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ABSTRACT

Analysis of the traditional currencies is not easy as the transactions are not

centralized but rather take place over a large number of banks and commercial

entities. Digital crypto currencies, however, require a public ledger to work. A

crypto currency is a medium of exchange using cryptography to secure the trans-

actions and to control the creation of new units. In this thesis, we analyze some

of the popular crypto currencies. As the transaction data of crypto currencies are

publicly available, we construct a network of transactions and extract the time

and date of each payment for the analyzed crypto currencies. We investigate the

structure of transaction network by measuring the network characteristics. In par-

ticular, we compare the evolution of Bitcoin and Litecoin currency systems, two

of the currently most popular systems; analyze the wealth correlation with degree

distribution for Bitcoin and litecoin; and investigate the transactions by the top 100

richest people in Bitcoin, Litecoin, Dash, Dogecoin, Peercoin, and Namecoin crypto

currencies. Additionally, as the price of digital currencies are highly volatile, we

perform a regression analysis on factors that affect the price of the Bitcoin currency

in USD and derive a model with the factors that affects Bitcoin price.
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Chapter 1

Introduction

Currency is a medium of exchange, which aroused out of need to address the in-

efficiency of barter. Digital currency is a form of currency that is electronically

created and stored [52]. The initial digital currencies were non crypto currencies,

i.e., E-Gold in 1996 [19]. Crypto currencies are decentralized digital cash systems

and there is no single overseeing authority [46]. In crypto currencies, encryption

techniques are used to regulate the generation of units of currency and verify the

transfer of funds [50].

The first public crypto currency is Bitcoin, proposed in 2008 by Satoshi Nakamoto,

a pseudonym [41]. Even though the system went online in January 2009, Bitcoin

had very few users and it didn’t have any real world value for one year. Since the

inception of the Bitcoin, over 48 million transactions took place. The market value

of Bitcoins in circulation peaked at about 14 billion dollars on May 12, 2013, and

as of Nov 23, 2015 is about 4.79 billion dollars. Figure 1.1 compares Bitcoin market

capitalization with other popular currencies.
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Figure 1.1: Market capitalization of crypto currencies

A problem in digital currencies to verify that the owner did not double-spend

the coin. A common solution is to introduce a trusted central authority, or mint,

that checks every transaction for double spending. After each transaction, the coin

must be returned to the mint to issue a new coin, and only coins issued directly

from the mint are trusted not to be double-spent. The problem with this solution

is that the fate of the entire money system depends on the company running the

mint, with every transaction having to go through them, just like a bank. We need

a way for the payee to know that the previous owners did not sign any earlier

transactions. For our purposes, the earliest transaction is the one that counts, so

we don’t care about later attempts to double-spend. The only way to confirm the

absence of a transaction is to be aware of all transactions.

In the mint based model, the mint is aware of all transactions and decides which

arrived first. To accomplish this without a trusted party, transactions must be pub-

licly announced, and we need a system for participants to agree on a single history

of the order in which they were received. The payee needs proof that at the time

of each transaction, the majority of nodes agreed it was the first received. In case

of the Bitcoin, Litecoin, Dogecoin, Dash, and Monero every payment is announced
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on the network, and the payment is validated by checking consistency with the

entire transaction history. To avoid fraud, it is necessary that the participants agree

on a single valid transaction history. In case of the Nxt and Maidsafecoin, the dis-

tribution of the coins is decided by a central authority [33].

The Bitcoin system operates as an online peer-to-peer network, and anyone

can join the system by installing a client application [41]. Instead of having a bank

account maintained by a central authority, each user has a unique address that con-

sists of a pair of public and private keys. Existing coins are associated to the public

key of their owner, and outgoing payments have to be signed by the owner using

the corresponding private key. After validation of transaction with the owner’s

public key, the successful transactions are formed into blocks at an approximate

rate of 1 block per 10 minutes. To maintain privacy, a single user may use multiple

addresses. Each participating node stores the complete list of previous transac-

tions. New Bitcoins are awarded to the users based on their contribution in the

generation of new blocks, a process known as mining. Another way to obtain

coins is to purchase them from someone who already has coins using traditional

currency.

The transactions of all the crypto currencies are available to anyone by in-

stalling the client and connecting to peer to peer network. Such detailed infor-

mation is rarely available in financial systems, making the the crypto currency net-

works a valuable source of empirical data involving monetary transactions. Due

to the anonymity of the crypto currencies and potentially unlimited number of

pseudo identities a user could generate, however, it is hard to determine which

observed phenomena are specific to the system and which results can be general-

ized.
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An earlier study by Daniel et.al. analyzes the Bitcoin transaction network [24].

The main purpose of authors was to investigate the movement of money in detail

and observe the dynamics of the network. In their analysis of Bitcoin data on

May 7th 2013, they observe 17 million transactions among 13 million addresses

where only a million of them had nonzero balance. According to their analysis

there is a strong correlation between the balance and the indegree of individual

nodes. They found that the Bitcoin network is gradually increasing since 2010

with some fluctuations, e.g., the boom in the exchange rate in 2011. According

to their analysis both the in-degree and out-degree are highly heterogeneous with

power law distributions. They also found that Bitcoin network is disassortative as

except for only a brief period in the initial deployment where the number of nodes

were few.

The study of networks has emerged in diverse disciplines as a means of ana-

lyzing complex relational data [45]. Network analysis has been applied to phys-

ical phenomena [56], biological systems [32], epidemics [6, 7], academic collab-

orations [5, 30, 31, 37], language [12], news media [48, 49], software develop-

ment [13, 59], transportation [10], industry [40], online social networks [14, 15, 42],

communications [25, 26], Internet [21, 23, 22, 28], synthetic topologies [2, 3, 8], vi-

sualization [51] and graph mining [27, 29].

In this thesis, we compare various crypto currencies as a network, by analyzing

their complex relational data. We map the transaction network of Bitcoin and Lite-

coin digital currencies from their public transaction data and analyze the complex

network of each digital currency. We download the complete list of transactions

by installing the wallets of the digital currency, where the nodes represents the

unique address with each user and the links are the transactions in between two
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users. The number of inputs and outputs in each transaction vary as single user

can create multiple addresses and can transfer to multiple address [16].

Then, we performed market analysis of richest users of the six popular crypto

currencies, which includes Bitcoin, Litecoin, Dash, Dogecoin, Peercoin, and Name-

coin [17]. At the time of this analysis, these six currencies occupies over 98 % of the

total market capitalization of all 621 crypto currencies combined. In market analy-

sis, we collect the incoming and outgoing transactions of the top 100 richest people

in each crypto currency and formed a network of the top 100 richest address for

each currency [55].

Finally, we collect the past six months data of the Bitcoin price in USD as shown

in Figure 2.4 and all the factors that effects the price such as, miners revenue in

USD, total transaction volume per day in USD, total outgoing transactions per day

in USD, exchange trade value in USD, market capitalization in USD, transaction

fees in USD, and cost per transaction in USD. We analyze this data to perform a

multiple linear regression on the predictor variable to find the exact factors effect-

ing Bitcoin price [58].
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Chapter 2

Background

In this chapter, we present a summary of how Bitcoin network works. Other digital

currencies have similar mechanisms.

2.1 Bitcoin

Bitcoin is an electronic payment system based on cryptographic proof instead of

trust, allowing any two willing parties to transact directly with each other without

the need for a trusted third party. Bitcoin transactions are computationally imprac-

tical to reverse and that would protect sellers from fraud. Bitcoin transactions are

saved in blockchain, a single data file participants pass around to each other. The

Blockchain is the fundamental data structure of the Bitcoin protocol, and it allows

users to know who owns the currency. Anyone can perform transaction given they

prove they own the Bitcoins and others can mathematically verify the transaction

to ensure it’s validity.
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Bitcoin is run by 4 important rules:

1. Governance – an open source community of developers backed by the Bitcoin

Foundation.

2. Democratic – if you don’t like one of the changes, you are more than welcome

to fork the chain and implement your own rules.

3. Money Creation – is given to the people, not to the central bankers.

4. Deflationary by design – money supply cannot be manipulated and is fixed at

21 million coins, each divisible up to 8 decimal.

The users get a public key and a private key by installing the client. While

transferring the coin owner digitally signs the hash of previous transaction and

the public key of the next owner and adds these to the end of the coin. The hash

of the previous transaction is to verify the transaction and it can only decoded by

the next owner as it was encrypted with the next owner’s public key. The number

of inputs and outputs in each transaction vary as single user can create multiple

addresses and can transfer to multiple address.

The number of coins generated and distributed vary for each crypto currency,

but the procedure for generation and distribution is same for all peer-to-peer crypto

currencies. The coins are generated per block and the number of coins generated

decreases with time while the difficulty in generation increases. The new coins

are awarded to the users participating in the mining process, where users offer

their computing power to solve the hash problem for generation of new blocks

and adding verified transactions to the public leaguer.
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Figure 2.1: Anatomy of a bitcoin transaction

2.1.1 Bitcoin Transactions

The electronic coin is a chain of digital signatures. The input to a Bitcoin transac-

tion contains the public key of the redeemer of the output transaction. The current

owner should sign the transaction with the hash of the previous transaction. As

indicated in Figure 2.1, output contains the actual amount that is being sent to the

recipient, the change amount being sent back to the original sender, and the vol-

untary transaction fee attached to the output. The block chain prevents the double

spend attack by giving other nodes the power to verify that transaction inputs

were not already spent somewhere else.

Each owner transfers the coin to the next by digitally signing a hash of the



9

Figure 2.2: Bitcoin transactions in detail

previous transaction and the public key of the next owner and adding these to the

end of the coin as shown in Figure 2.2. A payee can verify the signatures to verify

the chain of ownership.

The new transactions are announced by the users on the network, and these

transactions are formed into blocks at time varying for different crypto currencies.

These blocks from the block-chain, where each block references the previous block.

Hence, double spending, i.e., spending the money more than once, require the re-

computation of previous blocks. Such double spending attack can be possible only
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if the attacker has greater than 50 percentage of the hash rate of the whole, which

is practically infeasible with large scale deployment of these networks. The block

generation time for Bitcoin is approximately one block per 10 minutes, the block

generation for Litecoin is approximately one block per 2.5 minutes, and the block

generation time for all other currencies is around 4-6 minutes per one block; with

a varying number of transactions per block for each crypto currency.

2.1.2 Bitcoin Market Value

The price of Bitcoin is highly volatile [17]. Starting from 2009 we can divide the

price into three groups, in 2010 Bitcoin gained real dollar value and at that time 1

Bitcoin was around 0.01 dollars. By mid 2011 Bitcoin gained public attraction due

to various reasons and the market value started increasing drastically [11]. This

public inclination in price continued until 2013, at that time 1 Bitcoin was about

1200 USD and then from 2013 till now the market price is unstable. As of Dec 1,

2015, 1 Bitcoin is around 350 dollars, the three phases can be observed in Figure 2.3.

Figure 2.3: Bitcoin market price - Historical
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Figure 2.4: Bitcoin market price - Last 6 months
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Chapter 3

Complex Network Analysis

In the context of network theory, a complex network is a graph with non-trivial

topological features that do not occur in simple networks such as lattices or ran-

dom graphs but often occur in graphs modelling real systems [39, 45].

The crypto currencies are based on a peer to peer network connected through

the Internet. The transactions are validated based on the proof of work system

where each node stores the list of all previous transactions. The transactions of the

crypto currencies are available to anyone by installing the client and connecting to

the peer to peer network. Such detailed information is rarely available in finan-

cial systems, making the crypto currency networks a valuable source of empirical

analysis of monetary transactions. However, as these networks are anonymous

and each user can create unlimited number of addresses, which appears as sepa-

rate nodes while analyzing the network, it is hard to determine which observed

phenomena are specific to the crypto currency system, and which results are gen-

eral for commercial transactions [20].
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3.1 Tools

As the data that we are analyzing is massive, we need the tools which can ef-

fectively analyze the massive data up to millions of nodes. So we are using the

following tools:

3.1.1 Stanford Network Analysis Platform (SNAP)

Stanford Network Analysis Platform (SNAP) is a general purpose network analy-

sis and graph mining library [57]. It is written in C++ and easily scales to massive

networks with hundreds of millions of nodes, and billions of edges. It efficiently

manipulates large graphs, calculates structural properties, generates regular and

random graphs, and supports attributes on nodes and edges.

3.1.2 Neo4j

Neo4j is a robust transactional property graph database [44]. Due to its graph data

model, Neo4j is highly agile and fast. Neo4j scales up and out, supporting tens

of billions of nodes and relationships, and hundreds of thousands of transactions

per second. Distributed across multiple machines, Neo4j uses a Graph query lan-

guage Cypher whose syntax provides a familiar way to match patterns of nodes

and relationships in the graph [43].
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3.2 Bitcoin Network

We downloaded the Bitcoin data-set from casejobs web database interface of the

Do the rich get Richer project by Daniel Kondor [], and decoded the data collected

from the wallet. We crawled Blockchain.info and Bitinfocharts.com for

daily transaction data and the richest node data.

In our network, the nodes are the addresses assigned to Bitcoin users and the

edges are the transaction between two nodes. The network we are analysing is

comprising of N = 49,390,594 nodes, total incoming transactions Ein = 151,933,127,

and the outgoing transactions Eout = 151,857,042 edges. We also divide the net-

work in different points of time to study the growth of the network over the years.

Bitcoin network is a growing network where the number of unique addresses

created every year increases exponentially. The major increase in the number of

unique addresses occurred after the first boom in 2011 and the second one when

the Bitcoin market value crossed 1000 USD.

3.2.1 Degree

A network can be an exceedingly complex structure, as the connections among the

nodes can exhibit nontrivial patterns [4]. To study a network, we need to develop

simplified measures that reflects the network characteristics in an understandable

way. The degree distribution captures the underlying structure of a network by

summarizing the degree characteristics of the nodes [47];

P(K) =
(

n−1
K

)
PK(1 − P)n−1−K
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Figure 3.1: PDF of in degree distribution of the Bitcoin transaction network for all
transactions until Jan 2015.

Figure 3.2: CCDF of in degree distribution of the Bitcoin transaction network for
all transactions until Jan 2015.
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Figure 3.3: PDF of out degree distribution of the Bitcoin transaction network for
all transactions until Jan 2015.

Figure 3.4: CCDF of out degree distribution of the Bitcoin transaction network for
transactions until Jan 2015.
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Figure 3.1 and Figure 3.2 present the in degree distribution of the Bitcoin trans-

actions. Similarly, Figure 3.3 and Figure 3.4 present the out degree distribution of

the Bitcoin transactions. We find that the degree distributions follow a power law,

which makes Bitcoin network a scale free network, for both in degree and out de-

gree distributions. The power laws of the degree distributions are αin) ∼ −2.21 and

αout ∼ −2.10 .

To understand the evolution of the network, we calculated the degree distribu-

tions of the network yearly. Table 3.1 and Table 3.2 present the characteristics of

the yearly Bitcoin transactions. We observe that there is a huge variation in degree

distribution from 2009 to 2011, but thereafter the distribution is more stable while

the number of the nodes is considerably increasing.

Table 3.1: In degree characteristics of yearly Bitcoin transactions

Year α Nodes Edges MaxDegree AvgDegree
2009 1.94 32,699 98,611 ,1,257 3.01
2010 2.00 122,167 374,712 1,826 3.07
2011 2.13 1,610,899 5,198,488 118,016 3.23
2012 2.14 3,780,767 14,570,562 913,847 3.85
2013 2.19 5,082,351 16,338,332 16,969 3.21
2014 2.21 38,761,711 115,352,422 636,092 2.98

Table 3.2: Out degree characteristics of yearly Bitcoin transactions

Year α Nodes Edges MaxDegree AvgDegree
2009 1.78 32,699 95,499 1,528 2.92
2010 1.83 122,167 478,271 5,8829 3.19
2011 1.88 1,610,899 5,461,888 59,297 3.39
2012 1.90 3,780,767 14,130,630 570,898 3.73
2013 1.92 508,235 16,442,626 69,919 3.23
2014 2.10 38,761,711 116,241,889 1,765,959 3.01
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Figure 3.5: In degree distribution of the yearly Bitcoin transaction network.

Figure 3.5 and Figure 3.6, present in degree distributions of transactions per

each year.
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Figure 3.6: In degree distribution of the Bitcoin transaction network - Combined.

Figure 3.7: Out degree distribution of the Bitcoin transaction network - Combined.
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Figure 3.8: Out degree distribution of the Bitcoin transaction network.

Figure 3.7 and Figure 3.8, present out degree distributions of transactions per

each year.
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3.2.2 Assortativity

We computed the nearest neighbour degree function Kin
n (Kout), which measures the

in degree Kin of the nodes with respect to out degree Kout. Figure 3.9 presents the

degree correlations for the Bitcoin network. In the graph, we observe that here is a

disassortative behaviour between the In and out Degrees of the nodes. That is, the

nodes with high out degree tend to connect to the node with low in degree.

Figure 3.9: In degree as a function of out degree Kin
n (Kout) for Bitcoin transactions.

The assortativity coefficient is the Pearson correlation coefficient of degree be-

tween pairs of linked nodes. The assortativity coefficient is calculated as:

r = Σ jk
jk(e jk−q jqk)

2
q

Positive values of r indicate a preference to link between nodes of similar de-

gree, while negative values indicate relationships between nodes of different de-
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Figure 3.10: Assortativity coefficients of the yearly Bitcoin transactions.

gree. The value of r lies between [1, 1]. When r = 1, the network is said to have

perfect assortative mixing patterns, i.e., cliques among same degree nodes, while at

r = 1 the network is completely disassortative, i.e., star graphs. When r = 0 the net-

work is non-assortative. Figure 3.10 presents the yearly assortativity coefficients

of the Bitcoin transactions.

We find that the in-out degree correlation coefficient is negative, except for only

a brief period in the initial phase. After mid-2010, the degree correlation coefficient

stays between r ≈ -0.012 and r ≈ -0.015, reaching a value of r ≈ -.016 by 2014, sug-

gesting that the network is disassortative. In general, for large scale-free networks,

assortativity vanishes as the network size increases [36] and similar behavior is

observed in the Bitcoin network.

3.2.3 Clustering

We also measured the average clustering coefficient, which measures local density

of edges.
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C = 1
nΣn

i=1
∆i

di(di−1)/2

Where di is the degree of node i, Σn
i=1 runs over all the nodes, and ∆i is the

number of triangle containing node i. To calculate ∆i, we ignored the directionality

of the edges. The average clustering coefficient C is the average of local clustering

coefficients of all the nodes n.

Figure 3.11: Clustering coefficient of yearly Bitcoin transactions.

Figure 3.11 presents yearly clustering coefficients of the Bitcoin transactions.

We observed that in the initial phase C is high, fluctuating around 0.15. This is

because the initial transactions may be the placed by few initial user transferring

money between their own accounts to test the network. After the initial phase, the

clustering coefficient reduces from 0.007 in 2012 to around 0.052 in 2014, which is

much higher than a random network of similar size.

3.2.4 Anonymity

Even though Bitcoin data is anonymous, an active attacker can observe the IP ad-

dress of a transaction request and match it to an actual user. Hence, some users



24

Figure 3.12: Anonymity among MyWallet users

might be interested in hiding their IP address even when communicating with the

network.

Anonymizer technologies allow one to hide a user’s IP address and are widely

used [35]. Tor is currently the most popular anonymizer network with millions

of users [1]. We wanted to analyze the percentage of users using Bitcoin anony-

mously [38]. We tracked the IP addresses connected to the Bitcoin network and

compared those IP addresses with the exit nodes of Tor anonymizer network.

We crawled blockchain.info for the online nodes and compared the list

with the Tor network exit nodes every hour. We compared IP addresses for 30

days to find the percentage of users connecting to the Bitcoin network using Tor

anonymizers. We observed that among 800 to 2000 connects to mywallet at a given

time only up to 20 nodes are using anonymizers as shown in Figure 3.12.
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3.3 Litecoin Network

Litecoin is refereed to as the silver form of Bitcoin where the protocol is designed

so that custom hardware cannot be used for mining. Even through Litecoin mar-

ket value is 1 % of Bitcoin, the Litecoin network has a total N= 6,990,919 unique

addresses and E = 6,486,325 edges.

3.3.1 Degree

We calculated the in degree and out degree distributions of the network in Fig-

ure 3.13 - Figure 3.14 and Figure 3.15 - Figure 3.16. Unlike Bitcoin network, the Lite-

coin network growth is continuous. The degree distributions show a power law

pattern with an exponent of αin ∼ −2.14 for in degree distribution and αout ∼ −2.01

for out degree distribution.
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Figure 3.13: In degree distribution of the Litecoin transactions until Jan 2015.

Figure 3.14: CCDF of in degree distribution of the Litecoin transactions until Jan
2015.



27

Figure 3.15: Out degree distribution of the Litecoin transactions until Jan 2015.

Figure 3.16: CCDF of out degree distribution of the Litecoin transactions until Jan
2015.
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Table 3.3: In degree characteristics of yearly Litecoin transactions

Year α Nodes Edges MaxDegree AvgDegree
2011 1.8 22400 754734 170892 33.69
2012 1.9 545576 10391318 1124344 19.04
2013 2.0 2546672 25208855 2765143 9.89
2014 2.2 6735643 19850699 360129 2.94

Table 3.4: Out degree characteristics of yearly Litecoin transactions

Year α Nodes Edges MaxDegree AvgDegree
2011 2.2 22400 63163 4037 2.81
2012 2.1 545576 2484673 395841 4.55
2013 2.0 2546672 17876786 734660 7.01
2014 2.1 6735643 32031470 1373967 4.75

Table 3.3 and Table 3.4 present yearly Litecoin network characteristics. The in

degree and out degree are stable for the entire lifetime of the Litecoin network as

the network is continuously growing since the introduction of the currency.

Figures 3.17 and Figures 3.18 present in degree and out degree distributions of

yearly Litecoin transactions.
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Figure 3.17: In degree distribution of the yearly Litecoin transactions.

Figure 3.18: Out degree distribution of the yearly Litecoin transactions
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3.3.2 Assortativity

We compute the degree correlation function, i.e., the in degree Kin of the nodes

with out degree Kout, for the network in Figure 3.19. We find that the in-out degree

correlation is dissortaative as the nodes with high degree have low in degree. This

distribution is clearly different from Figure 3.9 for Bitcoin where the very high

degree nodes connected to other very high degree nodes.

Figure 3.19: In degree as the function of out degree Kin
n (Kout) for Litecoin transac-

tions.

Figure 3.20 presents assortativity coefficient of yearly Litecoin transactions. We

find that the In-Out degree correlation coefficient is non-assortative except for the

first two year. Assortativity of Litecoin is tending toward 0 indicating a non-

assortative behavior.
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Figure 3.20: Assortativity coefficients of the yearly Litecoin transactions.

3.3.3 Clustering

We also measured the average clustering coefficient, the C value in Figure 3.21 We

observed that, in the initial phase C is high. After the initial phase the clustering

coefficient reduces from 0.33 in 2012 to around 0.05 in 2013, and has become 0.032

in 2014.

Figure 3.21: Clustering of the network.
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Chapter 4

Market Analysis

In this chapter, we analyze the richest users of popular crypto currencies. The

top 100 richest people in various crypto currencies might reveal the secrets about

how a rich person becomes more rich, how he accumulates the money, and so on.

Hence, we pick the top 100 richest people in each crypto currency and we analyze

their degrees compared to their wealth [11]. We back traced all the coins in the

wallets of the top 100 nodes. We analyzed the data for specific patterns and the

relations among the top 100 nodes.

4.1 Richest Bitcoin Addresses

We collected the data of the top 100 richest addresses in the Bitcoin network and

analysed for unique patterns in their behaviour. The total Bitcoins in circulation

are 14,917,575 BTC with a market value of 377.93 USD and a market capitalization

of 5,632,274,268 USD as of Dec 1, 2015. The top 100 richest nodes in Bitcoin hold
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Figure 4.1: Percentage of Bitcoin wealth, the richest own during Dec 2014.

Figure 4.2: Transaction pattern of the richest Bitcoin node.

19.88 % of wealth as shown in Figure 4.1.

We noticed couple of interesting behaviours among richest Bitcoin users. For

instance, the richest node transfers his/her bitcoins to four new addresses and then

on the same day transfers all coins back into a single new address, which becomes

the new richest address as shown in Figure 4.2.

Figure 4.3 shows the in and out degree of the top 100 nodes. We observe that

the incoming transactions to the richest people are through mining nodes, which

specifies that most of the richest nodes are miners. We also observe that the ap-
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Figure 4.3: In and out degree of the richest 100 Bitcoin nodes.

proximately 73 % of the richest people have 0 out degree, which means that they

just accumulate money without spending it.

4.2 Richest Litecoin Addresses

The total Litecoin in circulation are 43,455,110 LTC with a market value of 0.00959

USD and a market capitalization of 157,184,844 USD as of Dec 1, 2015. The 48.89 %

of the total market capitalization of the Litecoin is hold by the richest 100 people.

We observed that the behaviour of the top 100 addresses in the Litecoin network

are similar to the Bitcoin’s richest people. We find that among the 100 richest nodes

82 % of the nodes have 0 out degree as shown in Figure 4.4. We observe an inter-

esting pattern among the richest Litecoin users where more than two thirds of the

100 richest nodes simply transfer their Litecoins into a new account while paying

a small transaction fee.
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Figure 4.4: In and out degree of the richest 100 Litecoin nodes.

4.3 Richest Dash Addresses

The total Dash in circulation are 6,035,717 DASH with a market value of Dashcoins

is about 0.00574 USD and a market capitalization of 13,056,033 USD as of Dec 1,

2015. Note that Darkcoin was renamed as Dash. The top 100 richest nodes in

Dash hold 34.82 % of wealth. About 80 % of the richest nodes have a 0 out degree

as shown in Figure 4.5. We also observed that the top 100 nodes in Dash keep

Figure 4.5: In and out degree of the richest 100 Dashcoins nodes.
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Figure 4.6: In and out degree of the richest 100 Dogecoin nodes.

changing.

4.4 Richest Dogecoin Addresses

The total Dogecoins in circulation are 102,091,461,013 DOGE with a market value

of 0.00000034 USD and a market capitalization of 13,019,691 USD as of Dec 1, 2015.

The top 100 richest nodes in Dogecoin network hold 45.20 % of wealth. We find

that unlike other coins, Dogecoin richest nodes are there since the introduction of

the network while 54 % of the nodes have 0 out degree as shown in Figure 4.6.

4.5 Richest Peercoin Addresses

The total peercoins in circulation are 22,814,995 PPC with a market value is 0.00122

USD and a market capitalization of 10,495,248 USD as of Dec 1, 2015. The top 100

richest nodes in Peercoin hold 58.71 % of wealth. We observed that only less than

19 % of nodes have a 0 out degree, indicating almost all rich nodes are active in
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Figure 4.7: In and out degree of the richest 100 Peercoin nodes.

transactions rather than accumulating wealth Figure 4.7.

4.6 Richest Namecoin Addresses

The total Namecoins in circulation are 13,052,300 NMC with a market value of

0.00127 USD and a market capitalization of 6,255,649 USD as of Dec 1, 2015. The

top 100 richest nodes in Namecoin hold 75.13 % of wealth. We found that the

top 100 nodes also existed since the introduction of the network while 75 % of the

nodes have 0 out degree as shown in Figure 4.8.
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Figure 4.8: In and out degree of the richest 100 Namecoin nodes.
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Chapter 5

Regression Analysis

Bitcoin price is highly volatile and it depends on various factors similar to other

currencies [11]. In this chapter, we want to determine the factors affecting the price

of the Bitcoin and develop a mechanism to predict market value of Bitcoins. To

achieve this, we performed regression analysis, a statistical process for estimating

the relationships among the variables [34]. In regression analysis, we call the vari-

able for which we want to find a relation the dependent variable and the variables

from which the relationship is derived from as predictor variables.

We performed regression on the last 6 months of Bitcoin values shown in 2.4.

The dependent variable for analysis is the Bitcoin market price while we consid-

ered predictor variables are miners revenue in USD , total transaction volume per

day in USD, total outgoing transactions per day in USD, exchange trade value in

USD, market capitalization in USD, transaction fees in USD, and cost per transac-

tion in USD [54, 18]. All the predictor variables are in USD.

We perform the regression based on the results from Analysis of variance (ANOVA)
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tables. ANOVA is a collection of statistical models used to analyze the differences

among group means and their associated procedures such as ”variation” among

and between groups [53]. In ANOVA setting, the observed variance in a particular

variable is partitioned into component attributable to different sources of variation.

In its simplest form, ANOVA provides a statistical test of whether or not the means

of several groups are equal, and therefore generalizes the t-test to more than two

groups. As doing multiple two-sample t-tests would result in an increased chance

of committing a statistical type I error, ANOVAs are useful for comparing (i.e.,

testing) three or more means (i.e., groups or variables) for statistical significance.

We finally, perform the stepAIC analysis to test our predictions. StepAIC selects

the model based on Akaike Information Criteria (AIC), a measure of the relative

quality of statistical models for a given set of data [9]. Given a collection of models

for the data, AIC estimates the quality of each model, relative to each of the other

models. Hence, AIC provides a means for model selection.

5.1 Regression Model with Market Capitalization Variable

The matrix plot with all of the predictor variables is shown in Figure 5.1. We ob-

serve that market capitalization is directly related to the market price of Bitcoin.

ANOVA indicate that Market Price(Y) = Market Capitalization (X) where the market

price is only dependent on the market capitalization. The r-squared value is 0.9981

and p-value is less than 2.2e-16. These values indicate that the market capitaliza-

tion is direct dependent on the market price.

We also performed ANOVA analysis of the model with only market capitaliza-

tion as shown in Figure 5.2. The model indicates an almost perfect match.
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Figure 5.1: Regression analysis with market capitalization

anova ( lm10 )

Analysis of Variance Table

Response : MarPriceY

Df Sum Sq Mean Sq F value Pr(>F )

MarcapX7 1 587135 587135 92935 < 2 . 2 e−16

Residuals 179 1131 6
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Figure 5.2: Plot of market price and market capitalization

However, as the Market capitalization = Market price * Total number of Bitcoins,

we can not use the variable which itself is derived from the market price. Hence,

we removed the market capitalization and performed the regression analysis as

shown in Figure 5.3.
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Figure 5.3: Regression analysis without market capitalization

5.2 Regression Model with All Predictor Variables - Full Model

We initially run the model with all predictor variables and used the ANOVA test

to calculate the threshold of significance for each variable. The registered values

below the significance threshold of 0.05 indicate that the independent predictor

variables explain the variation of the dependent variable.
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> anova ( lm1 )

Analysis of Variance Table

Response : MarPriceY

Df Sum Sq Mean Sq F value Pr(>F )

CostPTranX1 1 428681 428681 865 .6386 < 2 . 2 e−16 ∗∗∗

ExTradeX2 1 8135 8135 16 .4261 7 .615 e−05 ∗

MinersRevX3 1 52674 52674 106 .3651 < 2 . 2 e−16 ∗∗∗

OutVolX4 1 151 151 0 .3057 0 .5810

TransFeeX5 1 755 755 1 .5247 0 .2186

TransVolX6 1 11702 11702 23 .6297 2 .596 e−06 ∗∗∗

Residuals 174 86168 495

Figure 5.4 presents Normal QQ plot for the full model. The multiple R-squared

value is about 0.8535 and the p-value is less than 2.2e-16. We observe that the

market price is dependent on all of the predictor variables.
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Figure 5.4: Normal QQ plot for full model
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summary ( lm1 )

Call :

lm ( formula = MarPriceY ˜ CostPTranX1

+ ExTradeX2 + MinersRevX3 +

OutVolX4 + TransFeeX5 + TransVolX6 )

Residuals :

Min 1Q Median 3Q Max

−49.890 −14.355 −0.571 12 .216 65 .978

C o e f f i c i e n t s :

Est imate Std . Error

t value Pr (>| t | )

( I n t e r c e p t ) 6 .847 e+01 1 .108 e+01 6 .179 4 . 4 5 e−09 ∗∗∗

CostPTranX1 4 .603 e+00 1 .499 e+00 3 .070 0 .00248 ∗∗

ExTradeX2 1 .877 e−09 6 .327 e−07 0 .003 0 .99764

MinersRevX3 1 .339 e−04 2 .513 e−05 5 .328 3 . 0 5 e−07 ∗∗∗

OutVolX4 −1.654 e−05 6 .749 e−06 −2.450 0 .01526 ∗

TransFeeX5 1 .529 e−03 1 .076 e−03 1 .422 0 .15690

TransVolX6 6 .285 e−07 1 .293 e−07 4 .861 2 . 6 0 e−06 ∗∗∗

−−−

S i g n i f . codes : 0 ∗∗∗ 0 .001

∗∗ 0 . 0 1 ∗ 0 . 0 5 . 0 . 1 1

Residual standard e r r o r : 22 .25 on

174 degrees of freedom

Mult iple R−squared : 0 . 8 5 3 5 , Adjusted R−squared : 0 .8485

F− s t a t i s t i c : 169 on 6 and 174 DF, p−value : < 2 . 2 e−16

The summary of the full model with all the predictor variables and the plot of
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the full model is shown in Figure 5.5. We from different linear models by adding

and removing predictor variables. The multiple R-squared value of the model

with all the predictor variables is 0.8535 so the reduced model should be one with

R-squared value greater that or equal to 0.8535.
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Figure 5.5: Plot of the full model
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5.3 Regression Model with Significant Predictor Variables - Re-

duced Model

To find the best predictor variables, we tried different possible models using the

six predictor variables and compared every model to the full model. If the reduced

and full model yield the same the R-Squared value, we remove the dropped vari-

able from the reduced model. After analyzing all of the linear models, we only

drop the exchange trade variable and keep the rest of the predictor variables.

> summary ( lm8 )

Call :

lm ( formula = MarPriceY ˜ CostPTranX1 +

MinersRevX3 + OutVolX4 +

TransFeeX5 + TransVolX6 )

Residuals :

Min 1Q Median 3Q Max

−49.88 −14.36 −0.57 12 .22 65 .97

C o e f f i c i e n t s :

Est imate Std . Error

t value Pr (>| t | )

( I n t e r c e p t ) 6 .847 e+01 1 .101 e+01 6 .218 3 . 5 8 e−09 ∗∗∗

CostPTranX1 4 .604 e+00 1 .477 e+00 3 .117 0 .00214 ∗∗

MinersRevX3 1 .339 e−04 2 .478 e−05 5 .402 2 . 1 2 e−07 ∗∗∗

OutVolX4 −1.653 e−05 6 .380 e−06 −2.591 0 .01037 ∗

TransFeeX5 1 .529 e−03 1 .072 e−03 1 .426 0 .15559

TransVolX6 6 .287 e−07 1 .202 e−07 5 .229 4 . 8 2 e−07 ∗∗∗

−−−
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S i g n i f . codes : 0 ∗∗∗ 0 .001

∗∗ 0 . 0 1 ∗ 0 . 0 5 . 0 . 1 1

Residual standard e r r o r : 22 .19 on

175 degrees of freedom

Mult iple R−squared : 0 . 8 5 3 5 ,

Adjusted R−squared : 0 .8493

F− s t a t i s t i c : 203 .9 on 5 and 175 DF, p−value : < 2 . 2 e−16
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Figure 5.6: Plot of reduced model
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The summary of the reduced model and the plot of the Reduced model in Fig-

ure 5.6. Here we observe that the model without exchange trade variable has R-

squared value equal to the full model, which indicates that exchange trade has no

effect on the market price of Bitcoin.

5.3.1 Comparison of Full and Reduced Models

We compared, the full model and reduced model in the following. We observe that

both models yield the same R-squared value of 0.86168.

> anova ( lm1 , lm8 )

Analysis of Variance Table

Model 1 : MarPriceY ˜ CostPTranX1 +

ExTradeX2 + MinersRevX3 + OutVolX4

+TransFeeX5 + TransVolX6

Model 2 : MarPriceY ˜ CostPTranX1 +

MinersRevX3 + OutVolX4 + TransFeeX5 +

TransVolX6

Res . Df RSS Df Sum of Sq F Pr(>F )

1 174 86168

2 175 86168 −1 −0.004357 0 0 .9976

5.3.2 Model with Miners Revenue

This section includes the summary of the model with only miners revenue as the

predictor variable. Even through the model only contains miners revenue, the R-

squared value is almost equal to the R-squared value of the full model (0.8284 vs
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0.8535 for the full model). Hence, we can select the model with only miners revenue

variable as our model, as it is the second best. From this analysis, we observe that

miners revenue plays a significant role in prediction of the Bitcoin market price.

> summary ( lm12 )

Call :

lm ( formula = MarPriceY ˜ MinersRevX3 )

Residuals :

Min 1Q Median 3Q Max

−70.791 −17.581 −1.014 15 .385 70 .800

C o e f f i c i e n t s :

Est imate Std . Error

t value Pr (>| t | )

( I n t e r c e p t ) 4 .566 e+01 8 .288 e+00 5 .509 1 . 2 4 e−07 ∗∗∗

MinersRevX3 2 .278 e−04 7 .750 e−06 29 .397 < 2e−16 ∗∗∗

−−−

S i g n i f . codes : 0 ∗∗∗ 0 .001

∗∗ 0 . 0 1 ∗ 0 . 0 5 . 0 . 1 1

Residual standard e r r o r : 23 .75 on

179 degrees of freedom

Mult iple R−squared : \ t e x t b f {0 . 8 2 8 4} ,

Adjusted R−squared : 0 .8274

F− s t a t i s t i c : 864 .2 on 1 and 179 DF,

p−value : < 2 . 2 e−16

The plot of the miners revenue based model is shown in Figure 5.7.
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Figure 5.7: Plot of linear model with miners revenue

5.3.3 SetpAIC Analysis

StepAIC analysis [9] performs regression analysis on the full model by adding and

removing variables in both directions, and selects the model with least AIC value

as the reduced model. We use stepAIC analysis to validate our models.



52

> step=stepAIC ( lm1 , d i r e c t i o n =” both ” )

S t a r t : AIC=1129.97

MarPriceY ˜ CostPTranX1 + ExTradeX2 +

MinersRevX3 + OutVolX4 +

TransFeeX5 + TransVolX6

Df Sum of Sq RSS AIC

− ExTradeX2 1 0 . 0 86168 1128 .0

<none> 86168 1130 .0

− TransFeeX5 1 1000 .9 87169 1130 .1

− OutVolX4 1 2973 .3 89141 1134 .1

− CostPTranX1 1 4668 .8 90837 1137 .5

− TransVolX6 1 11701 .9 97870 1151 .0

− MinersRevX3 1 14056 .7 100225 1155 .3

Step : AIC=1127.97

MarPriceY ˜ CostPTranX1 + MinersRevX3

+ OutVolX4 + TransFeeX5 + TransVolX6

Df Sum of Sq RSS AIC

<none> 86168 1128 .0

− TransFeeX5 1 1001 .5 87170 1128 .1

+ ExTradeX2 1 0 . 0 86168 1130 .0

− OutVolX4 1 3305 .8 89474 1132 .8

− CostPTranX1 1 4783 .8 90952 1135 .8

− TransVolX6 1 13464 .1 99632 1152 .2

− MinersRevX3 1 14370 .3 100538 1153 .9

> step $anova

Stepwise Model Path

Analysis of Deviance Table
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I n i t i a l Model :

MarPriceY ˜ CostPTranX1 + ExTradeX2

+ MinersRevX3 + OutVolX4 +

TransFeeX5 + TransVolX6

F i n a l Model :

MarPriceY ˜ CostPTranX1 + MinersRevX3

+ OutVolX4 + TransFeeX5 + TransVolX6

Step Df Deviance Resid . Df

Resid . Dev AIC

1 174 86168 .11 1129 .966

2 − ExTradeX2 1 0.004356982 175 86168 .11 1127 .966

The Step AIC analysis found (MarPriceY CostPTranX1 + MinersRevX3 + Out-

VolX4 + TransFeeX5 + TransVolX6) as the final model.

5.4 Validation of Assumptions

We use = 0.05 level of significance as threshold. Hence, if the p-value less than

0.05, we reject the null hypothesis and retain it otherwise.

By analyzing the residual versus fitted of the full model and reduced models,

we can say that there is no observed pattern in the residuals. Normal QQ plot show

the normality of the full model in Figure 5.4 and the reduced model in Figure 5.8.
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Figure 5.8: Normal QQ plot for reduced model

5.5 Variable Selection

We select the model without exchange trade as the reduced model based on two

criterion

1. Multiple R-squared value of reduced model (i.e., model without exchange

trade variable) is same as the multiple R-Squared value of full model.

2. Analysis of deviance table predicted that the model without trade value can

predict the market price better compared to the model with exchange trade

value.

We also noticed that miners revenue itself is a significant indicator of the market

value. The multiple R-squared value of the miners revenue model with is 0.8284

with a p-value less than 2.2e-16.
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According to our analysis and stepAIC result, we conclude that the highly

volatile Bitcoin market price can best be predicted by the cost per transaction,

transaction fee, total outgoing transactions, total number of transactions, and min-

ers revenue.
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Chapter 6

Conclusion

We have performed a detailed analysis of the popular digital currencies, namely,

Bitcoin, Litecoin, Dash, Dogecoin, Peercoin, and Namecoin. We also analyzed their

top 100 richest nodes. After becoming popular after mid-2011, Bitcoin is character-

ized by a dissasortative degree correlation and power law in- and out-degree dis-

tributions. Similarly, Litecoin network has disassortative degree correlation and

power law in- and out-degree distributions after inception.

We found that majority of nodes in the Bitcoin network are gaining money from

mining. The characteristics of richest nodes in Bitcoin, Litecoin and Dash networks

are similar. While richest 100 nodes in Bitcoin, Litecoin and Dash keep changing,

richest nodes in Dogecoin, Namecoin, and Peercoin networks are often the same

nodes. We also found that majority of the richest nodes among all networks except

peercoin are interested in accumulating money.

We found that market price of Bitcoin depends on the internal variables of Bit-

coin such as miners revenue, transaction fee, transaction volume, daily output vol-
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ume, and cost per transaction rather that on the foreign exchange trade value.
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Chapter 7

Future Work

Although the results presented here have demonstrated the analysis of Bitcoin,

Litecoin networks in detail, we can perform more detailed analysis of the data to

get more insight. However, such analysis require considerable computing power

due to large scale of the currency transactions.

Right now due to the limited amount of data available for the Dogecoin, Name-

coin, Dash, and Peercoin networks, their transaction networks are not analyzed in

detail. In future, we would like to analyze the remaining currencies in detail and

compare the results with the Bitcoin and Litecoin.

There is a possibility to analyze the flow of currency, i.e., from the origination

of money to the current balances. This can be achieved by viewing the network in

detail and tracing the transactions to individual nodes.
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