
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Chapter 1.  

Dissertation Introduction 

 This dissertation is comprised of three different papers that all pertain to wildfire 

applications. The three papers reside under the large fire weather and climate umbrella, 

which represents the emphasis of my dissertation in atmospheric sciences. More 

specifically, all three papers exemplify applied wildfire and atmospheric research with 

results relating directly to the operational fire weather and management communities. 

The first paper performs a verification analysis on mixing height, transport winds, and 

Haines Index from National Weather Service spot forecasts across the United States.  The 

final two papers are closely related, which examine atmospheric and ecological drivers of 

wildfire for the Southwest Area (SWA) (Arizona, New Mexico, west Texas, and 

Oklahoma panhandle) to better equip operational fire meteorologists and fire managers to 

make informed decisions on wildfire potential in this region.  

 The subsequent three chapters describe each of the three papers submitted as the 

author’s dissertation: 1) Verification of National Weather Service spot forecasts using 

atmospheric sounding observations; 2) Examining the North American Monsoon’s 

impact on wildfire activity in the southwest United States; and 3) Using boosted 

regression trees to model and predict wildfires in the southwest United States. A brief 

summary, conclusions, and recommendations chapter follows these three chapters 

detailing the most pertinent findings and recommendations from the dissertation. 
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Chapter 2.  

Verification of National Weather Service Spot Forecasts Using Atmospheric 

Sounding Observations 

Nicholas J. Nauslar and Timothy J. Brown 

Desert Research Institute, Reno, Nevada 

John D. Horel 

University of Utah, Salt Lake City, Utah 

 

ABSTRACT 

 Fire management officials request spot forecasts from National Weather Service 

(NWS) Weather Forecast Offices (WFOs) to provide detailed guidance of atmospheric 

conditions in the vicinity of prescribed and wildland fires. Verifying spot forecasts 

represents an integral component of the forecast process and helps assess and improve the 

accuracy of forecasts. The verification analysis here utilizes NWS spot forecasts of 

mixing height, transport winds and Haines Index from 2009-2013 issued for a location 

within 50 km of an upper sounding location and valid for the day of the fire event. 

Mixing height was calculated from the 0000 UTC sounding via the Stull, Holzworth, and 

Richardson methods. Transport wind speeds were determined by averaging the wind 

speed through the boundary layer as determined by the three mixing height methods from 

the 0000 UTC sounding. Haines Index was calculated at low, mid, and high elevation 

based on the elevation of the sounding and spot forecast locations. Forecast statistics 

were calculated for each lower atmospheric variable by region including mean error and 
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mean absolute error. Mixing height forecasts exhibited large mean absolute errors and 

biased towards over forecasting. Forecasts of transport wind speeds and Haines Index 

outperformed mixing height forecasts with smaller errors relative to their respective 

means. Based on these results and the methodology, recommendations are provided to 

improve spot forecasts and the verification process.  

 

1. Introduction 

 A 2007 report entitled “National Wildland Fire: A Summary of User Needs and 

Issues” from the Office of the Federal Coordinator for Meteorological Services and 

Supporting Research (OFCM) emphasized a number of improvements that are needed 

including “the fire community establishing accuracy requirements for fire weather 

products and services to enable the provider community to focus improvement efforts 

where most beneficial” (OFCM 2007). OFCM (2011) updated the responses to these 

findings, but indicated that the original findings had still not been adequately addressed. 

A 2008 National Oceanic and Atmospheric Administration (NOAA) report entitled, “Fire 

Weather Research: A Burning Agenda for NOAA,” echoed similar sentiments by 

identifying the need of improving and conducting a more thorough forecast verification 

for wildland fire incidents (NOAA SAB 2008; Lammers and Horel 2014).  

 National Weather Service (NWS) forecasters at Weather Forecast Offices 

(WFOs) issue spot forecasts in response to requests from fire and emergency managers. 

These forecasts are typically for prescribed fire, wildfire, hazardous material, and search 

and rescue incidents, and provide detailed guidance for atmospheric conditions in the 

vicinity of these incidents. The NWS issues approximately 20,000 spot forecasts each 
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year for prescribed fires and wildfires, which comprise the vast majority of the spot 

forecasts. The NWS issues prescribed fire spot forecasts nearly twice as often as wildfire 

spot forecasts (Lammers and Horel 2014).  

 Brier and Allen (1951), Joliffe and Stephenson (2003), and Wilks (2011) identify 

and demonstrate appropriate verification techniques to assess forecast performance and 

understand sources of error to improve future forecasts. Brown and Murphy (1987) detail 

a fire weather forecast evaluation process that identifies biases based on forecasters’ 

perceived consequences of under forecasting key fire weather variables and the 

difficulties of quantifying uncertainty in their forecasts. 

Lammers and Horel (2014) examined spot forecasts from April 2009 through November 

2013 and evaluated spot forecasts of surface temperature, moisture, and wind by using 

surface observations from the closest surface station (i.e., remote automated weather 

stations (RAWS)) and the National Digital Forecast Database (NDFD). Spot forecasts 

demonstrated higher skill than NDFD output especially for maximum temperature while 

the smallest improvement was associated with maximum wind speed. Our paper expands 

on this previous work by evaluating spot forecasts of mixing height (MH), transport 

winds (TWs), and Haines Index (HI).  

• There were two primary objectives for the analysis: Attempt to objectively verify 

MH, TWs, and HI in spot forecasts 

• Demonstrate and review the spot verification process, and offer relevant 

recommendations to improve spot forecasts 

Section 2 lists the data utilized in this study, and section 3 describes the methods 

implemented to perform the spot forecast verification. Section 4 presents the results, and 
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sections 5 and 6 discuss the results and draw conclusions from the current research 

including noting important caveats and offering recommendations.  

 

2. Data 

 

 From the period 2009-2013, 89,052 NWS spot forecasts were initially gathered 

for analysis (Table 1). Spot forecast requests contain the date, NWS WFO, the incident’s 

name, latitude, longitude, elevation, the forecast parameters needed, and the option to 

select ‘today’, ‘tonight’, and “tomorrow” for when those forecasts should be valid (Fig. 

1). The spot forecasts contain a short narrative of the weather forecast then list values for 

each forecast element and when they are valid (Fig. 2). For example, a spot forecast 

might contain three different forecasts: ‘today’, ‘tonight’, and ‘tomorrow’ forecasts. 

Many definitions and names describe the planetary boundary layer (PBL) including 

boundary layer (BL), mixed layer (ML), and atmospheric boundary layer (ABL). Stull 

(2000) describes the BL as the shallow layer near the surface where the diurnal variation 

of sensible and latent heat fluxes exists between the surface and atmosphere. Wallace and 

Hobbs (2006) defines the BL as the layer most affected by the Earth’s surface, which is 

separated from the rest of troposphere due to the effects of turbulence and static stability. 

The BL undergoes diurnal variation, but the variation deviates depending on a number of 

factors including: 1) season; 2) terrain; 3) synoptic conditions; and 4) land-surface type. 

Typically, the shallowest BL occurs just before sunrise, and as radiation flux increases 

the BL builds throughout the day peaking in height during the afternoon (Fig. 3; adapted 

from Stull 2000). 
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A general definition of MH is the top of the BL or ML. However, there is no universally 

accepted definition or criteria for its determination for two reasons: 1) various processes, 

such as turbulence, radiation, baroclinicity, advection, divergence, convergence, and 

vertical motions, contribute to the structure of the BL; and 2) most definitions or criteria 

are constructed on available data measured through various instruments and techniques 

(Beyrich 1997). Within the BL or ML the mean wind speed and direction are defined as 

the TWs (Miller (1967); NWS (2014); AirFire (2014). AirFire (2014) notes that some 

state and local agencies vary their definition of TWs including using a weighted mean for 

wind speed and direction through the BL. The HI quantifies dry, unstable air present in 

the BL, which is associated with extreme fire behavior and large fires (Haines 1988; 

Werth et al. 2011). Daily fire weather forecasts utilize the HI for determining fire 

potential especially for plume-dominated wildfires (Haines 1988; Werth and Ochoa 1993; 

Potter et al. 2008; Werth et al. 2011).  

 Atmospheric sounding data valid at 0000 UTC were selected on fire days and 

nearest to fire locations from 2009-2013 (University of Wyoming 2015). Variables 

retrieved from the sounding included unit identifier, latitude, longitude, elevation, 

potential temperature (Θ), virtual potential temperature (Θv), wind speed, pressure, and 

height. These variables were necessary to calculate the three BL elements examined for 

comparison to spot forecasts. 

 

3. Methods 

A. Spot Forecasts 
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 Spot forecast requests placed within 50 km of an atmospheric sounding location 

were organized and saved by year. Lammers and Horel (2014) chose 50 km as an 

appropriate distance when comparing spot forecasts and surface station observations. 

This verification only used the ‘today’ forecasts from spot forecasts containing MH, 

TWs, and HI. In summary, only spot forecasts issued and valid on the same day and 

within 50 km of an atmospheric sounding were considered.  

 Each spot forecast request corresponds to a spot forecast. The spot forecast 

request contains the date, incident name, NWS WFO, and other metadata that is used to 

find the corresponding spot forecast, which contains all of the forecast data that is 

verified. Multiple spot forecast requests and corresponding spot forecasts could be 

associated with the same incident. Spot forecasts are requested daily for many wildfires 

until an incident meteorologist arrives to handle forecast responsibilities. In addition, 

burn bosses for prescribed fires often request consecutive daily spot forecasts to ascertain 

if the weather conditions permit lighting the prescribed fire. If the spot forecasts for the 

same incident transpired on different days, then the spot forecasts were included in the 

analysis. If NWS WFOs issued more than one spot forecast on a particular day for an 

incident, only the most recent spot forecast was used in the analysis.  

 

B. Atmospheric Soundings  

 NWS WFOs launch the 0000 UTC atmospheric sounding around 2300-2315 

UTC. Table 2 shows the local times for launching the rawinsonde of the 0000 UTC 

atmospheric sounding. The -102.5° longitude line, which roughly parallels the Central 

and Mountain Time Zone border, is used to separate spot forecasts and their 
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corresponding atmospheric soundings into west and east categories. The east category 

was then split into an east warm season (EWS) category spanning April through October 

and an east cold season (ECS) category containing the remaining months. 0000 UTC 

occurs during the afternoon or early evening throughout the western United States 

indicating the nocturnal BL should not affect the MH calculation. 2300-0000 UTC occurs 

in the early evening for most of the central and eastern United States during the warm 

season (Table 2). However, during the cold season, most of the central and eastern United 

States are near sunset or after when 2300 or 0000 UTC passes (Table 2). By splitting into 

west and east categories and the east category into ECS and EWS categories, it mitigates 

some of the potential spot forecast verification problems with the nocturnal BL and 

isolates potential inapplicable comparisons. 

 

C. Parsing Spot Forecasts and Atmospheric Soundings 

 Lammers and Horel (2014) analyzed spot forecasts as a ‘natural language’ 

problem. Spot forecast formats can vary by NWS WFO (Figs. 4-5). The table format 

provides time as a header with forecast values of elements requested valid at each time 

(Fig. 4). The non-table format provides the forecast of each requested element with a 

numeric value sometimes accompanied by a validation time (Fig. 5). Spot forecasts 

occasionally include language that narrates the progression of MH, TWs, or HI values 

(Fig. 6). Some of these short narrations include specific times and others use more 

ambiguous language including, ‘then’, ‘becoming’, ‘otherwise’, or ‘later’, creating a 

nebulous definition of time. Other forecasts include only one value or one range of 

values. The differences in the specificity of the forecast values for the requested BL 
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elements create challenges in pattern recognition to isolate the appropriate value or range 

of values in the forecast and build a database.  

 Text and numerical values associated with MH, TWs, or HI were extracted from 

spot forecasts that were issued and valid on the same day (i.e. the ‘TODAY’ forecast) 

within 50 km of an atmospheric sounding. The timing of the 0000 UTC atmospheric 

sounding provided guidance on selecting the appropriate forecast values from the 

corresponding spot forecasts. If only one numerical value or range of values existed, it 

was chosen as the verifiable forecast. However, since much of the data included text, 

measures were taken to select the latest forecast numerical value of the specified 

variables by interpreting key words and phrases such as ‘then’, ‘becoming’, ‘late in the 

afternoon’, and ‘early in the evening’. This ensures the forecast numerical value chosen 

should coincide with the 0000 UTC sounding since the ‘today’ portion of the spot 

forecast usually is valid until dark (sunset). If multiple numerical values existed with any 

of the ‘afternoon’ or ‘evening’ key words or phrases, the lowest value and the highest 

value were joined to form a forecast range. This method of parsing through spot forecasts 

and extracting values could lead to potential errors and biases. However, the method was 

consistently applied to all spot forecasts with many precautions, including noting very 

low or high values, to protect against obtaining erroneous or incorrect data.  

 Atmospheric soundings and their corresponding spot forecasts were removed if 

the data was missing for any of the necessary variables below 200 hPa. Conversely, spot 

forecasts missing pertinent information, such as elevation, variables’ units, or numerical 

forecast values, were removed along with their corresponding atmospheric soundings. 

Figs. 7-9 show the number of spot forecasts that exist within 50 km of an atmospheric 
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sounding location by year, variable, and category, and that remain before and after 

quality control measures. Of all available spot forecasts 6.5% occur within 50 km of an 

atmospheric sounding location, and 80%, 85%, and 89% of all MH, TWs, and HI spot 

forecasts, respectively, within the 50 km distance threshold were analyzed after the 

quality control measures.  

 

D. Calculating Mixing Height, Transport Winds, and Haines Index 

 The Holzworth, Stull, and Richardson methods of determining MH were 

calculated for the analysis. The Holzworth method defines MH as the height where Θ 

exceeds the surface Θ (Holzworth 1967). A rigorous application of the Stull method 

explores the entire vertical atmospheric profile to identify all areas of instability using Θv 

(Stull 1988, 1991). However, for verification analysis MH was determined by finding the 

height where Θv exceeded the surface Θv (Fearon 2000; Fearon et al. 2015; accepted). 

The Richardson method involves calculating the Bulk Richardson number at each level 

sampled within the atmospheric sounding until reaching a certain threshold delineating 

turbulent and laminar flow (Richardson 1920; Stull 2000). A traditional critical threshold 

of the Bulk Richardson Number is 0.25, but other BL studies have shown .505, which 

was utilized for this verification, as an appropriate threshold (Lee et al. 2008).  

 A temperature of 0.5°C was added to surface Θ and Θv to represent surface 

heating (Fearon 2000). The height closest to the elevation of the spot forecast within the 

atmospheric sounding was identified as the new surface. More than 95% of the analyzed 

spot forecasts resided at or above the elevations of the sounding sites. None of the 

remaining spot forecast elevations were more than 350m lower than the base elevation of 
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the corresponding atmospheric sounding. If the spot forecast specified the MH as AGL, 

then the height of that level minus the surface height produced the MH. If the spot 

forecast specified MSL, then the height of the identified level was used as the MH. This 

process was performed for each MH method and produced three MHs for each 

atmospheric sounding to be compared to the spot forecast.  

 TW speeds were calculated by averaging each atmospheric sounding level’s wind 

speed that existed at and below the MH. This calculation created three TW speeds for 

each sounding due to the three different methods of determining MH. Wind direction was 

not considered due to the imprecise and nebulous language associated with wind 

direction in spot forecasts. Lammers and Horel (2014) cited similar reasoning for 

examining wind speed and not wind direction.    

 HI is calculated following Haines (1988). The low elevation (less than 200 m 

MSL) HI combines the temperature difference between 950 hPa and 850 hPa and the 

dewpoint depression at 850 hPa. For mid-elevation (200-1000 m MSL) this changes to 

the temperature difference between 850 hPa and 700 hPa and dewpoint depression at 850 

hPa. For high elevation sites (greater than 1000 m MSL), HI combines the temperature 

difference between 700 hPa and 500 hPa and dewpoint depression at 700 hPa (Haines 

1988). These values are associated with coefficients, ranging from one to three, relating 

to the temperature difference and dewpoint depression (Table 3). The results from this 

calculation yield values from two to six with higher values representing a drier, more 

unstable lower atmosphere (Haines 1988).    

 

E. Comparing Spot Forecasts and Atmospheric Sounding Data 
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 The calculated variables from atmospheric soundings were directly compared to 

the spot forecast numerical values. If there was one forecast value, mean errors (MEs) 

and mean absolute errors (MAEs) were calculated for each of the applicable calculated 

variables. If the spot forecast issued a forecast range and an atmospheric sounding 

calculated variable value occurred between the lower and upper bound of that forecast 

range, the ME and MAE was zero. If the calculated variable did not occur within the 

forecast range, then it was compared to the closest value, either the lower or upper bound, 

with ME and MAE calculated. Consideration was given to implementing an acceptable 

error range for single value forecasts, such as plus or minus five percent of the forecast 

value, which could have alleviated some of the bias towards range forecasts.  

 

4. Analysis 

A. Mixing Height 

 Table 4 displays the mean forecast MH, the mean calculated MH using all three 

methods, and the number of spot forecasts that used one MH or a range of two MHs for 

all three regions. The EWS had the highest mean calculated Holzworth and Stull MHs 

using the Holzworth and Stull methods, the highest mean forecast MHs were in the West, 

and the ECS had the lowest mean forecast and calculated MHs. The West usually issued 

forecasts with one MH instead of a MH range (62.1%) compared to the ECS (48.3%) and 

EWS (35.6%). The Stull method consistently had the highest mean MH, and the 

Richardson method yielded the lowest mean MH in all three regions. The Holzworth 

method mean MH was in between the mean values of the Richardson and Stull methods, 

but its mean was closer to the Stull method’s mean. The ECS had the largest ME for Stull 
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and Holzworth methods, and the EWS had the largest ME using the Richardson method; 

all indicate over forecasting (positive ME) (Table 5). The West had the largest MAE for 

the Holzworth and Stull methods, but the EWS had the highest MAE for the Richardson 

method.  

 

B. Transport Wind Speed 

 Table 6 displays the mean TW speed using each method, the mean TW speed 

forecast, and the number of forecasts that issued one TW speed and two TW speeds (i.e., 

10-15 MPH). The West issues more TW speed forecasts with one wind speed (40.7%) 

than ECS (19.4%) and EWS (18.3%) with all of these percentages lower than their 

respective MH percentages. The mean TW speed forecasts for all three regions are very 

close (< 1 ms-1). The West also has the highest mean wind speeds for each method with 

the ECS having the lowest for each method. The EWS has the lowest MAE and ME for 

all three methods (Table 7). The West has a higher ME than EWS and has the largest 

MAE for all three methods. The ECS has the highest ME for all three methods. The 

West, ECS, and EWS all demonstrated an over forecasting bias (positive ME) with the 

strongest bias associated with the ECS.  

 

C. Haines Index 

 Table 8 shows the results for low, mid, and high elevation HI calculations. HI is 

requested the least among the three variables at a rate about half of MH and TWs. Most 

HI forecasts include one value, especially in the West, where all but one forecast had one 

value. The ECS has the highest mean HI, which is surprising that the cold season would 
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be associated with the highest HI or an unstable, dry lower atmosphere. The West has the 

largest MAE and ME with ME indicating under forecasting (negative ME) by nearly one 

category (Table 8). The ECS exhibited the least amount of bias with the lowest ME, and 

the EWS has the lowest MAE.  

 

5. Discussion 

 Of all three BL variables examined, MH forecasts performed the worst, and the 

West, ECS, and EWS all exhibited over forecasting (positive ME) of MH. All three 

methods of forecast MHs exhibited MEs of at least 30% of their respective mean MHs 

with most of the MH MEs greater than 50%. Additionally, the MAEs of all three MH 

methods were at least 45% of their respective MH means with several near or larger than 

their means (Tables 4-5). The large magnitude of the errors was a surprise, but verifying 

MH forecasts is difficult for a number of reasons: 1) multiple definitions of MH; 2) 

multiple methods of calculating MH and no information on what approach forecasters are 

most likely to use; and 3) the potentially large distance and terrain variability (as much as 

50 km) from atmospheric sounding locations and the spot forecast locations). Fearon et 

al. (2015; accepted) shows that Holzworth, Stull, and Richardson methods underestimate 

MH, which could also help explain the over forecasting and contribute to the large 

MAEs. TW speeds usually exhibited smaller errors relative to their means than MH 

(Table 7), which could be due to averaging the wind speeds through the calculated ML. 

Additionally, NWS forecasters use a range of values more often in TW speed forecasts 

than in MH forecasts. HI is less sensitive to the issues raised above and thus performed 

nearly as well or better by most measures than TWs and MH (Table 8). 



 

 

15

 The inconsistency and ambiguity of the language used in many of the spot 

forecasts among the NWS WFOs creates challenges for verification and leaves the 

accuracy of the spot forecasts vulnerable to different interpretations. The verification 

process treats a spot forecast with one MH and a spot forecast that describes multiple 

MHs during the course of a day equally. Certain methods implemented could create an 

accuracy bias towards forecasts that issued a range of values or multiple values valid at 

different times during the day.  

 Any forecast verification must define accuracy. The spot forecast user requires 

accuracy for the requested variables, but the precision of those variables remains 

dependent on the particular needs of the user (OFCM 2007, 2011). Penalizing a spot 

forecast with one value or one value valid in the afternoon by not including a certain level 

of acceptable inaccuracy, such as plus or minus five percent of the total forecast, may not 

be appropriate. However, no current standards exist for determining acceptable error in 

spot forecasts or specifying what the contents of each spot forecast variable should 

include as noted in OFCM (2007, 2011). The Joint Fire Science Program (JFSP) has 

recently funded projects to examine weather data in the context of decision-making, of 

which the research outcomes could be relevant to improve spot forecasts. 

 

6. Summary and Recommendations 

 The results of this study demonstrate that TWs and HI spot forecasts exhibit 

relatively small MEs and MAEs compared to the relatively large MH spot forecasts 

errors. The MH result in particular underlines issues in MH forecast consistency and 

methods, and subsequent limitations for verification. While these results are informative 
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for understanding the current state of MH, TWs, and HI in spot forecasts and for potential 

improvements of forecasts and verification methods, they are not absolute. For example, 

Fearon et al. (2015; accepted) highlights the challenges of MH calculation and 

forecasting, and hence the verification of this type of forecast. These challenges include 

the spatial and temporal representativeness of the atmospheric soundings to a specific 

location and validation time, and using independent sources (i.e., satellite optical depth 

data) to generate MH. With atmospheric soundings spread across four time zones, at 

various latitudes, and occurring throughout the year, 0000 UTC atmospheric sounding 

data may not be representative of the day’s MH, TWs, or HI due to the increasing 

influence of the nocturnal BL. Additionally, complex terrain causes significantly different 

BL conditions over short distances. One approach to address the representativeness of 

0000 UTC atmospheric soundings would be to use vertical profiles at nearby grid points 

from analyses from operational numerical models (e.g., North American Mesoscale 

Model, Rapid Refresh (RR), or High-Resolution Rapid Refresh (HRRR) (ESRL RR 

2015)). However, using such a model-based verification approach could focus on the 

degree to which the forecaster deviated from model output since these models are used 

operationally. 

 OFCM (2007, 2011) and NOAA SAB (2008) make similar recommendations 

regarding accuracy requirements, improvements, and verification statistics for both 

surface and upper air elements in spot forecasts. Lammers and Horel (2014) and this 

paper represent the beginning of a process to address these recommendations and 

demonstrate that spot forecast verification necessitates a more nuanced approach than just 

aggregating statistics. Echoing Lammers and Horel (2014) principal recommendation, 
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forecasters and end users should develop a framework that allows flexibility in deciding 

how and what to verify from spot forecasts. Additionally, the results from this spot 

forecast verification highlights some appropriate recommendations for any future 

operational attempt to evaluate spot forecasts, such as planned by the NWS Performance 

Branch:  

1) The consistency of the information provided by the spot forecasts needs to be 

improved.  Lammers and Horel (2014) echoes this sentiment by recommending to 

‘isolate quantitative numerical values separately from qualitative alphabetical 

descriptors.’ With the understanding that different regions have different climates and 

user needs, the forecast values and the description of these values for each variable 

requested still needs standardization. Lammers and Horel (2014) discusses the 

importance of the qualitative information in spot forecasts for fire managers, but also 

recommends extracting basic forecast numerical information from the spot forecast for 

verification purposes. 

2) A framework for verification of spot forecasts needs to be developed and 

implemented. Without separating numerical content or increasing the standardization of 

spot forecasts, any verification method implemented will encounter the inconsistencies 

and ambiguity in spot forecasts, which will mitigate the verification’s potential positive 

impact. Developing a framework for spot forecast verification allows forecasters to 

aggregate data and evaluate spot forecasts quickly. Lammers and Horel (2014) endorses 

this recommendation and notes forecasters evaluating spot forecasts with local 

knowledge would be an improvement over ‘depending on bulk statistical metrics 

accumulated on national scales’. More robust tools are also needed to evaluate spot 
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forecasts including those in areas of complex terrain and not near weather stations or 

sounding locations. 

3) Assemble a sizable sample of focused prescribed fire and wildfire case studies to 

evaluate and verify forecasts. Examining the forecasts made during these prescribed 

burns and wildfires provide insight into possible sources of consistent errors that may 

lead to improving forecasts. Consistent sources of errors could include utilizing only one 

MH method or recognizing the limitations of forecasts in complex terrain. These sources 

of errors could help standardize specific methods for determining which lower 

atmospheric variables are more useful in different regions or during different seasons.  

4) Establish accuracy thresholds or requirements for spot forecasts. This would engage 

the user community and provide an opportunity for NWS forecasters and users to 

communicate concerning spot forecast performance. Current JFSP funded work is 

examining aspects of accuracy concerning weather data in the context of management 

decision-making, which could help address this issue.  
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TABLES AND FIGURES 
 

Table 1. Total number of spot forecasts issued each year and number of spot forecasts issued 

within 50 km of an atmospheric sounding.  

 
 2009 2010 2011 2012 (thru May) 2013 (thru Aug.) Total 

All 22,077 20,846 21,678 9,918 14,533 89,052 

Within 50km 1,365 1,347 1,364 628 1063 5,767 

 
Table 2. Atmospheric sounding launch time (2300 UTC)  and local time for each time zone for 

standard and daylight time.  

 
 2300 UTC Standard Time (Launch time) 2300 UTC Daylight Savings (Launch time) 

Eastern  1900 1800 

Central 1800 1700 

Mountain  1700 1600 

Pacific 1600 1500 
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Table 3. Temperature (T) and dewpoint (Td) differences and their reference values for all three 

elevations. Both reference values are added to calculate Haines Index (HI) (Haines 1988). 

 

Stability Term Moisture Term 

Low Elevation 950T-850T 850T-850Td 

< 200 m 1: < 3°C 1: < 5°C 

2: 4-7°C 2: 6-9°C 

3: > 8°C 3: > 10°C 

Mid Elevation 850T-700T 850T-850Td 

200-1000 m 1: < 5°C 1: < 5°C 

2: 6-10°C 2: 6-12°C 

3: > 11°C 3: > 13°C 

High Elevation 700T-500T 700T-700Td 

> 1000 m 1: < 17°C 1: < 14°C 

2: 18-21°C 2: 15-20°C 

3: > 22°C 3: > 21°C 

Sum both terms to calculate Haines Index 

 
Table 4. Mean mixing height (MH) for spot forecasts using one forecast value or a range and 

each method. The number of spot forecasts utilizing one forecast value or a range is totaled for 

MH.   

 
 Mean 

Forecast: 

1 MH 

Mean Forecast: 

MH Range 

Mean 

Holzworth 

MH 

Mean 

Stull MH 

Mean 

Richardson 

MH 

Number of 

1 MH 

Forecasts 

Number of MH 

Range Forecasts 

West 1938 m 1466-1822 m 843 m 885 m 703 m 666 407 

East Cold 

Season 1287 m 789-1144 m 557 m 603 m 465 m 331 355 

East Warm 

Season 
1578 m 1319-1687 m 1023 m 1107 m 623 m 207 374 

 
Table 5. Calculating mean error (ME) and mean absolute error (MAE) of mixing height (MH) for 

each method.  
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 ME (Spot – 

Holzworth)  

ME (Spot – 

Stull) 

ME (Spot – 

Richardson) 

MAE (Spot 

versus 

Holzworth) 

MAE (Spot 

versus Stull) 

MAE (Spot 

versus 

Richardson) 

West 370 m 341 m 562 m 618 m 618 m 659 m 

East Cold 

Season 
465 m 426 m 549 m 553 m 535 m 583 m 

East Warm 

Season 406 m 340 m 752 m 529 m 503 m 786 m 

 
Table 6. Mean transport wind (TW) speed for spot forecasts using one forecast value or a range 

and each method. The number of spot forecasts utilizing one forecast value or a range is totaled 

for TW speed.  

 
 Mean 

Forecast: 1 

TW Speed 

Mean 

Forecast: TW 

Speed Range 

Mean 

Holzworth 

TW Speed 

Mean Stull 

TW Speed 
Mean 

Richardson 

TW Speed 

Number of 1 

TW Speed 

Forecasts 

Number of 

TW Speed 

Range 

Forecasts 

West  7.18 ms-1 5.07-7.51 ms-1 6.06 ms-1 6.18 ms-1 5.56 ms-1 424 618 

East Cold 

Season  6.18 ms-1 5.37-7.52 ms-1 4.33 ms-1 4.51 ms-1 4.75 ms-1 150 623 

East 

Warm 

Season  
6.22 ms-1 4.95-7.09 ms-1 5.48 ms-1 5.64 ms-1 5.20 ms-1 97 529 

 
Table 7. Calculating mean error (ME) and mean absolute error (MAE) of transport wind (TW) 

speed for each method. 

 
 ME (Spot – 

Holzworth) 
ME (Spot – 

Stull) 
ME (Spot – 

Richardson) 
MAE (Spot 

versus 

Holzworth) 

MAE (Spot 

versus Stull) 
MAE (Spot 

versus 

Richardson) 

West 
0.24 ms-1 0.16 ms-1 0.64 ms-1 2.78 ms-1 2.52 ms-1 2.54 ms-1 

East Cold 

Season  1.36 ms-1 1.13 ms-1 0.93 ms-1 2.36 ms-1 2.18 ms-1 1.92 ms-1 

East Warm 

Season  
0.04 ms-1 -0.11 ms-1 0.32 ms-1 1.88 ms-1 1.76 ms-1 1.62 ms-1 
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Table 8. Mean Haines Index (HI) for spot forecasts using one forecast value or a range and the 

total number of each type of forecast. Calculating mean error (ME) and mean absolute error 

(MAE) of HI. 

 
 ME HI MAE HI Mean HI  Mean of 1 HI 

Forecast 

Mean of HI 

Range 

Forecast 

Number of 1 

HI 

Forecasts 

Number of 

HI Range 

Forecasts 

West -0.89 1.07 4.22 3.33 3.0-4.0 455 1 

East Cold 

Season 
-0.10 0.78 4.33 4.29 3.40-4.61 178 137 

East Warm 

Season -0.20 0.47 4.27 4.03 3.20-4.54 196 105 

 
 
 

 
Figure 1. An example of the spot forecast request form via NWS WFO Reno. 
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Figure 2. Example of a spot forecast via NWS WFO Grand Junction. 
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Figure 3. Diurnal boundary layer transition vertical profile from Stull (2000). 
 
 

 
Figure 4. Example of a spot forecast in a table via NWS WFO Key West. 
 



 

 

28

 
Figure 5. Example of a spot forecast using a mix of text and numerical values via NWS WFO 

Albuquerque. 

 
 

 
Figure 6. Example of a spot forecast with a more descriptive narrative using multiple forecasts 

valid at different times of the day via NWS WFO Amarillo.  
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Figure 7. Number of spot forecasts with MH forecasts evaluated by year and category. Also 

shown is the number of spot forecasts before and after quality control measures.  
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Figure 8. Number of spot forecasts with TWs forecasts evaluated by year and category. Also 

shown is the number of spot forecasts before and after quality control measures.  
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Figure 9. Number of spot forecasts with HI forecasts evaluated by year and category. Also shown 

is the number of spot forecasts before and after quality control measures. 
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Abstract 

The North American Monsoon (NAM) is an annual climate system phenomenon 

that develops over the Sierra Madre Occidental in western Mexico and spreads northward 

into the southwest United States (Arizona and New Mexico) from June through 

September bringing large quantities of rainfall and lightning. The rainfall and lightning 

associated with the NAM can vary greatly intra- and inter-annually and has a large 

impact on wildfire activity in the southwest United States by igniting or suppressing 

wildfires. The timing of the NAM onset can lengthen or shorten the wildfire season in the 

southwest United States. NAM onset thresholds and subsequent dates are determined for 

the Southwest Area (SWA)(Arizona, New Mexico, west Texas, and Oklahoma 

panhandle) and each Predictive Service Area (PSA) within the SWA April through 

September from 1995-2013. Various ‘busy’ wildfire activity thresholds based on the 

number of wildfires especially large wildfires identified days or time periods with 

increased wildfire activity for each PSA and the SWA. Self-organizing maps utilizing 

500 and 700 hPa geopotential heights and precipitable water were implemented to 

identify atmospheric patterns contributing to the NAM onset and busy days/periods for 

each PSA and the SWA. Resulting SOM map types also showed the transition to, during, 

and from the NAM. Northward and eastward displacements of the subtropical ridge (i.e., 

four-corners high) over the SWA were associated with NAM onset, and a suppressed 

subtropical ridge and breakdown of the subtropical ridge map types over the SWA were 

associated with increased wildfire activity.  

 
 
 



 

 

34

1. Introduction 

 The North America Monsoon (NAM) affects much of North America with the 

largest impact in Mexico and the arid regions of the southwest United States 

(SWUS)(Figure 1) and is characterized as a large-scale atmospheric circulation that 

produces a distinct increase of warm-season (June through September) precipitation over 

North America (Adams and Comrie 1997; Grantz et al. 2007). The NAM core region is 

centered over the Sierra Madre Occidental (SMO) in western Mexico (Douglas et al. 

1993; Barlow et al. 1998), but it stretches into the SWUS and often further north into the 

western United States (WUS) with its effects felt hemisphere wide (Reiter and Tang 

1984; Tang and Reiter 1984; Douglas et al. 1993; Higgins et al. 1999; Lo and Clark 2002; 

Hawkins et al. 2002). The variability of NAM in the SWUS and WUS is large, 

sometimes larger than the mean warm season rainfall, and is modulated by intraseasonal 

transient features including, tropical easterly waves (TEWs), tropical storms/cyclones, 

and transient/tropical upper tropospheric troughs (TUTTs) (Higgins et al. 1998; Adams 

and Stensrud 2007; Abatzoglou and Brown 2009; Hendon et al. 2011; Means 2012; 

Favors and Abatzoglou 2012; Mejia et al. 2015; Seastrand et al. 2015). 

Higgins et al. (1997) describes the NAM in three phases: development, mature, 

and decay. The development of the NAM is characterized by a transition of generally 

westerly flow associated with a cold season circulation shifting to a southerly and 

easterly flow as the subtropical ridge develops over Mexico and the SWUS (Adams and 

Comrie 1997; Higgins et al. 1997; Grantz et al. 2007). The shift in winds is in response to 

the surface heating over the continent, especially over the elevated terrain in the NAM 

region. The land-ocean temperature gradient increases, and the air flows towards the 
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continent increasing convergence and enhancing the mountain-valley circulation over the 

SMO (Douglas et al. 1993; Vera et al. 2006; Grantz et al. 2007; Gochis and Higgins 

2007). With the shift in winds and development of the subtropical ridge, a noticeable 

precipitation dipole emerges between the Plains (central U.S.) and NAM region, in 

particular over the SWUS and northwest Mexico (NWMEX) (Higgins et al. 1997; 

Higgins et al. 1999; Mitchell et al. 2002; Adams and Stensrud 2007; Stensrud 2013). A 

northward/eastward (southward/westward) displacement of the subtropical ridge 

coincides with anomalous wet (dry) NAM conditions for NWMEX and SWUS (Carleton 

et al. 1990; Higgins et al. 1999; Cerezo-Mota et al. 2011). 

When the diurnal cycle of rainfall begins increasing, the NAM onset is identified 

across southern Mexico, which extends northward rapidly to the SMO and into the 

SWUS (Douglas et al. 1993; Stensrud et al. 1995; Higgins et al. 1997). The diurnal 

pattern of precipitation forms earliest and most frequently at the highest elevations over 

the SMO early in the afternoon. Over lower elevations, the precipitation is less frequent 

but of higher intensity (Gebremichael et al. 2007; Gochis and Higgins 2007; Nesbitt et al. 

2008). The heaviest precipitation occurs in July and August during the mature stage the 

NAM and then waning in September. Some areas in the NAM core region receive 50-

80% of their annual rainfall during the NAM (Carleton et al. 1990; Douglas et al. 1993; 

Higgins et al. 1997). The decay phase of the NAM is more gradual than the onset and 

represents the return to a cold season circulation. This transition is noted by a return of 

the westerlies from a diurnally driven, warm season circulation with easterly and 

southerly flow over the NAM region (Higgins et al. 1997; Barlow et al. 1998; Vera et al. 

2006; Cerezo-Mota et al. 2011; Means 2012). 
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Wildfire occurrence increases steadily through April in the SWUS, but the trend 

accelerates in May and June before decreasing in July and through September (Brandt 

2006). The peak SWUS wildfire season occurs in June and early July due to decreasing 

fuel moisture, increasing temperatures, and enhanced ignition potential coinciding with 

drier thunderstorms (Watson et al. 1994; Westerling et al. 2003). The number of human 

caused wildfires decreases significantly after onset (less than 25% across fuel types) 

possibly due to diminished dry and windy conditions seen in the transition to the NAM 

and less people being active during the NAM due to rain and lightning concerns (Mohrle 

2003). 57% of natural wildfires occur after onset, but only 37% of acres burned (Mohrle 

2003).  The NAM increases cloud-to-ground lightning, which increases wildfire 

ignitions, but with the corresponding increased atmospheric and fuel moisture, most 

wildfires remain small (Evett et al 2008; Dowdy and Mills 2012). 55% of large wildfires 

(40 hectares) and nearly 50% of area burned from large wildfires occur after onset 

(Mohrle 2003).  

Dry thunderstorms contribute to large wildfire outbreaks across the WUS, but 

remain without a precise definition due to the variability across climates and ecosystems 

that would be considered ‘dry’ (Wallmann et al. 2010; Nauslar et al. 2013). Dry 

thunderstorms consist of higher cloud bases and limited precipitation, and form on the 

edges of the deepest NAM moisture and strongest dynamics associated with an upper 

tropospheric trough (Wallmann et al. 2010; Nauslar et al. 2013). Hall (2007) 

demonstrated wildfire occurrence abruptly decreases approximately midway through the 

climatological peak of lightning and precipitation in Arizona and New Mexico, which is 
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coincident with the NAM, and precipitation thresholds associated with wildfire ignitions 

were positively correlated with elevation. 

 While an explicit relationship exists between weather and wildfires, this 

relationship can be complex and nonlinear. Synoptic composites are often used to 

examine the relationships between the dominant atmospheric circulation systems and 

ecological factors (Hewitson and Crane 2002). Rodriguez-Iturbe et al. (1998) showed a 

highly interactive nonlinear soil-atmosphere system that displayed self-organizing 

features (Cavazos et al. 2002). Several studies have implemented self-organizing maps 

(SOMs)(Kohonen 2001) to show atmospheric circulation patterns associated with 

different phenomena (Cavazos et al. 2002; Hewitson and Crane 2002; Crimmins 2006; 

Reusch et al. 2007; Reusch 2010). Using SOMs, Cavazos et al. (2002) showed that the 

NAM in southeast Arizona was dominated by three wet modes, and Crimmins (2006) 

identified different atmospheric patterns associated with extreme wildfire weather 

conditions utilizing SOMs. SOMs are utilized to identify atmospheric circulation patterns 

due to their propensity for visualizing complex distribution of synoptic states (Kohonen 

2001; Hewitson and Crane 2002). Hence, we argue that SOMs can help examine the 

intricate nonlinear relationships between the NAM main atmospheric circulation and 

critical fire weather patterns leading to significant wildfire episodes. By identifying 

atmospheric patterns pertinent to wildfire activity in the Southwest Area (SWA)(Arizona, 

New Mexico, west Texas, and Oklahoma panhandle)(Figure 2), we can aid operational 

fire weather forecasters in better prediction of wildfire activity specifically during times 

of increased wildfire activity, which dramatically impact local, regional, and national 

wildfire suppression resources.   
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Objectives for this analysis include: 1) determining the climatological 

atmospheric patterns via SOMs and wildfire occurrence characteristics in the SWA 

during the transition to, during, and transition from the NAM; 2) defining and 

determining the NAM onset within the SWA (Figures 1-2); and 3) use SOMs to identify 

atmospheric patterns that correspond to increased wildfire activity.  

 

2. Data 

 Data were collected for April through September from 1992 to 2013 unless 

otherwise specified for the SWA. Figure 2 shows the different predictive service areas 

(PSAs) that comprise the Southwest Geographical Area Coordination Center (SWCC) 

region of responsibility (SWA) as determined by the Southwest Predictive Services (PS). 

Southwest PS investigates and provides forecast wildfire potential for sub regions (i.e., 

PSAs) with similar historical wildfire occurrences, fuel types, fuel indices, and weather 

characteristics. 

Surface gridded data from the University of Idaho METDATA (Abatzoglou 2013) 

were implemented. METDATA consists of daily, 4 km grid size precipitation, minimum 

and maximum RH (RHmin; RHmax), specific humidity (SPH), minimum and maximum 

temperature (Tmin; Tmax), and wind velocity. Vapor pressure deficit (VPD) was defined 

as the difference between saturated vapor pressure and ambient vapor pressure. Saturated 

vapor pressure and ambient vapor pressure were calculated using Tmin, Tmax, RHmin, 

and RHmax. METDATA also provides calculated fire danger indices of burning index 

(BI), energy release component (ERC), 100-hour, and 1000-hour dead fuel moisture 
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(FM100; FM1000) using fuel model G (Deeming et al. 1978; Cohen and Deeming 1985; 

Abatzoglou 2013). All of the data were averaged for each PSA across the SWA.  

Upper air observations were obtained from the National Center for Environmental 

Prediction (NCEP) North American Regional Reanalysis (NARR; Mesinger et al. 2006) 

and downloaded from the Earth System Research Library (ESRL) Physical Sciences 

Division (PSD).  Daily winds, geopotential heights, temperature, and SPH were 

acquired at various levels from 850 to 200 hPa. Additionally, daily values of NARR 

precipitable water (PWat) and integrated water vapor flux (IWVF) are utilized.  Studies 

have shown the NARR dataset has limitations and bias results in the NAM region for 

moisture variables and near surface variables (Dominguez et al. 2008; Becker et al. 2009; 

Cerezo-Mota et al. 2011). However, the NARR offers a higher resolution dataset than the 

NCEP/NCAR reanalysis (Kalnay et al. 1996) that spans the study’s time period, and 

numerous studies have shown NARR representative when examining atmospheric 

circulation and moisture across the study region (i.e., Dominguez and Kumar 2008; 

Dominguez et al. 2008; Turrent and Cavazos 2012; Doubler et al. 2015; Radhakrishna et 

al. 2015). All daily NARR data were organized into a 175x120 grid with full coverage 

spanning from 85°W to 131°W longitude and 18°N to 49.5°N latitude (Figure 1; partial 

coverage). 

 Wildfire data were obtained from the Fire Program Analysis (FPA) quality 

controlled wildfire database (Short 2015). Wildfires were separated by type (all, 

lightning, human) and size (all, large) for each PSA. Large wildfire selection criteria were 

established from large wildfire thresholds determined by Southwest PS (Table 1). Also 

included in the analysis was the proprietary National Lightning Detection Network® 
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(NLDN) data. Due to a major upgrade occurring after 1994, in this study only NLDN 

data from 1995-2013 were used.  

 The Madden-Julian Oscillation (MJO) (Madden and Julian 1971, 1972) and 

Multivariate ENSO Index (MEI) (Wolter and Timlin 2011) were used to examine 

possible teleconnections. MJO real-time multivariate MJO series 1 (RMM1) and 2 

(RMM2) and MJO phase are used to represent MJO strength and location (Wheeler and 

Hendon 2004; CPC 2014). MEI includes sea-level pressure, u and v surface wind 

components, SST, surface air temperature, and total cloudiness fraction (ESRL-PSD 

2014). MEI is generated via cluster analysis and calculated from the first unrotated 

principal component of the six parameters (Wolter 1987; Wolter and Timlin 1993).  

 

3. Methods 

3.1 The North American Monsoon Onset 

 The NAM onset is characterized by an increase of atmospheric moisture and 

precipitation associated with the establishment of the subtropical ridge over western 

Mexico and the SWUS (Adams and Comrie 1997; Higgins et al. 1997; Grantz et al. 

2007). The Tucson National Weather Service Weather Forecast Office (NWS WFO) has 

utilized a dewpoint temperature of 54°F at the Tucson airport as its NAM onset threshold 

(NWS WFO Tucson 2015). However, a universally accepted NAM onset definition does 

not exist for the SWUS. 

 Without a definitive NAM onset threshold, several atmospheric and fuels 

variables were examined at various time scales to capture the onset signal for each PSA. 

Some of the onset techniques included analyzing their change over a time period and 
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attempting to fit polynomial functions to variable fluctuations. The predictors selected for 

determining onset were the daily averaged PSA value of SPH, VPD, lightning strikes 

(LS), and precipitation. These variables were chosen due to their predictive potential and 

specific representation of atmospheric moisture conditions. The primary technique for 

identifying onset used six consecutive days of greater than or equal to the 22-year median 

PSA value of SPH and VPD and six consecutive days of at least 100 lightning strikes 

occurring at the same time (Onset1). Other combinations of variables were evaluated that 

substituted precipitation for VPD (Onset2) or SPH (Onset3). Six consecutive days was 

chosen after examining time periods of five to ten consecutive days, all of which are 

within the synoptic timescale. The NAM onset date for each PSA was determined by 

taking the first instance that met the Onset1, Onset2, or Onset3 requirements after 1 June. 

We constrained the onset after 1 June to discriminate the influences of spring storms. For 

each PSA, the 10th percentile, 90th percentile, median, inter quartile range (IQR), and +/- 

1 median absolute deviation (MAD) onset dates were calculated.  

 

3.2 Increased Wildfire Activity 

 The FPA wildfire occurrence data was organized by PSA and separated into 

categories based on size and type. If a particular day exceeded the 95th (99th) percentile 

for number of wildfires and large wildfires or at least 2 (3) large wildfires occurred for a 

particular PSA, it was considered a ‘busy day’ and exceeded the Busy95_PSA 

(Busy99_PSA) threshold. If a particular day exceeded the 95th (99th) percentile for 

number of large wildfires for the SWA, it was considered a ‘busy day’ and exceeded the 

Busy95_SW (Busy99_SW) threshold. Often, increases of wildfire activity occur over 
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multiple days, which can stress local and regional wildfire suppression resources. Time 

periods of two, three, seven, and ten days that exceeded the 95th, 99th, and 99.5th 

percentiles for large wildfires for the entire SWUS over those respective time periods 

were identified as ‘busy events’. The busy days and events were examined primarily to 

determine: 1) how wildfire activity varied across PSAs; and 2) to provide dates to 

examine atmospheric and fuel conditions during these days/events. 

 

3.3 Self-Organizing Maps 

 SOMs are an objective analysis method based on neural networks that extract 

generalized patterns from grid data defined over a region. SOMs capture the most 

significant atmospheric circulation patterns, and since the analysis is performed over 

daily time increments, then such patterns include those modes related to synoptic scale 

variations (Cavazos et al. 2002; Reusch et al. 2007).  The SOMs divide a continuum of 

atmospheric patterns into a small number of categories, which are spatially organized by 

similarity with similar patterns closer to each other and dissimilar patterns further away 

from each other on the user-defined grid (Hewitson and Crane 2002; Reusch 2010).  By 

identifying atmospheric circulation patterns, SOMs allows a frequency analysis of each 

pattern, preferred transitions, and the ability to associate patterns with events (Cavazos et 

al. 2002; Reusch et al. 2007). SOMs are able to process multivariate, multidimensional 

input on the same grid by creating a spatially organized set of generalized patterns of 

variability from the input data (Reusch et al. 2007; Reusch 2010). Kohonen (2001), 

Hewitson and Crane (2002), Reusch et al. (2007), and Reusch (2010) provide further 
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detailed explanations of SOMs and the implementation of SOMs for meteorological and 

climatological applications. 

 SOMs provide an alternative (Reusch et al. 2005) to principal component analysis 

(PCA), canonical correlation analysis (CCA), and clustering (k-means and hierarchical) 

that Reusch et al. (2007) argues is more robust, accurate, and able to provide better 

visualization of structure in large, nonlinear datasets. One of the main advantages of 

implementing SOMs over other multivariate analysis approaches is the ability of SOMs 

to accommodate nonlinear relationships in the data. For example, Cavazos et al. (2000) 

utilized SOMs to research circulation and humidity patterns associated with extreme 

precipitation events in the Balkans, and the results were consistent with PCA and CCA 

while offering new results. 

 The input data consisted of standardized values of NARR 500 hPa geopotential 

heights, 700 hPa geopotential heights, and PWat on a 175x120 grid (85°W-131°W; 

18°N-49.5°N) for 183 days (1 April – 30 September) over 22 years (1992-2013). SOMs 

require standardization of data for multiple variables having varying scales (Reusch et al 

2007; Reusch 2010).  The full input data was included for training since the primary goal 

of SOMs is to use generalized patterns determined from the full dataset as recommended 

by Reusch (2010). Grid sizes of 4x3 (rows by columns), 5x3, and 4x5 were examined at 

500, 1000, 2000, and 4000 iterations or until a stable solution was reached. Examining 

Sammon maps of multidimensional data on the different SOMs grids and matching the 

input data to the final reference nodes of these grids help determine if a solution is 

acceptable (Sammon 1969; Reusch et al. 2007). Plots of neighbor node distances and the 

number of sample hits for each node are also helpful in determining if a SOMs solution is 
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acceptable. After a stable solution was reached, each day was classified with a node as a 

best match, which was composited into a map type (Reusch 2010). After each day was 

classified, a frequency analysis was applied to all days, busy days/events, and onset days 

where applicable to determine if individual map types (MTs) or MT transitions were 

more associated with certain types of events.  

 

4. Results 

4.1 Climatological Wildfire Occurrence and Map Patterns 

 Table 2 shows the average number of wildfires per year by type and size for the 

SWUS. Annually, 51.5% of wildfires are human caused, but 57.2% of all large wildfires 

are lightning caused (Table 2). Peak fuel dryness and wildfire activity (number of 

wildfires and number of large wildfires) coincide from mid June into early July 

depending on location for the SWA (Table 3). Similar to Brandt (2006), the number of 

wildfires was found to increase into July before decreasing late in July through 

September. July has nearly twice as many lightning wildfires as June, but June has 100 

more large lightning wildfires than July (Table 3). This confirms results from Mohrle 

(2003) that showed 57% of natural wildfires but only 37% of total area burned from 

natural wildfires occurred after onset. Table 3 also confirms Mohrle (2003) results, which 

showed that human-related wildfires tend to drop after NAM onset specifically among 

the PSAs residing under the strongest NAM influence.   

 The 4x5 grid was chosen after examining the Sammon maps, neighbor node 

distances, and composited MTs for all three examined grid configurations. A stable 

solution was reached after 2000 iterations on the 4x5 SOMs grid, but the 4000 iteration 
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SOMs analysis was utilized due to slightly better coverage from the Sammon map 

depiction (not shown). The 5x3 SOMs grid MTs represented most of the MTs from the 

4x5 grid, but two map patterns from the 4x5 SOMs grid that corresponded strongly to 

busy and onset days were not resolved on the 5x3 grid. Figures 3-5 display the resulting 

twenty composite MTs from the SOMs analysis. Map Type 1 (MT {1}, i.e. Figure 3 {1}) 

for 500 hPa geopotential heights directly corresponds to MT {1} (i.e., Figures 4-5 {1}) 

for both 700 hPa geopotential heights and PWat since all three variables were considered 

during the SOMs analysis. The SOMs nodes provide a general progression of increasing 

geopotential heights and PWat (Figure 3-5) {1-20}. 

 Ascending numbered MTs demonstrate a transition from a four-corners trough to 

a four corners ridge from April to July and then a transition from a four-corners ridge 

back to a four-corners trough begins in September descending back through the MTs 

(Figure 3)(Table 5). April is dominated by MTs associated with troughs approaching or 

passing over the SWUS, and stronger height gradients with southwest or westerly flow 

aloft and drier conditions are associated with these MTs (Figure 3){1-6}. The most 

prevalent MTs in May exhibit a building subtropical ridge from the south and east over 

Mexico and the Gulf of Mexico (Figure 3 {7-10}). Drier conditions remain over most of 

the SWA, but increases of PWat develop on the western and eastern coasts of Mexico 

(Figure 4 {7-10}). Geopotential heights continue to increase and the fluctuation between 

troughing and ridging maximizes during June (Figure 3 {8, 11-13}). The subtropical 

ridge is still relatively weak in June over the SWUS with the ridge center located over 

western or northwestern Mexico, but moisture continues to increase in extent and 

magnitude across Mexico and the SWUS (Figure 3-5 {11-13}). By July, the transition to 
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a ridge dominated atmospheric pattern is complete, and continues in place through 

August (Figure 3 {15-16, 18-20}). Easterlies shift northward bringing ample moisture 

across much of Mexico and into the SWUS (Figures 3-5 {15-16, 18-20}). In September, 

the center of ridge begins to migrate south with ridging and ridge breakdown patterns 

prevailing (Figure 3 {12-13, 17}). 

The three most prevalent MTs (Figure 3 {i.e., 16, 19, 20}) show the SWUS under 

the influence of the subtropical ridge, which is expected during the NAM (Adams and 

Comrie 1997; Higgins et al. 1997). Trough thinning and Rossby wave breaking (RWB) 

(McIntyre and Palmer 1985) are evident for multiple MTs at 700 hPa, in particular Figure 

4 {17-18, 20}, over the southeastern United States and Gulf of Mexico. Abatzoglou and 

Magnusdottir (2006) and Johnson et al. (2007) show RWB as precursor for increased 

moisture across the SWUS during the NAM. PWat increases in magnitude and northward 

extent during ridging confirming prior research (Figures 3-5){i.e., 15-16, 18-

20}(Carleton et al. 1990; Higgins et al. 1999; Cerezo-Mota et al. 2011). The northward 

extension of the subtropical ridge brings easterly flow further north, which allows TEWs 

and TUTTs to directly affect the SWUS via increased atmospheric moisture and lightning 

(Figures 4-5 {13-20}). 

 MTs {16, 20} have the highest median lightning decile (Table 7), and MTs {16, 

19-20} are most associated with days exceeding the 70th percentile of lightning across the 

SWUS. These MTs show ridging with the center of the subtropical ridge far enough north 

to transport larger magnitudes of PWat across the SWUS (Figures 3-5) {16, 19-20}. 

Abatzoglou and Brown (2009) demonstrated that lightning increased across the SWUS 

and Intermountain West during MJO phases 6-8. However, MJO phases 1 (17.7%) and 2 
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(17.1%) are most associated with days exceeding the 70th percentile of lightning across 

the SWUS. Coincidentally, MJO phases 1 and 2 are most associated with MTs 

demonstrating a ridge or ridge breakdown. However, ridge breakdown and troughing are 

associated with MJO phases 6-8 confirming findings from Abatzolgou and Brown 

(2009). 

 

4.2 Onset 

 Tables 5-6 provide the median onset date, IQR, MAD, 10th percentile onset date, 

and 90th percentile onset date by PSA for the three onset methods implemented. Onset1 

(SPH, VPD, and lightning) and Onset2 (VPD, precipitation, and lightning) generally 

yield the same results with some variation across eastern New Mexico and west Texas. 

Onset3 (SPH, precipitation, and lightning) unilaterally shows earlier median onset dates 

for every PSA except PSA SW14N, and is less variable than Onset1 and Onset2. Most 

onset dates for all the methods occur in early to mid July with a few instances of late June 

onset dates in some of the eastern New Mexico and west Texas PSAs. Depending on the 

PSA and method, the IQR can range from 10 to 53 days although most IQRs total less 

than 35 days. The MADs are generally between one to two weeks with a few exceptions 

totaling around three weeks, and the 10th and 90th percentile onset dates are generally 

separated by three to six weeks. Adjacent PSAs tended to have similar onset dates and 

occasionally the same onset date.  Generally, onset progresses from east to west and 

south to north across the SWUS, but with large interannual variability. 

 Ridging including a northward displacement of the subtropical ridge, southerly 

and easterly flow, and increased moisture are associated with onset days (Figures 3-5) 
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{15-16, 18-20} (Table 7). These MTs are most associated with increased LS and have at 

least a median LS decile of 6 (Table 7). MTs {15-16, 18-20} total 28.7% of all days 

examined, but occur on 75.0% of onset days (Table 7). MTs {1-7} are never associated 

with onset for a PSA, and these MTs generally depict troughing and drier conditions over 

the SWA with small amounts of LS (Table 7)(Figures 3-5 {1-7}). These MTs also 

predominantly occur in April and May and rarely in June (Table 7).  MJO phase 1 is most 

associated with onset accounting for 34.7% of all onset days among the PSAs while MJO 

phase 3 is least associated with onset (7.4%) (not shown). 

 

4.3 Increased Fire Activity 

  There were 298 and 292 instances that exceeded the Busy95_PSA and 

Busy99_PSA thresholds, respectively (Table 8). 62.4% and 55.0% of days that exceeded 

the Busy95_PSA and Busy99_PSA thresholds, respectively, transpired before 1 July. 

85.2% and 82.5% of days that exceeded the Busy95_PSA or Busy99_PSA daily 

thresholds for all wildfires occurred before the respective PSA’s onset. 219 days 

exceeded the Busy95_SW threshold and 57 days exceeded Busy99_SW threshold with 

66.2% and 77.2% of those days occurring before 1 July (Table 8). 95.4% of days that 

meet at least of one the busy event thresholds occur before 1 August including 75.6% 

before 1 July (Table 8). PSAs SW06S, SW08, and SW12 contributed the most often to 

exceeding the Busy95_SW and Busy95_SW thresholds with PSAs SW05 and SW06N 

closely trailing in their contributions (Table 9). On average, four PSAs had at least one 

large wildfire on days exceeding the Busy99_SW threshold, and two PSAs had at least 

one large wildfire on days exceeding the Busy95_SW threshold.  
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  MTs {11-12, 16, 19-20} are most associated with days exceeding either the 

Busy95_SW or Busy99_SW threshold (Table 7). These MTs reflect two different 

atmospheric patterns: ridging {12, 16, 20} and ridge breakdown {11, 19}. MTs {4, 8, 11-

12} have larger percentages associated with days exceeding either Busy_SW threshold 

than the occurrence percentage for all examined and onset days. MTs {16, 19-20} have 

larger onset occurrence percentages than percentages associated with days exceeding 

either Busy_SW threshold (Table 7). Several MTs {1, 17-18} are rarely associated (< 

1%) with either Busy_SW threshold and those three MTs are relatively unique in 

comparison to each other (Table 7). MT {1} displays zonal, dry flow, MT {17} has 

ridging with the axis just inland from the Pacific Coast, and MT {18} shows a slightly 

eastward displaced four corners ridge.  

 

5. Discussion 

 The amount of wildfires ignited is not always problematic for wildfire 

management. July has the most wildfires of any month, but due to the onset of the NAM 

many of these do not become large. On average, 1.9% of wildfires in July become large, 

but 3.8% of wildfires in June become large. Additionally, 3.5% of wildfires ignited in 

April through June become large while only 1.9% of wildfires become large in July 

through September (Table 3). Wildfires April through May coincide with increasing 

atmospheric and fuel dryness across the SWUS with dry and breezy MTs prevailing {1-

8} (Mohrle 2003; Brandt 2006). June represents the transition from the dry and breezy 

spring to the NAM across the SWUS. During this transition moisture plumes traverse 

north and increase chances of thunderstorms. The moisture plumes in June are either 
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elevated or move quickly in a progressive atmospheric pattern reminiscent of dry 

thunderstorm conditions (Hall 2007; Wallmann et al. 2011; Nauslar et al. 2013). These 

initial northward ridge extensions and subsequent moisture intrusions into the SWUS 

could be deemed ‘pre-monsoonal’. These moisture plumes coincide with peak fuel 

dryness helping produce the most active part of the wildfire season. The term ‘Firesoon’ 

has been used to describe the effects of these moisture plumes due to their propensity for 

triggering thunderstorms that ignite wildfires (Brown 2002). Not coincidentally, 75.6% of 

busy events occur before July and 83.9% of all busy days occur before onset (Table 8).  

 Busy days and events across the SWA are generally associated with suppressed 

ridging (subtropical ridge center in western/northwestern Mexico), ridge breakdown, or 

enhanced ridging (center of subtropical ridge in SWUS). The suppressed ridge pattern 

(Figure 3 {4, 8, 11}) has southerly flow over Arizona, but the deeper moisture is confined 

further south in Mexico (Figure 5 {4, 8, 11-12}. However, even a slight increase (1-2 

g/kg) of SPH at 700 hPa over the SWUS provides sufficient moisture along with a weak 

disturbance for triggering at least isolated thunderstorms (Figure 6 {4, 8, 11-12})(Table 

7). Below 700 hPa remains relatively dry creating an environment for dry thunderstorms 

(Hall 2007; Wallmann et al. 2011; Nauslar et al. 2013). Strong ridging brings ample 

moisture to the SWUS and helps trigger thunderstorms across most areas (Figures 3 and 5 

{16, 20})(Table 7). Additionally, with increased moisture, thunderstorms are more likely 

to affect a larger elevation range, which would bring enhanced ignition potential to areas 

that experience less thunderstorm activity than preferred terrain features (i.e., Mogollon 

Rim)(Gebremichael et al. 2007; Gochis and Higgins 2007; Nesbitt et al. 2008). Strong 

ridging is more likely to induce busy days and events if it occurs earlier in the season 
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(i.e., before onset) where peak fuel dryness could offset the increase of atmospheric 

moisture. A breakdown of the subtropical ridge (Figure 3 {12, 19}) whether suppressed 

or enhanced relative to the SWUS is associated with busy days and events and represents 

a known critical fire weather pattern (Werth et al. 2011). This pattern is known to 

produce dry thunderstorms, but more importantly, it provides a pattern change from hot 

and relatively dry conditions under the influence of the subtropical ridge to increasing 

moisture and decreasing geopotential heights with an eastward shift of the ridge axis 

helping generate thunderstorms. As the subtropical ridge breaks down, drier and windy 

conditions usually develop with the passage of the trough allowing wildfires to grow in 

more favorable fire weather conditions.  

 While associating MTs with busy days or events is important, the atmospheric 

patterns that precede and follow those days are equally important. Four general 

atmospheric pattern progressions emerge when examining the evolution of MTs around 

busy days and events for the SWA: 1) zonal or southwest flow preceding ridging; 2) 

zonal or southwest flow transitioning into ridging followed by a return to zonal or 

southwest flow; 3) persistent ridging followed by zonal or southwest flow; and 4) 

fluctuation between suppressed and amplified ridging over the SWA with the ridge axis 

exhibiting east-west movement (Figure 7). Fuel curing takes place during some 

combination of hot, dry, and windy conditions that precedes, follows, or precedes and 

follows lightning associated with ridging. The fuel curing promotes receptive fuel beds 

for wildfire ignition and spread. However, these MTs and progressions of MTs are not 

unique to busy days and events. The time of the year MTs and progression of MTs occur 

is important. If they occur before onset, it is more likely a busy day or event transpires 
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since it coincides with drier fuels. Wildfires including large wildfires occur across a wide 

spectrum of fuel and weather conditions. However, median BI and ERC during busy days 

are greater than the overall medians for BI and ERC, and median FM100 and FM1000 

during busy days are less than the overall medians for FM100 and FM1000 for all PSAs 

(not shown). 

 Holdovers are wildfires that are ignited but remain small (i.e., single tree) until 

dry, windy, and unstable conditions develop that promote wildfire growth. Holdovers 

frequently appear during dry, windy, and hot/unstable conditions (i.e., Figures 4-5 {11}) 

that follow days of lightning and increased atmospheric moisture. Several days may pass 

before a holdover is detected, and this demonstrates a challenge when using the FPA 

wildfire occurrence database. A wildfire’s discovery date and a wildfire’s ignition date 

may not match, and holdovers are difficult to quantify and predict (Anderson 2002). 

Wildfires occasionally exceed large wildfire thresholds and continue to grow after the 

discovery date. This poses a problem for analyzing busy days or events since large 

wildfire growth days do not always coincide with the discovery date. Holdovers and large 

wildfire growth after the discovery date introduce errors into the analysis. However, 

utilizing the busy day and event thresholds mitigate some of these issues since it 

considers relatively rare events (< 5% of occurrence) and deemphasizes total acres 

burned.  

 The NAM onset is easy to distinguish but difficult to define and objectively 

quantify. The methods implemented in this analysis produce realistic and meaningful 

annual NAM onset dates by PSA. The results demonstrate that the NAM onset does not 

happen at one time for the entire SWUS. Neighboring PSAs may experience onset on the 
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same date, but this does not happen every year. The intraseasonal and interannual 

variability associated with the NAM explains the inconsistent nature of onset across the 

SWUS. MTs {15-16, 18-20} are most associated with the NAM onset, and these MTs 

illustrate ridging with moist, southerly flow over most of the SWUS and a northward 

shift of moist easterlies over northern Mexico producing increased LS across the SWA 

(Figures 3-5 {15-16, 18-20})(Table 7). MT {17} is curiously unrelated to NAM onset 

(1.7%), but the ridge axis is shifted west inducing drier west-northwest flow over most of 

the SWUS confirming prior research (Carleton et al. 1990; Higgins et al. 1999; Cerezo-

Mota et al. 2011).  

  

6. Conclusions 

We demonstrate that NAM-related weather systems modulate wildfire occurrence 

and spread patterns. Several MTs or MT progressions are associated with busy days or 

events (Figure 7): 

• MTs {4, 11-12, 16, 19-20} (Table 7) 

• Zonal or southwest flow preceding ridging  

• Zonal or southwest flow transitioning into ridging followed by a return to 

zonal or southwest flow  

• Persistent ridging followed by zonal or southwest flow  

• Fluctuation between suppressed and amplified ridging over the SWUS 

with the ridge axis exhibiting east-west movement  

Additionally, we identified several MTs that were most associated with the NAM onset 

(MTs {15-16, 18-20})(Table 7). These MTs exhibited a northward extension of the 
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subtropical ridge that shifts easterlies northward and increases moisture and lightning 

(Carleton et al. 1990; Higgins et al. 1999; Cerezo-Mota et al. 2011) across the SWA via 

TEWs (Adams and Stensrud 2007), TUTTs (Newman and Johnson 2012), and antecedent 

RWB (Abatzoglou and Magnusdottir 2006; Johnson et al. 2007). The MTs associated 

with increased wildfire activity and onset mirror previous results from SOM analysis in 

the region (i.e., Cavazos et al. 2002; Crimmins 2006).  

 Numerous studies (i.e., Swetnam and Beatencourt 1990, 1998; Westerling et al. 

2003; Crimmins and Comrie 2005), researched climatological predictors for wildfire 

activity in the SWUS. Westerling et al. (2003) and Crimmins and Comrie (2005) 

identified fine fuel production as important for total acres burned. MEI was exploratory 

analyzed with no meaningful relationships identified. This analysis focused on 

intraseasonal variability associated with the NAM including the transition to and from it. 

The MJO more directly corresponds to intraseasonal variability due to its intrinsic 

temporal frequency, and that is why it was investigated more thoroughly than MEI. 

 Future work could use the Monitoring Trends in Burn Severity (MTBS) database 

to calculate area burned on a daily timescale and apply the same rigorous atmospheric 

pattern and fuel indices analysis. This would mitigate issues with holdovers and large 

wildfire growth, but would be confined to examining only larger wildfires due to the 

spatial resolution and accuracy of MTBS (Kolden et al. 2012). Utilizing both discovery 

and control dates for wildfires could provide a proxy for determining wildfire season end. 

However, control dates are not solely based on atmospheric and fuel conditions. Wildfire 

management policy plays an important role and could introduce error and bias when 

using control dates. 
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 The results of this work provide decision support information and improve 

understanding of atmospheric processes associated with NAM and their impact on 

wildfire activity. The improved understanding benefits operational fire meteorologists 

and managers with the identification of atmospheric patterns associated with increased 

wildfire activity, which improves planning and logistical strategies (Ray et al. 2007). A 

method for determining the NAM onset by PSA is established with realistic results that 

correspond to atmospheric patterns that promote increased moisture and lightning. We 

also provide an atmospheric circulation analysis of the transition to and from the NAM 

across the SWA demonstrating intra- and inter-annual variability. Ridging prevails during 

the NAM, but interactions between approaching and passing troughs with the subtropical 

ridge drive much of the intraseasonal variability for the atmosphere and wildfire activity 

in the SWA. 
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Figures 

 
Figure 1. Elevation map of study area (m) with key geographic features labeled. 
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Figure 2. Study area showing the Southwest Area Predictive Service Areas (PSAs). SW01 is also known as PSA 1.  
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Figure 3. 20 SOM reference nodes {MTs} in the 4x5 SOM grid arrangement for 500 hPa geopotential heights (m), contoured 

and color shaded every 30 m 
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Figure 4. 20 SOM reference nodes {MTs} in the 4x5 SOM grid arrangement for 700 hPa geopotential heights (m), contoured 

and color shaded every 20 m 
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Figure 5. 20 SOM reference nodes {MTs} in the 4x5 SOM grid arrangement for precipitable water (mm), contoured and color 

shaded every 5 mm 
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a){4} 
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c){11} 
 

d){12} 

Figure 6. 700 hPa geopotential heights contoured every 20 m (black, solid lines), and specific humidity color shaded every 1 

g/kg for MTs {4, 8, 11-12}.
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Figure 7. MTs represented in MT progressions associated with increased wildfire 

activity.  
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Tables 

 

PSA Large Wildfire 

Threshold (Acres) 

SW01 100 

SW02 300 

SW03 300 

SW04 100 

SW05 50 

SW06S 100 

SW07 100 

SW08 300 

SW09 300 

SW10 100 

SW11 100 

SW12 100 

SW13 2000 

SW14S 200 

SW14N 2000 

SW06N 500 

Table 1. Large wildfire threshold for each PSA in the SWA as determined by Southwest PS. 
 
 
Total Wildfires Per Year 4064 

Total Large Wildfires Per Year 108 

Lightning Caused Wildfires Per Year 1972 

Lightning Caused Wildfires Per Year 62 

Human Caused Wildfires Per Year 2092 

Human Caused Large Wildfires Per Year 46 

Table 2. Average number of wildfires per year for the SWA by type and size for 1992-2013 
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 Wildfires Large 

Wildfires 

Lightning 

Caused 

Wildfires 

Lightning 

Caused Large 

Wildfires 

Human 

Wildfires  

Human 

Caused Large 

Wildfires 

April 8318 300 744 67 7574 233 

May 14789 417 3348 151 11441 266 

June 21443 822 8774 476 12669 346 

July 25687 496 17367 375 8320 121 

August 13899 267 10545 229 3354 38 

September 5271 84 2609 67 2662 17 

Table 3. Total SWA wildfires by type and month for 1992-2013 
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 April May June July August September 

MT1 134 1 0 0 0 0 

MT2 104 18 0 0 0 0 

MT3 98 43 0 0 0 0 

MT4 54 64 2 0 0 0 

MT5 103 36 0 0 0 0 

MT6 107 29 0 0 0 0 

MT7 35 137 15 0 0 3 

MT8 1 93 79 0 0 6 

MT9 16 124 33 0 0 13 

MT10 8 106 51 0 0 9 

MT11 0 7 164 19 8 30 

MT12 0 4 76 17 27 83 

MT13 0 4 88 12 7 126 

MT14 0 0 29 55 70 76 

MT15 0 0 34 83 86 36 

MT16 0 0 34 146 97 8 

MT17 0 16 29 1 0 160 

MT18 0 0 14 52 110 78 

MT19 0 0 8 170 145 19 

MT20 0 0 4 127 132 13 

Table 4. Displaying map type (MT) occurrence by month. 
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 SW1 SW2 SW3 SW4 SW5 SW6S SW7 SW8 SW9 SW10 SW11 SW12 SW13 SW14S SW14N SW6N 

Onset1 

(SPH, 

VPD, 

Lightning

) 

24 
Jul 

14 Jul 30 Jul 20 
Jul 

18 Jul 8 Jul 15 
Jul 

11 
Jul 

6 Jul 13 Jul 8 Jul 12 Jul 30 Jun 26 Jun 27 Jul 18 Jul 

Onset2 

(VPD, 

Precip, 

Lightning

) 

24 
Jul 

14 Jul 30 Jul 20 
Jul 

18 Jul 9 Jul 15 
Jul 

11 
Jul 

6 Jul 17 Jul 13 Jul 14 Jul 4 Jul 2 Jul 2 Jul 18 Jul 

Onset3 

(SPH, 

Precip, 

Lightning

) 

18 
Jul 

11 Jul 13 Jul 13 
Jul 

8 Jul 2 Jul 5 Jul 1 Jul 2 Jul 29 Jun 6 Jul 8 Jul 15 Jun 22 Jun 6 Jul 8 Jul 

Table 5. PSA median onset date for the three different onset methods from 1995-2013 
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 SW1 SW2 SW3 SW4 SW5 SW6S SW7 SW8 SW9 SW10 SW11 SW12 SW13 SW14 SW15 SW6N 

Onset1  206 196 212 202 200 190 197 193 188 195 190 194 182 178 209 200 

IQR 35 25 32 19 19 10 21 15 17 29 25 26 21 34 52 19 

MAD 17 10 14 10 10 6 11 8 7 13 13 14 11 11 19 11 

90th 234 224 243 225 220 202 216 206 212 210 214 217 205 217 233 216 

10th 186 185 186 186 185 181 183 180 172 168 163 170 156 166 157 182 

                 

Onset2  206 196 212 202 200 191 197 193 188 199 195 196 186 184 184 200 

IQR 35 25 32 19 19 10 25 16 17 28 20 36 34 39 53 17 

MAD 17 10 14 10 10 6 12 8 7 14 10 18 19 16 26 5 

90th 234 224 243 225 220 202 222 207 212 216 216 225 222 227 223 216 

10th 186 185 186 186 185 181 183 180 164 177 166 166 157 166 154 182 

                 

Onset3  200 193 195 195 190 184 187 183 184 181 188 190 167 174 188 190 

IQR 20 16 20 18 15 10 16 14 11 21 18 32 22 40 37 15 

MAD 12 9 9 9 7 7 8 8 7 6 9 13 8 15 20 8 

90th 220 213 229 213 199 197 196 197 206 201 200 223 193 214 219 207 

10th 182 183 179 181 181 173 175 170 168 173 170 169 157 158 157 173 

Table 6. IQR (number of days), MAD (number of days), 10th percentile onset date, and 90th percentile onset day-of-year (DOY) by PSA 

for the three onset methods from 1995-2013  
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 Count All Days Busy95_SW Busy99_SW Onset1 Median 

LS 

Decile 

MT1 135 3.4% 0.5% 0.0% 0.0% 1 

MT2 122 3.0% 2.3% 3.5% 0.0% 1 

MT3 141 3.5% 2.7% 1.8% 0.0% 1 

MT4 120 3.0% 6.4% 8.8% 0.0% 3 

MT5 139 3.5% 2.3% 1.8% 0.0% 1 

MT6 136 3.4% 2.7% 3.5% 0.0% 1 

MT7 190 4.7% 4.1% 3.5% 0.0% 2 

MT8 179 4.4% 5.5% 5.3% 1.8% 4 

MT9 186 4.6% 3.2% 3.5% 0.7% 4 

MT10 174 4.3% 2.7% 1.8% 0.0% 2 

MT11 228 5.7% 11.0% 14.0% 2.8% 4 

MT12 207 5.1% 8.2% 10.5% 3.9% 5 

MT13 237 5.9% 2.7% 5.3% 8.5% 4 

MT14 230 5.7% 2.7% 5.3% 6.0% 5 

MT15 239 5.9% 5.0% 1.8% 9.9% 6 

MT16 285 7.1% 12.8% 7.0% 19.0% 8 

MT17 206 5.1% 2.3% 0.0% 1.4% 3 

MT18 254 6.3% 3.2% 0.0% 12.3% 6 

MT19 342 8.5% 9.6% 10.5% 18.7% 7 

MT20 276 6.9% 10.0% 12.3% 15.1% 8 

Table 7. Showing the percentage of occurrence for each map type (MT) for all days, Busy95_SW, Busy99_SW, and Onset1 days and the 

median LS decile (Dec) for each MT. 
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 Count % Before Onset % Before 1 

July 

April May June July August September 

Busy95_PSA 298 85.23% 62.4% 28 40 118 76 33 3 

Busy99_PSA 292 82.53% 55.1% 25 31 105 98 30 3 

Busy95_SW 219  66.2% 23 31 91 51 22 1 

Busy99_SW 57  77.2% 6 10 28 11 2 0 

Event_ 2_95 108  70.4% 13 19 44 24 8 0 

Event_3_95 83  72.3% 8 17 35 17 6 0 

Event_7_95 49  73.5% 6 7 23 11 2 0 

Event_10_95 36  77.8% 3 8 17 7 1 0 

Event_2_99 27  81.5% 2 5 15 5 0 0 

Event_3_99 17  88.2% 1 4 10 2 0 0 

Event_7_99 11  81.8% 0 2 7 2 0 0 

Event_10_99 10  80.0% 0 2 6 2 0 0 

Event_2_99.5 11  90.9% 1 3 6 1 0 0 

Event_3_99.5 9  88.9% 1 2 5 1 0 0 

Event_7_99.5 6  83.3% 0 1 4 1 0 0 

Event_10_99.5 6  83.3% 0 2 3 1 0 0 

Table 8. Displaying the number (Count) of occurrences for each type of event from 1992-2013. Also shows the percentage of events that 

transpired before onset (if applicable) and before 1 July. Shows number of occurrences for each type of event by month. 
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 Busy99_SW  Busy95_SW  

SW1 7 12.3% 24 11.0% 

SW2 20 35.1% 46 21.0% 

SW3 4 7.0% 14 6.4% 

SW4 6 10.5% 16 7.3% 

SW5 14 24.6% 42 19.2% 

SW6S 39 68.4% 120 54.8% 

SW7 6 10.5% 22 10.0% 

SW8 23 40.4% 70 32.0% 

SW9 12 21.1% 25 11.4% 

SW10 8 14.0% 27 12.3% 

SW11 9 15.8% 18 8.2% 

SW12 28 49.1% 61 27.9% 

SW13 11 19.3% 31 14.2% 

SW14S 13 22.8% 38 17.4% 

SW14N 13 22.8% 31 14.2% 

SW6N 15 26.3% 47 21.5% 

 
Table 9. Displays the number of times a PSA had at least one large wildfire when the Busy99_PSA or Busy95_PSA threshold was 

exceeded. Also shows the percentage representing the proportion for each PSA when having at least one large wildfire when the 

Busy99_SW or Busy95_SW threshold was exceeded. 
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Abstract 

 Understanding the drivers of and modeling wildfire occurrence, and especially 

large wildfire occurrence, can lead to predictive modeling in support of wildfire 

suppression and management. We implemented boosted regression trees (BRT) to model 

wildfire occurrence for wildfires of different types (i.e., lightning, human) across the 

Southwest Area (Arizona, New Mexico, west Texas, and Oklahoma panhandle) by sub-

regions known as Predictive Service Areas (PSAs), which are used by operational fire 

meteorologists to predict wildfire potential. BRT models for all wildfires demonstrated 

relatively small mean and mean absolute errors and showed better predictability on days 

with wildfires. Cross-validated accuracy assessments for large wildfires demonstrated the 

ability to discriminate between large wildfire and non-large wildfire days. Measurements 

describing fuel conditions (100 and 1000-hour dead fuel moisture, energy release 

component) were the most important predictors when considering all wildfire types and 

sizes. However, a combination of fuels and atmospheric predictors (i.e., lightning, 

temperature) proved most predictive for large wildfire occurrence, and the number of 

relevant predictors increases for large wildfires indicating more conditions need to align 

to support large wildfires. These models can be implemented daily, providing guidance 

for wildfire occurrence by PSA and allowing wildfire management to make logistical 

decisions with suppression resources accordingly. 
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Introduction  

 Wildfires exist at the nexus of fuels, climate, weather, and topographic 

interactions. Wildfire occurrence necessitates an ignition in receptive and ample fuels 

under a combination of hot, dry, and windy conditions with sufficient slope. All of these 

elements work together to promote wildfire spread. Wildfire frequency increases in areas 

bounded by various climate extremes representing a complex ecological middle ground 

that develops a wildfire return interval, which consequently helps drive wildfire 

occurrence rates (Parisien and Moritz 2009). Wildfire occurrence is difficult to predict 

due to the complex interaction of fuels and atmospheric conditions on multiple temporal 

and spatial scales (Bessie and Johnson 1995; Westerling et al. 2003; Stephens 2005).  

 Wildfire regimes can be located along a gradient from “climate limited” to “fuel 

limited”, which can lead to varying importance of wildfire drivers among different 

wildfire regimes (Littell et al. 2009). Fuel limited arid and semiarid deserts and 

rangelands necessitate continuous fuels to support fire, especially large fires (Abatzoglou 

and Kolden 2013). In the southwest United States (Arizona and New Mexico)(SWUS), 

area burned, especially in fuel limited dry shrub and grass-lands, depend strongly on fuel 

accumulation, which is modulated in part by antecedent wet periods that occur several 

months to more than a year earlier (Swetnam and Betancourt 1990; Westerling et al. 

2003; Crimmins and Comrie 2005). However, wet antecedent conditions leading to 

increased fine fuel production do not always yield increased wildfire activity implying 

that antecedent climate cannot alone explain wildfire occurrence (Swetnam and 

Betancourt 1998; McKenzie et al. 2004; Morgan et al. 2008). Climate (i.e., Gedalof et al. 

2005; Trouet et al. 2006; Morton et al. 2013) and weather (i.e., Flannigan and Harrington 
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1988; Bessie and Johnson 1995; Moritz et al. 2010) during the wildfire season play an 

important role for determining area burned (Abatzoglou and Kolden 2013).  

 Numerous studies have linked historical wildfire occurrence with weather, 

topography, and fuels (i.e., Heyerdahl et al. 2001, Rollins et al. 2002; Moritz 2003; 

Mermoz et al. 2005; Collins et al. 2007). Fuel availability (Westerling et al. 2003; 

Crimmins and Comrie 2005; Dennison et al. 2014), fuel moisture (Viegas et al. 1992; 

Meisner et al. 1993; Dennison and Moritz 2009), and weather, specifically hot, dry, and 

windy conditions (Parisien and Moritz 2009) or lightning (Fuquay et al. 1979; Latham 

and Schlieter 1989; Flannigan and Wotton 1991; Latham and Williams 2001; Anderson 

2002) are all drivers of wildfire occurrence and in combination greatly influence wildfire 

ignition and spread potential (Wierzchowski et al. 2002; Moritz et al. 2005; Evett et al. 

2008; Ordoñez et al. 2012). Ignitions are a limiting factor of wildfire occurrence, which 

make lightning prediction and human ignition patterns essential, and drivers between 

lightning and human caused fires can be distinct (Yang et al. 2007; Syphard et al. 2008; 

Aldersley et al. 2011; Argañaraz et al. 2015; Yang et al. 2015). Areas of increased human 

activity exhibit increased human caused wildfire occurrence rates and probabilities 

(Parisien et al. 2011; Parisien et al. 2012; Yang et al. 2015), but that relationship can be 

nonlinear where peak human caused wildfire activity is associated with intermediate 

human influence (Syphard 2007; Parisien et al. 2012). The effect of lightning on ignitions 

depends on coincident fuel conditions and atmospheric moisture (dewpoint, precipitation) 

(Wierzchowski et al. 2002; Evett et al. 2008; Parisien et al. 2011; Ordoñez et al. 2012; 

Parisien et al. 2012; Yang et al. 2015). 
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 Wildfire occurrence varies greatly across the western United States (WUS) 

(Littell et al. 2009; Parisien and Moritz 2009; Finney et al. 2011) including across and 

within biomes (Schoennagel et al. 2004). The complexity of relationships among drivers 

of wildfire occurrence also varies greatly across the WUS (Hardy et al. 2001; Littell et al. 

2009; Parisien et al. 2012). Therefore wildfire occurrence models tend to be more 

predictive when the study area is narrowed to a specific region (i.e., Littell et al. 2009; 

Stavros et al. 2014). Predictive Service Areas (PSAs) are sub regions within 

Geographical Area Coordination Centers (GACCs) and with similar historical wildfire 

occurrences, fuel types, fuel indices, and weather characteristics, and Predictive Services 

(PS) meteorologists quantify and assess wildfire potential by PSAs and wildfire 

management utilizes this information for decision-making (i.e., wildfire suppression 

resource allocation). Understanding and modeling wildfire occurrence especially large 

wildfire occurrence is important in the near term for wildfire suppression and 

management (Kolden and Brown 2010; Abatzolgou and Kolden 2011; Owen et al. 2012; 

Stavros et al. 2014) and long term due to climate change (Flannigan et al. 2009; Littell et 

al. 2010; Coumou and Rhamstorf 2012; Barbero et al. 2015). Other studies examined 

wildfire occurrence using areas bounded by eco-province or region (Littell et al. 2009; 

Barbero et al. 2015) and by GACC (Abatzolgou and Kolden 2013; Stavros 2014). 

 Wildfire suppression protects life and property across the United States costing 

more than $1 billion annually and continues to rise (NIFC 2015). With the wildland 

urban interface (WUI) increasing each year, strategies and tactics must reflect the rising 

priorities at risk during wildfires (Mell et al. 2010; USDA FS 2011). Strategies to 

suppress or to allow wildfires for resource benefit (previously wildland wildfire use, 
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monitor, etc.) change interannually and even during the duration of the wildfire (Pyne 

2010). The effect on wildfire regimes due to increased ignitions and varying policies of 

wildfire suppression have affected wildfire frequency, intensity, and severity (Keeley et 

al. 1999; Syphard et al. 2007; Archibald et al. 2012; Argañaraz et al. 2015; Hantson et al. 

2015). Wildfire drivers and probabilities are often unknown in many areas (Collins et al. 

2010; Parisien et al. 2012), and this knowledge gap affects land management policies 

(Schoennagel and Nelson 2011) and allocation of wildfire suppression resources (Kolden 

and Brown 2010; Owen et al. 2012). 

A fundamental approach to determining wildfire occurrence involves 

understanding how wildfire drivers interact spatially and temporally and how those 

interactions change under varying conditions (i.e., Argañaraz et al. 2015). Understanding 

these relationships bears importance due to a changing climate that could increase large 

wildfire occurrence (Barbero et al. 2015). Boosted regression trees (BRT) have been 

implemented to understand environmental drivers of wildfires (Parisien and Moritz 2009; 

Liu et al. 2013; Rodrigues and de la Riva 2014; Argañaraz et al. 2015) and to identify 

variable combinations and thresholds that optimally estimate the amount of burned area 

(Archibald et al. 2009; Addersly et al. 2011; Wu et al. 2014). Regression tree analysis 

provides predictive, dichotomous decision trees that split data iteratively into increasingly 

homogeneous groups and allows for nonlinear functional relationships (De’ath and 

Fabricius 2000; Weisberg et al. 2013). BRT models use boosting to combine hundreds to 

thousands of tree models to adaptively optimize predictive performance while providing 

relatively simple methods to discern relationships and contributions of each predictor 

(Elith et al. 2006; Leathwick et al. 2006, 2008). BRT models are able to select relevant 
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predictors, fit accurate functions, automatically identify and model interactions, and 

accurately predict various types of responses (Friedman 2002; Elith et al. 2008).    

We implement BRT to identify important predictors and predictor interactions of 

wildfire occurrence including large wildfire occurrence for different wildfire types (i.e. 

lightning and human). We develop these BRT models to provide accurate and robust 

predictions of wildfire occurrence for each of the sixteen PSAs that comprise the 

Southwest GACC (SWCC) region of responsibility (Southwest Area (SWA)) (Figure 1). 

By building a BRT model for each wildfire type and size for every PSA, we note 

differences in environmental drivers and provide a predictive tool for wildfire occurrence 

on a resolvable scale that directly corresponds to operational forecast areas.  

 

Data 

 Surface 4 km gridded daily precipitation, minimum and maximum relative 

humidity (RHmin; RHmax), specific humidity (SPH), minimum and maximum 

temperature (Tmin; Tmax), and wind velocity are utilized from the University of Idaho 

METDATA (Table 1)(Abatzoglou 2013). Vapor pressure deficit (VPD) was defined as 

the difference between saturated vapor pressure and ambient vapor pressure. Saturated 

vapor pressure and ambient vapor pressure were calculated using Tmin, Tmax, RHmin, 

and RHmax. The University of Idaho also archives gridded 4 km calculated fire danger 

indices of burning index (BI), energy release component (ERC), and 100-hour and 1000-

hour dead fuel moisture (FM100; FM1000) calculated using fuel model G (Deeming et 

al. 1977; Cohen and Deeming 1985)(Table 1). All of the daily data were averaged across 

all grid points within each PSA from 1995-2013. The Southwest PS determined PSA 
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boundaries through a spatial analysis of wildfire activity, fuel type, and fuel index (i.e., 

ERC) similarities.  

 Wildfire data from 1995-2013 were obtained from the wildfire Program Analysis 

(FPA) quality controlled wildfire database (Short 2015). Wildfires were separated by type 

(lightning or human caused) and size (large or all wildfires) for each PSA. Large wildfire 

criteria were established from large wildfire thresholds determined by Southwest PS 

(Table 2). FPA wildfire occurrence data and proprietary National Lightning Detection 

Network® (NLDN) data were totaled daily and organized by PSA and across the entire 

SWA. Due to a major upgrade occurring after 1994, the NLDN dataset for this analysis 

only includes 1995 to 2013. 

 

Methods 

 Data preparation is minimized when implementing BRTs since no predictor 

transformations are necessary and outliers and missing values are not problematic 

(De’ath 2007; Elith et al. 2008). Training and validation datasets should be separated to 

minimize bias towards the utilized data in the BRT model and so that accuracy is not 

overestimated (De’ath 2007; Parisien and Moritz 2009). However, De’ath (2007) 

advocates using all of the data to train a BRT model to identify relationships, find 

interactions, and make predictions on new data. Elith et al. (2008) recommends using 

different subsets of data for training and validation and cross-validation (CV) output to 

find the best parameters for a BRT model. The size and type of data set will impact the 

ability of CV output to accurately estimate the robustness of the BRT model (Elith et al. 

2008). During the training process, highly correlated variables (i.e., |r| > 0.8) should be 
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removed and a distribution should be determined that best fits the training data (i.e., 

Bernoulli, Gaussian, Poisson) (Parisien and Moritz 2009; Argaranarz et al. 2015). One 

way to determine which highly correlated predictors to retain is to use all of the 

predictors in a BRT model and keep the predictors with the highest relative influence 

(Table 1). Predictor relative influence is determined by how often a predictor is used for 

splitting, which then is weighted by the squared improvement of the BRT model, and 

finally averaged over all of the trees (Elith et al. 2008). 

 The BRT process begins with fitting a regression tree that maximally reduces the 

loss function with subsequent iterations focusing on the variation of the response not yet 

captured by the model (Elith et al. 2008). For example, the second tree is fitted to the 

residuals of the first tree; then the model is updated with residuals from the third tree 

being fitted to the residuals of the two-tree model (Elith et al. 2008). The BRT process is 

stochastic, which improves predictive performance by reducing the final model’s 

variance due in part to emphasizing the hardest observations to predict during the 

iterative process (Friedman 2001; Elith et al. 2008). The BRT process is stagewise, which 

leaves existing trees unaffected as the model continues. Only the fitted value of each 

observation in the training data is re-calculated for each new tree. The final BRT model is 

a linear combination of hundreds to thousands of trees and can be considered as a 

regression model with each term a tree (Elith et al. 2008). The trees could have very 

different predictors and splits,  unless a random seed is initialized, a BRT model will be 

different yet similar each time the training process occurs (Elith et al. 2008).   

Several adjustable parameters affect a BRT model’s output. The learning rate 

determines the contribution of each tree, tree complexity controls interactions within each 
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tree, and both determine how many trees are fitted (Elith et al. 2008). The bagging 

fraction controls how much of the training data is randomly selected without replacement 

for each tree and values commonly used are between 0.5 and 0.75 (Elith et al. 2008). 

Overfitting often plagues BRT models, but adjusting the learning rate, tree complexity, 

and bagging fraction can ameliorate this issue (Hastie et al. 2001; Elith et al. 2008). 

Decreasing the learning rate and thus increasing the number of trees can specifically 

reduce overfitting. This may increase the bias, but it also drastically reduces the variance 

(De’ath 2007). Traditional regression methods control overfitting and improve prediction 

by reducing the number of terms, but the BRT process increases the number of terms and 

thus reducing their contribution using shrinkage (Friedman 2001). BRT also controls 

overfitting and improves prediction by introducing randomness via the bagging fraction, 

and despite the potential for overfitting, BRT regularly outperforms other regression 

techniques (i.e., GLM, GAM) when validated against independent data (Friedman 2002; 

Elith et al. 2008). 

We implemented the following process for building and training a BRT model to 

predict wildfire occurrence in the SWUS: 1) use daily PSA values of fuels and 

atmospheric variables as predictors of lightning wildfires, human wildfires, all wildfires, 

large lightning wildfires, large human wildfires, and all large wildfires; 2) include all 

predictors in the training of a BRT model for a particular wildfire type in a PSA to decide 

which highly correlated predictors (|r|>0.8) were most influential and thus would be 

retained as a predictor; 3) systematically toggle learning rate (0.0001-0.05), tree 

complexity (3-7), bagging fraction (0.5-0.75), and tenfold CV to generate enough trees (> 

1000) that minimized overfitting and demonstrated predictive power through CV output 
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(i.e., area under the curve (AUC), CV correlation); 4) implement tree complexity, 

learning rate, and bagging fraction values with guidance from previous steps to generate a 

BRT model using the entire dataset (AllYears method) to identify important predictors, 

relevant interactions, and the best predictive model for each wildfire type in a particular 

PSA to test on new data; and 5) training a BRT model on 18 of 19 years of data, 

repeating this process 19 times to leave each year out for validation (LeaveOne method). 

In total, there are six BRT models (all lightning caused wildfires, all human caused 

wildfires, all wildfires, lightning caused large wildfires, human caused large wildfires, 

and all large wildfires) for each PSA. Mean error (ME) and mean absolute error (MAE) 

are calculated for steps four and five for all days and only days with wildfires to provide 

another evaluation metric of the predictive performance for the BRT models.  

 To model the number of wildfires on a given day in a particular PSA, a Poisson 

distribution was utilized due to its ability to handle many zeros. Due to the infrequency of 

large wildfires, a Bernoulli distribution was utilized for modeling the probability 

distribution of this response variable. Since the Bernoulli distribution requires a binary 

response, all daily totaled large wildfires were reduced to 0 and 1 with double weight 

given to days with multiple large wildfires. All of the BRT modeling was done in R (gbm 

and dismo packages; Elith and Leathwick 2015).  

 

Results 

All Fires 

 Table 3 displays mean number of daily wildfires, MAE, and ME from the BRT 

model output for each PSA predicting the number of lightning and human caused 
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wildfires using all days. No ME in Table 3 has a larger magnitude than 0.021 for any 

wildfire type and all MEs are negative. Human caused wildfires exhibit the largest MAE 

relative to the daily wildfires mean, and across all wildfire types, the MAE is relatively 

larger to the daily wildfires mean when the daily wildfires mean is smaller (Table 3). 

Table 4 displays the same information as Table 3 but only considers days when at least 

one wildfire occurred. Similar to Table 3, MEs across all wildfire types and PSAs are 

negative including some MEs with identical magnitudes as their corresponding MAEs 

(Table 4). Relative to its mean daily wildfire occurrence, all wildfires have the smallest 

magnitude of MAE and ME while human caused wildfires have the largest MAE and ME 

(Table 4). MAEs for fire days (Table 4) are smaller than MAEs for all days (Table 3) 

when comparing to their respective means of daily wildfires, but the converse is true 

when examining MEs.  

Tables 5-7 display the mean number of daily wildfires, MAEs, and MEs for each 

wildfire type across all PSAs using the AllYears and LeaveOne methods. Overall, the 

MAEs in Tables 5-7 are slightly larger than the MAEs in Tables 3-4, but are relatively 

close in magnitude (i.e., 0.887 to 0.927). The MEs have similar magnitudes when 

comparing the BRT models using the AllYears and LeaveOne methods, but MEs are 

positive when using all days for the LeaveOne method (Tables 5-7) and negative when 

using the AllYears method (Tables 3-4). MEs from the LeaveOne method during wildfire 

days are negative, which is similar to the MEs from using the AllYears method, but they 

are slightly larger in magnitude.  

 Lightning strikes (LS) and fuels (FM1000, FM100, ERC) are the most important 

predictors for all lightning caused wildfires when considering the median relative 
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influence and the number of times each predictor is used in a PSA’s BRT all lightning 

caused wildfires model (Table 8). LS and a fuels variable combine to exceed more than 

half of the relative influence across the PSAs for all lightning caused wildfires. Only 

PSAs 4 and 11 have relative influence for LS below 30%, and six PSAs do not have LS 

as its leading predictor with FM1000 (three times), FM100 (once), ERC (once), and Tmin 

(once) as the leading predictors in those PSAs (not shown). Temperature (Tmax, Tmin) 

appears to be a secondary predictor with median relative influence of 12-14% and Tmax 

or Tmin is in each BRT model for all lightning caused wildfires (Table 8). The rest of the 

variables have median relative influences below 7% and VPD is not utilized in any BRT 

model due to its correlation to several variables and exhibiting less relative influence to 

these correlated variables (Table 8; Table 1). Interactions were most frequent and 

strongest with LS for all lightning fires (Table 9). The most frequent interactions paired 

LS with a fuels variable (FM1000, ERC, BI) with break points located at lower (higher) 

FM1000 (ERC, BI) and higher LS although the fitted values did flatten after a certain LS 

threshold (Figure 2). 

 Fuels (FM1000, FM100, ERC) are the most important predictor for all human 

caused wildfires (Table 8). ERC accounts for a median relative influence of 43.7% the six 

times it is utilized in a BRT all human fires model, and FM100 and FM1000, with 

median relative influences of 32.1% and 18.4% respectively, are each utilized in six BRT 

all human caused fires models including in two of the same models. DOY also proved 

important with median relative influence of 13.2% and several remaining variables had 

median relative influence 7-11% (Tmax, Tmin, RHmax, RHmin, SPH, WndSpd, BI) 

(Table 8). LS, precipitation, and VPD are the least important although VPD did have a 
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relative influence of 21.4% the one time it was utilized. PSAs clustered along three main 

themes for important predictors: DOY and fuels (5, 6S, 6N, 7, 8, 9, 12), fuels (PSAs 1, 2, 

4, 13, 14S, 14N), and fuels and RH/VPD (PSAs 3, 10). Interactions were slightly less 

frequent and there were fewer interactions between the same two variables than for all 

lightning caused fires (Table 10). DOY, fuels (ERC, FM100, FM1000) and wildfire 

spread (BI, WndSpd) variables were paired most frequently (Table 10)(Figure 3).   

 FM1000/ERC (24.9%; 13 counts/29.9%; 3 counts) and LS (21.9%; 16 counts) 

were the most important predictors for the all fires BRT models with the highest relative 

importance followed by Tmax/Tmin (14.8%; 9 counts/10.9%; 7 counts) (Table 8). 

Similar to the lightning and human all fires models, the remaining predictors contributed 

much less (3.8%-8.7%) than the most important predictors. Nine of the PSAs (PSAs 1, 2, 

5, 6S, 7, 8, 10, 12, 14S) demonstrated lightning and fuels as the most important predictors 

with the remaining PSAs clustering along fuels and temperature (PSAs 4, 11), fuels 

(PSAs 13, 14N), or fuels and DOY (PSAs 6N, 9) (not shown). FM1000 and LS is the 

most frequent interaction for the all fires models, and DOY and LS are paired with nearly 

every variable at least once (Table 11)(Figure 4). LS, FM1000, DOY, and temperature 

(Tmax/Tmin) are represented in the most frequent interactions.  

  

 Large Fires 

Table 12 displays the CV AUC for each BRT model including the median CV 

AUC from the BRT models using the LeaveOne method. All CV AUC values are larger 

than 0.7 except for PSA 2 human caused large wildfires, PSA 7 all large wildfires, and 

PSA 11 large human wildfires BRT models. The PSA 2 lightning caused large wildfires 
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BRT model has a CV AUC value exceeding 0.9 using both methods. The median CV 

AUC values for both methods and each large wildfire type are greater than 0.75 with the 

CV AUC from the large lightning wildfires BRT model slightly exceeding the CV AUC 

from the human caused large wildfires BRT model (0.797 to 0.789). The CV AUC values 

across all large wildfire types for the LeaveOne method are very similar to the CV AUC 

values using the AllYears method.  

Table 13 shows the probabilities associated with large wildfire days, days without 

large wildfires, and daily occurrence of large wildfires by type and PSA using AllYears 

method. Probabilities on days with large wildfires are much higher than days without 

large wildfires (Table 13). The differences in median probabilities of large wildfire and 

non-large wildfire days are 0.161, 0.182, and 0.121 for all large wildfires, lightning 

caused large wildfires, and human caused large wildfires respectively. Additionally, the 

probabilities on days without large wildfires are slightly lower than the mean daily 

probabilities for large wildfires. Table 14 shows the probabilities associated with large 

wildfire days and days without large wildfires using the LeaveOne method. The 

probabilities are lower and closer in magnitude for large wildfire and non-large wildfire 

days, and remain higher for large wildfire days compared to non-large wildfire days with 

a much smaller difference. 

Temperature (Tmax, Tmin), LS, and FM100/FM1000 are the most important 

predictors for lightning caused large wildfires (Table 15). The remaining predictors have 

a median relative influence between 6.53% and 8.81%. The PSAs form roughly three 

separate groups for predictors of lightning caused large wildfires (in descending 

importance): temperature, lightning, and fuels (PSAs 1, 4, 6S, 6N, 7, 8, 14S), lightning, 



 

 

97

SPH/precipitation, and fuels (PSAs 2, 3, 5, 12, 13). The remaining four PSAs represent a 

transition between the two main groups (i.e., PSA 9) or are comparatively unique with its 

predictors for lightning caused large wildfires. Tmax is involved with the four most 

frequent interactions for lightning caused large wildfires, but LS is still involved with the 

strongest interactions especially with FM1000/FM100 and BI (Table 16; Figure 5). BI 

also interacts frequently and its interactions often generally depict how most thresholds 

for interactions are at the upper or lower bounds of a particular interactive pair with a 

sharp increase of fitted values.  

Fuels (FM100, FM1000, ERC, BI) and RH are the most important predictors 

(counts and median relative influence) for human caused large fires (Table 15). BI 

represents a combination of fuel and spread components and could be classified as either, 

and is more sensitive to changes in weather than other fuels variables in this analysis 

(Cohen and Deeming 1985). Precipitation, WndSpd, and Tmax also show some 

predictive potential for human caused large wildfires. The PSAs do not form larger 

groups as they did for lightning caused large fires, but several smaller groups consisting 

of two to four PSAs. These groups have either one dominant predictor (fuels or spread) or 

some sort of combination of the three main predictors (fuels and RH) (Figure 6). Many of 

the interactions for human caused large wildfires are very small and occur across narrow 

margins between the interactive pairs (Table 17; Figure 6). BI is included with the most 

frequent interactions and the few stronger interactions within the human caused large 

wildfires analysis.  

Fuels and temperature are the two most important predictors for all large wildfires 

with LS and RHmin trailing closely (Table 15). It appears the blending of the most 
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important predictors from large lightning and human wildfires occurs with most PSAs. 

Two groups appear among the PSAs with temperature (PSAs 1, 4, 5, 6N, 7, 8) and fuels 

(PSAs 6S, 9, 10, 12, 13, 14S, 14N) as the main predictors with a smaller group that 

emphasizes lightning over fuels and temperature (PSAs 2, 3)(not shown). However, the 

secondary predictors are important too, and usually represent at least one of the other 

main predictors. The number of interactions is spread across more pairs for all large fires 

than human or lightning large wildfires (Tables 16-18). The strongest interactions involve 

fuels and either a spread (i.e., BI) or ignition (i.e., LS) component (Figure 7).  

 

Discussion 

 The BRT models for predicting the number of wildfires demonstrated predictive 

power and robustness with relatively small MAE and MEs, however, these BRT models 

did consistently under forecast (negative ME) the number of daily wildfires (Tables 3-7). 

During days when wildfires occurred, lower MAEs were observed, but the magnitude of 

MEs increased respective to the mean (Tables 4-7). BRT models performed as well and 

consistently better on days with wildfires demonstrating predictability during days when 

they are needed most (Tables 4-7, 13-14). BRT models predicted each wildfire type 

reasonably well and their respective MAEs and MEs were relatively similar indicating 

that an all wildfires model would be sufficient. We examined rounding all model output 

to the nearest integer or just rounding values below one to the nearest integer for four 

different PSAs (PSAs 2, 5, 8, 11). Due to the amount of days without fires, this reduced 

the ME since all BRT model output was greater than zero, but the rounding increased 

MAE for the three PSAs examined. 
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 BRT models for large wildfires had good CV AUC values (mostly 0.7-0.8), 

generally demonstrating the ability to discriminate between large wildfire and non-large 

wildfire days across all wildfire types indicating that an all large wildfires model would 

be sufficient (Table 12). However, attempts were made to determine a probability 

threshold for large wildfires. Some of these methods included using the mean probability 

of a large wildfire plus twice the standard deviation of large wildfires and using various 

thresholds for specificity and sensitivity (Freeman and Moisen 2008). When these 

methods were implemented using the AllYears method, some success was found. 

However, when applying the same thresholds to the LeaveOne method, the success rate 

precipitously dropped demonstrating overfitting and a lack of robustness. Wildfire 

management and operational forecasters would rather not miss days with large wildfires 

and have a higher false alarm rate. However, most thresholds using the LeaveOne method 

consistently had nearly as many or more days without large fires as days with large 

wildfires above the specified large wildfire threshold.  

 Fuels (FM1000, FM100, ERC) are the most important predictor(s) when 

considering lightning, human, or both types of wildfires confirming prior findings (i.e., 

Parisien et al. 2011; Riley et al. 2013; Stavros et al. 2014; Barbero et al. 2015). LS is also 

very important and the leading predictor for lightning wildfires and second most 

important predictor for all wildfires. Human fires are mostly dependent on fuels, and 

DOY is the leading non-fuels predictor. When examining interaction plots with DOY, a 

noticeable decrease occurs near the beginning of July (Figures 3b, 4b, 8), which coincides 

with the mean North American Monsoon (NAM) (Douglas et al. 1993; Adams and 

Comrie 1997; Barlow et al. 1998; Higgins et al. 1999) onset (Mohrle 2003).  
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More predictors become important when examining large wildfires, and the 

relative influence of predictors can change when comparing all and large wildfires of a 

particular wildfire type. A combination of fuels (i.e. FM1000, ERC) and atmospheric 

predictors (i.e., LS, Tmax) drive large wildfire occurrence (Abatzoglou and Kolden 2013; 

Riley et al. 2013; Stavros et al. 2014). The increase in the number of predictors and the 

smoothing of relative influence among those predictors for large wildfires compared to 

all wildfires indicates more conditions need to align to support and sustain large wildfires 

(Tables 8, 15). For example, lightning and fuels are overwhelmingly the two most 

important predictors across the PSAs for all lightning fires, but for lightning caused large 

wildfires, temperature also becomes very important along with atmospheric moisture 

predictors (i.e. SPH, precipitation) (Tables 8, 15). For all human caused fires, fuels and 

DOY are the most important predictors, but RHmin and BI or WndSpd increase in 

importance for human caused large wildfires (Tables 8, 15). While dry fuels and/or LS 

are usually sufficient to drive wildfire occurrence, predictors that promote wildfire 

growth via atmospheric dryness (i.e., RHmin), instability (i.e., Tmax), and spread (i.e., 

BI, WndSpd) become more necessary for large wildfires. Fuels variables (FM1000, 

FM100, ERC, BI) take into account previous and current atmospheric conditions (Cohen 

and Deeming 1985; Riley et al. 2013) and thus can be viewed as further evidence of the 

importance of weather and short-term climate (days to weeks) variations being important 

for wildfire occurrence, especially large wildfire occurrence. The importance of these 

fuels variables also indicate the importance of dead fuel moisture, and dead fuels are the 

primary carriers of surface fires and help fires transition into crown fires (Van Wagner 
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1977). This transition from a surface fire to an accompanying crown fire increases the 

likelihood of larger, more intense wildfires.  

 Predictor interactions exhibit thresholds that drive wildfire occurrence. Wildfire 

occurrence increases as LS and BI increase, but usually peaks somewhere between 2000 

and 4000 LS and greater than a BI of 75-100 before leveling off (i.e., Figures 2d, 7a). As 

FM100/FM1000 decreases, wildfire occurrence increases initially below 10% and 

especially below 5% (Figures 2a-b, 3b, 4a, 5c-d, 8). The co-varying of the interactive pair 

of predictors illuminates multiple important critical fire weather conditions including 

ignition and spread (i.e., LS and BI), dry thunderstorms (i.e., LS and precipitation)(Figure 

9)(Nauslar et al. 2013) and a combination of hot, dry, and windy conditions (i.e., Tmax, 

RHmin, WndSpd)(Parisien and Moritz 2009) (Tables 9-11, 16-18).  

 The NAM modulates most of the weather conditions during the SWA wildfire 

season (Mohrle 2003; Evett et al. 2008), and the NAM signal is apparent when examining 

DOY interactions with atmospheric and fuels predictors (Figures 3b, 4b, 8). A precipitous 

drop of fitted values occurs around and after DOY 100 (9 July), which is around the first 

week of July. Once the NAM onset begins, atmospheric moisture begins to stifle wildfire 

occurrence, especially large wildfire occurrence. A noticeable peak of fitted values 

occurs in many of these DOY interactions during the days and weeks leading up to the 

climatological NAM onset DOY (Figures 3b, 4b, 8). This timing coincides with peak fuel 

dryness helping produce the most active part of the wildfire season. The term ‘Firesoon’ 

has been used to describe the time period just before the NAM onset noting the peak fuel 

dryness coinciding with the beginning surges of NAM moisture triggering lightning 

ignited wildfires (Brown 2002). Some interactions involving large wildfires consistently 
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show multiple smaller, narrower thresholds of increased fitted values in the same 

interaction, which we attribute to overfitting due to the lack wildfire occurrence in that 

particular PSA.  

 PSAs naturally clustered when examining wildfire type and size, but those 

clusters were not consistent across wildfire types or sizes thwarting attempts to group 

PSAs across all wildfire types and sizes. PSAs would generally cluster along topographic 

features (i.e., Mogollon Rim), elevation, and location (both latitude and longitude), all of 

which also affect climate and subsequently fuel type, continuity, and loading. PSAs also 

tended to cluster along eco-provinces or regions (Littell et al. 2009; Barbero et al. 2015). 

Usually two main clusters of PSAs would emerge with similar important predictors and 

interactions with the remaining PSAs combining to form one or two more unique, smaller 

groups or representing a transition between the two main groups.  

Weather and short-term climate drive wildfire occurrence across the SWUS with 

low fuel moisture (Viegas et al. 1992; Meisner et al. 1993; Dennison and Moritz 2009; 

Riley et al. 2013), lightning (Fuquay et al. 1979; Latham and Schlieter 1989; Flannigan 

and Wotton 1991; Latham and Williams 2001; Anderson 2002), and hot, dry, and/or 

windy atmospheric conditions (Parisien and Moritz 2009) specifically driving wildfire 

occurrence especially large wildfires (Wierzchowski et al. 2002; Moritz et al. 2005; Evett 

et al. 2008; Ordoñez et al. 2012). A component missing from this analysis is accurately 

quantifying fine fuel loading, which is important for wildfire activity and area burned in 

the SWUS (Westerling et al. 2003). Antecedent precipitation has been shown to modulate 

fine fuel loading, but that signal is not consistent particularly in the SWUS (Swetnam and 

Beatencourt 1998). Using the discovery date confines the conditions examined to the date 
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of discovery, which may not coincide with large wildfire growth. Holdover wildfires also 

pose a problem since the discovery date most likely does not coincide with its actual 

ignition date. Stavros et al. (2014) examined conditions during weeks pre and post 

discovery, which were included in the model for very large wildfires for the SWCC. We 

did not using any time-lagged variables, deciding to focus on the conditions during the 

discovery date while capturing antecedent conditions inherently in some of the variables 

utilized (i.e., ERC). 

 

Conclusions 

 We analyzed wildfire occurrence by type (lightning, human, all) and size (all, 

large) for each PSA resulting in six distinct BRT models for each PSA. We were able to 

examine different drivers of wildfire by type, size, and location while recognizing 

similarities and differences and develop robust, predictive BRT models across the various 

categories. The BRT analysis of wildfire activity in the SWA produced several key 

findings: 

• Median CV AUC values between 0.75 and 0.8 demonstrate the ability of 

BRT models to distinguish between large and non large wildfire days 

• Relatively small ME and MAE for all wildfires (all types) from BRT 

output including improved performance (smaller MAE) on days with 

wildfires 

• Fuels (FM1000, FM100, ERC) are the most important predictor(s) with 

when considering all wildfires regardless of type, although the number 

lightning strikes also proved important 
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• More predictors become important when examining large wildfires with a 

combination of fuels (i.e. FM1000, ERC) and atmospheric predictors (i.e., 

LS, Tmax) driving large wildfire occurrence indicating more conditions 

need to align to support and sustain large wildfires  

• Interactions demonstrate multivariate thresholds for wildfire occurrence 

(i.e., LS and FM1000) and important critical fire weather conditions 

including ignition and spread (i.e., LS and BI), dry thunderstorms (i.e., LS 

and precipitation), and a combination of hot, dry, and windy conditions 

(i.e., Tmax, RHmin, WndSpd) 

• The NAM signal is apparent in interaction plots of DOY and atmospheric 

(i.e., LS) or fuels (i.e., FM100) variables 

We modeled wildfire occurrence by PSA mirroring the same forecast areas that 

operational PS meteorologists forecast with. These models can be directly applied to the 

SWA PSAs and implemented daily with output providing guidance for number of 

wildfires and the probability of a large wildfire. This allows wildfire management to 

identify more specific areas of increased wildfire potential and make logistical decisions 

with suppression resources accordingly. Differences emerged among the PSAs across the 

various wildfire types and sizes with groups of PSAs clustering together. However, these 

groups of PSAs were inconsistent when examining different wildfire types and sizes thus 

reinforcing the decision to split the SWA into PSAs and model by wildfire type and size.  

The BRT models for both large and number of wildfires show predictive potential 

and demonstrate robustness across all wildfire types and PSAs. The large wildfires 

LeaveOne method results give pause due to the lower probabilities and poor performance 
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using any of the large wildfire probability thresholds. However, important predictors and 

interactions are identified that drive wildfire occurrence for different wildfire types and 

sizes across the SWA. Additionally, important thresholds are contained within the results 

that will help better understand the confluence of conditions necessary for wildfire 

ignition and spread. 
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Figures 

 
Figure 1. Study area: Southwest Area Predictive Service Areas (PSAs; i.e., PSA 1 is 

SW01). Also referenced to as the Southwest Area (SWA) in text  
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a) b) 

c) 
d) 

Figure 2. a) PSA 2 all lightning wildfires interaction plot for LS and FM1000 with the 

fitted value (number of fires) on the vertical axis and FM1000 (%) and LS (number of) on 

the horizontal axes; b) PSA 8 all lightning wildfires interaction plot for LS and FM1000 

with the fitted value (number of fires) on the vertical axis and FM1000 (%) and LS 
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(number of) on the horizontal axes; c) PSA 6S all lightning wildfires interaction plot for 

LS and ERC with the fitted value (number of fires) on the vertical axis and ERC (BTU ft-

2) and LS (number of) on the horizontal axes; d) PSA 1 all lightning wildfires interaction 

plot for LS and BI with the fitted value (number of fires) on the vertical axis and BI and 

LS (number of) on the horizontal axes. 

 
 

a) 

 
b) 

Figure 3. PSA 4 all human wildfires interaction plot for BI and ERC with the fitted value 

(number of fires) on the vertical axis and ERC (BTU ft-2) and BI on the horizontal axes; 

b) PSA 6N all human wildfires interaction plot for DOY and FM1000 with the fitted 

value (number of fires) on the vertical axis and FM1000 (%) and DOY on the horizontal 

axes. 
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a)  

b) 

 
c) 

 
d) 

Figure 4. a) PSA 5 all wildfires interaction plot for LS and FM1000 with the fitted value 

(number of fires) on the vertical axis and FM1000 (%) and LS (number of) on the 

horizontal axes; b) PSA 6S all wildfires interaction plot for DOY and Tmin with the 

fitted value (number of fires) on the vertical axis and DOY and Tmin (Kelvin) on the 

horizontal axes c) PSA 10 all wildfires interaction plot for Tmax and FM1000 with the 
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fitted value (number of fires) on the vertical axis and FM1000 (%) and Tmax (Kelvin) on 

the horizontal axes; d) PSA 10 all wildfires interaction plot for Tmax and FM1000 with 

the fitted value (number of fires) on the vertical axis and Tmax (Kelvin) and LS (number 

of) on the horizontal axes. 

 
 

 
a)  

 
b) 

 
c) 

 
d) 

Figure 5. PSA 5 lightning caused large wildfires interaction plot for Tmax and RHmin 

with the fitted value (number of fires) on the vertical axis and RHmin (%) and Tmax 
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(Kelvin) on the horizontal axes; b) PSA 14S lightning caused large wildfires interaction 

plot for LS and Tmax with the fitted value (number of fires) on the vertical axis and 

Tmax (Kelvin) and LS (number of) on the horizontal axes; c) PSA 2 lightning caused 

large wildfires interaction plot for LS and FM100 with the fitted value (number of fires) 

on the vertical axis and FM100 (%) and LS (number of) on the horizontal axes; d) PSA 

12 lightning caused large wildfires interaction plot for LS and FM1000 with the fitted 

value (number of fires) on the vertical axis and FM1000 (%) and LS (number of) on the 

horizontal axes. 
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a) 

 
b) 

 
c) 

 
d) 

Figure 6. PSA 5 human caused large wildfires interaction plot for FM100 and BI with the 

fitted value (number of fires) on the vertical axis and FM100 (%) and BI on the 

horizontal axes; b) PSA 14N human caused large wildfires interaction plot for FM1000 

and BI with the fitted value (number of fires) on the vertical axis and FM1000 (%) and BI 

on the horizontal axes; c) PSA 14N human caused large wildfires interaction plot for 

RHmin and BI with the fitted value (number of fires) on the vertical axis and RHmin (%) 
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and BI on the horizontal axes; d) PSA 10 human caused large wildfires interaction plot 

for BI and RHmax with the fitted value (number of fires) on the vertical axis and RHmax 

(%) and BI on the horizontal axes. 

 

 
a) 

 
b) 

 
c) 

 
d) 
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Figure 7. PSA 1 all large wildfires interaction plot for LS and BI with the fitted value 

(number of fires) on the vertical axis and LS (number of) and BI on the horizontal axes; 

b) PSA 8 all large wildfires interaction plot for WndSpd and Tmax with the fitted value 

(number of fires) on the vertical axis and WndSpd (ms-1) and Tmax (Kelvin) on the 

horizontal axes; c) PSA 14S all large wildfires interaction plot for FM100 and LS with 

the fitted value (number of fires) on the vertical axis and FM100 (%) and LS (number of) 

on the horizontal axes; d) PSA 11 all large wildfires interaction plot for FM1000 and 

WndSpd with the fitted value (number of fires) on the vertical axis and FM1000 (%) and 

WndSpd on the horizontal axes.  
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a) 

 
b) 

Figure 8. a) PSA 5 all wildfires interaction plot for LS and DOY with the fitted value 

(number of fires) on the vertical axis and LS (number of) and DOY on the horizontal 

axes; b) PSA 6N all human caused wildfires interaction plot for RHmin and DOY with 

the fitted value (number of fires) on the vertical axis and RHmin (%) and DOY on the 

horizontal axes. 
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Figure 9. PSA 5 lightning caused wildfires interaction plot for LS and precipitation with 

the fitted value (number of fires) on the vertical axis and LS (number of) and 

precipitation (mm) on the horizontal axes 

 



 

 

127

Tables 

Variables Units Correlated frequently with 

Precipitation mm  

RHmax % Rhmin, FM100, ERC, VPD 

Rhmin % Rhmax, FM100, ERC, VPD 

Tmax Kelvin Tmin, VPD 

Tmin Kelvin Tmax, VPD 

SPH g/Kg  

VPD kPa Rhmax, Rhmin, FM100, Tmax, 
Tmin 

ERC BTU ft-2 FM100, FM1000, VPD 

BI unitless  

FM100 % ERC, FM1000, Rhmax, Rhmin, 
VPD 

FM1000 % FM100, ERC 

WndSpd ms-1  

Table 1. List of variables and their units used for this anaylsis. 
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PSA Large Wildfire 

Threshold (Acres) 

SW01 100 

SW02 300 

SW03 300 

SW04 100 

SW05 50 

SW06S 100 

SW07 100 

SW08 300 

SW09 300 

SW10 100 

SW11 100 

SW12 100 

SW13 2000 

SW14 200 

SW14N 2000 

SW06N 500 

Table 2. Large wildfire threshold for each PSA in the SWA as determined by Southwest PS. 
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All Days All Wildfires Lightning Wildfires Human Wildfires 

 Mean MAE ME Mean MAE ME Mean MAE ME 

PSA 1 0.793 0.723 -0.013 0.647 0.541 -0.012 0.146 0.228 -0.011 

PSA 2 1.165 0.891 -0.011 0.487 0.357 -0.009 0.678 0.662 -0.014 

PSA 3 0.553 0.636 -0.014 0.028 0.042 -0.010 0.525 0.609 -0.014 

PSA 4 1.343 1.024 -0.011 0.739 0.653 -0.015 0.603 0.573 -0.011 

PSA 5 3.447 2.010 -0.022 2.482 1.439 -0.020 0.965 0.840 -0.012 

PSA 6S 1.546 1.063 -0.010 0.547 0.469 -0.010 0.999 0.796 -0.012 

PSA 6N 2.889 1.670 -0.008 0.565 0.479 -0.007 2.324 1.316 -0.014 

PSA 7 2.311 1.472 -0.015 1.471 1.017 -0.013 0.840 0.773 -0.008 

PSA 8 2.611 1.459 -0.021 2.102 1.142 -0.015 0.508 0.511 -0.009 

PSA 9 0.413 0.455 -0.011 0.054 0.078 -0.011 0.359 0.422 -0.012 

PSA 10 0.706 0.675 -0.011 0.427 0.442 -0.010 0.279 0.361 -0.013 

PSA 11 0.276 0.364 -0.009 0.105 0.149 -0.010 0.170 0.255 -0.012 

PSA 12 0.586 0.627 -0.013 0.326 0.372 -0.019 0.260 0.347 -0.013 

PSA 13 1.086 0.882 -0.014 0.322 0.348 -0.015 0.764 0.732 -0.012 

PSA 14S 0.192 0.266 -0.015 0.129 0.179 -0.017 0.062 0.101 -0.011 

PSA 14N 1.227 0.978 -0.012 0.271 0.362 -0.020 0.955 0.787 -0.009 

          

Median 1.126 0.887 -0.013 0.457 0.407 -0.013 0.564 0.591 -0.012 

Table 3. Displaying mean number of daily wildfires, median absolute error (MAE), and mean error (ME) for each PSA and 

wildfire type for AllYears method. 
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Fire Days All Wildfires Lightning Wildfires Human Wildfires 

 Mean MAE ME Mean MAE ME Mean MAE ME 

PSA 1 2.245 1.169 -0.917 2.574 1.231 -0.967 1.134 0.932 -0.932 

PSA 2 2.165 0.997 -0.678 2.475 1.073 -0.787 1.611 0.841 -0.764 

PSA 3 1.483 0.873 -0.871 1.213 1.127 -1.127 1.479 0.879 -0.876 

PSA 4 2.536 1.232 -0.723 2.737 1.407 -1.064 1.689 0.870 -0.764 

PSA 5 4.694 2.172 -0.595 5.843 2.563 -0.871 2.021 1.012 -0.773 

PSA 6S 2.524 1.163 -0.590 2.400 1.207 -0.889 2.053 1.014 -0.647 

PSA 6N 2.524 1.776 -0.490 2.536 1.280 -0.901 3.503 1.479 -0.525 

PSA 7 3.381 1.552 -0.622 3.478 1.603 -0.832 1.871 0.960 -0.781 

PSA 8 4.176 1.706 -0.661 4.860 1.862 -0.811 1.628 0.860 -0.804 

PSA 9 1.551 0.884 -0.866 1.227 1.012 -1.012 1.534 0.933 -0.923 

PSA 10 1.904 1.038 -0.814 1.842 1.074 -0.875 1.531 1.038 -1.020 

PSA 11 1.347 0.915 -0.911 1.321 1.003 -0.997 1.238 0.972 -0.972 

PSA 12 1.764 1.015 -0.910 1.892 1.185 -1.082 1.341 0.931 -0.931 

PSA 13 2.617 1.253 -0.905 2.261 1.336 -1.218 2.164 1.159 -0.947 

PSA 14S 1.597 1.186 -1.157 1.667 1.272 -1.246 1.241 1.121 -1.121 

PSA 14N 2.764 1.293 -0.938 2.195 1.602 -1.487 2.394 1.114 -0.882 

          

Median  2.385 1.177 -0.840 2.330 1.251 -0.982 1.620 0.966 -0.879 

Table 4. Displaying mean number of daily wildfires, median absolute error (MAE), and mean error (ME) for each PSA and 

wildfire type only for days with wildfires using the AllYears method. 
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 All Wildfires 

 Mean MAE ME Mean FD MAE_FD ME_FD 

PSA 1 0.760 0.819 0.014 2.245 1.359 -0.949 

PSA 2 1.195 0.947 0.134 2.165 0.964 -0.546 

PSA 3 0.549 0.598 0.052 1.483 0.769 -0.769 

PSA 4 1.321 1.115 0.026 2.536 1.268 -0.663 

PSA 5 3.226 2.311 0.152 4.694 2.546 -0.440 

PSA 6S 3.199 2.453 0.055 2.524 2.523 -0.594 

PSA 6N 2.782 1.809 0.481 2.524 1.829 0.182 

PSA 7 2.149 1.656 0.103 3.381 1.766 -0.603 

PSA 8 2.303 1.980 0.016 4.176 2.554 -0.603 

PSA 9 0.354 0.487 -0.024 1.551 0.918 -0.918 

PSA 10 0.706 0.762 0.058 1.904 1.055 -0.842 

PSA 11 0.256 0.376 0.006 1.347 0.931 -0.929 

PSA 12 0.552 0.628 -0.061 1.764 1.127 -0.966 

PSA 13 0.913 0.906 0.177 2.617 1.048 -0.888 

PSA 14S 0.164 0.261 0.016 1.597 1.173 -1.173 

PSA 14N 1.018 1.000 0.128 2.764 1.009 -0.898 

       

Median 0.966 0.926 0.053 2.385 1.150 -0.805 

Table 5. Displaying the mean number of daily fires, MAEs, and MEs for all wildfires across all PSAs for all days and days 

with wildfires (FD) using the LeaveOne method.  
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 Human Wildfires 

 Mean MAE ME Mean FD MAE_F

D 

ME_FD 

PSA 1 0.135 0.222 0.040 1.134 0.989 -0.989 

PSA 2 0.694 0.672 0.090 1.611 0.745 -0.660 

PSA 3 0.517 0.592 0.035 1.479 0.786 -0.786 

PSA 4 0.585 0.612 -0.039 1.689 0.825 -0.688 

PSA 5 0.939 0.878 0.178 2.021 0.880 -0.575 

PSA 6S 0.971 0.797 0.098 2.053 0.926 -0.503 

PSA 6N 2.039 1.367 0.228 3.503 1.500 -0.123 

PSA 7 0.810 0.794 0.054 1.871 0.906 -0.687 

PSA 8 0.513 0.520 0.095 1.628 0.799 -0.734 

PSA 9 0.342 0.445 -0.030 1.534 0.973 -0.948 

PSA 10 0.525 0.584 0.041 1.531 0.903 -0.810 

PSA 11 0.151 0.247 -0.007 1.238 0.983 -0.983 

PSA 12 0.246 0.351 0.026 1.341 0.883 -0.883 

PSA 13 0.606 0.684 0.092 2.164 1.106 -0.900 

PSA 14S 0.047 0.089 0.014 1.241 1.031 -1.031 

PSA 14N 0.767 0.834 0.019 2.394 1.085 -0.937 

       

Median 0.555 0.602 0.041 1.620 0.916 -0.798 

Table 6. Displaying the mean number of daily wildfires, MAEs, and MEs for human caused wildfires across all PSAs for all 

days and days with wildfires (FD) using the LeaveOne method.  
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 Lightning Wildfires 

 Mean MAE ME Mean FD MAE_FD ME_FD 

PSA 1 0.589 0.689 0.051 2.574 1.705 -1.181 

PSA 2 0.434 0.458 0.037 2.475 1.396 -0.861 

PSA 3 0.018 0.038 -0.004 1.213 0.983 -0.983 

PSA 4 0.682 0.784 -0.043 2.737 1.732 -0.978 

PSA 5 2.227 1.837 -0.075 5.843 3.469 -1.153 

PSA 6S 0.506 0.528 0.020 2.400 1.382 -0.923 

PSA 6N 0.514 0.588 -0.046 2.536 1.508 -1.198 

PSA 7 1.353 1.216 -0.027 3.478 1.885 -0.903 

PSA 8 1.782 1.761 -0.006 4.860 2.732 -0.796 

PSA 9 0.039 0.074 -0.009 1.227 1.078 -1.078 

PSA 10 0.376 0.450 0.014 1.842 1.117 -0.819 

PSA 11 0.086 0.154 0.010 1.321 0.989 -0.985 

PSA 12 0.285 0.393 -0.018 1.892 1.345 -1.218 

PSA 13 0.209 0.295 0.090 2.261 1.180 -1.078 

PSA 14S 0.112 0.158 0.016 1.667 1.358 -1.358 

PSA 14N 0.201 0.335 0.041 2.195 1.269 -1.231 

       

Median 0.405 0.454 0.003 2.330 1.370 -1.032 

Table 7. Displaying the mean number of daily wildfires, MAEs, and MEs for lightning caused wildfires across all PSAs for all 

days and days with wildfires (FD) using the LeaveOne method.  
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 All Lightning 

Wildfires 

All Human Wildfires All Wildfires 

 Count Median Count Median Count Median 

FM1000 12 24.2% 6 18.4% 13 25.0% 

BI 15 5.3% 14 9.6% 15 6.3% 

RHmax 3 5.1% 2 10.4% 1 6.4% 

RHmin 11 6.9% 5 10.9% 13 8.7% 

Tmax 8 13.8% 12 11.7% 9 14.8% 

Tmin 8 12.4% 4 7.2% 7 10.9% 

WndSpd 16 3.9% 16 7.5% 16 4.9% 

Precip. 16 5.0% 16 2.7% 15 3.8% 

SPH 13 5.3% 16 8.6% 14 5.5% 

DOY 16 4.5% 16 13.2% 16 7.7% 

LS 16 28.4% 16 2.5% 16 21.9% 

ERC 3 24.7% 6 43.7% 3 29.9% 

FM100 2 26.4% 6 32.1% 2 13.0% 

VPD 0  1 21.4% 0  

Table 8. Contains the number of times (count) each variable was used in a BRT model and the median relative influence by 

type when it was used for all wildfires. 
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Interaction Count  PSA(s) 

FM1000, LS 11  PSA10, PSA11, PSA12, PSA13, PSA14S, 
PSA1, PSA2, PSA3, PSA5, PSA7, PSA8 

BI, LS 4  PSA14S, PSA1, PSA2, PSA9 

FM1000, Tmax 4  PSA10, PSA12, PSA14S, PSA8 

LS, Tmax 4  PSA14S, PSA14N, PSA8, PSA9 

FM1000, Precip 4  PSA10, PSA11, PSA2, PSA7 

LS, Precip 3  PSA3, PSA5, PSA9 

ERC, LS 3  PSA6N, PSA4, PSA6S 

BI, FM1000 2  PSA10, PSA12 

ERC, Tmin 2  PSA4, PSA6S 

ERC, Precip 2  PSA6N, PSA4 

LS, RHmin 2  PSA7, PSA9 

LS, WndSpd 2  PSA3, PSA5 

Tmin, WndSpd 2  PSA1, PSA4 

FM1000, SPH 2  PSA11, PSA13 

LS, SPH 1  PSA8 

RHmax, Tmax 1  PSA5 

BI, RHmax 1  PSA14N 

FM100, FM1000 1  PSA13 

FM100, LS 1  PSA14N 

BI, Tmin 1  PSA3 

DOY, Tmin 1  PSA13 

FM100, Tmax 1  PSA14N 

RHmin, Tmin 1  PSA1 

FM1000, Tmin 1  PSA11 

LS, Tmin 1  PSA6N 

DOY, LS 1  PSA6N 

FM1000, WndSpd 1  PSA2 

RHmin, Tmax 1  PSA7 

Table 9. Contains the pair of variables interacting and how often that occurs for all 

lightning caused wildfires across all PSAs. 
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Interaction Count  PSA(s) 

DOY, ERC 5  PSA13, PSA4, PSA6S, PSA7, 
PSA8 

ERC, WndSpd 4  PSA11, PSA13, PSA4, PSA8 

DOY, FM100 3  PSA12, PSA5, PSA9 

ERC, Precip 3  PSA11, PSA13, PSA7 

BI, WndSpd 3  PSA6N, PSA1, PSA9 

FM100, WndSpd 2  PSA12, PSA9 

ERC, Tmax 2  PSA11, PSA6S 

FM100, FM1000 2  PSA1, PSA2 

BI, FM100 2  PSA14S, PSA1 

FM1000, LS 2  PSA10, PSA2 

BI, RHmin 2  PSA10, PSA14N 

DOY, Tmin 2  PSA6N, PSA3 

DOY, FM1000 2  PSA14N, PSA6N 

BI, ERC 2  PSA13, PSA4 

FM1000, RHmin 1  PSA14N 

DOY, WndSpd 1  PSA12 

BI, RHmax 1  PSA4 

Tmax, WndSpd 1  PSA5 

ERC, RHmin 1  PSA7 

BI, Precip 1  PSA1 

BI, Tmax 1  PSA14S 

LS, Precip 1  PSA2 

Precip, RHmin 1  PSA14N 

Precip, Tmax 1  PSA11 

BI, LS 1  PSA14S 

FM100, SPH 1  PSA2 

FM1000, VPD 1  PSA3 

BI, DOY 1  PSA7 

FM100, Precip 1  PSA5 

DOY, VPD 1  PSA3 

RHmin, Tmax 1  PSA10 

DOY, RHmin 1  PSA6N 

FM1000, Precip 1  PSA3 

DOY, Tmax 1  PSA10 

Table 10. Contains the pair of variables interacting and how often that occurs for all 

human caused wildfires across all PSAs  
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Interaction Count  PSA(s) 

FM1000, LS 8  PSA10, PSA12, PSA13, PSA1, PSA2, PSA5, 
PSA7, PSA8 

FM1000, Tmax 4  PSA10, PSA11, PSA14S, PSA8 

DOY, Tmin 3  PSA3, PSA4, PSA6S 

BI, LS 3  PSA12, PSA1, PSA2 

DOY, FM1000 3  PSA14S, PSA14N, PSA3 

LS, SPH 2  PSA2, PSA8 

ERC, Tmin 2  PSA6N, PSA4 

BI, RHmin 2  PSA13, PSA14N 

LS, WndSpd 2  PSA5, PSA8 

DOY, Precip 2  PSA14N, PSA6N 

ERC, LS 2  PSA4, PSA6S 

LS, Tmax 2  PSA14S, PSA7 

RHmin, Tmax 2  PSA10, PSA7 

FM1000, Precip 2  PSA11, PSA3 

DOY, ERC 2  PSA6N, PSA4 

FM1000, RHmin 1  PSA3 

DOY, WndSpd 1  PSA9 

Tmax, WndSpd 1  PSA11 

BI, FM1000 1  PSA10 

FM100, FM1000 1  PSA13 

LS, RHmax 1  PSA5 

BI, Tmax 1  PSA14S 

LS, RHmin 1  PSA7 

Precip, RHmin 1  PSA13 

RHmin, Tmin 1  PSA1 

Precip, Tmax 1  PSA11 

BI, WndSpd 1  PSA9 

Tmin, WndSpd 1  PSA1 

Precip, WndSpd 1  PSA12 

RHmax, Tmax 1  PSA5 

BI, DOY 1  PSA14N 

DOY, LS 1  PSA2 

FM1000, 
WndSpd 

1  PSA9 

DOY, RHmin 1  PSA6N 

DOY, Tmax 1  PSA12 

Table 11. Contains the pair of variables interacting and how often that occurs for all 

wildfires across all PSAs.
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 All Large Wildfires Lightning Caused Large 

Wildfires 
Human Caused Large 

Wildfires 

 CV AUC Leave One Out 

Median CV 

AUC 

CV AUC Leave One Out 

Median CV AUC 

CV 

AUC 

Leave One Out 

Median CV AUC 

PSA 1 0.76 0.7252 0.774 0.7625 0.741 0.706 

PSA 2 0.79 0.7755 0.914 0.9052 0.639 0.63665 

PSA 3 0.725 0.701 0.85 0.8436 0.734 0.722 

PSA 4 0.749 0.7574 0.795 0.7766 0.786 0.7865 

PSA 5 0.717 0.7054 0.759 0.7563 0.828 0.8279 

PSA 6S 0.758 0.7 0.851 0.8467 0.735 0.768 

PSA 6N 0.747 0.7562 0.886 0.8818 0.726 0.7329 

PSA 7 0.674 0.6861 0.721 0.7032 0.79 0.7972 

PSA 8 0.724 0.7272 0.749 0.745 0.798 0.7946 

PSA 9 0.702 0.70825 0.751 0.751 0.795 0.7919 

PSA 10 0.762 0.7575 0.713 0.7318 0.863 0.8586 

PSA 11 0.753 0.7431 0.798 0.8084 0.62 0.609 

PSA 12 0.781 0.7835 0.857 0.864 0.787 0.7884 

PSA 13 0.81 0.7939 0.827 0.8235 0.809 0.7972 

PSA 14S 0.788 0.8053 0.793 0.7929 0.824 0.8141 

PSA 14N 0.845 0.8468 0.823 0.7995 0.853 0.8559 

       

Median 0.756 0.750 0.797 0.796 0.789 0.790 

Table 12. CV AUC values for all wildfire types across all PSAs using all data and the LeaveOne method.  
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 All Large Wildfires Lightning Caused Large Wildfires Human Caused Large Wildfires 

 Fire 
Probability 

No Fire 
Probability 

Mean 
Probability 

Fire 
Probability 

No Fire 
Probability 

Mean 
Probability 

Fire 
Probability 

No Fire 
Probability 

Mean 
Probability 

PSA 1 0.159 0.02 0.024 0.159 0.02 0.024 0.039 0.004 0.004 

PSA 2 0.225 0.019 0.023 0.302 0.009 0.014 0.044 0.01 0.011 

PSA 3 0.132 0.012 0.123 0.197 0.002 0.003 0.125 0.009 0.01 

PSA 4 0.125 0.012 0.013 0.147 0.004 0.005 0.084 0.008 0.009 

PSA 5 0.171 0.045 0.049 0.143 0.03 0.034 0.247 0.011 0.015 

PSA 6S 0.219 0.087 0.092 0.27 0.034 0.04 0.134 0.053 0.055 

PSA 6N 0.193 0.022 0.025 0.266 0.012 0.015 0.057 0.01 0.01 

PSA 7 0.081 0.022 0.024 0.115 0.015 0.017 0.112 0.007 0.009 

PSA 8 0.197 0.045 0.049 0.192 0.037 0.04 0.146 0.008 0.01 

PSA 9 0.078 0.014 0.015 0.167 0.004 0.005 0.144 0.009 0.01 

PSA 10 0.156 0.022 0.026 0.108 0.014 0.016 0.231 0.007 0.01 

PSA 11 0.135 0.01 0.012 0.229 0.004 0.006 0.026 0.006 0.006 

PSA 12 0.203 0.029 0.033 0.258 0.014 0.016 0.181 0.014 0.017 

PSA 13 0.217 0.014 0.017 0.202 0.007 0.008 0.173 0.008 0.009 

PSA 14S 0.211 0.025 0.028 0.208 0.018 0.021 0.094 0.007 0.008 

PSA 14N 0.277 0.017 0.022 0.128 0.004 0.005 0.275 0.013 0.018 

          

Median 0.182 0.021 0.025 0.195 0.013 0.016 0.130 0.009 0.010 

Table 13. Displaying the probabilities associated with large wildfire days (Fire Probability), days without large wildfires (No 

Fire Probability), and daily occurrence of large wildfires by type and PSA using the AllYears method. 
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 All Large Wildfires Lightning Caused Large 

Wildfires 

Human Caused Large 

Wildfires 

 Fire 
Probability 

No Fire 
Probability 

Fire 
Probability 

No Fire 
Probability 

Fire 
Probability 

No Fire 
Probability 

PSA 1 0.032 0.020 0.030 0.014 0.004 0.003 

PSA 2 0.037 0.014 0.034 0.003 0.010 0.009 

PSA 3 0.013 0.010 0.031 0.001 0.013 0.009 

PSA 4 0.013 0.007 0.004 0.003 0.010 0.006 

PSA 5 0.055 0.038 0.045 0.021 0.024 0.005 

PSA 6S 0.058 0.040 0.119 0.016 0.055 0.027 

PSA 6N 0.046 0.017 0.056 0.005 0.009 0.008 

PSA 7 0.028 0.018 0.016 0.011 0.010 0.005 

PSA 8 0.058 0.030 0.054 0.022 0.011 0.005 

PSA 9 0.015 0.011 0.003 0.003 0.013 0.006 

PSA 10 0.025 0.017 0.013 0.011 0.013 0.004 

PSA 11 0.011 0.007 0.020 0.003 0.026 0.006 

PSA 12 0.038 0.019 0.020 0.007 0.018 0.010 

PSA 13 0.014 0.008 0.007 0.005 0.007 0.005 

PSA 14S 0.045 0.015 0.030 0.012 0.007 0.005 

PSA 14N 0.020 0.009 0.004 0.003 0.010 0.007 

       

Median 0.030 0.016 0.025 0.006 0.010 0.006 

Table 14. Displaying the probabilities associated with large wildfire days (Fire Probability) and days without large wildfires 

(No Fire Probability) by type and PSA using the LeaveOne method in the BRT models. 
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 Lightning Caused Large 

Wildfires 

Human Caused Large 

Wildfires 

All Large Wildfires 

 Count Median Count Median Count Median 

FM1000 11 16.4% 11 15.3% 14 15.7% 

BI 16 7.4% 16 17.7% 14 10.0% 

RHmax 1 7.5% 1 16.7% 1 8.3% 

RHmin 8 8.8% 8 25.1% 12 12.6% 

Tmax 10 21.2% 11 12.9% 11 16.3% 

Tmin 6 15.1% 5 10.9% 5 16.4% 

WndSpd 16 7.3% 16 11.3% 16 9.3% 

Precip. 16 8.3% 16 2.7% 16 7.6% 

SPH 14 6.5% 15 11.6% 13 9.0% 

DOY 16 6.8% 16 8.1% 16 8.7% 

LS 16 17.5% 16 2.2% 16 12.4% 

ERC 0  1 19.2% 2 19.7% 

FM100 6 14.5% 2 16.6% 2 16.9% 

VPD 0  4 25.3% 0  

Table 15. Contains the number of times (count) each variable was used in a BRT model and the median relative influence by 

type when it was used for large wildfires. 
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Interaction Count  PSA(s) 

FM1000, Tmax 5  PSA10, PSA14S PSA6N, PSA4, 
PSA6S 

LS, Tmax 5  PSA14S PSA4, PSA6S, PSA8, 
PSA9 

Tmax, WndSpd 5  PSA10, PSA14S PSA6N, PSA7, 
PSA8 

BI, Tmax 4  PSA6N, PSA4, PSA7, PSA9 

BI, FM1000 3  PSA10, PSA11, PSA13 

BI, LS 3  PSA14N, PSA1, PSA2 

BI, RHmin 3  PSA10, PSA1, PSA4 

FM100, LS 3  PSA14N, PSA2, PSA9 

DOY, FM1000 2  PSA13, PSA6S 

DOY, LS 2  PSA1, PSA3 

FM1000, LS 2  PSA12, PSA14 

FM1000, Precip 2  PSA12, PSA5 

LS, SPH 2  PSA3, PSA5 

LS, WndSpd 2  PSA2, PSA3 

Tmin, WndSpd 2  PSA1, PSA5 

BI, Precip 1  PSA14N 

DOY, WndSpd 1  PSA11 

FM100, Tmax 1  PSA7 

FM1000, RHmax 1  PSA13 

FM1000, SPH 1  PSA13 

FM1000, Tmin 1  PSA11 

FM1000, WndSpd 1  PSA11 

LS, Tmin 1  PSA2 

Precip, Tmin 1  PSA12 

RHmin, Tmin 1  PSA5 

SPH, Tmax 1  PSA6N 

Table 16. Contains the pair of variables interacting and how often that occurs for 
lightning caused large wildfires across all PSAs. 
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Interaction Count  PSA(s) 

BI, Tmax 5  PSA10, PSA14S, PSA6N, PSA1, PSA2 

BI, FM1000 4  PSA14N, PSA2, PSA4, PSA7 

RHmin, WndSpd 4  PSA14S, PSA3, PSA4, PSA5 

BI, RHmin 3  PSA14S, PSA14N, PSA7 

BI, LS 3  PSA11, PSA14N, PSA5 

BI, WndSpd 3  PSA11, PSA12, PSA6S 

DOY, Tmax 3  PSA1, PSA3, PSA9 

FM100, WndSpd 2  PSA1, PSA8 

BI, Precip 2  PSA2, PSA6S 

BI, FM100 2  PSA2, PSA8 

LS, WndSpd 2  PSA11, PSA5 

Precip, WndSpd 2  PSA13, PSA9 

FM1000, WndSpd 2  PSA10, PSA13 

ERC, Tmax 1  PSA5 

FM1000, RHmin 1  PSA7 

FM1000, VPD 1  PSA6N 

BI, RHmax 1  PSA10 

Tmax, WndSpd 1  PSA12 

FM1000, RHmax 1  PSA10 

BI, Tmin 1  PSA14N 

FM100, Tmax 1  PSA1 

Precip, RHmin 1  PSA4 

ERC, WndSpd 1  PSA3 

Precip, Tmax 1  PSA9 

VPD, WndSpd 1  PSA6N 

FM1000, Tmax 1  PSA13 

DOY, FM1000 1  PSA13 

FM1000, Tmin 1  PSA11 

DOY, WndSpd 1  PSA12 

Tmax, VPD 1  PSA6N 

RHmin, Tmax 1  PSA14S 

DOY, RHmin 1  PSA4 

FM1000, Precip 1  PSA7 

RHmin, SPH 1  PSA3 

Table 17. Contains the pair of variables interacting and how often that occurs for human 

caused large wildfires across all PSAs. 
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Interaction Count  PSA(s) 

Tmax, WndSpd 4  PSA4, PSA5, PSA7, PSA8 

BI, FM1000 4  PSA10, PSA11, PSA14N, PSA6N 

BI, RHmin 4  PSA10, PSA11, PSA14N, PSA1 

BI, LS 4  PSA14N, PSA1, PSA2, PSA9 

LS, Tmax 4  PSA14S, PSA2, PSA3, PSA8 

DOY, FM1000 3  PSA10, PSA6N, PSA6S 

FM1000, WndSpd 3  PSA11, PSA13, PSA8 

BI, Tmax 2  PSA2, PSA7 

ERC, WndSpd 2  PSA14S, PSA3 

Precip, Tmax 2  PSA3, PSA7 

FM1000, Tmax 2  PSA10, PSA4 

RHmin, Tmax 2  PSA5, PSA7 

DOY, RHmin 2  PSA4, PSA9 

DOY, Tmax 2  PSA6S, PSA9 

FM100, WndSpd 1  PSA13 

ERC, Tmax 1  PSA14S 

DOY, WndSpd 1  PSA12 

LS, SPH 1  PSA5 

FM100, FM1000 1  PSA13 

FM1000, LS 1  PSA12 

RHmin, WndSpd 1  PSA4 

LS, RHmin 1  PSA3 

FM100, LS 1  PSA2 

BI, Tmin 1  PSA14N 

RHmin, Tmin 1  PSA6N 

BI, WndSpd 1  PSA12 

FM1000, Tmin 1  PSA11 

Tmin, WndSpd 1  PSA1 

BI, DOY 1  PSA5 

FM100, Precip 1  PSA13 

DOY, LS 1  PSA1 

Precip, Tmin 1  PSA6N 

Table 18. Contains the pair of variables interacting and how often that occurs for all large 

wildfires across all PSAs.
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Chapter 5. 

Dissertation Summary, Conclusions, and Recommendations 

 Chapter 2 examines the verification of spot forecasts and accepts that this analysis 

represents the beginning of addressing accuracy requirements, improvements, and 

verification statistics for both surface and upper air elements (OFCM 2007, 2011 and 

NOAA SAB 2008). Echoing Lammers and Horel (2014) spot forecast verification 

necessitates a more nuanced approach than just aggregating statistics. Forecasters and end 

users should develop a framework that allows flexibility in deciding how and what to 

verify from spot forecasts. The consistency of the information provided by the spot 

forecasts needs to be improved, which will help in determining acceptable accuracy 

thresholds or requirements for spot forecasts. 

 Chapter 3 examines the relationship of atmospheric circulation to NAM onset and 

increased wildfire activity across the SWA using SOM. Resulting SOM map types also 

showed the transition to, during, and from the NAM. Northward and eastward 

displacements of the subtropical ridge (i.e., four-corners high) over the SWA were 

associated with NAM onset (Carleton et al. 1990; Higgins et al. 1999; Cerezo-Mota et al. 

2011), and a suppressed subtropical ridge and breakdown of the subtropical ridge map 

types over the SWA were associated with increased wildfire activity (Werth et al. 2011). 

Four general atmospheric pattern progressions emerge when examining the evolution of 

MTs around busy days and events for the SWA: 1) zonal or southwest flow preceding 

ridging; 2) zonal or southwest flow transitioning into ridging followed by a return to 

zonal or southwest flow; 3) persistent ridging followed by zonal or southwest flow; and 



 

 

146

4) fluctuation between suppressed and amplified ridging over the SWA with the ridge 

axis exhibiting east-west movement. 

  Chapter 4 used BRT to model wildfire occurrence by type and size for each PSA 

in the SWA. The BRT models show predictive potential and demonstrate robustness 

across all wildfire types and PSAs including on days with wildfires. Fuels (FM1000, 

FM100, ERC) are the most important predictor(s) when considering all wildfires 

regardless of type with lightning demonstrating strong predictive influence. More 

predictors become important when examining large wildfires with a combination of fuels 

(i.e. FM1000, ERC) and atmospheric predictors (i.e., LS, Tmax) driving large wildfire 

occurrence indicating more conditions need to align to support and sustain large 

wildfires. Predictor interactions demonstrate thresholds for wildfire occurrence (i.e., LS 

and FM1000) and important critical fire weather conditions including ignition and spread 

(i.e., LS and BI), dry thunderstorms (i.e., LS and precipitation), and a combination of hot, 

dry, and windy conditions (i.e., Tmax, RHmin, WndSpd). 

 While this dissertation follows a non-traditional format, each of the three chapters 

provides original and valid contributions to the field of atmospheric sciences. 

Additionally, all of the research here is directly applicable to operational fire 

meteorologists and mangers. The results of chapters 3 and 4 provide decision support 

information and improve understanding of atmospheric processes associated with NAM 

and their impact on wildfire activity. The improved understanding benefits operational 

fire meteorologists and managers with the identification of atmospheric patterns 

associated with increased wildfire activity and daily PSA wildfire occurrence modeling 

output, which improves planning and logistical strategies. Chapter 2 provides an 
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exploratory verification of spot forecasts and makes recommendations that should 

improve spot forecasts and spot forecast verification.  

 


