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Abstract 

 

With future climate change and increased water demand and scarcity in the Colorado 

River Basin, the Bureau of Reclamation estimates that the costs of salinity damage will 

increase for Colorado River users and will exacerbate the current salinity challenges. 

This study focuses on saline and sodic soils associated with the Mancos Shale formation 

in order to investigate the mechanisms driving sediment and salinity loads in the Price-

San Rafael River Basin of the upper Colorado River.  A Walnut Gulch rainfall simulator  

was operated with a variety of slope angles and rainfall intensities at two field sites 

(Price, Dry-X) near Price, Utah in order to evaluate how the amount and spatial 

distribution of vegetation affects salinity in runoff.  For each simulated rainfall event, 

the time-varying concentrations of major cations, anions, and sediment in runoff were 

measured.   

Principal component analysis revealed that the two field sites are generally different in 

runoff water chemistry and soil chemistry, likely due to the difference in parent material 

and soil indicative of their location on different geologic members. The Dry-X site also 

has substantially greater total dissolved solids (TDS) and sediment in runoff, soil sodium 

absorption ratio (SAR), and soil cation exchange capacity (CEC) than the Price site.  
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Despite these differences, a consistent positive linear relationship between the plot-

averaged sediment and TDS concentration was found across both sites.   

The Rangeland Hydrology Erosion Model (RHEM) was calibrated to provide unbiased 

estimates of sediment in runoff from 23 runs of the rainfall simulator.  RHEM simulated 

the plot-plot variability best at Dry-X compared to Price. Sensitivity analysis of the RHEM 

input parameters showed that the splash and sheet erodibility coefficient (𝐾𝑠𝑠) and the 

effective saturated conductivity coefficient (𝐾𝑒) had the largest influence on the 

model’s sediment and discharge outputs, respectively. The regression that predicted 

TDS concentration from sediment was applied to RHEM outputs to show that the model 

could be used to provide salinity estimates for different storm intensities on this part of 

the Mancos Shale.   

The potential influence of vegetation canopy cover on sediment production from these 

two sites was inferred by running RHEM with canopy cover values ranging from 0% to 

100%.  This changed sediment output by 111% to -91% relative to the present 

vegetation cover.  Measures of the geometry of soil and vegetation patches at Dry-X, 

such as fractal dimension index and proximity index, showed a relationship to error 

residuals from RHEM.  As the vegetation becomes less isolated, more uniform, and the 

tortuosity of the bare soil area increases, observed sediment decreases relative to 

RHEM predictions.  
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The results of this study will help land management agencies assess the feasibility of 

mitigation strategies for reducing sediment and salinity loads from the saline and sodic 

soils of the Mancos Shale formation and indicate a possible benefit to incorporating the 

parameters that describe the spatial pattern of vegetation in RHEM.   
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1 Introduction 

 

The Colorado River Basin is a primary source of water for seven states in the western 

U.S. and the Baja region of Mexico (Figure 1). Before substantial settlement of the west 

occurred, the estimated salt load of the Colorado River was 600 – 700 parts per million 

(ppm) in the Lower Colorado River Basin [Blackman et al., 1973]. Since the Colorado 

River Basin Salinity Control Act of 1974 was enacted, salinity has been effectively 

controlled [Robison et al., 2014], but with climate change and increased water demand 

and scarcity in the Colorado River Basin, the Bureau of Reclamation estimates that 

salinity damage costs for Colorado River users will increase and exacerbate the current 

salinity challenges [Bureau of Reclamation, 2005]. To better understand salinity 

processes and identify management techniques that may ameliorate salinity problems, 

studies have been conducted to determine salinity inputs into the river. These studies 

have shown that up to 55% of the salinity in the Colorado River is from natural sources 

such as groundwater and surface water [Kenney et al., 2009] in the form of subsurface 

reemergence [Blackburn and Skau, 1974; Warner et al., 1985; Shirnian-Orlando and 

Uchrin, 2000].  
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Figure 1: Geographic map of the Colorado River Basin and areas where water is 
allocated outside of the basin. Credit: U.S. Bureau of Reclamation. 

 

In Utah, 7 - 15% of the rangeland areas are classified as being in a severely eroding 

condition; moreover, it is estimated that these areas are responsible for 75 - 90% of the 

increasing sediment and salt yields [Rasely et al., 1991]. This creates an opportunity to 



3 
 

reduce salinity through land and water management activities on rangelands which 

make up nearly 80% of the land mass in the western United States [Weltz et al., 2008]. 

The Mancos Shale formation is among these rangeland areas that are in a severely 

eroding condition. The Mancos Shale spans a wide area in the Upper Colorado River 

Basin (UCRB) in southeast Utah and has been identified as a major producer of 

sediment, salinity, and selenium to the Colorado River [Evangelou et al., 1984; Tuttle et 

al., 2014]. The Price River contributes less than 1% of the water, but approximately 3% 

of the salt load in the Colorado River, and a substantial part of that salt load comes from 

the Mancos Shale formation [Rao et al., 1984]. In addition, the majority of the Mancos 

Shale formation is under the control of the BLM/BoR which provides land managers 

flexibility to implement plans that may reduce future sediment and salinity loads into 

the Colorado River (Figure 2). 



4 
 

 

Figure 2: Geographic map of the extent of the Mancos Shale formation in the UCRB and 
its extent within Utah lands under the control of the BLM/BoR.  

 

In light of this, the Bureau of Land Management (BLM), U.S. Department of Agriculture - 

Agricultural Research Service, Bureau of Reclamation (BoR), and Desert Research 

Institute are investigating sediment and salinity contributions to the Colorado River 
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from saline and sodic soils of rangelands in the Colorado Plateau. There are two goals 

for this project: (1) improve the understanding of sources and transport mechanisms of 

salinity and sediment loads into streams from rainfall-induced runoff within the UCRB 

and (2) parameterize our findings so they can be implemented into the Rangeland 

Hydrology Erosion Model (RHEM). This study describes field experiments, laboratory 

analyses, and numerical simulations conducted to investigate salinity and sediment 

loading in response to the quantity and spatial distribution of vegetation canopy cover 

(VCC) on varying slope, geology, and rainfall intensity on rangelands in the vicinity of 

Price, Utah. Our findings will allow RHEM to be used as a tool to aid land management 

decisions that address sediment and salinity loads in the Colorado River.  
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2 Research Objectives and Hypotheses 

 

The research objectives of this project are to investigate: (1) if a linear relationship 

between sediment erosion and salinity loading in runoff exists for the Mancos Shale and 

if this relationship can be used in RHEM to predict salinity and (2) determine what 

ameliorating effect vegetation amount and spatial pattern has on runoff sediment and 

salinity. We hypothesize that: 

1. Sediment and salinity loading processes during an erosion event have a linear 

relationship.  

2. The amount and spatial pattern of vegetation has a significant influence on 

salinity and sediment loading in runoff during a rainfall event due to reduced splash and 

sheet erosion, increased infiltration, and reduced flow velocity.   

Our analysis will improve parameterization of the RHEM model for estimating the 

erosion of saline and sodic soils of the Colorado Plateau under different rainfall 

scenarios.   
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3 Background and Literature Review 

 

This section gives detailed background information that is pertinent to understand the 

purpose of this research.  In order to understand the ameliorating effect the amount of 

vegetation and spatial pattern has on sediment erosion and salinity transport processes, 

we must establish an understanding of: 

 The geologic history of the Mancos Shale formation because the depositional 

environments in which the Mancos Shale formation developed (e.g. parent 

material) influences the variability in soil geochemistry at a given location. In 

addition, soil chemistry, as well as climate and topography, influences what 

vegetation (if any) is present. 

 The Price River Basin salinity because the Price River contributes a substantial 

portion of salinity to the total salinity load of the Colorado River. 

 Sediment erosion and salinity transport processes because these are the two 

processes we hope to manipulate through vegetation. 

 Vegetation effects on soil and erosion processes because the BLM/BoR hopes to 

use vegetation on highly erodible hillslopes to decrease sediment and salinity 

loading into the Colorado River. 

 Landscape pattern descriptions because we want to evaluate if the spatial 

distribution of VCC has a measurable effect on sediment erosion and salinity 

transport processes. 
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 The Rangeland Hydrology and Erosion Model because it is the mechanistic model 

we use in this study and it’s the model the BLM/BoR are interested in using as a 

land management tool. 

 

3.1 Geologic history of the Mancos Shale formation 

 

Hettinger and Kirschbaum [2002] summarize the geologic history and lithology of the 

Mancos Shale Formation. During the Late Cretaceous (95 - 67 Ma) the Uinta Basin 

region was located near the Western Interior Seaway and within the Cretaceous Rocky 

Mountain Foreland basin. Fluvial systems transported sediment eastward from the 

Sevier highlands to the coastal areas and coal-forming wetlands occupying the coastal 

plains. When the seaway reached its maximum extent, the western shoreline was 

located in Central Utah during the Turonian age. Between the Turonian age and the 

early Campanian age, the shoreline began to slowly retreat. During the Campanian age, 

the shoreline repeatedly migrated back and forth until it permanently moved out of the 

region during the Maastrichtian age [Hettinger and Kirschbaum, 2002]. As a result, the 

Mancos Shale is dominated by mudrock that accumulated in offshore, shallow, open 

marine environments within the Cretaceous Interior seaway and therefore contain high 

quantities of salts. The Mancos Shale is between 95 - 80 Ma, contains five members, and 

is part of the Capital Reef Stratigraphy. First, the Tununk member contains fossil rich, 
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silicified bluish gray shale inter-bedded with mudstone, fine-grained sandstone, and 

siltstone. Next, the Ferron Sandstone was deposited in a wave-dominated delta and 

river system and contains brown fine-grained sandstone and white cross-bedded 

sandstone with inter-bedded gray shale rich in carbonates and known to have coal and 

oil deposits. The Blue Gate member resembles the Tununk member, is light gray to 

bluish gray, and contains bentonite-rich clays, shaly siltstone, and sandstone. The Muley 

Canyon member contains bedded, fine-grained sandstone and carbon-rich shales known 

to have coal deposits. Finally, the Masuk member resembles the Blue Gate member and 

contains cross-bedded sandstones and yellowish-gray to bluish-gray mudstone with 

inter-bedded light gray sandstone [Weiss et al., 2003; Witkind, 2006; Orkild, 1956]. The 

Price field site for this study is located within the Tununk member (Figure 3a) and the 

Ferron field site (a.k.a. Dry-X) is located within the Blue Gate member (Figure 3b) of the 

Mancos Shale formation, both of which are immediately downslope of the Ferron 

Sandstone member.  
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Figure 3a-b: Partial geologic maps of each field site showing their location on a specific 
geologic member. (a) Partial geologic map of Price field site located on the Tununk 
Member (Kmt) of the Mancos Shale formation [Witkind et al., 2006]. (b) Partial geologic 
map of Dry-X field site located on the Blue Gate Member (Kmbg) of the Mancos Shale 
formation [Orkild, 1956].  

 

3.2 Price River Basin Salinity 

 

The Price River Basin is subject to runoff-producing spring snowmelt and summer 

precipitation occurring as high intensity, short duration, convectional storms. Salinity 

loading mainly occurs during the summer months and is most pronounced after the first 

storm [Lin et al., 1984] of the season. Surface water salinity is controlled by salt 

concentration and salt transport that is related to soil erosion processes [Bauch and 
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Spahr, 1998]. Natural salinity loading occurs predominantly from surface runoff and 

erosion processes from these summer storms on steep, incised Mancos Shale slopes [Lin 

et al., 1984]. Rao et al. [1984] found that the dominant salt species in the Mancos Shale 

formation are alkaline earth carbonates and sulfates. These are soluble and easily 

transported as dissolved solids in water or in some cases, hydraulic lift. After long dry 

periods, initial summer storms allow salts to accumulate on the surface as salt 

efflorescence (thenardite, Na2SO4; also possibly gypsum). Efflorescence crust forms from 

the upward flux of saline soil water and accumulates within approximately the first ten 

days after a storm event. The formation of efflorescence crust is inhibited by the lack of 

water in the soil or crust formation itself that cuts off vapor flow shortly after this ten 

day period. For each storm that occurs afterward, the magnitude of salinity loading 

tends to decrease and may be dependent on the duration of the dry period after the 

storm event [Rao et al., 1984]. It is estimated that approximately 7.5 - 8.5% of the total 

salinity loading in the Price River Basin comes from salt efflorescence [Bowles et al., 

1982]. Salt efflorescence is most commonly found in low lying areas like stream channel 

beds and rills. During flash floods, these ephemeral channels in arid and semiarid 

regions can be highly efficient at transporting salt laden sediments [Laronne and Reid, 

1993; Reid et al., 1996]. Rill development and ephemeral channel erosion drives 

sediment transport [White and Hawkins, 1980; Shen, 1981; Jackson et. al. 1984], while 

significant salt transport occurs in concentrated flow erosion and is often exacerbated 

by the presence of salt efflorescence [Riley et al., 1982].  
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3.3 Sediment Erosion and Salinity Transport Processes 

 

Water driven sediment erosion processes occur in three phases: (1) soil particles detach 

from the surface from raindrop impact; (2) detached particles are transported by 

overland flow downslope (generally unidirectional); and (3) as water velocity decreases, 

deposition of particles occurs [Breshears et al., 2003]. Differences of water erosion and 

sediment transport occur from several factors: (1) precipitation distribution; (2) 

vegetation canopy cover; and (3) soil moisture and soil texture [Breshears et al., 2003]. 

In inter-rill areas, soil particle detachment occurs by raindrop impact and these 

detached soil particles are transported by overland flow. As the depths of overland flow 

downslope increases, overland flow protects the ground surface from raindrop impact, 

varying inversely with slope length [Abrahams et al., 1991].  Laronne and Shen [1982] 

conducted a study on the Mancos Shale and determined that several factors of solute 

pickup are related to sediment erosion processes and include: (1) precipitation and 

initial runoff being under-saturated with respect to soil minerals, (2) slope, (3) runoff 

rate, (4) rill development, and (5) dissolution of transported sediment particles. In 

addition, Ponce [1975] showed statistically significant linear correlations between 

salinity and sediment in runoff on individual rainfall plots from several geologic 

members of the Mancos Shale formation. Ponce [1975] attributed the variability in the 

linear correlations to the variability in dissolution rates of suspended sediment particles. 
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In addition, Evangelou [1981] showed that when high concentrations of Ca2+ is present 

in runoff, the release of ions (primarily Na+ and Mg2+) on the Mancos Shale is directly 

related to and regulated by the exchange complex, represented as the cation exchange 

capacity (CEC), and the relative cation adsorption affinities of the soil minerals. 

Therefore, CEC is the mechanism that drives a substantial increase in salinity loading on 

Mancos Shale soils.   

Microphytic crusts also have an effect on runoff, soil erosion, and salt transport, 

depending on their level of development and disturbance [Belnap et al., 2013]. 

Biological soil crusts (microphytic crusts) are typically erosion resistant and affect 

infiltration rates by blocking flow through macropores and bridging erodible soil 

particles into erosion resistant soil aggregates [Eldridge, 1998]. They also can enhance 

porosity and infiltration by increasing aggregates and surface roughness [Loope and 

Gifford, 1972; West, 1991; Eldridge, 1993]. Areas where microphytic crusts have no 

trampling to moderate trampling rates from animals typically have a high degree of 

stability and lower erodibility. Conversely, if the trampling rate is high, soil erodibility 

increases [Eldridge, 1998]. The majority of research has shown that intact microphytic 

crusts reduce soil erosion and soil detachment, but the role of microphytic crusts in 

altering transport of salts is poorly understood [Belnap, 2006].  
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3.4 Vegetation Effects on Soil and Erosion Processes 

 

Infiltration rates are controlled by vegetation, soil properties, climate, and topography 

[Wood and Blackburn, 1981]. In arid and semi-arid landscapes, the amount of runoff and 

infiltration may be a function of vegetation patterns [Chartier et al., 2011]. Loch [2000] 

found that infiltration totals and rates increased with increasing vegetation cover. In 

general, soil beneath the canopy acts as a sink for water, sediment, and nutrients, 

whereas interspace (bare soil) areas act as a source [Howes and Abrahams, 2003]. 

Charley and West [1975] found distinct soil chemical patterns of carbon, nitrogen, 

phosphorus, pH, and salinity vertically and horizontally between vegetation and bare 

soil areas.  In addition, Zucca et al. [2011] found an increase in soil nutrients, ions, CEC, 

and sodium absorption ratio (SAR) under the canopy of Atriplex nummularia in 

Morocco, indicating that vegetation affects the spatial distribution of these soil 

properties. VCC can have a large effect on water erosion and runoff processes, primarily 

because of rainfall interception [Wischmeier and Smith, 1978]. Carroll et al. [2000] 

found that as VCC increases, there is a reduction in both runoff electrical conductivity 

(EC) and sediment loss on varying slopes. Bartley et al. [2006] conducted a hillslope-

scale study on savanna rangelands in Australia and found that even with high mean VCC, 

small patches of interspace had 6-9 times more runoff and 60 times more sediment loss 

than similar hillslopes that did not contain as much or any interspace patches. In 

addition, the sediment load consisted of fine suspended load rather than coarse 
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bedload material and the majority of soil loss occurred during the initial runoff event. 

Furthermore, Bartley et al. [2006] highlight the importance of having medium to high 

VCC patches at the bottom of hillslopes so vegetation may trap and store sediment, 

thereby reducing sediment entering the stream network. 

Interception of rainfall by vegetation is a function of precipitation and canopy 

characteristics [Hamilton and Row, 1949; Slatyer, 1965; Navar and Bryan, 1990; 

Domingo et. al., 1994]. Interception reduces runoff volumes, and stemflow may 

promote deep infiltration into the soil directly beneath the canopy [Branson et al., 

1972]. In most cases at the beginning of a rainfall event, canopies efficiently intercept 

almost all rainfall within the area they project over the ground until a maximum is 

reached when the cumulative interception is equal to the amount of precipitation. Some 

rainfall makes it through the canopy and reaches the surface as through-fall. Once the 

maximum cumulative interception threshold is exceeded, rainfall water captured by the 

canopy may make its way to the soil below via foliar drip and stemflow. The amount of 

time to reach maximum cumulative interception is dependent upon the type of plant 

and the rainfall intensity [Wood et al., 1998]. Proportionally, rainfall lost to vegetation 

interception is most significant under conditions of lower rainfall intensities and may 

strongly influence erosion rates under such conditions [Simanton et al., 1991].  

Vegetation-driven spatial heterogeneity (VDSH) explains how soil development and 

evolution processes relate to vegetation versus interspace areas [Puigdefabregas, 2005]. 

Rills and gullies are considered erodible sediment conveyors, transporting detached 
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sediment downslope as concentrated flow, depending on VDSH and the detachment 

and conveyance hydraulic factors. VDSH influences sheet runoff and concentrated flow 

processes possibly by creating obstacles which increases the tortuosity of concentrated 

flow paths and reduces flow velocity. This in turn may influence rill and channel 

development and affect salinity and sediment loading along these flow paths [Wilcox et 

al., 1996; Davenport et. al., 1998; Urgeghe et al., 2010; Weltz et al., 2014]. When 

vegetation becomes sparse runoff tends to concentrate in narrow channels whereas 

when vegetation becomes dense runoff channels widen. This differential response 

seems to reflect the existence of a channel network characterized by VDSH 

[Puigdefabregas, 2005; Al-Hamdan et al., 2012].  

 

3.5 Pattern Descriptions 

 

Landscape ecology involves the study of landscape patterns at a variety of scales to 

quantify the interactions among patches within a landscape mosaic and how these 

patterns and interactions change with time. Landscape patterns, when quantified, allow 

for the study of landscape function and change [McGarigal and Marks, 1995]. In this 

study, landscape pattern metrics are used to quantify VCC and soil interspace patterns 

and to investigate their relationship to erosion and salinity. There are three levels of 

landscape pattern metrics: landscape, class, and patch. Fragstats is a program designed 
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to compute a variety of pattern metrics for categorical map patterns for all three levels. 

As described by McGarigal [2015]: 

“Landscape metrics measure the aggregate properties of the entire patch mosaic 

(p. 84). Class metrics measure the aggregate properties of the patches belonging 

to a single land cover type (p. 82). There are two basic types of metrics at the 

class level: (1) indices of the amount and spatial configuration of the class, and 

(2) distribution statistics that provide first- and second-order statistical 

summaries of the patch metrics for the focal class (p. 82).” 

Both landscape and class metrics share the same distribution statistics that include: 

mean (MN), area-weighted mean (AM), median (MD), range (RA), standard deviation 

(SD), coefficient of variation (CV). Each level of landscape pattern metric has associated 

with it a series of specific pattern metrics: area-edge, shape, core area, contrast, 

aggregation, and diversity. Area-edge metrics are metrics that deal with the size of 

patches and the amount of edge created by these patches [McGarigal, 2015]. Area 

metrics quantify landscape composition, whereas edge metrics quantify non-spatially 

explicit landscape configuration [McGarigal and Marks, 1995]. Shape metrics describe 

landscape configuration [McGarigal and Marks, 1995] by the interaction of patch shape 

and size and its complexity [McGarigal, 2015]. Contrast metrics describe the magnitude 

of difference between adjacent patch types with respect to one or more attributes at a 

given scale that are relevant to the process under consideration [McGarigal, 2015]. 

Aggregation metrics describe the tendency of patch types to be spatially aggregated or 
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“contagious” distributions (i.e. landscape texture). Aggregation metrics describe four 

types of concepts: (1) dispersion, (2) interdispersion, (3), subdivision, and (4) isolation. 

Dispersion describes how spread out or dispersed a patch type is. Interdispersion 

describes with how often multiple class types spatially intermix. Subdivision describes 

how patch types are broken up into separate patches. Isolation describes the degree to 

which patches are spatially isolated from one another by distance [McGarigal, 2015].  

 

3.6 Rangeland Hydrology and Erosion Model and its Application 

 

The Rangeland Hydrology and Erosion Model (RHEM; Nearing et al. [2011]) is a process-

based model that was used in this study to investigate how the amount and spatial 

distribution of VCC affects sediment and salinity loading in runoff during a rainfall event. 

The RHEM model simulates hillslope runoff and erosion responses based on two process 

model components within the core engine. The hydrology component of the RHEM 

model is based on the KINEROS2 (K2) model that incorporates infiltration and overland 

flow [Smith et al., 1995]. The erosion component of RHEM incorporates concentrated 

flow [Foster, 1982] and splash and sheet flow [Wei et al., 2009] to simulate soil erosion 

[Al-Hamdan et al., 2015]. The current version of RHEM (2.3) is set up so that 𝐾𝑠𝑠 (splash 

and sheet erodibility coefficient) is the primary indicator of erosion while 𝐾𝑤 

(undisturbed concentrated flow erodibility coefficient) is the primary indicator of 
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transport of the eroded sediments [M. Hernandez, USDA, pers. Comm. 2015]. RHEM 

was set up this way because it is assumed that sediment detachment is dominated by 

splash and sheet erosion while the major role of concentrated flow paths is transporting 

the sediments detached by splash and sheet flow. Currently, RHEM doesn’t model 

salinity chemistry and transport processes. However, in this research, we hope that with 

an improved understanding of the relationship between suspended sediment and 

salinity loading in runoff we can use the sediment output of the model as a proxy to 

estimate an associated salinity output.  
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4 Methods 

 

Methods were designed to collect information on: (1) the amount and spatial 

distribution of VCC; (2) micro-topography; (3) runoff flow rates, quantity and chemistry; 

(5) sediment quantity; and (6) soil chemistry variability with depth and between 

vegetation versus interspace. Measurements were made under four rainfall intensities 

on varying slope, geology, and VCC to quantify how VCC influences sediment and salinity 

loading on rangelands saline and sodic soils.  

 

4.1 Field Methods 

4.1.1 Site Description 

 

The Price region of Utah (Figure 4) has an arid climate influenced by summer monsoonal 

convectional thunderstorms and contains a salt desert shrubland ecosystem. The study 

sites are located in the Price-San Rafael River Basin (1.1 x 104 km2). The city of Price, 

Utah has a mean annual precipitation of 233 mm/yr and mean air temperature of 10 °C, 

over the 1968 - 2014 period [Western Regional Climate Center, 2014]. The Price field 

site (110° 36' 26" W, 39° 27' 47" N; Figure 5a) is located within the Tununk member of 

the Mancos Shale formation 23 km SE of the city of Price at an elevation of 1700 m ASL. 

Price contains well developed, light gray soil crusts containing sparse VCC (3.3% - 17.8%) 
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on shallow grade slopes (0.7% - 10%). The soil series found at Price is the Persayo loam 

[USDA-NRCS, 2013]. The vegetation at the site is comprised of halophytes and salt-

tolerant vegetation that include a mixture of four shrubs (Krascheninnikovia lanata, 

Chrysothamnus nauseosus, Atriplex gardneri, Ephedra viridis), two subshrubs 

(Eriogonum microthecum and Helianthella microcephala), and three grass species 

(Achnatherum hymenoides, Hilaria jamesii, Elymus elymoides). The most predominant 

plant species were Atriplex gardneri, Ephedra viridis, and Achnatherum hymenoides. The 

Dry-X field site (111° 7' 21" W, 38° 58' 23" N; Figure 5b) is located within the Blue Gate 

member 74 km SSW of Price at an elevation of 1900 m ASL. Dry-X contains poorly 

developed, light-medium gray soil crusts with moderate VCC (17.7% - 26.4%) on 

moderately steep slopes (11.4% - 24.5%). The soil series found at Dry-X is the Chipeta-

Badland complex [USDA-NRCS, 2013]. The vegetation at the site is solely comprised of 

the salt-tolerant halophyte shrub species, Atriplex corrugata. Both sites contained a 

marginal amount of cattle and antelope hoof impressions in the soil. 
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Figure 4: Geographic map of the field sites relative to rivers in the Upper Colorado River 
Basin. 

 

Figure 5a-b: Photos from Price (a) and Dry-X (b) field sites. 
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4.1.2 Plot Selection and Installation 

 

The Price and Dry-X sites were selected because of their location on the Mancos Shale 

formation, varying vegetation cover and slope, accessibility for field work operations, 

and National Environmental Policy Act (NEPA) clearance.  At the Price and Dry-X field 

sites, 6x2 m rainfall simulation plots were installed. The locations of each plot on the 

hillside were placed where rills were already developed that would carry water down-

gradient. Once the location of each plot was determined, a Nikon NPR 352 total station 

was used to make the plot borders equal-diagonal (square) to one another. After 

making the plots square, metal stakes and construction string indicated where the 2x0.2 

m steel plates were installed on the top and side borders.  At the bottom of the plot, a 

flume was installed to channel runoff from the plot into the runoff collection pit. At each 

site, there were 5 types of plots: (1) control (no rainfall), (2) 2 year storm, (3) 10 year 

storm, (4) 25 year storm, and (5) 50 year storm. Separate plots were established for 

three replications of each rainfall intensity. The control plots were only used for a prior 

characterization of soils and were not replicated. The number of replications was chosen 

as a balance between available resources and the statistical validity of results. 

 



24 
 

4.1.3 Rainfall simulation  

 

The study used a custom-modified Walnut Gulch rainfall simulator (WGRS) that 

completely and evenly covered the 6x2 m plots (Figure 6) [Paige et al., 2004]. The 

simulator has a central oscillating boom that is 6.1 m long with a 5 cm internal diameter.  

The oscillating boom is controlled by a high-torque stepper motor with a chain and gear 

sprocket system. The central boom has four VeeJet 80100 nozzles spaced 1.52 m apart 

that sit 2.44 m above the plot. The spray produced by the nozzle is a long, narrow oval 

approximately 2.8 m long. The boom is supported by three sets of telescoping 4.6 m legs 

that can be adjusted by 5 cm increments to a maximum boom height of 3.3 m. Metal 

crossbars are attached to the legs for additional stability. On the top and sides of the 

simulator are windbreaks to minimize the effects of wind on the distribution of rainfall 

across the plot. Nozzle spray is controlled by a pressure regulator that maintains a 

constant nozzle pressure of 55 kPa. Rainfall intensity (a function of the amount of time 

the nozzles are operating) is controlled by changing the length of time between 

oscillations and the activation of individual nozzles. The oscillating boom and its 

components are computer controlled [Paige et al., 2004].  

Intensities for our rainfall simulations were determined from the NOAA Atlas14 point 

precipitation frequency estimates for the Price area where our field sites were located. 

Based on 5 minute rainfall amounts derived from the Atlas14 database 

[http://www.nws.noaa.gov/oh/hdsc/index.html], four rainfall intensities were applied: 
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(1) 50.8 mm/hr, (2) 88.9 mm/hr, (3) 114.3 mm/hr, and (4) 139.7 mm/hr. Water that was 

used during the rainfall simulations was obtained from the firehouse station at the BLM 

Price office. The WGRS was connected to a Husky 1000 gal (3785 L) self-supporting 

onion tank using a series of water hoses and pumps. 

 

Figure 6: Walnut Gulch rainfall simulator operating at Dry-X.  

 

4.1.4 Runoff Sampling 

 

Runoff was collected during each simulation using two different collection containers. 

Runoff water chemistry samples were collected using VWR 50 mL centrifuge tubes and 

runoff sediment samples were collected using 1 L Nalgene bottles, neither of which was 

pretreated. The same runoff sampling protocol was applied to each field site with the 
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exception of the timing intervals when runoff was collected. On the first field expedition 

to the Price site, 10 rainfall simulations were completed. On that trip, runoff was 

collected every 30 seconds for the first 9 minutes, and after the 9th minute, runoff was 

collected every minute until the end of the rainfall simulation. On our second field 

expedition for two additional plots at Price and 12 plots at Dry-X, runoff was collected 

every 30 seconds for the first 3 minutes and then every 3 minutes until the end of the 

rainfall simulation. The protocol was changed because rainfall simulations from the first 

field expedition did not appear to have been run long enough for the hydrograph 

discharge to consistently reach steady-state. One water chemistry sample was collected 

in a VWR 50 mL centrifuge tube from the Husky water tank containing the water that is 

applied during a rainfall simulation before each rainfall simulation occurred. The runoff 

sediment samples were stored without refrigeration in plastic crates. The runoff water 

chemistry samples were covered with para-film around the cap to reduce the chance of 

leakage and placed in large plastic Ziploc bags that were labeled with the plot 

identification number and stored inside coolers with dry ice in order to reduce 

subsequent bacterial chemical reactions. By the end of our field work, we had collected 

a total of 473 runoff water quality samples (includes 24 applied rainfall water chemistry 

samples); 275 came from Price and 198 came from Dry-X. In addition, we collected a 

total of 263 runoff sediment samples; 133 came from Price and 130 came from Dry-X. 
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4.1.5 Soil Sampling 

 

Soil bulk density samples were collected at control plots using the AMS soil sampler with 

a 5 cm inside diameter, 3 cm long attachment. The pre-rainfall soils were collected on 

the control plots using a standard hand shovel due to the lack of soil adhesion. The 

control plots provided information on pre-simulation soil characteristics, since sampling 

in the rainfall plots would affect the flow and erosion. In the plots where rainfall was 

applied, post-rainfall soils were collected using an AMS split soil core sampler which is 

25 cm long with a 5cm inside diameter. At each plot, soils were collected at three 

locations under the vegetation canopy and three interspace locations. Soil sample 

locations were subjectively chosen in an area towards the middle portion of the plot to 

minimize the lateral flow affects that may occur near the plot borders. Soil cores were 

then separated by depth increments into the surface crust (0 cm), depth increment 1 (0-

5 cm), and depth increment 2 (5-10 cm) (Figure 7). The number of depth increments and 

the total depth of the core was determined by the depth of the wetting front from the 

first soil core collected at each plot. Depth increments are included in the sampling 

protocol because of the possible salt changes with depth that may be mobilized by 

varying rainfall intensities and VCC. Finally, each soil sample was made into a composite 

soil sample with respect to vegetation versus interspace and by depth increment, 

resulting in 6 composite samples per plot. The soil samples were stored in Ziploc bags 
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and placed in a cooler with refrigeration. By the end of our field work, we had collected 

a total of 198 soil samples (102 from Price and 96 from Dry-X). 

 

Figure 7: Conceptual drawing of the plot setup and sampling locations for runoff and 
soil. 

 

4.1.6 Measuring Vegetation Canopy Cover  

 

The distribution of vegetation cover within each plot was mapped using high-resolution 

photogrammetric models that were developed using Structure from Motion (SFM) 3D 

reconstruction with numerous handheld digital photographs [Nouwakpo et al., 2015].  

Individual 3D points were assessed to determine whether they were part of the 

vegetation canopy versus soil or surface litter using the following method.  A coarse 

estimation of soil surface topography was created by superimposing a 5 cm grid over 

the plot and finding the lowest 3D point within each grid cell.  A second order 

polynomial trend surface was fit to these local minima, and points that were more than 

20 cm above this trend surface were identified as tall vegetation based on field 
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observations.  For remaining points, two tests were applied.  First, the slope from each 

point to each of its neighbors within 2.5 cm was calculated.  The maximum slope within 

each of four directional quadrants was determined, and points were labeled as 

vegetation if the minimum value of the maximum slope from each quadrant was greater 

than 20 percent. The strategy of using the minimum of maximum slope in each direction 

identified protrusions that were not part of the local trend in surface relief.  For the 

second test, a height was interpolated for the location of each point using an inverse-

distance weighting of its four nearest neighbors in each directional quadrant that had 

not yet been identified as vegetation.  The point in question was labeled as vegetation if 

it was more than 2 cm above that interpolated height as this height was found to 

minimize confusion between surface roughness and vegetation canopy.  Minor errors of 

omission where sharp surface features were labelled as vegetation were manually 

edited. Irregularly sampled point clouds representing just vegetation were converted 

into two dimensional map form by superimposing a 2 mm grid and determining which 

grid cells contained a vegetation point.  That fine grid was then aggregated to a 6 cm 

grid, and these coarser cells were labeled as canopy if more than half the fine-resolution 

grid cells nested within were labeled as having vegetation.  This secondary aggregation 

helped reduce the effect of over-prediction from labeling a fine-resolution cell as 

majority-vegetation even if it had just one or two 3D samples within it.  Basal, litter, and 

rock cover percentages were determined from 900 photo interpreted points 

superimposed on each plot. Vegetation maps created for each plot can be found in the 

Appendix A (Figures 31 – 42). 
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4.2 Laboratory Methods 

Runoff water chemistry, soil chemistry, soil texture, and soil bulk density samples were 

processed and measured in the USDA-ARS soils laboratory in Reno, Nevada. 

 

4.2.1 Runoff Water Chemistry  

 

Each sample was centrifuged at 2000 rpm for 3 minutes so the limited sediments inside 

would settle to the bottom and ions could be measured directly from the water sample 

in the centrifuge tube. Soluble cations in runoff Ca2+ and Mg2+ were quantified using 

atomic absorption spectroscopy and K+ and Na+ by atomic emission spectroscopy using 

a Perkin Elmer Atomic Absorption (AA) Spectrometer. Both Price and Dry-X runoff water 

chemistry samples required dilution to be within a detectable range on the AA. 

Ammonium (NH4
+) was measured using a Lachat Quickchem Flow Injection Analysis+ 

instrument. Soluble anions (NO2
-, NO3

-, SO4
2-, Cl-) in runoff were measured using a 

Dionex Ion Chromatograph (IC) with a AS18-4µ column. Price and Dry-X runoff water 

chemistry samples also required dilution to be within the detectable range of the IC. 

Ortho-P was below detection limit for nearly all samples. Runoff pH and EC were 

measured in the lab using an Oakton pH Meter 510 Series and VWR Scientific EC Meter 

Model 2052, respectively.  
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4.2.2 Soil Chemistry 

 

Soluble-phase cations and anions were extracted by immiscible displacement (ID) 

[Mubarak and Olsen, 1977]. Solution-phase anions (NO2
-, NO3

-, SO4
2-, Cl-) were 

measured using a Dionex Ion Chromatograph (IC) with a AS11-HC column. Some 

samples very high in SO4
2- and Cl- required dilution to be within the detectable range of 

the IC.  Solution-phase Ca2+ and Mg2+ were quantified using atomic absorption 

spectroscopy and K+ and Na+ using atomic emission spectroscopy with a Perkin Elmer 

Atomic Absorption (AA) Spectrometer. Extractable cations (Ca2+, Mg2+, K+, Na+) in soil 

were extracted using the ammonium acetate (NH4OAc) method [Thomas, 1982] and 

quantified using atomic spectroscopy as stated above. Some samples that were very 

high in Na+ for some samples required dilution for both ID and NH4OAc extractions to be 

within the detectable range of the AA. Soil mineral N (NO2
-, NO3

-, NH4
+) was extracted 

using 1.5M KCl [Bundy and Meisinger, 1994] and quantified on the Lachat system. 

Cation exchange capacity (CEC) was measured according to methods of Bower et al. 

[1952]. Soil solution-phase ion solution produced by ID was measured for pH and EC 

using an Oakton pH Meter 510 Series and VWR Scientific EC Meter Model 2052, 

respectively. 
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4.2.3 Soil Texture, Bulk Density, and Porosity 

 

Soil texture was measured using methods of Jackson and Barak [2005] on the pre-

rainfall soils of the control plots. Soil bulk density was calculated by measuring the dry 

weight of the soil samples in the lab and using the following equation:  

𝜌𝑏 =  
𝑚𝑠

𝑉
          (1) 

where 𝑚𝑠 is the mass of  dry soil (g/cm3) in volume 𝑉. Soil porosity (ϕ) was determined 

using the following equations from Jury and Horton [2004] that relates bulk density to 

soil porosity:  

𝑚𝑠

𝑉
=

𝑚𝑠

𝑉𝑠

𝑉𝑠

𝑉
          (2) 

where 𝑚𝑠 is the mass of dry soil (g/cm3) in 𝑉. Thus, 𝜌𝑏 =  
𝑚𝑠

𝑉
 and 1 – ϕ = 

𝑉𝑠

𝑉
 , then: 

𝜌𝑏 =  𝜌𝑠(1 − 𝜑)         (3) 
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4.3 Data Analysis 

 

4.3.1 Data Processing 

 

All runoff water chemistry and soil sample ion concentrations (mg/L) measured in the 

laboratory were also converted to milliequivalents/liter (meq/L).  All runoff data time 

stamps were identified and organized to match the runoff water chemistry samples with 

runoff sediment samples.  In addition, total dissolved solids (TDS) was calculated for the 

blank sample of water applied during the rainfall simulation for each plot, and this initial 

value was subtracted from the TDS for each runoff water quality sample. For ID treated 

soils data, soil SAR was calculated each soil sample using the following equation: 

𝑆𝐴𝑅 =
𝑁𝑎+

√1
2

(𝐶𝑎2+ + 𝑀𝑔2+)

          (4) 

where 𝑁𝑎+ is the soil sample sodium concentration, 𝐶𝑎2+ is the soil sample calcium 

concentration, and 𝑀𝑔2+ is the soil sample magnesium concentration; all 

concentrations are in meq/L. 
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4.3.2 Differences between the Tununk and Blue Gate members 

 

Principal component analysis, a multivariate statistical method used to take a large 

dataset and identify a smaller number of uncorrelated variables, was used to visualize 

the variability between Price and Dry-X runoff water and soil chemistry ions from ID and 

ascertain if they have inherently different runoff water and soil ion chemistry. Score 

plots of the first and second components and tables showing the coefficients for each 

ion were created for both runoff water and soil chemistry PCA results.  

The average TDS, sediment, soil SAR, and soil CEC was calculated for each plot. Boxplots 

were used to assess if there are substantial differences between the Price and Dry-X 

means for runoff TDS (mg/L), sediment concentration (kg/L), soil SAR, and soil CEC 

(cmol+/kg).  

 

4.3.3 Relationship between Sediment and TDS 

 

Reduced major axis (RMA; type II) linear regression analysis was done for sediment 

concentration (kg/L) versus salinity concentration (TDS; mg/L) in runoff in order to 

investigate if there is a linear relationship between suspended sediment and salinity and 

if sediment concentration can be used as a proxy for salinity concentration when using 

the RHEM model. Average TDS and sediment concentrations were calculated for each 
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respective plot. RMA regression was used since there was relatively significant 

unexplained error in our predictor variable (sediment concentration) that ordinary least 

squares (OLS) regression cannot adjust (OLS assumes no error in predictor variable) for 

resulting in a biased regression model which in our case, would provide erroneous 

results. Reduced major axis regression makes no assumptions about dependence 

[Friedman et al., 2013] and minimizes the sum of triangular areas between data points 

and the best fit line [Carr, 2012]. R2
Pred, a leave one out validation statistic, was used to 

evaluate if the regression model provides valid predictions. If the difference between R2 

and R2
Pred is > 0.1, this indicates the model over-fits the data and isn’t suitable for 

calculating accurate predictions [Myers et al., 2012].   

 

4.3.4 RHEM Calibration 

 

Iterative parameter optimizations were performed to select proper estimates for RHEM 

sediment- and discharge-related parameters using the multi-objective complex 

(MOCOM) global optimization method by Yapo et al. [1998]. McGwire et al. [2011] 

describe MOCOM as incorporating the benefits of a controlled random search, 

competitive evolution, Pareto ranking, and a multi-objective downhill simplex search. 

MOCOM calculates a set of Pareto optimal solutions that show the tradeoffs between 

multiple objective measures. MOCOM adjusts the selected model parameters using N 
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simplexes with randomized parameter values until it reaches a set of solutions that 

represent the tradeoffs between the objective functions of the root mean square error 

(RMSE) and absolute percent bias (|%Bias|). These objective functions were calculated 

using the following equations: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑂𝑖 − 𝑃𝑖)𝑛

𝑖=1  2

𝑛
                 (5) 

|%𝐵𝑖𝑎𝑠| =  |
∑ (𝑂𝑖 − 𝑃𝑖) ∗ 100𝑛

𝑖=1

∑ (𝑂𝑖)
𝑛
𝑖=1

|          (6) 

Where 𝑛 is the number of the plot, 𝑂𝑖 is the observed 𝑖𝑡ℎ plot to be evaluated, and  𝑃𝑖  is 

the simulated value by the model for the corresponding 𝑖𝑡ℎ plot. For this study, we 

subjectively chose a solution that had relatively low RMSE within a range of solutions 

that were effectively unbiased. Before calibrations began, background literature on the 

RHEM model was reviewed to find any input parameters that had a well-defined 

reference value. 𝐺𝑤 (capillary drive) was the only parameter found in the literature that 

had a well-known literature value established for the soils encountered in this study and 

likely wouldn’t be affected by the saline and sodic soils encountered in this study. The 

KINEROS2 documentation [Smith et al., 1995] established a mean of 200mm for silt 

loam soils, thus we used this value for both sites as the default value. The default input 

parameters are found in Table 1. For detailed input parameter descriptions, see 

Appendix B. 
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Table 1: Default input parameters used in the calibration for both sites.  

Input Parameters Description Default Values 

CLEN hillshope length (m) 30 

DIAMS soil particle diameters (mm) 0.002, 0.01, 0.03, 0.2, 0.3 

DENSITY particle densities (g/cc) 2.60, 2.65, 1.80, 1.60, 2.65 

LEN plot slope length (m) 6 

WIDTH plot slope width (m) 2 

SX normalized distance 1 

CV Ke coefficient of variation 1 

IN interception depth (mm) 1 

G (i.e. Gw) mean capillary drive (mm) 200 

DIST pore size distribution 0.23 

SMAX upper limit to saturation 1 

ADF Beta decay factor 0 

RSP rill spacing (m) 1 

SPACING average micro-topographic spacing (m) 1 

 

Several input parameters were directly estimated for each plot. Chezy coefficients (m1/2 

s-1) for overland and concentrated flow were estimated using a modified equation from 

Crowe et al. [2009]: 

𝐶ℎ𝑒𝑧𝑦 =  √
8𝑔

𝑓𝑡
          (7) 

where g is the acceleration of gravity (m s-2) and ft is the Darcy-Weisbach friction factor 

estimated by Al-Hamdan et al. [2013]: 

𝑓𝑡 = 10−0.109+1.425𝑙𝑖𝑡𝑡𝑒𝑟+0.442𝑟𝑜𝑐𝑘+1.764(𝑏𝑎𝑠𝑎𝑙+𝑐𝑟𝑦𝑝𝑡𝑜)+2.068𝑆          (8) 

where litter is the fraction of area covered by litter to total area, rock is the fraction of 

area covered by rock to total area, basal is the fraction of area covered by basal canopy 
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to total area, crypto is the fraction of area covered by cryptograms (i.e. biological soil 

crust) to total area, and S is percent slope. Based on RHEM [2015], the splash and sheet 

erosion erodibility coefficient, 𝐾𝑠𝑠, was estimated as: 

𝐾𝑠𝑠 = 104.2587−2.547𝐺−0.7822𝐹+2.5535𝑆   if G < 0.475          (9) 

where G (ground cover) is the fraction of area covered by plant basal area plus litter 

area to total area, F is the fraction of area covered by canopy to total area, and S is 

slope. G was less than 0.475 for all plots in both field locations. The undisturbed 

concentrated flow erodibility coefficient (s2 m-2), 𝐾𝜔, is calculated as [Al-Hamdan et al., 

2015]: 

𝐾𝜔 =  10−4.14−1.28𝑏𝑎𝑠𝑎𝑙−0.98𝑟𝑜𝑐𝑘−15.16𝑐𝑙𝑎𝑦+7.09𝑠𝑖𝑙𝑡          (10) 

where basal is the fraction of area covered by basal canopy to total area, clay and silt 

are the fractions of the site’s soil texture. The effective hydraulic conductivity (mm h-1), 

𝐾𝑒, was calculated using the following equations [RHEM, 2015]: 

𝐾𝑒𝑏 = 1.2𝑒𝑥𝑝2.0149(𝑏𝑎𝑠𝑎𝑙+𝑙𝑖𝑡𝑡𝑒𝑟)           (11) 

𝐾𝑒 = 𝐾𝑒𝑏 ∗ 1.2         (12) 

Equations 11 and 12 are specifically used to estimate 𝐾𝑒 for silt loam textured soils. A 

summary of the estimated input parameters used in RHEM are in Table 2. For detailed 

input parameter descriptions, see Appendix B.  
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Table 2: Estimated input parameters calculated from field observations and empirical 
equations. 

Site POR FRACT Plot SL CHEZY KSS KOMEGA CA KE ROCK BARE LITTER BASAL 

Price 0.447 

Clay 0.162 
1 0.059 8.628 20950 0.026 0.079 1.469 0 0.921 0.007 0.002 

2 0.048 8.489 17659 0.025 0.059 1.545 0 0.941 0.032 0.003 

Finer silt  0.355 
3 0.007 9.562 13263 0.025 0.109 1.52 0 0.891 0.02 0.007 

4 0.059 8.315 16734 0.025 0.113 1.556 0 0.887 0.029 0.01 

Coarser silt 0.355 
5 0.067 8.117 17111 0.025 0.119 1.564 0 0.881 0.032 0.009 

6 0.057 8.416 14020 0.025 0.178 1.582 0 0.822 0.024 0.022 

Fine sand 0.064 
7 0.066 8.026 17008 0.024 0.08 1.6 0 0.92 0.041 0.011 

8 0.1 7.69 24628 0.026 0.072 1.518 0.002 0.928 0.017 0.01 

Medium sand  0.064 

9 0.094 7.835 25142 0.026 0.064 1.496 0.002 0.936 0.014 0.005 

10 0.075 8.128 21748 0.025 0.049 1.526 0.002 0.951 0.02 0.009 

11 0.03 9.115 16894 0.026 0.057 1.514 0.003 0.943 0.015 0.01 

Dry-X 0.403 

Clay  0.231 
1 0.169 6.213 19149 0.002 0.206 1.75 0.01 0.794 0.045 0.052 

2 0.114 7.194 14614 0.002 0.198 1.728 0.007 0.802 0.036 0.055 

Finer silt  0.346 
3 0.185 6.186 28252 0.002 0.18 1.607 0.005 0.82 0.026 0.028 

4 0.201 5.928 29548 0.002 0.183 1.631 0.003 0.817 0.03 0.032 

Coarser silt 0.346 
5 0.214 5.691 24141 0.002 0.24 1.736 0 0.76 0.035 0.058 

6 0.183 5.932 17289 0.002 0.242 1.823 0 0.758 0.056 0.061 

Fine sand  0.0386 
7 0.2 5.985 26454 0.002 0.223 1.65 0 0.777 0.026 0.042 

8 0.187 6.128 24449 0.002 0.177 1.7 0.002 0.823 0.029 0.053 

Medium sand  0.0386 

9 0.245 5.408 36656 0.002 0.264 1.575 0.003 0.736 0.021 0.024 

10 0.206 5.764 26909 0.002 0.252 1.633 0 0.748 0.039 0.023 

11 0.184 6.226 25663 0.002 0.243 1.594 0 0.757 0.025 0.025 

12 0.19 6.078 28022 0.002 0.202 1.606 0 0.798 0 0.024 
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Once the input parameter files were populated, some RHEM input parameters were 

calibrated to match field-measured values of discharge and sediment. First, RHEM 

discharge was calibrated by calibrating three parameters that dealt with infiltration and 

runoff: SAT (initial degree of soil saturation), 𝐾𝑒, and ALF (α fitting parameter). 𝐾𝑒 was 

calibrated using a coefficient (explanation two paragraphs down) that was applied to 

the following equation for shrub dominated soils: 

𝐾𝑒 = 𝐶𝑒 ∗ (𝐾𝑒𝑏 ∗ 1.2)                             (13) 

Where 𝐶𝑒 is the calibrated coefficient. Lastly, for ALF, the KINEROS2 documentation 

[Smith et al., 1995] states ALF = 0.85 for most soils, but since RHEM has never been 

calibrated for saline and sodic soils before, we calibrated ALF with a wide range that 

would use the Smith and Parlange [1978] model. Once an optimized solution was found 

for each site for RHEM discharge, we calibrated the model to find a set of optimized 

solutions with respect to sediment for each site by calibrating two parameters, 𝐾𝑠𝑠 and 

𝐾𝑤, with a coefficient using the following equations: 

𝐾𝑠𝑠 = 𝐶𝑠𝑠 ∗ (104.2587−2.547𝐺−0.7822𝐹+2.5535𝑆)                   (14) 

𝐾𝜔 = 𝐶𝜔 ∗ (10−4.14−1.28𝑏𝑎𝑠𝑎𝑙−0.98𝑟𝑜𝑐𝑘−15.16𝑐𝑙𝑎𝑦+7.09𝑠𝑖𝑙𝑡)                   (15) 

Where 𝐶𝑠𝑠 and 𝐶𝜔 are the calibrated coefficients.  

It is important to note three things. First, 𝐾𝑠𝑠, 𝐾𝜔, and 𝐾𝑒 were calibrated using a 

coefficient  instead of calibrating the individual coefficients within each individual 
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equation because RHEM hasn’t been calibrated for saline and sodic soils and therefore, 

we don’t have any comparable studies on similar soils to compare with. By using a 

coefficient applied to a set of equations to simplify the calibration, we can garner a 

general sense of how these soils behave differently in comparison to non-saline and 

sodic soils. Second, the RHEM discharge output has units of mm. A one dimensional 

discharge measure are in these units because RHEM modeled the volume of discharge 

over the plot area (12 m2) giving us a total amount of discharge depth in mm over the 

plot area. Third, Price plot 12 was initially included in the first round of RHEM discharge 

calibrations, but a plot of the residuals versus observed (Figure 8) showed that the 

model wasn’t handling the plot-plot variability because Price plot 12 was an outlier (> 

3SD) and the residuals were not random with an upward trend. In result, Price plot 12 

was excluded for the RHEM discharge and sediment calibrations at Price.  

 

Figure 8: Residuals versus observed for the Price RHEM discharge calibration that 
included plot 12. 
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4.3.5 RHEM Model Performance 

 

Performance of the calibrated RHEM model was evaluated using residual plots, the 

coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE) [Nash and Sutcliffe, 

1970], percent bias (%Bias) [Gupta et al., 1999], ratio of root-mean-squared error to 

standard deviation (RSR) [Legates and McCabe, 1999], RHEM output residual range 

proportion to the observed range of sediment or discharge (PRO), and the root-mean 

squared error to observed range of sediment or discharge values (RMSE/ORA). Residuals 

were calculated by: 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 = ∑(𝑃𝑖 − 𝑂𝑖)

𝑛

𝑖=1

          (16) 

Range of the observed values was calculated by: 

𝑂𝑅𝐴 =  𝑂𝑚𝑎𝑥 −  𝑂𝑚𝑖𝑛          (17) 

NSE was calculated by: 

𝑁𝑆𝐸 = 1 −  
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1

∑ (𝑂𝑖 − 𝑂𝑎𝑣𝑔)
2𝑛

𝑖=1

          (18) 

%Bias was calculated by: 

%𝐵𝑖𝑎𝑠 =  
∑ (𝑂𝑖 − 𝑃𝑖) ∗ 100𝑛

𝑖=1

∑ (𝑂𝑖)
𝑛
𝑖=1

          (19) 
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RSR was calculated by: 

𝑅𝑆𝑅 =  
√∑ (𝑂𝑖 − 𝑃𝑖)2𝑛

𝑖=1

√∑ (𝑂𝑖 − 𝑂𝑎𝑣𝑔)2𝑛
𝑖=1

          (20) 

Standard deviation (SD) was calculated by: 

𝑆𝐷 =  √
1

𝑛
∑(𝑋𝑖 − 𝜇)2

𝑛

𝑖=1

          (21) 

Proportion was calculated by: 

𝑃𝑅𝑂 =  
4𝑆𝐷(𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠)

𝑂𝑅𝐴
          (22) 

RMSE/ORA was calculated by: 

𝑅𝑀𝑆𝐸

𝑂𝑅𝐴
=

√∑ (𝑂𝑖 − 𝑃𝑖)
𝑛
𝑖=1  2

𝑛
𝑂𝑚𝑎𝑥 −  𝑂𝑚𝑖𝑛

                    (23) 

Where 𝑛 is the number of the plot, 𝑃𝑖  is the simulated value by the model for the 

corresponding 𝑖𝑡ℎ plot, 𝑂𝑖 is the observed 𝑖𝑡ℎ plot to be evaluated, 𝑂𝑚𝑎𝑥 is the 

maximum observed value, 𝑂𝑚𝑖𝑛 is the minimum observed value,  𝑂𝑎𝑣𝑔 is the average of 

the observed plot values, 𝑋𝑖 is the 𝑖𝑡ℎ value to be evaluated, and μ is the population 

mean.  
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4.3.6 RHEM Sensitivity Analysis 

 

Sensitivity analysis was done to determine: (1) how varying the 𝐾𝑠𝑠, 𝐾𝜔, and 𝐾𝑒 input 

parameters affect the discharge and sediment outputs of the RHEM model and (2) how 

varying VCC affects the discharge and sediment outputs of the model. The model was 

run with 𝐾𝑠𝑠, 𝐾𝜔, and 𝐾𝑒 input parameters that were modified from calibrated values 

for each plot by -50% to 50% in 10% increments to measure the sensitivity of these 

three parameters on the discharge and sediment outputs across all plots. The model 

was also run for each plot using calibrated parameters, but substituting a range of VCC 

from 0% - 100% in 10% increments and graphing changes in discharge and sediment 

outputs across all plots. For VCC runs, plant basal area and litter were changed in 

proportion to their observed presence. Note that with high shrub foliar cover, 100% VCC 

relates to the projected canopy over the plot area, not continuous ground cover like 

turf. 

 

4.3.7 Vegetation Spatial Distribution Analysis 

 

The spatial distribution of VCC and its influence on the residuals of the sediment output 

was analyzed using landscape pattern descriptions by McGarigal and Marks [1995]. All 

the available class level (class 1 = soil, class 2 = vegetation) and landscape level pattern 
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metrics (area-edge, shape, core area, contrast, and aggregation) were calculated using 

Fragstats v4.2. Edge depth (i.e. edge effect) and search radius of aggregation metrics 

were set to 1 m, and the threshold distance for CONNECT (aggregation metric that 

describes how connected the patches are) was set to 0.1 m. Edge contrast and similarity 

tables were set up so the soil class edge effect penetrates 1 m into the vegetation class.  

Edge depth, edge contrast, and similarity were set to these values since the plot itself is 

only 2 m wide. The threshold distance for CONNECT was set to this small value because 

it was assumed any vegetation or soil patch that is within that distance to a neighboring 

patch would be considered connected. The R2 was calculated between all the metrics 

and the RHEM sediment output residuals for each plot. Results were analyzed 

separately for each field site and for both sites combined. Histograms were created 

(Appendix C; Figures 43 – 45) to assess the distribution of R2s for all metrics in order to 

identify whether particular types of metrics were related to unexplained variance in 

RHEM model sediment outputs.  Multiple R2 values were tested for each metric based 

on linear regression, quadratic regression, or a linearized form of the variable. 

Furthermore, we wanted to know if there is a universal landscape or class metric type 

that could be used for both sites, or if a site-specific selection of pattern metric could be 

justified.   
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4.3.8 Sediment as a Proxy for Salinity 

 

RHEM-simulated discharge (mm) and sediment (kg) outputs are representative of the 

amount of depth in rainfall and sediment that comes off the 12 m2 plot as runoff and 

were converted into L and kg/L, respectively. The RMA linear regression model for 

predicting salinity from sediment (from section 4.3.3) was used with RHEM-simulated 

plot-averaged sediment concentrations (kg/L) to predict associated TDS concentrations. 

The result of this analysis was assessed using RMA linear regression of observed salinity 

versus predicted salinity, testing the significance of the RMA slope term against the 

slope of the 1:1 line, determine if the 1:1 line falls within the 95% confidence interval, 

the root mean squared error (RMSE; equation 5), and the ratio of the root mean 

squared error to observed range (RMSE/ORA; equation 23). To test the significance of 

the slope term of the RMA regression against the slope term of the 1:1 line, the 

following equation was used: 

𝑆𝐼𝐺 =  
𝑏1:1 − 𝑏1

𝑆𝐸 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 
                   (24) 

where b1:1 is the slope term of the 1:1 line and b1 is the slope term of the regression. If 

SIG ≤ 1, this indicates the regression is unbiased. If SIG > 1, the slope term of the 

regression is significantly different than the slope term of the 1:1 line indicating the 

regression is biased and our method should be re-evaluated.  
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5 Results 

 

5.1 Differences between the Tununk and Blue Gate 

 

Principal component analysis (PCA) of runoff water at the Price and Dry-X field sites 

showed that the first principal component (PC1) explains almost half the variation (45%) 

in measurements and PC2 explains an additional 20% (Figure 9). PCA results for soil 

chemistry (control and post-rainfall samples; Figure 10) show that the PC1 explains a 

third of the variation (34%) in measurements and the PC2 explains an additional 20%. In 

each case, there is limited overlap between the two sites evident by PC1.  Table 3 shows 

the first and second principal component coefficients for each ion for runoff and soil 

chemistry. For PC1 of runoff, Na+ and K+ show the greatest contrast against SO4
2 and Cl-. 

For PC1 of soil, Na+ and NH4 show the greatest contrast against Ca2+ and Mg2+. 

 

Figure 9: PCA score plot of runoff water chemistry.  
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Figure 10: PCA score plot of soil chemistry.  

Table 3: First principal coefficients for each ion for runoff and soil chemistry PCA. 

Runoff Principal Component (PC) Coefficents 

 PC 
Ca2+ 

meq/L 
Mg2+ 

meq/L 
Na+ 

meq/L 
K+ 

meq/L 
NH4

+ 
meq/L 

NO3
- 

meq/L 
SO4

2- 
meq/L 

Cl- 
meq/L 

1 -0.351 0.108 -0.464 -0.447 -0.199 0.283 0.408 0.406 

2 -0.464 -0.482 0.134 0.069 0.594 0.028 0.388 -0.163 

         
Soil  Principal Component (PC) Coefficents 

 PC 
Ca2+  

meq/L 
Mg2+  

meq/L 
Na+  

meq/L 
K+ 

meq/L 
NH4

+ 
meq/L 

NO3
- 

meq/L 
SO4

2- 
meq/L 

Cl-  
meq/L 

1 0.489 0.415 -0.272 0.393 -0.268 0.083 0.377 0.373 

2 -0.043 -0.26 -0.161 -0.478 0.094 0.624 0.154 0.504 

 

Box-and-whisker plots show that runoff salinity (Figure 11), runoff sediment (Figure 12), 

soil SAR (Figure 13), and soil CEC (Figure 14) are substantially different between the two 

field sites.  
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Figure 11: Boxplot of runoff TDS (mg/L).  

 

Figure 12: Boxplot of runoff sediment (kg/L).  

 

Figure 13: Boxplot of soil SAR.  
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Figure 14: Boxplot of soil CEC (cmol+/kg).  

 

5.2 Relationship between Sediment and TDS 

 

RMA linear regression was used to determine the relationship and significance between 

sediment concentration (kg/L) and TDS concentration (mg/L) of runoff in erosion 

processes and whether predicted sediment concentration from RHEM could be used as 

a proxy to estimate TDS concentration. Using the plot averages, a strong, positive 

relationship exists between sediment concentration and TDS concentration (Figure 15). 

Average sediment concentration significantly predicted average TDS concentration (p < 

0.001, R2 = 0.819) and the RMA linear model did not over-fit the data (R2
pred = 0.775).  
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Figure 15: Regression of plot-averaged sediment concentration versus plot-averaged 
TDS concentration. 

 

5.3 RHEM Calibration 

 

RHEM input parameters were calibrated to match field-measured values of discharge 

and sediment. Figures 16 and 17 display Pareto plots of optimal calibrated solutions 

with the selected solution indicated as a black circle. Table 4 shows the range of values 

used in the calibration to find a set optimized of solutions with low |%Bias| and RMSE 

for both discharge and sediment. 
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Figure 16: Pareto plot of calibrated RHEM solutions for discharge at Price and Dry-X. 

 

Figure 17: Pareto plot of calibrated RHEM solutions for sediment at Price and Dry-X. 
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Table 4: Calibration ranges and results for parameters controlling discharge and 
sediment at both sites. 

Calibration Site Variable Calibration Range Calibrated Value |%Bias| RMSE 

Discharge 

Price 

SAT 0.02 - 0.08 0.066 

0.0002 4.8 mm Ce 0.1 - 10 0.349 

ALF 0.25 - 1 0.952 

Dry-X 

SAT 0.02 - 0.08 0.064 

0.01 7.52 mm Ce 0.1 - 10 5.575 

ALF 0.25 - 1 0.279 

Sediment 

Price 
Css 0.1 - 10 1.751 

0.01 4.67 kg 
Cω 0.1 - 10 3.755 

Dry-X 
Css 0.1 - 10 3.11 

0.025 21.42 kg 
Cω 0.1 - 10 3.287 

 

For discharge, Price had an optimized solution set with a |%Bias| of 0.0002% and a 

RMSE of 4.8 mm and Dry-X had a higher |%Bias| of 0.01% and RMSE of 7.3 mm. Both 

sites had similar SATs, but Price had an ALF of 0.952 which is substantially higher than 

the ALF for Dry-X of 0.279. For sediment, Price had an optimized solution set with a 

|%Bias| of 0.01% and a RMSE of 4.7 kg whereas Dry-X had a higher|%Bias| of 0.025% 

and a substantially higher RMSE of 21.1 kg. The calibrated site 𝐶𝑒 and 𝐶𝑠𝑠 for the Price 

site is substantially lower than Dry-X, but 𝐶𝜔 was higher at Price than at Dry-X.  

  



54 
 

5.4 RHEM Model Performance 

 

Table 5 shows the results of the calibrated RHEM performance. At both field sites the R2 

and NSE was higher for discharge than for sediment. For both discharge and sediment, 

Dry-X had a higher R2 and NSE than Price. In all cases except for Dry-X sediment, the 

residual bias was negative so the calibrated model underestimated slightly.  The RSR 

was lower for discharge than for sediment and Dry-X had lower RSR values than Price. 

PRO for discharge and sediment was higher for Price than Dry-X. Even though Dry-X had 

higher RMSE for both calibrations, the lower RMSE/ORA values at Dry-X indicate 

relatively better calibrations than Price. Overall, calibrated RHEM modeled field 

conditions at Dry-X better than Price.  

Table 5: Model performance results. 

Model Performance 

Location Sediment/Discharge R2 NSE %Bias RSR PRO RMSE/ORA 

Price Discharge 0.764 0.745 -0.0002 0.414 0.705 0.176 

Dry-X Discharge 0.799 0.779 -0.01 0.417 0.579 0.145 

Price Sediment 0.444 0.439 -0.01 0.709 1 0.25 

Dry-X Sediment 0.641 0.627 0.025 0.543 0.809 0.202 

 

Figures 18a-b and 19a-b show the residuals for RHEM outputs of the sediment and 

discharge. The residual ranges for both sediment and discharge at Price are substantially 

lower than Dry-X. In addition, Price sediment and discharge residuals (Figures 18a-b) 

show that the RHEM model fits the overall site average, but doesn’t capture the plot-
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plot variability and a trend exists showing the model over-predicts with low observed 

values and under-predicts with high observed values. At Dry-X, the RHEM model 

captured the site and plot-to-plot variability well (Figure 19a-b). For both sites, no 

outliers exist and all data fall within three standard deviations.  

 

Figure 18a-b: Residual plots of RHEM model outputs for sediment and discharge at 
Price.  

 

Figure 19a-b: Residual plots of RHEM model outputs for sediment and discharge at Dry-
X. 
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5.5 RHEM Sensitivity Analysis 

 

The sensitivity analysis of how changes in 𝐾𝑠𝑠, 𝐾𝜔, and 𝐾𝑒 and changes in amount of 

VCC impact discharge and sediment predictions is shown in Figures 20 through 22. 

Figure 20 shows that 𝐾𝑠𝑠 has the greatest impact on sediment (84.1% change) and 

Figure 21 shows that 𝐾𝑒 has the greatest impact on discharge (32.9% change). Figure 22 

shows that as expected, increasing VCC results in less sediment and discharge. If no 

vegetation is present, RHEM predicts a 111% increase in sediment and a 4% increase in 

discharge. With ~8% and ~18% VCC at Price and Dry-X, there is no change to the 

discharge and sediment outputs since these values represent a non-linear weighting of 

actual plot values. Lastly, at 100% VCC, RHEM predicts a 91% reduction in sediment and 

a 55% reduction in discharge.  

 

Figure 20: Sensitivity of change in 𝐾𝑠𝑠, 𝐾𝜔, and 𝐾𝑒 on sediment output. 
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Figure 21: Sensitivity of change in 𝐾𝑠𝑠, 𝐾𝜔, and 𝐾𝑒 on discharge output. 

 

Figure 22: Sensitivity of change in foliar cover on sediment and discharge outputs. 
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5.6 Vegetation Spatial Distribution Analysis 

 

The spatial distribution of vegetation was analyzed using metrics of landscape pattern. 

Landscape level and class level (soil and vegetation) metrics were analyzed for both sites 

individually and together, using regression against the calibrated RHEM sediment 

residuals to assess if the spatial distribution of VCC may have an effect on sediment 

erosion. The results are summarized in Table 6.   

Table 6:  R2s for linear regressions of selected spatial pattern metrics versus RHEM 
sediment output residuals. 

Metric Location R2 Slope p-value  Name Type 

Landscape 

Both 0.27 - 0.012 ENN_AM Aggregation 

Price 0.33 - 0.065 ENN_RA Aggregation 

Dry-X 0.38 - 0.034 ENN_AM Aggregation 

Class - Soil 

Both 0.46 + <0.001 FRAC_CV Shape 

Price 0.21 - 0.155 CIRCLE_MN Shape 

Dry-X 0.59 + 0.004 FRAC_CV Shape 

Class - Veg 

Both 0.43 - 0.001 GYRATE_MD Area-Edge 

Price 0.35 + 0.054 ECON_RA Contrast 

Dry-X 0.60 + 0.003 PROX_MD Aggregation 

 

The selection of landscape metrics for relating vegetation canopy and soil interspace 

pattern to model residuals of sediment shared the same aggregation metric. Euclidean 

nearest neighbor distance (ENN) is an aggregation metric that is a simple measure of 

patch isolation [McGarigal, 2015] and was always inversely proportional to RHEM 

sediment residuals.  With both sites combined, the selection of ENN_AM (Figure 23a) is 

significant; however, the residuals do not have a normal distribution. The best selection 
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of ENN_RA for Price (Figure 24a) is not statistically significant. The selection of ENN_AM 

for Dry-X has the highest R2 (Figure 25a) among landscape level metrics and is 

significant. However, the regression is mainly driven by one point and if that point is 

omitted, R2 reduces to nearly zero and is no longer significant.  

The selection of class metrics for relating soil pattern to model residuals of sediment 

were all shape metrics. Fractal dimension index (FRAC) is a shape type metric that 

describes the shape complexity of the object [McGarigal, 2015].  Selected class metrics 

for the pattern of soil interspaces at both sites were all shape metrics and all except for 

Price were proportional to RHEM sediment residuals. With both sites combined, the 

selection of FRAC_CV (Figure 23b) is significant; however, the residuals do not have a 

normal distribution.  The best selection for Price, CIRCLE_MN (Figure 24b), is not 

statistically significant.  CIRCLE is a shape metric that describes the ratio of patch area to 

the area of the smallest circumscribing circle (patch elongation) [McGarigal, 2015]. As 

the soil patch elongation decreases, the model over-predicts sediment. The selection of 

FRAC_CV for Dry-X had the highest R2 (Figure 25b) among the class level metrics for soil 

and is significant. As the shape complexity of soil interspaces increases, the model over-

predicts sediment.  

The selection of class metrics for relating vegetation canopy pattern to model residuals 

of sediment did not share a common type of metric like the landscape and soil class 

metrics did, and except with both sites combined, all selected metrics were proportional 

to the RHEM sediment residuals. With both sites combined, the regression between 
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residuals and = radius of gyration (GYRATE_MD; Figure 23c) is significant. However, the 

regression is partially driven by one point and if that point is omitted, R2 is reduced by 

half but still remains significant. GYRATE is an area-edge type metric that measures of 

the maximum patch extent. As the VCC patch extent decreases, the model over-predicts 

sediment. The best selection for Price, the edge contrast index (ECON_RA; Figure 24c), is 

not significant.  ECON measures the degree of contrast between the patch and its 

immediate neighborhood [McGarigal, 2015]. As the contrast between the VCC patch 

and its immediate neighborhood increases, the model over-predicts sediment. The best 

selection for Dry-X, the proximity index (PROX_MD; Figure 25c) has the highest R2 

among the class level metrics for vegetation and is significant, but the residuals do not 

have a normal distribution. PROX is an aggregation type metric that measures both the 

degree of patch isolation and fragmentation of the corresponding patch type within the 

specified neighborhood of the focal patch [McGarigal, 2015].  As the degree of patch 

isolation and fragmentation of VCC increases, the model over-predicts sediment. Using 

quadratic regression in an attempt to improve R2, both sites combined and Dry-X 

landscape and class level metrics showed improvement in R2 (Figures 26a-f). Quadratic 

regressions were done for Price in the same way in an attempt to improve R2 and the p-

value, but none of them showed improvement. However, all the residuals except for 

landscape and soil class level for Dry-X did not have a normal distribution. All original 

Dry-X regressions were linearized, but only PROX resulted in a substantial improvement 

in R2. PROX was linearized by 1/Log10(PROX) and the residuals have a normal distribution 

(Figure 27). 
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Figure 23a-c: Linear regressions of (a) landscape metric, (b) soil class metric, and (c) vegetation 

class metric versus RHEM sediment output residuals for both sites. 
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Figure 24a-c: Linear regressions of (a) landscape metric, (b) soil class metric, and (c) vegetation 

class metric versus RHEM sediment output residuals for Price. 
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Figure 25a-c: Linear regressions of landscape metric, soil class metric, and vegetation 
class metric versus RHEM sediment output residuals for Dry-X. 
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Figure 26a-f: Quadratic regressions of landscape metric, soil class metric, and vegetation 
class metric versus RHEM sediment output residuals. (a-c) Quadratic regressions of 

landscape metric, soil class metric, and vegetation class metric versus RHEM sediment 
output residuals for both sites. (e-f) Quadratic regressions of landscape metric, soil class 

metric, and vegetation class metric versus RHEM sediment output residuals for Dry-X.  
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Figure 27: Linearized regression of PROX_MD versus RHEM sediment output residuals 
for Dry-X. 

Overall, with the presence of greater VCC at Dry-X, certain landscape metrics indicate a 

possible relationship between the pattern of VCC, soil interspaces, and the RHEM 

sediment output residuals. 

 

5.7 Sediment as a Proxy for Salinity 

 

Applying the plot-averaged simulated sediment data from RHEM to the RMA linear 

regression model (section 4.33; Figure 15) showed a strong, positive linear relationship 

exists between observed and predicted TDS concentration (Figure 28). Observed TDS 

concentration significantly predicted TDS concentration (p < 0.001, R2 = 0.73) and the 

linear model did not over-fit the data (R2
pred = 0.673). The regression line has a similar 

trend as the 1:1 line with a slight positive bias driven by the Price data. The slope term 

of the RMA linear regression was found to not be significantly different from the slope 
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term of the 1:1 line (𝑆𝐼𝐺 < 1) and the 1:1 line falls within the 95% confidence interval 

(CI). The RMSE between observed and predicted TDS concentration is 170.2 mg/L and 

the ratio of RMSE to ORA is 0.149 indicating that the linear regression model provides 

valid predictions with a low error relative to the observed range.  

 

Figure 28: Regression of the observed TDS concentration versus the predicted TDS 
concentration relative to the 1:1 line.  
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6 Discussion  

 

The Price and Dry-X field sites are located on the Mancos Shale formation and were 

assumed to be comparable during the reconnaissance trip.  When field work began, the 

differences between the sites were more apparent in terms of the amount and spatial 

distribution of VCC, slope, soil color and development of soil crusts, and presence of salt 

efflorescence (Figure 5a-b). Site selection was coordinated with the BLM and was 

strongly influenced by accessibility constraints which led to sites being selected on the 

Mancos Shale formation regardless of the geologic member (Figure 3a-b). The PCA 

results for runoff water chemistry (Figure 9; Table 3) show the sites produce different 

runoff chemistries. When looking at the runoff ion concentration means for both sites, 

we see that all four ion concentrations at Dry-X are substantially higher than at Price 

and the PCA results for soil chemistry (Figure 10; Table 3) show that the sites have 

different soil chemistries. When looking at the soil ion means for both sites, we see that 

Na+ and NH4
+  concentrations at Dry-X are substantially higher than at Price and the 

ratio of Ca2+ to Mg2+ is higher at Dry-X than at Price, even though Price has higher Ca2+ 

and Mg2+ concentrations. PC2 for both sets of results didn’t show any added value to 

explain the differences in variability among the ions between sites. Dry-X produced 

substantially more TDS and sediment in runoff (Figures 11-12), the soils are more saline 

and sodic than Price (Figure 13), and had higher average soil CEC (Figure 14). These 

results collectively suggest the difference in geologic members and their respective 
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depositional environments during the late Cretaceous may reflect differences in parent 

material that drives the differences in soil development in arid climates. The differences 

in soil characteristics may result in the noticeable differences in runoff water and soil 

chemistry between sites.  

There is little literature on the relationship between sediment erosion and salinity 

transport processes. Variable factors have been proposed to explain the complex 

relationship. Laronne and Shen [1982] suggest that precipitation and initial runoff being 

under-saturated with respect to soil minerals, slope at the site, runoff rate, rill 

development, and dissolution of sediment particles may contribute to the relationship. 

In addition, Evangelou [1981] showed that the release of ions from the Mancos Shale is 

directly related and regulated by the soil exchange complex and the relative cation 

adsorption affinities of the soil minerals. Our findings (Figure 15) suggest that a 

significant and strong relationship exists between plot-averaged sediment and salinity in 

runoff, and the regression model provides valid predictions. Furthermore, Ponce [1975] 

found significant correlations between salinity and sediment production on individual 

plots from different geologic members, but by taking the plot-average, we have shown a 

strong linear relationship between sediment and salinity erosion processes across both 

sites. This result suggests more erosive geologic members of the Mancos Shale may 

produce higher values of sediment and salinity than less erosive geologic members and 

may indicate a linear relationship at the geologic formation level. 
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The RHEM calibration results for both Price and Dry-X discharge and sediment (Figures 

16 - 17) had solutions with low RMSE and |%Bias|. Currently, the RHEM model uses 

three parameters that relate the amount of vegetation to erosion processes: 𝐾𝑠𝑠, 𝐾𝑤, 

and 𝐾𝑒. Our results (Table 4) show that for saline and sodic soils of the Mancos Shale, 

the calibrated values for all three input parameters were higher than originally 

estimated from the model documentation and associated equations(e.g. RHEM [2015], 

Al-Hamdan et al. [2015]; equations 9 - 12). In addition, RHEM hasn’t been calibrated for 

undisturbed saline and sodic soil before indicating new parameter equations may be 

required. Furthermore, 𝐾𝑒 and 𝐾𝑠𝑠 at Dry-X were substantially greater than Price, but 

𝐾𝑤 was lower at Dry-X. The model performed well for both discharge and sediment at 

both field sites (Figures 18 – 19a-b). However, at Price, the model for both sediment and 

discharge (Figures 18a-b) overestimated low observed values and underestimated high 

observed values, indicating RHEM doesn’t capture the plot-plot variability as well at 

Price compared to Dry-X. These results also are reflected in Table 5 where Price had a 

lower R2 and NSE as well as a higher RSR, PRO, and RMSE/ORA for both discharge and 

sediment, indicating the model performed better simulating Dry-X conditions than Price. 

The disparity between how RHEM is handling the plot-plot variability at Price and Dry-X 

may be related to the low VCC, slope, soil SAR, and even the soil crusts found at Price. 

Other studies were more successful at capturing plot level variability because RHEM has 

been calibrated for non-saline and sodic rangelands soils with variable VCC and slope on 

burned, disturbed, and undisturbed plots in the past (Al-Hamdan et al. [2015; 2012]; 

Nearing et al. [2011]; Felegari et al. [2014]). Overall, this study showed that RHEM can 
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be calibrated to simulate sediment erosion and hydrologic processes on rangeland 

saline and sodic soils of the Mancos Shale formation and calibrated  𝐾𝑠𝑠, 𝐾𝜔, and 𝐾𝑒 

are higher than calibrated values from previous studies done on non-saline and sodic 

soils.  

VCC intercepts raindrop impact and reduces runoff volumes [Wischmeier and Smith, 

1978] and promotes increased infiltration with increasing VCC [Loch, 2000] by stemflow 

[Branson et al., 1972]. The sensitivity of the calibrated RHEM sediment and discharge 

outputs to 𝐾𝑠𝑠, 𝐾𝑤, and 𝐾𝑒 parameters and to foliar cover show that RHEM has a 

capacity to simulate these processes. The equations for these parameters allow VCC to 

reduce in splash and sheet erosion, concentrated flow erosion (Figure 20), and increase 

infiltration (Figure 21) in RHEM. Of these three parameters, 𝐾𝑠𝑠 is the most sensitive, 

indicating that VCC reduces predicted sediment loading mostly by reducing splash and 

sheet erosion. In addition, we found that as foliar cover increases, sediment and 

discharge decreases (Figure 22) in RHEM.  

Bartley et al. [2006] conducted a hillslope-scale study on savanna rangelands in Australia 

and found that even with high mean VCC, small patches of interspace had substantially 

more runoff and sediment than similar hillslopes with less or no interspace patches. In 

addition, the sediment load consisted of fine suspended sediment and the majority of 

soil loss occurred during the initial runoff event. Observed sediment loss (fine 

suspended sediment) at plots 1, 2, 4, and 5 at Price and plots 4, 6, and 5 at Dry-X was 

higher during the initial runoff event. On almost all plots at Price (except 1, 11, and 12), 
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observed salinity loads were higher during the initial runoff event. It is likely plots 11 

and 12 didn’t show the same trend as the others because of the coarse sampling 

interval used at those plots. Interestingly, our sensitivity results (Figure 22) show that 

with moderate VCC (50%) to maximum VCC (100%), there is a continuous reduction in 

simulated sediment and discharge and the difference in magnitude of simulated 

sediment loss between 50% VCC and 100% VCC is within the same order of magnitude 

which is not in agreement with the findings of Bartley et al. [2006]. It’s not clear if the 

discrepancy between our sensitivity results and Bartley et al. [2006] is due to the 

differences in vegetation types or the default value for uniform interception depth that 

we used to calibrate the model which in reality, may be highly variable especially at 

Price since it contained more than one plant species.    

Puigdefabregas [2005] suggests that VDSH explains the relationship between soil 

development and evolution processes and in turn, influences sheet and concentrated 

flow processes [Wilcox et. al, 1996; Davenport et al., 1998; Urgeghe et al., 2010]. Our 

results indicate that VDSH is significantly correlated with RHEM sediment output 

residuals from sites with variable VCC (3.3% - 26.4%), slope (0.7% - 24.5%), and rainfall 

intensity.  The results were statistically significant at both sites combined and at Dry-X (p 

< 0.05), but not at Price by itself (p > 0.05). The results from both sites combined (Figure 

23a-c; Figure 26a-c) show the regressions were mainly driven by Dry-X data because the 

Price residual and spatial pattern metric range was substantially smaller compared to 

Dry-X. This suggests that there is not a single metric that will adequately work for both 
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sites given the limited overlap in the VCC variability between sites. In addition, the 

results from Price (Figure 24a-c) were likely not significant because of the low amount of 

VCC and slope present and the poor ability of RHEM to capture the plot-plot variation 

(Figures 18a-b; Table 5) despite fitting the overall site response.  

                              

Figure 29a-b: (a) Vegetation map of Price plot 5 and (b) of Dry-X plot 10. Green = 
vegetation and black = soil.  

Price contains a low amount of VCC and the vegetation patches are small, isolated, and 

have simple shape complexity (Figure 29a). In contrast, Dry-X contains a higher amount 

of VCC with large patches that are close together, connective, and have complex shapes 

(Figure 29b). As a result, the spatial distribution of VCC at Dry-X appears to protect soil 

patches and create tortuous flow paths compared to Price. At Dry-X, using landscape 

and class aggregation metrics for vegetation, ENN_AM (Figure 25a) and PROX_MD 
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(Figure 25c, 27), both show that as the vegetation patches become closer together and 

more uniform, the model over-predicts sediment in runoff. A similar effect was 

observed when using FRAC_CV (Figure 25b), which indicates an increase in tortuosity of 

the soil interspace and therefore flow paths, resulted in less actual sediment in runoff 

than the model predicts. In addition, Figures 25b and 26e show that at Dry-X using 

FRAC_CV, the largest four points drive the regression indicating a possible threshold 

response. The regressions of Dry-X VCC and slope versus the RHEM Dry-X sediment 

output residuals (Figure 30a-b), show that the relationship of residuals to VDSH is not 

just a spurious correlation to variability in other important model parameters, since 

both regressions are insignificant and have a weak R2. This shows the threshold 

response observed in Figure 25b may be an actual physical process that is not currently 

handled well by RHEM.  

 

Figure 30a-b: Linear regression analysis of Dry-X (a) VCC and (b) slope versus the RHEM 
sediment output residuals for Dry-X. 

Chartier et al. [2011] proposed VDSH may affect the amount of runoff and infiltration. 

Interestingly, in the equation of 𝐾𝑒, when the amount of VCC goes up we also see an 
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increase in infiltration, so we would expect Dry-X to have increased infiltration since it 

has a greater amount of VCC and spatial distribution complexity. Looking at the RHEM 

discharge calibrations for Price and Dry-X (Table 4), we see that 𝐶𝑒 is substantially 

higher at Dry-X than Price which indicates more infiltration is occurring at Dry-X in the 

model. These results, and evidence found in the literature cited above, suggest that the 

spatial distribution of vegetation cover has a significant impact on sediment erosion 

processes regardless of varying slope, amount of VCC, and rainfall intensity.  

Applying RHEM-simulated sediment to the regression model (Figure 15), a strong, 

significant relationship between the observed TDS and predicted TDS concentration 

(Figure 28) was found that has relatively low error and the 1:1 line falls with the 95% CI. 

This indicates that sediment can be used as a proxy to estimate salinity in RHEM using 

our linear regression model. It also indicates sediment erosion and salinity transport 

processes are related and by managing soil erosion processes, salinity transport 

processes will also be affected.  
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7 Conclusions 

 

In this study, the amount and spatial distribution of VCC had a measurable effect on 

modelled sediment and salinity loading in runoff over a range of rainfall intensity, slope, 

VCC, and soil properties using RHEM. RHEM seems to handle the plot-plot variability 

best at sites with steeper slopes and greater amount of VCC. Landscape pattern 

descriptions showed that with moderate VCC, as the vegetation patches get closer 

together, more uniform, and as the soil interspace tortuosity increases, observed 

sediment loading decreases relative to modeled expectations. In addition, a linear 

relationship between sediment and TDS concentration was found, and when used to 

predict TDS concentration using simulated sediment concentration, the relationship 

predicted TDS concentration from modeled sediment loads. This suggests that a linear 

relationship between salinity transport and sediment erosion processes can be applied 

to the RHEM model for the Mancos Shale formation. This study provides new 

parameterizations for RHEM that will improve its prediction capabilities and value for 

saline and sodic soils in rangelands of the Mancos Shale formation. The study also 

provides Upper Colorado River Basin agencies with valuable information that may help 

reduce sediment and salinity loads into the Colorado River. 

The results from this study supported much of the research that has been done, but 

knowledge gaps still exist. Further research should be done to investigate the following: 
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1. How sediment and salinity erosion processes during a rainfall event are 

influenced by the dispersitivity of the soil in relation to the factors presented by 

Laronne and Shen [1982] and Evangelou [1981] on the various geologic members 

of the Mancos Shale formation. 

2. How VDSH metrics presented in this study may be integrated into RHEM to 

improve its prediction capabilities. 

3. Is there a threshold response associated with soil interspace tortuosity? 

4. The role of salt efflorescence (and the specific minerals that make it up) on 

salinity loading. 

5. Why was observed sediment and salinity loading at Price generally higher in the 

initial runoff event regardless of intensity and why these trends are mostly not 

observed at Dry-X? 

In addition, the experimental design of future research projects may benefit from: 

1. Selecting field sites based on geologic members of the selected formation.  

2. Collecting soil cores on reconnaissance trips to identify the variability of soil 

dispersivity between sites. 

3. When collecting soil cores, record the infiltration depth and calculate an 

approximate an average depth for each plot and intensity. 

4. Collecting salt efflorescence to begin documenting the evaporate minerals that 

are present and may be exclusively found on certain geologic members. 

5. Collecting soil moisture data (one less parameter to calibrate). 
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6. Approximating interception depth from collected VCC data. 

Lastly, even though these results may provide a possible solution to mitigate the 

projected increase in sediment and salinity loads into the Colorado River with future 

climate change, the Upper Colorado River Basin and the agencies that manage it will 

have to evaluate and create feasible solutions to implement vegetation planting projects 

that are economical and do not produce adverse side effects such as habitat alterations 

for local fauna.  
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9 Appendix A 

9.1 Price Vegetation Maps 

    

Figure 31a-b: Vegetation map of Price Plot 1 and 2 (left to right). Green = vegetation and 
black = soil. 
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Figure 32a-b: Vegetation map of Price Plot 3 and 4 (left to right). Green = vegetation and 
black = soil. 
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Figure 33a-b: Vegetation map of Price Plot 5 and 6 (left to right). Green = vegetation and 
black = soil. 
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Figure 34a-b: Vegetation map of Price Plot 7 and 8 (left to right). Green = vegetation and 
black = soil. 
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Figure 35a-b: Vegetation map of Price Plot 9 and 10 (left to right). Green = vegetation 
and black = soil. 
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Figure 36a-b: Vegetation map of Price Plot 11 and 12 (left to right). Green = vegetation 
and black = soil. 
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9.2 Dry-X Vegetation Maps 

   

Figure 37a-b: Vegetation map of Dry-X Plot 1 and 2 (left to right). Green = vegetation 
and black = soil. 
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Figure 38a-b: Vegetation map of Dry-X Plot 3 and 4 (left to right). Green = vegetation 
and black = soil. 
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Figure 39a-b: Vegetation map of Dry-X Plot 5 and 6 (left to right). Green = vegetation 
and black = soil. 
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Figure 40a-b: Vegetation map of Dry-X Plot 7 and 8 (left to right). Green = vegetation 
and black = soil. 
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Figure 41a-b: Vegetation map of Dry-X Plot 9 and 10 (left to right). Green = vegetation 
and black = soil. 
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Figure 42a-b: Vegetation map of Dry-X Plot 11 and 12 (left to right). Green = vegetation 
and black = soil. 
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10 Appendix B 

10.1    RHEM Input File Parameter Descriptions (! separates parameter value from text) 

! Uniform Hillslope 
BEGIN GLOBAL 

CLEN = ! The characteristic length of the hillslope in meters or feet 
UNITS = ! Metric or English units 
DIAMS = ! List of representative soil particle diameters (mm or in) for up to 5 particle classes 
DENSITY = ! List of densities (g/cc) corresponding to the above particle classes 
TEMP = ! Temperature in degrees C. Not used by RHEM 
NELE = ! Number of hillslope elements (planes) 

END GLOBAL 
 
BEGIN PLANE 

ID = ! Identifier for the current plane 
LEN = ! The plane slope length in meters or feet 
WIDTH = ! The plane bottom width in meters or feet 
CHEZY = ! overland flow Chezy Coeff. (m^(1/2)/s) (square root meter per second) 
RCHEZY = ! concentrated flow Chezy Coeff. (m^(1/2)/s) (square root meter per second) 
SL = ! slope expressed as fractional rise/run 
SX = ! normalized distance 
CV = ! Coefficient of variation for KE 
SAT = ! Initial degree of soil saturation, expressed as a fraction of the pore space filled 
PR = ! print flag 
KSS = ! splash and sheet erodibility coeff. 
KOMEGA = ! undisturbed concentrated erodibility coeff. (s2/m2)   
KCM = ! maximum concentrated erodibility coeff. (s2/m2)  
CA = ! Cover fraction of surface covered by intercepting cover - rainfall intensity is reduced by this fraction until the 
specified interception depth has accumulated 
IN = ! Interception depth in mm or inches 
KE = ! Effective hydraulic conductivity (mm/h) 
G = ! Mean capillary drive, mm or inches — a zero value sets the infiltration at a constant value of KE 
DIST = ! Pore size distribution index. This parameter is used for redistribution of soil moisture during unponded intervals 
POR = ! Porosity 
ROCK = ! Volumetric rock fraction, if any. If KE is estimated based on textural class it should be multiplied by (1 - Rock) to 
reflect this rock volume 
SMAX = ! Upper limit to SAT 
ADF = ! Beta decay factor in the detachement equation in Al-Hamdan et al 2012 (Non-FIRE) 
ALF = ! allow variable alfa in the infiltration Smith-Parlange Equation, alf <= 0.05, Green and Ampt 
BARE = ! fraction of bare soil to total area   
RSP = ! Rill spacing in meters or feet 
SPACE = ! average micro topographic spacing in meters or feet 
RELIEF = ! Average micro topographic relief in mm or inches 
FRACT = ! List of particle class fractions - must sum to one 

END PLANE 
 

 

Link: http://apps.tucson.ars.ag.gov/rhem/docs 

http://apps.tucson.ars.ag.gov/rhem/docs
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11 Appendix C 

11.1    Landscape Metrics Histograms 

 

 

 

Figure 43a-c: Histograms of landscape level metrics for both sites, Price, and Dry-X. 
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11.2    Soil Class Metrics Histograms 

 

 

 

Figure 44a-c: Histograms of soil class level metrics for both sites, Price, and Dry-X. 
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11.3    Vegetation Class Metrics Histograms 

 

 

 

Figure 45a-c: Histograms of vegetation class level metrics for both sites, Price, and Dry-
X. 


