
University of Nevada, Reno

A Centralized Service for Accessing the NCS Brain
Simulator Through a Web Interface

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science

in Computer Science and Engineering

by

Christine Maria Johnson

Dr. Frederick C. Harris, Jr., Thesis Advisor

December, 2015

THE GRADUATE SCHOOL

We recommend that the thesis
prepared under our supervision by

CHRISTINE JOHNSON

entitled

A Centralized Service for Accessing the NCS Brain
Simulator Through a Web Interface

be accepted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

Dr. Frederick C. Harris, Jr., Advisor

Dr. Sergiu M. Dascalu, Committee Member

Dr. Yantao Shen, Graduate School Representative

Dr. David Zeh, Graduate School Dean

December 2015

i

Abstract

UNR’s Neocortical Simulator (NCS) is a large scale brain simulator that allows

neuroscientists to run simulations with created brain models and receive output data

generated by those simulations. Initially, NCS could only be accessed with text files

and Python script files. The NCS web interface was recently developed to provide

neuroscientists with a visual tool for creating brain models, setting simulation param-

eters, and analyzing simulation output data. The use of the web interface requires a

protocol for communicating with NCS, as well as the management of a database used

to store brain models and user accounts. This thesis presents a centralized service for

managing communication between the web interface and NCS and between the web

interface and the database. The service also has features for performing conversions

between the Python scripts used to define simulation parameters and simulations

created with the web interface, and streaming simulation data in real time while

queuing any data if it is not able to be received by the user. The implementation

of this service has provided the necessary link for data exchange between the web

interface and NCS, and allowed for the addition of features to the web interface that

will expectantly enhance user experience.

ii

Dedication

For Sphinx and Phoenix.

iii

Acknowledgments

I would like to thank Dr. Fred Harris, Dr. Sergiu Dascalu, and Dr. Yantao Shen

for being on my committee, with special thanks to Dr. Fred Harris for giving me the

opportunity to do research in the HPCVIS lab. I would like to thank Cameron Rowe

for his work on the NCS web interface, and everyone else in the HPCVIS lab for their

collaboration and their company. I would also like to thank Eric Klukovich for being

the most dependable partner and friend anyone could ever ask for.

iv

Contents

Abstract i

Dedication ii

Acknowledgments iii

List of Tables vi

List of Figures vii

1 Introduction 1

2 Background and Related Work 3
2.1 Neuroscience . 3

2.1.1 Overview . 3
2.1.2 Neurons and Channels . 3
2.1.3 Synapses . 5
2.1.4 Stimulus . 5

2.2 Computational Neuroscience . 5
2.2.1 Overview . 5
2.2.2 Models . 6
2.2.3 Simulators . 7

2.3 Neocortical Simulator . 7
2.3.1 Overview . 7
2.3.2 Simulation Composition . 8
2.3.3 PyNCS . 9
2.3.4 NCS Web Interface . 9

2.4 Centralized Services . 13
2.4.1 Overview . 13
2.4.2 Client-server Architecture . 15
2.4.3 Daemon Processes . 15

2.5 Libraries and Frameworks . 15
2.5.1 Overview . 15
2.5.2 Python . 15
2.5.3 Bcrypt . 16
2.5.4 Protocol Buffers . 16

v

2.5.5 Twisted . 17
2.5.6 RabbitMQ . 20
2.5.7 JSON . 22
2.5.8 MongoDB . 23

3 Design 24
3.1 Overview . 24
3.2 Service Requirements . 24

3.2.1 Functional Requirements . 24
3.2.2 Non-functional Requirements 24

3.3 Use Case Modeling . 26
3.3.1 Overview . 26
3.3.2 Detailed Use Cases . 27

3.4 Architecture . 29

4 Implementation 31
4.1 Overview . 31
4.2 Database Management . 31

4.2.1 Overview . 31
4.2.2 Structure . 31
4.2.3 TxMongo Functions . 35

4.3 Twisted Services . 36
4.3.1 Overview . 36
4.3.2 Add New User Service . 36
4.3.3 Authentication Service . 37
4.3.4 Data Proxy Service . 41

4.4 Error Handling . 43
4.4.1 Exceptions . 43
4.4.2 Invalid Requests . 43

4.5 Results . 44

5 Conclusion and Future Work 51
5.1 Conclusion . 51
5.2 Future Work . 52

5.2.1 NCS Daemon Enhancements 52
5.2.2 NCS Enhancements . 53
5.2.3 Web Interface Enhancements 53

Bibliography 55

vi

List of Tables

3.1 The NCS daemon functional requirements. 25
3.2 The NCS daemon non-functional requirements. 25

vii

List of Figures

2.1 A diagram of neuron structure, from [32]. 4
2.2 An example of a simple PyNCS Python script. 10
2.3 A screenshot of the NCS web interface brain model builder tab. . . . 11
2.4 A screenshot of the NCS web interface simulation builder tab. 12
2.5 An example graph of NCS simulation report data, from [33]. 13
2.6 A screenshot of the NCS web interface virtual robot tab while a simu-

lation is running, from [16] . 14
2.7 An example of a Protobuf data structure definition. 17
2.8 A diagram of multi-task program models, from [17]. 18
2.9 An example of a Twisted log of an echo server starting up, echoing one

message, and terminating, from [6]. 21
2.10 A diagram of a direct exchange with Queue 1 bound with the binding

key orange and Queue 2 bound with the binding keys black and green,
from [24] . 22

3.1 A use case diagram of the NCS web interface. 26
3.2 A system architecture diagram of the daemon and how it interacts with

the other components. 30

4.1 An example of the database structure where { } items represent BSON
objects and [] items represent lists of BSON objects. 32

4.2 An example of a document in the users collection. 33
4.3 An example of a model document. 33
4.4 An example of a simple model JSON. 34
4.5 A diagram of the Add New User Service interacting with the other

system components. 37
4.6 A diagram of the Authentication Service interacting with the other

system components. 38
4.7 A diagram of the Data Proxy Service interacting with the other system

components. 42
4.8 An example of success and failure responses to requests made by the

web interface. 44
4.9 A screenshot of the NCS web interface invoking the add new user request. 45
4.10 A screenshot of the NCS web interface invoking the login request. . . 45

viii

4.11 A screenshot of the NCS web interface model builder tab. The cell
models displayed in the pane on the left are retrieved by invoking the
get models request. 46

4.12 A screenshot of the NCS web interface invoking the Python script to
JSON request. 47

4.13 A screenshot of the NCS web interface invoking the JSON to Python
script request. 47

4.14 A screenshot of the NCS web interface invoking the save model request. 48
4.15 A screenshot of the NCS web interface invoking the undo model save

request. 49
4.16 A screenshot of the NCS web interface invoking the launch simulation

request. 50
4.17 A screenshot of the NCS web interface reports tab. The data displayed

for each report is received from the Data Proxy Service. 50

1

Chapter 1

Introduction

Computational Neuroscience is a fast growing field, especially with regards to us-

ing brain simulation to observe how the human nervous system responds to different

stimulus types. Brain simulation, as opposed to experiments using actual cells, has

become popular because it offers a flexible method of performing large scale exper-

iments. Typical brain simulations use brain models that consist of various spiking

neuron models and synapse models. The simulations use neuron spiking functions to

describe a mathematical relationship between stimulus and the probability of neurons

spiking in voltage.

A variety of brain simulation tools exist, including the NeoCortical Simulator

(NCS), a large scale brain simulator developed at the University of Nevada, Reno.

NCS is capable of running simulations with various parameters and brain models

created by users, and reporting neuron spiking states and membrane voltages while a

simulation is running. Alongside the actual simulator, other components have been

developed to broaden the efficiency and usefulness of NCS. These components are

designed to allow neuroscientists with any level of programming skill the ability to

create brain models, configure simulation parameters, and view the data generated

by a simulation as raw data or visually in the form of graphs and simulated environ-

ments. The NCS web interface is a visual tool for creating simulations and analyzing

simulation output. Contrary to the Python script files, running simulations with the

web interface requires no programming knowledge. The development of the web in-

terface introduced networking and communication requirements for exchanging data

2

with NCS, and necessitates database usage for storing user accounts and created brain

models.

This paper presents the NCS daemon, a centralized service for managing user

accounts and abstracting the communication protocols from the web interface, NCS,

and a database. Since the intent of the web interface is to serve as a user-friendly

method of accessing NCS, the daemon also offers functionality to assist with conver-

sions between legacy methods of running simulations and simulations created with

the web interface. Additionally, it provides a method of asynchronous data transfer

of simulation output data between NCS and the web interface.

The remainder of this document is structured in the following manner. Chapter 2

will cover the neuroscience background, the NCS system components deployed and

under development, and the libraries and frameworks used for the implementation of

the daemon. Chapter 3 discusses the service requirements of the daemon and how it

interacts with the other components of the system. Chapter 4 describes specifically

how the daemon was developed. Chapter 5 gives a summary of the presented work

and ideas for future enhancements of the daemon, NCS, and the web interface.

3

Chapter 2

Background and Related Work

2.1 Neuroscience

2.1.1 Overview

Neuroscience is the study of the cells in the nervous system, which consists of the

brain, spinal cord, and nerves of the body [34]. Studying these cells gives insight

on how the nervous system processes information and reacts to received information.

Although neuroscience is a broad subject with extensive amounts of specific topics,

only the basic functional components of the brain will be discussed in this section

solely for the purpose of understanding brain simulation. A diagram of neurons,

channels, and synapses is depicted in Figure 2.1.

2.1.2 Neurons and Channels

The human brain has approximately 100 billion neurons. The neuron is considered the

fundamental structural unit of the brain. A neuron receives input through dendrites

to the soma (cell body), and sends output to neighboring neurons through the axon.

Excitatory Postsynaptic Potential is input to a neuron that is the output of another

neuron [21].

Neurons have an impermeable cell membrane, but they have ionic channels that

allow charge to flow in and out. The ionic channels are gated, meaning they open and

close depending on conditions such as membrane voltage, the presence of chemicals,

the presence of pressure, etc. When the Excitatory Postsynaptic Potential is high

4

Figure 2.1: A diagram of neuron structure, from [32].

5

enough, it raises the cell membrane potential causing the opening of voltage-gated ion

channels and a change in the concentration of ions. The augmented ion concentration

will either cause depolarization, a positive change in voltage, or hyperpolarization, a

negative change in voltage. A drastic enough depolarization is what causes the neuron

to fire an action potential, or spike in voltage [21].

2.1.3 Synapses

The human brain has approximately 100 trillion synapses, which are the basis for

memory and learning. A synapse is a junction between neurons causing the opening

of ionic channels, or the point where the action potential reaches another neuron.

A single neuron can have 10,000 synapses on its dendrites and soma. Excitatory

synapses are those that cause neuron depolarization, and inhibitory synapses are

those that cause hyperpolarization. Brains learn by repeated firing of one neuron to

another, causing Long-term Potentiation, an observed increase in Excitatory Post-

synaptic Potential, or synaptic strength between two neurons over a period of time

[21].

2.1.4 Stimulus

To observe how the nervous system behaves, stimulus, or input can be applied to the

system in the form of electric current to see how the system responds with changes

in cell membrane potential and neuron firing rate. A spiking function is a function

that describes the relationship between stimulus and response, or more specifically,

how electric current will determine the probability the neuron will spike [21].

2.2 Computational Neuroscience

2.2.1 Overview

Computational neuroscience is the theoretical study of brain function in terms of

the information-processing properties of the nervous system components [30]. Prior

to computational neuroscience, neurologists studied brain behavior by performing

6

in vivo and in vitro experiments, or experiments using intact, living organisms and

experiments using cells grown in a controlled environment such as a test tube, respec-

tively. Computational neuroscience uses brain simulation as a more flexible approach

for the study of nervous system behavior.

2.2.2 Models

To better understand how the brain functions, many spiking neuron models have

emerged that have trade-offs between computational performance and biological accu-

racy. Spiking neuron models are mathematical descriptions used to simulate how ac-

tion potentials are fired and propagated. The following sections describe the Hodgkin-

Huxley (HH) [9, 13], leaky integrate-and-fire (LIF) [9], and Izhikevich (IZH) [14]

models, which are the most well-known models used in simulations [31].

Hodgkin-Huxley

HH is the most complex and biologically accurate of the three models, designed by

observing ion concentrations and currents in a giant squid axon in 1952. The creators

discovered a higher potassium current on the outside of the membrane, higher sodium

current on the inside, and a leak current. The model describes these currents and

how the ions flow through the cell membrane via three types of channels [13].

Leaky-Integrate-and-Fire

LIF is simplistic neuron model that approximates the biologically accurate HH model,

focusing on the leaky integration property of neurons. Current leaks from channels on

the neuron membrane at a rate dependent on the membrane capacitance, causing a

drop in membrane voltage over a period of time. Once the model’s membrane voltage

falls to a predefined threshold, the model fires and resets the membrane voltage to

the initial value. The combination of leaky integration and reset is what defines the

basic integrate-and-fire spiking model [31].

7

Izhikevich

The intention of the IZH neuron model was to create a model that is as biologically

realistic as the HH model, but simple enough to be computationally efficient. By

varying the input parameters to the model, IZH can simulate regular spiking, bursting,

and fast spiking neuron firing rates; rates that were initially identified by observing

the motor cortex of a rat. When the model was first introduced in 2003, it was used

in a mammalian cortex simulation of 10,000 neurons and 1,000,000 synapses in real

time, with the ratio of excitatory and inhibitory neurons being 4 to 1 [14].

2.2.3 Simulators

Brain simulators use groups of neuron model instances to represent the biological

system state at a series of time steps. Some common brain simulation tools include

NEURON [5], NEST [25], GENESIS [3], and BRIAN [10], which offer different fea-

tures and focus capabilities. As stated previously, the more biological details that are

simulated, the more compute intensive the simulation becomes. Graphics Process-

ing Units (GPUs) have become popular for brain simulations due to their accelerated

compute capability. The neuron doctrine states that the nervous system is made up of

discrete cells that are not continuous with any other cells [34], making their computa-

tion a perfect candidate for the GPU single instruction multiple data (SIMD) parallel

architecture. The following section describes the Neocortical Simulator (NCS), a

large-scale brain simulator that runs on a heterogeneous cluster of CPUs and GPUs.

2.3 Neocortical Simulator

2.3.1 Overview

NCS uses the Compute Unified Device Architecture (CUDA) for parallel computation

on NVIDIA GPUs and the Message Passing Interface (MPI) for computation on dis-

tributed machines, making it capable of simulating 1,000,000 neurons and 100,000,000

synapses in real time [12]. NCS offers the IZH model, and modified LIF and HH mod-

8

els, and is capable of running simulations with various combinations of these models

and synapses. For the mathematical description of the predefined neuron models,

please refer to [12, 15]. The following is a description of the required steps and

components of an NCS simulation referenced from [12].

2.3.2 Simulation Composition

Components

Every NCS simulation consists of neurons, synapses, stimuli, and reports, where re-

ports are collections of data generated from the simulation. Some optional features

include groups, aliases, and channels (calcium-dependent for LIF neurons and voltage-

gated for LIF and HH neurons). At each time step, neurons report the spiking state

and the membrane voltage. When a presynaptic neuron fires an action potential, a

current travels from the neuron through a synapse to a postsynaptic neuron. Stimuli

are applied to neuron groups, and can either clamp the membrane voltage or inject

a specified amount of current. The available stimulus types are linear current, linear

voltage, rectangular current, rectangular voltage, sine current, and sin voltage. Re-

ports are created for individual groups of neurons, so the spike state and membrane

voltage data can be extracted from the simulation. The available report types are

neuron voltage, neuron fire, input current, and synaptic current. Simulations can

utilize groups and aliases to be able to consist of varying neuron models.

Computations

At each time step, the currents for the stimuli and synapses are computed and used to

update the state of each neuron. If a neuron enters a spiking state, this data must be

used to update any synapses connected to this neuron at later time steps. The neuron,

synapse, and stimulus updates are all executed in parallel, but a barrier is used to

ensure that execution does not begin until all the input data for that group has been

received. Data is transferred between computation groups via a publisher/subscriber

message passing system.

9

Reports

A reporter object is created for each simulation component that is being reported

on. Using the publisher/subscriber system, the reporter subscribes to the data source

and extracts all the produced data at each time step. For more details on how the

messages are distributed to the appropriate machines in the cluster, please refer to

[12].

2.3.3 PyNCS

In the latest version of NCS, a Python interface was added so users can create and run

simulations with scripts. An example PyNCS Python script is shown in Figure 2.2.

The Python programming language was chosen because it is easy to use and was

deployed as the scripting language for other simulators like NEURON, NEST, and

BRIAN. NCS is written in C++ and CUDA C, so the PyNCS library was created

to interface with NCS from Python scripts. The PyNCS API includes functions

for adding neurons, synapses, stimulus, groups, aliases, reports, and initializing and

running a simulation. For more details on the implementation of PyNCS, please refer

to [33].

2.3.4 NCS Web Interface

As an alternative to using Python scripts, NCS also has a web interface that can be

used to build models and run simulations. The web interface was created to make NCS

available to a broader range of users because it does not require any programming

to use [1, 2]. The web interface provides user profiles, so models can be saved and

shared. All users have access to global models, users in a lab group can share models,

and users can create personal models that are only available to the user. The web

interface consists of the following components: model builder, simulation builder,

reports, and virtual robot. The following is a description of each of the components

in more detail.

10

#!/usr /bin /python

import os , sys
import ncs

def run (argv) :

sim = ncs . S imulat ion ()

I zh i k ev i ch neuron
regular_spiking_params = sim . addNeuron ("regular_spiking" ,"izhikevich" ,

{
"a" : 0 . 02 ,
"b" : 0 . 2 ,
"c" : −65.0 ,
"d" : 8 . 0 ,
"u" : −12.0 ,
"v" : −60.0 ,
"threshold" : 30

})
group=sim . addNeuronGroup ("group_1" , 1 , regular_spiking_params , None)

I n i t i a l i z e the s imu la t i on
i f not sim . i n i t (argv) :

p r i n t "failed to initialize simulation."
return

Add st imulus
stim_param = {

"amplitude" : 10
}

sim . addStimulus ("rectangular_current" , stim_param , group , 1 , 0 . 1 , 1 . 0)

Report neuron vo l tage
r epor t=sim . addReport ("group" , "neuron" , "neuron_voltage" , 1 , 0 . 0 , 1 . 0)
r epor t . t oA s c i i F i l e ("./regular_spiking_izh.txt")

Run the s imu la t i on f o r 1 second
sim . run (durat ion =1.0)

return

i f __name__ == "__main__" :
run (sys . argv)

}

Figure 2.2: An example of a simple PyNCS Python script.

11

Figure 2.3: A screenshot of the NCS web interface brain model builder tab.

Model Builder

The model builder tab shown in Figure 2.3 is where the user can select a preexisting

model or create a new model for a simulation. The user can create cell groups with

the available neuron models, add synapses, and set parameters for each [2].

Simulation Builder

The simulation builder tab shown in Figure 2.4 is where the user can set simulation

parameters, add stimulus and reports, and run the simulation [2].

Reports

The reports tab is where the user can view data reported by a simulation, streamed in

real time. To promote readability and further analysis, the report data can be viewed

as raw data or in graphs as shown in Figure 2.5. Although the data is streaming live,

the user can also log out and log in at a later time to view the data generated by a

12

Figure 2.4: A screenshot of the NCS web interface simulation builder tab.

13

Figure 2.5: An example graph of NCS simulation report data, from [33].

simulation.

Virtual Robot

The virtual robot tab is designed to allow users to observe how simulated brain models

behave in a realistic environment. The user can run a simulation with a created brain

model; audio and visual input perceived by the robot in the environment serving as

stimulus inputs to the simulation and streaming report data used to determine the

robot’s behavior [16]. An example of the robot in a virtual environment is shown in

Figure 2.6. This functionality is under development because NCS currently does not

support image and audio file inputs, or adding stimulus inputs after the simulation

is running.

2.4 Centralized Services

2.4.1 Overview

Grouping a set of functionality into a centralized service promotes easier feature set

change and configuration management. Requiring all communication among NCS, the

web interface, and the database to go through the daemon allows for the components

to remain independent while being able to exchange data with one another in an

efficient manner. The addition of a centralized service provider encouraged the NCS

14

Figure 2.6: A screenshot of the NCS web interface virtual robot tab while a simulation
is running, from [16]

.

15

system to use the client-server architecture, and the lack of user interaction with the

centralized service allowed it to run as a daemon process.

2.4.2 Client-server Architecture

In a client-server system, every entity acts as either a server or a client. Typically, a

server is a centralized entity that resides at a known location to offer a set of services

to clients. Namely, a server is responsible for providing resources or services, and

clients request resources or services from the server [20]. The specific client-server

architecture of the application is discussed in Chapter 3.

2.4.3 Daemon Processes

The NCS daemon application does not interact with any users; it only communicates

with NCS, the web interface, and the database. Thus, it does not require a user

interface or even to be noticeably running on the system. Therefore, the application

executes as a daemon process, meaning it is a program that runs in the background,

not allowing users to interact with it directly [8]. The only situations requiring a user

to interact with the daemon are to start it and terminate it.

2.5 Libraries and Frameworks

2.5.1 Overview

The following is a description of the libraries and frameworks used for the implemen-

tation of the NCS daemon.

2.5.2 Python

The daemon is implemented in the Python programming language. Python not only

balances ease of use with flexibility, but it was chosen specifically because of the

extensive amount libraries and frameworks it has available. Python’s standard library

includes JSON and socket interfaces [26], which simplified communication with the

NCS web interface. Also, the Python package index has the Twisted framework, used

16

for asynchronous network programming [26]. Twisted is described in more detail

below.

2.5.3 Bcrypt

The daemon is responsible for storing the web interface’s user profiles, so the bcrypt

encryption library is used to encrypt the user passwords before they are stored. Bcrypt

uses a modified version of the Blowfish stream cipher, a symmetric key encryption

algorithm, or an encryption algorithm that uses a single key for the encryption and

decryption process [22]. Bcrypt generates long SALT values that it passes into the

encryption algorithm to hash whatever it is encrypting. Each item being encrypted

is given a new, random SALT value, which is also used for the decryption process.

Bcrypt was chosen because it provides adequate security for the purpose of the ap-

plication, and it can be used with Python if the bcrypt package is installed [27].

2.5.4 Protocol Buffers

Overview

Protobuf is a library created by Google that used for serializing data in an efficient

manner. Protobuf is currently is available for C++, Java and Python [11]. It is gen-

erally not desirable to transmit raw floating point values across the network because

the values will not necessarily be represented the same on machines with different

architectures. Therefore, some method of encoding was required to transmit the sim-

ulation output voltages from NCS to the daemon. Protobuf was deemed an acceptable

candidate because NCS is written in C++ and the daemon is written in Python.

Usage

Defining the Data Schema Protobuf requires a data schema be defined in a .proto

file. Similar to other data structures, the schema can be an encapsulation of elements

of varying data types. An example of a Protobuf data structure definition is shown

in Figure 2.7. When the schema is compiled with the Protobuf compiler, the class

17

message Student {
r equ i r ed s t r i n g name = 1 ;
r equ i r ed in t32 id = 2 ;
r equ i r ed f l o a t gpa = 3 ;

}

Figure 2.7: An example of a Protobuf data structure definition.

used to serialize and deserialize the data structure is generated. The schema must be

compiled individually for each language used.

Serializing and Deserializing Once the Protobuf object is created, instances of it

can be used to serialize and deserialize data. The data can be serialized into a string

type in one language and deserialized in a different language, as long as the Protobuf

object has been created for both languages. The process used for our specific purpose

is described in more detail in Chapter 4.

2.5.5 Twisted

Overview

The daemon uses a client-server architecture, and like most applications of this archi-

tecture, requires scalability and network communication. Twisted is an event-driven

networking framework available for Python. Twisted is a popular framework because

it provides an engine for managing client-server architectures, and it provides inter-

faces for transport and application layer protocols, such as TCP/UDP, HTTP, IMAP,

event logging, and many others [35]. Additionally, Twisted has protocols for authenti-

cation, logging, and running programs as daemon processes, all of which are required

by the daemon.

Event-driven Programming Model

As stated previously, Twisted uses event-driven asynchronous execution to allow mul-

tiple tasks to run at what appears to be simultaneously. Asynchronous execution is

non-blocking; if a task must wait for some reason, the program will allow another

18

Figure 2.8: A diagram of multi-task program models, from [17].

task to execute. A diagram depicting how asynchronous and synchronous execution

models vary is shown in Figure 2.8. Event-driven programming is commonly based

on the reactor design pattern [23]. Programs that follow this pattern have a reactor

loop that waits for events to occur. The reactor handles events by executing the

appropriate callback, a function that handles what should be done when a particular

event occurs.

The primary incentive for using the asynchronous programming model is control.

Synchronous multi-threaded systems are difficult to manage because threads often

19

times require synchronization for accessing shared resources and eliminating race

conditions, starvation, and deadlock. Moreover, the scheduling of the threads is

controlled by the operating system as opposed to the programmer, which further

attributes to the difficulty of designing a complex system.

Although asynchronous programs do not suffer from these complications, they

still require a design with some degree of complexity and are only advantageous in

certain situations. The asynchronous model should be considered if the system has

a large number of tasks, the tasks perform I/O or other blocking operations, and

the tasks are mostly independent (inter-task communication is minimal) [23]. Thus,

the asynchronous programming model is a sound choice for a networked client-server

system where the server creates a separate task for each client, and the clients make

requests to and receive data from the server.

Application Infrastructure

Overview Twisted applications are deployed using an infrastructure consisting of

services, applications, and Twisted application configuration (TAC) files. This con-

figurable deployment method allows for easy addition of services and application

daemonization. The following is a list of the descriptions of the components of the

architecture referenced from [6].

Services A Twisted service object is used for anything that can be started and

stopped. Twisted has service implementations for TCP, FTP, HTTP, SSH, DNS, and

many others. All services in the daemon are instances of the TCP service.

Applications A Twisted application is the object that holds all the services. The

application uses a service manager through which services must register. When the

application is deployed, all of the registered services are made available.

TAC Files TAC files are where the services are registered with an application, and

are used to configure a Twisted program.

20

twistd twistd is the command-line utility used to deploy a Twisted application by

running the TAC file, and starting and stopping the reactor. By default, twistd dae-

monizes the application, but a flag can be used to run the process in the foreground.

When the application is ran as a daemon process, it can be terminated with the twistd

process ID.

Authentication

Twisted Cred The NCS web interface has user profiles, requiring it to use a form

of authentication. Twisted provides an authentication system called Cred, which is

generalizable in the sense that the specific authentication methods are overridden.

Cred has a ICredentialsChecker object that provides the interface for authenticating

credentials with some form of database, and granting the user with a request token

upon authentication. The specific query required to verify a user’s credentials is

passed into the constructor of the ICredentialsChecker object to keep the verification

method generalized. Cred also provides a Realm object that gives the user access to

a list of avatars, or actions and data available to users. Methods that are overridden

include handling a new client connection, receiving requests, logging in and out, and

handling the loss of a connection [6].

Logging

Twisted provides an event logging system that is comparable to the one included

in the Python standard library [6]. An example log is shown in Figure 2.9. When

running a Twisted application with twistd, logging is written to a file if the process

is daemonized and to the console if the process is ran in the foreground.

2.5.6 RabbitMQ

Overview

One of the functional requirements of the NCS web interface is users should have the

capability to start a simulation, log out, and log in at a later time to view the simu-

21

Figure 2.9: An example of a Twisted log of an echo server starting up, echoing one
message, and terminating, from [6].

lation output data. This functionality requires the daemon to support asynchronous

messaging. RabbitMQ is an application-layer protocol message broker, or message

intermediary, that implements the Advanced Message Queuing Protocol (AMQP).

AMQP defines the message queue standard where a producers publish messages to

exchanges, which are then copied into the specified queues. Message brokers either

deliver the queued messages to the consumers subscribed to the queues, or the con-

sumers can poll the queues for new messages. Using a message intermediary allows

for asynchronous sending and receiving of messages because sent messages are queued

until the receiver is ready to receive them. Other useful features of RabbitMQ are

the ability to function on a distributed system, and the message queues are limited

in size by only the amount of disk space unless otherwise specified [24].

Routing Message Pattern

RabbitMQ supports a variety of message patterns: work queues, publish/subscribe,

routing (receiving messages selectively), topics (receiving messages based on a pat-

tern), and Report Procedure Call (RPC) [24]. The daemon uses the routing message

pattern, allowing a producer to have a direct exchange with selected consumers. More

specifically, a message goes to the queues whose binding key matches the routing key

of the message. A diagram of a producer’s messages routed to consumers based on

the routing key is illustrated in Figure 2.10. It is possible to bind multiple queues

with the same binding key to essentially allow multiple consumers to receive the same

22

Figure 2.10: A diagram of a direct exchange with Queue 1 bound with the binding
key orange and Queue 2 bound with the binding keys black and green, from [24]

.

messages, but this feature is not utilized in our implementation. More details on the

specific use of the direct exchange are discussed in Chapter 4.

TxAMQP

When using other protocols with Twisted, it is important that the libraries used to

access these protocols are designed for asynchronous program execution in the sense

that the function calls must be non-blocking so to not hold up the Twisted program.

TxAMQP is a Python library used for communicating with AMQP message brokers

and clients, include those using RabbitMQ, from Twisted programs [28].

2.5.7 JSON

JavaScript Object Notation (JSON) objects are human-readable collections of data

used to store and transmit data. JSON objects are similar to map or dictionary

data structures in that they are collections of attribute-value pairs, but they are

serialized so they can be transmitted across the network. JSON is supported by many

programming languages and frameworks, including Python and web applications [4].

The NCS web application and the daemon use JSON to store user and simulation

data so it can be transmitted between the two applications.

23

2.5.8 MongoDB

MongoDB is a NoSQL database, meaning it does not store data in tables like tradi-

tional relational databases, and it does not use SQL queries to access and manipulate

the data. Instead of storing data in columns and tables like traditional databases,

MongoDB stores data in documents and collections, respectively. The documents are

stored in Binary JSON (BSON) format, so no conversion is necessary by the pro-

grammer to store JSON objects in the database [18]. The daemon uses MongoDB to

store user profiles and created brain models for the NCS web interface.

TxMongo

PyMongo is the standard API for using MongoDB with Python. However, PyMongo

is not designed for asynchronous program execution because the function calls are

blocking. TxMongo is alternative library that provides asynchronous communication

with a MongoDB database so it can be used with Twisted [7, 29].

24

Chapter 3

Design

3.1 Overview

The NCS daemon is the centralized service that allows the web interface to access

NCS. More specifically, it is responsible for authenticating users for the web interface,

storing brain models, running simulations, and streaming the report data. The design

of the daemon was restricted in some aspects because NCS and the web interface

were already existing components in the system. This chapter describes the daemon

functional and non-functional requirements, architecture, and how it interacts with

the other system components. The web interface use cases are also discussed to

provide a clearer understanding of the daemon functional requirements.

3.2 Service Requirements

3.2.1 Functional Requirements

The functional requirements stemmed from the behavioral requirements of the dae-

mon when interacting with NCS and the web interface. The list of functional require-

ments are listed in Table 3.1.

3.2.2 Non-functional Requirements

The non-functional requirements stemmed from the requirements of communicating

with NCS and the web interface, and implementation specifics for meeting the be-

havioral requirements. The non-functional requirements are listed in Table 3.2.

25

Table 3.1: The NCS daemon functional requirements.

Number Description

FR01 The daemon shall add new user profiles to the web interface user
group.

FR02 The daemon shall authenticate users given the user credentials.

FR03 The daemon shall retrieve the personal, lab, and global models for
a user.

FR04 The daemon shall save personal, lab, and global models.

FR05 The daemon shall allow a user to revert a model to a previous
save.

FR06 The daemon shall use a brain model and simulation parameters to
run a simulation on NCS.

FR07 The daemon shall convert NCS simulation Python scripts to brain
model and simulation parameter JSON objects.

FR08 The daemon shall convert brain model and simulation parameter
JSON objects to NCS simulation Python scripts.

FR09 The daemon shall stream NCS simulation report data in real time.

FR10 The daemon shall queue any streamed report data if the user is
not logged into the web interface.

FR11 The daemon shall log any errors that occur.

Table 3.2: The NCS daemon non-functional requirements.

Number Description
NR01 The daemon shall be written in Python.

NR02 The daemon shall use Twisted to manage a client-server
architecture.

NR03 The daemon must use Protocol Buffers to serialize the streamed
report data.

NR04 The daemon shall use RabbitMQ to provide asynchronous report
data streaming.

NR05 The daemon shall accept JSON objects from the web interface for
requests, and model and simulation parameters.

NR06 The daemon shall use MongoDB to store user profiles and brain
models.

NR07 The daemon shall use PyNCS to run simulations.

NR08 The daemon shall use PyNCS to perform conversions between
JSON objects and Python scripts.

NR09 The daemon shall only use APIs that have non-blocking function
calls.

26

Figure 3.1: A use case diagram of the NCS web interface.

3.3 Use Case Modeling

3.3.1 Overview

For better understanding of the responsibilities of the daemon, this section describes

the web interface use cases. Aside from showing how the user interacts with the

web interface, these use cases represent why the daemon must be able to handle

requests from the web interface, and how the daemon interacts with the other system

components to service those requests is described in later sections. A diagram of the

use cases is shown in Figure 3.1 and the use cases are discussed in the subsequent

section.

27

3.3.2 Detailed Use Cases

Add New User

The home page of the web interface gives the user the options to either log in with

their account or join as a new user. If the user selects to join, he or she will be

required to provide an email address that will serve as a user name, a password, first

name, last name, institution name, and lab ID. The user will be added only if a valid

email address is given and the user does not already exist.

Login

The user is required to log into the web interface to access any of the website func-

tionality. When logging in, the user is prompted for a user name and password. If

valid credentials are given, the user will be taken to a new page on the web interface

where he or she will have access to the main functionality.

Create New Model

In the model builder tab, the user can use the cell models supported by NCS to create

a new brain model. Once cell groups are created, the user can add synapses to the

model and set various parameters for the cells and synapses. Depending on the cell

model type, the user may also have the option of adding different channel types and

setting various parameters for each.

Choose Existing Model

The user can select an existing brain model from the personal, lab, or global groups.

When a model is selected, its components and their parameters will populate the

model builder interface where it can be manipulated if desired.

Add/Modify Stimulus

In the simulation builder tab, the user can add stimulus to specified groups of neurons

in the brain model. The user can select from a variety of stimulus types and can

28

set parameters depending on the type selected. If the simulation parameters are

populated from an existing model or an uploaded Python script, the user can modify

or confirm the current stimulus parameters.

Add/Modify Reports

In the simulation builder tab, the user can add reports to specified groups of neurons

in the brain model. The user can select from a variety of report types and can

set parameters depending on the type selected. If the simulation parameters are

populated from an existing model or an uploaded Python script, the user can modify

or confirm the current report parameters.

Export to Python Script

Once a full set of simulation parameters has been created, the user can export the

simulation to a download-able PyNCS Python script file.

Launch Simulation

Once a full set of simulation parameters has been created, the user can run the

simulation on NCS.

View Report Data

If the user added a report to at least one neuron group in the simulation, the user can

view the live streaming simulation data in the reports tab. The user can also view

the data at a later time, including after logging out and logging back in, and after

the simulation has finished running.

View Virtual Robot

Although this feature is under development, it is intended to allow users to see how vi-

sual and audio data perceived by the robot stimulate the cell groups in the simulation,

and how output data from reporting cell groups affect the robot’s behavior.

29

3.4 Architecture

The system containing NCS, the web interface, and the daemon follow the client-

server architecture pattern to provide the use cases listed in the previous section.

The web interface always acts as a client that makes requests to and receives data

from the daemon. The daemon acts as a proxy server, processing requests from the

web interface that sometimes require it to make requests to NCS and manipulate

the database. A diagram of the system components is shown in Figure 3.2. The

daemon contains three Twisted services: the Add New User Service, the Authentica-

tion Service, and the Data Proxy Service. The arrows in the diagram represent one

component making a request to another, excluding any data that sent as a response

of the request. The requests made by the web interface correspond to the use cases

listed in the previous section, and the other requests are results of the web interface

requests.

30

Figure 3.2: A system architecture diagram of the daemon and how it interacts with
the other components.

31

Chapter 4

Implementation

4.1 Overview

This chapter describes each of the components that were implemented to provide the

behavioral requirements of the NCS daemon. It also specifies where and how the

libraries and frameworks described in Chapter 2 were used in the development of the

system.

4.2 Database Management

4.2.1 Overview

The daemon uses MongoDB to store user profiles and brain models for the web

interface. TxMongo is used as the API to access the database from the Twisted

application. This section describes the structure of the database and the TxMongo

functions used for accessing the database.

4.2.2 Structure

Overview

In the database there are defined collections for users, global models, and lab models.

Storing the lab and global models with each user would require multiple copies of the

same models, and it would be more difficult to ensure that all users have consistent

versions of the models. For space efficiency and model consistency, lab and global

32

Figure 4.1: An example of the database structure where { } items represent BSON
objects and [] items represent lists of BSON objects.

models are stored in their own collections and personal models are stored in the

appropriate user document. Every user is given the set of global models, and the set

of appropriate lab models is retrieved with a unique lab ID number. A diagram of

the database structure is shown in Figure 4.1. The document structures for users and

models are discussed in more detail in the following sections.

Users

The user collection contains documents for all users that have access to the web

interface. The fields in the user document include the user’s login credentials, some

personal information, and a list of any saved personal models stored in JSON format.

Passwords are encrypted before the user document is created. An example of a user

document is shown in Figure 4.2. For space reasons, the model list in the example is

33

{
"username" : "jdoe@nevada.unr.edu" ,
"password" : "b8f2785ad8fd4dc015cff05225f455557993abef" ,
"first_name" : "Jane" ,
"last_name" : "Doe" ,
"institution" : "UNR" ,
"lab_id" : 8675309 ,
"salt" : "ad65d5054042fds44ba3fdc97cee80c6" ,
"models" : []

}

Figure 4.2: An example of a document in the users collection.

{
"model_rev_0" :
{

"date_created" : "06/01/2015" ,
"last_modified" : "06/01/2015" ,
"model" : { }

} ,
"model_rev_1" :
{

"date_created" : "06/08/2015" ,
"last_modified" : "06/08/2015" ,
"model" : { }

}
}

Figure 4.3: An example of a model document.

empty.

Models

The same JSON structure is used to store models regardless of if they are stored in

the global collection, a lab collection, or in the appropriate user document. For every

model, two versions of the model are stored: a previous version and a current version.

The previous version is stored so the user has the option to undo the last model save.

An example of a model document is shown in Figure 4.3. The “model” field holds the

model JSON object used by the web interface. For space reasons, the actual model

JSON objects are not included in Figure 4.3, but an example of a model JSON can

be viewed in Figure 4.4.

34

{
"author" : "Jane Doe" ,
"cellAliases" : [] ,
"cellGroups" : {

"cellGroups" : [
{

"name" : "IZH Cells" ,
"num" : 150 ,
"type" : "Izhikevich" ,
"parameters" : {

"a" : {
"type" : "exact" ,
"value" : 0 . 2

} ,
"b" : {

"type" : "exact" ,
"value" : 0 . 2

} ,
"c" : {

"type" : "exact" ,
"value" : −65

} ,
"d" : {

"type" : "exact" ,
"value" : 8

} ,
"threshold" : {

"type" : "exact" ,
"value" : 30

} ,
"u" : {

"maxValue" : −11,
"minValue" : −15,
"type" : "uniform"

} ,
"v" : {

"maxValue" : −55,
"minValue" : −75,
"type" : "uniform"

}
}

}
] ,

} ,
"description" : "Regular Spiking" ,
"name" : "Test Model" ,
"synapses" : []

}

Figure 4.4: An example of a simple model JSON.

35

4.2.3 TxMongo Functions

Insert

The insert function is used to add documents to the database. When calling this

function, the collection must be specified in which the document is desired to be

inserted. If the collection does not exist, it will be created and the document will be

inserted into it. This function is used to insert users and models into the database.

Find

The find function is used to query the database for document(s). If the function is

called without any parameters, all the documents in the database are returned. If

a field is specified as the function’s parameter, all the documents in the database

matching the field description are returned. This function is used to authenticate

users, determine if a user already exists when adding new users, and pull all models

available for a user.

Update

The update function is used to modify a current document in the database. This

function takes the original document and the updated document as parameters. If the

specified document is not found, the new document is not inserted into the database.

This function is used to save changes to a model and revert a model to a previous

version.

Drop

The drop function is used to remove a collection from the database. It is only used by

this application to remove all collections to essentially drop the database if needed.

36

4.3 Twisted Services

4.3.1 Overview

As shown in Figure 3.2, the daemon is comprised of the Add New User Service,

the Authentication Service, and the Data Proxy Service. The three services are

all instances of the Twisted TCP service; the services listen for clients on static IP

addresses and port numbers. The Add New User Service accepts new connections

from the web interface for adding new users to the list of users that can access the

web interface. The Authentication Service accepts new connections from the web

interface for logging in, and only once the user has been authenticated, requests to get

models, save models, undo model saves, run simulations, and perform Python script

and JSON object conversions. The Data Proxy Service accepts new connections from

NCS for receiving simulation report data.

4.3.2 Add New User Service

The Add New User Service is responsible for processing the request to add a new user

to the group of users that can access the web interface. A diagram of the Add New

User Service interacting with the other system components to process this request is

shown in Figure 4.5. The request must be a JSON object containing an email address

as the user name, a password, first name, last name, institution name, lab ID. When

the request is received, the Add New User Service queries the users collection in

the database with the provided user name as the query field. If any documents are

returned from the query, a failed message is sent back because the user already exists.

If no documents are returned from the query, bcrypt is used to generate a random

SALT value and encrypt the password using the SALT value. The password in the

JSON is replaced with the encrypted password and the SALT value is added to the

JSON object. An empty field for personal models is also added to the JSON object.

The JSON object is then inserted into the users collection in the database and a

success message is sent back. The user is now able to login to the web interface.

37

Figure 4.5: A diagram of the Add New User Service interacting with the other system
components.

4.3.3 Authentication Service

Overview

The Authentication Service is responsible for processing requests to login, get models,

save models, undo model saves, runs simulations, convert Python scripts to simulation

JSON objects, and export simulation JSON objects as Python scripts. A diagram of

the Authentication Service interacting with the other system components is shown in

Figure 4.6. The daemon uses the Twisted Cred interface to authenticate users for the

web interface. When the Authentication Service receives a request to login, it uses

the iCredentialsChecker object to authenticate the user credentials. To check the cre-

dentials, the iCredentialsChecker object queries the users collection in the database

with the provided user name as the query field. If a document is returned from the

query, the password stored in the user document is then compared to the provided

password. Since the passwords are not stored in plain text, bcrypt is used to encrypt

the provided password using the SALT value stored in the user document before the

passwords are compared. If either the user is not found in the database or the pass-

words do not match, a failure message is sent back and the TCP connection is closed.

If the user is authenticated, a success message is sent back and the connection is

38

Figure 4.6: A diagram of the Authentication Service interacting with the other system
components.

granted an avatar. An ID created from a combination of the user name and lab ID

is assigned to the avatar so the user can be identified when making requests. Once

the connection is granted an avatar, all other requests handled by the Authentication

Service can now be made. The requests received by the Authentication Service must

be in a JSON object with a “request” field. For any request received by the Au-

thentication Service that is not a login request, the Authentication Service checks if

there is a valid avatar for the connection before processing the request. The following

describes these requests in more detail.

Get Models

The request retrieve models pulls the appropriate personal, lab, and global models

from the database. This request should be made when the user logs in and anytime

the models need to be refreshed in the web interface. The personal models are found

by querying the database for the model collection associated with the user. The lab

models are found by querying the database for the model collection associated with

39

the user’s lab ID. There is a single collection that holds all the global models, so

this collection is returned as the global models. As mentioned in Section 4.1.2, the

current version and previous version are stored for each model. For each document

returned by the model queries, only the current version of the model is sent to the

web interface.

Save Model

The request save a model inserts or updates a model in the personal, lab, or global

model collections in the database. Whether the model is being inserted or updated is

determined by querying the database with the author, model name, and location as

the query fields. If no results are returned from the query, the model is inserted as the

previous version and the current version. If a document is returned by the query, the

current version of the model is moved into the previous version in the model JSON

object, and the new model that was sent in the request is inserted as the current

version. The “last modified” field for the current version is updated to the current

date, and the new JSON object is used to update this document in the database.

Undo Model Save

The request to undo a model save reverts a model to the previous version. The model

location, model name, and author are provided with the request, and the database

collection determined by the specified location is queried with the model name and

author as the query fields. If no documents are returned, an error message is sent

back. Otherwise the model stored in the previous version of the document is copied

into the current version, and this model is sent back to the web interface. Since at

this point the same model is stored in both the previous and current versions, only a

single model revert is supported when a model is saved.

Run Simulation

PyNCS is used to run NCS simulations from Python. When a user launches a sim-

ulation from the web interface, the model and simulation parameter JSON objects

40

are submitted with the request to the daemon. Since NCS does not support JSON

objects, a mapping of the simulation defined in the JSON object to PyNCS function

calls is performed. In the process of converting the JSON object to PyNCS calls,

a Python script file containing the appropriate PyNCS function calls is created for

the following reasons: the JSON object to Python script conversion process is reused

when the request to export a simulation to a Python script is made, and the ini-

tialization process of NCS only allows for one simulation to be ran per executable

instance. The latter restriction was accommodated by writing the simulation script

to a Python file and running the script as a linux subprocess, or child process. The

Twisted spawnProcess function was used to run the script to ensure asynchronous ex-

ecution. Running the simulation as a child process allows the daemon to run multiple

simulations without stopping and restarting execution.

A function was added to PyNCS that has an additional parameter than the

function used to add a report to the simulation. The additional parameter is a report

identifier string, which is used by NCS to label the report data so the daemon and

the web interface can determine which simulation generated the data. The string is a

combination of the user name and report name, which creates a unique label that can

be used to identify which simulation the data is associated with. Before requesting

to run a simulation, the web interface creates a RabbitMQ message queue with the

binding key equal to the unique report identifier. The web interface polls the message

queue for report data after the simulation is launched if the user is logged in.

Python Script to JSON

The web interface allows a user to upload an NCS simulation Python script to pop-

ulate the parameters in the model builder and simulation builder tabs. This requires

converting the PyNCS function calls to a JSON object that follows the structure of

the model and simulation parameter JSON objects used by the web interface. The

PyNCS function calls build maps of the parameters that are then converted to C++

objects. To get the parameter maps, additional functions were added to PyNCS

41

to return the parameters as dictionaries instead of creating the C++ objects. The

complete steps for the conversion process are as follows:

1. Modify the Python script file by replacing all the original PyNCS function calls

with the corresponding PyNCS calls that return the parameters. At the end

of the file, add the Python code for writing the parameter dictionaries to a file

with a unique file name.

2. Run the modified Python script file as a child process.

3. Open the created file containing the parameter dictionaries and create the model

and simulation parameter JSON object given the parameters in the file.

4. Delete the modified script and parameter dictionary files.

Upon a successful conversion, the JSON object is sent back to the web interface.

JSON to Python Script

The request to export simulation parameters to a Python script requires the daemon

to take the model and simulation parameter JSON objects and find the appropriate

PyNCS function calls to achieve these parameters. The conversion process is the

same one used when running a simulation, but the created Python script file is sent

back to the web interface as opposed to executed as a child process.

4.3.4 Data Proxy Service

Overview

The reports tab in the web interface displays report data that can be viewed as a live

stream while the simulation is running or as an accumulated set after the simulation is

finished. The Data Proxy Service is responsible for taking report data that it receives

from NCS and sending it to the web interface so it can be viewed. A diagram of

the Data Proxy Service interacting with the other system components is shown in

Figure 4.7. This section describes the NCS modifications necessary for the live data

42

Figure 4.7: A diagram of the Data Proxy Service interacting with the other system
components.

stream, and how the Data Proxy Service processes the data to offer asynchronous

message passing to the web interface.

NCS Modifications

As mentioned in Chapter 2, NCS uses a publisher/subscriber system to extract all

generated report data from the source at each time step. A function was added to

NCS to open a TCP socket connection with the Data Proxy Service to send out any

report data that was extracted. NCS supports reporting data for neuron voltage,

neuron fire, input current, and synaptic current, thus, the streamed report data is

typically floating point values. Protobuf is used by NCS to serialize the data before

sending it, and by the Data Proxy Service to deserialize the data when it is received.

Section 4.8 explains that a unique report identifier is passed in when the report is

created. NCS sends the report identifier to the Data Proxy Service before it starts

sending the report data, allowing the Data Proxy Service to determine where it needs

to send the data so the web interface can associate it with the correct simulation.

43

Simulation Data Processing

When a new connection is made with the Data Proxy Service, the first message it

expects to receive is the unique report identifier string. As stated before, the web in-

terface will have created a RabbitMQ message queue with the unique report identifier

as the binding key before requesting to start the simulation. The following messages

received from NCS are expected to be report data. The Data Proxy Service uses Pro-

tobuf to deserialize the data, and then uses txAMQP to publish a message containing

the data that uses a routing key equal to the report identifier. The RabbitMQ direct

exchange uses the routing key to deliver the message to the queue with the matching

binding key. If the user who launched the simulation is logged in, the web interface

will receive the new messages immediately because it is polling the message queue.

Otherwise, the messages will remain in the queue until the user is logged in.

4.4 Error Handling

4.4.1 Exceptions

Twisted uses pairs of callbacks and errbacks to handle program exceptions. If no

exceptions occur, all the callbacks in the chains are executed. If an exception is raised,

the appropriate errback is fired and the remaining callbacks in the chain continue with

normal execution. This ensures raised exceptions are caught and do not propagate,

and that the program does not terminate. Any exceptions that occur are logged using

the logging system provided with Twisted.

4.4.2 Invalid Requests

For every request received from the web interface, a success or failure message is sent

back. Examples of success and failure responses are shown in Figure 4.8. Each request

has a unique set of possible failure responses, but all requests will receive a failure

response if they do not follow the request structure. Other requests that warrant

failure responses are those that lack the required data to process that request. The

44

{
"request" : "addUser" ,
"response" : "success"

}

{
"request" : "addUser" ,
"response" : "failure" ,
"reason" : "User already exists."

}

Figure 4.8: An example of success and failure responses to requests made by the web
interface.

web interface is responsible for handling the failure responses appropriately.

4.5 Results

The following figures are screen captures of the NCS web interface sending requests

to the daemon.

45

Figure 4.9: A screenshot of the NCS web interface invoking the add new user request.

Figure 4.10: A screenshot of the NCS web interface invoking the login request.

46

Figure 4.11: A screenshot of the NCS web interface model builder tab. The cell
models displayed in the pane on the left are retrieved by invoking the get models
request.

47

Figure 4.12: A screenshot of the NCS web interface invoking the Python script to
JSON request.

Figure 4.13: A screenshot of the NCS web interface invoking the JSON to Python
script request.

48

Figure 4.14: A screenshot of the NCS web interface invoking the save model request.

49

Figure 4.15: A screenshot of the NCS web interface invoking the undo model save
request.

50

Figure 4.16: A screenshot of the NCS web interface invoking the launch simulation
request.

Figure 4.17: A screenshot of the NCS web interface reports tab. The data displayed
for each report is received from the Data Proxy Service.

51

Chapter 5

Conclusion and Future Work

5.1 Conclusion

NCS is a large scale brain simulator that has the ability of running user-created brain

models with various simulation parameters. NCS also reports simulation data such as

neuron spiking state and membrane voltage at each time step in a running simulation.

This thesis presented the NCS daemon, a centralized service that allows users to

access NCS from a web interface and manages user accounts for the web interface.

More specifically, the daemon authenticates users for access to the web interface,

stores brain models, runs simulations on NCS, streams NCS simulation data in real

time, and performs conversions between the legacy Python script method of running

simulations and simulations created using the web interface. The daemon utilizes

event-driven asynchronous execution to manage a scalable client-server architecture,

and it uses message queues to provide the flexibility of asynchronous sending and

receiving of simulation report data.

The addition of the daemon to the NCS system has given neuroscientists who

use NCS for experiments the option of having a visual tool for building brain models,

configuring simulations, and analyzing simulation output data. It allows the web

interface to offer a greater number of features than the Python scripts, and it provides

functionality for easy transition between the methods for improved user experience.

In the future, the daemon will proceed to grow through the expansion of services it

provides to continue enhancing NCS usability.

52

5.2 Future Work

5.2.1 NCS Daemon Enhancements

A feature that would provide more flexibility in lab management would be the ability

to assign user roles to the web interface accounts to restrict the type of access various

users have to the functionality of the website. An example of a potential role would

be an administrator, who would be the only user role allowed to add new labs and

approve the addition and modification of the global brain models. Another example

might be a lab administrator, who would have the privilege of adding new users to

their lab and approving the addition and modification of brain models in their lab’s

models. The default user role, once added to a lab by the lab administrator, would

have access to the remaining basic functionality of the website.

Other features that would enhance the user experience relate to the flexibility

of saving and reverting models. Currently, the full previous and current versions of

every model are stored, and only a single undo model save is permitted per the most

recent model save. Storing only the changes that were made at each model save would

reduce the amount of space used for each model, and a log of all revisions could be

presented to the user when choosing to revert to a previous version.

Additionally, when a user saves a model to the lab or global models, a notification

could be sent to the web interface suggesting that the models be refreshed for all

users effected by the model update. Since the daemon currently does not send these

notifications, it is the web interface’s responsibility to detect the updates or pull the

models periodically.

Although the NCS daemon was designed specifically for NCS and the NCS user

interfaces, the authentication, database access, encryption, and data streaming are

components that could be used in many other systems. Another enhancement could

be to completely decouple the general features into a plugin that could be used with

any system.

53

5.2.2 NCS Enhancements

One drawback of NCS is that it is not intuitive to pause and restart simulations; a

simulation typically runs for the specified duration once it has been launched. It is

possible to use the barriers in the messaging passing system discussed in Chapter 2

to force the simulation to wait in between groups of computations, but this is not

supplied as a user feature. Making this available as a feature would be beneficial for

the user, and it would also present the opportunity for easily changing the simulation

parameters while the simulation is running. The ability to dynamically add stimulus

is required for the completion of the virtual robot.

Another feature not supported by NCS is the utilization of neuron geometry.

More details on this are discussed below in the brain visualization section.

5.2.3 Web Interface Enhancements

Virtual Robot

The virtual robot tab in the web interface was developed to show how video and audio

stimulus from a virtual environment affect simulations, and to show how a human

would theoretically behave given the output data of the simulation. This feature

cannot be deployed without the ability to add stimulus while a simulation is running.

Another hindrance of its deployment is the absence of video and audio file conversions

to input values accepted by NCS. Converting the video and audio files to electrical

current values could be done with Gabor filtering, a linear filtering technique similar

to the human visual system in the way that it detects edges and extracts features

from images. Aside from image processing, Gabor filters can also be used with single

dimension signals such as speech [19], making it a reasonable method choice for the

video and audio file conversions.

Brain Visualization

The brain visualization feature will be an additional tab in the web interface. The

purpose of this tab will be to give a graphic visualization of the simulation components

54

while the simulation is running. The visualization will require the use of the streaming

report data, but it also requires that NCS use geometry parameters for the simulation

components, which is currently not supported.

55

Bibliography

[1] E. Almachar, A. Falconi, K. Gilgen, D. Tanna, N. Jordan, R. Hoang, S. Dascalu,
L. Jayet Bray, and F. Harris. NeoCortical Repository and Reports: Database
and Repository for NCS. Proceedings of the International Conference on Software
Engineering and Data Engineering (SEDE-2014), 2014.

[2] J. Berlinski, C. Rowe, M. D. Chavez, N. Jordan, D. Tanna, R. Hoang, S. Dascalu,
L. Jayet Bray, and F. Harris. NeoCortical Builder: A Web Based Front End for
NCS. Proceedings of the 27th International Conference on Computer Applications
in Industry and Engineering (CAINE-2014), 2014.

[3] J. Bower and D. Beeman. The Book of GENESIS. 2003.

[4] T. Bray. The JavaScript Object Notation (JSON) Data Interchange Format.
2014.

[5] N. Carnevale, M. Hines, and J. Moore. NEURON: for empirically-based sim-
ulations of neurons and networks of neurons. http://www.neuron.yale.edu/
neuron, 2013. [Online; accessed 17-Septempber-2015].

[6] A. Fettig. Twisted Network Programming Essentials. O’Reilly Media, Inc., 2005.

[7] A. Fiori and B. Curtis. Welcome to TxMongo’s documentation! https:
//txmongo.readthedocs.org/en/latest/, 2015. [Online; accessed 16-
Septempber-2015].

[8] FreeBSD. Processes and Daemons. https://www.freebsd.org/doc/handbook/
basics-processes.html. [Online; accessed 17-Septempber-2015].

[9] W. Gerstner and W. M. Kistler. Spiking Neuron Models. Single Neurons, Popu-
lations, Plasticity. Cambridge University Press, 2002.

[10] D. Goodman and R. Brette. The Brian Simulator. Frontiers in Neuroscience,
3(2):192–197, 2009.

[11] Google Developers. Protocol Buffers. https://developers.google.com/
protocol-buffers/?hl=en, May 2015. [Online; accessed 15-Septempber-2015].

[12] R. Hoang, D. Tanna, L. Jayet Bray, S. Dascalu, and F. Harris. A Novel
CPU/GPU Simulation Environment for Large-Scale Biologically Realistic Neural
Modeling. Frontiers in Neuroinformatics, 7, 2013.

http://www.neuron.yale.edu/neuron
http://www.neuron.yale.edu/neuron
https://txmongo.readthedocs.org/en/latest/
https://txmongo.readthedocs.org/en/latest/
https://www.freebsd.org/doc/handbook/basics-processes.html
https://www.freebsd.org/doc/handbook/basics-processes.html
https://developers.google.com/protocol-buffers/?hl=en
https://developers.google.com/protocol-buffers/?hl=en

56

[13] A. Hodgkin and A. Huxley. A quantitative description of membrane current and
its application to conduction and excitation in nerve. The Journal of Physiology,
117(4):500–544, 1952.

[14] E. Izhikevich. Simple Model of Spiking Neurons. IEEE Transactions on Neural
Networks, 14(6):1569–1572, 2003.

[15] L. Jayet Bray. A Circuit-Level Model of Hippocampal, Entorhinal and Prefrontal
Dynamics Underlying Rodent Maze Navigational Learning. PhD thesis, Univer-
sity of Nevada, Reno, 2010.

[16] T. Kelly. Neocortical Virtual Robot: A framework to allow simulated brains
to interact with a virtual reality environment. Master’s thesis, University of
Nevada, Reno, 2015.

[17] J. McKellar. Twisted. http://www.aosabook.org/en/twisted.html. [Online;
accessed 15-Septempber-2015].

[18] MongoDB, Inc. MongoDB. https://www.mongodb.com/, 2015. [Online; accessed
16-Septempber-2015].

[19] J. R. Movellan. Tutorial on Gabor Filters. 2002.

[20] Network Computing. Client/Server Fundamentals. http://www.
networkcomputing.com/netdesign/1005part1a.html, February 1999. [On-
line; accessed 15-Septempber-2015].

[21] M. A. Paradiso, M. F. Bear, and Connors B. W. Neuroscience: Exploring the
Brain. Lippincott Williams & Wilkins, 2007.

[22] PassLib. passlib.hash.bcrypt - BCrypt. https://pythonhosted.org/passlib/
lib/passlib.hash.bcrypt.html, 2015. [Online; accessed 15-Septempber-2015].

[23] D. Peticolas. An Introduction to Asynchronous Programming and Twisted.
http://krondo.com/blog/?p=1247, 2015. [Online; accessed 15-Septempber-
2015].

[24] Pivotal Software, Inc. RabbitMQ. https://www.rabbitmq.com, 2015. [Online;
accessed 16-Septempber-2015].

[25] H. E. Plesser, M. Diesmann, M. O. Gewaltig, and A. Morrison. NEST: The
Neural Simulation Tool. Encyclopedia of Computational Neuroscience, pages
1849–1852, 2015.

[26] Python Software Foundation. Applications for Python. https://www.python.
org/about/apps/, 2015. [Online; accessed 15-Septempber-2015].

[27] Python Software Foundation. bcrypt. https://pypi.python.org/pypi/
bcrypt/1.1.0, 2015. [Online; accessed 15-Septempber-2015].

[28] Python Software Foundation. txAMQP. https://pypi.python.org/pypi/
txAMQP, 2015. [Online; accessed 16-Septempber-2015].

http://www.aosabook.org/en/twisted.html
https://www.mongodb.com/
http://www.networkcomputing.com/netdesign/1005part1a.html
http://www.networkcomputing.com/netdesign/1005part1a.html
https://pythonhosted.org/passlib/lib/passlib.hash.bcrypt.html
https://pythonhosted.org/passlib/lib/passlib.hash.bcrypt.html
http://krondo.com/blog/?p=1247
https://www.rabbitmq.com
https://www.python.org/about/apps/
https://www.python.org/about/apps/
https://pypi.python.org/pypi/bcrypt/1.1.0
https://pypi.python.org/pypi/bcrypt/1.1.0
https://pypi.python.org/pypi/txAMQP
https://pypi.python.org/pypi/txAMQP

57

[29] Python Software Foundation. TxMongo. https://pypi.python.org/pypi/
txmongo, 2015. [Online; accessed 16-Septempber-2015].

[30] E. Schwartz. Computational Neuroscience. Mit Press, 1993.

[31] D.I. Standage and T.P. Trappenberg. Differences in the subthreshold dynamics
of leaky integrate-and-fire and Hodgkin-Huxley neuron models. Neural Networks,
2005. IJCNN’05. Proceedings. 2005 IEEE International Joint Conference, 1:396–
399, 2005.

[32] C. L. Stanfield, W. J. Germann, M. J. Niles, and J. G. Cannon. Principles of
Human Physiology. Pearson/Benjamin Cummings, 2011.

[33] D. Tanna. NCS: Neuron Models, User Interface, and Modeling. Master’s thesis,
University of Nevada, Reno, 2014.

[34] H. Tuckwell. Introduction to Theoretical Neurobiology: Volume 2, Nonlinear and
Stochastic Theories. Cambridge University Press, 2005.

[35] Twisted Matrix Labs. Twisted. https://twistedmatrix.com/trac/, Septem-
ber 2015. [Online; accessed 15-Septempber-2015].

https://pypi.python.org/pypi/txmongo
https://pypi.python.org/pypi/txmongo
https://twistedmatrix.com/trac/

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background and Related Work
	Neuroscience
	Overview
	Neurons and Channels
	Synapses
	Stimulus

	Computational Neuroscience
	Overview
	Models
	Simulators

	Neocortical Simulator
	Overview
	Simulation Composition
	PyNCS
	NCS Web Interface

	Centralized Services
	Overview
	Client-server Architecture
	Daemon Processes

	Libraries and Frameworks
	Overview
	Python
	Bcrypt
	Protocol Buffers
	Twisted
	RabbitMQ
	JSON
	MongoDB

	Design
	Overview
	Service Requirements
	Functional Requirements
	Non-functional Requirements

	Use Case Modeling
	Overview
	Detailed Use Cases

	Architecture

	Implementation
	Overview
	Database Management
	Overview
	Structure
	TxMongo Functions

	Twisted Services
	Overview
	Add New User Service
	Authentication Service
	Data Proxy Service

	Error Handling
	Exceptions
	Invalid Requests

	Results

	Conclusion and Future Work
	Conclusion
	Future Work
	NCS Daemon Enhancements
	NCS Enhancements
	Web Interface Enhancements

	Bibliography

