
 
 

University of Nevada, Reno  

  

  

  

  

  

Identification of a first in-class integrin enhancing small molecule for the treatment of 

Duchenne Muscular Dystrophy  

  

A dissertation submitted in partial fulfillment of the requirements for the degree of  

Doctor of Philosophy in Cell and Molecular Biology  

By  

Apurva Sarathy  

  

Dr. Dean J. Burkin/Dissertation Advisor  

  

December, 2015  

  

  

  

  

  

  

  

  

  

  

  

  



 
 

  

  

  

  

  

  

  

  

                                         Copyright by Apurva Sarathy 2015 

All Rights Reserved 

  

  

  

  

  

  

  

  

 



 

 

 
 

 

We recommend that the dissertation 

prepared under our supervision by 

 

APURVA SARATHY 

 

Entitled 

 

Identification of a first in-class integrin enhancing small molecule  

for the treatment of Duchenne Muscular Dystrophy  

 

be accepted in partial fulfillment of the  

requirements for the degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

 

Dean J. Burkin, Advisor 

 

 

Patricia Berninsone, Committee Member 

 

 

Maria Valencik, Committee Member 

 

 

Josh Baker, Committee Member 

 

 

Thomas Kidd, Graduate School Representative 

 

 

David W. Zeh, Ph. D., Dean, Graduate School 

 

   December,  2015 

 

THE GRADUATE SCHOOL 



i  

  

 

ABSTRACT  

Duchenne muscular dystrophy (DMD) is a catastrophic X-linked neuromuscular 

disease that affects 1 in every 5000 males.  DMD is caused by mutations in the 

dystrophin gene which results in the loss of dystrophin protein, an essential link between 

the extracellular matrix and the actin cytoskeleton.  This leads to weakened sarcolemmal 

integrity in the muscle fibers thereby making them susceptible to damage.  There is 

currently no cure for DMD and limited treatment options exist for patients.  The α7β1 

integrin is an additional laminin-binding heterodimeric protein at the sarcolemma that is 

elevated in the skeletal muscle of DMD patients and the mdx mouse model.  Previous 

pharmacological and transgenic mouse studies have demonstrated that the α7β1 integrin 

is a major modifier of disease progression in mouse as well as the Golden retriever dog 

models of muscular dystrophy.  Therefore, we hypothesized that drugs that promote 

α7β1 integrin expression in muscle could be therapeutic in the treatment of DMD.  

Utilizing a high-throughput drug discovery chemical screen, we identified SU9516, an 

adenosine mimetic, as an enhancer of ITGA7 expression, the gene encoding integrin α7.  

We found SU9516 increased α7B integrin protein levels in C2C12 and immortalized 

human DMD myotubes.  Preclinical studies with oral delivery of 5mg/kg/day SU9516 

treatments in the mdx mouse model ameliorated the dystrophic pathology and improved 

muscle force and function at 10 weeks of age.  This thesis presents the therapeutic 

benefits of a first in-class integrin enhancing small molecule therapeutic SU9516, for the 

treatment of DMD.   
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INTRODUCTION:  A BRIEF  HISTORY OF DUCHENNE MUSCULAR 

DYSTROPHY 

The association between skeletal muscle fibers and the components of the 

extracellular matrix (ECM) allows for maintenance of the skeletal muscle during daily 

activities.  The loss of critical connections between the muscle fiber and the ECM results 

in many forms of muscular dystrophy and muscle-wasting disorders.  One of the most 

common muscular dystrophies and the main focus of this thesis is a disease known as 

Duchenne Muscular Dystrophy (DMD).  DMD was first described by a French 

neurologist Guillaume Benjamin Amand Duchenne.  In 1986, researchers identified a 

gene on the X chromosome that when mutated leads to DMD.  In 1987, the protein 

associated with this gene was identified and named dystrophin.  Dystrophin is a large 

427 kDa protein responsible for the critical link between the ECM-laminin and the 

intracellular actin cytoskeleton.  In DMD, the loss of the dystrophin protein in muscle 

cells disrupts this critical link and causes fibers to become fragile and susceptible to 

damage.  It has been almost 30 years since the discovery of the dystrophin gene; 

however, there is currently no effective cure for this fatal disease.    

The research conducted in this study focuses on the idea that small molecules that 

can enhance proteins and/or protein complexes in the muscle fiber may act as surrogates 

for the missing dystrophin, thereby ameliorating the dystrophic pathology.  Some protein 

complexes that perform a similar functional role to dystrophin and its associated proteins 

(i.e. the dystrophin glycoprotein (DGC) complex) are the utrophin–glycoprotein 

complex (UGC) and the α7β1 integrin.  This work focuses specifically on the α7β1 

integrin and its potential as a therapeutic target for the treatment of DMD.    
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THE ETIOLOGY AND PROGNOSIS OF DUCHENNE MUSCULAR  

DYSTROPHY  

Duchenne Muscular Dystrophy (DMD) is an X-linked neuromuscular disease and 

one of the most common forms of muscular dystrophy with a prevalence of one in every 

3500 male births1.  DMD is a progressive muscle wasting disorder in which the muscle 

regeneration program is overcome by the high level of muscle degeneration which is 

accompanied by an infiltration of collagen and adipose deposits.  DMD patients suffer 

from progressive muscle weakness, impaired mobility and premature death2.  DMD is 

caused by reading frame mutations in the large Dmd gene (locus Xp21.2) which prevent 

the normal expression of the dystrophin protein3–5.  65% of Dmd mutations are intragenic 

deletions, 6–10% are intragenic duplications and 30–35% are point mutations6.  Becker 

Muscular Dystrophy (BMD) is the milder version of DMD, usually caused by in-frame 

mutations which leads to a shorter, but functional dystrophin protein7.  Children affected 

with DMD are clinically normal at birth and diagnosed at an average age of five years, 

but several motor deficits, such as difficulty sitting, transitioning from a supine to 

standing position, climbing and walking, as well as deficits in cognitive development 

display much earlier8,9.  Untreated children eventually become constrained to the 

wheelchair in their teenage years.  At 18 years of age or so, most DMD patients 

experience severe respiratory, orthopedic, and cardiac complications and require 

ventilation support at night10,11.  DMD patients usually die in their third decade of life 

from cardiac and respiratory complications 10. 

There is no cure for DMD.  One of the major impediments in developing 

therapeutics is the inability to target all muscles in the human body, especially, the 
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cardiac and respiratory muscles for all patients.  Symptoms of the disease can be 

managed utilizing a multidisciplinary care approach that includes the use of 

corticosteroids as well as appropriate respiratory, cardiac, orthopedic and rehabilitative 

interventions that addresses the more severe complications of the disease 8,10.  

Corticosteroids attenuate the progression of muscle weakness and delay some of the 

complications, but do not treat or correct the underlying causes of DMD 8.  Additionally, 

the continued use of corticosteroids leads to significant detrimental side effects such as 

weight gain, osteoporosis, stunted growth and delayed puberty.  Hence, the rapid 

advancement of clinical research for other DMD therapeutics is warranted.    

  

1.3 COMMON ANIMAL MODELS OF DUCHENNE MUSCULAR DYSTROPHY  

Researchers across the globe have utilized various animal models to study DMD.  

The most common animal model used to study therapeutics for DMD is the mdx mouse 

owing to its low cost and easy accessibility.  The mdx mouse, has a nonsense mutation in 

exon 23 of the Dmd gene that leads to complete loss of the dystrophin protein 12, 13.  The 

mdx mouse model of DMD is not considered an ideal model for understanding the 

pathogenesis of DMD owing to significant differences in physiology from humans and 

display of milder phenotypes compared to DMD patients.  The diaphragm muscle of the 

mdx mouse however, exhibits a pattern of degeneration, fibrosis and severe functional 

deficit comparable to that of human DMD limb muscle14 and is often the muscle of 

choice to evaluate the functional and histopathological characteristics of disease 

progression and translate basic research findings into preclinical studies within the 

laboratory.  Four additional strains, mdx2cv–5cv were generated with chemical 
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mutagenesis, utilizing N-ethylnitrosourea, that resulted in point mutations which lead to 

loss of full-length dystrophin isoforms 15.  In mdx3cv mice, a point mutation in intron 65 

caused aberrant splicing thereby abolishing dystrophin expression 16 while in mdx4cv 

mice, a nonsense point mutation in exon 53 led to premature termination of dystrophin 

translation 17.  In the mdx5cv mice, a mutation in exon 10 selectively disrupted expression of 

dystrophin 17.  Among all the generated strains, the mdx4cv and mdx5cv strains displayed a 

10-fold lower level of dystrophin-containing revertant fibers compared to the mdx 

mutant, making them well suited as animal models for preclinical testing of DMD 

therapies 18.  Additionally, recent studies have shown that the mdx5cv mouse strain 

exhibited more severe pathology, as well as muscle function deficits compared to the 

mdx mutant strains 19,20.  

The canine X-linked model of muscular dystrophy is considered valuable for 

testing the efficacy and scalability of therapeutics.  The Golden Retriever Muscular 

Dystrophy dog (GRMD) was the first and currently, the most widely used canine model 

for DMD.  In the GRMD dog, a point mutation was found in intron 6 of the dystrophin 

gene 21 generating a single base pair change in the 3′ consensus splice site of intron 6, 

resulting in the skipping of exon 7 during mRNA processing and an out-of-frame 

transcript with a stop codon.  The resulting transcript predicts termination of the 

dystrophin reading frame within its N-terminal domain in exon 821,22.  The GRMD is 

considered a more appropriate animal model for evaluating promising therapeutics 

because it closely mimics the human disease pathophysiology23 exhibiting features such 

as increased sarcolemmal fragility, muscle force deficits, larger force decrement with 

eccentric contractions, alterations in pelvic and limb joint angles owing to muscle 
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hypertrophy and atrophy, infiltration of fibrotic tissue in the muscle, loss of ambulation 

and premature death 22,24–31.  The lifespan of the affected dogs is usually 3 years which is 

an ~75% reduction in lifespan 32 in contrast to the mdx mouse model in which the 

lifespan is reduced by 25% 33,34.  In addition, treatment of GRMD dogs with 

corticosteroids such as prednisone, which prolonged ambulation in human DMD patients 

35, yielded improvement in muscle outcome measures in the GRMD dogs 36.  Thus, 

GRMD dogs are generally thought to be a very good model that mirror the severe 

progression of DMD pathophysiology in human patients and therefore potentially more 

appropriate for testing DMD therapies.  

Another animal model currently being explored especially for screening large 

chemical and drug libraries is the sapje zebrafish model of DMD.  The sapje locus was 

identified as dmd, the zebrafish orthologue of the human DMD gene and mutations at the 

sapje locus abolish the dystrophin orthologue in zebrafish 37, 38.  Sapje zebrafish mutants 

have a recessive, lethal, nonsense mutation that results in a premature stop codon in the 

dystrophin gene (on chromosome 1).  The resulting phenotype is the embryonic-onset, 

progressive degeneration of skeletal muscle in the sapje homozygous zebrafish.  

Embryonically, the mechanism of degeneration occurs due to the detachment of somitic 

myofibers from the myosepta, the tendon-like sheets of ECM.  In the zebrafish larvae, 

this muscle fiber detachment is visible at the myotendinous junctions and is accompanied 

by extensive degeneration, fibrosis, inflammatory responses and activation of muscle 

fiber regeneration, reminiscent of the severe pathological phenotype observed in human 

DMD 39.  This makes the zebrafish animal model a powerful tool that can be used to 

assess the effect of therapeutics for DMD.  There are several benefits of using zebrafish 
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for highthroughput whole-organism screening of chemical libraries.  Firstly, the mutant 

zebrafish progeny are easy to obtain in large numbers and can be easily treated with 

different chemicals in multi-well plates to determine if disease progression can be 

attenuated.   

Secondly, chemical compounds can bind to proteins and generate non-heritable 

phenotypic changes in the zebrafish.  Additionally, the transparency of the zebrafish 

larvae allows its usability in muscle development studies.  A commonly used structural 

assay to characterize skeletal muscle defects in zebrafish is the birefringence assay.  

Birefringence is a physical property in which light rotates as it passes through organized 

matter, such as muscle sarcomeres in the zebrafish 40.  Wild-type zebrafish with highly 

ordered myofibers appear very bright when visualized between two polarized light 

filters, whereas zebrafish modeling muscular dystrophies like the sapje mutants exhibit 

degenerative dark patches in skeletal muscle under polarized light and an overall 

reduction in birefringence, reflecting the disorganization of sarcomeres.  Recently, a drug 

called Ataluren which is currently in clinical trials for DMD was shown to improve 

muscle function significantly after two days of treatment in the sapje zebrafish 41, 

thereby corroborating the positive effects of the drug seen in human patients.  Hence, in 

the near future, the zebrafish animal model has the potential to become a more 

widespread tool for the development of therapeutics for DMD.    
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LAMININS IN SKELETAL MUSCLE  

Laminins are a family of large (400-900 kDa) heterotrimeric, multidomain, 

extracellular matrix glycoproteins composed of α-, β-, and -chains.  These large proteins 

are localized to basement membranes underlying epithelial cells, nerve cells and muscle 

fibers.  Laminin is a major constituent of the basal lamina together with type IV collagen.  

Currently, it is known that five α-, β-, -chains give rise to 16 different protein isoform 

combinations that vary in tissue distribution 42.  These isoforms are not only crucial for 

cell extracellular matrix integrity but also play roles in epithelial proliferation, adhesion, 

migration, differentiation and survival 43. While laminin α1 and α5 chains are crucial for 

early embryonic development and organogenesis, postnatal development relies on the 

laminin α2, α3, and α4 chains 44.  Laminin-211 (previously called merosin) is the 

predominant laminin isoform in the basement membrane of adult skeletal muscle 45,46 

along with Laminin-221 the primary laminin found in neuromuscular and myotendinous 

junctions 47.  In skeletal muscle, Laminin-211 has two major receptors namely 

αdystroglycan which is a major component of the dystrophin glycoprotein complex 

(DGC), and the integrin α7β1 which is a heterodimeric transmembrane protein.  

Laminin-211 also directly interacts with other components of the extracellular matrix 

such as agrin, nidogen and perlecan and interacts indirectly with type IV collagen.  All 

laminins are ligands to cell-surface receptors with most binding interactions occurring at 

the five laminin-type G domains (LG1–5) at the C-terminus of the laminin α chain 48,49.  

However, mapping studies of the laminin α2 chain have identified LG1–3 as the domains 

responsible for laminin-211 interactions with integrin α7β1 50.  Reports have shown that 

the coiled-coil domain of laminin α chains has an indirect effect on integrin binding, 
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wherein it is required to form a stable contact between LG1 and LG2-3, which are the 

domains that directly bind integrin51,52.  Laminin-211 binding to α-dystroglycan is 

mediated through the domains LG1–3 and 4–5 48,53.  The interactions of Laminin-211 

with various proteins are depicted in Figure 1.    

Laminin-111 is an isoform of laminin that is currently being investigated as a 

potential therapeutic for DMD.  It is an embryonic isoform of laminin-211/221 and is 

found in the tissues of the placental, kidneys, ovaries, liver, testis and blood vessels 54.  

Recently, it was shown that myoblast transplantation is more efficient in a laminin rich 

microenvironment 55.  Laminin-111 as a protein therapeutic injectable in mdx mice, 

showed improvements in pathological markers of disease progression such as creatine 

kinase and centrally located nuclei and also offered protection from exercise induced 

muscle damage 56.  It was observed that Laminin-111 therapy increased the levels of α7 

integrin in the skeletal muscle of the mdx mice 56.  Additionally, it was also demonstrated 

that Laminin-111 coadjuvant therapy enhanced myoblast transplantation in the mdx 

mouse model of DMD 57.  The development of Laminin-111 as a therapeutic for DMD is 

currently in the pre-clinical stage.     

  

THE DYSTROPHIN GLYCOPROTEIN COMPLEX  

The human dystrophin gene is 2.4-Mb long and encodes a ~14-kb cDNA that 

comprises 79 exons 58.  The full-length protein contains four functional domains: 1: 

Nterminal 2: rod, 3: cysteine-rich and 4: C-terminal domains.  Dystrophin associates 

transmembrane proteins such as dystroglycan, sarcoglycan and sarcospan as well as 

cytosolic proteins such as syntrophin, dystrobrevin and neuronal nitric oxide synthase 
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(nNOS) to assemble the dystrophin glycoprotein complex (DGC) at the sarcolemma of 

muscle fibers 59.  Together, the various components of the DGC form a structural link 

between the ECM and the intracellular cytoskeleton, in addition to serving a critical role 

in signal transduction.  Dystrophin is a large 427 kDa protein that is a critical component 

of the DGC.  At its N-terminal end as well as in the spectrin like repeats of its central rod 

domain, dystrophin binds to cytoskeletal, filamentous γ-actin, while the cysteine rich 

carboxyl-terminus domain of dystrophin interacts with the transmembrane protein 

βdystroglycan which helps localize dystrophin to the sarcolemma 60.  The β-dystroglycan 

forms a strong link with the α-dystroglycan.  The highly glycosylated α-dystroglycan 

interacts with laminin α2, a major component of the of muscle fiber basement membrane.  

Together the dystrophin, dystroglycans and laminin-α2 comprise a transmembrane 

complex that directly links the actin cytoskeleton to the ECM 59.  The extreme end of the 

carboxyl-terminal dystrophin is α-helical in nature and interacts with syntrophins 61,62.   

The α, ε, γ, δ sarcoglycans in the DGC are transmembrane glycoproteins proteins, 

that together form a distinct complex in the DGC.  The sarcoglycan complex is known to 

form a tight association with dystroglycans, α-dystrobrevin, syntrophins, neuronal nitric 

oxide synthase (nNOS) and sarcospan 63–67.  The sarcoglycan complex, excluding 

γsarcoglycan, associates with α-dystroglycan 64 via an extracellular proteoglycan, 

biglycan 68.  The intracellular tail of β- and δ-sarcoglycan associates directly with the C-

terminus of dystrophin 69 whereas the N-terminal region of α-dystrobrevin allows the 

association of sarcoglycans and dystrophin 65.  Through its numerous associations with 

various components of the DGC, the sarcoglycan complex is able to stabilize the DGC 
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structure at the sarcolemma.  The glycosylation of specific sarcolemmal proteins is 

critical for proper muscle development and function.  Dystroglycanopathies, which 

comprise over fifty percent of all known congenital muscular dystrophies (CMDs), occur 

due to the hypoglycosylation of α-DG 70.    

α-Dystrobrevin shares significant homology with the cysteine-rich and carboxyl 

terminal domains of dystrophin but lacks the actin binding and rod domains 71.  

Alternative splicing gives rise to three isoforms of α-dystrobrevin that assemble with 

other components of the skeletal muscle DGC.  Dystrobrevin binds to the intermediate 

filament protein syncoilin, which links desmin to the DGC thereby maintaining 

mechanical strength and structural integrity required for muscle contractions 72.  The 

coiled coil motif of α-dystrobrevin interacts directly with dystrophin while an upstream 

syntrophin binding site allows α-dystrobrevin to interact with the syntrophins 73.  

Syntrophin is a 58 kDa protein that interacts directly with the carboxyl-terminus of both 

full-length and truncated forms of dystrophin 74,75.  The dystrophin complex also 

associates with the GLGF motif bearing N-terminal of nNOS at the sarcolemma of 

muscle fibers 64.  nNOS is a downstream signaling mediator of α-dystrobrevin and has 

also been shown to bind to syntrophin 76.  nNOS synthesizes nitric oxide (NO) that is 

critical for the opposition of contractile forces in active muscle.  Dystrophin also plays a 

critical role in signaling; it interacts with and  localizes neuronal nitric oxide synthase 

(nNOS) to the DGC.  nNOS is a protein that also directly interacts with syntrophin.  

nNOS regulates skeletal muscle blood flow according to its metabolic needs 77.  Loss of 

dystrophin in DMD is accompanied by a loss of nNOS at the sarcolemma which is 

believed to exacerbate the muscle fiber damage in DMD.  Another important component 
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of the DGC is Sarcospan (SSPN), a quadruple transmembrane, 25kDa protein with both 

N- and C-termini on the cytosolic side, that is localized to cardiac and skeletal muscle 

sarcolemma.  SSPN is capable of forming higher order oligomers 78,79 which contribute 

to the formation of a lattice network, as observed in structurally similar proteins.  It has 

been proposed that the partial function of SSPN is to hold the components of the DGC in 

tight proximity 78.  The various components that assemble to form the DGC are depicted 

in the schematic in Figure 2.      

Localization of dystrophin within the muscle cells is consistent with its role in 

linking myofibers to the ECM to aid in muscle contraction.  Enrichment of dystrophin is 

observed around the sarcolemma at costameres 80,81, myotendinous junctions and 

neuromuscular junctions in healthy muscle.  In DMD patients, despite the continued 

transcription and translation of the aforementioned proteins that comprise the DGC (at 

reduced levels) the absence of dystrophin leads not only to muscular dystrophy but also 

causes the destabilization of the entire DGC complex.    

  

CURRENT THERAPEUTIC STRATEGIES FOR SARCOLEMMAL  

DYSTROPHIN REPLACEMENT   

Exon skipping of the Dmd gene. Gene therapies seek to restore dystrophin to the 

sarcolemma.  One modality of genetic therapy is utilizing antisense oligonucleotides 

(AONs) that facilitate exon skipping and splicing of the dystrophin pre-mRNA, in order 

that the dystrophin reading frame be restored.  The result is the generation of a partially 

functional albeit truncated dystrophin protein as observed in BMD.  This therapeutic 
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modality can address the majority of DMD mutations that are partial dystrophin gene out 

of frame mutations 82.  Recent trials in DMD patients have been conducted with two 

types of AON molecules; 2′O-methylribooligonucleoside-phoshophorothioate 

(Drisapersen) and phosphorodiamidate morpholino oligomers (PMOs/morpholinos) 

(Eteplirsen).  Drisapersen is marketed by Glaxo-Smith-Kline/Prosensa 83 and Eteplirsen 

is marketed by Sarepta Therapeutics 84, respectively.  Each AON targets exon skipping at 

exon 51, a DMD gene hot spot involved in approximately 13% of cases.  Clinical trials 

with the aforementioned AONs showed production of variable amounts of dystrophin 

protein and hence this therapeutic strategy holds great promise.  Several Phase2/3 trials 

with both compounds are currently underway with both Etilpersen and Drisapersen.  

Recently, a new class of AONs namely tricyclo-DNA that showed improved bio-

distribution compared to Etilpersen and Drisapersen, targeting skeletal muscle, the heart 

and the brain 85. Additionally, tcDNA targeted exon 23 and showed greater efficacy in 

restoring dystrophin expression than etilpersen and drisapersen.  tcDNA AON was also 

successful in improving respiratory function, benefits the CNS and improved cognitive 

functions.     

Approximately 15% of the DMD patient population present with nonsense 

mutations 86 that result from single nucleotide DNA polymorphisms that give rise to 

inframe stop codons UAA, UAG, or UGA codons in mRNA coding regions.  These stop 

codons lead to premature termination of protein translation, with resultant truncated, 

nonfunctional dystrophin protein.  An antibiotic Gentamicin was initially shown to 

suppress premature stop codons thereby allowing translational dystrophin read-through, 

increasing dystrophin expression in the mdx mouse, a study first verified in vitro in 
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cultured myotubes as well.  Treated mice expressed dystrophin in muscle and had 

functional improvement 87.  Clinical trials with gentamicin treatment of DMD patients 

harboring stop codons have generated ambiguous results, with one study failing to 

demonstrate expression of the full-length dystrophin protein or any functional 

improvement 88 and others demonstrating increased dystrophin protein expression 89 up 

to 15% 90.  Owing to concerns regarding potential toxicity of higher dose or longer 

duration gentamicin regimens, a highthroughput chemical assay was designed to identify 

compounds with equal potency and minimal toxic profiles.  This screen led to the 

identification of PTC124, currently known as Ataluren.  Ataluren suppressed DMD gene 

nonsense mutations in mdx myogenic cell lines and systemic treatment of mdx mice with 

the drug led to dystrophin expression and functional improvement in mice 91.  These 

positive results paved the way for DMD trials with Ataluren, initiated with healthy 

volunteers participating in Phase 1 trials, who showed no toxicity and subsequently to 

Phase 2 trials in DMD patients.  The results from the DMD trials have been inconclusive.  

While the initial Phase 2a study showed restoration of dystrophin expression in 

approximately one-third of the treated DMD patients, the report on the larger Phase 2b 

study showed minimal benefits in the 6 minute walk test (MWT) and did not include 

dystrophin protein expression data 92,93.  The downside of exon skipping strategies is that 

they cannot be applied to all DMD patients universally as they are mutation specific.    

AAV mediated Dmd restoration:  AAV delivery of AONs is a therapeutic 

strategy that stems from the promising results obtained from the aforementioned clinical 

trials that described the use of synthetic AONs to restore the dystrophin open reading 
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frame.  A variety of vectors for Dmd gene delivery such as nonviral, retroviral, 

adenoviral, herpes simplex viral and AAV vectors have been used with the aim of 

introducing a functional dystrophin gene in skeletal muscle fibers of animal models.  The 

candidate gene can be the full-length Dmd cDNA or a synthetic truncated gene.  For 

AAV mediated restoration of dystrophin, there are currently two strategies progressing 

towards clinical trials; the first is AAV delivery of antisense oligonucleotides (AON) to 

facilitate exon-skipping of specific complementary pre-mRNA sequences in order that 

the dystrophin reading frame be restored 94–98.  A recent study showed that AAV8 

mediated exon-skipping was applied intramuscularly in the forelimbs of a large cohort of 

dogs and the technique successfully restored moderate to high levels of dystrophin 99.  

The second strategy is AAV-mediated mini-/micro-dystrophin expression cassettes that 

have been administered in the mdx mouse 100,101 and the GRMD dog model 102–104 where 

sustained dystrophin expression was reported in the skeletal muscle of these animal 

models.  Microdystrophin genes are also termed miniature dystrophin genes because 

although they bear the major protein interaction domains of dystrophin, they are missing 

a large portion of the central rod and the C-terminal domain.  A drawback of viral 

mediated therapy is the potential for immunologic rejection via T-cell mediated immune 

response either to the viral capsid antigens and/or dystrophin recognized as a 

neoantigen24.  Adverse events can be countered with transient immunosuppression.  

Recently, a novel technique for the delivery of the full-length dystrophin utilizing a 

triple-AAV trans-splicing vector system was developed, which may result in better 

functional improvement105.  Current work involving AAV therapeutics seeks to develop 

methods for systemic delivery, increase the production of virus titers, improve viral 
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transduction efficiency and reduce innate and acquired immune responses so as to allow 

for multiple dose delivery of the AAV-dystrophin 106.    

Cell based therapies for dystrophin replacement: Cell transplantation therapy 

has the same goal as genetic approaches, cell based-therapies seek to restore dystrophin 

to the sarcolemma of muscle fibers.  Satellite cell or myoblast transplantation proved to 

be futile owing to the low efficiency of dystrophin production in the muscle fibers of 

DMD patients and children did not show improvements in functional or clinical 

parameters 107.  Embryonic stem cell (ESC) derived progenitors have excellent self-

renewal capacity and are a strong candidate for stem cell transplantation in dystrophic 

muscle.  There is a lot of optimism surrounding the idea that ESCs provide a versatile 

source for the treatment of a variety of diseases.  ESC-based therapy has many 

advantages, owing to ESCs being a more primitive cell type with a higher proliferative 

potential.  The issue of immune rejection can be circumvented by utilizing patient 

specific ESCs induced from adult somatic cells.  However, ethical, logistic and economic 

concerns surrounding ESC based transplantation require attention before any possible 

future clinical applications human ESCs.    

Cell replacement therapies also address the loss of muscle mass associated with 

muscular dystrophies 108.  For clinical implementation, adult stem cells harvested from 

tissue of DMD patients could be genetically manipulated ex vivo and restored to the 

donor through intra-arterial delivery, thereby allowing the cells to distribute throughout 

the patient musculature.  This technique can be used to treat patients who have 

experienced severe loss of body mass owing to muscular dystrophy.  Induced pluripotent 
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stem cells (iPSCs) bear most of the characteristics of ESCs but are reprogrammed from 

adult somatic cells such as dermal fibroblasts, by the transient expression of a defined set 

of factors 109.  Unlike ESCs, iPSCs bypass the ethical issues that surround the use of 

embryos and allow for autologous production of the pluripotent cells.  iPSCs could serve 

as a viable source of myogenic donors for muscle regeneration owing to their indefinite 

replicative capacity and their ability to differentiate into myoblast-like cells in vitro.  

iPSC myogenic progenitors can also be used for in vitro drug testing/screening and 

disease modeling for genetic muscular conditions.  The field of human satellite cell 

(huSC) biology for muscle diseases is in a very incipient stage of development.  

Researchers are only just beginning to characterize the huSC transcriptome to identify 

factors that will allow ex vivo expansion and efficient engraftment of the cells prior to 

utilization in the clinic 110.  Based on current findings the most promising therapy would 

be a combinatorial approach to obtain the benefits of multiple therapeutics strategies 

combined into a unified approach for e. g. cellular therapy in conjunction with gene 

therapy or pharmacologic treatments.    

  

 UTROPHIN AND THE SKELETAL MUSCLE  

Utrophin is the autosomal homolog of dystrophin. In the adult, dystrophin is 

expressed solely in the muscle and brain tissue however utrophin is expressed in various 

adult tissues.  Utrophin is present in vascular smooth muscle and the endothelium with 

the highest levels of mRNA and protein expressed in lung and kidney tissue 111,112.  

Mouse development studies have demonstrated that utrophin transcripts are first 
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detectable in the neural groove at embryonic day 8.5 which is an early stage of 

development 112.  As development progresses, utrophin expression becomes abundant in 

a subset of neural crest derived tissues such as peripheral nerve assembled in a complex 

with dystroglycan and other dystrophin-associated protein homologues 113.  Once skeletal 

muscle has attained adulthood, utrophin becomes localized at the neuromuscular and 

myotendinous junctions 114.  It is also normally expressed in the sarcolemma of 

developing and regenerating myofibers 114–116.  Dystrophin eventually replaces utrophin 

in the sarcolemma of maturing fibers but utrophin remains concentrated at the 

neuromuscular and myotendinous junctions in healthy muscle.  Similar to dystrophin, 

utrophin has binding domains for both F-actin and β-dystroglycan 117,118.  Additionally, 

like dystrophin, utrophin has been shown to associate with a membrane-linked 

glycoprotein complex.  The domain structure of utrophin is very similar to that of 

dystrophin which is why utrophin could function as the perfect surrogate for dystrophin 

in dystrophic muscle.  Utrophin can via its COOH-terminal domain, bind to a membrane 

associated glycoprotein complex, similar to the complex that associates with dystrophin 

in healthy muscle 113.  Additionally, utrophin is capable of binding to actin via its NH2 

terminus.  Hence, utrophin can form a direct functional link between the actin 

cytoskeleton and via the dystrophin associated glycoprotein and laminin, the 

extracellular matrix 119.  Utrophin is physiologically upregulated in the skeletal muscle of 

DMD patients 120,121, the mdx mouse 122, and the GRMD 123,124 and German shorthaired 

pointer 125 canine models.  The utrophin protein is found in extra junctional regions in 

dystrophic myofibers 116.  In muscle, there are two promoters A and B that regulate the 

expression of two fulllength transcripts of utrophin.  Each transcript has unique 5′ exons, 

http://www.sciencedirect.com/science/article/pii/S0960896615007130#200014324
http://www.sciencedirect.com/science/article/pii/S0960896615007130#200014324
http://www.sciencedirect.com/science/article/pii/S0960896615007130#200014324
http://www.sciencedirect.com/science/article/pii/S0960896615007130#200014324
http://www.sciencedirect.com/science/article/pii/S0960896615007130#200022025
http://www.sciencedirect.com/science/article/pii/S0960896615007130#200022025
http://www.sciencedirect.com/science/article/pii/S0960896605002506#200006104
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and at exon 3 they splice into a single common RNA.  Studies in mdx mice, have shown 

that post transcriptionally, A-utrophin is up-regulated in muscle fibers while B-utrophin 

localizes to endothelial cells 126.  Loss of both dystrophin and utrophin in the mdx/utrn-/-  

mice leads to more severe muscular dystrophy with animals dying prematurely by 20 

weeks of age 76,127.  Alternatively, the exogenous expression of utrophin improved the 

dystrophic pathophysiology in mdx mice, indicating that utrophin has the ability to 

compensate for dystrophin when expressed at high levels 128.  Although utrophin and 

dystrophin are structurally homologous, they bind to F-actin through distinct sites 129,130 

and only dystrophin contains nNOS binding sites 131.  It is thought that in DMD afflicted 

muscle ischemia occurs because nNOS is unable to anchor to the sarcolemmal membrane 

131.  The utrophin glycoprotein complex (UGC) also differs from the DGC in the 

glycosylation of α-DG, which is important for the determination of the binding 

specificity of ECM ligands 132–135.  Nevertheless, utrophin is the functional and structural 

homolog of dystrophin and one of the top candidates for surrogate protein replacement 

therapy at the sarcolemma of dystrophic muscle.    

 

CURRENT THERAPEUTIC STRATEGIES FOR UTROPHIN REPLACEMENT  

IN THE TREATMENT OF DMD  

Functional and structural replacement of dystrophin at the sarcolemma with 

surrogates such as utrophin is a therapeutic modality that offers tremendous potential for 

DMD.  There has been a lot of focus on utrophin (also known as dystrophin-related 

protein) because it is the structural and functional homolog of dystrophin136 136,137 and 

several studies have demonstrated that enhancing utrophin expression has therapeutic 

http://www.sciencedirect.com/science/article/pii/S0960896605002506#200002070
http://www.sciencedirect.com/science/article/pii/S0960896605002506#200002070
http://www.sciencedirect.com/science/article/pii/S0960896605002506#200010291
http://www.sciencedirect.com/science/article/pii/S0960896605002506#200010291
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benefit in the pathophysiology of DMD.  Upregulation of utrophin, either genetically 128 

or through treatment with the small molecule compound SMTC1100 138 improved the 

pathophysiology in the mdx mouse.  Several researchers are relentlessly pursuing the 

field of potent utrophin modulators for the treatment of DMD.  High-throughput, cell-

based screens were performed to identify potent drugs that upregulated utrophin 139.  

Protein therapies that modulate utrophin expression include biglycan, an extracellular 

matrix protein that associates with the dystrophin-glycoprotein complex.  Treatment of 

mdx mice with recombinant human biglycan, recruited utrophin to the sarcolemma and 

reduced histopathologic lesions and the extent of eccentric contraction decrement140.  

Recently, a protein therapeutic Galectin-1 when administered intraperitoneally into mdx 

mice showed improvement in function and alleviation of dystrophic pathology 141.  

Galectin-1 is a small 14kDa, non-glycosylated protein encoded by a member of the 

Lectin family of genes, Galactoside-binding, soluble-1 (LGALS1) gene. Galectin-1 is 

found in the cell nuclei, cytoplasm and intracellular membranes and is known to be 

secreted in a number of cell types to the extracellular membrane and extracellular matrix 

142–147.  Mice treated with recombinant mouse galectin-1 (rMsGal-1) exhibited reduced 

skeletal muscle pathology demonstrated by a reduction centrally located nuclei and 

Evans blue uptake.  rMsGal-1 treatments resulted in elevated levels of the Utrophin 

glycoprotein Complex (UGC) 141.      

Genetic introduction of micro-utrophin utilizing adenovirus-mediated delivery in 

mdx/utr-/- mice and mini-utrophin GRMD dogs showed a significant amelioration of 

dystrophic phenotype in mice and reduced histopathologic lesions in GRMD dogs with 

sustained expression of utrophin for approximately 60 days 148,149.  Delivery of a fusion 
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protein called TAT-Utrophin circumvents the problems of immune rejection by the virus 

and the transgene behaving as a non-self-gene.  Researchers have developed a fusion 

protein between utrophin and the Human Immunodeficiency virus (HIV) derived TAT 

sequence, which is used to transport molecules into cells, in order to facilitate utrophin 

replacement therapy in DMD.  The TAT sequence signals for the internalization of 

utrophin in muscle cells.  Once internalized, the utrophin can compensate the functional 

and structural absence of dystrophin thereby ameliorating the pathogenic effects of 

DMD150.    

Two therapies developed to upregulate the levels of utrophin in muscle are 

currently in or near Phase 1 clinical trials: SMTC1100/BMN195 (Summit plc) and 

biglycan (Trivorsan Pharmaceuticals).  The chemical name of BMN195 is 5-

(ethylsulfonyl)-2-(naphthalene-2yl) benzodoxazole.  BMN195 was first identified in a 

screen for small molecules, which enhanced mRNA levels of utrophin by 25% in human 

myoblasts, increased utrophin protein levels by two-fold in DMD patient cells, and 

demonstrated efficacy in treatment of mdx mice 138.  In the mdx mouse, BMN195 

reduced regeneration, inflammation, necrosis, serum CK levels, and fibrosis, improved 

functional calcium-dependent parameters and prevented eccentric contraction mediated 

muscle membrane damage in treated mdx mice 138.  BMN195/SMT C1100 was the first 

new chemical entity (NCE) with a design targeted at the utrophin-A promoter 151 which 

has progressed into clinical development.  Although BMN195 was tolerated at all doses 

in a Phase 1 clinical trial conducted by BioMarin Pharmaceuticals, even at the highest 

doses, it did not achieve the plasma concentrations required to increase utrophin 

expression.  Summit pharmaceuticals has since reformulated BMN195 to allow for better 
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absorption and the company has subsequently initiated Phase 1 clinical trials.  

SMT022357 was a second generation compound derived from the same family as 

SMTC1100 that showed significant improvements in the physicochemical properties and 

in vivo efficacy compared to its predecessor SMT C1100 152.    

Another protein that upregulates utrophin levels is biglycan; an extracellular 

protein that like utrophin is highly expressed in regenerating and developing muscle 

153,154.  Injection of recombinant human biglycan protein improved muscle pathology in 

the mdx mouse and elevated the expression of utrophin and γ-SG at the cell membrane 

155.  Furthermore, the inability of biglycan to alleviate the disease pathology in mdx/utr-/- 

mice demonstrated that utrophin was a necessary component in order for biglycan 

therapies to have effect 155.  Biglycan is currently in Phase 1 clinical trials conducted by 

Trivorsan Pharmaceuticals.  The aforementioned studies describe the therapeutic 

potential of utrophin upregulation as a disease modifying therapeutic strategy that can be 

applied universally to all DMD patients irrespective of their dystrophin mutation.  

  

  α7β1 INTEGRIN IN THE SKELETAL MUSCLE  

Integrins are αβ heterodimeric transmembrane proteins that are critical to a 

variety of cellular processes such as adhesion, migration and differentiation 156.  The β1 

subunit is the most common subunit for the majority of integrins that participate in cell-

extracellular matrix adhesion.  While both the α and β subunits can contribute to ligand 

binding, it is the α chain that mediates the specificity of the ligand interaction and the β 

subunit regulates cell signaling and integrin activation.  Integrins can mediate both 
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“inside out” and “outside in” signaling 157,158.  Initiation of inside out signaling occurs 

within the cell.  “Inside out” signals are necessary in order for integrins to switch 

between conformational states and become active156.  Integrin activation specifically 

requires the binding of the cytoskeletal protein talin to the cytoplasmic domain of the β-

subunit.  This binding results in a conformational change which allows ligands in the 

extracellular domain to bind to the integrin complex 159. This signaling event allows cells 

to interact with components of the extracellular matrix (ECM) and is capable of affecting 

ECM organization and assembly 43.  Outside-in cell signaling is downstream of integrin 

activation wherein signals are transduced from the outside of the cell to the intracellular 

compartments 160.  The apparent lack of enzymatic activity in the cytoplasmic domains of 

integrins enables the formation of distinct macromolecular complexes following the 

recruitment of different sets of proteins 160,161.  Upon binding, a conformational change in 

the integrin regulates interactions between the integrin cytoplasmic domain and cytosolic 

proteins and/or the cell cytoskeleton 156,159.      

Integrins have a long extracellular domain, a single transmembrane domain and a 

relatively short cytoplasmic domain both of which bind to extracellular ligands.  The α7 

subunit has two alternatively spliced cytoplasmic domain variants namely α7A and α7B 

that are present in murine and human adult skeletal muscle, where they associate with the 

β1D subunit, an integrin β1 splice form 162.  α7β1 integrin is one of the major cell surface 

transmembrane receptors that links laminin-211 in the extracellular matrix to the 

intracellular cytoskeleton 163,164 (Figure 3).  It is the predominant laminin receptor in 

skeletal, cardiac and smooth muscle fibers 165.  In skeletal muscle it is localized at the 
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neuromuscular junctions and the myotendinous junctions 166,167 as well as at the 

sarcolemma 168.  Additionally, in skeletal muscle cell lines, there is an increase in α7 

integrin expression during myogenic differentiation 163.  Intracellularly, integrins bind to 

F-actin through a protein complex that includes the integrin-linked kinase (ILK), PINCH 

and α/β-parvin 1 69-171.  The ILK, PINCH and parvin protein complex is known to 

facilitate cell signaling through the Akt/PKB, GSK3β/β-catenin, JNK, and α-Pix/Rac1 

pathways apoptotic and pro-autophagic signals such as FoxO, Bad and Bax174.  Integrin 

α7β1 can also activate the Ras pathway resulting in upregulation of the pro-survival, 

proto-oncogene Bcl-2 expression175.  Hence integrin α7β1 plays a critical role in 

mediating several signaling events.   

In human and mouse tissues there exist two cytoplasmic and two extracellular 

splice variants of the α7 integrin subunits176–178, the expression of which is regulated 

during development.  While the cytoplasmic variant α7B is expressed in cardiac, smooth 

and in both embryonic and adult skeletal muscle, the α7A variant is expressed only in 

mature skeletal muscle fibers and not in cardiac muscle 179.  The extracellular variants of 

α7 integrin are α7X1 and α7X2, which result from the alternative splicing of exons that 

encode a region located in the β-propeller domain of α7 between the homology repeats 

III and IV180.  This region represents a portion of the putative ligand binding site.  While 

the α7X1 and α7X2 splice variants are expressed in equal amounts during early 

development in mouse skeletal myoblasts and adult heart, in adult skeletal muscle, the 
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α7X2 splice variant is predominant 176,177.  The α7X1 integrin is vital to muscle 

development and repair, whereas the α7X2 isoform is responsible for anchoring mature 

muscle to the ECM 181,182.  Both splice variants bind to laminin-1- and laminin-2-coated 

surfaces when expressed in HEK293 cells; however, α7X1B promoted cell migration 

only on laminin-2, and α7X2B stimulated motility on both substrates 183.  Further, the 

cell-specific environment has a critical impact on binding 180,183.   

 Like the α7 integrin chain, the β1 integrin subunit also has several cytoplasmic 

domain isoforms that arise from alternative RNA splicing events 161,184,185.  In early 

stages of muscle development, β1A integrin is the predominant isoform in myoblasts, 

whereas in adult muscle fibers β1D is the major form and mediates a stronger interaction 

with laminin186, 187.  β1 integrin plays a vital role in regulating cell–extracellular matrix 

interactions during embryonic development and this is corroborated by the fact that β1 

integrin deletion is embryonic lethal in mice 188,189.  The β1 subunit is the only integrin β 

chain that forms functional heterodimers with α7 integrin chains 157,162,163.  Under normal 

circumstances, both subunits of the integrin heterodimer are synthesized in the 

endoplasmic reticulum (ER) and later transported to the cell membrane after post-

translational modifications in the Golgi190–193.  However, when one subunit is in excess 

of the other, the extra subunits are retained in a premature form in the ER until the 

opportunity to dimerize with other subunits arises 190,192.  Therefore, the stoichiometry of 

the α and β subunits is important for the formation of integrin receptors on the cell 

surface in the right amounts.  
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α7β1 INTEGRIN IS A MAJOR MODIFIER OF DISEASE PROGRESSION IN  

DMD  

The α7β1 integrin is a laminin receptor in skeletal muscle that serves to link 

laminin-211/221 in the basal lamina to the actin cytoskeleton of muscle fibers 165.  The 

α7β1 integrin has structural and signaling functions that contribute to muscle 

development and physiology and was originally identified as a marker for muscle 

differentiation 163 177.  Although normally concentrated at the myotendinous junction in 

postnatal muscle, α7 integrin is upregulated throughout the sarcolemma in DMD and the 

mdx mouse 194.  Studies have shown that enhanced transgenic expression of the α7 

integrin in skeletal and cardiac muscle can ameliorate dystrophic pathology and extend 

the lifespan of mdx/utr-/- mice more than three-fold 195.  Multiple mechanisms appear to 

contribute to α7 integrin mediated rescue of dystrophin deficient muscle including 

maintenance of myotendinous and neuromuscular junctions, enhanced muscle 

hypertrophy and regeneration, and decreased apoptosis and cardiomyopathy196.  

Enhanced α7 integrin also protects muscles against exercise-induced damage 197.  

Conversely loss of the α7 integrin in mdx mice resulted in more severe muscle disease 

where mdx/α7-/- mice experienced an early onset death between 2-4 weeks of age 198.  

Additionally, the mdx/α7-/- mice had a significant decrease in laminin-α2 which was one 

of the factors that exacerbated the pathology in the double knockout mice 198.  Recently, 

it was demonstrated that the AAV mediated overexpression of human α7 in mdx as well 

as mdx/utr-/- mice led to histological and functional improvements as well as increased 
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survival in the dystrophic mice 199,200.  Recent evidence suggests that prednisone, the 

current front line treatment for DMD, may maintain muscle function  by stabilizing the 

α7 integrin protein levels 201.   

While transgenic overexpression and viral mediated delivery of α7 integrin 

rescued disease pathology in mdx mice, increasing the amount of the β1D chain by virus-

mediated infection, protected the muscle fibers from developing membrane damage202.   

Additionally, the simultaneous enhancement of α7 and β1D chain levels provided even 

better protection to the mdx mice 202.  Hence developing a therapeutic that targets the 

level of both the α7 and β1 subunit of integrin would be optimally effective for the 

treatment of DMD.  A schematic that proposes the mechanism by which integrin 

enhancement therapies may be beneficial for treating DMD is depicted in Figure 4.  

Together, these observations support the idea that the α7β1 integrin is a major disease 

modifier in DMD.    

 

POTENTIAL THERAPIES THAT TARGET α7β1 INTEGRIN AS A 

SURROGATE REPLACEMENT PROTEIN IN DMD.    

Although transgenic studies and AAV mediated delivery of ITGA7 have 

demonstrated the therapeutic benefit of enhancing integrin as a surrogate for dystrophin 

at the sarcolemma of myofibers in mdx and mdx/utr-/- mice, there are currently no 

effective pharmacological small molecule therapeutics being developed that enhance the 

expression of the heterodimeric adhesive integrin protein complex at the sarcolemma.  

Recently, two protein therapeutics namely Laminin-111 and Galectin-1 when 

administered intraperitoneally into mdx mice showed improvement in function and 
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alleviation of dystrophic pathology 56,141.  Laminin-111 is the embryonic form of adult 

skeletal muscle laminin-211/221 and can be found in placenta, kidney, liver, testis 

ovaries and blood vessels 203. Purified EHS laminin-111 can now be purchased 

commercially. Intramuscular injections with the readily available purified EHS laminin-

111 into mdx muscle provided proof of principle that laminin-111 can be delivered 

throughout the treated muscle and can reestablish muscle repair and regeneration 57.  

Systemic Laminin-111 treatments in mdx mice led to elevated levels of the α7β1 integrin 

complex at the sarcolemma of muscle fibers 56.  From a clinical trials perspective, 

delivering a protein like Laminin-111 for therapy could prove difficult owing to the fact 

that it is a large heterotrimeric protein (900kDa) that is glycosylated.  Recently, 

recombinant mouse Galectin-1 (rMSGal-1) administered systemically to mdx mice 

showed significant improvements in the function and pathophysiology of the dystrophic 

mice and this was accompanied by elevated levels of the α7β1 integrin at the 

sarcolemma141.  Galectin-1 being a much smaller protein than Laminin-111 could be a 

better candidate for protein delivery targeted at the α7β1 integrin.  However, two 

disadvantages of protein therapeutics are 1. A possible immune response developed by 

the patients to the therapeutic and 2.  Off-target effects of protein therapeutics may prove 

detrimental to the well-being of the patients in the long term.  Hence, development of a 

targeted small molecule therapeutic that specifically elevates the α7β1 integrin complex 

at the sarcolemma of dystrophic myofibers could circumvent the problems associated 

with a viral mediated delivery or a protein therapeutic.  This dissertation will discuss the 

identification of a first in-class α7β1 integrin enhancing compound for the treatment of 

DMD.  Several functional differences exist between the three afore-discussed adhesion 



29  

  

complexes at the sarcolemma namely the DGC, the UGC and the α7β1 integrin.  The 

extent to which therapeutics that target the UGC and integrin, can fully replace the lost 

DGC function in DMD and ameliorate pathology is a question that remains unanswered.   

  

α7 INTEGRIN ENHANCING SMALL MOLECULE DRUG SCREEN  

To translate transgenic mouse studies into potential therapies for DMD, we initiated a 

drug discovery program to identify chemical probes that increase α7 integrin in skeletal 

muscle. We have previously reported on the generation and characterization of an α7 

integrin knockout line of mice204 in which the LacZ gene is inserted into exon 1, 

downstream of the endogenous α7 integrin promoter.  Thus, β-galactosidase functions as 

a reporter for α7 integrin expression in these animals.  Primary myogenic cells were 

isolated from a heterozygous mouse (α7βgal+/-) so that the cells express α7 integrin and 

also report for transcription of the integrin.  The second Itga7 gene allele had exon 1 

replaced by the LacZ gene, providing a reporter for α7 integrin transcription and 

maintaining the endogenous promoter, enhancer, and chromatin environment.  

Undifferentiated α7+/lacZ   myoblasts and differentiated myotubes were used to screen 

compounds (48 hour treatment) and β-Galactosidase enzymatic activity was measured 

using the Fluorescein di-β-Dgalactopyranoside (FDG) assay.  FDG is an extremely 

sensitive fluorogenic substrate that can be used for detecting the activity of β-

Galactosidase that cleaves non-fluorescent FDG to produce the fluorescent molecule 

fluorescein.  The identification of a first in-class α7β1 integrin enhancing drug, which is 

the focus of this dissertation, provides further support for the utilization of this chemical 
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screen to identify promising integrin enhancing compounds with the potential to make it 

to clinical trials for DMD.  The myogenic reporter cells were designated α7βgal+/- and 

were used to identify two molecules, valproic acid and laminin-111, in preliminary 

screens and have been successfully tested in mouse models of DMD198,205.       

To identify additional small molecules that increase α7 integrin in skeletal muscle, 

we used our muscle cell-based assay to screen 403,000 compounds, including FDA 

approved drugs and the large compound libraries at the National Chemical and Genomics 

Center (NCGC) now part of the National Institutes for Advancing Translational Sciences 

or NCATS.  The four compound libraries that were screened using our muscle cell based 

assay were 1) Prestwick Chemical and Microsource Spectrum Libraries (BioFocus DPI, 

Leiden Netherlands with facilities in UK, Basel, Heidelberg) (Overington et al., 2006). 2) 

DIVERSet library (Chembridge Corp., San Diego, CA) and compounds from the 

ChemDiv library. 3) LOPAC library (Sigma-RPI) consists of 1280 pharmaceutically 

active compounds. 4) MLSMR-Molecular Libraries Small Molecule Repository (2011).  

We have identified several compounds that increase the α7 integrin with known 

mechanisms of action including iron chelators, microtubule inhibitors, cell cycle 

inhibitors and steroid-like molecules. Additionally, several small molecules with 

unknown biological activities were identified.  Overall, our results identified novel small 

molecules that increase the α7 integrin in cultured muscle cells and may serve as 

molecular probes to further dissect signaling pathways that regulate the α7β1 integrin in 

skeletal muscle. These small molecules could potentially be developed as novel 

therapeutics in the treatment of Duchenne and other fatal muscular dystrophies.    
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One of the molecules identified as a potent inhibitor of α7 integrin through the 

chemical drug screen was a compound called SU9516.  SU9516 is a three-substituted 

indolinone compound and was identified in a screen for cyclin dependent kinase 2 (cdk2) 

inhibitors, with the goal of developing a potential anti-cancer therapeutic 206.  SU9516 

was identified as an extremely potent and highly selective inhibitor of cdk2 in RKO, 

SW80 and other colon carcinoma cell lines and was shown to potently induce apoptosis 

in association with pRb (tumor suppressor gene) dephosphorylation and cell cycle arrest 

in G1 or G2M 207.  Additionally it has been shown that SU9516 triggers cell death in 

human leukemia cells (e.g., U937, HL-60, and Jurkat) through 1) the potent induction of 

mitochondrial oxidative injury (i.e., cytochrome c release and Bax translocation), 2) the 

inhibition of phosphorylation on serine 2 of the carboxyl-terminal domain (CTD) of 

RNA Pol II, and 3) the pronounced down-regulation of Myeloid cell leukemia -1 (Mcl-

1), an anti-apoptotic protein, through transcriptional repression combined with 

proteasomal degradation208.  Thus, previous literature has identified SU9516 as an anti-

neoplastic agent that can potentially be used in combination chemotherapy with other 

anti-cancer agents such as 5-fluorouracil (5-FU) 209.  This dissertation seeks to describe 

the development of SU9516 as a potential therapeutic for DMD that targets the α7β1 

integrin heterodimer complex at the sarcolemma of dystrophic muscle fibers.    

 

SUMMARY  

The main hypothesis of this dissertation is that the development of an α7β1 

integrin enhancing small molecule will be an important stride in the field of therapeutics 

for Duchenne Muscular Dystrophy.  The data presented in this dissertation reinforces the 
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potential of α7β1 integrin as a therapeutic target for drug development in DMD.  The 

results obtained from the investigation of a novel α7β1 integrin enhancing compound 

show that this group of therapeutics has the potential to improve the quality of life of 

patients suffering from DMD.  The focus of this dissertation is the α7β1 integrin complex 

in skeletal muscle and the data generated from the studies presented in this dissertation 

corroborate the fact that α7β1 integrin is a major modifier of disease progression in 

DMD.    

There are currently no definitive therapies available for DMD patients and the 

corticosteroids, prednisone and deflazacort are the only treatments available with limited 

positive effect 210–214.  Chapter 2 focuses on prednisone the current front line therapeutic 

for Duchenne muscular dystrophy.  Using muscle cells cultured from mice or human 

DMD patients, it was shown that prednisone acts to increase protein levels of α7 integrin 

in a dose-dependent manner.  Additionally, prednisone treatment in the well-established 

mdx mouse model of DMD and the GRMD canine model increased protein levels of 

α7β1 integrin, as well as those of laminin-α2, which is a critical component of the 

basement membrane.  Finally it was demonstrated that GRMD dogs that had not been 

treated with prednisone exhibited reduced levels of laminin-α2 and α7 integrin proteins.  

This study showed that Prednisone acts in part to increase laminin-211/221 (composed of 

α2, β1 and γ1 chains) in the muscle basal lamina to stabilize protein levels of α7β1 

integrin in skeletal muscle cells.  These changes would lead to improvements in muscle 

fiber integrity in dystrophin-deficient muscle to slow the disease process.  The results 

also suggest a shared mechanism for disease progression in GRMD dogs and humans, 
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reinforcing the view that the canine model provides a useful tool for studies of the human 

disease.    

Our findings from the prednisone study and other studies suggested that targeting the 

α7 integrin could be a therapeutic strategy for DMD.  This led us to translate this finding 

into a therapeutic approach for DMD.  In order to do so, we initiated a program to 

identify small molecules that increase α7 integrin in skeletal muscle.  Using myogenic 

cells from mice in which the LacZ reporter gene was inserted into exon 1 of the mouse 

α7 integrin gene, we screened 403,000 compounds and identified more than 1500 hits 

that increased the β-galactosidase reporter.  Further evaluation identified 6 compounds 

that increased α7 integrin at least 1.5-fold in myotubes.  Compounds were classified as 

iron chelating compounds, cell cycle inhibitors and compounds with undefined function. 

Compounds identified from this screen represent novel molecular probes that can be used 

to further elucidate regulation of α7β1 integrin expression and signaling in skeletal 

muscle and may serve as potential therapeutics for the treatment of DMD.  One of the top 

compounds identified from this chemical drug screen is a molecule called SU9516.       

Chapter 3 discusses the discovery of a novel α7 integrin enhancing drug called  

SU9516 for the treatment of DMD.  The chemical name for SU9516 is (Z)-1,3-Dihydro-

3(1H-imidazol-4-ylmethylene)-5-methoxy-2H-indol-2-one.  The molecular structure is 

depicted in Figure 5.  Although there is a vast amount of literature that suggests that 

developing pharmacological therapies targeted at the α7β1 integrin complex could be 

promising for the treatment of DMD, there is no effective drug being developed towards 

that end.  This chapter discusses the identification, in vitro and in vivo on-target activity 

of a novel small molecule α7β1 integrin enhancing compound called SU9516 for the 
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treatment of DMD.  In this translational study, it was demonstrated that SU9516 

increases the levels of α7B in mice as well as human DMD patient myogenic cell lines.  

Pre-clinical trials were undertaken in the mdx mouse model of DMD, where mice were 

treated via oral gavage with a dose of 5 mg/kg/day, from 3 weeks to 4 weeks of age.  The 

drug elevated the levels of α7B and β1D at the sarcolemma of mdx myofibers.  These 

increases in α7β1 integrin were associated with significant functional improvements in 

the diaphragm of the mdx mice as well as forelimb grip strength assessments.  Phrenic 

nerve stimulation of the diaphragm showed that treatment with the drug improved the 

neuromuscular kinetics and restored the resting membrane potential of the dystrophic 

myofibers.  Finally, the SU9516 treatment regimen ameliorated the dystrophic 

histopathology with increased percentage of centrally nucleated fibers obtained in 

association with an increase in embryonic myosin heavy chain positive fibers.  SU9516 

treatment decreased fibrosis in the muscle and improved myofiber size distribution.  This 

study presents for the first time the benefits of utilizing an α7β1 integrin enhancing small 

molecule drug in the mdx mouse-model of DMD.        

Chapter 4 discusses the molecular targets of SU9516.  SU9516 is a known kinase 

inhibitor and hence it was important to determine the kinases targeted by SU9516 in 

skeletal muscle in order for the drug to proceed towards clinical development.  It was 

hypothesized that the inhibition of one or more specific kinases in skeletal muscle is 

what results in the increase in α7 integrin.  It was determined that in mouse myogenic 

cell lines, SU9516 potently inhibited a kinase known as Mitogen activated protein 

kinase-4 (MAP4k4) and its inhibition led to enhanced fusion and differentiation of 

C2C12 telomerized mouse myoblasts to myotubes.  Hence, we showed that SU9516 
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increased levels of α7B in myoblasts at least partially through the inhibition of MAP4k4, 

however this inhibition was not responsible for the increased levels of α7B integrin seen 

in differentiated myotubes.  Through a KiNativ screen, we were able to screen for several 

kinases as potential targets of SU9516 in human patient myotubes.  Three kinases that 

were robustly inhibited by SU9516 in human myotubes were PFTAIRE1, STK39 and 

OSR1.  

SU9516 also decreased the levels of CD82/KAI-1 a tetraspanin membrane 

protein that is currently being investigated by collaborators at Harvard University as a 

marker of skeletal muscle satellite cells.  Lastly, SU9516 was identified as an inhibitor of 

the p65NF-kB pathway that plays a role in the development of fibrosis and inflammation 

in DMD, secondary effects that lead to further muscle damage.  In addition, to the α7β1 

integrin as a therapeutic target, SU9516 also inhibits an inflammatory pathway that 

causes a lot of the secondary pathology that occurs owing to the loss of dystrophin.  

Chapter 5 of this dissertation discusses the scope and future directions for 

SU9516 being further developed as a viable treatment of DMD.  This chapter discusses 

the potential of a first in-class integrin enhancing compound for the treatment of DMD 

and provides further evidence that the α7β1 integrin could compensate for the loss of 

dytrophin in this fatal disease.  SU9516 is toxic in mice at a dose of 10 mg/kg or higher 

and also has low absorption in skeletal muscle.  Structure activity relationship studies are 

the next course of action for this drug, in order to improve the absorption and minimize 

the toxicity.  However, after that point, preclinical trials with a modified compound will 

be assessed prior to transitioning the study in a larger model of DMD like the GRMD 

dog.  Finally, experiments show that SU9516 improves the neuromuscular kinetics in the 
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diaphragm of the mdx mouse and it would be important to see whether the drug in fact 

improves calcium handling through the elevation of α7 integrin.   
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Figure 1- Laminin and its interactions- Laminins directly interact with agrin, nidogen 

and perlecan as depicted in the schematic above.  All laminins are ligands to cell-surface 

receptors with most binding interactions occurring at the five laminin-type G domains 

(LG1–5) at the C-terminus of the laminin α chain.  LG1–3 are the domains responsible 

for laminin interactions with integrins.  Laminin binding to α-dystroglycan is mediated 

through the domains LG1–3 and 4–5.  This schematic has been adapted from Holmberg 

and Durbeej, 2013 215.    
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Figure 2- The Dystrophin Glycoprotein complex in normal adult muscle.  

Dystrophin assembles the members of the DGC at the sarcolemma of muscle fibers 

which together link the actin cytoskeleton to the extracellular matrix thereby providing 

stability to the sarcolemma.  The central rod domain of dystrophin has 24 spectrin 

repeats interspersed with four hinges.  The amino terminal domain binds the actin 

cytoskeleton and the cysteine rich C-terminal domain links dystrophin to the 
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sarcolemmal-bound β-dystroglycan.  The dystroglycan complex is formed by the 

association of β-dystroglycan with α-dsytroglycan.  The sarcoglycans, sarcospan and 

laminin-α2 at the extracellular matrix strengthen the existing complex.  The CTD of 

dystrophin also binds to dystrobrevins and syntrophins.  Syntrophins recruit nNOS to the 

sarcolemma via their PDZ domains.  Additionally, the spectrin repeats 16/17 can also 

recruit nNOS to the sarcolemma.  Dystrophin and its associated proteins play a critical 

mechanical role in stabilizing the sarcolemma during contraction thereby preventing 

contraction-induced injuries.  Reproduced as an adaptation of Figure from Lisi and Cohn, 

2007 216.    
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Figure 3- The α7β1 integrin complex at the sarcolemma of muscle fibers.  The α7β1 

integrin is a major laminin receptor in skeletal muscle fibers.  It links laminin in the 

extracellular matrix to the actin cytoskeleton and is known to mediate cell signaling.    
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Figure 4- Integrin enhancement therapy for DMD.  (A) Schematic of dystrophin and 

α7β1 integrin laminin binding complexes in healthy, normal skeletal muscle (B) Loss of 

dystrophin in DMD patients, mdx mice and the GRMD dog model leads to sarcolemmal 

damage and loss of muscle integrity. (C) Enhanced levels of the α7β1 integrin protects 

the sarcolemma from damage and improves muscle survival in dystrophin deficient 

muscle.  

  

  

  

  

  

  

  

  

  

  

  

  

  



43  

  

  

  

Figure 5- Molecular structure of SU9516. SU9516 is an indolinone with the chemical 

formula (Z)-1,3-Dihydro-3-(1H-imidazol-4-ylmethylene)-5-methoxy-2H-indol-2-one.  
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CHAPTER 2  

PREDNISONE INCREASES α7 INTEGRIN AND LAMININ-α2 IN THE MDX  

MOUSE AND GRMD DOG MODELS OF DUCHENNE MUSCULAR  

DYSTROPHY  
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ABSTRACT  

Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disease for which 

there is no cure and limited treatment options. Prednisone is currently the first line 

treatment option for DMD and studies have demonstrated that prednisone improves 

muscle strength. Although prednisone has been used for the treatment of DMD for 

decades, the mechanism of action of this drug remains unclear and has been shown not to 

exclusively involve well known anti-inflammatory actions. Recent studies have shown 

that the α7β1 integrin is a major modifier of disease progression in mouse models of 

DMD, and drugs that promote α7β1 integrin levels in muscle may be therapeutic in the 

treatment of DMD. In this study we examined if prednisone increased α7β1 integrin 

levels in mdx and GRMD models and myogenic cells from DMD patients. Our results 

showed prednisone promotes an increase in α7 integrin protein in cultured myogenic 

cells and in the muscle of mdx and GRMD animal models of DMD.  The increase in α7 

integrin was associated with increased laminin-α2 transcript in prednisone treated 

dystrophin-deficient muscle. Together our results suggest that prednisone improves 

muscle strength in part through increased laminin211, laminin-221 and α7β1 integrin in 

dystrophin-deficient muscle. These results further confirm that drug-based therapies that 

target an increase in muscle α7β1 integrin, its signaling pathways and/or laminin may be 

therapeutic in DMD.    
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INTRODUCTION  

Duchenne muscular dystrophy (DMD) is a lethal X-linked neuromuscular disease 

that affects 1 in 3500 boys.  Clinical symptoms are first detected at 2-5 years of age and 

DMD patients often die from cardiac or respiratory failure by the second or third decade 

of life. DMD is caused by mutations in the Dmd gene that lead to loss of the dystrophin 

protein 217,218.  Dystrophin and the associated protein complex link laminin in the 

extracellular matrix (ECM) to the cell cytoskeleton and serves as a structural and 

signaling platform in muscle.  Loss of dystrophin in the mdx mouse, golden retriever 

muscular dystrophy (GRMD) dog and DMD patients result in a fragile sarcolemma 

prone to contraction induced muscle injury. Damaged muscle activates satellite cells to 

repair muscle damage and muscle degeneration followed by regeneration occurs. 

Regeneration eventually fails and muscle is replaced with fibrotic and fatty tissue 2.  

There is currently no cure for DMD, however, improved medical care and treatment with 

corticosteroids, prednisone or deflazacort, have improved muscle strength and longevity 

of patients 210,213,214,219,220.    

The mdx mouse model has provided valuable insights into the functional role of 

dystrophin in muscle.  While these mice exhibit muscle damage at the cellular level, 

outwardly they show little signs of muscle pathology 13.  Short term prednisone therapy 

in the mdx mouse has been shown to improve muscle strength 221.  The GRMD dog 

model develops progressive and fatal muscle disease and exhibits pathophysiological 

disease features similar to DMD, including progressive loss of muscle function, muscle 

membrane fragility, cardiomyopathy and premature death 22–24.  Studies indicate short 

term treatment with prednisone shows functional benefits to the GRMD model 36.  
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Although corticosteroids are the current front line treatment for DMD and show short 

term benefits in animal models of this disease, the mechanisms by which this drug 

improves short term clinical outcomes remains unknown.   

The α7β1 integrin is the predominant laminin-binding integrin in cardiac and skeletal 

muscle 165.  The α7β1 integrin protein is localized at neuromuscular and myotendinous 

junctions and extrajunctional sites in skeletal muscle 165,167.  Within the α7β1 integrin 

heterodimer the α7 integrin chain specifies laminin isoform interactions while the β1 

integrin chain determines signaling and actin cytoskeletal interactions 165,222,223.  In 

skeletal muscle, six isoforms of the α7 integrin chain are produced by developmentally 

regulated RNA splicing 177.  Mutations in the α7 integrin gene cause congenital 

myopathy in both humans and mice 204,224,225.  Enhanced transgenic expression of the α7 

integrin in the skeletal muscle of severely dystrophic mice improves muscle pathology 

and increases lifespan195,196.  Conversely, loss of the α7 integrin in dystrophin-deficient 

mdx mice results in a more severe dystrophic phenotype and reduced viability with mice 

dying prematurely by 4 weeks of age 198,226.  Together, these results support the idea that 

the α7β1 integrin is a modifier of muscle disease progression in DMD and a target for 

drug-based therapies.  To investigate if glucocorticoids act to increase α7β1 integrin in 

muscle, we examined levels of the α7 integrin in myogenic cells from mouse and DMD 

patients as well as in mdx and GRMD animal models treated with prednisone.  Our 

results show treatment with prednisone promotes a dose-dependent increase in α7 

integrin in mouse myogenic cells. In addition, we show the skeletal muscle of mdx mice 

and GRMD dogs treated with prednisone exhibit elevated levels of laminin-α2 and α7 
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integrin. Our results show for the first time that prednisone promotes an increase in the 

α7β1 integrin in muscle, which may contribute to the mechanism of action of this 

important therapeutic agent for DMD.  

 

MATERIALS AND METHODS  

Tissue Culture  

 C2C12 cells used in this study were purchased from ATCC and were grown in DMEM 

media (GIBCO, Grand Island, NY) supplemented with 20% Fetal Bovine Serum (FBS,  

Atlanta Biologicals, Lawrenceville, GA), 0.5% Chick-embryo extract (CEE, Seralab, 

West Sussex,  UK),  1%  L-Glutamine  (GIBCO,  Grand  Island,  NY),  and 

 1% penicillin/streptomycin (PS), (GIBCO, Grand Island, NY). C2C12 myoblasts were 

differentiated to myotubes in DMEM supplemented with 1% horse serum (HS), 1% 

LGlutamine, and 1% PS. Human DMD myoblasts were a generous gift from Dr. Kathryn 

North and used under an approved IRB from the University of Nevada, Reno. DMD 

myogenic cells were grown in F10 media (GIBCO, Grand Island, NY) supplemented 

with 20% FBS, 1% CEE, 0.5mM CaCl2, 1% L-Glutamine, and 1% PS. Human DMD 

myoblasts were differentiated to myotubes in F10 media supplemented with 1% HS, 1% 

L-Glutamine, and 1% PS.  
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Mice  

 The mdx mouse line (C57Bl10scsn-Dmdmdx) (Jackson Laboratories, Bar Harbor, ME) 

was used in these studies in accordance with an animal protocol approved by the 

University of Nevada, Reno, Institutional Animal Care and Use Committee. Mice were 

treated with 100µL of PBS or 100µL of a 200µg/mL solution prednisone (1 mg/kg) 

(Sigma, St. Louis, MO) by daily oral gavage for two weeks beginning at 3 weeks of age. 

At 5 weeks, mice were sacrificed and muscle tissues were surgically removed and frozen 

using standard procedures56.  The tibialis anterior (TA) was used for 

immunofluorescence, the gastrocnemius was used for western blotting, and the tricep 

muscle was used for quantitative RT PCR.     

 

Dog Tissue  

  All dogs were used and cared for according to principles outlined in the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals.  Archived vastus 

lateralis muscle samples from dogs included in a prednisone preclinical trial completed at 

the University of Missouri-Columbia were used.  The Vastus lateralis muscle was 

surgically removed at 6 months of age from five untreated wild-type dogs, six untreated 

GRMD dogs, and four prednisone-treated GRMD dogs (two treated with 1 mg/kg/day 

and two treated with 2 mg/kg/day prednisone). GRMD prednisone treatment began at 

either 1 week or 2 months old and continued daily until tissue extraction (Liu et al., 

2004)   
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Western Blotting  

 Protein was extracted from cell pellets or tissue powdered in liquid nitrogen as 

previously described 56.  Protein quantified using a Bradford assay and equal quantities 

were separated on SDS polyacrylamide gels and α7A and α7B integrin was detected as 

was previously described 56.  Protein loading was normalized to either α-Tubulin (1:1000 

mouse-monoclonal, Abcam), GapDH (1:1000, goat-polyclonal, Santa Cruz 

Biotechnology, Santa Cruz, CA), or the entire lane stained with Ponceau-S or Swift Stain 

(G-Biosciences, St. Louis, MO). Quantitation was performed using Image J Software.   

  

Immunofluorescence  

  10µm sections of TA muscles from mice and VL muscles from dog were removed 

using a Leica Cryostat and immunofluorescence  was performed using antibodies against 

α7A integrin as previously described 177 or standard IF procedures using Laminin-α2  

(1:100 goat-polyclonal, SC-16582 (C-20), Santa Cruz Biotechnology, Santa Cruz, CA) 

followed by FITC-Donkey-anti-Goat (1:1000, Jackson ImmunoResearch Baltimore, 

MD) and mounted using Hard-mount Vectashield w/DAPI (H-1500, Vector 

Laboratories, CA). IF images were taken using an Olympus Fluoview FV1000 Laser 

Confocal Microscope using consistent settings for all images, and intensity evaluation 

was performed using FV10-ASW3.1 software histogram function. Intensity counts were 

averaged across all images for each dog group and graphed using GraphPad Prism 

software.   
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Quantitative Real-time PCR  

  Total RNA from powdered mouse tricep muscle and sectioned canine Vastus lateralis 

was isolated using Trizol (Invitrogen, Grand Island, NY) followed by a R01  

DNase treatment (Promega, Madison, WI), and cDNA was made with random hexamers  

(IDTDNA) and SuperscriptIII (Invitrogen, Grand Island, NY) using standard procedures.  

Quantitative Real-time was performed using Quanta Perfecta SYBR-Green with ROX 

Master Mix and were run and analyzed as previously described 227.  Mouse primers for 

mItga7, mGapdh, mLama4, and mLama5 were used as previously described 227. Mouse 

primers for mLama2 were: F-ctgggagtcagcagtcagaagat and R-ctttatgccactgtccattgcaca. 

Primers against canine transcripts were as follows: cITGA7 F-actgtccgagccaatatcaccgt, 

cITGA7 R-accagtagtcccgccagcaca, cGapDH F- ccccaatgtatcagttgtggatctga, cGapDH 

Rggtgtcactgttgaagtcacagga, cLAMA2 F-,tgggaatcagcagccagaaaatg, cLAMA2 

Rgactttatgccactgtccatcaca, cLAMA4 F- ggggagtacctgaatgttcacatg, cLAMA4 

Rctacatccaactgaaccacatttgaatctc, cLAMA5 F-atgaacttctcctactcgccgct, cLAMA5 R- 

taatagtaccggcgggtgacggt.  

  

Statistical Analysis  

All statistical analysis was performed using GraphPad Prism 5 software. Averaged data 

is reported as the mean +/- the standard error of the mean (SEM). Comparison for two 

groups was performed using a Students t-test and between multiple groups using 

Kruskal-Wallis one-way ANOVA on ranks for nonparametric data. P< 0.05 was 

considered statistically significant.   
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RESULTS  

Prednisone increases α7 integrin levels in a mouse model and in DMD myogenic 

cells  

Corticosteroids are used to treat many chronic diseases, including DMD. In many 

cases, the benefits of prednisone treatment are known to occur through anti-inflammatory 

effects. However, inflammatory suppression does not explain the short-term benefits to 

muscle strength in DMD patients and the overall delay of muscle degenerative 

symptoms. Previous studies have shown reduced muscle pathology and improved 

strength in transgenic mdx/utr−/− mice (lacking both dystrophin and utrophin) that 

overexpress α7B integrin 195.  We hypothesized that increased α7 integrin might be one 

of the mechanisms by which prednisone functions to improve muscle strength in DMD. 

In order to test this hypothesis, C2C12 mouse myoblasts and myotubes were treated with 

increasing concentrations of prednisone for 48 hours, and levels of α7B integrin protein 

were analyzed by western analysis and normalized to levels of α-tubulin (Figure 1A, B).   

In C2C12 myoblasts, treatment with prednisone had no significant effect on α7B integrin 

levels compared with DMSO-treated control cells (Figure 1A, quantified in 1C). In 

contrast, C2C12 myotubes showed a dose-dependent increase in α7B integrin compared 

with DMSO-treated control cells (Figure 1B, quantified in 1D).  Prednisone treatments of 

112 μM and 176 μM resulted in a 1.6- and 1.8-fold increase in α7B integrin protein in 

myotubes, respectively, compared with DMSO alone.  The highest dose of prednisone 

the cells were exposed to was 176 μM, which also gave the largest α7 integrin increase 

(Figure 1D).  This maximum dose was limited by both the solubility of prednisone in 

DMSO and cell toxicity, which was shown at >1% DMSO. These data indicate that 
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prednisone promotes an increase in α7B integrin protein in a dose-dependent manner in 

cultured mouse myotubes.   Next, we examined whether prednisone treatment increased 

α7 integrin in human DMD myotubes. Western analysis showed that DMD myotubes 

treated with 112 μM prednisone had a 1.8-fold increase in α7B integrin protein compared 

with those treated with DMSO (Figure 1E, quantified in 1F). These results confirm that 

prednisone acts to increase α7 integrin in a conserved pathway in both mouse and human 

myotubes.  

  

Prednisone increases α7 integrin in mdx mouse muscle  

The mdx mouse model for DMD was used to examine the effect of prednisone 

treatment on α7 integrin levels in the muscle of mice. PBS (n=9) or 1 mg/kg prednisone 

in PBS (n=7) was given daily by oral gavage to 3-week-old mdx mice. Treatment was 

performed for 2 weeks, at which time the mice were sacrificed and tissues harvested for 

analysis. We then analyzed the protein levels of α7A integrin from both the tibialis 

anterior (TA) and gastrocnemius muscles in prednisone-treated versus control mdx mice 

(Figure 2A, B respectively).  In the TA we found a non-significant trend of elevated α7A 

integrin protein levels ( 13% increase) by western analysis (Figure 2A); however, a 

significant increase ( 30% increase) was observed in prednisone-treated gastrocnemius 

muscles compared with controls (Figure 2B). Results were quantified and normalized to 

α-tubulin (Figure 2C, D). This differential effect is not completely surprising because 

previous work has shown that the TA muscle maintains lower levels of β1 integrin than 

the gastrocnemius muscle 228.  These results indicate that short-term treatment with 

prednisone increases α7A integrin in the muscle of mdx mice. Next, we examined the 

http://dmm.biologists.org/content/6/5/1175.long#F2
http://dmm.biologists.org/content/6/5/1175.long#F2
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distribution of α7A integrin in the TA muscle by immunofluorescence (IF; Figure 2E). 

Compared with PBS-treated mice, prednisone-treated animals showed an increase in α7A 

integrin at the sarcolemma, confirming western studies. These results suggest that short-

term prednisone treatment within the mdx mouse model results in an increase in the α7A 

integrin protein levels at the sarcolemma.   

Next, we assessed whether the prednisone-induced increase in α7A integrin 

protein levels in the mdx mouse was due to protein stabilization or increased 

transcription of the Itga7 gene in muscle fibers. Quantitative real-time PCR was used to 

examine the transcript levels of Itga7, Lama2, Lama4, Lama5 and Utrn relative to 

GapDH within the TA muscle of the PBS- and prednisone-treated mice (Figure 3A-E).  

A 30% increase in Itga7 transcript levels was observed with prednisone treatment, but 

this value did not reach significance (Figure 3A). Similar results were obtained from 

triceps muscle, where prednisone treatment led to a 40% increase in Itga7 transcript 

levels, albeit insignificant (supplementary material Figure S1). These results indicate that 

the increased level of α7 integrin that is observed in prednisone-treated mdx muscle 

likely occurs through a transcriptionally based mechanism.   

To explore the mechanism by which prednisone increased α7 integrin protein 

levels in skeletal muscle, we examined the transcription of laminin isoforms and utrophin 

in PBS- and prednisone-treated mdx mice. Recent studies have demonstrated that 

deflazacort increases laminin-α2 levels in the muscle of mdx mice 229.  Our results show 

that, compared with PBS, prednisone promoted a significant increase in Lama2 

transcripts in the TA (Figure 3B) and triceps (supplementary material Figure S1) muscles 

of mdx mice.  There was no significant change in the levels of Lama4, Lama5 or Utrn 

http://dmm.biologists.org/content/6/5/1175.long#F2
http://dmm.biologists.org/content/6/5/1175.long#F2
http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.012211/-/DC1
http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.012211/-/DC1
http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.012211/-/DC1
http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.012211/-/DC1
http://dmm.biologists.org/lookup/suppl/doi:10.1242/dmm.012211/-/DC1
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transcripts (Figure 3C– E) in prednisone-treated mice.  Together, these results indicate 

that prednisone might act to alter the laminin composition of the myomatrix and promote 

an increase in laminin-211 and laminin-221 in mdx muscle.  The presence of more 

laminin-211 and laminin-221 in skeletal muscle basal lamina would promote 

stabilization of the α7β1 integrin complex in skeletal muscle, thus improving the 

integrity of the dystrophin-deficient sarcolemma.  

  

Prednisone increases α7A integrin in the muscle of GRMD dog model  

 We next examined whether prednisone treatment increased α7 integrin levels in the 

GRMD canine model of DMD.  We began by examining α7A integrin protein levels in 

the vastus lateralis (VL) muscle of 6-month-old wild-type, untreated GRMD dogs and 

prednisone-treated GRMD dogs.  Using western blotting and quantitation techniques, we 

found a 1.7-fold increase in the levels of α7A integrin protein in the prednisone-treated 

GRMD dogs compared with either wild-type or untreated GRMD dogs (Figure 4A, 

quantified in 4B).  Although not significantly different, the average α7A integrin protein 

levels in untreated GRMD muscle were found to be 25% lower than that of the wild-type 

dogs (Figure 4A, quantified in 4B).  Furthermore, we found increased 

sarcolemmallocalized α7A integrin within the VL muscle of GRMD animals by 

immunofluorescence (Figure 4C).  We next examined ITGA7 transcript levels in the VL 

muscle of dogs using quantitative real-time PCR (Figure 4D).  Surprisingly, we found 

that the ITGA7 transcript levels in prednisone-treated GRMD dogs were twofold lower 

than untreated wild-type levels (Figure 4D).  Furthermore, although not statistically 

significant (P=0.08), the prednisone-treated GRMD dogs had average ITGA7 transcript 

http://dmm.biologists.org/content/6/5/1175.long#F3
http://dmm.biologists.org/content/6/5/1175.long#F3
http://dmm.biologists.org/content/6/5/1175.long#F3
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levels that were threefold lower compared with the levels in untreated GRMD dogs 

(Figure 4D).  Similar to previous findings from individuals with DMD 194, we found a 

twofold increase in the average ITGA7 transcript levels in untreated GRMD dogs 

compared with wild-type dogs (Figure 4D), although again this difference was not 

statistically significant owing to the high variability of the transcript levels in the 

untreated GRMD dogs.  This variability was not apparent in the ITGA7 transcript levels 

of prednisone-treated GRMD dogs (Figure 4D).  Together, these results along with 

western data in the dog model suggest that the improved α7 integrin protein stability 

caused by prednisone treatment results in a negative feedback loop on  

ITGA7 transcriptional activity.  

  

Prednisone maintains Laminin-a2 protein localization and levels in GRMD dogs  

  Next, we determined laminin-α2 protein levels and localization in the VL muscle  

of  wild-type,  untreated  GRMD  and  prednisone-treated  GRMD  dogs  using  

immunofluorescence. Laminin-α2 was clearly present surrounding the muscle fibers in 

both wild-type and prednisone-treated GRMD dogs, but was only weakly visible around 

untreated GRMD dog muscle fibers (Figure 5A).  Levels were semi-quantified by 

performing intensity measurements on images from wild-type, untreated GRMD and 

prednisone-treated GRMD muscle (Figure 5A).  Prednisone-treated GRMD dogs showed 

a 32% increase in peak relative intensity compared with wild-type muscle (Figure 5A). 

Both peak intensities were higher and had different curve distributions than that observed 

for the untreated GRMD dog images.  Untreated and prednisone-treated GRMD dogs 

contained numerous intense fluorescence regions of unknown origin in the muscle 

http://dmm.biologists.org/content/6/5/1175.long#F5
http://dmm.biologists.org/content/6/5/1175.long#F5
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interstitial space that are likely to have affected measurements, especially in untreated 

GRMD dogs (Figure 5A and supplementary material Figure S2).  Together, these results 

support that prednisone acts to increase laminin-α2 and α7 integrin protein levels in 

GRMD dogs.  

  Next, we determined whether the canine model showed differences in the 

transcript levels of LAMA2, LAMA4, LAMA5 and UTRN (Figure 5B–E). Like the ITGA7 

transcript levels, untreated GRMD dogs showed a large amount of individual variability 

in relative levels of LAMA2, LAMA4, LAMA5 and UTRN transcripts, which was not 

observed in prednisone-treated GRMD dogs (Figure 5B–E).  LAMA2 transcript levels 

were significantly increased in the VL muscle in prednisone-treated (twofold) and 

untreated (sixfold) GRMD dogs compared with untreated wild-type dog (Figure 5B). The 

LAMA4 (P=0.6), LAMA5 (P=0.08) and UTRN (P=0.4) transcript levels in the prednisone-

treated GRMD dogs were not significantly different compared with untreated wild-type 

dogs, but the LAMA5 average was around twofold lower (Figure 5C–E).  LAMA4 

(P=0.051), LAMA5 (P=0.03) and UTRN (P=0.13) transcript levels were around threefold 

lower in prednisonetreated GRMD dogs relative to the untreated GRMD dogs (Figure 

5C–E).  Together, this data suggests that prednisone treatment of GRMD dogs stabilizes 

the transcriptional levels of all genes that we examined.  

We were curious as to whether lesion severity would also vary between untreated 

and prednisone-treated GRMD dogs, and examined muscle histology by hematoxylin 

and eosin (H&E) staining (Figure 5F). All GRMD dogs displayed increased myofiber 

size variation, fibrosis and inflammation compared with wild-type dogs. Changes in 

untreated GRMD dogs were more pronounced than in those treated with prednisone 
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(Figure 5F). Based on the overall histology, including fiber size, fibrosis and 

inflammation, we scored the VL sections between 1+ and 5+, with lower values 

suggesting greater lesion severity. These values were then summarized along with α7A 

integrin protein levels, laminin-α2 immunofluorescence peak intensity, and individual 

real-time fold-changes for ITGA7, LAMA2, LAMA4, LAMA5 and UTRN transcripts for all 

dogs used in this study (Table 1).  The prednisone-treated GRMD dogs had higher (more 

normal) lesion scores. Individual profiles from some dogs showed higher α7A integrin 

protein levels while exhibiting lower levels of ITGA7 transcript and vice versa in both 

prednisone-treated and untreated GRMD dogs (Table 1). A similar inverse pattern was 

seen for the laminin-α2 protein:transcript ratio. Overall, the prednisone dose did not seem 

to affect protein or transcript levels in the GRMD dogs. Taken together, our data strongly 

suggest that a negative feedback loop exists between α7 integrin protein and ITGA7 

transcript levels in the GRMD dog model (Figure 6).  Furthermore, elevated levels of 

ITGA7 and/or LAMA2 transcripts might be indicators of a more severe muscle disease 

phenotype in DMD.  

 

DISCUSSION  

 DMD is a devastating lethal genetic disease for which there is no cure and limited 

treatment options.  Although corticosteroids have been used for the treatment of DMD 

for over 20 years, our understanding of the mechanism of action of these drugs remains 

unclear. The therapeutic benefits involve a complex combination of inflammatory 

inhibition and strength enhancement in muscle.  In this study we identified a new 

potential strength inducing molecular benefit of prednisone treatment on dystrophin 
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deficient muscle, increased α7β1 integrin protein levels. We show that this benefit does 

not occur as a direct result of increased ITGA7 transcription, but rather through a 

stabilization mechanism through increased and maintained laminin-211/221 protein. 

Finally, we have shown for the first time an inverse correlation between ITGA7 transcript 

and protein levels in the GRMD model for DMD.  

One of the most interesting aspects of this study was the comparison of α7 

integrin levels between the mdx mouse and the GRMD dog.  Previous work established 

that ITGA7 transcript levels are elevated in the mdx mouse model and in DMD patients 

194.  The 2-fold increase in the mdx mouse α7 integrin protein levels are well defined 194; 

however, the only evidence of α7 integrin protein levels from DMD patients comes from 

non-quantitative immunofluorescence studies and ITGA7 transcript analysis 194.  Here we 

examined α7 integrin protein and transcripts in the GRMD dog, which is phenotypically 

and histologically comparable to DMD.  As with previous work from DMD patient tissue 

we found elevated levels of ITGA7 transcripts in the untreated GRMD dog muscle 

compared to wild-type dogs194.  However, we also show that this is not indicative of an 

increase in protein levels.  In fact we found an inverse correlation between the transcript 

and protein levels exists in the untreated GRMD dystrophic tissues.  This raises the 

question of why this phenomenon is not present in the mdx mouse model. One possibility 

is that the mouse α7 integrin protein is more stable, lacking a secondary extracellular 

protease cleavage site conserved in rats, dogs and humans 230.  This non-cleavable mouse 

α7 integrin may enable the mdx mouse to stabilize their sarcolemma by reducing α7 

integrin protein turnover, thus preventing the dystrophic progression.  The severe 

pathology of the mdx/α7-/- double knockout mouse compared to the mild dystrophy in the 



60  

  

mdx or α7-/- knockout mouse lines is evidence that dystrophin and α7 Integrin have 

overlapping roles in maintaining sarcolemmal stability in mice 198.  The severe decrease 

in α7 integrin protein in several GRMD dogs suggest that in dystrophin-deficient dogs 

and humans, the α7 integrin protein may be less stable, than in mdx mice. Further, the 

histological appearance of dystrophindeficient dog muscle correlates with the levels of 

α7A integrin suggesting that α7 integrin protein levels alone may be a major determinant 

of dystrophic progression. Thus, prednisone confers a strength increase and muscle 

maintenance benefits to DMD patients through increased sarcolemmal stabilization of 

α7β1 integrin.   

The inverse correlation between α7 integrin protein and transcript levels observed 

in the GRMD dog model also suggests a strong transcriptional feedback loop. Since the 

α7B integrin protein is an important signaling molecule in muscle197,205,230.   Its loss 

could promote a large transcriptional change through downstream signaling.  

Interestingly the GRMD1 tissues, which had severely reduced α7 integrin protein levels 

also showed the highest transcript levels of the genes examined.  Prednisone treatment 

helped stabilize the transcriptional levels in the GRMD dog and greatly reduced 

individual transcript level variation.  Although we have clearly shown that the transcript 

levels of ITGA7 and LAMA2 are not indicative of protein levels in the GRMD dog, it is 

interesting that prednisonetreatment led to a lower level of all transcripts observed except 

LAMA2 relative to Wildtype dog levels. This corresponds to the elevated laminin-α2 

protein in our IF and is likely part of the mechanism through which prednisone stabilizes 

and increases the α7 Integrin protein levels.  Previous data has shown that laminin-111 

protein therapy increases α7 integrin in mdx mouse and DMD muscle cells 56.  These 
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results indicate that the elevated levels of laminin-211/221 in the myomatrix of 

dystrophic muscle caused by prednisone treatment  helps stabilize the α7β1 integrin at 

the sarcolemma, providing mechanical stability and strength to dystrophin-deficient 

muscle.   

Studies in mdx mice and GRMD dog suggest that although short term treatment 

with prednisone may temporarily improve muscle strength, long term treatment may 

have negative consequences on muscle histology and cardiac function 36,221.  Our 

findings suggest short term treatment with prednisone acts in part to increase Laminin-α2 

and α7β1 integrin protein, a laminin receptor in muscle known to improve preclinical 

outcomes in transgenic mouse studies. Some key questions remain concerning the action 

of prednisone through the α7β1 integrin: (1) Why is this action of prednisone transient in 

dystrophindeficient muscle? (2) Does long term treatment with prednisone result in 

down-regulation of the α7β1 integrin receptor and/or laminin in muscle (3) Does 

prednisone have a similar mechanism of action on the α7β1 integrin in the dystrophic 

heart? (4) Does prednisone activate known α7β1 integrin signaling pathways in muscle? 

(5) Does prednisone increase integrin localization at myotendinous and neuromuscular 

junctions? and finally (6) Does prednisone’s actions on the α7β1 integrin extend to other 

types of muscular dystrophies e.g. Merosin deficient congenital muscular dystrophy type 

1A.   

What is clear from this study is that Prednisone, a drug currently used in the 

treatment of DMD, acts in part through stabilization of Laminin-α2 and α7β1 integrin in 

muscle and our results suggest that molecules targeting or stabilizing these proteins are 

likely to be beneficial in the treatment of DMD.       
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Figure 1: Effects of prednisone on α7 integrin levels in C2C12 mouse myoblasts and 

myotubes, and human DMD myotubes. (A, B) Western blot analysis of α7B integrin 

and α-tubulin from C2C12 myoblasts (A) or myotubes (B) treated with a DMSO control 
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or increasing amounts of prednisone. (C, D) Quantitation of α7B integrin levels 

normalized to α-tubulin was performed and graphed for the C2C12 myoblast (C) and 

myotube (D) treatments (n=4 per treatment group, **P<0.01, ***P=0.0005).  (E) 

Western blot analysis of α7B integrin and GapDH from cultured human DMD myotubes. 

(F) Western results were quantified and graphed for α7B integrin normalized to GapDH 

(n=3 per treatment group, **P=0.0021).  
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Figure 2: Mdx mice treated with prednisone (1 mg/kg body weight/day) have 

increased α7A integrin in muscle. (A, B) PBS-control (n=9) or 1 mg/kg/day prednisone 
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(n=7)-treated mdx mouse TA (A) or gastrocnemius (B) muscle extracts analyzed for α7A 

integrin and α-tubulin protein levels using standard western blotting procedures. (C,D)  

Western blots were quantitated and graphed for α7A integrin normalized to α-tubulin for 

the TA (C) or gastrocnemius (*P=0.04) (D). (E) Immunofluorescence of α7A integrin 

from the TA of PBS-treated or 1 mg/kg/day prednisone-treated mdx mice. Scale bar: 50 

μm.  
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Figure 3: Lama2 transcript levels are significantly elevated in prednisone-treated 

mdx mouse muscle. Quantitative real-time PCR was performed against mdx TA cDNA 
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from animals treated with PBS (n=9) or 1 mg prednisone/kg body weight/day (n=7), 

using gene-specific primers against mouse Itga7 (A), mouse Lama2 (*P=0.03; B), mouse 

Lama4 (C), mouse Lama5 (D) and mouse Utrn (E).  
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Figure 4: Prednisone treatment leads to elevated α7A integrin protein and reduced 

ITGA7 transcript levels in GRMD dog muscle. (A) Representative western blot of α7A 

integrin and α-tubulin protein levels from the VL of control (n=5), untreated GRMD 
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(n=6) and prednisone-treated GRMD (n=4) dogs. (B) Western results for α7A integrin 

normalized to α-tubulin were quantified and graphed (*P=0.019, **P=0.0023). (C)  

Immunofluorescence of α7A integrin in the VL of the three dog groups. (D) Quantitative 

real-time PCR of VL cDNA from wild-type (n=5), untreated GRMD (n=6) and 

prednisonetreated GRMD (n=4) dogs using primers against canine ITGA7 (*P=0.037). 

Scale bar:  

50μm.   
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Figure 5: Prednisone restores laminin-α2 protein, stabilizes transcript levels and 

improves muscle pathology in the GRMD dog. (A) Immunofluorescence of laminin-α2 

protein in wild-type, untreated GRMD and prednisone-treated GRMD dog VL muscle. 

The intensity values for two images per dog were counted, averaged by groups and 
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plotted (see supplementary material Fig. S2). Quantitative real-time PCR of VL cDNA 

from wild-type control (n=5), untreated GRMD (n=6) and prednisone-treated GRMD 

(n=4) dogs using primers against canine LAMA2 (*P<0.035) (B), canine LAMA4 

(*P=0.047) (C), canine LAMA5 (*P=0.035) (D) and canine UTRN (E). (F) H&E of the 

VL from control, untreated GRMD and prednisone-treated GRMD dogs. The VL 

sections were examined and graded (Table 1) for fibrosis, inflammation and muscle fiber 

hypotrophy. Prednisone-treated GRMD dog tissue had less fibrosis, inflammation and 

fiber size disparity than the untreated GRMD dog muscle, but slightly more than that 

observed in wild-type dogs. Scale bar: 50 μm.  
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Table 1: Analysis of Vastus Lateralis muscles  
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Figure 5: Model depicting the action of prednisone on laminin-α2 and α7 integrin in 

the muscle of the mdx mouse and GRMD dog models of DMD.  

  

  

  

  

  

  

  

  

  

  



74  

  

  

Figure S1. Quantitative real-time PCR of mouse Itga7 (A) and mouse Lama2  

(**P=0.001) (B) from mdx triceps muscle.  
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Figure S2. Immunofluorescence images from individual dogs which were used for 

fluorescent quantification.  Images are displayed under the individual dogs name and 

have been grouped into wild-type, untreated GRMD, and prednisone-treated GRMD in 

order to better observe similarities and differences between individuals and groups. 

(Scale bar=50 μm).  
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Reprinted from Disease Models and Mechanisms:  

Levels of α7 integrin and laminin-α2 are increased following prednisone treatment 

in the mdx mouse and GRMD dog models of Duchenne muscular dystrophy;  

Ryan D. Wuebbles, Apurva Sarathy, Joe Kornegay and Dean J. Burkin.  

Disease Models and Mechanisms 6(5): 1175–1184 Published by The Company of 

Biologists 2013 doi:  10.1242/dmm.012211  
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Chapter 3  

A NOVEL α7 INTEGRIN ENHANCING SMALL MOLECULE AMELIORATES 

PATHOLOGY IN THE MDX MOUSE MODEL OF DUCHENNE MUSCULAR 

DYSTROPHY 
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ABSTRACT  

Duchenne muscular dystrophy (DMD) is a catastrophic neuromuscular disease 

caused by mutations in the dystrophin gene.  Loss of dystrophin disrupts the link 

between the extracellular matrix and the actin cytoskeleton leading to weakened 

sarcolemmal integrity.  The α7 integrin encoded by the ITGA7 gene is a laminin binding 

protein at the sarcolemma that is elevated in the skeletal muscle of DMD patients and the 

mdx mouse model.  Previous transgenic mouse studies have proven α7 integrin to be a 

major modifier of disease progression in mouse models of muscular dystrophy.  

Therefore, we hypothesized that drugs that promote α7 integrin expression in muscle 

would be therapeutic in the treatment of DMD.  Utilizing high-throughput drug 

discovery technology, we identified a kinase inhibitor SU9516, as an enhancer of ITGA7 

expression in our assay.  We found that SU9516 increased α7B integrin protein levels in 

telomerized murine C2C12 and immortalized human DMD myotubes.  Preclinical 

studies with oral delivery of 5mg/kg/day SU9516 treatments in the mdx mouse model 

ameliorated the dystrophic pathology and improved muscle force and function  in the 

diaphragms of dystrophic mice at 10 weeks of age.  Additionally, SU9516 treated mdx 

mice had elevated α7B and β1D integrin levels in both diaphragm and gastrocnemius 

skeletal muscle.  Together, our results describe a first in-class integrin enhancing 

therapeutic agent SU9516 for the treatment of DMD.   
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INTRODUCTION  

Duchenne muscular dystrophy (DMD) is one of the most common forms of  

muscular dystrophy affecting 1 in every 3,500 males 217,218,231.  DMD patients suffer 

from progressive muscle weakness, impaired mobility and premature death 2.  DMD is 

caused by reading frame mutations/deletions in the Dmd gene which prevent the normal  

expression of the dystrophin protein 3,4,232.  In healthy muscle, dystrophin is an integral 

part of the sarcolemmal stabilizing dystrophin glycoprotein complex (DGC) which links 

laminin in the extracellular matrix (ECM) to the myofiber actin cytoskeleton 119,233.  The 

DGC thus provides structural continuity between muscle fibers during contraction.  The 

absence of dystrophin in DMD skeletal muscle leads to sarcolemmal damage during 

muscle contraction as the force is not appropriately distributed to the muscle fiber 

cytoskeleton 234.  Progressive damage results in multiple rounds of degeneration and 

regeneration leading to elevated levels of inflammation, necrosis, fibrosis and muscle 

fiber loss.    

There are currently no definitive therapies available for DMD patients and the 

corticosteroids, prednisone and deflazacort are the only treatments available with limited 

positive effect 210,211,213,214,219.  Several therapeutic approaches have been developed with 

the aim of restoring dystrophin expression and shown efficacy in animal models of 

DMD.  These include virally mediated gene delivery, myoblast cell transfer, exon-

skipping and stop-codon read-through 91,235–243.  Many of these approaches have 

significant technical obstacles including delivery and immune response.  Other strategies 

include sarcolemmal stabilization through ECM alterations (Laminin-111, Biglycan, and 

Galectin-1), enhanced membrane repair (MG53), anti-fibrotics (Tranilast, Imatinib, 
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Sildenafil), and antiinflammatories (VBP15, deflazacort, prednisone, Resveratrol, 

pyrrolidine dithiocarbamate (PDTC), ursodeoxycholic acid UDCA) 56,141,155,244–250.  

Another alternative therapeutic approach currently being investigated is enhancement of 

proteins with similar functions to dystrophin or other members of the DGC/UGC 

(utrophin, α, β-dystroglycan, α7β1 integrin, nNOS, α,-SG). Transgenic overexpression 

of many of these proteins partially ameliorates dystrophic disease progression in mouse 

models of DMD 128,149,196,251–254.  Both α7β1 integrin and utrophin, function similarly to 

dystrophin by linking the muscle fiber actin cytoskeleton to the ECM thereby stabilizing 

the sarcolemma.   

The α7β1 integrin protein is the predominant laminin binding integrin in skeletal, 

cardiac and vascular smooth muscle 165.  It is normally distributed along the sarcolemma 

at costameres and is elevated at neuromuscular and myotendinous junctions in skeletal 

muscle 166,167.  The α7β1 integrin protein has structural and signaling functions that 

contribute to muscle development and physiology and was originally identified as a 

marker for muscle differentiation 177.  Loss of the α7 integrin in dystrophin deficient mdx 

mice leads to a very severe dystrophic phenotype where mice do not survive past 4 

weeks of age 198,226.  Conversely, transgenically enhanced expression of the α7β1 integrin 

ameliorates the development of muscular dystrophy and extends longevity in α7BX2- 

mdx/utr-/- transgenic mice more than three-fold 195.  Multiple mechanisms appear to 

contribute to α7 integrin mediated rescue of dystrophin deficient muscle including 

maintenance of myotendinous and neuromuscular junctions, enhanced muscle 

hypertrophy and regeneration, and decreased apoptosis and cardiomyopathy 175,196,230,255.  
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Enhanced α7 integrin also protects muscles against exercise-induced damage 197. 

Interestingly, recent evidence suggests that prednisone may maintain function in the 

GRMD dog model by stabilizing the α7 integrin protein levels 201. Together, these 

observations support the idea that the α7β1 integrin is a major disease modifier in DMD.   

Recently, it was shown that systemic Laminin-111 or Galectin-1 protein treatments in 

the mdx mouse lead to elevated expression of both utrophin and α7β1 integrin 56,141.  

However, the costs and delivery methods associated with protein therapeutics may be 

problematic for DMD patients.  Therefore, a small molecule capable of enhancing α7 

Integrin would be ideal.  Here we report the discovery and preclinical assessment of a 

first in class integrin enhancing drug SU9516 for the treatment of DMD.    

  

MATERIALS AND METHODS  

Experimental design  

To assess the benefits of SU9516 as a therapeutic for DMD, we conducted in 

vitro experiments to compare α7 integrin levels in murine C2C12 and human myogenic 

cell lines.  These experiments were followed by a preclinical assessment of the drug in 

mdx mice which were treated with a dose of 5mg/kg/day SU9516 for 7 weeks.  To assess 

the effect of SU9516 on overall muscle strength, an experimenter blinded to the 

experimental mice groups measured body weights and conducted weekly forelimb grip 

strength measurements.  Additionally, ex vivo muscle contractility experiments were 

performed to quantify functional differences in the diaphragm muscles across all 

experimental mice.  Hydroxyproline content of the diaphragm muscle was performed to 
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quantify fibrosis in all experimental mice.  Disease markers such as centrally nucleated 

fiber counts and Feret’s diameter of myofibers in diaphragm muscle of mdx mice were 

measured in a blinded fashion.    

 

Cell Culture  

 C2C12 myoblasts were originally purchased from ATCC and grown and 

maintained in growth media comprising DMEM (Sigma) containing 20% FBS (Atlanta  

Biologicals), 1% Penicillin/Streptomycin (P/S) (GIBCO) + 1% L-Glutamine (GIBCO).  

Myoblasts were maintained below 70% confluence until use in assay.  Myoblasts were 

differentiated into myotubes in DMEM, 2% horse-serum (Atlanta Biologicals), and 1% 

P/S + L-Glutamine.  All cells were incubated at 37ºC with 5% CO2.  Assays were 

performed on myoblasts and myotubes between passages 8 and 14.  Human DMD 

myoblasts were a generous gift from Dr. Kathryn North (The Royal Children’s Hospital, 

Victoria, Australia) and used under an approved IRB from the University of Nevada, 

Reno.  DMD myogenic cells were grown in F10 media (GIBCO, Grand Island, NY) 

supplemented with 20% FBS, 1% CEE, 0.5 mM CaCl2, 1% L-glutamine and 1% PS.  

Human DMD myoblasts were differentiated to myotubes in F10 media supplemented 

with 2% horse serum, 1% Lglutamine and 1% PS.  Statistical analysis was performed 

using Graphpad Prism software and unpaired t-test comparison against the DMSO 

control treatment group for the SU9516 treated C2C12 and human DMD myotubes.      

 



83  

  

Myoblast α7+/LacZ integrin FDG assay  

α7+/LacZ myoblasts were originally isolated and maintained as described 56.  A 

total of 5000 α7+/LacZ myoblasts were dispensed in 100µL growth media using a 12-well 

multipipette (Rainin) onto Nunc black sided TC coated 96-well plate.  After 24 hours up 

to 1µl of compound in DMSO was added to the myoblast plates from pre-made working 

drug plates using a 1µl 96-well pin tool or using an 8-well automatic multichannel 

pipette.  Each working drug plate contained a column of a positive control (sodium 

butyrate (Fluka) and at least one column containing DMSO alone.  After incubating for 

48 hours the media was aspirated, and cells were lysed with 50µL of Mammalian Protein 

Extraction Reagent (MPER) (Thermo) per well followed by incubation at room 

temperature for 10 minutes.  β-galactosidase (β-gal) activity in each well was quantified 

by adding 50µL of FDG assay solution (20% 0.1M sodium phosphate buffer pH 7.0 

(Sigma), 0.2% 1M MgCl2 (Sigma), 0.2% 20mM fluorescein di-galactoside (FDG) 

(Marker Gene Technologies)) and incubating the plates in the dark for 20 minutes at 

room temperature. Stop solution (2x TE) was then added (100µl/well) and plates were 

read for fluorescence on the Victor V (PerkinElmer) with an excitation filter at 485 nm, 

an emission filter at 535 nm, and a 0.1s/well count time.  

  

Myotube α7 integrin FDG assay  

A total of 25,000 α7+/LacZ myoblasts were dispensed in 100µL growth media.  After  

24 hours, growth media was aspirated, wells were washed with 200µL PBS, and 

100µL/well of differentiation media was added.  Differentiation media was changed 
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daily between 72 and 120 hours, and up to 1µL compounds in DMSO were added as 

previously described once wells contained differentiated myotubes.  The FDG 

fluorescence assay was performed as described in the myoblast screen with the one 

notable exception being the incubation after FDG solution addition being shortened from 

20 minute to 5 minutes at RT due to the higher levels of β-gal in myotubes.  

  

Immunoblotting   

Protein was extracted from cell pellets or tissue powdered in liquid nitrogen.  

RIPA was used as the lysis buffer with a 1:100 dilution of 0.5M NaF and 1M Na3VO4 

and a 1:500 dilution of protease inhibitor cocktail.  Protein was quantified using a 

Bradford assay and equal quantities were separated using SDS polyacrylamide gel 

electrophoresis.  The α7B and β1D integrin were detected as was previously described 

177.  Signals were detected using WesternSureTM PREMIUM Chemiluminescent 

Substrate (LI-COR).  Protein loading was normalized to either α-tubulin (1:1000 mouse-

monoclonal, abcam) or GapDH (1:1000, rabbit-monoclonal, Cell Signaling).  

Quantitation was performed using Image J software.  

  

Quantitative RT-PCR  

Total RNA from powdered mouse diaphragm muscle was isolated using Trizol  

(Invitrogen, Grand Island, NY) followed by a R01 DNase treatment (Promega, Madison, 

WI), and cDNA was made with random hexamers (IDTDNA) and Superscript III 

(Invitrogen, Grand Island, NY) using standard procedures.  Quantitative Real-time was 

performed using Quanta Perfecta SYBR-Green with ROX Master Mix and were run and 
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analyzed as previously described 227.  Mouse primers for mItga7 and mGapdh were used 

as previously described 227. Mouse primers for mLama2 were: F-

ctgggagtcagcagtcagaagat and R-ctttatgccactgtccattgcaca.   Mouse primers for mPax7 

were: F-atcaagccaggagacagcttgc and R-tgtgtggacaggctcacgtttt.  Mouse primers for 

mItgB1d were: F-gaaaatgaatgccaagtggga and R-gagaccagctttacgtccata.  Mouse primers 

for mMrf4 were: F-ttcttgagggtgcggatttcct and R- gcatccacgtttgctcctcctt.    

  

Immunofluorescence  

For in vivo immunofluorescence analysis, 10-μm sections of diaphragm and 

gastrocnemius muscles from mice were removed using a Leica Cryostat and 

immunofluorescence was performed using antibodies against α7B integrin and β1D as 

previously described177, followed by FITC-donkey-anti-rabbit (1:1000, Jackson 

ImmunoResearch, Baltimore, MD) and mounted using Vectashield containing DAPI 

(H1500, Vector Laboratories, CA).  Images were taken using an Olympus Fluoview 

FV1000 Laser Confocal Microscope using consistent settings for all images, and 

intensity evaluation was performed using FV10-ASW3.1 software histogram function.  

Counts were averaged across all images for each group and graphed using GraphPad 

Prism software.  

  

Statistical analysis and Curve-fitting   

Statistical analysis was performed using Graphpad Prism software and unpaired 

ttest comparison against the DMSO control treatment group for the SU9516 treated 



86  

  

C2C12 and human DMD myotubes.  Graphpad prism software was also used to fit 

curves using nonlinear regression analysis with log (agonist) vs. response with a variable 

slope.  A constraint equal to 1 was placed on the bottom of the curve and either 2 or 2.5 

at the top (when needed) in order to produce appropriate EC50 values.  Averaged data are 

reported as the mean ± the standard error of the mean (s.e.m.). Comparison for two 

groups was performed using a Student’s t-test and between multiple groups using 

Kruskal-Wallis one way ANOVA on ranks for nonparametric data.  P<0.05 was 

considered statistically significant.  

 

Animals  

Three-week-old female mdx mice were treated with a daily dose of 5mg/kg 

SU9516 until 10 weeks of age.  Forelimb grip strength data was collected every week 

from 5 weeks of age to 10 weeks of age as described previously.  Body weight was also 

monitored every week.  All animals were treated according to rules and regulations 

specified in the IACUC.  At the end of the study, the diaphragm of the mice were 

appropriately harvested for either contractile measurements or phrenic nerve stimulation 

and recording studies.    

  

Pharmacokinetic and Toxicity studies with SU9516  

The robust effects of SU9516 on α7 Integrin protein levels in vitro led us to 

perform preliminary studies on the toxicity and pharmakinetics (PK) in CD1 mice.  

Initially, it was determined that SU9516 was soluble in 10% hydroxypropyl-β-cyclo-
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dextrin (HPBCD) and 90% saline (vehicle) and could be delivered by oral gavage.  Next, 

a PK experiment was conducted using a single 10mg/kg SU9516 dose in CD1 mice and 

examining serum, intestine, and muscle concentrations by mass spectrometry over the 

course of 24 hours.    

  

Hydroxyproline Assay  

The hydroxyproline assay was performed as described in Van Ry et al., 2015141.  

Briefly, diaphragm samples were homogenized in 500ul of 0.5 M acetic acid.  Samples 

are centrifuged in a speed vacuum to completely dry.  Samples are then hydrolyzed 

samples in 6 N HCL followed by heat blocking at a 110 degrees Celsius overnight.  The 

samples were then re- suspended in citrate-acetate buffer (500 µl/10 mg tissue).  10 µl of 

resuspended sample were transferred into a new Eppendorf tube and 400 ul of freshly 

prepared Chloramine T reagent was added and mixed gently.  Samples were then 

incubated at room temperature for 20 min. 500 ul of freshly prepared Ehrlich’s reagent 

was then added and samples incubated at 65oC for 15 min.  200 ul of each sample was 

transferred to a clear 96well plate.  Samples were run in triplicate and absorbance was 

measured at 550 nm.  

  

Forelimb grip strength measurement  

Forelimb grip strength was measured with a computerized grip strength meter 

(Columbus Instruments, Columbus, OH). The grip strength meter has a bar attached to a 
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force transducer and a digital display. The mice were first acclimated to the apparatus for 

approximately 5 min. Mice were then allowed to grab the pulling bar by holding it from 

the tip of the tail. The mouse was gently pulled away from the grip bar. When the mouse 

could no longer grasp the bar, the reading was recorded. Protocol was repeated six times 

with at least 30 sec rest between trials.  Normalized grip strength was obtained by 

dividing the absolute grip strength with the body weight.  All grip strength data collected 

was done so in a blinded fashion.    

  

Isometric Contractile function   

Dissection: Prior to this procedure the mice were euthanized by cervical 

dislocation under anesthesia.  The dissection was performed as per guidelines described 

in mMoorwood et al., 2013.  In brief, an incision was made in the skin to expose the 

abdominal and chest cavity. Using bone scissors, and starting above the diaphragm 

insertion, a cut was made around the entire rib cage following the line of the rib and 

through the spine. The intact diaphragm was removed from the mouse, and placed in a 

dissecting dish filled with oxygenated Ringers, following which a 2-4 mm strip of the 

diaphragm was cut from the central tendon to the ribs along the orientation of the fibers 

in the central portion of the lateral hemi diaphragms. Using bone scissors, the rib on 

either side of the strip was cut, leaving approximately 1-2 mm overhang of rib on either 

side of the diaphragm strip.  Sutures were tied to the central tendon as well as to each of 

the laterally protruding rib ends, and then those were tied together to make a large loop.  

The uncut hemi diaphragm was embedded in a mixture of 2:3 (v/v) OCT and 30% 

sucrose.  
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Isometric Contraction Protocol: The optimal stimulation conditions as well as the 

optimal length (Lo) for the diaphragm was determined as described by Moorwood et al., 

2013.  At Lo the maximum isometric twitch tension as well as the maximum isometric 

tetanic tension (achieved at 100Hz for the diaphragm) was recorded.  A force-frequency 

relationship study was carried out over a wide range of frequencies (10Hz-150Hz).  

Fatigue of the diaphragm muscle was carried out after a rest period of 10 minutes.  The 

muscle was fatigued for a 5 minute period with a 100Hz tetanic stimulus applied after 

every 30 seconds.  At the end of the fatigue period, the muscle was allowed to recover in 

the oxygenated Ringers buffer for 5 minutes after which the maximum tetanic tension 

was measured again at 100Hz stimulus to gauge recovery in force generated by the 

muscle.      

After the isometric contraction experiments, the muscle was carefully removed 

from the transducer and returned to the dish with Ringers solution.  The sutures were 

carefully removed from the muscle and the muscle was carefully dissected away from the 

bony insertion as well as the central tendon.  The muscle was blotted gently and weighed.  

The cross sectional area was then calculated as follows:  CSA (mm2) =mass (mg)/ [(Lo 

mm)*(L/Lo)*(1.06 mg/mm3)].  The ratio L/Lo is 1 for the diaphragm muscle.  Diaphragm 

strips were then soaked in 0.1% procion orange to determine the extent of dissection 

damage.    
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Intracellular microelectrode recording post phrenic nerve stimulation  

The diaphragm was dissected and pinned flat in a Sylguard lined 6 cm petri dish 

continuously perfused with a modified Krebs-Ringer solution maintained at 23 .  Great 

care was taken in order maintain a viable phrenic nerve that was then aspirated by a 

suction electrode where supra threshold stimulation could be applied.  Following 

successful attachment to the suction electrode, the tissue was then incubated for 15 

minutes with µconotoxin (1 µM).  µ-conotoxin selectively blocks voltage-dependent Na+ 

channels and possesses a much higher sensitivity for muscle versus neuronal Na+ 

channels.  The application of this drug to the muscle essentially “paralyzes” the muscle 

fibers and isolated neuronal readings can be obtained free of any muscle interference.  

Microelectrodes filled with 3 mol/L KCl solution, had tip resistances of approximately 

30-60 MΩ and were advanced into skeletal muscle fibers within 2mm of the nerve 

terminal.  End plate potentials were amplified using an Axoclamp 900A amplifier (Axon 

Instruments, Foster City, CA) and digitized using Digidata 1550 (Axon Instruments) to a 

PC running Axoscope software (version 14.1; Axon Instruments).  Following 

impalement of the muscle cell with µ-conotoxin, a baseline was established for 5 minutes 

before stimulation was applied.  

  

Video image acquisition  

Functional imaging was performed on a Nikon Eclipse FN1 upright fluorescence 

microscope using Nikon Plan Fluor 4x lens (Nikon, USA). Image sequences were 

captured using an Andor Neo (Andor Technology, Belfast, UK) sCMOS camera and 

captured on a Windows-based PC using Nikon NIS Elements 4.1 (Nikon, USA). Image 
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sequences were recorded at 25 frames per second processed as 8-bit intensity units and 

analyzed using in house custom written software (Volumetry G7; G.W.H.).  

  

Drugs and solutions  

Modified Krebs-Ringer solution contained (mM): NaCl, 121.0; KCl, 5.0; NaHCO3,  

24.0; NaH2PO4, 0.4; MgCl2, 0.5; CaCl2, 1.8; glucose, 5.5 (continuously gassed with 5%  

CO2–95% O2, pH 7.3–7.4). µ-conotoxin was purchased from Sigma-Aldrich (St. Louis, 

MO, USA). 

 

RESULTS  

Identification of SU9516 as an integrin enhancing drug utilizing a high throughput 

drug screen  

Using a mouse muscle cell-based reporter assay previously described 56 we 

screened the LOPAC library and identified a small molecule SU9516 that increased 

expression at the α7 integrin promoter.  The LOPAC library consists of ~1200 drug-like 

molecules with known activities.  SU9516 dose-response curves for myoblasts (Figure 

1A) and myotubes (Figure 1B) were generated for treatments ranging from 0.5-40µM.  

The drug is toxic at higher concentrations.  The magnitude of increased expression and 

concentration of maximal effect varied between myoblasts (~5µM) and myotubes 

(~12µM).  α7 integrin protein enhancing effects of SU9516 treatments were verified by  

Western Blot analysis in C2C12 mouse myogenic cell lines (DMSO vs 12 µM SU9516,  
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*P<0.05) (Figure 1C) and in human DMD patient myotubes (20nM-10µM, *P<0.05, 

**P<0.01, ***P<0.001) (Figure 1D).  These data demonstrate that SU9516 targets an 

increase in α7 integrin in mouse and patient DMD myogenic cell lines suggesting a 

conserved mechanism of action.   

  

Pharmacokinetic assessment of SU9516 in CD1 mice shows low absorption.   

The metabolism of SU9516 was investigated in order to select an optimal dose 

for initiating a preclinical study in mdx mice.  For toxicity and pharmacokinetic (PK) 

studies, CD1 mice were treated via oral gavage with a dose of 10 mg/kg/day.  Blood 

serum draws were performed post treatment over a period of 24 hours.  The serum half-

life- t1/2   was 1.03 hours (supplementary Figure S1A) after a single dose of drug.  This 

concentration appeared to be above/at the toxic limit as the CD1 mice used in the study 

showed torpidity 24 hours post-treatment and the entire first batch of mice died.  The 

results also showed high levels in the intestine (low absorption) and low muscle 

availability with a single dose.  Preliminary toxicity and western blot analyses using a 

dose curve treatment were carried out in WT mice to determine the dose of the drug that 

elucidates that maximum increase in α7 integrin. Daily treatments of vehicle, 2.5 mg/kg, 

5 mg/kg and 10 mg/kg doses of SU9516 were administered via oral gavage for 4 days.  A 

dose of 5mg/kg/day was determined to be a safe dose at which the mice are active and 

also show the maximum increase in α7A integrin protein levels in skeletal muscle 

(supplementary Figure S1B).     
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SU9516 promotes an increase in α7B and β1D integrin in mdx skeletal muscle.    

In order to determine if SU9516 exhibited on target in vivo activity, female mdx 

mice were treated from 3 weeks to 10 weeks of age with either 5 mg/kg/day of SU9516 

or vehicle alone.  At 10 weeks of age, mice were sacrificed and the diaphragm and 

gastrocnemius tissues were examined for α7B and β1D.  A 2-fold and a 2.9 fold increase 

was seen in α7B and β1D levels respectively in the diaphragm of mdx mice (P<0.05) 

(Figure 2 A, B and C).  Protein analysis in the gastrocnemius showed a 2-fold increase in 

α7B (P<0.001) and a 1.7-fold increase in β1D levels (P<0.05) with SU9516 treatments 

compared to vehicle treated mice (Figure 2, D, E and F).  Immunofluorescence analysis 

confirmed normal sarcolemmal localization of α7B and β1D integrin in the diaphragm 

and the gastrocnemius muscles (Figure 2, G and H).  Together, these data show that daily 

oral delivery of SU9516 over a course of 7 weeks, directly leads to elevated levels of the 

α7β1 integrin protein in mdx mice.    

We also performed qRT-PCR analysis on the diaphragms of the mice to 

determine the transcript levels of Itga7, Itgb1d, Pax7, Lama2 and Mrf4.  No changes 

were observed in the levels of Itga7, Itgb1D and Pax7 transcripts (P>0.05) 

(supplementary Figure S2A, S2B and S2C) between vehicle treated and SU9516 treated 

groups.  The levels of Mrf4 in the SU9516 treated mice showed a trend towards 1.2 fold 

lower expression than the vehicle treated mdx mice (supplementary Figure S2D).  

Interestingly, a 1.7 fold decrease was observed for Lama2 transcript levels (P<0.05) 

(supplementary Figure S2E) in SU9516 treated mdx mice compared to vehicle treated 

controls.  This data suggests that SU9516 stabilizes the levels of Lama2 and Mrf4 
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transcript toward WT levels in the diaphragm muscle of mdx mice potentially through a 

negative feedback mechanism, owing to the increase in α7 integrin protein in SU9516 

treated myofibers.   

  

SU9516 treatments improved in vivo outcome measures and muscle function in mdx 

mice  

Over the course of preclinical treatments, the SU9516 treated mdx mice showed 

decreased body mass gain compared to vehicle treated controls at 9 and 10 weeks of age 

(P<0.05) (Figure 3A), following a trend towards WT body masses.  In order to determine 

whether SU9516 treatment increased muscle strength we performed the forelimb grip test 

each week of treatment.  Normalized forelimb grip strength of the sixth trial/pull showed 

that WT mice exhibited the greatest resistance to fatigue while SU9516 treated mice 

fatigued less compared to their vehicle treated counterparts in weeks 7, 8 and 9 (P<0.05) 

(Figure 3B).  The average of all trials for forelimb grip strength also indicated that 

SU9516 treated mdx mice had progressive improvements in muscle function with 

continued treatment, compared to vehicle treated animals (P<0.05) (supplementary 

Figure S3A).    

Similar to the muscles of DMD patients, the diaphragm muscles of mdx mice are 

unable to produce a normal level of developed force 256,257.  Measurements of active 

force developed by diaphragm muscles from WT mice, mdx mice treated with either 

vehicle or SU9516 were therefore performed in independent experiments.  Results 

revealed that diaphragm muscles from SU9516 treated mice had higher developed tetanic 
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force (118.1 ± 7.914 mN/mm2) compared with vehicle treated mice (87.5 ± 6.106 

mN/mm2) (*P<0.01) (Figure 3C).  

The diaphragm muscle of SU9516 treated mdx mice produced higher specific 

force amplitudes (~26-29% increase) compared with vehicle treated counterparts at peak 

tension (150 Hz) as well as all other stimulation frequencies from 65Hz to 150 Hz 

(P<0.05 SU9516 vs Vehicle, # P<0.05, ## P<0.01 Vehicle vs WT, + P<0.05, ++ P<0.01 

SU9516 vs WT)  (Figure 3D).  Mdx diaphragm muscles were also examined for fatigue 

as revealed by the percent decline in amplitude relative to the initial amplitude, 

throughout serial stimulations; no improvements in resistance to fatigue were evident in 

SU9516 treated mdx relative to vehicle treated controls (Figure 3E).  WT mice showed a 

negligible percent of fatigue compared to all the mdx mice in both treatment groups 

which fatigued to ~80% of the initial amplitude.  However, after ten minutes of recovery 

post the fatigue protocol, the SU9516 treated mdx diaphragms recovered to a greater 

extent (~8%) compared to the vehicle treated diaphragms (P<0.05)  (Figure 3F).   

 In addition to ex vivo studies utilizing the diaphragm, in vivo muscle function 

tests with direct electrical stimulation of the plantar flexors was performed to assess 

improvements in muscle function in other muscle groups.  There was a strong trend 

towards increased muscle isometric tetanic tension in the SU9516 treated mdx compared 

to the vehicle treated counterparts (P=0.06) (supplementary Figure S3B).  Taken 

together, these results indicate that the small molecule compound SU9516 and its ability 

to target the α7β1 integrin signaling pathway in skeletal muscle could be of tremendous 

clinical significance for DMD. 
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SU9516 improved neuromuscular kinetics of the mdx hemidiaphragm  

Next, we sought to determine whether improvements in active force developed in 

SU9516 treated diaphragms could be attributed to underlying changes in neuromuscular 

transmission.  Diaphragm muscle contractions were evoked through phrenic nerve 

stimulation at 10, 20 and 40 Hz frequencies, and several parameters related to 

neuromuscular transmission were measured.  Contractions were video recorded and post 

process analyzed using in house designed custom algorithms (Volumetry G7, G.W.H.).  

Representative traces of the contractile response of the diaphragms are depicted in Figure 

4A.  WT: At 10Hz stimulation, a small amplitude sustained (<100 µm) contraction with 

superimposed phasic contractions was observed.  At 20Hz stimulation a much larger 

contraction occurred, peaking 10-20s after the onset of stimulation then decaying until 

the end of the stimulation.  All preparations showed some degree of hysteresis at ~20 Hz 

stimulation as the repeat stimulation at the same frequency resulted in significantly less 

distortion being produced.  40Hz stimulation consistently produced smaller contractile 

responses compared to 20Hz, however the decay rate of contraction was similar.  Vehicle 

mdx: The trace for a vehicle treated mdx mice showed response similar to WT at 10Hz 

stimulation, but with noticeable hysteresis/inhibition between stimulations.  At 20Hz, 

there was a reduced peak and rapid decay of contraction, with apparent loss of structural 

integrity or resting tone (see negative displacement values during stimulation).  40Hz 

stimulation did not evoke any contractile response.  SU9516-mdx:  SU9516-treated mice 

showed a robust contractile response to 10Hz stimulation, albeit with some 

hysteresis/inhibition observed in the repeat stimulation.  The contractile response to 20 
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and 40 Hz were similar consisting of a smaller peak contraction and slow decay, but 

contraction was maintained during the course of the stimulation.    

At 10Hz and 20Hz frequencies no differences in peak amplitudes were observed 

between vehicle and SU9516 treated animals, however at 40 Hz frequency, the average 

peak amplitude attained by the SU9516 treated diaphragms was higher than the vehicle 

group by ~2.6-fold (P<0.05) (Figure 4B).  Analysis of the integrated area under the curve 

(AUC) from the contractile responses showed trends towards increased AUC composites 

for SU9516 treated diaphragms compared to vehicle treated controls (P=0.07 for SU9516 

vs Vehicle at 40Hz)  (Figure 4C).     

End plate potentials (EPPs) were recorded by an intracellular recording electrode 

at 10, 20 and 40Hz frequencies; time to 50% EPP amplitude from peak EPP amplitude 

during 10 Hz stimulation did not vary between WT, vehicle and SU9516 treated animals; 

and did not reach 50% of peak amplitude within the first 60 seconds of stimulation 

(Figure 4E).  However at 20 Hz stimulation frequencies the vehicle treated mdx EPP 

reached 50% of peak amplitude significantly faster (20Hz: WT 88.77 ± 3.84 s, vehicle 

44.11 ± 2.06 s, SU9516 57.11 ± 2.71 s, n=3, P<0.01; 40Hz: WT 46.33 ± 2.96 s, vehicle 

22.0 ± 2.25 s, SU9516 30.29 ± 4.55 s) (Figure 4D and E).     

The resting membrane potential (RMP) in dystrophic fibers is approximately 3 to 

8 mV less negative than in age-matched non dystrophic fibers 258–260.  Intracellular 

recordings of the muscle fibers in diaphragms of all experimental animals showed that 

while the RMP was higher in WT compared to the mdx mice, SU9516 treated mdx 

showed a recovery in RMP compared to vehicle treated dystrophic fibers (P<0.05) 
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(supplementary Figure S4A).  Another parameter that was measured was the miniature 

end plate potential (MEPP) which is the response generated by a single acetylcholine 

containing vesicle.  While some electrophysiological studies have shown large 

reductions in MEPPS in adult mdx mice, compared with controls 260, one previous 

investigation reported only a statistically insignificant trend toward reduced MEPP in 

mdx muscles 261.  Our results corroborate a decreased trend in mdx myofibers compared 

to WT; SU9516 restores the MEPP in mdx myofibers towards WT levels (supplementary 

Figure S4B).  The experiments results from the phrenic nerve stimulation of the mice 

diaphragms are summarized in Table1.  Taken together, these results show that treatment 

with SU9516 aids in restoration of RMP in dystrophic fibers and alleviates the deficit in 

neuromuscular transmission observed in DMD. 

  

SU9516 improves regeneration and ameliorates pathology in the mdx diaphragm   

Histopathological analysis of the diaphragm showed a 5.5% increase in the 

percentage of centrally nucleated myofibers of SU9516 treated mdx diaphragm compared 

to vehicle treated diaphragms (*P<0.05) (Figure 5A).  Additionally, immunofluorescence 

analysis indicated a 3.3% increase in the percentage of embryonic myosin heavy chain 

(eMHC) positive fibers in the SU9516 treated group compared to the vehicle treated 

controls (*P<0.05) (Figure 5B and C).  Minimum Feret’s diameter of fibers through the 

length of the diaphragm, showed a trend of larger fibers in the SU9516 treated mdx 

muscles compared to the vehicle treated group and this distribution more closely 

followed the fiber size distribution in the diaphragm of WT mice (Figure 5D).  

Hydroxyproline assay and Sirius Red staining for collagen was performed on the 
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diaphragms of the mdx mice.  The hydroxyproline assay showed a trend towards 

decreased hydroxyproline content in the SU9516 treated tissues however this change was 

not significant (P>0.05); Sirius red staining showed a decreased area of collagen as 

quantified by Image J (Figure 5E and supplementary Figure S5).  Together these results 

indicate SU9516 improved muscle regeneration and reduced pathology in dystrophin 

deficient muscle.  

  

DISCUSSION  

This study is the first of its kind to present evidence of the benefits of using an 

integrin enhancing therapeutic in the mdx mouse model of DMD.  SU9516 is an 

indolinone compound, which has been shown to be a potent inhibitor of CDK2 along 

with a host of other kinases 262.  In vitro experiments in this study showed that SU9516 

increased the protein levels of α7B integrin in human DMD patient and C2C12 myogenic 

cells, thereby demonstrating that the drug has a conserved mechanism of action in 

murine and human species.  Additionally, a seven week treatment of 5mg/kg/day 

SU9516 increased the protein levels of α7B and β1D integrin in the skeletal muscle of 

dystrophin-deficient mdx mice, thereby demonstrating in vivo on-target activity.  In 

DMD patients, the skeletal muscles progressively weaken, pathology is severe and 

patients lose their ability to walk by 8 years of age.  In mdx mice, however, the 

dystrophic pathology in most skeletal muscles is comparatively mild and plateaus post 3 

months of age.  In contrast, the mdx diaphragm is more severely and progressively 

affected in mdx mice and thus is more representative of the muscle pathology in DMD 
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patients 14.  Hence, in our study, the diaphragm muscle of mdx mice was selected for the 

evaluation of therapeutic benefit of SU9516.       

Functional tests performed on the experimental mice included the forelimb grip 

strength measurement tests.  Our results showed that while all the experimental mdx mice 

started off with no significant differences between groups during the early period of 

treatment.  However, continued SU9516 treatment showed significant improvements in 

the forelimb strength exerted by the mdx mice compared to the vehicle treated mdx 

group, in the later phase of the treatment regime.  The ex vivo muscle contraction 

experiments performed in the diaphragms of mdx mice showed that SU9516 increased 

the specific force developed by the mdx diaphragm.  A fatigue protocol applied to the 

diaphragm muscle across all experimental groups showed that although all mdx mice 

fatigued to 80% of their initial force, the SU9516 treated diaphragms were able to 

recover from fatigue by an 8% margin over the vehicle treated group.  Additionally, 

phrenic nerve stimulation and intracellular recordings of the myofibers in the diaphragm 

that the SU9516 treated mdx muscles showed greater success in peak amplitude attained 

and had improved resting membrane potential (RMP).    

Dystrophin in addition to maintaining sarcolemmal integrity is also thought to 

maintain intracellular homeostasis.  Dystrophic membranes have depolarized resting 

membrane potentials 259,263–265 that could be attributed to higher resting intracellular free 

Ca2+ concentrations, in skeletal muscle cells from mdx mice and DMD patients compared 

with normal cells 266–270.  It is possible that elevation of the α7β1 integrin complex with 

SU9516 treatment restores intracellular Ca2+ levels in mdx myofibers and improvements 
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in parameters like peak amplitude, time to 50% EPP and RMP, could be attributed to 

restored Ca2+ signaling with SU9516 treatment.  In addition to functional improvements, 

SU9516 also showed improvements in myofiber regeneration and a decrease in fibrosis 

with treatment.  Together, these improvements in histopathology and function could be 

attributed to the increased expression of α7β1 integrin at the sarcolemma of muscle 

which helps restore the sarcolemmal integrity in the mdx muscle.    

    This study demonstrates for the first time a small molecule integrin enhancing 

compound prevents the progression of muscle disease in the mdx mouse model of DMD.  

This therapeutic may have implications for the treatment of DMD and other muscular 

dystrophies. Two small molecules which have a similar backbone structure to SU9516 

have entered clinical trials for colorectal cancer (SU5416/semaxinib) or have been given 

FDA approval multi-targeted receptor-tyrosine kinase inhibitors for the treatment of 

renal cell carcinoma and gastrointestinal stromal tumor (SU11248/Sunitinib). Given that 

these related compounds are undergoing or have completed clinical trials for other 

indications, SU9516 or an analog may be a candidate to fast track for the treatment of 

DMD.    
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Figure 1:  Identification of a novel α7 integrin drug utilizing myogenic cell lines. 

SU9516 shows an increase in β-Galactosidase activity in (A) α7 +/lacZ myoblasts 

and (B) α7 +/lacZ myotubes over a wide range of concentrations.  Western blot 

analysis confirmed that treatment with 12 µM SU9516 increased the levels of α7B 

integrin post 48 hrs in (C) C2C12 myotubes (n=3).  SU9516 increased the levels 

of α7B integrin in telomerized human DMD patient myotubes over a wide range 

of concentrations (n=3/conc.). ***P<0.001, **P<0.01, *P<0.05  



103  

  

  

Figure 2: SU9516 increases α7β1 integrin levels in the skeletal muscle of mdx mice.  

Western blot analysis performed in the diaphragm and the gastrocnemius muscle of 

10week old mdx mice showed (A) an increase in levels of α7B and β1D integrin in the 

diaphragm of the SU9516 treated mdx mice.  This increase is quantified in (B) where an 
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~2-fold increase in α7B and an (C) ~3.4 fold increase in β1D was observed in the 

diaphragm of SU9516 treated mdx mice.  (D) Western blot analysis in the gastrocnemius 

showed an increase in levels of α7B and β1D integrin in SU9516 treated mdx mice. 

These increases were quantified in (E) where an ~2 fold increase in α7B and an (F) ~1.7 

fold increase was observed in SU9516 treated mdx mice.  Immunofluoresence performed 

on 10 µm cryosections for α7B and β1D integrin in (G) the diaphragm and (H) the 

gastrocnemius muscle of mdx mice showed sarcolemmal localization.  (N=4 

diaphragms/group, N=4-6 gastrocnemius/group, *P<0.05, ***P<0.001)          
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Figure 3: SU9516 improves in vivo outcome measures and diaphragm muscle 

function in the mdx mice.  A) SU9516 treated mice showed a smaller gain in body mass 
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compared to vehicle treated controls in weeks 9 and 10.  WT animals showed the least 

increase in body weight over time.  Forelimb grip strength performed weekly by an 

experimenter blinded to the experimental groups showed that B) SU9516 treated mdx 

mice showed greater resistance to fatigue compared to vehicle treated mdx mice as 

represented by the force in the sixth trial/pull of forelimb grip force.  C) At 10 weeks of 

age, mouse diaphragm muscle function was assessed in an ex vivo contraction protocol.  

At a 100Hz tetanic stimulus, SU9516 treated mdx mice showed significantly greater 

isometric tetanic tension compared to vehicle treated controls.  D) A force-frequency 

protocol to measure tetanic tension generated by the diaphragm over a wide range of 

frequencies showed that SU9516 treated diaphragms produced significantly higher 

tension compared to vehicle treated diaphragms during twitch and 50-150Hz frequencies.  

E) Mdx diaphragms in both SU9516 and vehicle treated groups fatigued to ~80% of the 

initial force.  F) SU9516 diaphragms recovered by ~8% compared to vehicle, 10 minutes 

post recovery from fatigue.*P<0.05,  

**P<0.01, ***P<0.001.  In (A) Body weights and (D) Specific force: #P<0.05, ##P<0.01 

Vehicle vs wt, +P<0.05 SU9516 vs WT, ++P<0.01  
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Figure 4: Contraction of diaphragm to phrenic nerve stimulation in wild type, 

vehicle and SU9516-treated mice.  A) Traces of the contractile response of diaphragms 
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from a WT, vehicle and SU9516 treated mdx mouse to repeated stimulations at 10, 20 & 

40Hz for ~40s.  B)  WT mice showed greater peak amplitude compared to mdx mice in 

both treatment groups.  SU9516 treated mdx mice showed a higher peak amplitude at 

40Hz stimulation compared to vehicle treated mdx mice (N=5, *P<0.01).  C)  The 

composite integration of the area under the curve showed trends towards increases in the 

SU9516 treatment group compared to the vehicle treated group at 20 and 40 Hz 

stimulations (N=4,P>0.05).  Action potential trains for all experimental groups are 

depicted in D) 20 Hz and E) 40 Hz.  F)  Time to failure or time to 50% of the first end 

plate potential (EPP) in the stimulation train indicated that the SU9516 treated mdx mice 

showed an increase in time to failure compared to the vehicle treated counterparts. 

(N=3/group, *P<0.01).       
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  WT  MDX + Vehicle  MDX + SU9516   

Resting Membrane Potential (mV)  73.9 ± 0.96   63.7 ± 1.04   69.18 ± 0.85 p<0.001  

Peak EPP Amplitude (mV)  28.24 ± 0.88   27.66 ± 0.86  26.69 ± 0.34 p=ns  

EPP Duration (ms)  23.95 ± 0.39   24.52 ± 0.32   24.36 ± 0.26 p=ns  

Peak MEPP Amplitude (mV)  1.71 ± 0.04   1.33 ± 0.06  1.63 ± 0.08   p<0.005   

MEPP Duration (ms)  10.84 ± 0.55   7.76 ± 0.57  8.41 ± 0.52   p=ns  

Time to 50% amplitude 10Hz (s)  99.11 ± 3.68   92.88 ± 4.05  89.78 ± 2.81 p=ns  

Time to 50% amplitude 20Hz (s)  88.78 ± 3.84   44.11 ± 2.06  57.11 ± 2.71 p<0.005  

Time to 50% amplitude 40Hz (s)  46.33 ± 2.96   22.0 ± 2.25   30.29 ± 4.55 p=ns  

  

Table 1- Neuromuscular parameters measured post phrenic nerve stimulation of 

diaphragm.  This table summarizes the parameters measured in the neuromuscular 

kinetic experiments performed via phrenic nerve stimulation of the diaphragm of 

experimental mice. p values indicate level of significance between the SU9516 vs 

Vehicle treated mdx mice.      
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Figure 5: SU9516 treatment ameliorates disease pathology in mdx mice.  A) SU9516 

treated mdx diaphragms showed a 5.5% increase in the percent of centrally nucleated 

fibers over vehicle treated diaphragms. B)  The percentage of embryonic myosin heavy 

chain (eMHC) positive fibers in the diaphragm of SU9516 treated mdx was higher than 

the vehicle treated mdx by 3.3%.  C) eMHC staining in immunoflorescence images of 
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diaphragms from vehicle and SU9516 treated mdx mice.  SU9516 treated diaphragms 

show an increase in eMHC positive fibers.  D) Fiber size distribution in the diaphragm of 

WT, vehicle and SU9516 treated mice was assessed utilizing 10 µm cryosections stained 

with wheat germ agglutinin followed by minimum Feret’s diameter measurements.  The 

distribution of fiber size in SU9516 treated diaphragms shifted towards larger myofibers 

following the trend towards WT fiber size distribution. E) Hydroxyproline content was 

non-significantly reduced in SU9516 treated mdx diaphragms compared to vehicle 

treated controls (P=0.46).  Sirius Red staining showed a decrease in collagen positive 

areas within the SU9516 treated mdx diaphragm cross-sections.  Magnification 10X 

Scale Bar =100 µm (N=3-4 WT, N=5-7/mdx treatment group.  *P<0.05). Scale bar =100 

µm.             

  

  

  

  

  

  

  

  

  



112  

  

  

  

  

Fig. S1. Serum Pharmacokinetics and optimal drug dose for SU9516.  (A)  The 

serum concentrations of SU9516 over the course of 4 hours after the administration of a 

single 10 mg/kg dose via oral gavage.  (B)  WT mice were administered four doses of 

drug for a period of one week and the 5 mg/kg/day SU9516 treatment resulted in the 

maximum increase in integrin α7A in the gastrocnemius muscle.    
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Fig. S2- SU9516 decreases the level of Lama2 transcript in mdx diaphragms.  qPCR 

analysis was performed on the diaphragms of mice across all experimental groups.   

SU9516 showed no significant changes in the transcript levels of A) α7 B) β1 C) Pax7.   
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D) A strong trend towards a decrease in myogenic regulatory factor 4 (MRF4) was 

observed in the diaphragm of SU9516 treated mice.  E)  A significant decrease in 

transcript levels of LAMA2 was observed in the SU9516 treated mdx diaphragms 

compared to the vehicle treated controls, n=2 WT, n=3/treatment group, **P<0.01.    
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Figure S3- SU9516 treatment improves muscle function in mdx mice.  (A)The 

average of all forelimb grip strength trials showed a significant increase in the SU9516 

treated mice compared to vehicle treated controls, WT n=6, n=14 mdx/treatment 
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*P<0.05. (B)  An In vivo isometric contraction experiment that stimulates the plantar 

flexor group of muscles and measures force output showed that SU9516 treated mice 

showed a strong trend towards improved torque compared to their vehicle treated 

counterparts n=4/mdx treatment group, P=0.06.    
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Figure S4- SU9516 improves the resting membrane potential in mdx muscle fibers.   

(A) SU9516 treatment increases the resting membrane potential of mdx myofibers 

towards WT levels, n=3, *P<0.05 (B) SU9516 treatment increases miniature end plate 

potentials in mdx myofibers towards WT levels.    
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Figure S5- SU9516 treatment decreases Sirius Red positive area in mdx 

diaphragms.  Image J was used to quantify the fibrotic area in the diaphragms of mdx 

mice.  SU9516 treated diaphragms showed a smaller percentage of fibrotic area 

compared to the vehicle treated group, n=5, *P<0.05  
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Chapter 4  

THE MOLECULAR TARGETS OF SU9516 IN SKELETAL MUSCLE  
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ABSTRACT  

The α7β1 integrin is a heterodimeric receptor in skeletal muscle that also links 

laminin to the actin cytoskeleton.  Studies have shown that transgenic overexpression of 

the α7 integrin alleviates disease progression and improves survival of mouse models of 

DMD, while loss of the α7 integrin in dystrophin-deficient mdx mice exacerbates muscle 

disease.  Together, these results support the hypothesis that the α7β1 integrin is a major 

modifier of disease progression in DMD and a target for drug-based therapies.  Utilizing 

a high throughput chemical screen developed in our lab, we identified a potent integrin 

enhancing drug called SU9516 that increased the levels of α7B in both murine and 

human DMD patient cells. Previously, preclinical studies showed there was a significant 

improvement in diaphragm muscle contractility and forelimb grip strength of mdx mice 

treated with a 5 mg/kg/day dose of SU9516 from 3 weeks to 10 weeks of age.  

Additionally, analysis of muscle tissue via western blot showed an enhanced expression 

of α7B and β1D integrin protein in the skeletal muscle of SU9516 treated mice.  The 

current study shows that in vitro treatment of SU9516 in C2C12 myoblasts 

downregulated the expression of MAP4k4 which led to enhanced fusion of myoblasts 

during differentiation.  Additionally, the kinase targets of SU9516 in human DMD 

patient cells were determined using KiNativ technology.  The mechanism by which the 

drug enhances α7B integrin in muscle was investigated in this chapter and our results 

demonstrate that the therapeutic benefits of SU9516 are likely brought about by its 

kinase inhibitor activity including the inhibition of the p65-NF-κB pathway.  Hence, the 

small molecule integrin enhancing compound SU9516 could serve as a novel 

pharmacological therapeutic in the treatment of DMD.      
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INTRODUCTION  

Duchenne muscular dystrophy (DMD) is one of the most common forms of 

muscular dystrophy affecting 1 in every 3,500 males 218,231.  DMD patients suffer from 

progressive muscle weakness, impaired mobility and premature death 2.  DMD is caused 

by reading frame mutations/deletions in the DMD gene which prevent the translation of 

the dystrophin protein 3,4,232.  In healthy muscle, dystrophin forms a scaffold upon which 

the dystrophin glycoprotein complex (DGC) forms and links laminin in the extracellular 

matrix (ECM) to the actin cytoskeleton 271, thereby providing structural integrity to 

skeletal and cardiac muscle.  The absence of dystrophin in DMD leads to loss of the 

DGC that causes sarcolemmal fragility and muscle damage during muscle contraction. 

Progressive damage results in inflammation, necrosis, fibrosis and muscle weakness.  

There is currently no effective treatment or cure for DMD.  

  Several therapeutic approaches have been developed with the aim of restoring 

dystrophin expression and shown efficacy in animal models of DMD. These include 

virally mediated delivery and expression of dystrophin, myoblast cell transfer and 

engraftment, exon-skipping and stop-codon read-through 91, 228–236,247.  Currently, none of 

these methods have been approved as therapies for DMD patients.  An alternative 

approach is to target and enhance levels of proteins which modify disease progression 

and act to partially compensate for the absence of dystrophin 272.  These disease 

modifiers include utrophin, IGF-1, α7β1 integrin, GalNac, nNOS and 

Adam1287,128,134,195,252,253,273,274.    
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The α7β1 integrin is the predominant laminin binding integrin in skeletal, cardiac 

and vascular smooth muscle 165.  It is distributed along the sarcolemma at costameres and 

is localized at neuromuscular and myotendinous junctions in skeletal muscle 166,167.  The 

α7β1 integrin has structural and signaling functions that contribute to muscle 

development and physiology and was originally identified as a marker for muscle 

differentiation 163,177.  Loss of the α7 integrin in dystrophin deficient mdx mice leads to a 

more severe dystrophic phenotype and reduced viability with mice dying prematurely by 

4 weeks of age 198,226.  Conversely, it was reported that enhanced expression of the α7β1 

integrin ameliorates the development of muscular dystrophy and extends longevity in 

α7BX2- mdx/utr-/- transgenic mice more than three-fold 195.  Multiple mechanisms appear 

to contribute to α7 integrin mediated rescue of dystrophin deficient muscle including 

maintenance of myotendinous and neuromuscular junctions, enhanced muscle 

hypertrophy and regeneration, and decreased apoptosis and cardiomyopathy 196.  

Enhanced α7 integrin also protects muscles against exercise-induced damage 197.  

Together, these observations support the idea that the α7β1 integrin is a major disease 

modifier in DMD.   

To translate transgenic mouse studies into potential therapies for DMD, we 

initiated a drug discovery program to identify chemical probes that increase α7 integrin 

in skeletal muscle.  We have previously reported on the generation and characterization 

of an α7 integrin knockout line of mice 204 in which the LacZ gene is inserted into intron 

1, downstream of the endogenous α7 integrin promoter.  Thus, β-galactosidase functions 

as a reporter for α7 integrin expression in these animals.  Primary myogenic cells were 
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isolated from a heterozygous mouse (α7βgal+/-) so that the cells express α7 integrin and 

also report for transcription of the integrin.  The myogenic reporter cells were designated 

α7βgal+/- and were used to identify two molecules, valproic acid and laminin-111, in 

preliminary screens and have been successfully tested in mouse models of DMD 56,205.  A 

drug called SU9516 was one of the top compounds identified through this drug screen 

and our in vivo-studies with the drug in mdx mice (described in Chapter 3) are proof-of-

principle for the use of in vitro screening methods in allowing identification of 

pharmacological agents for integrin upregulation.        

 SU9516 (3-[1-(3H-imidazol-4-yl)-meth-(Z)-ylidene]-5-methoxy-1, 3-

dihydroindol-2-one) is a 3-substitued-indolinone compound that binds to cdk2 and 

selectively inhibits its catalytic kinase activity 207.  X-ray crystallography studies showed 

that the small molecule compound inhibited cdk2/cyclin A through competitive 

inhibition of ATP 262.  In human leukemic cells, SU9516 caused the pronounced down-

regulation of the antiapoptotic protein Mcl-1 through transcriptional repression, 

increased proteasomal degradation, inhibition of RNA Pol II CTD phosphorylation and 

oxidative damage 208.  SU9516 has also been reported to inhibit glycogen synthase kinase 

3β (GSK-3β), which is involved in normal cell death 207.  Levels of inactive p-S9–

GSK3β are reduced and total GSK3β are elevated in the muscles of patients with 

myotonic dystrophy type 1 (DM1) 275.  Inhibition of GSK3β in both DM1 cell culture 

and mouse models reduced muscle weakness and myotonia in DM1 mice 275.  Hence, 

compounds normalizing GSK3β activity might be beneficial for improving muscle 
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function in patients with DM1.  Thus, SU9516 has demonstrated its potential as a viable 

pharmacological drug for the development of antineoplastic therapeutics.    

A previous study described in Chapter 3 of this dissertation, identified SU9516 as 

an α7β1 integrin enhancing drug (Sarathy et al., unpublished).  Functional and 

histopathological improvements with drug treatment in the mdx mouse model suggest 

potential therapeutic efficiency for the drug in the treatment of Duchenne muscular 

dystrophy.  It was verified that SU9516 enhances α7B integrin expression in C2C12 

murine myogenic cell lines and human patient DMD cells over a wide range of 

concentrations.  Additionally, SU9516 also showed in vivo on target activity for α7B and 

β1D in the skeletal muscle of treated mdx mice.  However, the molecular mechanism by 

which SU9516 enhances integrin is unknown.  It remains to be determined whether 

inhibition of one or more known kinase targets of SU9516 may be involved in the 

elevation of the α7 integrin levels in myogenic cell lines.     

 

MATERIALS AND METHODS  

Tissue Culture  

C2C12 cells used in this study were purchased from ATCC and myoblasts were 

grown and maintained in DMEM without phenol red (Sigma) containing 20% FBS 

(Atlanta Biologicals), 1% Penicillin/Streptomycin (P/S) (GIBCO) + 1% L-Glutamine 

(GIBCO).  Myoblasts were maintained below 70% confluence until use in assay.  

Myoblasts were differentiated into myotubes in DMEM without phenol red, 1% horse-
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serum (Atlanta Biologicals), and 1% P/S + L-Glutamine.  All cells were incubated at 

37ºC with 5% CO2.  Assays were performed on myoblasts and myotubes between 

passages 8 and 14.  To determine whether SU9516 affects protein levels of MAP4k4, we 

harvested C2C12 cells at 24, 48, 72 and 96 hours after switching the cells to 

differentiation media with either SU9516 or DMSO.    

 

Myotube α7 integrin FDG assay  

α7+/LacZ myoblasts were originally isolated and maintained as described 56.  A 

total of 25,000 α7+/LacZ myoblasts were dispensed in 100µL growth media.  After 24 

hours, growth media was aspirated, wells were washed with 200µL PBS, and 100µL/well 

of differentiation media was added.  Differentiation media was changed daily between 72 

and 120 hours, and up to 1µL compounds in DMSO were added as previously described 

once wells contained differentiated myotubes.  The FDG fluorescence assay was 

performed as described in the myoblast screen with the one notable exception being the 

incubation after FDG solution addition being shortened from 20 minute to 5 minutes at 

RT due to the higher levels of β-gal in myotubes.  

  

Immunobloting   

Protein was extracted from cell pellets or tissue powdered in liquid nitrogen.  

RIPA was used as the lysis buffer with a 1:100 dilution of 0.5M NaF and 1M Na3VO4 

and a 1:500 dilution of protease inhibitor cocktail.  Protein was quantified using a 

Bradford assay and equal quantities were separated using SDS polyacrylamide gel 
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electrophoresis.  The α7B and β1D integrin were detected as was previously described 

177.  Signals were detected using WesternSureTM PREMIUM Chemiluminescent 

Substrate (LI-COR).  Protein loading was normalized to either α-tubulin (1:1000 mouse-

monoclonal, abcam) or GapDH (1:1000, rabbit-monoclonal, Cell Signaling).  

Quantitation was performed using Image J software.  

  

Immunofluorescence   

For in vitro immunofluorescence analysis in C2C12 cells, anti-myosin heavy chain 

antibody was used at a dilution of 1:1000. Cells grown in chamber slides, fixed with 4% 

paraformaldehyde and blocked in PBS containing 2% bovine serum albumin (Sigma), 

0.1% Tween 20, and 0.05% Triton X-100 (American Bioanalytical) for 1 h at room 

temperature.  The cells were then incubated with the MF20 monoclonal antibody (MAb) 

against MHC (1:40; DSHB) for 2.5 h and subsequently with an Alexa Fluor 

488conjugated secondary antibody (1:200; Invitrogen) for 1 h at room temperature. Cells 

were mounted with Vectashield reagent with DAPI (4′,6-diamidino-2-phenylindole; 

Invitrogen).  In vivo immunofluorescence analysis: p-p65 and p65-NF-ĸB antibodies 

were used at a dilution of 1:1000, rabbit polyclonal followed by Rb anti-HRP 1:2000 

(Cell Signaling).  Signals were detected using WesternSureTM PREMIUM 

Chemiluminescent Substrate (LI-COR).  Protein loading was normalized to either α-

tubulin (1:1000 mouse-monoclonal, abcam) or GapDH (1:1000, rabbit-monoclonal, Cell 

Signaling).  Quantitation was performed using Image J software.  
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KiNativ Assay  

A probe based chemoproteomics (KiNativ) assay was used to identify muscle 

specific kinase(s) regulated by SU9516 276.  DMD myotubes were cultured as previously 

described 201 and treated with the 0.1, 0.5 and 1µM SU9516 for 48 hours. Proteins from 

control and treated DMD myoblasts and myotubes were harvested and incubated with the 

KiNativ probe (biotinylated acyl phosphates of ATP and ADP) following the 

manufacturer’s protocol (ActivX Biosciences, Inc., Torrey Pines, CA). Proteins were 

sent to ActiveX Biosciences and subjected to LC-MS/MS to identify the molecular 

signature of biotin labeled proteins in the samples and control vs treated proteins 

compared and kinases in which activation was inhibited by SU9516 were identified.  

 

 Statistical analysis and Curve-fitting   

Statistical analysis was performed using Graphpad Prism software and unpaired t-

test comparison against the DMSO control treatment group for the SU9516 treated 

C2C12 and human DMD myotubes.  Graphpad prism software was also used to fit 

curves using nonlinear regression analysis with log (agonist) vs. response with a variable 

slope.  Averaged data are reported as the mean ± the standard error of the mean (s.e.m.). 

Comparison for two groups was performed using a Student’s t-test and between multiple 

groups using Kruskal-Wallis one way ANOVA on ranks for nonparametric data.  P<0.05 

was considered statistically significant.  
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RESULTS   

SU9516 promotes fusion of C2C12 myoblasts  

SU9516 treatment of myoblasts produced significant morphological changes and 

appeared to promote the differentiation of myogenic cells even in growth media.  In 

order to determine if SU9516 treatment led to faster fusion/differentiation rates we began 

to differentiate C2C12 cells in the presence of 12 µM SU9516 or DMSO alone.  72 hours 

post differentiation, SU9516 treated myotubes appeared larger with more nuclei than the 

DMSO treated controls.  This was quantified by measuring average myofiber widths 

which was increased 3-fold for SU9516 treated cells over DMSO (***P<0.001) (Figure 

1 A and B).  The fusion index was increased 3-fold in SU9516 treated myobalsts 

(***P<0.001) (Figure 1C) and there was a shift toward myotubes containing more 

nuclei/myotube with SU9516 treatment (*P<0.05, ***P<0.001) (Figure 1D).  These 

results supported the idea that SU9516 promoted myogenic fusion and differentiation.  

A recent study showed that siRNA mediated MAP4k4 silencing and reduction of 

MAP4k4 protein promotes a similar morphology and enhanced myotube formation as 

seen in SU9516 treated C2C12 myoblasts 277.  Additionally, SU9516 was also identified 

as an inhibitor of MAP4k4 activity 278.  To determine whether SU9516 affects protein 

levels of MAP4k4, we harvested C2C12 cells every 24 hours after switching the cells to 

differentiation media with either SU9516 or DMSO.  Total levels of MAP4k4 were 

evaluated at each time point.  24 hours post differentiation with SU9516 treatment, the 

levels of total MAP4k4 were reduced 2-fold relative to DMSO treated controls (*P<0.05)  

(Figure 1E).  These reduced levels were also observed at 48 hours of differentiation 



130  

  

relative to controls (P>0.05) (Figure 1F), however, the levels of MAP4k4 protein also 

dropped in the DMSO treated cells at 72 and 96 hours of differentiation (P>0.05) (Figure 

1G and H).    

 

SU9516 treatment reduces the levels of the tetraspanin CD82 in C2C12 myoblasts 

during differentiation  

The tetraspanins are multi-span membrane proteins that mediate intercellular 

interactions and are found in close association with membrane proteins like integrins, 

other tetraspanins and chemokines.  CD82 (also known as KAI1) is a member of the 

tetraspanin family of proteins.  It has previously been shown that CD82 regulates the 

molecular packing of α4 integrin within clusters, thereby regulating the local molecular 

density of α4.  CD82 can form tetraspanin enriched microdomains (TEMs), through its 

association with several membrane proteins such as cell adhesion molecules, growth 

factor receptors and signaling molecules, including integrins 279,280.  Thus far, there is no 

literature that describes an interaction between α7β1 integrin and CD82 in skeletal 

muscle.  Our previous experiments with SU9516 treatment in C2C12 myoblasts showed 

that SU9516 promoted differentiation and enhanced fusion.  We differentiated C2C12 

cells in the presence of 12 µM SU9516 or DMSO alone and hypothesized that SU9516 

treatment enhances the levels of α7B integrin early during differentiation.  Our results 

confirmed our hypothesis.  The treatment with SU9516 enhanced levels of α7B integrin 

48 hours post differentiation compared to DMSO treated C2C12 cells.  Levels of α7B 

integrin were elevated and maintained at 48, 72 and 96 hours post differentiation in the 
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SU9516 treated cells (Figure 2A and C).  Additionally, in our study we showed that the 

levels of CD82 were dramatically reduced post 24 hours in differentiation media in 

SU9516 treated cells (Figure 2B and C).  The levels of CD82 remain downregulated in 

the SU9516 treatment group 48 and 96 hrs post differentiation.  This data demonstrates 

that CD82 downregulation precedes the upregulation of α7B integrin with SU9516 

treatment in differentiating C2C12 cells.    

 

Pharmacological inhibition of MAP4k4 does not elevate β-Galactosidase activity in  

α7+/lacZ myotubes    

SU9516 is a known inhibitor of MAP4k4 activity 278.  Based on our previous 

findings that SU9516 downregulates the levels of total MAP4k4 protein and enhances 

myoblast fusion, we hypothesized that inhibition of MAP4k4 may be responsible for the 

enhanced expression of α7 integrin in myogenic cell lines.  To test our hypothesis we 

tested seven known inhibitors of MAP4k4 activity in α7+/lacZ myoblasts and myotubes, 

over a wide range of concentrations (0.625 µM to 50 µM).  Of these, four inhibitors 

showed a >1 ratio of fold fluorescence relative to DMSO in myoblasts (Figure 3A).  

However, only one inhibitor showed a >1 ratio of fold fluorescence relative to DMSO in 

myotubes (Figure 3B).  These data suggest that the increase in α7 integrin in myoblasts 

can be attributed at least partially to MAP4k4 inhibition, possibly due to enhanced 

myoblast fusion.  However, the inhibition of MAP4k4 is likely by itself not responsible 

for the increase in α7 integrin in myotubes.          
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SU9516 inhibits SPAK in human DMD myotubes   

SU9516 is a known ATP mimetic and a CDK2 inhibitor 262.  Therefore, we 

sought to identify the kinase targets of SU9516 in human DMD patient myotubes as 

determined by the KiNativ assay.  Human DMD patient myotubes were treated with 

0.01, 0.1, 0.5 and 1µM concentrations of SU9516 after which, lysates were run through a 

KiNativ in situ kinase profiling screen to identify drug targets.  In order to minimize off-

target kinase inhibition which occurred at lower concentrations than the effective α7 

Integrin enhancing range, the 10nM SU9516 treated lysate was used as the negative 

control.  The percent inhibition of the kinases obtained in this 10nM treatment were 

therefore subtracted from the other treatments percentages.  The kinases inhibited with 

maximum potency were the PFTAIRE1 kinase, the STE20/SPS1-related proline-alanine-

rich protein kinase (STK39/STLK3/SPAK) and the SPAK homolog oxidative stress 

response -1 (OSR1) kinases.  The activity of the SPAK/OSR1 kinases was inhibited 

~80% at the lowest concentration of 0.1 µM SU9516 (Table 1).  These results helped us 

consider potential mechanisms of action through which SU9516 treatment enhances α7 

integrin expression. 

 

Pharmacological inhibition of PFTAIRE1 does not elevate β-Galactosidase activity 

in α7+/lacZ myotubes    

Previous studies (Results shown in Chapter 3) have shown that SU9516 increased 

levels of α7B in human DMD myotubes in a dose dependent manner (Figure 1, Chapter 

3, Sarathy et al., unpublished).  Based on the findings from the KiNativ screen (Table1), 
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we observed that SU9516 inhibited PFTAIRE1 with high potency and in a dose 

dependent manner.  Hence, we sought to determine whether the pharmacological 

inhibition of PFTAIRE1 is responsible for the elevation in α7B levels in myotubes.  To 

test our hypothesis we tested the activity of two known inhibitors of PFTAIRE1 in 

α7+/lacZ myoblasts and myotubes, over a wide range of concentrations (0.625 µM to 50 

µM).  These inhibitors were a generous gift from our collaborators at the NCGC, NIH.  

Both inhibitors showed a >1 ratio of fold fluorescence relative to DMSO in myoblasts 

(Figure 4A).  However, none of the inhibitors showed a >1 ratio of fold fluorescence 

relative to DMSO in myotubes (Figure 4B).  These data suggest that the increase in α7B 

integrin in myoblasts can be attributed at least partially to PFTAIRE1 inhibition.  

However, the inhibition of PFTAIRE1 is likely by itself not responsible for the increase 

in α7 integrin in differentiated myotubes.             

 

Pharmacological inhibition of SPAK/OSR1 elevates β-Galactosidase activity in 

α7+/lacZ myotubes.    

Previous studies (Results shown in Chapter 3) have shown that SU9516 increased 

levels of α7B in human DMD myotubes in a dose dependent manner (Figure 1, Chapter 

3, Sarathy et al., unpublished).  Based on the findings from the KiNativ screen, we 

observed that SU9516 inhibited the SPAK/OSR1 kinases with high potency and in a 

dose dependent manner.  Hence, we sought to determine whether the pharmacological 

inhibition of SPAK/OSR1 activity may be responsible for the elevation in α7B levels in 

myotubes.  To test our hypothesis we tested the activity of an inhibitor of SPAK/OSR1 
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kinase activity namely, a chemical STOCK1S-50699 in α7+/lacZ myotubes, over a wide 

range of concentrations (3.9 nM to 1 µM).  STOCK1S-50699 (Asinex BAS 00116897) 

has been shown to interact with the CCT domain of SPAK and OSR1 kinases and 

consequently prevents their activation by upstream WNK (with no lysine) kinases 281.  

This inhibitor has been shown to potently suppress SPAK/OSR1 activity and 

NCC/NKCC1 phosphorylation.  The inhibitor attained a 1.5- fold fluorescence relative to 

DMSO in myotubes (Figure 5).  This inhibitor attained levels of relative fold 

fluorescence that were almost as high as SU9516 in α7+/lacZ myotubes.  Additionally, the 

SPAK/OSR1 inhibitor exhibited a higher potency than SU9516, albeit with toxicity at 

higher concentrations.  This preliminary chemical screen suggests that the inhibition of 

SPAK/OSR1 activity is the molecular mechanism by which SU9516 elevates the levels 

of α7 integrin in myogenic cell lines and skeletal muscle.     

 

 SU9516 inhibits the activation of p65-NF-κB in the mdx diaphragm   

In order to gain further insight into the mechanism of action by which SU9516 

treatment attenuated dystrophic pathology and enhanced myofiber regeneration, we 

investigated the p65-NF-kB pathway.  It has been shown that pharmacological inhibition 

of p65-NF-ĸB pathway in 3 week old mdx mice increased the number of e-MyHC fibers 

by 47% 282.  In our studies, histopathological analysis of diaphragm muscle sections 

showed an ~8.8% increase in e-MyHC fibers with SU9516 treatment accompanied by an 

increase in centrally nucleated fibers, compared to vehicle treated mdx mice.  Hence, we 

hypothesized that SU9516 inhibits the p65-NF-kB pathway, thereby promoting myofiber 

regeneration in dystrophic muscle.  We treated human DMD patient myotubes with a 

http://chemnet.asinex.ru/listinput.aspx
http://chemnet.asinex.ru/listinput.aspx
http://chemnet.asinex.ru/listinput.aspx
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1µM concentration of SU9516 and observed an ~2.6-fold downregulation of p-p65-NF-

ĸB compared to the vehicle treated myotubes (Figure 6A).  Additionally.  western blot 

analysis of protein lysates from the diaphragms of 10 week old WT, vehicle and SU9516 

treated mdx mice showed a decreased level of p-p65 NF-κB in SU9516 treated mice 

diaphragms compared to vehicle treated controls (P<0.05) (Figure 6B).    

To determine whether the inhibition of the p65-NF-kB pathway is involved in the 

enhanced expression of α7 integrin, we looked at the effect of an IKKβ inhibitor called  

IKK-2 inhibitor IV (IKKi) (Calbiochem), using the α7lacZ/+ cell-based screening assay.  

While IKKi showed lower potency compared to SU9516, it attained a relative fold 

fluorescence of ~1.3 fold over DMSO for lacZ activity at a concentration of 0.625µM 

(supplementary Figure S1A).  Additionally, we also looked at a molecular target 

upstream of IKKβ, namely the TNF receptor associated factor 6 (TRAF6)-CD40 

interaction.  The TRAF6-CD40 and the downstream p65-NF-kB pathway are depicted as 

a schematic in Figure 7.  We asked the question of whether inhibition of the CD40-

TRAF6 (purchased at Calbiochem) interaction upstream of the p65-NF-kB pathway 

could lead to an increase in α7β1 integrin.  Similar to the IKKi, we observed that while 

CD40-TRAF6 showed lower potency compared to SU9516, it attained a relative fold 

fluorescence of ~1.3 fold over DMSO for lacZ activity at a concentration of 0.625µM 

(supplementary Figure S1).  Our data suggests that the inhibition of the p65-NF-kB 

pathway by SU9516 in skeletal muscle and myogenic cell lines may be partially 

responsible for the increase in α7β1 integrin.  A novel proposed mechanism of action by 

which SU9516 increases α7 integrin expression via inhibition of p65-NF-kB and the 

SPAK/OSR1 kinases is depicted in Figure 8.  These results shed light on a novel 
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pathway that can be further investigated for the development integrin enhancing 

therapeutics for DMD.   

  

DISCUSSION  

       DMD is a devastating muscle disease for which there is currently no cure or 

effective treatment option.  We have recently identified SU9516 as an α7 integrin 

enhancing small molecule in a chemical screen, however the mechanism of action by 

which this drug increases α7 in skeletal muscle remains unknown. This study sheds light 

on several pathways that are potential therapeutic targets for drug development in DMD.  

Results from this study demonstrate that SU9516 enhances fusion and promotes 

differentiation in mouse myogenic cell lines (Figure 1).  One of the drug targets 

identified as significantly downregulated with SU9516 treatment was MAP4k4 (Figure 

1).  Recently, it was shown that MAP4k4 was a suppressor of myogenic differentiation 

and the expression of a Map4k4 -inactive mutant promoted myotube formation, therefore 

implicating the kinase activity of Map4k4 for the inhibition of muscle differentiation277.  

MAP4k4 was identified as a kinase target of SU9516 in a study that investigated the 

kinase targets of commercially available kinase inhibitors 278.  Our study confirms that 

SU9516 downregulates MAP4k4 protein levels during differentiation.  This result has 

significant implications for the use of SU9516 as a drug that could potentially override 

the impaired differentiation and regeneration program seen in DMD.  Additionally, 

SU9516 can also be considered a viable co-adjuvant for myoblast transplantation studies, 

owing to its ability to enhance myoblast fusion.  Pharmacological treatment of α7+/lacZ 
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myotubes with known inhibitors of MAP4k4 did not show an increase in the β-

galatcosidase activity as depicted in Figure 3.  However, the inhibitors showed an 

increase in β-galatcosidase activity in α7+/lacZ myoblasts.  Hence, this experiment 

suggests that the MAP4k4 inhibition is responsible for the increase in α7B protein levels 

in myoblasts, potentially through enhanced fusion and differentiation. However this 

pathway is not responsible for the integrin increase seen in myotubes, which are a more 

suited model for clinical investigation of DMD drugs.  

A molecular target we investigated was the tetraspanin CD82.  Tetraspanins are 

involved in the regulation of several critical cellular processes namely cell adhesion, 

migration, fusion and proliferation 283.  Additionally it is known that CD82 inhibits 

integrins, epidermal growth factor receptor (EGFR), hepatocyte growth factor or c-Met 

and urokinase receptor (u-PAR) or CD87 284.  Recently it was shown utilizing flow 

cytometry, that in CD82-null endothelial cells (CD82-null ECs), integrin α6 and αV were 

upregulated in the ECs.  However, the increase in surface level of integrins was not 

accompanied by an increase in integrin α6 mRNA 285.  It can therefore be suggested that 

the increase in integrin with elimination of CD82 could be a result of changes in protein 

turnover rather than increased transcription of integrin genes.  The results from this study 

as well as results reported in Chapter 3 of this dissertation demonstrate the increases in 

α7β1 integrin protein levels with SU9516 treatment in both murine and human myogenic 

cell lines as well as in vivo in the mdx mouse model of DMD (Sarathy et al., 

unpublished).  However, our studies also showed that there was no corresponding 

increase in the transcript levels of integrin α7 and β1 in skeletal muscle of mdx mice.  

Hence, we looked at levels of CD82 to see whether SU9516 targets the tetraspanin 
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thereby elevating the levels of α7B integrin in skeletal muscle via a protein turnover 

mechanism.  Our results demonstrated that SU9516 downregulated the levels of CD82, 

24 hours post differentiation and this decrease preceded the increase in α7B integrin 

which was only seen 48 hours post treatment in C2C12 myogenic cell lines (Figure 2).  

Further experiments to show effects of CD82 downregulation need to be performed to 

investigate the interactions between CD82 and α7β1 integrin in skeletal muscle.            

Our study also identified SU9516 as an inhibitor of p65-NF-κB signaling 

activation in human DMD myotubes as well as in mdx skeletal muscle.  Increased NF-κB 

activity in mdx mice is associated with both immune cells and regenerative muscle fibers 

and inhibiting NF-κB signaling either genetically or by pharmacological means promoted 

formation of new myofibers in response to degeneration282.  NF-κB has been implicated 

as a negative regulator of myogenesis282.  Hence, we conclude that the increase in 

centrally nucleated myofibers and eMHC-positive myofibers seen in the diaphragm of 

SU9516 treated mdx mice could be attributed to SU9516 inhibition of p65 activation.  In 

DMD, inflammatory response to myofiber damage is a secondary effect of the disease 

that further exacerbates the pathogenesis.  A therapeutic target for developing anti-

inflammatory therapies for DMD is NF-κB, a pro-inflammatory transcription factor that 

is active in the dystrophin deficient muscle of both DMD patients and the mdx mouse 

286,287.  The NF-κB pathway plays a role in inducing the ubiquitin-proteasome pathway in 

muscle 288 causing increased protein degradation 289,290.  In the cytoplasm of mammalian 

cells, under non-stress conditions, NFκB remains in an inactive state; bound to the 

inhibitor protein IκB. When induced by a variety of specific cell stimuli like TNF-α, the 

activated IκB kinase (IKK) complex phosphorylates the IκB inhibitory protein (IκB).  
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Once phosphorylated, IκB is targeted for polyubiquitination and subsequent degradation 

by the 26S proteasome.  This event leads to the nuclear translocation of NF-κB, where it 

regulates transcription of genes encoding a wide array of factors involved in 

inflammation, immunity, cell proliferation, differentiation, and survival291,292.  In 

mammals, the NF-κB family consists of five subunits, p65 (RelA), c-Rel, RelB, p50, and 

p52 293.  Knockout of p65, but not other subunits of NF-κB, enhances myogenic activity 

in MyoD-expressing mouse embryonic fibroblasts294.  In vivo studies showed that 

haploinsufficency of p65 enhances muscle regeneration in the skeletal muscle of both 

mdx and wild-type (wt) mice282.  Additionally, AAV-mediated delivery of p65-shRNA 

alleviated muscle pathologies in mdx mice by selectively reducing NF-κB/p65 activity295.   

Previously, treatment of mdx mice in vivo with therapies targeted to inhibit NF-κB 

activation have been shown to ameliorate the dystrophic pathology, including infliximab 

296, N-acetylcysteine (NAC) 297, pyrrolidine dithiocarbamate (PDTC) 298 and VBP15 247.  

These genetic and pharmacological studies show that the p65 NF-κB subunit plays a 

crucial role in muscle health and points to a potential target for DMD therapy. Our study 

showed that pharmacological inhibition of the p65-NF-κB signaling pathway, utilizing 

IKKi, a known inhibitor of IKKβ and p65-NF-κB in myogenic cell lines282, increased the 

β-galactosidase activity in α7lacZ/+ myotubes.  Hence, we suggest that the increase in 

protein levels of α7B and β1D with SU9516 treatment can be attributed at least partially 

to the inhibition of p65 activation in myofibers.    

The TNF receptor-associated factor 6 (TRAF6) is an adaptor protein which acts 

as a signaling intermediate for several receptor-mediated signaling events and 

subsequently  leads to the stimulus-dependent activation of several signaling pathways 
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299,300. It is known that TRAF6 is a signal transducer for the activation of IκB kinase 

(IKK) and the subsequent activation of NF-κB in response to proinflammatory cytokines, 

bacterial products, Toll/IL1 family and from receptors such as receptor activator of NF-

κB (RANK) and CD40 300,301.  A previous study showed that targeted deletion of TRAF6 

improved muscle strength and reduced the dystrophic pathology and the activation of 

proinflammatory transcription factor nuclear factor-kappa B (NF-κB) in 7-week-old mdx 

mice302.  Our study showed that pharmacological inhibition of the CD40-TRAF6 

interaction increased the lacZ activity in α7lacZ/+ myotubes and this suggests that the 

increase in protein levels of α7B with SU9516 treatment, can be attributed at least 

partially to the inhibition of p65 activation in myofibers, thereby corroborating our 

observations with the IKKi dose response treatment of  α7lacZ/+ myotubes.  Future 

investigation into this pathway would involve assessing the levels of α7 integrin in an 

mdx; p65+/- haploinsufficieny model to confirm whether inhibition of p65NF-κB is 

responsible for the elevation of α7B integrin.       

The KiNativ assay indicated that SU9516 potently inhibited 3 kinases in human 

DMD myotubes- PFTAIRE1, SPAK and OSR1.  Currently, there is no significant 

literature describing the roles of these kinases in skeletal muscle or muscle disease 

models.  Identified in the murine nervous system, the PFTAIRE1 kinase belongs to the 

Cdc2-related serine/threonine family of protein kinases and is known to be a critical 

regulator of cyclins and the cell cycle 303,304.  Our results showed that while known 

inhibitors of the PFTAIRE1 pathway increased β-galactosidase activity in α7lacZ+/- 

myoblasts, the inhibitors did not increase β-galactosidase activity in myotubes.  This 

suggests that PFTAIRE1 inhibition by SU9516 may be responsible for the increase in 
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α7B seen in myoblasts, however an unlikely mechanism by which α7B is elevated in 

myotubes with SU9516 treatment.    

The SPAK-OSR1 kinases are phosphorylated by the (with no lysine) upstream 

kinases WNK1 and WNK4 305.  When activated, the SPAK-OSR1 kinases phosphorylate 

and activate the Na+ Cl- cotransporter (NCC) and the Na+ K+ 2Cl- cotransporters 

(NKCC2) that control salt reabsorption in the kidney 306,307.  There is no current literature 

that describes the role of the SPAK/OSR1 kinases in maintaining skeletal muscle 

homeostasis.  Our study showed that pharmacological inhibition of the SPAK/OSR1 

signaling pathway, increased the β-galactosidase activity in α7lacZ/+ myotubes, 1.5-fold 

over DMSO treated myotubes with a greater potency than SU9516.  This result suggests 

that the increase in muscle protein levels of α7B and β1D with SU9516 treatment in vivo, 

can be attributed to the inhibition of the SPAK/OSR1 activation in myofibers.  The 

mechanism by which the inhibition of SPAK/OSR1 elevates α7 integrin expression is 

unknown and future studies will include an investigation of the WNK-SPAK/OSR1 

mediated regulation of ubiquitination and endocytosis of α7 integrin.    

It was shown in an inflammatory intestinal bowel disease model that the 

knockdown of pro-inflammatory NF-κB (p65) by siRNA decreased SPAK expression 

significantly and NF-κB-binding site on the SPAK gene was essential for stimulated 

SPAK promoter activity by TNF-α 308.  It is known that p65-NF-κB, is abnormally active 

in the dystrophin deficient muscle of both DMD patients and the mdx mouse 286,287,309.  

This could potentially lead to the abnormal activation of the SPAK-NCC 

phosphorylation in dystrophic muscle.  Patients with DMD have an elevated muscular 
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sodium concentration310 and the abnormal activation of the NCC channels in DMD may 

be responsible for the increased intracellular sodium load.  This may suggest that through 

the inhibition of p65- NF-κB activation, SU9516 inhibits the abnormal activation of the 

SPAK kinase-NCCNKCC cascade, thereby restoring the ion homeostasis in myofibers of 

dystrophic mice.  The proposed signaling mechanism of how the TRAF6- p65-NF-kB- 

SPAK/OSR1 pathway regulates Na+ ion balance is depicted in Figure 7.  While the 

inhibitors used in this study targeted at the MAP4k4, PFTAIRE1, SPAK/OSR1 and the 

p65-NF-κB pathway elicited interesting preliminary results that shed light on the 

potential mechanisms of action by which SU9516 increases α7β1 integrin expression in 

muscle, it must be noted that the inhibitors are not specific to the kinases described in 

this study.  Future studies would include using molecular biology approaches to 

eliminate the expression of the aforementioned kinases and assess levels of α7β1 

integrin.  Together, this study identifies some of the molecular targets of the small 

molecule integrin enhancing drug SU9516.  The identification of these pathways is 

important for the further development of SU9516 as a candidate for DMD treatment.  

This therapeutic may have implications for the treatment of DMD and other forms of 

muscle disease.   
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Figure 1:- SU9516 promotes fusion in C2C12 myoblasts through MAP4k4 

downregulation.  C2C12 myoblasts were differentiated with 12 µM SU9516 or DMSO.  

Post 24, 48, 72 and 96 hrs cells (n=3/group) were fixed and immunostained for MHC.  

(A) Myofibers stained at 72 hrs (green-MHC; blue-DAPI) Magnification 40X, Scale 

bar=100µm.  (B) At 72 hrs, myotube diameters were increased with SU9516 treatment 
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versus DMSO (C) The fusion index at 72 hrs calculated from the ratio of the number of 

nuclei in MHC-positive myotubes to the total number of nuclei in one field for five 

random microscopic fields. SU9516 treatment promoted myoblast fusion (D) SU9516 

treatment increased fraction of total myotubes with higher numbers of nuclei.  Results 

represent means and SEM for three independent experiments. *P<0.05 *** P < 0.001. 

(E)  SU9516 downregulates total MAP4k4 protein levels at 24 hours post differentiation 

*P<0.05, however (F) (G) and (H) the levels of MAP4k4 were significantly different 

from the DMSO treated cells with consecutive days of differentiation.    
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Figure 2:- MAP4k4 inhibition increases β-Galactosidase activity in α7+/lacZ 

myoblasts but not myotubes.  A) A dose curve with different concentrations of 7 

MAP4k4 inhibitors was generated by treating α7+/lacZ myoblasts.  4 of the 7 inhibitors 

showed a >1 fold fluorescence over DMSO. B)  A dose curve with different 

concentration of 7 different MAP4k4 inhibitors was generated by treated α7+/lacZ 

myotubes.  None of the inhibitors showed a >1fold fluorescence over DMSO.  
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Figure 3- CD82 downregulation with SU9516 treatment precedes α7 integrin level 

increases during differentiation.  C2C12 myoblasts were differentiated with 12 µM 

SU9516 or DMSO.  Post 24, 48, 72 and 96 hrs cells (n=3/group) were harvested and 

analyzed for the levels of CD82 (KAI1) and α7B integrin.  A) Western blot images 

depicting the levels of CD82 and α7B integrin over the course of 96 hours of 

differentiation.  CD82 levels are downregulated at 24 hours, while integrin α7B levels 
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are upregulated and maintained 48 hours post treatment with SU9516.  B) Western blot 

images and analysis show that levels of CD82 are significantly upregulated post 24 hours 

differentiation and significantly downregulated with SU9516 treatment in differentiating  

C2C12 myoblasts. C)  Quantification of the levels of α7B and CD82 in differentiating 

C2C12 myoblasts show that CD82 levels decrease at 24 hours of SU9516 treatment and 

α7B integrin levels are upregulated at 48 hours of treatment.  While CD82 levels are not 

significantly downregulated at 72 hrs, the levels of α7B are maintained and elevated 48 

hours post differentiation.    Results represent means and SEM for three independent 

experiments. *P<0.05, **P<0.01, *** P < 0.001.   GM-Growth media 
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Kinase Reference Sequence Labeling Site

SU9516            

1 µM

SU9516         

0.5 µM

SU9516         

0.1 µM IC50 (µM)

ABL, ARG UniRef100_P00519, UniRef100_P42684LMTGDTYTAHAGAKFPIK Activation Loop -4.4 33.1 32.0 >1

ABL, ARG UniRef100_P00519, UniRef100_P42684YSLTVAVKTLKEDTMEVEEFLK Lys1 -92.4 -33.6 15.8 >1

AKT1 UniRef100_P31749GTFGKVILVK ATP Loop Anchor G2 -10.8 -22.6 -9.0 >1

AKT2, AKT3 UniRef100_Q9Y243, UniRef100_P31751GTFGKVILVR ATP Loop Anchor G2 -19.3 -33.7 -15.0 >1

AMPKa1, AMPKa2 UniRef100_P54646, UniRef100_Q96E92DLKPENVLLDAHMNAK Lys2 -50.9 -1.5 -3.8 >1

ANPb UniRef100_P20594GMAFLHNSIISSHGSLKSSNCVVDSRLys2 4.8 -73.2 -48.8 >1

ARAF UniRef100_P10398DLKSNNIFLHEGLTVK Lys2 -11.9 -13.6 -2.8 >1

AurA UniRef100_O14965DIKPENLLLGSAGELK Lys2 30.8 14.4 18.9 >1

AurA UniRef100_O14965FILALKVLFK Lys1 18.2 31.6 29.9 >1

BRAF UniRef100_P15056DLKSNNIFLHEDLTVK Lys2 11.6 18.0 13.6 >1

CaMK1a UniRef100_Q14012LVAIKCIAK Lys1 -21.5 -17.7 -14.0 >1

CaMK1d UniRef100_Q8IU85LFAVKCIPK Lys1 -16.4 -17.0 -14.3 >1

CaMK2b UniRef100_Q53H78LCTGHEYAAKIINTK Lys1 20.0 22.5 18.3 >1

CaMK2d UniRef100_Q13557IPTGQEYAAKIINTKK Lys1 21.0 27.6 7.6 >1

CaMK2g UniRef100_Q13555TSTQEYAAKIINTK Lys1 27.2 21.4 12.3 >1

CaMKK2 UniRef100_Q96RR4DIKPSNLLVGEDGHIK Lys2 -34.8 12.2 26.4 >1

CASK UniRef100_O14936ETGQQFAVKIVDVAK Lys1 10.3 16.0 -1.4 >1

CCRK UniRef100_Q8IZL9DLKPANLLISASGQLK Lys2 -2.9 -25.3 -19.2 >1

CDC2 UniRef100_Q5H9N4DLKPQNLLIDDKGTIK Lys2 9.8 13.5 32.4 >1

CDK2 UniRef100_P24941DLKPQNLLINTEGAIK Lys2 60.3 61.8 45.0 <0.1

CDK4 UniRef100_P11802DLKPENILVTSGGTVK Lys2 64.0 45.1 26.9 0.59

CDK5 UniRef100_Q00535DLKPQNLLINR Lys2 76.9 70.3 31.4 0.26

CDK7 UniRef100_P50613DLKPNNLLLDENGVLK Lys2 -20.8 -87.4 -92.6 >1

CHK2 UniRef100_O96017DLKPENVLLSSQEEDCLIK Lys2 10.6 -0.4 1.9 >1

CSK UniRef100_P41240VSDFGLTKEASSTQDTGKLPVKDFG Motif 4.8 -1.1 -2.1 >1

DCAMKL1 UniRef100_O15075DIKPENLLVYEHQDGSK Lys2 17.3 20.9 26.2 >1

DGKA UniRef100_P23743IDPVPNTHPLLVFVNPKSGGK ATP -49.5 -58.4 -37.6 >1

DGKQ UniRef100_P52824GRLLTALVLPDLLHAKLPPDSCPLLVFVNPKSGGLKATP -26.5 -85.8 -27.6 >1

DNAPK UniRef100_P78527KGGSWIQEINVAEK ATP -42.2 -15.3 -39.1 >1

eEF2K UniRef100_O00418YIKYNSNSGFVR ATP -1.1 -36.8 -24.8 >1

EGFR UniRef100_P00533LLGAEEKEYHAEGGKVPIK Activation Loop 17.8 -18.1 -48.5 >1

EGFR UniRef100_P00533IPVAIKELR Lys1 -14.4 -24.3 -43.8 >1

Erk1 UniRef100_P27361DLKPSNLLINTTCDLK Lys2 22.1 13.1 23.6 >1

Erk2 UniRef100_P28482DLKPSNLLLNTTCDLK Lys2 21.0 8.9 16.5 >1

FER UniRef100_P16591TSVAVKTCKEDLPQELK Lys1 -4.2 8.1 -1.4 >1

FES UniRef100_P07332LRADNTLVAVKSCR Lys1 10.6 -0.4 12.4 >1

FRAP UniRef100_P42345IQSIAPSLQVITSKQRPR ATP -16.9 -8.8 -1.2 >1

FYN, SRC, YES UniRef100_P12931, UniRef100_P07947, UniRef100_P06241QGAKFPIKWTAPEAALYGR Activation Loop 12.0 26.1 33.5 >1

GCK UniRef100_Q12851DIKGANLLLTLQGDVK Lys2 48.1 34.6 31.8 >1

GCN2 UniRef100_Q9P2K8DLKPVNIFLDSDDHVK Lys2 8.5 -31.4 -7.1 >1

GSK3A UniRef100_P49840DIKPQNLLVDPDTAVLK Lys2 37.0 13.4 2.3 >1

GSK3B UniRef100_P49841DIKPQNLLLDPDTAVLK Lys2 14.9 13.6 20.4 >1

HER2/ErbB2 UniRef100_P04626GIWIPDGENVKIPVAIKVLR Lys1 -1.6 -3.0 -29.8 >1

HPK1 UniRef100_Q92918DIKGANILINDAGEVR Lys2 29.8 0.0 -22.1 >1

IKKa UniRef100_O15111DLKPENIVLQDVGGK Lys2 9.5 12.8 27.1 >1

IKKb UniRef100_O14920DLKPENIVLQQGEQR Lys2 20.7 -19.4 -1.7 >1

ILK UniRef100_Q13418WQGNDIVVKVLK Lys1 -19.6 -1.9 8.4 >1

ILK UniRef100_Q13418ISMADVKFSFQCPGR Protein Kinase Domain -53.8 5.8 26.9 >1

IRAK1 UniRef100_P51617AIQFLHQDSPSLIHGDIKSSNVLLDERLys2 -13.4 0.6 -7.9 >1

IRAK4 UniRef100_Q9NWZ3DIKSANILLDEAFTAK Lys2 19.7 3.4 -0.3 >1

JAK1 domain2 UniRef100_P23458IGDFGLTKAIETDKEYYTVK DFG Motif -47.7 -49.9 -44.7 >1

JNK1, JNK2, JNK3 UniRef100_P45983, UniRef100_P53779, UniRef100_P45984DLKPSNIVVK Lys2 -13.2 -4.4 -19.0 >1

KHS1 UniRef100_Q9Y4K4NVHTGELAAVKIIK Lys1 9.5 -1.6 -8.6 >1

KHS2 UniRef100_Q8IVH8NVNTGELAAIKVIK Lys1 -34.5 4.1 -1.5 >1

LATS2 UniRef100_Q9NRM7DIKPDNILIDLDGHIK Lys2 -17.2 -24.1 -7.4 >1

LKB1 UniRef100_Q15831DIKPGNLLLTTGGTLK Lys2 26.2 17.6 12.0 >1

LOK UniRef100_O94804DLKAGNVLMTLEGDIR Lys2 -56.1 2.0 23.8 >1
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MAP2K1, MAP2K2 UniRef100_P36507, UniRef100_Q02750DVKPSNILVNSR Lys2 15.3 15.9 2.7 >1

MAP2K1, MAP2K2 UniRef100_P36507, UniRef100_Q02750KLIHLEIKPAIR Lys1 8.5 30.6 -2.1 >1

MAP2K3 UniRef100_P46734DVKPSNVLINK Lys2 14.0 -2.0 -8.5 >1

MAP2K4 UniRef100_P45985DIKPSNILLDR Lys2 21.7 13.5 17.0 >1

MAP2K6 UniRef100_P52564DVKPSNVLINALGQVK Lys2 7.8 6.9 8.5 >1

MAP2K7 UniRef100_O14733DVKPSNILLDER Lys2 6.2 -34.3 -59.9 >1

MAP3K2 UniRef100_Q9Y2U5ELAVKQVQFDPDSPETSKEVNALECEIQLLKLys1 1.2 -19.4 -0.6 >1

MAP3K2, MAP3K3 UniRef100_Q9Y2U5, UniRef100_Q99759DIKGANILR Lys2 34.1 6.3 -2.5 >1

MAP3K4 UniRef100_Q9Y6R4DIKGANIFLTSSGLIK Lys2 5.7 -59.5 -75.4 >1

MAP3K5 UniRef100_Q99683DIKGDNVLINTYSGVLK Lys2 -12.0 -3.7 -30.7 >1

MARK1 UniRef100_Q9P0L2DLKAENLLLDGDMNIK Lys2 11.9 9.3 -5.3 >1

MARK2, MARK3 UniRef100_P27448, UniRef100_Q7KZI7DLKAENLLLDADMNIK Lys2 -3.3 26.3 12.4 >1

MARK3 UniRef100_P27448EVAIKIIDKTQLNPTSLQK Lys1 18.1 30.5 26.3 >1

MARK3, MARK4 UniRef100_Q96L34, UniRef100_P27448EVAIKIIDK Lys1 -14.6 -16.8 2.0 >1

MAST1, MAST2 UniRef100_Q6P0Q8, UniRef100_Q9Y2H9DLKPDNLLITSMGHIK Lys2 -93.1 -19.8 -2.5 >1

MAST3 UniRef100_O60307DLKPDNLLITSLGHIK Lys2 27.8 2.7 -6.9 >1

MAST4 UniRef100_O15021DLKPDNLLVTSMGHIK Lys2 -9.6 18.9 27.9 >1

MER, TYRO3 UniRef100_Q06418, UniRef100_Q12866KIYSGDYYR Activation Loop -29.4 8.4 1.2 >1

MET UniRef100_P08581DMYDKEYYSVHNK Activation Loop -46.9 -5.8 -19.2 >1

MLKL UniRef100_Q8NB16APVAIKVFK Lys1 -2.0 18.5 10.3 >1

MSK1 domain1 UniRef100_O75582DIKLENILLDSNGHVVLTDFGLSKLys2 29.5 27.4 1.8 >1

MSK2 domain1 UniRef100_O75676DLKLENVLLDSEGHIVLTDFGLSKLys2 27.2 19.4 -18.1 >1

MST1 UniRef100_Q13043ETGQIVAIKQVPVESDLQEIIK Lys1 25.5 21.7 6.4 >1

MST2 UniRef100_Q13188ESGQVVAIKQVPVESDLQEIIKLys1 33.5 15.6 -9.0 >1

MST3 UniRef100_Q9Y6E0DIKAANVLLSEHGEVK Lys2 22.5 13.6 -6.0 >1

MST4, YSK1 UniRef100_O00506, UniRef100_Q9P289DIKAANVLLSEQGDVK Lys2 45.4 35.0 7.7 >1

NDR1 UniRef100_Q15208DIKPDNLLLDSK Lys2 6.5 -16.1 -2.0 >1

NEK1 UniRef100_Q96PY6DIKSQNIFLTK Lys2 -0.1 -5.2 -8.3 >1

NEK3 UniRef100_P51956SKNIFLTQNGK Activation Loop 8.3 -30.3 2.1 >1

NEK4 UniRef100_P51957DLKTQNVFLTR Lys2 -5.1 -32.7 -9.6 >1

NEK6, NEK7 UniRef100_Q8TDX7, UniRef100_Q9HC98DIKPANVFITATGVVK Lys2 9.4 -2.0 -9.0 >1

NEK7 UniRef100_Q8TDX7AACLLDGVPVALKK Lys1 -8.0 -19.5 2.7 >1

NEK8 UniRef100_Q86SG6DLKTQNILLDK Lys2 -6.5 -9.5 -15.4 >1

NEK9 UniRef100_Q8TD19DIKTLNIFLTK Lys2 12.8 -12.8 -5.5 >1

NuaK1 UniRef100_O60285VVAIKSIR Lys1 1.4 23.7 -9.9 >1

OSR1 UniRef100_C9JIG9, UniRef100_O95747DVKAGNILLGEDGSVQIADFGVSAFLATGGDITRLys2 85.1 82.8 81.4 <0.1

p38a UniRef100_Q16539QELNKTIWEVPER Protein Kinase Domain 28.0 28.2 47.3 >1

PCTAIRE2, PCTAIRE3 UniRef100_Q00537, UniRef100_Q07002SKLTENLVALKEIR Lys1 21.3 14.3 -7.5 >1

PDK1 UniRef100_O15530EYAIKILEK Lys1 28.8 3.9 34.0 >1

PFTAIRE1 UniRef100_O94921LVALKVIR Lys1 78.6 67.4 36.0 0.20

PHKg2 UniRef100_P15735ATGHEFAVKIMEVTAER Lys1 -31.1 2.6 23.6 >1

PIK3C3 UniRef100_Q8NEB9TEDGGKYPVIFKHGDDLR ATP -42.1 -18.2 -52.1 >1

PIK3CD UniRef100_O00329VNWLAHNVSKDNRQ ATP 7.4 0.2 -21.6 >1

PIP4K2A UniRef100_P48426AKELPTLKDNDFINEGQK ATP -0.8 21.7 15.5 >1

PIP4K2B UniRef100_P78356AKDLPTFKDNDFLNEGQK ATP -15.6 0.1 -10.4 >1

PIP4K2C UniRef100_Q8TBX8TLVIKEVSSEDIADMHSNLSNYHQYIVKATP -46.7 1.2 14.9 >1

PITSLRE UniRef100_P21127DLKTSNLLLSHAGILK Lys2 -41.0 -30.2 -41.6 >1

PKR UniRef100_P19525DLKPSNIFLVDTK Lys2 -0.5 -10.8 -2.1 >1

PLK1 UniRef100_P53350CFEISDADTKEVFAGKIVPK Lys1 26.1 32.3 18.5 >1

PRPK UniRef100_Q96S44FLSGLELVKQGAEAR ATP Loop -24.0 -35.8 -26.4 >1

RAF1 UniRef100_P04049DMKSNNIFLHEGLTVK Lys2 -39.7 24.3 33.9 >1

RSK1 domain1, RSK2 domain1, RSK3 domain1UniRef100_P51812, UniRef100_Q15418, UniRef100_Q15349DLKPENILLDEEGHIK Lys2 32.7 30.2 38.5 >1

RSK2 domain1 UniRef100_P51812DLKPENILLDEEGHIKLTDFGLSKESIDHEKLys2 25.3 29.9 32.8 >1

RSK2 domain2 UniRef100_P51812DLKPSNILYVDESGNPESIR Lys2 21.8 1.5 12.4 >1

RSK3 domain1 UniRef100_Q15349DLKPENILLDEEGHIKITDFGLSKLys2 43.7 39.7 38.3 >1

RSKL1 UniRef100_Q96S38VLGVIDKVLLVMDTR ATP -25.4 -0.2 27.0 >1

SGK UniRef100_O00141HKAEEVFYAVKVLQK Lys1 -38.3 -39.6 -19.9 >1

SGK3 UniRef100_Q96BR1FYAVKVLQK Lys1 36.0 11.6 -2.2 >1

SIK UniRef100_P57059TQVAIKIIDK Lys1 51.4 13.5 25.1 0.95

SLK UniRef100_Q9H2G2DLKAGNILFTLDGDIK Lys2 22.0 -21.2 -13.3 >1
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Table 1- Results of the KiNativ Assay performed on human DMD myotubes.  In 

order to determine the kinase targets of SU9516, human DMD patient myotubes were 

treated with 0.01, 0.1, 0.5 and 1µM concentrations of SU9516 after which, lysates were 

run through a KiNativ in situ kinase profiling screen to identify drug targets.  In order to 

minimize off-target kinase inhibition which occurred at lower concentrations than the 

effective α7 Integrin enhancing range, the 10nM SU9516 treated lysate was used as the 

negative control.  The percent inhibition of the kinases obtained in this 10nM treatment 

smMLCK UniRef100_Q15746QGIVHLDLKPENIMCVNK Lys2 -38.0 -0.2 32.1 >1

SRPK1, SRPK2 UniRef100_P78362, UniRef100_Q96SB4FVAMKVVK Lys1 -35.8 11.9 6.2 >1

STLK3 UniRef100_Q9UEW8DLKAGNILLGEDGSVQIADFGVSAFLATGGDVTRLys2 84.7 79.4 79.1 <0.1

STLK5 UniRef100_Q7RTN6YSVKVLPWLSPEVLQQNLQGYDAKActivation Loop 13.6 18.1 26.1 >1

TAO1, TAO3 UniRef100_Q7L7X3, UniRef100_Q9H2K8DIKAGNILLTEPGQVK Lys2 26.6 -6.3 -7.5 >1

TAO2 UniRef100_Q9UL54DVKAGNILLSEPGLVK Lys2 32.6 12.8 -27.8 >1

TEC UniRef100_P42680YVLDDQYTSSSGAKFPVK Activation Loop 28.9 -26.9 -39.3 >1

TLK1 UniRef100_Q9UKI8YLNEIKPPIIHYDLKPGNILLVDGTACGEIKLys2 -13.2 1.3 -3.9 >1

TLK2 UniRef100_Q86UE8YLNEIKPPIIHYDLKPGNILLVNGTACGEIKLys2 5.2 24.1 11.4 >1

ULK1 UniRef100_O75385DLKPQNILLSNPAGR Lys2 12.1 -3.1 -1.8 >1

VRK2 UniRef100_Q86Y07MLDVLEYIHENEYVHGDIKAANLLLGYKLys2 -26.4 2.2 -41.9 >1

Wnk1, Wnk2, Wnk3 UniRef100_Q9Y3S1, UniRef100_D3DUP1, UniRef100_Q9BYP7DLKCDNIFITGPTGSVK Lys2 -40.2 -29.0 -20.4 >1

YANK3 UniRef100_Q86UX6DVKPDNILLDER Lys2 0.6 12.1 13.9 >1

ZC1/HGK, ZC2/TNIK, ZC3/MINKUniRef100_O95819, UniRef100_Q9UKE5, UniRef100_Q8N4C8DIKGQNVLLTENAEVK Lys2 38.0 11.1 -15.5 >1

Labeling Site Key

Lys1 Conserved Lysine 1

Lys2 Conserved Lysine 2

ATP Loop ATP binding loop

Activation LoopActivation loop

ATP ATP site in non-canonical kinase (e.g. lipid kinase)

Protein Kinase DomainOther lysine within kinase domain, possibly not in ATP binding site

Other Labeling of residue outside of the protein kinase domain, possibly not in ATP binding site

>90% Inhibition

75 - 90% Inhibition

50 - 75% Inhibition

35 - 50% Inhibition

No change 

>100% increase in MS signal (>2 fold increase)

ND Not determined

Data points inhibited >35% & not considered significant are left uncolored
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were therefore subtracted from the other treatment percentages.  The kinases inhibited 

with maximum potency were the PFTAIRE1, STE20/SPS1-related proline-alanine-rich 

protein kinase (STK39/STLK3/SPAK) and the SPAK homolog oxidative stress response 

-1 (OSR1) kinase.     
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Figure 4- PFTAIRE1 inhibition increases β-Galactosidase activity in α7+/lacZ myoblasts 

but not myotubes.  A) A dose curve with different concentrations of 2 different 

PFTAIRE1 inhibitors was generated by treating α7+/lacZ myoblasts.  Both inhibitors 

showed a >1 fold fluorescence over DMSO. B)  A dose curve with different 

concentration of 2 different PFTAIRE1 inhibitors was generated by treated α7+/lacZ 

myotubes.  None of the inhibitors showed a >1-fold fluorescence over DMSO.  The X-

axis represents the log of the concentration of the compound in mol/L or M units.     
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Figure 5- Pharmacological inhibition of the SPAK/OSR1 activity in α7+/lacZ 

myotubes increases the β-galactosidase activity.  A dose curve with different 

concentrations of a chemical called STOCK1S-50699 an inhibitor of SPAK/OSR1 

activity was generated by treating α7+/lacZ myotubes.  At a concentration of 7.8 nM, this 

inhibitor showed a ~ 1.5 fold increase in lacZ activity relative to DMSO treatments.  At 

concentrations >90 nM, the drug exhibits toxicity as is reflected in the drop in fold-

fluorescence levels relative to DMSO.       
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Figure 6 -SU9516 inhibits the activation of p65-NF-kB in human DMD myotubes 

and mdx skeletal muscle. A)  Western blot analysis of phosphorylated p65-NF-kB 

showed that SU9516 treatment decreased the level of p-p65-NF-kB by ~2.6 fold in 

human DMD patient myotubes.  B) Western blot analysis for total phosphorylated p65-

NF-kB showed that SU9516 treatment decreases the level of p-p65-NF-kB by > 3-fold in 

the diaphragm of mdx mice, compared to the vehicle treated counterparts. (n=3 WT, 

n=4/mdx treatment group,*P<0.05, **P<0.01).      
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Figure 7- Schematic of a proposed mechanism by which TRAF6-p65-NF-κB 

pathway regulates SPAK/OSR1 kinase activity.    
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Figure 8- Proposed model for mechanism of action by which SU9516 elevates α7 

integrin in dystrophic muscle fibers.  In DMD muscle, we propose that the abnormal 

activation of the p65-NF-kB pathway results in an abnormal activation of the 

SPAK/OSR1 activity.  SU9516 inhibits the activation of p65-NF-kB and therefore 

decreases the activity of SPAK/OSR1 kinases.  This inhibitory effect of SU9516 results 

in an increase in the levels of α7 integrin through a mechanism that is currently 

unknown.     
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Figure S1- Dose response curves for inhibitors of the p65-NF-kB pathway in α7+/lacZ 

myotubes.  A dose curve with different concentrations of a IKK-2 IV inhibitor was 

generated by treating α7+/lacZ myotubes.  The inhibitor showed a >1 fold fluorescence 

over DMSO between 31 nM-125 nM concentrations, but these levels were <1.5-fold 

fluorescence over DMSO.  A dose curve with different concentrations of CD40-TRAF6 

inhibitor was generated by treating α7+/lacZ myotubes.  The inhibitor showed a >1 fold 

fluorescence over DMSO between 39 nM to 5µM concentrations, but these levels were 

<1.5-fold fluorescence over DMSO.  A dose-response curve for SU9516 was established 

in α7+/lacZ myotubes and a >1.5 fold-fluorescence over DMSO was obtained between 625 

nM to 10 µM concentrations.   
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Chapter 5  

CONCLUSIONS AND FUTURE DIRECTIONS  
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It has been 30 years since the discovery of the dystrophin gene and the mutations 

in the gene that cause DMD, however there is still no cure for this fatal disease.  The 

symptoms of the disease can be temporarily managed and lifespan can be slightly 

prolonged with appropriate medical attention including cardiac and respiratory care.  

However, DMD is a debilitating condition with patients suffering from progressive 

muscle weakness and eventual death in their 20s or 30s.  Besides the emotional burden, 

DMD imposes a substantial financial burden on the patients and their families. A recent 

study showed that combining factors including income loss, finances from lost leisure 

time, and reduced quality of life (intangible costs), the mean annual household burden of 

DMD was between $58,440 and $71,900 311.  The annual total societal burden as 

assessed across four countries- the United States, Germany, Italy and the United 

Kingdom, was between $80,120 and $120,910 per patient, and increased significantly as 

the disease progressed 311.  Hence, the need for clinical advancement of treatments for 

DMD has never been greater.   

Genetic therapies for DMD that include AAV mediated delivery of mini-

dystrophin genes, antisense oligonucleotides and stop-codon read through utilizing drugs 

such as gentamicin, are a straightforward approach to DMD treatments and aim at 

restoring dystrophin to the sarcolemma of the patient’s myofibers.  Cell-based 

transplantation therapies are also being explored.  However, a serious problem associated 

with these aforementioned therapeutic modalities is the risk of developing a severe 

immune response to the virus and/or the dystrophin which is recognized as a neoantigen 

or non-self-gene.  Cell based therapies also face similar problems in addition to 

scalability complications as well as ethical concerns.  Protein therapeutics currently 
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being explored for DMD include Laminin-111, Galectin-1, MG53, Tat-Utrophin and 

Biglycan.  However, a drawback of protein therapeutics could also be possibility of 

immunogenicity.   While new methods directed towards protein therapeutic development 

seek to improve clinical efficacy, there is also the likelihood of potential immunogenic 

sequences in the modified proteins.  The benefits of small molecule drugs include ease of 

manufacturing and delivery compared to protein therapies and patient preference for oral 

ingestion of a therapeutic (e.g., a tablet or capsule) over an injectable protein or antibody 

therapeutic.  Therefore, it is our belief that small molecule drugs will continue to account 

for the majority of drugs in development and on the market in the future.  Hence, our 

studies focus on the development of small molecule therapeutics for DMD.    

Our lab is focused on α7β1 integrin as a therapeutic target for DMD.  Recently, 

research has turned to the integrin family of adhesion molecules in an attempt to better 

understand the intracellular signal transduction pathway in normal and dystrophic 

skeletal muscle.  Expression of the integrin family is developmentally regulated, the 

α7β1 integrin being the predominant laminin binding integrin in adult skeletal, cardiac 

and vascular smooth muscle.  Integrins play major roles in muscle differentiation, and 

α7β1 integrin is a critical receptor for myoblast migration.  In adult skeletal muscle, 

integrins are concentrated at the neuromuscular junction (NMJ) and the myotendinous 

junction providing an important link to the basement membrane in these specialized 

regions of muscle.  Previous studies have indicated that the absence of the α7 integrin 

results in congenital myopathy in mice and humans whilst transgenic over-expression of 

the α7 integrin chain in the skeletal muscle of severely dystrophic mice has been shown 

to partially rescue the diseased phenotype 195,198.  These correlations suggested that 
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dystrophin and the α7β1 integrin may have complementary and overlapping functional 

and structural roles in maintaining skeletal muscle integrity.   

As described in this dissertation, our initial studies focused on prednisone, the 

current front line therapeutic for DMD and the pathway by which the drug ameliorates 

dystrophic pathology.  Prednisone is a corticosteroid that has been known to increase the 

life expectancy in DMD patients.  Chapter 2 of this dissertation focuses on the pathway 

by which prednisone ameliorates some of the disease pathology and delays the 

progression of symptoms.  It was demonstrated using muscle cells derived from both 

mice and human DMD patients, that prednisone increases the protein levels of α7 

integrin in a dosedependent manner.  We also report that prednisone treatment in the 

well-established mdx mouse model of DMD and the GRMD canine model increases 

protein levels of α7β1 integrin, as well as its ligand, laminin-α2, which is a critical 

component of the basement membrane.  Additionally, we demonstrated that the GRMD 

dogs that were not treated with prednisone had reduced levels of laminin-α2 and α7 

integrin proteins in their skeletal muscle.  This translational study therefore provides 

evidence to show that prednisone, the current front line treatment for DMD, acts to 

increase laminin-211/221 (composed of α2, β1 and γ1 chains) in the muscle basal lamina 

which in turn stabilizes protein levels of α7β1 integrin in myogenic cells.  These changes 

are potentially what contribute to improvements in muscle fiber integrity in dystrophin-

deficient muscle and slow down disease progression.  The results also suggest a shared 

mechanism for disease progression in GRMD dogs and humans, reinforcing the view 

that the canine model provides a useful tool for studies of the human disease.  Despite 

the beneficial effects of prednisone, the improvement is temporary and, furthermore, 
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therapy is complicated by the wide range of associated negative side effects.  Future 

studies to identify drugs that specifically target an increase in laminin-α2 and/or α7β1 

integrin in muscle are likely to improve clinical outcomes and have fewer negative side 

effects for DMD patients.  This study as well as several previous studies have implicated 

α7β1 integrin to be a major modifier of disease progression in DMD pathology.  

Chapter 3 of this dissertation presents a novel first in-class integrin enhancing 

small molecule SU9516 for the treatment of Duchenne Muscular Dystrophy.  SU9516 is 

an indolinone compound and a known potent inhibitor of CDK2 262.  The drug is also an 

inhibitor of glyocgen synthase kinase 3 (GSK-3), which is involved in normal cell death 

207.  In human leukemic cells, SU9516 caused the pronounced down-regulation of the 

antiapoptotic protein Mcl-1 through transcriptional repression, increased proteasomal 

degradation, inhibition of RNA Pol II CTD phosphorylation and oxidative damage 208.  

Hence, the existing literature regarding SU9516 has well established its properties and 

potential as an anti-neoplastic therapeutic.  Two small molecules which have a similar 

backbone structure to SU9516 have entered clinical trials for colorectal cancer 

(SU5416/semaxinib) or have been given FDA approval multi-targeted receptor-tyrosine 

kinase inhibitors for the treatment of renal cell carcinoma and gastrointestinal stromal 

tumor (SU11248/Sunitinib). Given that these related compounds are undergoing or have 

completed clinical trials for other indications, SU9516 or an analog may be a candidate 

to fast track for the treatment of DMD.  SU9516 was first identified in a drug screen 

developed and described previously in our lab 56.  Briefly, undifferentiated α7+/lacZ   

myoblasts and differentiated myotubes were used to screen 433,000 compounds (48 hour 

treatment) and β-Galactosidase enzymatic activity was measured using the Fluorescein 
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diβ-D-galactopyranoside (FDG) assay.  FDG is one of the most sensitive fluorogenic 

substrates available for detecting β-Galactosidase that cleaves FDG to produce 

fluorescein.  The identification of a first in-class α7β1 integrin enhancing drug SU9516 

provides further support for the utilization of this chemical screen to identify promising 

integrin enhancing compounds with the potential to make it to clinical trials for DMD.  

Results from in vitro experiments with SU9516 showed increases in the protein levels of 

α7B integrin in human DMD patient cells and C2C12 myogenic cells with drug 

treatment.  In this study we show that a seven week treatment of 5mg/kg/day SU9516 

increases the protein levels of α7B and β1D integrin in the skeletal muscle of dystrophin-

deficient mdx mice, thereby demonstrating in vivo on-target activity.  In DMD patients, 

the skeletal muscles progressively weaken, pathology is severe and patients lose their 

ability to walk by 8 years of age.  In mdx mice, however, most of the skeletal muscle 

pathology is comparatively mild and appears to plateau after 3 months of age.  In 

contrast, the diaphragm muscle is more severely and progressively affected in mdx mice 

and thus is more representative of the muscle pathology in DMD patients 14.  The ex vivo 

muscle contraction experiments performed on the diaphragm of the mdx mice showed 

that SU9516 increases the specific force produced by the mdx diaphragm.  Additionally, 

we also showed via phrenic nerve stimulation and intracellular recordings of the 

myofibers in the diaphragm that the SU9516 treated mdx diaphragm muscles showed 

greater success in displacement, decay rate and action potential conduction compared to 

their vehicle treated counterparts.  Hence, SU9516 not only shows in vitro and in vivo 

on-target activity for α7β1 integrin but also shows muscle contractility improvements 
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and improvements in neuromuscular kinetics of one of the most severely affected 

respiratory muscles affected in the mdx mouse; the diaphragm.    

Chapter 4 discusses some of the numerous molecular pathways targeted by 

SU9516 that could be therapeutic for the treatment of DMD.  It was determined that the 

inhibition of both MAP4k4 and the PFTAIRE1 kinases by pharmacological means, 

increased the β-galactosidase activity in α7+/lacZ myoblasts but not myotubes.  Hence, the 

identification of a pathway or multiple pathways responsible for the increase in α7β1 

integrin is yet to be elucidated.  This study has identified a pathway, the inhibition of 

which may be partially responsible for the increase in α7β1 integrin in myofibers.  This 

is the p65-NF-kB inflammatory pathway that is activated in dystrophic myofibers of 

DMD patients and the mdx mouse.  Previous research has focused on the NF-κB 

pathway, which plays a role in exacerbating the pathophysiology in DMD patients and 

the mdx mouse 282,312.  Treatments that inhibit the activation of the NF-κB pathway have 

great potential for DMD, because prednisone, the current front line treatment for DMD 

inhibits this pathway 313.  Besides prednisone, several compounds have been shown to 

inhibit the NF-ĸB pathway and ameliorate pathology in the mdx mouse.  As an example, 

inhibiting NF-κB signaling with Nemo Binding Domain (NBD) peptide alleviated some 

of the pathogenesis in dystrophic muscle and improved muscle function in mouse models 

of DMD 314,315.  Additionally, NBD treatment in GRMD dogs also exhibited an 

efficacious response, providing further support for its potential use as a DMD therapeutic 

316.    
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Dystrophic membranes have depolarized resting membrane potentials 260,263–265.  

Several studies indicate that resting intracellular free Ca2+ concentration is higher in 

skeletal muscle cells from the mdx mice and DMD patients compared with normal cells 

258,266–270.  The exact mechanism by which the Ca2+ levels are elevated in the muscle is 

not known.  Additional experiments to look at the effects of SU9516 on Ca2+ release at 

the neuromuscular junction, will determine whether SU9516 treatment restores the 

aberrant Ca2+ signaling in dystrophic muscle thereby alleviating the action potential 

failure as seen in SU9516 treated mdx mice.  The level of [Ca2+]rest modulates the 

transcription factor NFκB activity and iNOS expression in mdx myotubes 317.  Our study 

identified SU9516 as an inhibitor of p65-NF-κB signaling activation in skeletal muscle.  

Increased NF-kB activity in mdx mice is associated with both immune cells and 

regenerative muscle fibers and the inhibition of the p65-NF-κB  pathway either 

genetically or by pharmacological means promoted formation of new myofibers in 

response to degeneration 282.  Our study confirms that the increase in centrally nucleated 

myofibers and embryonic myosin heavy chain positive myofibers seen in the diaphragm 

of SU9516 treated mdx mice can be attributed to SU9516 inhibition of p65 activation.  

Hence, this study presents not only an integrin enhancing drug with the ability to rescue 

the primary defect of sarcolemmal damage owing to a downregulation of the DGC 

components, but also an inhibitor of the NF-kB inflammatory pathway that is a major 

cause of secondary defects associated with this fatal disease.  Furthermore, it is possible 

that SU9516 through the inhibition of p65-NF-kB activation is able to restore aberrant 

Ca2+ signaling with dystrophic muscle.   
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An important question asked in this study was whether the inhibition of the p65- 

NF-κB pathway caused an increase in α7 integrin.  Our study showed that the 

pharmacological inhibition of the p65-NF-κB signaling pathway increased the 

βgalactosidase activity in α7lacZ/+ myoblasts and myotubes.  Through this finding we 

suggest that the increase in the protein levels of α7B and β1D in myofibers with SU9516 

treatment, can be attributed at least partially to the inhibition of the p65-NF-κB pathway.  

It must be noted however, that the two p65-NF-kB pathway inhibitors used in our 

chemical screen, did not attain the levels of fold-fluorescence that SU9516 attained.  

However, additional experiments to verify this hypothesis will be performed in the future 

to confirm that p65-NF-κB is indeed the molecular pathway that regulates integrin levels 

in dystrophic myofbers.  We seek to quantify the α7β1 integrin protein levels in the 

mdx;p65+/- mouse model to determine whether p65 haploinsufficency ameliorates some 

of the pathology in the mdx mouse through an α7β1 integrin mediated pathway.    

One of the most critical and novel findings of this study was the identification of 

the SPAK/OSR1 kinases as being the molecular target that regulates levels of α7 integrin 

in skeletal muscle.  A known inhibitor of the SPAK/OSR1 kinase activity showed robust 

increases (almost attaining comparable levels to SU9516) in β-galactosidase activity of 

α7lacZ/+ myotubes.  The oxidative stress-responsive kinase-1 (OSR1)/STE20/SPS1-related 

proline/alanine-rich kinases (SPAK) are involved in the regulation of NaCl cotransporter 

(NCC) through phosphorylation.   In an inflammatory intestinal bowel disease model, it 

was shown that the knock-down of NF-κB (p65) by siRNA decreased SPAK expression 

significantly and NF-κB-binding site on the SPAK gene was essential for stimulated 
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SPAK promoter activity by TNF-α 308.  It is known that NF-κB is a pro-inflammatory 

transcription factor that is active in the dystrophin deficient muscle of both DMD 

patients and the mdx mouse 286,287.  This could potentially lead to the abnormal activation 

of the SPAK-NCC phosphorylation in dystrophic muscle.  This suggests that through the 

inhibition of p65- NF-kB activation, SU9516 inhibits the abnormal activation of the 

SPAK kinase-NCC cascade, thereby restoring the Na+ ion homeostasis in myofibers of 

dystrophic mice.  Additionally, increased levels of α7β1 integrin with SU9516 treatment 

could bring about maintenance of intracellular Ca2+ levels in mdx myofibers.  The 

improvement in parameters like maximum displacement of myofibers, decay rate, time to 

50% EPP and resting membrane potential, could be attributed to the restored Ca2+ 

signaling with SU9516 treatment.      

Finally, a novel molecular target of SU9516 identified in this study was CD82, a 

tetraspanin that is known to interact with integrins at the cell membrane.  A previous 

study utilizing CD82 null endothelial cells (ECs) has shown that surface levels of cell 

adhesion molecules like CD44 and α6 integrin were upregulated as a result of possible 

protein turnover rather than gene transcription 318.  The CD44 antigen is a cell-surface 

glycoprotein involved in cell–cell interactions, cell adhesion and migration.  Our results 

suggest that SU9516 mediated downregulation of CD82 could be responsible for the 

increase in α7 intgerin seen in myogenic cells lines and in vivo.  CD82 is a known 

regulator of endocytosis and it is possible that the downregulation of CD82 with SU9516 

inhibits the endocytosis of α7 integrin at the cell surface of a myogenic cell.  

Additionally, our results also showed that 24 hours post differentiation, the levels of 

CD82 were significantly elevated in the C2C12 myogenic cells compared to when they 



170  

  

were in proliferation/growth medium.  This suggests that CD82 may have a role in early 

myogenic differentiation and further investigation into the role of this tetraspanin would 

help identify its role in myogenesis.      

While the inhibitors used in this study targeted at the MAP4k4, PFTAIRE1 and 

the p65-NF-κB pathway elicited interesting preliminary results that shed light on the 

mechanism of action by which SU9516 increased α7β1 inetgrin expression in muscle, it 

must be noted that the aforementioned inhibitors are not specific to the kinases described 

in this study.  Future studies would include using approaches to eliminate the expression 

of the aforementioned kinases and assess levels of α7β1 integrin.  

SPAK/OSR1/PFTAIRE1 knockout lines can be generated to determine whether the 

integrin is upregulated in these cell lines.  Currently, we are employing Crispr/Cas9 

technology to determine whether the knockout of these kinases or the combination of 

these kinases will ameliorate disease pathology.  A summary of the molecular targets of 

SU9516 and the potential therapeutic benefits associated with the inhibition or 

downregulation of those targets is shown in Table 1.     

Future studies with SU9516 would involve studying the effect of SU9516 over a 

longer duration of treatment.  SU9516 may prove to be highly effective as a short term 

therapeutic for DMD, however its long term therapeutic benefits are questionable owing 

to the numerous off-target effects the drug generates.  Currently, there are several 

drawbacks associated with SU9516 as a drug for the treatment of DMD.  A serious issue 

with the drug is that it is fatal to the mdx mice at a dose of 10 mg/kg and it is critical that 

in order to move forward with the drug its toxicity be minimized.  Additionally, it has 
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poor biodistribution and poor absorption in the serum and muscle.  The half-life of the 

drug is extremely short at 30 minutes post oral ingestion.  The chemical make-up or 

structure of a drug is the key determinant of its potency, specificity, dosing regimen and 

side effect profile and the chemical structure of SU9516 requires modifications to 

formulate a drug with improved pharmacokinetics.  This is critical because even minor 

modifications in chemical and molecular structure can differentiate drugs and determine 

their success or failure in the marketplace.  While targets are used for evaluating the drug 

characteristics of chemical compounds, sophisticated chemistry expertise is required to 

analyze the raw compound, understand its chemical composition, engineer it into a 

therapeutic candidate, and develop it into a drug.  We expect the preference for drugs that 

are small molecules like SU9516 to continue to benefit companies with medicinal 

chemistry expertise.  This dissertation presents a powerful new therapeutic strategy for 

the treatment of DMD; namely α7β1 integrin enhancing small molecule compounds.    
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Molecular Target  Effect of  

inhibition/downregulation  

Clinical significance of  

SU9516 for DMD  

MAP4k4 (HGK)  1. Promotes myogenic  

differentiation  

2. Increases α7 integrin in 

myoblasts  

1. Coadjuvant during 

myoblast 

transplantation.  

2. DMD therapeutic  

CD82 tetraspanin  Possible increase in surface α7 

integrin in myoblasts  

1. Coadjuvant during 

myoblast 

transplantation.  

2. DMD therapeutic  

PFTAIRE1  Increases α7 integrin in myoblasts  1. Coadjuvant during 

myoblast 
transplantation.  

2. DMD therapeutic  

SPAK/OSR1  1. Increases α7 integrin in 
myotubes  

2. Restores Na+ ion 

homeostasis in dystrophic 

myofibers  

1. DMD 

therapeuticα7 

integrin 

enhancing drug  

2. Potential for 

improved 

neuromuscular 

kinetics in 

DMD patient 

muscle  

p65-NF-κB  1. Increases α7 

integrin in 

myotubes  

2. Restores Ca2+ 

homeostasis in 

dystrophic 

myofibers  

3. Ameliorates  

fibrosis  

4. Activates the 

myogenic program 

in DMD.    

1. DMD  

therapeutic- α7 

integrin 

enhancing drug  

2. Potential for 

improved 

neuromuscular 

kinetics in 

DMD patient 

muscle.  

3. Anti-fibrotic 

therapeutic for 

DMD.    

  

Table 1- Summary of critical targets of SU9516 and potential therapeutic 

implications of those molecular targets for DMD.    
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