University of Nevada, Reno

A New Congenital Mouse Model to Study Laminin Protein Therapy for Muscular Dystrophy

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Cellular and Molecular Pharmacology and Physiology

By Caroline B. M. Coffey

Dr. Dean J. Burkin/Dissertation Advisor

December 2015

© by Caroline B. M. Coffey 2015 All Rights Reserved

THE GRADUATE SCHOOL

We recommend that the dissertation prepared under our supervision by

CAROLINE B. M. COFFEY

Entitled

A New Congenital Mouse Model to Study Laminin Protein Therapy for Muscular Dystrophy

> be accepted in partial fulfillment of the requirements for the degree of

> > DOCTOR OF PHILOSOPHY

Dean J. Burkin, Ph.D., Advisor

Sean M. Ward, Ph.D., Committee Member

Normand LeBlanc, Ph.D., Committee Member

Josh E. Baker, Ph.D., Committee Member

Subhash C. Verma, Ph.D., Graduate School Representative

David W. Zeh, Ph. D., Dean, Graduate School

December, 2015

ABSTRACT

Merosin deficient congenital muscular dystrophy type 1A (MDC1A) is caused by the loss of laminin-211 and laminin-221 heterotrimers which are most abundant in skeletal and cardiac muscle basal lamina; mutations in the LAMA2 gene cause the loss of these laminin isoforms. This absence of laminin-211/221 in MDC1A reduces the capacity for myofiber adhesion, loss of sarcolemmal integrity and subsequently the ability of the skeletal muscle syncytium to generate force in a coordinated and efficient manner. Patients experience progressive muscle wasting which confines them to a wheelchair at an early age and respiratory failure that leads to their untimely death. Currently, there is no effective treatment or cure for this devastating disease.

Previous studies have shown that laminin-111, an embryonic form of laminin, delivered before disease onset can reduce muscle pathology and improve viability in the dy^{W} -/- mouse model of MDC1A. These studies suggested that laminin-111 may act to strengthen and reinforce the sarcolemma and provide a protective niche for muscle repair. Since most patients are diagnosed with MDC1A after disease onset, we determined if laminin-111 could be beneficial after disease onset. Our studies suggest dy^{W} -/- mice treated with laminin-111 after disease onset show improvement in muscle function and histology. Results from this study along with an understanding of laminin-111 pharmacokinetics will help pave the way in developing this protein as an exciting potential therapeutic for MDC1A patients.

Duchenne Muscular Dystrophy (DMD) is the most common X-linked disease affecting 1 in 3,300 live male births. Patients with DMD suffer from severe, progressive muscle wasting and weakness with clinical symptoms first detected between 2 to 5 years of age; as the disease progresses patients are confined to a wheelchair in their teens and die in their early 20s mainly due to cardiopulmonary complications. DMD is caused by the loss of the sarcolemmal protein dystrophin (427kDa) due to mutations in the dystophin gene. When present, dystrophin acts as a scaffold linking the cell cytoskeleton to the extracellular matrix. This loss of dystrophin in DMD results in patients experiencing greater susceptibility to muscle damage via reduced structural and functional integrity of their muscle.

One potential therapeutic avenue that needs to be explored involves increasing the levels of the $\alpha7\beta1$ integrin in order to compensate for the loss of dystrophin. To test this hypothesis, a muscle cell-based assay was developed in order to report $\alpha7$ integrin promoter activity with the intent of identifying molecules that promote $\alpha7$ integrin expression. Laminin-111 was identified as an enhancer of $\alpha7$ integrin expression. Theoretically, the identification of $\alpha7$ integrin enhancing compounds that help boost $\alpha7\beta1$ integrin expression as part of drugbased therapies may lead to a novel therapeutic approach for the treatment of this disease.

Systemic laminin-111 treatment significantly reduces myofiber degeneration in both forms of MDC1A and DMD muscular dystrophy. This dissertation reinforces the potential of laminin-111 as a systemic protein therapy,

capable of restoring sarcolemmal integrity thus reducing muscle disease progression. The importance of α 7 integrin in skeletal and cardiac muscle was highlighted here through the generation of the α 7-/-:: laminin- α 2-/- double knockout mouse model. This mouse has never been studied before and could prove to be another important mouse model needed to explore therapeutic avenues for muscular dystrophy.

DEDICATION

To my Mum, Dad, Dearest Family and Friends

I will be forever grateful for your continuous love and support.

Thank you with all my heart. I hope that I have made you proud.

Non Providentia Sed Victoria.

ACKNOWLEDGEMENTS

A special thanks to Dr. Dean Burkin for giving me this wonderful opportunity. Notwithstanding, my sponsor Tracy McCausland, founder of Struggle Against Muscular dystrophy (SAM) charity in Northern Ireland for providing me with a fellowship to carry out the research for my dissertation. Tracy's determination to save her son, Sam who currently suffers from MDC1A inspired me to take the challenges regards finding a cure. Throughout the course of my dissertation, I would like to express sincere gratitude to CureCMD and all scientists worldwide for all their commitment and hard work trying to find cures for diseases. My undergraduate students Vivian Cruz, Annemarie Vogedes, and Chelsea Lamb. I would also like to thank Dr Jachinta Rooney whom I had the opportunity to work under for a year when I was an undergraduate and also Dr. Jinger Doe for her unstinting support with my work.

I want to thank my dissertation committee Dr. Sean Ward, Dr. Normand Leblanc, Dr. Subhash Verma and Dr. Josh Baker. I would like to thank Dr. Ward especially for helping me towards the later stages of my PhD. Without you, I would not have been able to have a place to finish my lab work. I will always be grateful to you for giving me the opportunity to arrive at UNR all those years ago for the International Undergraduate research Program (IURP). It was the most exciting time of my life and I am truly indebted to you for helping me in my hour of need in recent times.

Dr. Sang Don Koh offered me very helpful advice a few months ago, science involves passion, pain and perseverance. There are many people I wish to thank and I will try to include everyone in this next paragraph. Please accept my apologies if I have left anyone out as I really do appreciate those who have helped me. Dr. Leonie Corrigan, a big thank you to you for guiding me through CMPP. Yulia Bayguinov and Dr. Sung Jin Hwang for their continuous help within the lab this past year. Also special thanks to Sima, Breeana & Mark, Jolie, Lara & Peter, Caroline, Robert, Jon, Monica, Robyn, Prabath, and Rahul and to everyone who helped provide me with transport in order to go purchase groceries from time to time; I really appreciated it! Queen's University Belfast, Dr. Tom Gardiner whose unstituting encouragement and support inspired me and also Dr. Mihaela Ghita, Dr Guiseppe Schettino and Dr. Kevin Prise, Pro-Vice Chancellor Dr. Patrick Johnston, and Dr. Stephen McCullough. Lab animal medicine especially Dr. Walt Mandeville and his team for their expertise and care of the mice I worked with. Dr. Kent Sanders and Dr Iain Buxton for their constructive and helpful advice. All the physiology and pharmacology administrative staff, Dr. Paul Brewer, and Dr. Andrea Agarwal for echocardiography data analysis. Dr. David Zeh for his time and helpful advice. I would like to thank Dr. Joseph Fass and Dr. Ryan Kim for generating and processing the RNA-Seg data at the UC Davis Genome center. UNR Campus escort service, IT staff, Janitors in the medical school for always being so friendly and providing a clean environment to work in.

Thank you to Kevin Van Ry and Thomas Knapp for their much needed muscle power when I had to move apartments. Office of International Students and Scholars (OISS), my Japanese friends at Intensive English Language center (IELC). My hairdresser Antonio for always being a friendly person. Canteen staff for providing delicious snacks. I would also like to give shout out to the UNR bus drivers especially to Tina and KJ who supported me throughout and became two of my best friends, for always getting me safely to my destination on campus and always with a smile ©. My medical team for their much needed support through this past year. You are all so wonderful!

Thank you to my Mum, Donna, my Dad, James and my younger sister, Natalie for listening to me and providing support for me on the phone 24/7 no matter what happened throughout the entire course of my PhD. To my extended family, Bernadette, Nicola, Carmela, Jim, Maureen, Stefin, Mary in Co. Donegal Ireland. My American family, Eamonn, Lisa, Liam and Zara for their continued support in San Francisco (and for letting me stay each time I was there!)...... I have some really great memories there with you all and will never forget them.

It only feels like yesterday that I was graduating from Queen's University Belfast. There is one very poignant message that I will never forget from the graduation speech delivered to all the graduants that day. The life message was "Sail away from the great harbor, catch the trade winds in your sails. Dream, Explore and Discover" ~Mark Twain. I aim to follow this approach throughout my life and I hope never to forget that. UNR has been an amazing journey and I am so glad that I embarked on this adventure. I got to meet some truly inspirational people from all corners of the globe and embrace their cultures whilst I was living, studying and working independently in Reno. As a young girl growing up in Northern Ireland, I honestly never thought that I would be able to visit USA let alone be making a life for myself here 5,000 miles away from my home. It's been an emotional rollercoaster driving me through some very happy and indeed some incredibly dark times. But despite this I am grateful for this life journey that I have experienced. I hope to be able to have many more adventures in the future. Not only did the PhD help me to develop as an academic but also into an independent young woman who is constantly learning. All my friends and family here in USA, United Kingdom and scattered across the world; thanks for keeping in contact with me.

Thank you to my parents for teaching me to always stand up for what is true no matter what the consequence; one essential part of life. I would like to thank everyone who helped me at every stage throughout my PhD journey. Your help was much appreciated. I thank the people of Reno for making me feel so welcome. I will miss you lots but I'll be back to visit one day. Thank you to everyone who believed in me. I am truly grateful.

Sláinte!

TABLE OF CONTENTS

Abstract	
Dedication	i
	iv
Acknowledgements	
Chapter 1 Introduction	v
	1
Chapter 2 Laminin-111 protein therapy after disease onset in t	he <i>Dy^w</i>
mouse model for MDC1A	20
Abstract	21
Introduction	
Materials and Methods	22
Results	28
Discussion	30
Chapter 3 Laminin-111 treatment modifies transcriptional char	nges in the
diaphragm muscle of the <i>Dy^W</i> mouse model for MDC1A	
Abstract	48
Introduction	
Materials and Methods	50
Results	56
Discussion	63

Chapter 4 Long term Laminin-111 protein therapy within the <i>mdx</i> mouse			
model for Duchenne muscular dystrophy 104			
Abstract 105			
Introduction 106			
Materials and Methods 107			
Results 115			
Discussion 119			
Chapter 5 Loss of alpha7 integrin exacerbates skeletal and cardiac			
dysfunction in the dy ^w mouse model of MDC1A			
Abstract152			
Introduction			
Materials and Methods154			
Results161			
Discussion165			
Chapter 6 Conclusions and Future Directions			
Appendix A Laminin-111 pharmacokinetics/ pharmacodynamics and			
rhLam-111 production			
Appendix B Transcriptome data			

х

Bibliograph	y 315
List of Figu	res
Chapter 1	Introduction1
Figure 1.	Main sarcolemmal proteins associated with both the extracellular
matrix and ir	tracellular cytoplasm present in each individual myofiber18
Figure 2.	Schematic structure of laminin-111 protein

Chapter 2	Laminin-111 protein therapy after disease onset in the <i>Dy^W</i>
mouse mod	el for MDC1A
Figure 3.	Dy^{W} -/- mice display greatly reduced body size and mass
Figure 4.	Treatment regime and analysis of muscle strength in 8 week old
WT, <i>dy^w-/-</i> +	PBS and <i>dy^W-/-</i> + mLAM-111 mice
Figure 5.	Histological Analysis Quantifying Centrally Located Nuclei in 8 week
old WT, <i>dy^w</i>	-/- + PBS and <i>dy^W-/</i> - + mLAM-111 mice
Figure 6.	Fibrotic tissue reduced in 8 week old Tibialis Anterior muscle by
laminin-111	
Figure 7.	Activity and Function of 8 week old WT, dy^{W} -/- + PBS and dy^{W} -/- +
mLAM-111 n	nice
Figure 8.	Respiratory function of 8 week old WT, dy^{W} -/- + PBS and dy^{W} -/- +
mLAM-111 n	nice

Chapter 3	Laminin-111	Treatment Modifie	s Transcriptional	Changes in
the Diaphrag	gm Muscle of	a Mouse Model of	MDC1A	47

Figure 9.	RT-PCR results confirming important transcriptional changes in	
genes assoc	iated with the extracellular matrix in 2 week old and 5 week old WT	-
and <i>dy^w-/-</i> +	PBS mice	71
Figure 10.	Immunofluorescence on critical protein changes identified from	
gene transcri	ipts in TA muscle from 5 week old WT, dy^{W} -/- + PBS and dy^{W} -/- +	
mLAM-111 tr	reated mice	74
Figure 11.	Immunoblotting for ERK and phospho-ERK protein	81
Figure 12.	Immunoblots on critical protein changes identified from transcripts	\$
for 5 week ol	d <i>dy^w-/-</i> mice	32
Figure 13.	Histology and functional data obtained from 5 week old dy^{W} -/-	
mice		34
Figure 14.	Histology and respiratory function in 5 week old WT, dy^{W} -/- + PBS	\$
and <i>dy^w-/-</i> +	mLAM-111 treated mice	88
Figure 15.	Model of Laminin-111 action on Osteoactivin (OA) restoration	
		93

Chapter 4	Long term Laminin-111 protein therapy within the <i>mdx</i> mou	se
model for D	uchenne muscular dystrophy	104
Figure 16.	Evan's Blue dye uptake within 1 year old <i>mdx</i> mice 1	21
Figure 17.	Evan's Blue Dye Montages for 1 year old <i>mdx</i> mice	122
Figure 18.	Kyphosis Analysis of 1 year old <i>mdx</i> mice	125
Figure 19.	Echocardiography of 1 year old <i>mdx</i> mice	128
Figure 20.	Respiratory function within 1 year old <i>mdx</i> mice	133

Figure 21.	Histology of 1 year old <i>mdx</i> Tibialis Anterior muscle
Figure 22.	Fibrotic tissue in Tibialis Anterior muscle of 1 year old mdx mice
Figure 23.	Activity and Function in 1 year old <i>mdx</i> mice
Figure 24.	Myofiber sizes of Tibialis Anterior muscle in 7 weeks old and 10
weeks old <i>m</i>	<i>ndx</i> mice
Figure 25.	Laminin-111 detection in mdx TA muscle after intraperitoneal
treatment	
Figure 26.	Muscle strength and histology was assessed for 10 week old mdx
mice	
Figure 27.	Sarcolemmal proteins after laminin treatment in 10 week old mdx
mico	1/0
mice	
Chapter 5	Loss of alpha7 integrin exacerbates skeletal and cardiac
Chapter 5 dysfunctior	Loss of alpha7 integrin exacerbates skeletal and cardiac in the <i>dy^w</i> mouse model of MDC1A
Chapter 5 dysfunctior Figure 28.	Loss of alpha7 integrin exacerbates skeletal and cardiac in the dy^{W} mouse model of MDC1A
Chapter 5 dysfunctior Figure 28. complex	Loss of alpha7 integrin exacerbates skeletal and cardiac in the dy^{W} mouse model of MDC1A
Chapter 5 dysfunctior Figure 28. complex Figure 29.	Loss of alpha7 integrin exacerbates skeletal and cardiac in the dy^{W} mouse model of MDC1A
Chapter 5 dysfunctior Figure 28. complex Figure 29. Figure 30.	Loss of alpha7 integrin exacerbates skeletal and cardiac in the dy^{W} mouse model of MDC1A
Chapter 5 dysfunction Figure 28. complex Figure 29. Figure 30. <i>:: dy -/-</i> mou	Loss of alpha7 integrin exacerbates skeletal and cardiac in the dy^{W} mouse model of MDC1A 151 Schematic representation of the α 7 integrin- laminin- α 2 binding 168 Photographs of 10 week old dy^{W} -/- and α 7-/- :: dy -/- mice
Chapter 5 dysfunction Figure 28. complex Figure 29. Figure 30. <i>:: dy -/-</i> mous Figure 31.	Loss of alpha7 integrin exacerbates skeletal and cardiac in the dy^{W} mouse model of MDC1A
Chapter 5 dysfunction Figure 28. complex Figure 29. Figure 30. <i>:: dy -/-</i> mouse Figure 31. dy -/- mouse	Loss of alpha7 integrin exacerbates skeletal and cardiac in the dy^W mouse model of MDC1A
Chapter 5 dysfunction Figure 28. complex Figure 29. Figure 30. :: dy -/- mouse Figure 31. dy -/- mouse Figure 32.	Loss of alpha7 integrin exacerbates skeletal and cardiac in the dy^W mouse model of MDC1A

Figure 33.	Weights and muscle function assessment comparing $\alpha7$ WT :: dy
WT, α7 WT	:: dy -/-, α7 -/- :: dy WT, and <i>α7 -/- :: dy -/-</i> mice
Figure 34.	Heart analysis comparing $\alpha 7$ WT :: dy WT, $\ \alpha 7$ WT :: dy -/-, $\ \alpha 7$ -/- ::
dy WT, and	<i>α7 -/- :: dy -/-</i> 10 week old mice 184
Figure 35.	Echocardiography data comparing α 7 WT :: dy WT, α 7 WT :: dy -/-,
α7 -/- :: dy W	T, and <i>α7 -/- :: dy -/-</i> 10 week old mice
Figure 36.	Increased collagen visible within α 7 -/- :: dy -/- cardiac muscle 189
Figure 37.	Fibrotic tissue analysis within Tibialis Anterior muscle of $\alpha7$ WT ::
dy WT, α7 V	VT :: dy -/-, α7 -/- :: dy WT, and α7 -/- :: dy -/- 10 week old
mice	

Appendix A Laminin-111 pharmacokinetics/ pharmacodynamics and

rhLam-111 p	production	:03
Figure 38.	Laminin-111 half-life calculation for dy^{W} -/- mice	16
Figure 39.	Laminin-111 half-life calculation for <i>mdx</i> mice 2	17
Figure 40.	EHS mouse laminin-111 detection in a WT CD1 mouse 18 hours	
post-intramu	scular injection2	19
Figure 41.	Diagrammatic representation of rhLam-111 production in the CHC	Эs
system		220
Figure 42.	rhLAM-111 DNA for CHO _s cells2	21
Figure 43	rhLAM-111 protein production verification and quality control2	222

Figure 44.	Clustering and cell adhesion assays	224
Figure 45.	Immunofluorescent detection of laminin-111	226
Figure 46.	Functional assessment of dy^{W} -/- mice treated with laminin	227
Figure 47.	Integrin immunoblotting after laminin-111 treatment	228
Figure 48.	Histological analysis of laminin treated dy^{W} -/- mice	230
Figure 49.	Immunological response to laminin-111 treatment	231
Figure 50.	hLam-111 transgenic mouse production	232

Appendix B	Transcriptome Data	 	 233

Figure 51.	Heat map for 2 week old <i>dy^W-/-</i> mouse signaling networks			
misregulated	by loss of laminin-α2	247		
Figure 52.	Heat map for 5 week old dy^{W} -/- mouse signaling networks that			
were misregulated upon laminin-111 treatment				
Figure 53.	2 week old dy^{W} -/- integrin involvement in extracellular matrix	249		
Figure 54.	2 week old dy^{W} -/- integrin involvement in initiating ERK/MAPK			
downstream signaling pathways				

List of Tables

Table 1.	Primer oligonucleotide sequences that were used to confirm RNA-
Seq data	
Table 2.	M-mode measurements for 1 year <i>mdx</i> echocardiography131
Table 3	Mendelian Inheritance for F1 progeny (n=341) produced from
breeding par	ent mice that are both heterozygous for $\alpha7$ integrin and laminin-
α2	

Table 4	Mendelian In	heritance for F1 progeny (n=341) produced from			
breeding par	ent mice that	are both heterozygous for $\alpha7$ integrin and laminin-			
α2			0		
Table 5	Comprehens	ive summary of ≥4-fold transcript changes in 2 week			
old <i>dy^W -/-</i> mice					
Table 6.	Comprehens	five summary of ≥4-fold transcript changes in 5 week			
old <i>dy^w -/-</i> m	ice		73		
Supplementa	al Table 1.	RNA-Seq baseline transcript summary for WT vs dy^{k}	<i>v</i> _		
/- 2 week old	animals	g)5		
Supplementa	al Table 2.	Summary of 2 week old \geq 4–fold transcriptional			
changes in WT and untreated <i>dy^W-/-</i> mice					
Supplementa	al Table 3.	Summary of 5 week old \geq 4–fold transcriptional			
changes in PBS treated versus LAM-111 treated dy^{W} -/- mice					
Supplementa	al Table 4.	RNA-Seq <i>dy^W-/-</i> +PBS vs <i>dy^W-/-</i> + LAM-111 10)1		
Supplementa	al Table 5	RT-PCR results confirming important transcript			
changes in 5	week old LAI	M-111 treated <i>dy^w-/-</i> mice	3		

Chapter I

Introduction

Muscular Dystrophy

There are many different types of muscular dystrophy which are all caused by genetic defects within the contractile machinery or cell-matrix adhesion components in skeletal muscle^{1–23}. Despite extensive research over the years, only palliative care is available which proves to be expensive as there is still no cure for these neuromuscular diseases²⁴⁻²⁶.

Myogenesis and Muscle development

Myogenesis happens when the myotome is formed from a portion of somites^{27–30}. Muscle development regulates α 7 integrin and α 7 β 1 integrin has been shown to participate in the formation of skeletal muscle during development with detection of α 7 β 1A integrin occurring when myocytes migrate to the peripheral targets from the myotome^{30,31}. Several rounds of proliferation are carried out by muscle precursor cells prior to myoblast fusion to form myofibers^{27,32}. Formation of myofibers happens in two processes, primary and secondary myogenesis. There is alignment of primary myoblasts into rows and their subsequent fusion to form multinucleated cells which are then ensheathed by a basal lamina enriched by laminin^{33,34}. Secondary myoblasts fuse forming binucleate cells and then there is insertion of additional myoblasts along the entire length of the myofiber in order to help elongate the developing muscle cell³⁵. It is thought that the α 7 β 1 integrin helps to home primary myoblasts to regions of myofiber formation and to laminin during development^{27,29,36–38}.

Differentiation happens whenever the muscle cells become quiescent³⁵. Once this occurs, there is an increase in the accumulation of muscle-specific genes and myofiber proteins of the contractile apparatus³⁹. Motor units therefore start to form via differentiation of the dynamic developing cells^{39,40}.

Skeletal muscle

Skeletal muscle is responsible for almost all movements made under voluntary control⁴¹. It is made up of bundles of muscle fibers which are formed when myoblasts fuse into long cylindrical multi-nucleated cells which are held together by connective tissue. Satellite cells are ever present in the periphery of the muscle in order to help regenerate the muscle after damage⁴². The satellite cell supply becomes exhausted whenever there is too much repetitive damage occurring to the muscle and therefore there is a much more exaggerated clinical phenotype in dystrophic patients⁴³⁻⁴⁷.

Sarcolemma

The sarcolemma consists of at least three systems that are able to protect the muscle during the sheer forces of muscle contraction^{48–51}. The three systems couple the contractile apparatus to the muscle membrane and surrounding extracellular matrix^{48–52,53}. These complexes form molecular associations with laminin in the basal lamina that surrounds each myofiber to cytoskeletal F-actin within myofibers⁵⁸⁻⁵⁶. The sarcolemmal complexes are known as the dystrophin glycoprotein (DGC) complex, utrophin protein complex and the $\alpha7\beta1$ integrin complex^{48–51} (Figure 1). The $\alpha 7\beta 1D$ integrin is found to be enriched around costameres where they are thought to be able to facilitate transmission of lateral contractile force⁶²⁻⁶⁸.

<u>α7β1 integrin</u>

The a7_{β1} integrin is a heterodimeric cell surface receptor member of the large family of integrins⁶⁰ (Figure 1). The α chain and β chain are noncovalently linked and integrins in general are evolutionarily conserved^{55,61}. Integrins act as receptors for a variety of cellular components to include, leukocytes, RGD, collagen and laminin⁵⁵. The α 7 β 1 integrin is prevalent within skeletal, cardiac and vascular smooth muscle. There are many splice variants of $\alpha7\beta1$ integrin that exist. There are 3 intracellular (a7A, a7B and a7C) and 2 extracellular (X1 and X2) splice variants 28,62,63,64 . The β 1 integrin possesses variants β 1A and β 1D, with β 1D being the major isoform in mature skeletal muscle⁵¹. The α 7 β 1 integrin complex is elevated in order to compensate for the instability of the dystrophin glycoprotein (DGC) laminin binding complex due to loss of dystrophin in Duchenne Muscular dystrophy $(DMD)^{50}$. $\alpha7$ integrin overexpression is able to rescue the severe dystrophic phenotype of *mdx/utr* -/- mice and improve the viability of these mice⁵¹. MDC1A patients have decreased $\alpha7\beta1$ integrin expression⁶⁵. This integrin is found localized at costameres, myotendinous junctions and neuromuscular junctions^{59,60}.

Dystrophin glycoprotein laminin binding complex

The dystrophin glycoprotein (DGC) complex is found in skeletal, cardiac and vascular smooth muscle (Figure 1). It plays a very important function in providing structural integrity and signaling roles to all of these muscle types, especially skeletal muscle⁶⁶. Laminin in the extracellular matrix binds to this DGC complex⁴⁹. Dystrophin (427 kDa) protein is a major component to this complex and links laminin in the extracellular matrix to cytoskeletal F-actin⁵⁶. The Nterminus binds to actin and the C-terminus of dystrophin associates with βdystroglycan which is a transmembrane protein and it interacts with αdystroglycan, the sarcoglycans and sarcospan⁶⁷. α-dystroglycan can bind extracellular matrix components such as laminin, perlecan and agrin⁶⁷. The Cterminus of α-dystroglycan interacts with cytoplasmic proteins to include dystrobrevins and syntrophins¹¹.

Dystrophin plays a structural role within muscle by providing a link between myofibers and the ECM. This structural scaffold helps aid muscle contraction and strength to withstand the sheer mechanical stress associated with normal contraction. Dystrophin is more prevalent around costameres of the sarcolemma, myotendinous junctions and neuromuscular junctions^{68,69}. Signaling pathways become mis-regulated whenever dystrophin is missing which causes weakness within the structure of muscle⁶⁷. Muscular dystrophy arises when there is any loss of DGC protein causing weakness in this link between cytoskeletal Factin and the extracellular matrix. The DGC proteins are not able to compensate for the loss of dystrophin which is the main gatekeeper for the entire structure and function of the DGC complex needed for integrity of muscle.

Laminin-α2

Laminin- α2 is also produced by Schwann cells in the Peripheral Nervous System (PNS). In MDC1A, the laminin- α 2 deficiency means that the Schwann cells are unable to myelinate the nodes of Ranvier on the nerves. As a consequence, peripheral neuropathy and impaired conduction velocity ensue⁷⁰. Laminin- $\alpha 2$ is the major laminin chain in the basement membrane of adult skeletal muscle⁷¹. MDC1A is caused by mutations in the laminin- $\alpha 2$ gene. This laminin- $\alpha 2$ deficiency has been modeled in mice to include the dy^{W} -/- mouse model which is described and studied in this dissertation. This mouse model is able to emulate the symptoms experienced by MDC1A patients which include muscle weakness, hypotonia from birth and joint contractures at an early age. With these symptoms in mind, this mouse model offers a good baseline to study MDC1A due to its overt phenotype. Two protein complexes rely on this association of laminin- α 2 binding to myofibers^{72,73}. These complexes are known as the dystroglycan and $\alpha 7\beta 1$ integrin. Laminin- $\alpha 2$ is the major ligand for the $\alpha7\beta1$ integrin although it can interact with alternative isoforms of laminin to include laminins $\alpha 1$, $\alpha 4$ and $\alpha 5$ as well as galectin-1 and fibronectin³².

Cardiac muscle

Cardiac muscle is very similar to skeletal muscle as it contains sarcomeres due to precise alignment of actin and myosin filaments, although

cardiac organization is not as regular and only offers involuntary contractions vital to its function. Cardiac muscle is the most extensively used muscle within the body having to contract more than 3 x 10^9 throughout the life of an average human. Cardiomyocytes express specific isoforms of myosin and actin. Serious heart disease can occur even with very subtle changes in these contractile apparatus proteins. Because of the frequency of repetition in the cardiac muscle, such tiny abnormalities in the contractile apparatus can gradually degrade the heart over time causing serious health defects such as familial hypertrophic cardiomyopathy as a result of 1 of 40 subtle point mutations in genes encoding cardiac β myosin heavy chain or contractile proteins causing cardiac arrhythmias⁷⁴. Dilated cardiomyopathy can also result in heart failure due to minor missense mutations in the cardiac actin gene. These are only a few examples to emphasize how subtle changes can cause detrimental effects^{41,52,75}.

Adherens junctions anchor the actin bundles of the contractile apparatus and act in parallel to desmosome junctions to link the contractile cells end-end. Stained light-microscope sections show these cell-cell adhesions very clearly as they are visible as intercalated discs which are a unique characteristic of cardiac muscle^{76–78}. Action potentials fired along cardiac muscle typically last > 200 msec⁵³ allowing the cardiac muscle to relax during a refractory period before blood filling again whereas many skeletal muscle action potentials are fired typically lasting 1-5 msec.

Laminins

Laminins comprise a large family of heterotrimeric glycoproteins comprised of an α chain, β chain and γ chain. They are highly conserved extracellular matrix proteins throughout evolution⁷⁹. To date, 16 different laminin heterotrimers have been identified with which there are different combinations of 5 α , 2 β and 3 γ chains^{80,51}. The isoforms of laminin have different preferences for their tissue distribution^{80,81}. The α chain is the most variable and dictates binding specificity of the laminin heterotrimer⁸⁰. α 1 and α 5 chains are important for embryonic development and organogenesis while α 2, α 3 and α 4 are critical for postnatal developmental processes⁸². The basal lamina underlying epithelia, nerve and muscle, is essentially composed of laminins, collagen IV, nidogens, perlecan and agrin⁷¹. Laminins have special functions in creating structural integrity through cell-extracellular matrix adhesions and cell signaling such as tissue proliferation, survival, migration and differentiation⁷¹.

Two major receptors for laminins- 111, 211 and 221 are α -dystroglycan (a member of the dystrophin glycoprotein (DGC) laminin binding complex) and the $\alpha 7\beta 1$ integrin. α -dystroglycan interacts with laminin- $\alpha 2$ via the G-domain (COOH-terminus)^{71,72}. The polymerization of individual laminin proteins occurs at the N-terminus of laminin. Laminin is a distinct membrane protein which can be separated from collagens and fibronectin in their description⁷².

Muscle contraction and Force transduction

Normal muscle function requires very precise organization of all the contractile machinery within the muscle ultrastructure. The muscle syncytium needs to be able to contract in unison for efficient movement. Skeletal muscle is controlled by the central nervous system (CNS). Each myofiber is innervated by an α motor neuron. The neuromuscular junction forms at a specialized cholinergic synapse at an α neuron called an end-plate. An action potential is produced in a myofiber after neuromuscular transmission^{74,75}. A motor unit comprises of the motor nerve and all the muscle fibers innervated by the nerve. It is described as the functional contractile unit because all the myofibers within a motor unit contract synchronously when the motor unit fires an action potential. Activation of varying numbers of motor units within a muscle is one way in which muscle tension can be controlled^{74,75}.

Acetylcholine released from the motor neuron initiates an action potential < 5 msec in the myofiber that rapidly spreads along the length of the myofiber⁷⁴. The short duration of the skeletal muscle action potential allows very rapid contractions of the myofiber and provides a mechanism by which the force of contraction can be increased. This increasing muscle tension by repetitive stimulation of the muscle is called tetanus⁷⁴. The method by which skeletal muscle contracts is known as excitation-contraction coupling. It is when an action potential is transmitted along the sarcolemma and then into T-tubules, Ca²⁺ is then released from the terminal cisternae sarcoplasmic reticulum (SR) into the myoplasm and binds to Troponin C. This release of Ca²⁺ from the SR raises

intracellular Ca²⁺ which in turn promotes actin-myosin interaction and contraction called a twitch. Relaxation of skeletal muscle occurs as intracellular Ca²⁺ is resequestered by the SR⁷⁴.

The process of skeletal muscle contraction is not only regulated by intracellular calcium but also by the thin filament actin. Once Ca^{2+} released from the SR binds to troponin C there is a movement of tropomyosin initiated towards the cleft of the actin myofilament⁷⁴. This movement exposes the myosin binding site on the actin filament and allows a cross-bridge to generate tension. Troponin C has 4 Ca²⁺ binding sites in total and two of these sites have a high affinity for Ca²⁺ switch their preference to Mg²⁺ at rest. These sites control interactions with troponin I and troponin T. The other two binding sites have a lower affinity for Ca²⁺ but bind Ca²⁺ when it is released from the SR. Tropomyosin gets further shifted due to myosin heads binding to actin filaments. It is thought that one myosin head binding to actin filaments can cause a shift in tropomyosin perhaps exposing myosin binding sites for up to 14 actin molecules⁷⁴.

Actin filaments get moved towards the center of the sarcomere due to ATP-dependent conformational changes of myosin molecule after myosin and actin have bound to each other. Such movement of actin results in sarcomere shortening and therefore contraction of the myofiber. These repetitive movements are known as cross-bridge cycling-sarcomere shortening⁷⁴. The collective term for the entire process is the sliding filament theory because the myosin cross-bridge is pulling the actin thin filament toward the center of the

sarcomere thereby sliding the thin filament past the myosin thick filament⁷⁴. The skeletal muscle syncytium means that each one of these muscle twitches described get amplified into a huge force generation within the muscle which is needed for movement.

Merosin Deficient Congenital Muscular Dystrophy

Merosin deficient congenital muscular dystrophy (MDC1A) is caused by the loss of Laminin-211 and Laminin-221 heterotrimers which are most abundant in skeletal and cardiac muscle basal lamina; mutations in the *LAMA2* gene cause the loss of these Laminin isoforms. This reduction of laminin reduces the capacity for myofiber adhesion, loss of sarcolemmal integrity and subsequently affects the ability of the skeletal muscle syncytium to generate force in a coordinated and efficient manner^{3,5,73,91-87}. Patients, from birth, experience progressive muscle wasting which confines them to a wheelchair at an early age and respiratory failure that leads to their untimely death. Currently, there is still no effective treatment or cure for this devastating disease.

Merosin deficient congenital muscular dystrophy (MDC1A) affects approximately 0.89/100,000 individuals worldwide (1:100,000 - 1:500,000) and is thought to be the most common form of congenital muscular dystrophy affecting 30-40% of all diagnosed CMD cases⁸⁸. Loss of merosin (Laminin- α 2 protein) is caused by mutations occurring in the *LAMA2* gene which is located on chromosome 6q22-23 spanning ~260 kb with 64 exons ^{73,89-100}. This loss of Laminin- α 2 protein in MDC1A results in the absence of Laminin-211 and Laminin-221 heterotrimers which are abundant in skeletal and cardiac muscle basal lamina. Patients, also experience demyelinating neuropathy, muscle atrophy, limited eye movement and also respiratory failure that leads to their untimely death which can be as early as the first decade of life ^{88,92–94}. There is an increased likelihood of seizures occurring after six months of age due to changes in white matter of the brain ^{97,101-102}. Symptoms depend on where the mutation occurs and a mutation which results in no laminin- α 2 protein being produced will result in a more severe clinical phenotype compared to a mutation which produces a truncated form of laminin- α 2. Currently, there is still no effective treatment or cure for this cruel disease ^{24,88}.

Duchenne Muscular Dystrophy

Duchenne Muscular Dystrophy is a genetic disorder that affects the skeletal and cardiac muscle. Duchenne Muscular Dystrophy (DMD) is the most common type of muscular dystrophy in boys⁹⁵. It is an X-linked disorder that affects 1 in every 3,300 live male births. This disorder results from a mutation in the DMD gene which produces three isomers of the protein Dystrophin. Dystrophin is a protein that connects muscle fiber cytoskeleton to surrounding laminin in the extracellular matrix. This connection provides structural integrity during muscle contractions. The failure to produce dystrophin results in the inability for the formation of the dystrophin-laminin binding complex which results in severe muscle weakness⁹⁶. Children with DMD are not able to walk and are wheelchair-bound by their teenage years⁹⁵. The progressive nature of DMD leads

to feeding tube placement, cardiomyopathy, ventilator assistance and results in the untimely death of DMD patients⁹⁷⁻⁹⁸. Although the dystrophin gene has been known for well over 20 years there is still no effective treatment or cure for this disease.

Mouse models

<u>Mdx</u>

The *mdx* mouse model has a point mutation in the dystrophin gene that produces a nonsense codon, resulting in a premature termination of translation and a lack of dystrophin protein^{99,100}. *Mdx* mice have a very different phenotype to DMD patients. The *mdx* mice exhibit a near normal lifespan and the dystrophy phenotype they exhibit is relatively mild compared to that of DMD patients. The *mdx* mouse goes through rounds of muscle degeneration followed by complete regeneration between 3 and 10 weeks of age. After this time-point, muscle degeneration ceases in limb muscles and lack of evidence of scar tissue formation¹¹⁰⁻¹¹¹. Diaphragm muscle harvested from *mdx* mice does however retain muscle pathology throughout its lifetime¹¹²⁻¹¹³. The GRMD dog model recapitulates the disease in DMD patients and is considered the gold standard to mouse muscle pathology and therapeutics¹⁰⁵.

<u>dy</u>^W -/-

The dy^{W} -/- mouse is a knockout mouse model for which there are other models offered. Three other mouse models offer spontaneous mutations to study^{106–111}. dy^{W} -/- mice have decreased transcript and protein levels of the α 7

integrin chain and the β 1D integrin isoform is thought to be responsible for a more differentiated state in dy^{W} -/- mice. Protein levels of α 7 integrin are also decreased in laminin- α 2 deficient patients. Utrophin, dystrophin and associated proteins remain unchanged in laminin- α 2 deficient dy^{W} -/- mice and MDC1A patients^{73,112}. There is significant strain variation noticed across published studies for dy^{W} -/- dy/dy, dy^{2J}/dy^{2J} and dy_{3k} -/-.

<u>a7dy</u>

The $\alpha 7 dy$ double knockout mouse model of both laminin- $\alpha 2$ and $\alpha 7$ integrin talked about in this dissertation is the first known study of its kind for this particular dy^{W} -/- mouse model.

Laminin-111

Isolation and identification of laminin-111 from Engelbreth-Holm Swarm (EHS) mouse sarcoma was the first time that the laminin family was described¹¹³. Laminin-111 (α 1, β 1 and γ 1) is the predominant laminin isoform during embryonic development and is replaced by laminins 211 and 221 in mature differentiated skeletal muscle^{71,114–116} (Figure 2). This genetic switch from laminin-111 to laminin- α 2 occurs at embryonic day 11 in mice and within humans it is at 7 weeks gestation with maximal expression at 21 weeks gestation^{117–119}. The role of embryonic laminin-111 and laminin- α 2 is to anchor the myofibers to the basement membrane. Laminin- α 2 is highly glycosylated due to post-translational modifications before being secreted by myofibers⁷¹. In MDC1A patients, laminins α 4 and α 5 are upregulated^{71,120}.

In MDC1A, apoptosis is a common characteristic due to the laminin- α^2 deficient myotubes being unable to anchor myofibers to the extracellular matrix therefore causing instability within the muscle¹³⁰⁻¹²³. *In vitro* studies support this claim due to laminin- α^2 deficient C2C12 myoblasts being unable to form stable myotubes and whenever laminin- α^2 expression is reinstated then myotube stability is returned¹²¹. Laminin- α^2 deficient myotubes are also responsible for decreased regenerative capacity after injury¹²⁴.

Summary

The main hypothesis of this dissertation is that laminin-111 will act as an effective replacement protein therapy for the loss of laminin- α 2 in the dy^{W} -/- model of MDC1A and dystrophin in *mdx* model of DMD. Similar to how experimental animals were designed as double knockouts to lack both dystrophin and α 7 integrin (*mdx*/ α 7^{-/-}) and resulted in a more severe phenotype than single knockout animals, a double knockout of both laminin- α 2 and α 7 integrin was created in order to study the full extent to which α 7 integrin plays in laminin- α 2 deficient muscle.

Chapter 2 discusses laminin protein therapy after disease onset. Laminin-111 treatment was effective in reducing percentage (%) muscle fatigue in 8 week old dy^{W} -/- mice. Treatment with laminin also helped to improve the overall integrity of the muscle whilst helping to reduce scar tissue formation. This in turn helped to improve activity of these animals post-treatment after disease onset. Chapter 3 looks at transcriptional changes within diaphragm muscle in a dy^{W} -/- mouse model treated before disease onset. RNA-Seq experiments helped to identify osteoactivin (GPNMB) as a novel biomarker of MDC1A disease progression. Our results also reemphasized the role of Galectin-3 as a biomarker in this disease. Laminin-111 treatment also helped to restore many sarcolemmal proteins and improved muscle function by reducing muscle fibrosis. This study will help pave the way in teasing out the molecular pathways associated with MDC1A disease progression and treatment.

Chapter 4 looks at long term laminin treatment of *mdx* mice. This study basically showed that extensive treatment with laminin-111 had no added benefit compared to short-term treatments in younger mice. The lack of significance in the results for laminin treated animals could reflect the fact that the *mdx* mice have no overt dystrophic phenotype after 10 weeks of age. Repetitive treatment over a period of 1 year was expected to have a positive effect but the data was disappointing and may be explained by receptor desensitization. However, there was elevated EBD uptake and increased kyphosis within PBS treated animals. Laminin treatment helped to reduce muscle hypertrophy at 10 weeks old. Treatment also reduced muscle fatigue experienced and there was an increase in the sarcolemmal protein, β -DG.

Chapter 5 studies the new mouse model α 7 integrin -/-:: laminin- α 2 -/double knockout for muscular dystrophy. This study analyzes the effects on skeletal and cardiac muscle with severe kyphosis and atrial flutter/fibrillation occurring within this new double knockout mouse model^{125–130}. There was also elevated scar tissue deposition within cardiac muscle and embryonic lethality experienced. Laminin- α 2 presence proved to be most critical for prevention of MDC1A disease severity.

Chapter 6 offers conclusions and future directions associated with this work. In summary, this dissertation provides evidence that laminin-111 is beneficial with treatment before disease onset by reducing muscle pathology and increasing functional activity within mice. It is also the first time that the α 7 integrin -/-:: laminin- α 2 -/- double knockout mouse model has been studied and described for this particular dy^{W} -/- mouse model.

Figure 1. Main sarcolemmal proteins associated with both the extracellular matrix and intracellular cytoplasm present in each individual myofiber

Diagrammatic representation of skeletal muscle which is magnified in order to show how the skeletal muscle is attached to the bone via tendons. Bundles of myofibers (fascicles) are surrounded by connective tissue called the perimysium, which is in turn enveloped by the epimysium. Individual myofibers are surrounded by connective tissue known as endomysium. At the top of the diagram, there is a schematic diagram highlighting the main sarcolemmal proteins present in each healthy individual myofiber.

Figure 2. Schematic structure of laminin-111 protein

Laminin-111 protein consists of three chains (α 1, β 1, γ 1) that each have their own globular domains. The overall laminin-111 protein shape and coiled-coil domain, contributes to its very distinctive cruciform structure. The base of laminin-111 cruciform provides binding sites for cell surface receptors such as α 7 β 1 integrin and sarcolemmal proteins such as α -dystroglycan. Chapter II

Laminin-111 protein therapy after disease onset in the dy^{W} mouse model

for MDC1A

ABSTRACT

Merosin deficient congenital muscular dystrophy type 1A (MDC1A) is caused by the loss of laminin-211 and laminin-221 heterotrimers which are most abundant in skeletal and cardiac muscle basal lamina; mutations in the LAMA2 gene cause the loss of these laminin isoforms. This absence of laminin-211/221 in MDC1A reduces the capacity for myofiber adhesion, loss of sarcolemmal integrity and subsequently the ability of the skeletal muscle syncytium to generate force in a coordinated and efficient manner. Patients experience progressive muscle wasting which confines them to a wheelchair at an early age and respiratory failure that leads to their untimely death. Currently, there is no effective treatment or cure for this devastating disease.

Previous studies have shown that laminin-111, an embryonic form of laminin, delivered before disease onset can reduce muscle pathology and improve viability in the dy^{W} -/- mouse model of MDC1A. These studies suggested that laminin-111 may act to strengthen and reinforce the sarcolemma and provide a protective niche for muscle repair. Since most patients are diagnosed with MDC1A after disease onset, we determined if laminin-111 could be beneficial after disease onset. Our studies suggest dy^{W} -/- mice treated with laminin-111 after disease onset show improvement in muscle function and histology. Results from this study along with an understanding of laminin-111 pharmacokinetics will help pave the way in developing this protein as an exciting potential therapeutic for MDC1A patients.

INTRODUCTION

Patients with MDC1A are usually diagnosed after disease onset whenever little children are not able to walk properly and fall over easily. Previous studies have shown that laminin-111, an embryonic form of laminin, delivered before disease onset can reduce muscle pathology and improve viability in the dy^{W} -/-mouse model of MDC1A¹³¹. These studies suggested that laminin-111 may act to strengthen and reinforce the sarcolemma and provide a protective niche for muscle repair. Because systemic laminin-111 treatment was able to have many beneficial effects before disease onset (previously published)^{131,132}, we therefore carried out this study to investigate whether laminin-111 protein would be able to have the same beneficial effects when treatment was started after disease onset in dy^{W} -/- mice. This study would be a step towards trying to link what happens at the patient bedside to one of the current accepted mouse models used to study this disease^{124,133}.

MATERIALS AND METHODS

Generation of laminin-α2 -/- mice

All experiments involving mice were performed under an approved protocol from the University of Nevada, Reno Institutional Animal Care and Use Committee. The dy^{W} +/- mice were a gift from Eva Engvall via Paul Martin (The Ohio State University, Columbus, OH, USA). Male and female heterozygous mice were bred. In order to genotype mice, genomic DNA was isolated from tail snips

or ear notches using a Wizard SV DNA purification system (Promega, Madison, WI) following manufacturers instructions. To detect the mutation in the laminin-DYWF α2 gene. the following primers were used: (5'-ACTGCCCTTTCTCACCCACCCTT-3'), LAMA2exonR1 (5'-GTTGATGCGCTTGGGAC-3') Lac/ZR2 (5'and GTCGACGACGACAGTATCGGCCTCAG-3'). PCR conditions were as follows: 95°C for 5 minutes then 33 cycles of 94°C for 20 seconds, 62°C for 30 seconds and 72°C for 45 seconds. After these cycles, then 72°C for 10 minutes. A wildtype band was 250 bp whereas the laminin- $\alpha 2$ targeted allele produced a 480 bp band.

Experimental procedures were performed once mice were 4 weeks of age with weekly weighing until the end of study which was at 8 weeks of age where all mice were subject to *in vivo* experiments. To reduce experimental bias, investigators assessing and quantifying experimental outcomes were blinded to the treatment and control groups.

Animal husbandry

 dy^{W} -/- mice were housed with their wild-type littermates alongside the provision of mashed kibble and access to water. Husbandry and protocols were carried out via IACUC approval. Knockout mice that lost \geq 20% body weight (g) were euthanized. Pups were genotyped at 10 days old and at the end of each study, the female WT and dy^{W} -/- mice were euthanized by CO₂ inhalation in accordance with a protocol approved by the University of Nevada, Reno Animal

Care and Use Committee. The diaphragm muscles from these mice were dissected, flash-frozen in liquid nitrogen and stored at -80°C as previously reported by ¹³⁴.

Laminin-111 protein treatments

 dy^{W} -/- mice were intraperitoneally injected with 0.01 mg/g/week of laminin-111 protein (Invitrogen). Laminin-111 was stored at -80°C and thawed slowly at 4°C overnight before use. dy^{W} -/- mice were intraperitoneally injected (weekly) from 4 weeks old until 8 weeks old.

Experimental Design

4 week old female Wild-type (n=22) and dy^{W} -/- (n=10) mice systemically treated with (0.01 mg/g/week) EHS mouse laminin-111 until 8 weeks old. Alongside this treatment group dy^{W} -/- control mice (n=14) were systemically injected with a volume of sterile Phosphate buffered saline (PBS) that equated to such in the laminin-111 treatment group. At 8 weeks of age, PBS and laminin-111 treated dy^{W} -/- mice were sacrificed following a protocol approved by the Animal Care and Use Committee at the University of Nevada, Reno. Analysis of WT, PBS and laminin-111 treatment groups at 8 weeks of age was planned with the hope of identifying what changes occur within the functional activity and muscle pathology of these animals.

Weights

Weights for all mice of each genotype were recorded on a weekly basis. Softened kibble was provided fresh daily in a petri dish on the bottom of the cage in order to ensure there was no significant weight loss within the mice.

Muscle Strength

Muscle strength assessed at 10 weeks of age using the Chatillon DFE Digital Force Gauge (San Diego Instruments Inc., San Diego, CA). A total of six measurements per mouse were recorded and all results averaged for each group. The mice were analyzed by grasping a horizontal platform with their forelimbs and pulled backwards. The peak tension (grams of force) was recorded on a digital force gauge as mice released their grip.

Functional and activity

Opto-Varimex 4 Activity Meter (Columbus Instruments) offered unbiased data due to the machine possessing lasers that monitor and auto-track the activity of each mouse for a period of 30 minutes.

Plethysmography

Animals were subjected to plethysmography at 8 weeks of age. Animals for each genotype were used. Animals were placed in the plethysmography chamber (unrestrained) and then subjected to increasing does of aerosolized Acetyl-methacholine (6.25, 12.5, 25, 50 and 100 mg/mL), after an initial time period to acclimatize in the chamber^{135,136,137}. First mice were exposed to aerosolized PBS to gather baseline data. Experimental values were automatically generated by the pneumograph in the wall of the chamber. FinePointe software (Buxco©) was used to collect all data.

Hematoxylin and Eosin staining

Tibialis Anterior muscle was cryosectioned and 10 µm sections were placed on surgipath microscope slides. Tissue sections were fixed with ice-cold 95 % ethanol for 2 minutes followed by 70 % ethanol for 2 minutes and then rehydrated in running water for 5 minutes. Gill's hematoxylin (Fisher Scientific, Fair Lawn, NJ) was then used to stain the sections and rinsed in water for 5 minutes. Scott's solution (0.024 M NaHCO₃, 0.17 M MgSO₄) was then applied for 3 minutes and rinsed in water for 5 minutes. Tissue cryosections were then immersed in eosin solution (Sigma-Aldrich, St. Louis, MO) for 2 minutes. Sections were then dehydrated in ice cold 70 % and 95 % ethanol for 30 seconds each, followed by 100 % ethanol for 2 minutes. Xylene was then used to clear the sections for 5 minutes prior to mounting with DepeX mounting medium (Electron Microscopy Services, Washington, PA). Centrally located Nuclei were counted from images composing representative montages for each mouse. Images were assessed at 100 X magnification by bright field microscopy. The number of centrally located nuclei per muscle fiber was determined by counting each image which contributed to myofibers being counted per treatment group. At least 4 animals from each treatment group were analyzed.

Isolation of skeletal muscle

8 week old female wild-type and dy^{W} -/- mice were euthanized by CO₂ inhalation in accordance with a protocol approved by the University of Nevada, Reno Animal Care and Use Committee. Muscles from these mice were dissected, flash-frozen in liquid nitrogen and stored at -80°C.

Sirius Red Staining

TA muscle sections were stained with Sirius Red to measure fibrosis in the skeletal muscle tissue. 10 µm cryosections on slides were fixed in 100% ethanol and then hydrated through an alcohol series (95 and 80% ethanol) and rinsed in tap water. The sections were stained with Sirius Red (0.1% in saturated aqueous picric acid solution, Rowley Biochemical Institute, Danvers, MA, USA) for 30 min followed by two washes in acidified water. The sections were dehydrated through an alcohol series, rinsed in xylene and mounted with DEPEX Mounting media (Electron Microscopy Science, Hat- field, PA, USA). Representative montages were captured and analyzed using Axiovision 4.8 software. Montages were assembled using Photoshop and Microsoft Powerpoint. Images were captured at 100 X magnification. Areas of red in the TA were considered fibrotic. Circled fibrotic areas were added together, and any nonfibrotic fibers within the fibrotic area were subtracted from the calculated area. The percentage of muscle fibrosis was quantified in treated and control muscles as a percentage of total TA muscle area. Sirius red slides were also used to measure minimal feret's diameter for mice of all 4 genotypic groups. All muscle fibers within an entire TA montage were used to determine the minimal feret's diameter.

Statistical Analysis

All averaged data are reported as the mean \pm s.d or as denoted on specific figures as mean \pm SEM. *P*-values of < 0.05 were considered to be statistically significant. One-way or Two-Way *ANOVA* statistical testing alongside a student *t*-test was used.

RESULTS

Treatment regime and analysis of muscle strength in 8 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 mice

Female dy^{W} -/- mice were treated from 4 weeks of age with weekly systemic injection of laminin-111 (0.01 mg/g) in Figure 4 A. Littermate control dy^{W} -/- mice were also injected with the same volume of sterile Phosphate buffered saline (PBS). There was not much difference between PBS or laminin treatment groups with regards forelimb grip strength (Figure 4 B) and stand-up activity (Figure 4 C). There was however a trend towards WT with Percentage (%) forelimb muscle fatigue (Figure 4 D) but overall laminin-111 treatment did not improve muscle performance relative to WT muscle.

Histological Analysis Quantifying Centrally Located Nuclei in 8 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 mice Representative montages for Tibialis anterior (TA) muscle stained with H & E (Figure 5 A) for each treatment group revealed that laminin-111 treatment did help to halt any further muscle degeneration (Figure 5 A). There was a steep elevation in the Percentage (%) of centrally located nuclei (CLN) (Figure 5 B), this could be a possible halt in degradation or indeed *de novo* muscle formation and these centrally located nuclei represent this muscle fusion of new myotubes. Due to the heterogeneity of the myofiber sizes and the fact that mature skeletal muscle is formed by the fusion of myoblasts into myotubes. Mature skeletal muscle possesses many nuclei along the periphery of each myofiber. Only when there is degeneration or regeneration will nuclei move into the center of each myofiber and in the case of mice, the nuclei will stay there permanently once they have moved into the center.

Fibrotic tissue reduced in 8 week old Tibialis Anterior muscle by laminin-

Even after disease onset, treatment with laminin-111 helped to halt any further degradative environment of fibrotic scar tissue deposition within dy^{W} -/- mice (Figure 6 A). This finding was proven to be statistically significant (Figure 6 B), the PBS treated animals had 12.91 % fibrotic tissue ± 1.481 % whilst mLAM-111 treated animals had 9.363 % fibrotic tissue ± 0.9431 %. This was alongside an elevation in the size of myofibers by minimal feret's diameter measurements (Figure 6 C). Minimal feret's diameter is a method for measuring the size of the

myofibers. When comparing PBS and mLAM-111 treated animals their myofiber sizes were 25.67 μ m ± 0.2741 μ m and 26.92 μ m ± 0.2397 μ m respectively.

Activity and Function of 8 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 mice

There was a slight increase with the distance (cm) and speed (cm/sec) with which moved for dy^{W} -/- mice treated with laminin-111 compared to PBS treated dy^{W} -/- mice (Figure 7). WT moved 9937 cm ± 2844.267 cm, PBS treated animals moved 3693.55 cm ± 1877.44 cm and mLAM-111 treated animals moved 4477 cm ± 234.98 cm. Laminin treatment created a 21.21 % improvement in distance moved compared to PBS treated animals. Laminin treatment also caused a 7 % increase in the speed with which moved by the mice compared to PBS controls.

Respiratory function of 8 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 mice

Plethysmography analysis of important respiratory parameters in Figure 8 proved to be significant for all three parameters, frequency of breathing, PenH, and TVb when compared to wild-type. However, there was no significant difference between laminin treated and PBS treated dy^{W} -/- mice. Treatment after disease onset was not effective in targeting and importantly relieving a main marker in disease progression.

DISCUSSION

As mentioned at the start, patients with MDC1A are usually diagnosed after disease onset. Because systemic laminin-111 treatment was able to have many beneficial effects before disease onset (previously published)^{131,132}, we carried out this study to investigate whether laminin-111 protein would have the same beneficial effects when treatment was started after disease onset in the dy^{W} -/- mice.

This study would be a step towards trying to link what happens at the patient bedside to one of the current mouse models used to study this disease. As with all scientific studies it is important that they correlate to what is currently experienced in the medical field. Our studies suggest dy^{W} -/- mice treated with laminin-111 protein after disease onset show improvement in muscle function by reducing the percentage of forelimb muscle fatigue (Figure 4 D) and reduced fibrosis as shown in the histology data presented in Figure 6 A.

Overall laminin-111 protein delivered after disease onset is not as effective as treatment before disease onset. As with any disease there needs to be early detection and treatment before disease progression in order to see a significant beneficial effect. Galectin-1 protein, a modifier in apoptosis and inflammation, has been recently been shown to be beneficial in the treatment of *mdx* mice¹³⁸. Perhaps this galectin-1 protein in combination with laminin-111 protein delivered as a cocktail therapy may prove to be a beneficial avenue of investigation for the treatment of MDC1A. Omigapill has been shown to block

apoptosis which is a primary cell process involved in MDC1A disease progression^{139,140}. An enzyme called GAPDH is heavily involved with apoptosis and omigapill was found to bind directly to GAPDH and blocking its actions therefore preventing the cell death pathway¹⁴¹. Additionally, apoptosis inhibitors and mini-agrin have been proven to be effective in the treatment of congenital muscular dystrophy¹.

Results from this study along with an understanding of laminin-111 pharmacokinetics will help pave the way in developing this protein as an exciting potential therapeutic for MDC1A patients.

ACKNOWLEDGEMENTS

I would like to thank Vivian Cruz and Chelsea Lamb for their technical assistance with histological staining and analysis. Rebecca Evans for genotyping and providing the mice for this study. Dr Cherie Singer for kindly allowing access to the Buxco whole body plethysmography (WBP) system.

Figure 3. Dy^{W} -/- mice display greatly reduced body size and mass

The dy^{W} -/- mutant mouse, shown here on the left lacks laminin- α 2. Notice the fragility of the mutant mouse (left) compared to the WT mouse (right). Both mice are 8 weeks old.

Figure 4. Treatment regime and analysis of muscle strength in 8 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 mice

A) Laminin-111 protein was detected in Tibialis Anterior cryosections of 8 week old dy^{W} -/- mice after intraperitoneal treatment. The treatment regime was started after disease onset with intraperitoneal injection of 0.01 mg/g/week EHS mLAM-111 from 4 weeks old to 8 weeks old. Upon completion of the study, mice were subjected to functional studies and then were sacrificed for immunohistochemical and Western analysis. B) Functional activity was recorded at 8 weeks old to include grip strength. There was no difference in grip strength between mLAM-111 treated and untreated dy^{W} -/- mice. Significance in grip strength for dy^{W} -/mice compared to WT mice was indicated with a *p*-value <0.001 after Two-way *ANOVA* was performed.

C) Stand-up activity was recorded for a period of 5 minutes. The number of stand-ups accomplished by each 8 week old mouse was noted. There was no statistical significance found between the treatment groups (*P*-value= 0.8824).

36

Mean \pm SEM for each treatment group were as follows: PBS (49.63 stand-ups \pm 7.442), mLAM-111 (48.29 stand-ups \pm 4.150). D) Percentage (%) forelimb muscle fatigue was calculated based on the previous grip strength data in Figure 4 B, gathered at 8 weeks of age.

В

Figure 5. Histological Analysis Quantifying Centrally Located Nuclei

A) Hematoxylin and Eosin staining on 10 μ m 8 week old TA cryosections. Magnification: 100 X, scale bar = 200 μ m. B) Percentage (%) myofibers with centrally located nuclei (CLN) were quantified as CLN are used as a marker of degeneration and regeneration. A *t*-test was performed to compare PBS (42.9 % CLN ± 2.296 %) treated and mLAM-111 treated animals (49.96 % CLN ± 2.852

А

%) and there was no statistical significance with the generated *P*-value of 0.0749. There was however statistical significance upon One-way *ANOVA* analysis of the 3 treatment groups generating a *P*-value = 0.0003.

В

A) Sirius red staining on 10 μ m TA cryosections was used to calculate percentage (%) of fibrosis. Magnification 100 X, scale bar 200 μ m. B) The PBS

treated animals had 12.91 % fibrotic tissue \pm 1.481 % whilst mLAM-111 treated animals had 9.363 % fibrotic tissue \pm 0.9431 %. The *P*-value generated was 0.0462 using a *t*-test to compare PBS and mLAM-111 treatment groups.

Figure 6. Fibrotic tissue reduced in 8 week old Tibialis Anterior muscle by laminin-111 C) Sirius red stained 10 μ m TA cryosections were used to measure minimal feret's diameter (μ m). Minimal feret's diameter is a method for measuring the size of the myofibers. When comparing PBS and mLAM-111 treated animals their myofiber sizes were 25.67 μ m ± 0.2741 and 26.92 μ m ± 0.2397 respectively. The *P*-value was 0.0006 using a *t*-test. Using One-way *ANOVA* statistical testing for all 3 groups the *P*-value generated was <0.0001.

Activity box data showing distance (cm) (Figure 7 A) and speed (cm/sec) (Figure 7 B) with which the 8 week old mice moved for each treatment group. WT moved 9937 cm \pm 2844.267 cm, PBS treated animals moved 3693.55 cm \pm 1877.44 cm and mLAM-111 treated animals moved 4477 cm \pm 234.98 cm. Laminin treatment

created a 21.21 % improvement in distance moved compared to PBS treated animals. Laminin treatment also caused a 7 % increase in the speed with which moved by the mice compared to PBS controls. *P*-values for both distance (cm) and speed (cm/sec) with which moved comprised of comparing all 3 treatment groups were <0.05 with One-way *ANOVA* and a Bonferroni's Multiple comparison test.

Figure 8. Respiratory function of 8 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 mice

Plethysmography data are presented here showing important respiratory parameters for 8 week old mice. Frequency of breathing (Figure 8 A), PenH

(Figure 8 B) and Tidal volume (TVb) (Figure 8 C) were recorded and normalized to body weight (g). PenH (enhanced pause) is correlated to but not a direct measurement of airway resistance. There was a 5.1 % decrease in Frequency of breathing, a 2.3 % increase in PenH and a 16.4 % decrease in Tidal volume when treated with laminin-111 compared to PBS treatment. There was no statistical significance between PBS and laminin-111 treated animals but *P*-values were <0.05 with One-way *ANOVA* and a Bonferroni's Multiple comparison test of the 3 treatment groups.

Chapter III

Laminin-111 Treatment Modifies Transcriptional Changes in the Diaphragm

Muscle of a Mouse Model of MDC1A

ABSTRACT

Merosin deficient congenital muscular dystrophy type 1A (MDC1A) is caused by loss of laminin-211 and laminin-221 within the basal lamina of skeletal and cardiac muscle. This absence of laminin-211/221 reduces the capacity for myofiber adhesion resulting in loss of sarcolemmal integrity and subsequently the ability of the skeletal muscle to generate force in a coordinated and efficient manner. Patients experience progressive muscle wasting resulting in loss of ambulation and death from respiratory failure. Currently, there is no effective treatment or cure for this devastating disease. Recently we have shown that laminin-111, an embryonic form of laminin, can act as a protein replacement therapy in the dy^{W} mouse model of MDC1A. This study set out to determine the transcriptional changes that occur within the diaphragm muscle during MDC1A disease progression and after laminin-111 treatment using RNA-Seq technology. Our results show major transcriptional changes with age in pathways associated with immune response, cell growth and survival and muscle repair. Galectin-3 is known to help stabilize myofibers and these transcripts were found to be upregulated (six-fold) in diseased muscle compared to wild-type muscle. Together, this study will help to identify novel therapeutic targets that may be useful in the treatment of MDC1A.

INTRODUCTION

Merosin deficient congenital muscular dystrophy (MDC1A) is caused by the loss of Laminin-211 and Laminin-221 heterotrimers which are most abundant in skeletal and cardiac muscle basal lamina; mutations in the *LAMA2* gene cause the loss of these laminin isoforms.Laminin-211/221 are critical to muscle integrity and loss of these heterotrimers causes reduced muscle function, ability to repair and myofiber loss. Patients experience progressive muscle wasting from birth which confines them to a wheelchair at an early age and leads to respiratory failure. Currently, there is no effective treatment or cure for this devastating disease.

Merosin deficient congenital muscular dystrophy (MDC1A) affects approximately 0.89/100,000 individuals worldwide (1:100,000 - 1:500,000) and is considered to be one of the most common forms of congenital muscular dystrophy. Loss of merosin (Laminin- α 2 protein) is caused by mutations occurring in the LAMA2 gene which is located on chromosome 6q22-23 73,89. This results in the absence of Laminin-211 and Laminin-221 heterotrimers which are abundant in skeletal and cardiac muscle basal lamina. Patients also experience demyelinating neuropathy, muscle atrophy, limited eye movement and also respiratory failure that leads to their untimely death which can be as early as the first decade of life^{88,92,94}. There is an increased likelihood of seizures occurring after six months of age due to changes in white matter of the brain ^{88,92,93}. Recently we have shown that laminin111, an embryonic form of laminin, can act as a protein replacement therapy in a mouse model of MDC1A¹⁴². The presence of laminin-111 prevented muscle disease progression and improves muscle repair ^{132,142}. To explore the on-target and off-target activity of laminin-111, we conducted RNA-seq analysis to identify transcript changes in the diaphragm muscle of dy^{W} mice. Our results showed 828 transcripts changed significantly in the diaphragm muscle of untreated dy^{W} animals compared to wild-type mice with 81 transcripts changes that were specific only to laminin-111 treatment. This study identifies transcript changes caused by disease progression in the diaphragm muscle and on- and off-target activity of laminin-111 protein therapy.

MATERIALS AND METHODS

Animal Care and Laminin-111 Treatment Schedule

The dy^{W} -/- mice used in the study were generated by crossing dy^{W} +/- x dy^{W} +/- animals. The dy^{W} -/- mice were housed with wild-type littermates under a protocol approved by the Animal Care and Use Committee at the University of Nevada, Reno. Pups were genotyped at 10 days old and genotypes confirmed at the end of the study. In order to genotype mice, genomic DNA was isolated from tail snips or ear notches using a Wizard SV DNA purification system (Promega, Madison, WI) following manufacturers instructions.

To detect the mutation in the laminin- α2 gene, the following primers were used: DYWF (5'-ACTGCCCTTTCTCACCCACCCTT-3'), LAMA2exonR1 (5'-GTTGATGCGCTTGGGAC-3') and Lac/ZR2 (5'-GTCGACGACGACAGTATCGGCCTCAG-3'). PCR conditions were as follows: 95°C for 5 minutes then 33 cycles of 94°C for 20 seconds, 62°C for 30 seconds and 72°C for 45 seconds. After these cycles, then 72°C for 10 minutes. A wildtype band was 250 bp whereas the laminin- α 2 targeted allele produced a 480 bp band.

Experimental procedures were performed once mice were 10 days and 2 weeks of age with weekly weighing until the end of study which was at 2 weeks and 5 weeks of age where all mice were subject to *in vivo* experiments. To reduce experimental bias, investigators assessing and quantifying experimental outcomes were blinded to the treatment and control groups.

Mice were euthanized by CO₂ inhalation in accordance with a protocol approved by the University of Nevada, Reno Animal Care and Use Committee. Tissues from these mice were dissected, flash-frozen in liquid nitrogen and stored at -80°C as previously reported by ¹³⁴. All mice used in these studies were female.

Two separate experimental mouse groups were included in this study. One experimental data group included wild-type (WT; n=5) and dy^{W} -/- (n=5) mice which were untreated and sacrificed at 14 days of age. A second experimental data group consisted of mice treated weekly with either Lamin-111 (dy^{W} -/-) or Phosphate buffered Saline (PBS; WT and dy^{W} -/-) from 10 days old until 5 weeks old, at which time mice were sacrificed. Laminin-111 was stored at -80°C and thawed slowly at 4°C overnight before use. Mice were injected intraperitoneally (i.p.) with 0.01 mg/g/week of laminin-111 protein (Invitrogen) or an equal volume of PBS. This experimental group consisted of Laminin-111 treated dy^{W} -/- (n=5) or PBS-treated WT (n=4) and dy^{W} -/- (n=4).

Immunofluorescence

TA and gastrocnemius muscles were embedded in Tissue-Tek OCT and 10 µm cryosections were cut using a Leica CM 1850 cryostat (Leica, Wetzal, Germany). Sections were placed on pre-cleaned Surgipath slides (Surgipath Medical Industries, Richmond, IL) and fixed using 4% paraformaldehyde (PFA). ERK1/2 was detected using a rabbit anti-mouse ERK polyclonal antibody (Cell Signaling, 1:100) followed by a FITC-conjugated goat anti-rat-IgG secondary antibody (1:5000; Li-Cor Biosciences).

Osteoactivin was detected using rabbit anti-osteoactivin antibody (AbCAM; 1:100) overnight followed by fluorescein isothiocyanate (FITC)conjugated anti-rabbit IgG secondary antibody. These slides were also treated with Texas Red labeled wheat germ agglutinin (WGA, 1:250, Molecular Probes, Invitrogen detection technologies, Eugene, OR). Slides were mounted using Vectashield Hard Set with DAPI (Vector Laboratories Inc., Burlingame, CA).

Images were captured using an Olympus FluoviewFV1000 Laser scanning biological confocal microscope using the Olympus micro FV10-ASW 3.1 software. Representative images for publication were taken at 400 X using the Olympus FluoviewFV1000 Laser scanning biological confocal microscope.

Immunoblotting

The TA muscles were carefully dissected and protein extracted using RIPA buffer supplemented with protease inhibitors. Proteins were separated using an 8% SDS-PAGE gel electrophoresis, transferred to nitrocellulose membrane and blocked using 2.5% Coronation dry milk in TBST for 1 hour. Blots were incubated with primary antibody overnight before being incubated with secondary antibody for 1 hour and then washed with 1X TBST buffer. Proteins were imaged using the LiCor Odyssey system.

RNA-Seq

Diaphragm tissue was homogenized and suspended in TRIzol reagent (GibcoBRL, Life Technologies). Total RNA was isolated following the manufacturer's instructions (Gibco BRL, Life Technologies). The RNA samples were treated with 5 units of DNase I and purified using RNeasy Mini Spin Columns (Qiagen) according to the manufacturer's instructions. Total RNA concentration and purity was assessed by measuring A260/280. RNA was pooled equally for each experimental group (2-week untreated WT, 2-week untreated dy^{W} -/-, 5-week PBS WT, 5-week PBS dy^{W} -/-, and 5-week Laminin-111 dy^{W} -/-) and sent to UC Davis Genome Center (UC Davis Genome Center, 451 Health Sciences Drive, Davis, CA 95616). UC Davis made libraries from the pooled RNA with indexes following Illumina's TruSeq library prep kit and libraries were sequenced for single end 50 bases using Illumina HiSeq2000 following manufacturer's standard procedures. Illumina reads were aligned to the reference using Bowtie 20 with end-trimming enabled and indels penalized with a score equivalent to 3 mismatches. The best alignments were retained for downstream analysis for read counts and variant calls using filtering criteria for polymorphisms that required at least 8 uniquely aligned reads to call the variant
within a given sample, with an average quality of >= 20 for bases calling the variant, and having a variant frequency of >=%20 within all reads covering that position in that sample. Changes in the transcriptome were compared between disease and control data sets. Excess Total RNA was stored separately at -80°C for later individual qRT-PCR assessment of highly affected transcripts.

Statistical Analysis of RNA-Seq data

Each sample was subjected to alignment and counting of mapped reads. For this, TopHat was used for alignment to the genome, then reads were counted per locus (all isoforms counted together for one gene) using htseq-counts. In order to adjust for large differences in the number of mapped reads in each sample (with the sample with the most reads having more than 6 times as many reads as the sample with the fewest reads), prior to analysis, counts were downsampled using binomial sampling as described by¹⁴³. Genes with less than 1 count per million reads in all 8 samples were filtered from the counts table, leaving 15,026 genes in the analysis. Differential expression analysis was conducted using the Bioconductor package edgeR, version 3.4.2^{144–147}. Analysis was conducted using a multifactorial GLM with factors for time, group (WT, PBS treated dy^{W} -/- and LAM-111 treated dy^{W} -/-), and their interaction. This multifactorial method was chosen during analysis as it is considered to be more powerful than running each discrete comparison. Due to the lack of replication, tagwise dispersion parameters were estimated from a multifactorial GLM with factors for time and group but no interaction effect. P-values were adjusted for multiple testing using the false-discovery rate (FDR) method of Benjamini and Hochberg (1995)¹⁴⁸. Log2-fold changes and FDR-adjusted p-values less than 0.1 for all 15,026 genes included in the analysis.

qRT-PCR

Quantitative Real Time PCR (qRT-PCR) was used to confirm individual mouse changes from cherry picked transcripts identified as altered in the RNAseq study. Individual mouse diaphragm cDNA was made from previously isolated Total RNA using Superscript III (Invitrogen) following standard procedures. qRT-PCR using SYBR-green PCR mix (VWR) and primers (IDT DNA) against Aggrecan, GPNMB (Osteoactivin), Elane, MMP8, MMP9, BGLAP1, BGLAP2, PRTN3, DMP1, CALCA1, SERCA1, SERCA2, IBSP, LAMA2, Tenascin C, LGALS3, WISP1, and ADAM8 transcript Ct values were normalized to GAPDH (Doe et al.) Ct values in order to establish a fold-difference between treatment groups.

Muscle transcripts

The muscle transcript ontology groups of interest included: Integrin signaling, Inflammation, Fibrosis, Apoptosis (ILK, AKT), Extracellular Matrix signaling, Cell surface receptors and signaling (integrins and dystrophin and utrophin glycoproteins) and Cell Survival pathways (AKT).

Data Analysis

Microsoft Excel and Ingenuity Pathway Analysis (IPA) software were employed in order to visualize the signaling pathways affected within the treatment groups. Protein expression levels were analyzed and processed using GraphPad Prism software. Fold-changes in protein were calculated using changes in intensity within ImageJ software.

RESULTS

Transcriptional changes in the diaphragm muscle of laminin- α 2 deficient Mice

Previous studies have shown laminin-111 can act as a protein replacement therapy for the loss of laminin-211/221. In this study we sort to identify transcriptional changes during disease pathogenesis in the diaphragm muscle of dy^{W} mice at 2 and 5-weeks of age. Compared to wild-type animals, 2 week old dy^{W} mice show 138 transcript changes in the diaphragm muscle (Table 5). 27 transcripts were reduced more than 4-fold and 111 transcripts were increased more than 4-fold. These changes include increased transcripts associated with immune response, muscle apoptosis in 2 week old animals and muscle necrosis in 5 week old animals. Of special interest were genes associated with muscle necrosis at 5 weeks old which are involved in creating and recruiting signaling players for a cyclical degradative environment which ultimately destroys muscle.

Laminin-111 alters the transcript profile in dy^{W} diaphragm muscle

We next compared transcriptome changes caused by normal disease progression with the impact laminin-111 protein therapy has on transcript levels. RNAseq studies revealed 468-specific transcripts in total were altered by laminin-111 treatment (Table 6). 356 transcripts were increased more than 4-fold and 112 transcripts were reduced more than 4-fold. Transcripts associated with bone growth and maintenance, muscle and ECM associated genes. These include tenascin N, elastase, aggrecan, MMP8, MMP9, MMP13, proteinase-3 were significantly altered.

Osteoactivin is increased in laminin- α 2 deficient muscle

Our RNAseq study identified that osteoactivin transcript (GPNMB) is significantly upregulated in the dy^{W} -/- diaphragm. Osteoactivin is a transmembrane protein that promotes bone formation by increasing the activity of osteoblasts^{149,150}. Osteoactivin can induce transdifferentiation of myoblasts into osteoblasts and has recently been shown to protect muscle from degeneration. That has been reported to be associated with integrins.

Transcriptome data analysis encompassed changes in 5 week old diaphragm tissue harvested from PBS treated dy^{W} -/- mice versus LAM-111 treated dy^{W} -/- mice. There were relatively few significant changes (~275 total genes), most genes had little to do with muscle or the extracellular matrix (ECM). However there were many genes found misregulated that were associated with

bone growth and maintenance. Of the few muscle and ECM associated genes found to be significantly altered, were tenascin N, elane (elastase), aggrecan, MMP8, MMP9, MMP13, proteinase-3. There were several genes associated with neuronal signaling that were found to be altered in the disease state. Our results at this age may represent individual disease state changes and not changes specifically associated with Laminin-111 treatment. 5 week old diaphragm from Wild-type versus Untreated dy^W -/- changes: Over 15,000 genes were significantly altered, current analysis is continuing on the known functions for all genes on the list but one of the most interesting genes that were upregulated in the dy^W -/- diaphragm is osteoactivin (*GPNMB*).

RNA-Seq summary (WT vs dy^{W} -/-, 2 week, 5 week and 8 week): sets baseline transcripts

2 week dy^{W} -/- transcripts that are upregulated include Ankyrin (Ankrd1), Myosin Heavy chain 3 (Myh3), Interleukin-8 (IL-8), Dyenin (Dnahc1), Troponin T type 2 (Tnnt2) (Supplemental Table 1). Interleukin 8 and laminin- α 2 transcripts are downregulated. These results are good in offering a baseline view of what happens in dy^{W} -/- before disease onset.

2 week ≥ 4–fold changes summary

A summary of 138 transcripts misregulated \geq 4–fold between WT and dy^{W} -/- at 2 weeks old were narrowed down to 14 transcripts shown in Supplemental Table 2.

5 week ≥ 4-fold changes summary

A summary of 169 transcripts misregulated \geq 4–fold between dy^{W} -/- PBS treated and dy^{W} -/- laminin treated mice at 5 weeks old were narrowed down to 34 transcripts shown in Supplemental Table 3.

RT-PCR results confirming important transcriptional changes in genes associated with the extracellular matrix in 2 week old and 5 week old WT and dy^{W} -/- + PBS mice

In Figure 9, *LAMA2* transcript was confirmed to be decreased in dy^{W} -/mice which is as expected due to the deficiency of laminin- α 2. Tenascin C and LGAL3 transcripts were highly elevated in dy^{W} -/- mice. GPNMB (Osteoactivin) was upregulated consistently within 2 week old dy^{W} -/- TA and 5 week old TA and Gastroc muscles which supports data provided in Figures 9 - 14.

Immunofluorescence on critical protein changes identified from gene transcripts in TA muscle from 5 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 treated mice

Osteoactivin (GPNMB) protein is also elevated amongst PBS treated dy^{W} -/- TA muscle and also MDC1A diseased patient tissue. As the disease progresses we have shown the stage where Osteoactivin (OA) becomes misregulated. In normal wild-type muscle, osteoactivin is a type I transmembrane protein which can interact with integrins and other receptors^{149,151}. It is maintained as an intact protein. Loss of laminin-211 causes a transcript increase osteoactivin transcription, but the protein is cleaved by ADAM12^{152–155} giving rise to two fragments which is previously known. The internal fragments we see in patient muscle are completely osteoactivin positive and often surrounded by fibrotic tissue. The external peptide fragment activates myofibroblasts to secrete MMPs, especially MMP3 (this is known) and pathways (TGF β) that promote fibrosis. When mice are treated with laminin-111, although we do not see a reduced osteoactivin transcript in Figure 10 A, there is a change in protein localization. All the osteoactivin is now back at the membrane (as in wild-type muscle) suggesting it is no longer cleaved. So laminin-111 treatment possibly prevents ADAM12 activity^{152,153} and preserves the intact osteoactivin protein.

Immunoblotting for ERK and phospho-ERK protein

Protein levels of total ERK were decreased for Laminin treated animals, and in addition the levels of phospho-ERK protein steeply increased upon laminin-111 treatment (Figure 11). This data suggests that increased phospho-ERK will restore MAPK signaling and increase survival by laminin-111 treatment.

Immunoblots on critical protein changes identified from transcripts for 5 week old dy^{W} -/- mice

Quantification of changes in protein expression as a direct result of laminin-111 treatment of dy^{W} -/- mice is shown in Figure 12. Statistical analysis via One-way *ANOVA* showed significance in LAM-111 treated animals relative to

PBS treated animals in α 7A, α 7B and α DG expression with *p*-values (0.0032, 0.0165, 0.0016) respectively.

RNA-Seq data for dy^{W} -/- +PBS vs dy^{W} -/- +LAM-111

This data in Supplemental Table 4 presents an overview of gene expression changes discovered for 2 week old dy^{W} -/- mice between WT and laminin- α 2 deficient mice. Gene expression changes were tabulated for 5 week old dy^{W} -/- mice between PBS treated and mLAM-111 treated groups. 5 week old dy^{W} -/- transcripts of interest include: Integrin binding Sialoprotein (Ibsp), Osteocalcin (Bglap), MMP-13 (MMP13), Cartilage Oligomeric Matrix Protein (Fam150b), WNT Inhibitory Factor 1 (Adra1b), Calcitonin (BC089597), Integrin B (Bhmt2), Ficolin (Akr1b7), Interleukin-8 (IL-8) and Vitamin D (Ugt1a5).

RT-PCR results confirming important transcript changes in 5 week old LAM-111 treated *dy^W-/-* mice

Presented in Supplemental Table 5, is a comparison of expression changes (MMP8, MMP9, Aggrecan, IBSP and BGLAP2) as disease progresses in treated versus untreated dy^{W} -/- genes. This data is good at showing whether the gene expressions changes we observe are global or are they indeed due to one mouse skewing the data.

Histology and functional data obtained from 5 week old dy^{W} mice

Activity box data distance (cm) and speed (cm/sec) with which moved showed that there was more than a trend towards wild-type activity upon laminin-

111 treatment of dy^{W} -/- mice (Figure 13). *P*-values were (0.0221 and 0.0190) respectively with One-way *ANOVA*. Grip strength displayed as grams of force (g) normalized to body weight (g) was quantified for each treatment group. The results proved to be statistically significant for the comparison of dy^{W} -/- mice treated with either PBS or laminin-111. This data showed that laminin treatment improved forelimb muscle strength in dy^{W} -/- mice. *P*-values were (< 0.0001 and 0.05) respectively with Two-way *ANOVA*. Percentage (%) fatigue was quantified based on grip strength recorded but there was no statistical significance observed with this specific result.

Histology and respiratory function in 5 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 treated mice

Sirius red staining of TA cryosections showed visually that there was a reduction in fibrotic area for laminin-111 treated mice compared to PBS treated dy^{W} -/- mice (Figure 14 A). Despite this, there was no significance in regards myofiber sizes regardless of the treatment group in question (Figure 14 B). Percentage (%) fibrosis showed a trend towards WT upon laminin-111 treatment. This was statistically significant with One-way *ANOVA* and *p*-value of 0.002. Plethysmography data was obtained using the Buxco system (Figure 14 C). Parameters of interest included: Frequency of breathing, Tidal Volume (TVb) and PenH. Each parameter was normalized to body weight (g). There was a significant peak in breath frequency in laminin treated dy^{W} -/- mice. *P*-value was 0.0126 with One-way *ANOVA*.

Model of Laminin-111 action on Osteoactivin (OA) restoration

A model of Laminin-111 protein action on Osteoactivin restoration is presented in Figure 15. WT muscle possesses intact Osteoactivin (OA) protein. Loss of laminin- α 2 in dy^{W} -/- muscle causes increased Osteoactivin transcription but the protein is cleaved into two fragments by ADAM12. The internal fragment is visible in fibrotic patient tissue. The external fragment is free to activate myofibroblasts that secrete matrix metalloproteinases and trigger fibrotic pathways. Treatment with laminin-111 does not affect Osteoactivin transcription but does however change Osteoactivin protein localization. With LAM-111 treatment, Osteoactivin moves back to the sarcolemma like WT therefore suggesting that ADAM12 cleavage is prohibited and there is intact Osteoactivin protein.

DISCUSSION

Merosin deficient congenital muscular dystrophy (MDC1A) is a common congenital muscular dystrophy with an incidence estimated at 0.89/100,000. MDC1A is caused by mutations in the *LAMA2* gene which encodes laminin- α 2 protein. The *LAMA2* gene is located on human chromosome 6q22-23, spans approximately 260kb and is encoded by 64 exons (Helbling-Leclerc et al., 1995; Naom et al., 1997). Loss of laminin- α 2 protein in MDC1A results in the absence of laminin-211/221 (merosin), a major component of the basal lamina, that surrounds skeletal and cardiac muscle. MDC1A patients exhibit severe muscle weakness from birth, demyelinating neuropathy, muscle atrophy and limited eye movement ^{88,92–94,117}. Patients exhibit feeding problems and/or respiratory difficulties and often require the placement of a feeding tube and/or ventilator assistance ⁹³. Most MDC1A patients are unable to walk without assistance and are confined to a wheelchair ⁸⁸. There is currently no cure or treatment for this devastating muscle wasting disease.

Recently we have shown that EHS derived mouse laminin-111 protein can act as a substitution therapy in laminin- α 2 deficient mice ¹⁴². Our studies showed that dy^{W} -/- mice treated with laminin-111 showed reduced muscle pathology, maintained muscle strength and dramatically increased longevity ¹⁴². In this study we investigated the transcriptional changes that occur during disease progression within diaphragm muscle of the dy^{W} -/- mouse model of MDC1A. We also examined how treatment with laminin-111 protein altered transcriptional changes in the diaphragm muscle to identify on-target and off-target drug action.

Using RNAseq technology we were able to show that more than 800 transcripts were altered as a result of disease progression in the diaphragm muscle of 2 week old dy^{W} -/- mice. Our studies showed that at 2 weeks of age transcript variability in the diaphragm muscle between animals is low. At 5 weeks of age there is significant variability in transcript abundance in the diaphragm muscle between animals. QRT-PCR data analysis on individual animals revealed the variability observed at 5 weeks of age occurred due to one animal. Laminin-111 treatment reduced the number of transcripts that changed and we identified several specific transcripts that changed as a result of laminin-111 treatment.

An interesting transcript that changed as a result of disease progression was osteoactivin. Osteoactivin is a (Dchil) dendritic-cell associated heparin sulphate proteoglycan- dependent integrin ligand ^{155,156}. In humans, Osteoactivin is known as the GPNMB gene. The osteoactivin gene encodes a protein of 572 amino acids and is localized to the membrane as a Type-1 transmembrane glycoprotein ^{151,156}. Osteoactivin is expressed in osteoblasts actively involved in bone matrix production and mineralization. Osteoactivin is also necessary for osteoblast differentiation in vitro ¹⁵⁰. Syndecan-4 is a receptor on T-cells for Osteoactivin which therefore initiates an inhibitory function on T cell activation ¹⁵⁷. Osteoactivin is upregulated in muscle denervation and unloading stress. The regulatory mechanisms of Osteoactivin in muscle and bone have not yet been determined, however the role of Osteoactivin in transdifferentiation of myoblasts into osteoblasts has been alluded to in a published study¹⁴⁹. Interestingly, osteoblast differentiation is characteristically identified by expression of markers 158 include Osteoactivin (Gpnmb) Osteocalcin which and (Bglap) Transdifferentiation is the manner in which a somatic cell retains plasticity and can be transformed into another somatic cell. This process can also described as lineage reprogramming. It was first demonstrated whenever mouse embryonic fibroblasts became myoblasts by forced expression of MyoD ¹⁵⁹.

Given the transcript and protein level changes in Osteoactivin observed during disease progression in the dy^{W} -/- mouse model, we next wanted to confirm that this occurred on patient muscle. Immunofluorescence for Osteoactivin using muscle from an MDC1A patient and unaffected control showed that Osteoactivin is normally located in the extracellular matrix in unaffected muscle, but in the MDC1A muscle it is localized within the muscle cells. This may cause misregulation of MAPK signaling (and potentially activation of TGF-beta and fibrotic pathways) in muscle cells. Although laminin-111 treatment did not change transcript levels, treatment in mice appears to restore normal localization of Osteoactivin in skeletal muscle and therefore would potentially restore MAPK signaling in muscle and prevent further fibrosis.

In this study we show that loss of laminin-211/221 in the diaphragm muscle of mice results in a large number of transcript changes that may serve as markers for disease progression and to report the efficacy of potential therapies. At early stages of muscle disease, the transcriptome changes are relatively uniform, however as disease progresses there is increasing variation in transcript abundance between individuals. Laminin-111 treatment results in changes in transcripts that are mis-regulated in dystrophic muscle and in addition restores that localization of proteins in which may negatively impact muscle integrity and survival. These studies identify potential new markers to track disease progression in MDC1A. In addition we identify on- and off-target activity for laminin-111 protein therapy and potential new therapeutic targets that may be useful in the treatment of MDC1A.

The aim of this study was to identify transcriptional changes within diaphragm muscle for the MDC1A mouse model compared to wild type controls. Muscle contraction causes acute damage to the integrity of the sarcolemma within healthy skeletal muscle resulting in myofiber rupture that releases many

susceptible candidates for immune targeting. This process may be aberrantly activated in the progressive disease state of Laminin-α2 deficient skeletal muscle resulting in chronic injury with the prolonged release of many intracellular molecules including proinflammatory cytokines, growth factors and cytosolic calcium which is directly involved in the activation and recruitment of tlymphocytes facilitating a positive feedback mechanism for further myofiber contraction, rupture, apoptosis and fibrotic scar tissue formation. It is unclear from past and current studies what exact role or what key immune players have in the pathophysiology of MDC1A. Treatment with Laminin-111 (found embryonically) reduces muscle pathology and improves viability in the dy^{W} -/-MDC1A mouse model. Laminin-111 helps to strengthen and reinforce the sarcolemma in the dy^{W} -/- mouse during prolonged progressive muscle injury induced by contraction offering a protective niche against the occurrence of this degenerative scenario by reducing inflammation, fibrosis and apoptosis via improved matrix-mechanotransduction.

At 2 weeks of age the variability between animals is low and the RNA-Seq data appears uniform. At 5 weeks of age there is significant variability between mice and the RNA-Seq data requires more interpretation. The changes observed in some of the transcripts were the result of only one mouse in the 5 week study. RT-PCR data analysis confirms this result. Osteoactivin is involved in differentiation of skeletal and muscle tissue and may serve as a novel biomarker for disease progression. RT-PCR confirmed that it is increased in mice and also now in an MDC1A patient muscle that we have in our tissue archive.

Laminin-111 is the predominant Laminin isoform found in the basal lamina of developing embryonic skeletal muscle ¹¹⁵. However in adult skeletal and cardiac muscle Laminin-111 is replaced by Laminin-211 and Laminin-221 isoforms which help to anchor myofibers to the basement membrane and form neuromuscular junctions ^{116,160}. Laminin- α 2 protein is an essential component of the basal lamina that surrounds muscle fibers and is composed of α , β , and γ heterotrimers ¹⁶¹. MDC1A is caused by the loss of Laminin- α 2 protein. Regeneration of Laminin- α 2 deficient muscle is also dependent on the presence of Laminin ^{124,162}. Molecules that reinforce muscle-basal lamina interactions and restore normal survival signaling pathways are likely candidates for drug-based therapeutics for MDC1A.

Laminin-111 can be systemically delivered to all major muscles affected in MDC1A patients helping to enhance muscle integrity and addresses the primary defect of cellular adhesion in MDC1A. Laminin-111 is unlikely to elicit an immune response since it is naturally expressed during embryonic development and in the adult kidney basement membrane ¹⁴². Treatment with Laminin-111 has been shown recently to reduce muscle pathology and improve viability in the (dy^{W} -/-) MDC1A mouse model ¹³¹. In one such study, Evan's Blue Dye uptake was used to examine the integrity of the sarcolemma and Laminin-111 treatment had beneficial effects in Laminin- α 2 deficient muscle by causing a 7.3-fold reduction in sarcolemmal rupture. The α 7 β 1 integrin is the major Laminin-binding integrin in cardiac and skeletal muscle ¹⁶³. MDC1A patients and dy^{W} -/- mice have reduced levels of α 7 integrin contributing to severe muscle pathology ¹⁶⁰ Laminin-111 has

been shown to increase α 7 integrin expression in mouse and human muscle cells

Immunofluorescence for Osteoactivin using muscle from an MDC1A patient and unaffected control showed that Osteoactivin is normally located in the ECM in unaffected muscle, but in the MDC1A muscle it is localized within the muscle cells. This may cause misregulation of MAPK signaling (and potentially activation of TGF-beta and fibrotic pathways) in muscle cells. Laminin-111 treatment in mice appears to block Osteoactivin expression and therefore would potentially restore MAPK signaling in muscle and prevent further fibrosis. The immunofluorescence data confirms in patients the mouse RNA-Seq data and RT-PCR studies.

ACKNOWLEDGEMENTS

Dr. Ryan Wuebbles for assistance with RNA-Seq and qRT-PCR studies. I would like to thank Dr. Joseph Fass and Dr. Ryan Kim for generating and processing the RNA-Seq data at the UC Davis Genome center. I would also like to thank Dr. Paul Brewer for kindly performing the ERK immunoblots and Rebecca Evans for genotyping the dy^{W} -/- mice.

Gene Name	Forward Primer	Reverse Primer
Aggrecan	actgccttcgccagtgagga	Atgtcagagagtatctggtggagcct
GPNMB	gaagagccttcaatgggtctggcac	tggagatcaggacaccattcactgct
Elane	agcgcactcgacagacctt	Cgttaatggtagcggagccattga
MMP8	ttcatatctctgttctggcccttccta	Cttgctgcaggtcatagccact
MMP9	cttggtgtagcacaacagctgacta	cctcaaagatgaacgggaacacaca
BGLAP1	cagcagcttggcccagaccta	ctttgtcagactcagggccgct
BGLAP2	gaccctctctctgctcactctgct	gtagcgccggagtctgttcacta
PRTN3	gaagttcaccatcagtcaggtcttcca	ggacagagtctggtcctgct
DMP1	ggtgatttggctgggtcacca	cagctcctctccagattcactgct
CALCA1	catgggcttcctgaagttctcccct	caggcgaacttcttcttcactgagagt
SERCA1	atggcctggactgtgaggtcttt	Atccgcagtagggactggttct
SERCA2	ttgctgttggtgacaaagttcctg	Ggacagggtcagtatgcttgatga
IBSP	cagaagaaaatggagacggcgatagt	ggaaagtgtggagttctctgcct
LAMA2	Doe et al.	Doe et al.
Tenascin C	Doe et al.	Doe <i>et al.</i>
LGALS3	Doe et al.	Doe et al.
WISP1	ctgcacagaggctgccatctgt	Aggactcgccattggtgtagcgt
ADAM8	cagatctgaaaactgctctgctaaatgca	ctgcttgttcatctgatacatctgcca

Table 1: Primer oligonucleotide sequences that were used to confirm RNA-

Seq data

This table was kindly provided by Dr. Ryan Wuebbles.

Fig 9. RT-PCR results confirming important transcriptional changes in genes associated with the extracellular matrix in 2 week old and 5 week old WT and dy^{W} -/- + PBS mice

A) Both 2 week old and 5 week old dy^{W} -/- mice show similar trends for foldchanges in Tenascin-C, LAMA2 and LGAL3. These RT-PCR results were necessary to compare previous published findings. The results presented here helped to suggest that the RNA-Seq data used in this study were reliable based on these initial changes. The data and figure were kindly provided by Dr. Ryan Wuebbles.

B ii.

GPNMB transcript levels in 5 week mouse gastroc or TA

Bi.

Fig 9. RT-PCR results confirming important transcriptional changes in genes associated with the extracellular matrix in 2 week old and 5 week old WT and dy^{W} -/- + PBS mice

B) i) Osteoactivin (GPNMB), the transcript of interest, was shown to be elevated in TA muscle of 2 week old dy^{W} -/- mice compared to WT. ii) Osteoactivin (GPNMB), at 5 weeks old was shown to be elevated in dy^{W} -/- Gastroc and TA muscle. Laminin-111 treatment did not cause a significant change in GPNMB transcript levels compared to PBS treated animals. The data and figure were kindly provided by Dr. Ryan Wuebbles.

Α

Fig 10. Immunofluorescence on critical protein changes identified from gene transcripts in TA muscle from 5 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 treated mice

A) Osteoactivin protein detection in 10 μ m TA cryosections shown in red. Wheatgerm Agglutinin (WGA) shown in green was used to outline the myofibers. Scale bar =100 μ m Magnification = 400 X. PBS treated dy^{W} -/- muscle showed elevated Osteoactivin and an increase in the localization of Osteoactivin protein within the myofibers suggesting that the Osteoactivin protein is cleaved and able to enter the ruptured myofibers. Laminin-111 treated muscle showed that the sarcolemma is stabilized and therefore osteoactivin is unable to enter the myofibers and is located around the periphery of the myofibers.

Fig 10. Immunofluorescence on critical protein changes identified from gene transcripts in TA muscle from 5 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 treated mice

B) Osteoactivin protein detection in 10 μ m TA cryosections shown in red. Wheatgerm Agglutinin (WGA) shown in green was used to outline the myofibers. Scale bar = 200 μ m and Magnification = 100 X. PBS treated dy^{W} -/- muscle showed elevated Osteoactivin and an increase in the localization of Osteoactivin protein within the myofibers suggesting that the Osteoactivin protein is cleaved and able to enter the ruptured myofibers. These micrographs are at a smaller magnification of the same tissue shown at a higher magnification in Figure 10 A

i).

Osteoactivin

С

Fig 10. Immunofluorescence on critical protein changes identified from gene transcripts in TA muscle from 5 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 treated mice

C) Quantification of Osteoactivin positive myofibers for 5 week old TA muscle shown in Figure 10 A. WT muscle had 3.4 % osteoactivin positive myofibers \pm 1.08 %, PBS muscle had 14.9 % osteoactivin positive myofibers \pm 3.4 % and laminin-111 treated muscle had 3.7 % osteoactivin positive myofibers \pm 1.8 %. Two-Way *ANOVA* statistical analysis of the 3 treatment groups revealed statistical significance with a *P*-value < 0.001.

Ε

Model for the action of osteoactivin in dystrophic muscle

Fig 10. Immunofluorescence on critical protein changes identified from gene transcripts in TA muscle from 5 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 treated mice

D) Levels of Osteoactivin protein in human skeletal muscle tissue are similar to the levels of osteoactivin in dy^{W} -/- mouse tissue in Figure 10 A. Elevation of intracellular osteoactivin in diseased muscle compared to WT muscle. E) Schematic model of MDC1A disease progression showing the stage where Osteoactivin (OA) protein becomes misregulated. In WT muscle osteoactivin protein is intact and located as a transmembrane protein. However, in dystrophic muscle osteoactivin is subject to cleavage by ADAM12 and is split into two The intracellular osteoactivin pieces. component is detected by immunofluorescence in dystrophic muscle (Figure 10 A) and the extracellular component is able to participate in cell signaling and recruit fibroblasts via the ERK1/2 pathway and recruitment of matrix metalloproteinases. Figures 10 D & E were kindly provided by Dr. Dean Burkin and Dr. Ryan Wuebbles.

Figure 11. Immunoblotting for ERK and phospho-ERK protein

A) Immunoblots showing that laminin-111 treatment causes a decrease in total ERK protein and a corresponding elevation in phosphorylated-ERK protein when compared to PBS treated animals. B) Quantification of the immunoblots shown in Figure 11 A. The data and figure were kindly provided by Dr. Paul Brewer.

Figure 12. Immunoblots on critical protein changes identified from

transcripts for 5 week old dy^{W} -/- mice

A) Representative immunoblots for 5 week old dy^{W} -/- TA muscle. B) Quantification of changes in protein expression. Statistical analysis via One-way ANOVA showed significance in α 7A, α 7B and α DG expression with *p*-values (0.0032, 0.0165, 0.0016) respectively.

A) Activity box data was recorded for distance (cm) and speed (cm/sec) with which moved. WT animals moved an average of 9217.2 cm \pm 1866.79 cm, PBS treated animals moved an average of 5631.25 cm \pm 1646.27 cm and mLAM-111 treated animals moved an average of 6128.75 cm \pm 1664.51 cm. Laminin-111 treatment was able to improve the speed with which moved when compared to

Α

PBS treated animals by 7.7 %. *P*-values were (0.0221 and 0.0190) respectively with One-way *ANOVA*.

Figure 13. Histology and functional data obtained from 5 week old dy^{W} mice B) Grip strength displayed as grams of force (g) normalized to body weight (g) was quantified for each treatment group. *P*-values were (< 0.0001 and 0.05)

respectively with Two-way *ANOVA*. C) Percentage (%) fatigue was quantified based on grip strength recorded in Figure 13 B and there was no statistical significance found meaning that there was no difference in how fast forelimb muscle fatigued in either PBS or laminin-111 treated animals.

A ii.

88

Figure 14. Histology and respiratory function in 5 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 treated mice

A) i) Representative montages of 10 μ m TA cryosections stained with Sirius Red. Sirius red staining is used as a measure of fibrosis and is indicated with increased red color. Magnification = 100 X and scale bar = 200 μ m. There is increased fibrotic tissue present within the PBS treatment group. Laminin-111 treatment helps to prevent this fibrotic environment. ii) Percentage (%) fibrosis for the Sirius red montages in Figure 14 A i were calculated. One-Way *ANOVA* showed statistical significance.

Figure 14. Histology and respiratory function in 5 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 treated mice

B) Minimal feret's diameter (µm) is a measure of myofiber size and was calculated for TA cryosections for each treatment group. No statistical significance was found.

Figure 14. Histology and respiratory function in 5 week old WT, dy^{W} -/- + PBS and dy^{W} -/- + mLAM-111 treated mice

C) Plethysmography data obtained using the Buxco Whole Body Plethysmography (WBP) system. Parameters of interest included: Frequency of breathing, Tidal Volume (TVb) and PenH. PenH (enhanced pause) is correlated to but not a direct measurement of airway resistance. Each parameter was normalized to body weight (g). *P*-value was 0.0126 with One-way *ANOVA*.

Figure 15. Model of Laminin-111 action on Osteoactivin (OA) restoration

WT muscle possesses intact osteoactivin (OA) protein. Loss of laminin- α 2 in dy^{W} -/- muscle causes increased OA transcription but the protein is cleaved into two fragments by ADAM12. The internal fragment is visible in fibrotic patient tissue. The external fragment is free to activate myofibroblasts that secrete matrix metalloproteinases and trigger fibrotic pathways. Treatment with laminin-111 does not affect OA transcription but does however change OA protein localization. With LAM-111 treatment, OA moves back to the sarcolemma like WT therefore suggesting that ADAM12 cleavage is prohibited and there is intact OA protein. The data and figure were kindly provided by Dr. Ryan Wuebbles.

Supplemental Table 1: RNA-Seq baseline transcript summary for WT vs dy^{W} -/- 2 week old animals

Transcripts found to be upregulated in 2 week old dy^{W} -/- mice include: Ankyrin (Ankrd1), Myosin Heavy chain 3 (Myh3), Dyenin (Dnahc1), Troponin T type 2 (Tnnt2). Interleukin-8 (IL-8) was found to be down-regulated as was laminin- α 2.

	2 week Down-regulated 4-fold					
118	Interleukin-8 important mediator of the inpate immune response					
Lama2	Laminin-α2					
	2 week up-regulated 4-fold					
Stx11	Syntaxin 11 SNARE that acts to regulate protein transport between late endosomes and the trans-Golgi network					
Card14	Caspase Recruitment Domain Family, Member 14 Plays a role in signaling mediated by TRAF2, TRAF3 and TRAF6 and protects cells against apoptosis. Activates NF-kappa-B via BCL10 and IKK. Stimulates the phosphorylation of BCL10					
Ankrd1	Ankyrin Repeat Domain 1 (Cardiac Muscle) May play an important role in endothelial cell activation. May act as a nuclear transcription factor that negatively regulates the expression of cardiac genes. Induction seems to be correlated with apoptotic cell death in hepatoma cells					
Lgals3	Lectin, Galactoside-Binding, Soluble, 3 Involved in acute inflammatory responses including neutrophil activation and adhesion, chemoattraction of monocytes macrophages, opsonization of apoptotic neutrophils, and activation of mast cells					
Tnc	Tenascin C Extracellular matrix protein implicated in guidance of migrating neurons as well as axons during development, synaptic plasticity as well as neuronal regeneration. Promotes neurite outgrowth from cortical neurons grown on a monolayer of astrocytes. Ligand for integrins alpha-8/beta-1, alpha-9/beta-1, alpha-V/beta-3 and alpha-V/beta-6					
Myh3	Myosin, Heavy Chain 6, Cardiac Muscle, Alpha Muscle contraction					
Tlr13	Toll-Like Receptor 3 Toll-like receptors (TLRs) are single transmembrane cell-surface receptors, which have a key role in the innate immune system.					
Myl7	Myosin, Light Chain 7, Regulatory mediates plus-ended movement along microfilaments. It is involved in muscle contraction through cyclic interactions with actin-rich thin filaments, creating a contractile force. It is regulated by phosphorylation via myosin light chain kinase (MLCK) and by intracellular Ca2+ concentrations.					
Tnnt2	Troponin T Type 2 (Cardiac) Troponin T is the tropomyosin-binding subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity					
Timp1	Tissue inhibitor metalloproteinases					
Myl4	Myosin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin. Does not bind calcium					
Dnahc1	Dynein, Axonemal, Heavy Chain 1 Force generating protein of respiratory cilia. Produces force towards the minus ends of					

Supplemental Table 2: Summary of 2 week old \ge 4–fold transcriptional changes in WT and untreated dy^{W} -/- mice

A total of 138 transcripts found to be up- or down- regulated \geq 4-fold in 2 week old dy^{W} -/- mice were narrowed down to 14 transcripts of interest in this table.

	5 week Down-regulated 4-fold						
lbsp	integrin binding sialoprotein cell to matrix interaction						
	espcecially bone						
Bglap	Osteocalcin Bone Gamma-Carboxyglutamate (Gla) Protein bone building						
Dmp1	Dentin Matrix Acidic Phosphoprotein 1						
Tnn	Tenascin N neuron outgrowth and cell migration						
Mmp13	Matrix metalloproteinase 8 are zinc-dependent endopeptidases that are the major proteases involved in ECM degradation.						
Fam150b	cartilage oligomeric matrix protein play a role in structural integrity of cartilage via its interaction with othere extracellular matrix proteins such as collagens and fibronectin.						
Galnt3	Baculoviral IAP Repeat Containing 5 dual roles in promoting cell proliferation and preventing apoptosis.						
Mmp8	Matrix Metallopeptidase 3 (Stromelysin 1, Progelatinase) Can degrade fibronectin, laminin, gelatins of type I, II, IV, and V; collagens III, IV, X, and IX, and cartilage proteoglycans. Activates procollagenase						
lrf4	Myosin, Heavy Chain 6, Cardiac Muscle, Alpha Muscle contraction						
Pax5	AlanineGlyoxylate Aminotransferase 2 ADMA is a potent inhibitor of nitric-oxide (NO) synthase, and this activity provides mechanism through which the kidney regulates blood pressure						
	5 week up-regulated 4-fold						
Adra1b	WNT Inhibitory Factor 1 Binds to WNT proteins and inhibits their activities						
Mettl7b	Spectrin, Alpha, Erythrocytic 1 (Elliptocytosis 2) Spectrin is the major constituent of the cytoskeletal network underlying the erythrocyte plasma membrane. It associates with band 4.1 and actin to form the cytoskeletal superstructure of the erythrocyte plasma membrane						
1810053B23Rik	Tenascin N neuron outgrowth and cell migration						
Cyp4f15	Desmoglein 11 Component of intercellular desmosome junctions. Involved in the interaction of plaque proteins and intermediate filaments mediating cell-cell adhesion						
Tm6sf2	carbonic anhydrase 3 slow twitch skeletal muscle and myogenesis						
Aspg	WNT outsde to inside cell signaling						

Pax7	PAx7 Secreted Phosphoprotein 2, 24kDa Could coordinate				
	an aspect of bone turnover (By similarity)				
ltih1	Myosin, Light Chain 7, Regulatory mediates plus-ended				
	movement along microfilaments. It is involved in muscle				
	contraction through cyclic interactions with actin-rich thin				
	filaments, creating a contractile force. It is regulated by				
	phosphorylation via myosin light chain kinase (MLCK) and by				
	intracellular Ca2+ concentrations.				
Ugt2a3	Paired Box 7 Transcription factor playing a role in				
	myogenesis through regulation of muscle precursor cells				
	proliferation (By similarity)				
Lect2	EGF-Like Repeats And Discoidin I-Like Domains 3 Promotes				
	adhesion of endothelial cells through interaction with the				
	alpha-v/beta-3 integrin receptor. Inhibits formation of vascular-				
	like structures. May be involved in regulation of vascular				
	morphogenesis of remodeling in embryonic development				
BC089597	Calcitonin acts to reduce blood calcium				
Nr1i2	vitronectin Vitronectin is a cell adhesion and spreading factor				
	found in serum and tissues. Vitronectin interact with				
	glycosaminoglycans and proteoglycans. Is recognized by				
	certain members of the integrin family and serves as a cell-to-				
	substrate adhesion molecule. Inhibitor of the membrane-				
	damaging effect of the terminal cytolytic complement pathway				
Cyp3a13	claudins are found at tight junctions as a physical barrier and				
	known for maintaining cell polarity and signal transductions				
Abcg8	Osteocalcin Bone Gamma-Carboxyglutamate (Gla) Protein				
	bone building				
Fbp1	desmoglein 2 Component of intercellular desmosome				
	junctions. Involved in the interaction of plaque proteins and				
	intermediate filaments mediating cell-cell adhesion				
Bhmt2	integrin b cell adhesion cell to matrix adhesion				
0610005C13Rik	integrin binding sialoprotein cell to matrix interaction				
	espcecially bone				
Akr1b7	ficolin B marks apoptotic and necrotic cells				
Etnk2	Monocyte to macrophage differentiation associated 2 key				
	player in muscular dystrophy				
Agxt	Synaptotagmin I regulatory role in the membrane interactions				
	during trafficking of synaptic vesicles at the active zone of the				
	synapse.				
0610031016Rik	Osteocalcin Bone Gamma-Carboxyglutamate (Gla) Protein				
	bone building				
2810459M11Rik	aggrecan proteoglycan in ECM aims to resist compression in				
	cartilage				
Ugt1a5	Vitamin D (1,25- Dihydroxyvitamin D3) Receptor Plays a				

	central role in calcium homeostasis						
118	Interleukin-8	important	mediator	of	the	innate	immune
	response						

Supplemental Table 3: Summary of 5 week old \ge 4–fold transcriptional changes in PBS treated versus LAM-111 treated dy^{W} -/- mice

A total of 468 transcripts found to be up- or down- regulated \geq 4-fold in 5 week old laminin-111 treated dy^{W} -/- mice were narrowed down to 34 transcripts of interest in this table.

A Overview

2 wk Gene expression changes	5 wk Gene expression changes		
ко	KO PBS	KO mLAM-111	
↑Inflammation ↑Apoptosis ↑Fibrosis ↑Demyelination ↑Vascular Disease ↑Infarction ↑ROS ↑Survival pathways ↑GAL3 ↑TIMPs ↑Myosin in ILK	 Inflammation Necrosis Osteomalcia Cyclins and cell cycle checkpoint regulation DNA damage checkpoints Oxidative stress Nitric Oxide ROS Mitosis of muscle cells Pulmonary hypertension Connective Tissue degradation Heart injury 	 • VPax5 & ↑Pax7 • ↑Myosin in ILK • ↑cPLA2 in ERK/MAPK & LEF- /TCF1 in WNT/β- Catenin • ↑mTOR • ↓ROS • ↑Pulmonary surfactant 	

B 5 weeks old

Supplemental Table 4: RNA-Seq dy^{W} -/- +PBS vs dy^{W} -/- +LAM-111

A) Overview of gene expression changes discovered for 2 week old dy^{W} -/- mice between WT and laminin- α 2 deficient. Gene expression changes tabulated for 5 week old dy^{W} -/- mice between PBS treated and mLAM-111 treated groups. B) 5 week transcripts include: Integrin binding Sialoprotein (Ibsp), Osteocalcin (Bglap), MMP-13 (MMP13), Cartilage Oligomeric Matrix Protein (Fam150b), WNT Inhibitory Factor 1 (Adra1b), Calcitonin (BC089597), Integrin B (Bhmt2), Ficolin (Akr1b7), Interleukin-8 (IL-8) and Vitamin D (Ugt1a5).

Treated Versus	Mild		Disease Progression	Severe
Untreated Genes	KO R185	KO R192	KO R162	KO R182
MMP8	0.97	0.96	3.71	40.30
MMP9	1.88	0.82	1.73	57.26
Aggrecan	0.94	3.27	7.51	241.92
IBSP*	0.76	0.09	0.72	1910
BGLAP2*	0.52	0.52	UNDETERMINED (LOW)	3152
Wild-type Versus Untreated <u>Genes</u> ANALYSIS (Should Be Unchanged here)				
Tenascin C	1.26	0.86	0.19	3.47
LAMA2	1.31	1.35	1.14	1.04
LGALS3	1.05	0.70	0.45	1.45
Osteoactivin	0.69	0.85	1.01	1.09

Numbers represent Fold-change relative to average Laminin-111 treated dy $^{\rm w}$ levels * As of yet undetermined primer efficiency

Supplemental Table 5: RT-PCR results confirming important transcript changes in 5 week old LAM-111 treated dy^{W} -/- mice

Comparison of expression changes (MMP8, MMP9, Aggrecan, IBSP and BGLAP2) as disease progresses in treated versus untreated genes. The data and figure were kindly provided by Dr. Ryan Wuebbles.

Chapter IV

Long term Laminin-111 protein therapy within the *mdx* mouse model for

Duchenne muscular dystrophy

ABSTRACT

Duchenne Muscular Dystrophy (DMD) is the most common X-linked disease affecting 1 in 3,500 live male births. Patients with DMD suffer from severe, progressive muscle wasting and weakness with clinical symptoms first detected between 2 to 5 years of age; as the disease progresses patients are confined to a wheelchair in their teens and die in their early 20s mainly due to cardiopulmonary complications. DMD is caused by the loss of the sarcolemmal protein dystrophin (427kDa) due to mutations in the dystrophin gene. When present, dystrophin acts as a scaffold linking the cell cytoskeleton to the extracellular matrix. This loss of dystrophin in DMD results in patients experiencing greater susceptibility to muscle damage via reduced structural and functional integrity of their muscle. One potential therapeutic avenue that needs to be explored involves increasing the levels of the $\alpha 7\beta 1$ integrin in order to compensate for the loss of dystrophin. To test this hypothesis, a muscle cellbased assay was developed in order to report α 7 integrin promoter activity with the intent of identifying molecules that promote $\alpha 7$ integrin expression. Theoretically, the identification of α 7 integrin enhancing compounds that help boost $\alpha7\beta1$ integrin expression as part of drug-based therapies may lead to a novel therapeutic approach for the treatment of this disease.

INTRODUCTION

Duchenne Muscular Dystrophy is a genetic disorder that affects the skeletal and cardiac muscle. Duchenne Muscular Dystrophy (DMD) is the most common type of muscular dystrophy in boys⁹⁵. It is an X-linked disorder that affects 1 in every 3,300 live male births ¹⁶⁵. This disorder results from a mutation in the DMD gene which produces three isomers of the protein Dystrophin ¹⁶⁶. Dystrophin is a protein that connects muscle fiber cytoskeleton to surrounding laminin in the extracellular matrix¹⁶¹. This connection provides structural integrity during muscle contractions. The failure to produce dystrophin results in the inability for the formation of the dystrophin-laminin binding complex which results in severe muscle weakness ¹⁶⁷. Children with DMD are not able to walk and are wheelchair-bound by their teenage years⁹⁵. The progressive nature of DMD leads to feeding tube placement, ventilator assistance and results in the untimely death of DMD patients. Although the dystrophin gene has been known for well over 20 years there is still no effective treatment or cure for this disease ¹⁶⁵.

Treatment with Engelbreth-Holm Swarm (EHS) laminin (found embryonically has been shown recently in the Burkin lab to reduce muscle pathology and improve viability before disease onset in the *mdx* mouse model ¹⁶². The *mdx* mouse model has a mutation in the dystrophin gene. It is the ideal mouse model for DMD due to the absence of dystrophin in skeletal muscle and undergoes rounds of muscle degeneration and regeneration similar to that experienced by patients. Pharmacokinetic and histopathological analysis of treated mdx tissue in these proposed experiments will help to determine whether lamininin-111 will be an effective therapy after disease onset in *mdx* mice.

The research objective for this study is to evaluate whether laminin-111 can prevent muscular dystrophy after disease onset in the *mdx* mouse model of DMD by showing that treatment reduces muscle pathology while increasing muscle strength. In addition a more complete insight into the action of laminin-111 will be achieved by investigating the pharmacokinetics and pharmacodynamics of laminin-111 administered to *mdx* mice and this data is presented in Appendix A.

MATERIALS AND METHODS

Generation of *mdx* mice

All experiments involving mice were performed under an approved protocol from the University of Nevada, Reno Institutional Animal Care and Use Committee. *Mdx* (C57BL10ScSn-Dmd strain) and wild-type (C57BL10ScSn strain) were bred separately. The wild-type control strain used in this study was C57BL10ScSn. Age-matched littermate controls were used for analysis. In order to genotype mice, genomic DNA was isolated from tail snips or ear notches using a Wizard SV DNA purification system (Promega, Madison, WI) following manufacturers instructions.

The mutation in the dystrophin gene was detected using a modified ARMS assay. The following primers were used: p259E (5'GTCACTCAGATAGTTGA

AGCCATTTAA-3'), p260E (5'-GTCACTCAGATAGTTGAAGCCATTTAG-3') and p306F (5'-CATAGTTATTAATGCATAGATATTCAG-3'). PCR conditions were as follows: 95°C for 4 minutes then 34 cycles of 95°C for 1 minute, 55°C for 1 minute and 72°C for 1 minute. Primer set p259 and p306 produced a 275bp wild-type dystrophin allele. Primer set p260 and p306 detects the *mdx* point mutation which produced a 275bp product. To genotype the dystrophin gene, separate PCR reactions were performed since the product sizes are identical in wild-type and *mdx* mice.

Experimental procedures were performed once mice were 14 days of age with fortnightly weighing until the end of study which was at 1 year of age where all mice were subject to *in vivo* experiments. To reduce experimental bias, investigators assessing and quantifying experimental outcomes were blinded to the treatment and control groups.

Laminin-111 Treatment Regime

<u>7 week</u>

Five 5 week old WT mice were treated with phosphate buffered saline (PBS) alongside five 5 week old mdx mice in each treatment group receiving either PBS or EHS mLAM-111 treatment (0.01 mg/g/week). The study ended at 7 weeks old.

<u>10 week</u>

In order to test the hypothesis that laminin-111 can serve as an effective treatment for DMD after disease onset, five 8 week old WT mice were treated with phosphate buffered saline (PBS) alongside five 8 week old mdx mice receiving either PBS or EHS mLAM-111 treatment (0.01 mg/g//week). The study ended at 10 weeks old.

<u>1 year</u>

Male *mdx* mice were treated systemically (0.01 mg/g/fortnight) from 2 weeks of age until they were 1 year old with either sterile PBS or EHS mLAM-111. Original number of mice to be treated: WT (n=5) (1 died at 10 months), PBS (n=7) (2 died between 10 and 12 months), mLAM-111 (n=5) (all survived).

Evan's Blue Dye

Mice were intraperitoneally injected with 50 µL per 10 g of body weight sterile Evan's blue dye solution (10 mg/mL). Mice were sacrificed 8 hours postinjection. Muscles were harvested and flash frozen in liquid nitrogen. 10 um cryosections were fixed with 4% paraformaldehyde and myofibers were outlined with Oregon Green 488 nm-conjugated Wheat Germ Agglutinin (Molecular Probes, Eugene, OR). Evans blue dye positive myofibers were counted per animal. Images were captured at 200 X magnification and processed using Photoshop to create the representative montages.

Survival and weights

Weights for all mice of each genotype were recorded on a fortnightly basis. Softened kibble was provided fresh daily in a petri dish on the bottom of the cage in order to ensure there was no significant weight loss within the mice.

Muscle strength

Force Gauge (San Diego Instruments Inc., San Diego, CA). A total of six measurements per mouse were recorded and all results averaged for each group. The mice were analyzed by grasping a horizontal platform with their forelimbs and pulled backwards. The peak tension (grams of force) was recorded on a digital force gauge as mice released their grip.

X-ray digital imaging

Radiographs were obtained for each mouse at the end of the 10 week study through the use of a Summit digital x-ray unit model 50-520, allowing radiographic measurement of kyphotic index. Calculations for Kyphotic Index were carried out as previously described by Hoey et al. 1985.

Activity

Opto-Varimex 4 Activity Meter (Columbus Instruments) offered unbiased data due to the machine possessing lasers that monitor and auto-track the activity of each mouse for a period of 120 minutes.

Plethysmography

Animals were subjected to plethysmography at 10 weeks of age. Animals for each genotype were used. Animals were placed in the plethysmography chamber (unrestrained) and then subjected to increasing does of aerosolized Acetyl-methacholine (6.25, 12.5, 25, 50 and 100 mg/mL), after an initial time period to acclimatize in the chamber. First mice were exposed to aerosolized PBS to gather baseline data. Experimental values were automatically generated by the pneumograph in the wall of the chamber. FinePointe software (Buxco©) was used to collect all data.

Echocardiography

In vivo echocardiography was performed on mice using a VisualSonics Vevo 2100 system with a MS 550D transducer. This allowed ultrasound imaging of the heart to take place. Mice were anesthetized with 1.5-2.0% isoflurane and placed in a supine position on a heated stage. 2-D short-axis recordings of the left ventricle at the level of the papillary muscle were obtained in M-mode. Measurements were taken to help compare the efficiency of the left ventricle during diastole and systole. Heart rate and body temperature were monitored during imaging. Left ventricle wall thickness and cavity dimensions were measured at systole and diastole for three cycles, averaged, and used with Vevo 2100 software to calculate values for fractional shortening, ejection fraction, and LV mass. Comparisons between groups of mice were made using single-factor

ANOVA in Microsoft Excel; *P* values < 0.05 were considered statistically significant.

Isolation of skeletal muscle

1 year old male wild-type and *mdx* mice were euthanized by CO2 inhalation in accordance with a protocol approved by the University of Nevada, Reno Animal Care and Use Committee. Muscles from these mice were dissected, flash-frozen in liquid nitrogen and stored at -80C.

Immunoblotting

The TA muscle from 10 week old male mice was ground in liquid nitrogen. Protein was extracted in RIPA buffer and 1:200 dilution of Protease inhibitor Cocktail Set III (Calbiochem, EMD Biosciences, San Diego, CA) for the detection of α 7A and α 7B integrin. Protein was quantified by BSA assay and protein was separated on 12% SDS –page gels under reduced conditions and transferred to nitrocellulose membranes. Membranes were blocked with a dilution of carnation milk buffer. The α 7A integrin was detected with a 1:1000 dilution of anti- α 7A (A2 345) and α 7B integrin was detected by anti- α 7B (B2 347) rabbit polyclonal antibodies.

Immunofluorescence

Tibialis Anterior (TA) muscles were embedded in Tissue-TEK Optimal Cutting Temperature compound (Sakura Finetek USA Inc, Torrance, CA). 10 µm sections were cut using leica CM1850 cryostat and placed onto Surgipath microscope slides (surgipath Medical Industries, Richmond, IL). Laminin-111 was probed for by an antibody dilution of 1:50 against laminin- α 1. β -dystroglycan was assessed with incubation of 1:25 dilution of β -dystroglycan antibody. It was then detected with a 1:1000 dilution of FITC anti-rabbit antibody.

Hematoxylin & Eosin staining

Tibialis Anterior muscle was cryosectioned and 10 µm sections were placed on surgipath microscope slides. Tissue sections were fixed with ice-cold 95% ethanol for 2 minutes followed by 70% ethanol for 2 minutes and then rehydrated in running water for 5 minutes. Gill's hematoxylin (Fisher Scientific, Fair Lawn, NJ) was then used to stain the sections and rinsed in water for 5 minutes. Scott's solution (0.024 M NaHCO3, 0.17 M MgSO4) was then applied for 3 minutes and rinsed in water for 5 minutes. Tissue cryosections were then immersed in eosin solution (Sigma-Aldrich, St. Louis, MO) for 2 minutes. Sections were then dehydrated in ice cold 70% and 95% ethanol for 30 seconds each, followed by 100% ethanol for 2 minutes. Xylene was then used to clear the sections for 5 minutes prior to mounting with DepeX mounting medium (Electron Microscopy Services, Washington, PA). Centrally located Nuclei were counted from images composing representative montages for each mouse. Images were assessed at 200 X magnification by bright field microscopy. The number of centrally located nuclei per muscle fiber was determined by counting each image which contributed to myofibers being counted per treatment group. At least 4 animals from each treatment group were analyzed.

Sirius Red Staining

TA muscle sections were stained with Sirius Red to measure fibrosis in the skeletal muscle tissue. 10 µm cryosections on slides were fixed in 100% ethanol and then hydrated through an alcohol series (95 and 80% ethanol) and rinsed in tap water. The sections were stained with Sirius Red (0.1% in saturated aqueous picric acid solution, Rowley Biochemical Institute, Danvers, MA, USA) for 30 min followed by two washes in acidified water. The sections were dehydrated through an alcohol series, rinsed in xylene and mounted with DEPEX Mounting media (Electron Microscopy Science, Hat- field, PA, USA). Representative montages were captured and analyzed using Axiovision 4.8 software. Montages were assembled using Photoshop and Microsoft Powerpoint. Images were captured at 200 X magnification. Areas of red in the TA were considered fibrotic. Circled fibrotic areas were added together, and any nonfibrotic fibers within the fibrotic area were subtracted from the calculated area. The percentage of muscle fibrosis was quantified in treated and control muscles as a percentage of total TA muscle area. Sirius red slides were also used to measure minimal feret's diameter for mice of all 4 genotypic groups. All muscle fibers within an entire TA montage were used to determine the minimal feret's diameter.

Statistical Analysis

All averaged data are reported as the mean \pm s.d. *P*-values of < 0.05 were considered to be statistically significant. GraphPad Prism Software was used to analyze and test the data.

RESULTS

Evan's Blue dye uptake within 1 year old mdx mice

Visibly, it is quite clear that PBS treated *mdx* mice had a higher retention of Evans blue dye within the body in Figure 16. Also, it is evident that there is Evan's blue uptake in the TA muscle in PBS treated *mdx* mice (indicated with the blue arrow in Figure 16). These results triggered the histological analysis of the TA muscle for Evan's Blue dye uptake in Figure 17.

Evan's Blue Dye Montages for 1 year old *mdx* mice

As predicted, Tibialis Anterior muscle from PBS treated *mdx* mice had a higher retention of Evan's blue dye within the muscle (Figure 17). The representative montages indicated that there was much clustering of Evan's blue dye positive myofibers to two areas of the PBS treated TA muscle. This was a drastic comparison to the more stochastic and punctate presence of Evan's blue dye positive myofibers in the TA of Laminin-111 treated *mdx* mice. This result was then verified via statistical analysis which categorically showed that this result was statistically significant. This indicated with enhanced EBD uptake that

there was indeed more damage occurring within the muscle of PBS treated animals over the course of the 1 year time frame.

Kyphosis Analysis of 1 year old *mdx* mice

The Kyphotic index calculations were carried out following a technique previously described by Hoey *et al.* 1985. Radiographs were assessed (Figure 18) in a blinded manner and visibly there is no evidence of an increase in severity of kyphosis occurring in PBS treated *mdx* mice compared to mLAM-111 treated animals. This was later quantified and indeed there was no statistical significance between wild-type, PBS treated and the laminin-111 treated mice.

Echocardiography of 1 year old *mdx* mice

Using the Vevo2100 system and Vevo 2100 software 1.4.0 we analyzed the cardiac muscle of all three treatment groups (Figure 19). Between all the 1 year old mice, there were no enhanced cardiac problems with or without treatment with laminin-111. All representative M-mode screenshots presented here, help to convey this result. There was no statistical significance with data analysis for these echocardiography results (shown in Table 2).

Respiratory function within 1 year old *mdx* mice

Plethysmography data indicates also within the 1 year old mice that there was no statistically significant difference between the three treatment groups either for Frequency of breathing, PenH or TVb which are the three main parameters to scrutinize in plethysmography data (Figure 20).

Histology of 1 year old *mdx* Tibialis Anterior muscle

TA muscle was embedded in OCT and cryosectioned for pathological assessment via Hematoxylin and Eosin (H&E) staining (Figure 21). This stain was used to quantify the number of centrally located nuclei (CLN) which is a marker for degeneration and regeneration. As expected WT data possessed very low numbers of CLN in comparison to mdx mice. Despite laminin-111 treatment for 1 year there was no difference between the number of CLN detected and the number of CLN detected in the PBS treated *mdx* muscle.

Fibrotic tissue in Tibialis Anterior muscle of 1 year old *mdx* mice

The pircrosirius red slides were used to quantify myofiber size and general pathology of LAM-111 treated versus PBS treated control tissue (Figure 22). There was no statistical significance in the quantification of minimal feret's diameter or indeed percentage fibrosis after 1 year treatment.

Activity and Function in 1 year old *mdx* mice

As above, activity box data reflected the results that indicated there was no statistically significant difference in functional activity of PBS or laminin-111 treated *mdx* mice over a 120 minute time period (Figure 23).

Myofiber sizes of Tibialis Anterior muscle in 7 weeks old and 10 weeks old *mdx* mice

Within 7 week old *mdx* TA treated with laminin-111 there was a visible increase in myofiber size whenever Minimal Feret's diameter was measured compared to WT and PBS treated animals (Figure 24). There was statistical significance within 10 week old TA muscle assessed for Minimal feret's diameter. The results indicated that laminin-111 treatment was successful in reducing the size of the myofibers. This result is promising as myofiber hypertrophy is indicative of DMD disease pathology.

Laminin-111 detection in *mdx* TA muscle after intraperitoneal treatment

Upon systemic laminin-111 treatment, laminin-111 was clearly able to travel to the target muscles as laminin- α 1 was detected via immunofluorescence in Tibialis Anterior muscle (Figure 25).

Muscle strength was assessed for 10 week old *mdx* mice

In Figure 26, 10 week old grip strength assessment (Figure 26 A) indicated that there was no difference in forelimb muscle strength between PBS and laminin-111 treated *mdx* mice. Despite this result in 10 week old mice, there was reduced percentage forelimb muscle fatigue evident in laminin-111 treated mice (Figure 26 B). The percentage of Centrally located nuclei showed a statistically significant elevation in CLN within PBS treated animals. This elevation in CLN is, as mentioned previously mentioned, indicative of degeneration.

Sarcolemmal proteins after laminin treatment in 10 week old *mdx* mice

Likewise for 10 week old *mdx*, there was no difference in α 7A or α 7B integrin protein levels after immunoblotting upon laminin-111 treatment (Figure 27). However, there is a trend towards WT within immunofluorescent assessment of β -dystroglycan protein levels in 10 week old animals treated with laminin-111.

DISCUSSION

This study was performed in order to test how effective laminin-111 protein therapy would be as a long-term therapeutic after observing how effective this treatment had been within younger mdx mice¹⁶². There was no improvement in functional activity (Figure 23) of 1 year old treated mdx mice and there was absolutely no improvement in the muscle histology (Figure 21 and Figure 22). There was however reduced muscle damage indicated by a lower amount of Evan's Blue Dye uptake (Figure 17). It is important to keep in mind that these older mdx mice may have been very inert because of their age and size¹⁶⁸ (> 30 g).

It is important to keep in mind that the long-term treatment regime consisted of only one injection per fortnight so therefore laminin-111 protein could have been degraded within a short amount of time post-injection and therefore the mouse is still subject to muscle damage before the next injection is due. Repetitive treatment over a period of 1 year was expected to have a positive effect but the data was disappointing and may be explained by receptor desensitization^{169–171} and tolerance¹⁷¹ to the protein. Despite the presence of laminin-111 in the kidney, an immune response¹⁷² may have been mounted to

this protein being injected repeatedly over a long time period (1 year) and therefore made the beneficial effects caused by laminin-111 in younger *mdx* mice redundant in these older *mdx* mice.

Future directions will include assessing TA muscle via immunoblotting for any change in the abundance of sarcolemmal proteins that are related to the dystrophin-glycoprotein laminin-binding complex after treatment compared to PBS controls. These proteins will include the dystroglycans, sarcoglycans and sarcospan. Immunofluorescence will also be used on the same TA muscle in order to confirm the immunoblot results. There may be a better result in delivering laminin-111 in a cocktail recipe of additional therapeutic drugs in order to have a more improved effect as delivering laminin-111 protein as part of a long-term therapy was not effective.

ACKNOWLEDGEMENTS

I would like to thank Vivian Cruz, Annmarie Vogedes and Connie Spelius for their technical assistance regards tissue collection and histological analysis. A special thanks for the immublotting results provided by Apurva Sarathy. I would also like to thank Rebecca Evans for animal breeding and Lab Animal Medicine for their continued monitoring of the mice especially for this 1 year study. Special thanks go to both Walt Mandeville and Rebecca Evans for collecting the radiography data.

Figure 16. Evan's Blue dye uptake within 1 year old *mdx* mice

Evan's blue dye (EBD) is used as a marker for muscle damage. This blue dye is able to enter the ruptured myofiber and bind to albumin therefore resulting in red fluorescence which is then used as a marker for muscle damage. TA and diaphragm tissue uptake are also presented. PBS treated animals had distinctly increased EBD uptake within TA muscle (arrow) and less uptake within diaphragm muscle suggesting that there was more damage occurring in TA muscle. It is not clear why laminin-111 treatment caused more EBD uptake within diaphragm muscle.

A) and B) Representative montages for Evan's Blue Dye (EBD) uptake. PBS (n=

2) and mLAM-111 (n= 2). Images were captured at 200 X magnification. Scale

bar = 200 μ m. There is increased EBD uptake in PBS treated muscle due to elevated red fluorescence indicating more muscle damage. Notice how most of the damage is occurring in one area of the muscle. However with laminin-111 treatment there was reduced EBD uptake indicated by reduced red fluorescence therefore showing that the sarcolemma was restored, preventing rupture and muscle damage after laminin-111 treatment.

Figure 17. Evan's Blue Dye Montages for 1 year old *mdx* mice

C) Quantification of EBD positive myofibers for TA montages shown in Figure 17 A and B. PBS (n= 2) and mLAM-111 (n= 2). Captured at 200 X magnification. Scale Bar = 200 μ m. The PBS treatment group had 8.4 % EBD positive myofibers ± 0.05 % while the laminin-111 treated group had 2.08 % EBD positive myofibers ± 0.02 %. A student's *t*-test revealed the *P*-value < 0.0001.

Figure 18. Kyphosis Analysis of 1 year old mdx mice

A) Representative radiographs for 1 year old *mdx* mice are depicted here. Kyphosis is used to describe the curvature of the spine. In muscular dystrophy there is degradation of muscles associated with the spine and therefore more
spinal curvature (kyphosis) occurs as the disease progresses. Visibly there is no difference in the degree of kyphosis regardless of treatment group.

Figure 18. Kyphosis Analysis of 1 year old mdx mice

В

B) Quantification of radiographs shown in Figure 18 A, for 1 year old *mdx* mice. A lower kyphotic index indicates a higher degree of kyphosis present. In this way, WT animals had a higher kyphotic index therefore indicating less kyphosis occurring. A trend towards WT kyphotic index was evident within the EHS mLAM-111 treatment group. There was no statistical significance found when using One-Way *ANOVA*.

127

Figure 19. Echocardiography of 1 year old *mdx* mice.

A), B) & C) Representative B-mode screenshots are presented here providing a view into cardiac muscle as short-axis echoes. Papillary muscles were used as landmarks for consistency in data collection. Visibly there was no distinct

difference between the treatment groups suggesting that long-term laminin-111 treatment had no effect possibly due to receptor desensitization.

Figure 19. Echocardiography of 1 year old *mdx* mice.

D) There was no distinct difference in heart weights normalized to body weight between the treatment groups only that there was hypertrophy within cardiac muscle for *mdx* mice (PBS and mLAM-111 treatment groups).

LAM treated	LAM/PBS	%	
PBS treated			
			mLAM-111 treatment caused
LVAW;d	92.30958321	%	7.7% reduction in anterior wall width during
			diastole
LVAW;s	94.40472446		5.6% reduction in anterior wall width during
LVID:d	108.2903556		8.3% increase in internal diameter during
;•			diastole
LVID;s	107.0836172		7.1% increase in internal diameter during systole
LVPW;d	72.99072708		27.1% reduction in posterior wall width during
	00 70 404 05		
LVPW;S	83.7046185		16.3% reduction in posterior wall width during systole
EF	100.5813363	%	0.6% increase in ejection fraction
FS	101.6749811		1.7% increase fractional shortening
LV Mass AW	79.67024598		20.3% reduction anterior wall mass calculated
			for humans
LV Mass AW	79.670246		20.3% reduction anterior wall mass calculated
(Corrected)			for mice
LV Vol;d	119.6574189		19.7% increase in left ventricular volume during diastole
LV Vol;s	116.2184899		16.2% increase in left ventricular volume during
-			systole
LAM Compared	LAM/WT	%	mLAM-111 treatment caused
LAM Compared to WT	LAM/WT	%	mLAM-111 treatment caused
LAM Compared to WT LVAW;d	LAM/WT 103.4533	%	mLAM-111 treatment caused 3.5% increase in anterior wall width during diastole
LAM Compared to WT LVAW;d LVAW;s	LAM/WT 103.4533 98.8507	%	mLAM-111 treatment caused 3.5% increase in anterior wall width during diastole 1.1% reduction in anterior wall width during
LAM Compared to WT LVAW;d LVAW;s	LAM/WT 103.4533 98.8507	%	mLAM-111 treatment caused 3.5% increase in anterior wall width during diastole 1.1% reduction in anterior wall width during systole
LAM Compared to WT LVAW;d LVAW;s LVID;d	LAM/WT 103.4533 98.8507 102.3848	%	mLAM-111 treatment caused 3.5% increase in anterior wall width during diastole 1.1% reduction in anterior wall width during systole 2.4% increase in internal diameter during diastole
LAM Compared to WT LVAW;d LVAW;s LVID;d LVID;s	LAM/WT 103.4533 98.8507 102.3848 115.5671	%	mLAM-111 treatment caused 3.5% increase in anterior wall width during diastole 1.1% reduction in anterior wall width during systole 2.4% increase in internal diameter during diastole 15.6% increase in internal diameter during systole
LAM Compared to WT LVAW;d LVAW;s LVID;d LVID;s LVPW;d	LAM/WT 103.4533 98.8507 102.3848 115.5671 86.59535	%	mLAM-111 treatment caused 3.5% increase in anterior wall width during diastole 1.1% reduction in anterior wall width during systole 2.4% increase in internal diameter during diastole 15.6% increase in internal diameter during systole 13.4% reduction in posterior wall width during diastole
LAM Compared to WT LVAW;d LVAW;s LVID;d LVID;s LVPW;d LVPW;s	LAM/WT 103.4533 98.8507 102.3848 115.5671 86.59535 85.03325	%	mLAM-111 treatment caused 3.5% increase in anterior wall width during diastole 1.1% reduction in anterior wall width during systole 2.4% increase in internal diameter during diastole 15.6% increase in internal diameter during systole 13.4% reduction in posterior wall width during diastole 15% reduction in posterior wall width during
LAM Compared to WT LVAW;d LVAW;s LVID;d LVID;d LVID;s LVPW;d LVPW;s	LAM/WT 103.4533 98.8507 102.3848 115.5671 86.59535 85.03325 87.2611	%	mLAM-111 treatment caused 3.5% increase in anterior wall width during diastole 1.1% reduction in anterior wall width during systole 2.4% increase in internal diameter during diastole 15.6% increase in internal diameter during systole 13.4% reduction in posterior wall width during diastole 15% reduction in posterior wall width during systole 12.7% reduction in circution fraction
LAM Compared to WT LVAW;d LVAW;s LVID;d LVID;d LVID;s LVPW;d EF EF	LAM/WT 103.4533 98.8507 102.3848 115.5671 86.59535 85.03325 87.2611	%	mLAM-111 treatment caused 3.5% increase in anterior wall width during diastole 1.1% reduction in anterior wall width during systole 2.4% increase in internal diameter during diastole 15.6% increase in internal diameter during systole 13.4% reduction in posterior wall width during diastole 15% reduction in posterior wall width during systole 12.7% reduction in ejection fraction 40.2% reduction fraction
LAM Compared to WT LVAW;d LVAW;s LVID;d LVID;d LVID;s LVPW;d LVPW;s EF FS	LAM/WT 103.4533 98.8507 102.3848 115.5671 86.59535 85.03325 87.2611 80.64866 24.44945	%	mLAM-111 treatment caused 3.5% increase in anterior wall width during diastole 1.1% reduction in anterior wall width during systole 2.4% increase in internal diameter during diastole 15.6% increase in internal diameter during systole 13.4% reduction in posterior wall width during diastole 15% reduction in posterior wall width during systole 12.7% reduction in ejection fraction 19.3% reduction fractional shortening
LAM Compared to WT LVAW;d LVAW;s LVID;d LVID;d LVID;s LVPW;d LVPW;s EF FS LV Mass AW	LAM/WT 103.4533 98.8507 102.3848 115.5671 86.59535 85.03325 87.2611 80.64866 94.44645	%	mLAM-111 treatment caused 3.5% increase in anterior wall width during diastole 1.1% reduction in anterior wall width during systole 2.4% increase in internal diameter during diastole 15.6% increase in internal diameter during systole 13.4% reduction in posterior wall width during diastole 15% reduction in posterior wall width during systole 12.7% reduction in ejection fraction 19.3% reduction fractional shortening 5.6% reduction anterior wall mass calculated for humans
LAM Compared to WT LVAW;d LVAW;s LVID;d LVID;d LVID;s LVPW;d LVPW;s EF FS LV Mass AW LV Mass AW	LAM/WT 103.4533 98.8507 102.3848 115.5671 86.59535 85.03325 87.2611 80.64866 94.44645 94.44645	%	mLAM-111 treatment caused 3.5% increase in anterior wall width during diastole 1.1% reduction in anterior wall width during systole 2.4% increase in internal diameter during diastole 15.6% increase in internal diameter during systole 13.4% reduction in posterior wall width during diastole 15% reduction in posterior wall width during systole 12.7% reduction in ejection fraction 19.3% reduction fractional shortening 5.6% reduction anterior wall mass calculated for humans 5.6% reduction anterior wall mass calculated for
LAM Compared to WT LVAW;d LVAW;s LVID;d LVID;d LVID;s LVPW;d LVPW;s EF FS LV Mass AW (Corrected)	LAM/WT 103.4533 98.8507 102.3848 115.5671 86.59535 85.03325 87.2611 80.64866 94.44645 94.44645	%	mLAM-111 treatment caused3.5% increase in anterior wall width during diastole1.1% reduction in anterior wall width during systole2.4% increase in internal diameter during diastole15.6% increase in internal diameter during systole13.4% reduction in posterior wall width during diastole15% reduction in posterior wall width during systole12.7% reduction in ejection fraction19.3% reduction fractional shortening5.6% reduction anterior wall mass calculated for humans5.6% reduction anterior wall mass calculated for mice
LAM Compared to WT LVAW;d LVAW;s LVID;d LVID;d LVID;s LVPW;d LVPW;s EF FS LV Mass AW (Corrected) LV Vol;d	LAM/WT 103.4533 98.8507 102.3848 115.5671 86.59535 85.03325 87.2611 80.64866 94.44645 94.44645 104.6885	%	mLAM-111 treatment caused 3.5% increase in anterior wall width during diastole 1.1% reduction in anterior wall width during systole 2.4% increase in internal diameter during diastole 15.6% increase in internal diameter during systole 13.4% reduction in posterior wall width during diastole 15% reduction in posterior wall width during systole 12.7% reduction in posterior wall width during 5.6% reduction fractional shortening 5.6% reduction anterior wall mass calculated for humans 5.6% reduction anterior wall mass calculated for diastole
LAM Compared to WT LVAW;d LVAW;s LVID;d LVID;d LVID;s LVPW;d LVPW;s EF FS LV Mass AW (Corrected) LV Vol;d	LAM/WT 103.4533 98.8507 102.3848 115.5671 86.59535 85.03325 87.2611 80.64866 94.44645 94.44645 104.6885 133.8077	%	mLAM-111 treatment caused 3.5% increase in anterior wall width during diastole 1.1% reduction in anterior wall width during systole 2.4% increase in internal diameter during diastole 15.6% increase in internal diameter during systole 13.4% reduction in posterior wall width during diastole 15% reduction in posterior wall width during systole 12.7% reduction in ejection fraction 19.3% reduction fractional shortening 5.6% reduction anterior wall mass calculated for humans 5.6% reduction anterior wall mass calculated for mice 4.7% increase in left ventricular volume during diastole 33.8% increase in left ventricular volume during

PBS Compared to WT	PBS/WT		
LVAW;d	112.0720825	%	12.1% increase in anterior wall width during diastole
LVAW;s	104.7094843		4.7% increase in anterior wall width during systole
LVID;d	94.54651261		5.5% reduction in internal diameter during diastole
LVID;s	107.9222646		7.9% increase in internal diameter during systole
LVPW;d	118.6388411		18.6% reduction in posterior wall width during diastole
LVPW;s	101.5872861		1.6% reduction in posterior wall width during systole
EF	86.75674687		0.6% increase in ejection fraction
FS	79.32006445		1.7% increase fractional shortening
LV Mass AW	118.5467094		20.3% reduction anterior wall mass calculated for humans
LV Mass AW (Corrected)	118.5467092		20.3% reduction anterior wall mass calculated for mice
LV Vol;d	87.4902056		19.7% increase in left ventricular volume during diastole
LV Vol;s	115.1346455		16.2% increase in left ventricular volume during systole

Table 2. M-mode measurements of 1 year mdx echocardiography

Calculations are presented here in a tabular format for echocardiography Mmode measurements for 1 year old *mdx* mice. Most notably there was a 19.7 % increase in ventricular volume during diastole and a 16.2 % increase in ventricular volume during systole after laminin-111 treatment. Despite this there was not a change in Ejection Fraction or Fractional shortening showing that the effective pumping of the heart was not improved with laminin-111 treatment.

Figure 20. Respiratory function within 1 year old mdx mice

Plethysmography data was collected and analyzed. There was no difference between any of the treatment groups for respiratory function parameters which included Frequency of breathing (Figure 20 A), PenH (Figure 20 B) and tidal volume (TVb) (Figure 20 C). PenH (enhanced pause) is correlated to but not a direct measurement of airway resistance. This suggests that whole body plethysmography analysis of 1 year old mice may not have been the best way to analyze the respiratory function of these larger animals.

Figure 21. Histology of 1 year old *mdx* Tibialis Anterior muscle

A) Hematoxylin and Eosin staining was carried out on 10 μ m TA cryosections and images were captured at a magnification of 200 X. Scale bar = 200 μ m. B) Centrally located nuclei are used as a marker of degeneration and regeneration in muscle. Percentage (%) of Centrally Located nuclei (CLN) were calculated for each treatment group. WT had 4.3 % CLN \pm 1.7 %, PBS had 4.4 % CLN \pm 1.4 % and mLAM-111 treated animals had 4.49 % CLN \pm 2.96 %. One-Way *ANOVA* demonstrated that there was no statistical difference amongst the treatment groups with *P*-value = 0.9915. It is important to remember that within mouse muscle once damage occurs, nuclei will become centrally located and will remain their throughout the lifetime of the animal. Therefore this may help to answer why there was no difference in the percentage of CLN for the treatment groups due to the 1 year old mice enduring more damage throughout their lifetime as they are older mice. Also the treatment regime was only one injection per fortnight so therefore laminin-111 protein could have been degraded within a short amount of time post-injection and therefore the mouse is still subject to muscle damage before the next injection is due.

Figure 22. Fibrotic tissue in Tibialis Anterior muscle of 1 year old *mdx* mice

A) Representative TA montages stained with Sirius red presented for 1 year old mdx mice. Magnification = 100 X. Scale bar = 200 µm. Increased red color indicates that there is more fibrotic tissue present. B) Sirius red staining was

А

carried out in order to calculate the percentage (%) of fibrotic tissue within TA cryosections shown in Figure 22 A. One-Way *ANOVA* revealed no statistical significance with *P*-value = 0.4979.

Figure 22. Fibrotic tissue in Tibialis Anterior muscle of 1 year old *mdx* mice

C) Minimal Feret's diameter was also calculated for the same 1 year old muscle groups shown in Figure 22 A. Minimal ferret's diameter is used to measure the size of myofibers. Statistical significance was recorded when *P*-values were < 0.05. One-Way *ANOVA* revealed statistical significance for comparison of the 3 treatment groups but there was no statistical significance found between PBS and laminin-111 treatment. This lack of significance shows that laminin-111 treatment had no effect on myofiber size.

Figure 23. Activity and Function in 1 year old mdx mice

Α

A) 1 year old mice were placed individually into the activity box and assessed for movability during a period of 120 minutes. Distance (m) and Velocity (m/sec) parameters were recorded. WT moved 317.6 m \pm 99.9 m, PBS moved 180.7 m \pm 64.6 m, mLAM-111 moved 163.7 m \pm 62.8 m. Speed with which the mice moved

were for WT 9.23 m/sec \pm 2.3 m/sec, PBS 6.2 m/sec \pm 0.8 m/sec and mLAM-111 6.3 m/sec \pm 0.3 m/sec. One-Way *ANOVA* showed statistical significance when comparing all 3 treatment groups. Statistical significance was evident when *P*values were < 0.05. However there was no difference between PBS and laminin-111 treated animals for either distance moved or velocity.

Figure 23. Activity and Function in 1 year old *mdx* mice

В

B) Mice were placed individually into the activity box and assessed for a period of120 minutes. Resting time (sec) and vertical counts were recorded. One-Way

142

ANOVA showed no statistical significance when comparing all 3 treatment groups. Statistical significance was evident when P values were < 0.05.

Measurements for Minimal Feret's diameter were carried out on younger mice that were 7 weeks old and 10 weeks old. 7 weeks old PBS treated animals had an average myofiber diameter of $35.72 \ \mu m \pm 0.1783 \ \mu m$, and mLAM-111 treated animals had an average myofiber diameter of $41.88 \ \mu m \pm 0.23 \ \mu m$. A student's *t*test revealed *P*-value < 0.0001. 10 week old PBS treated animals had an average myofiber diameter of $43.65 \ \mu m \pm 0.2 \ \mu m$ and mLAM-111 treated animals had an average myofiber diameter of 41.88 μ m ± 0.20 μ m. Statistical significance was when *P* values were < 0.05. One-Way *ANOVA* showed statistical analysis with *P*-value < 0.0001. There was an increase in myofiber size for 7 week old laminin-111 treated animals and a decrease in myofiber size for 10 week old laminin-111 treated animals.

Figure 25. Laminin-111 detection in *mdx* TA muscle after intraperitoneal treatment

Immunofluorescence revealed that laminin-111 protein was able to be detected in *mdx* TA muscle after intraperitoneal injection. Scale bar = $20 \mu m$. Magnification = 630 X. Laminin-111 is represented by green and nuclear label (DAPI) is represented by blue. WT and mutant muscle do not possess laminin-111, it is only detected after treatment.

Figure 26. Muscle strength and histology was assessed for 10 week old *mdx* mice

A) Grip strength measurements for forelimb muscle strength were calculated and normalized to body weight. There was no statistical significance between the treatment groups after a *t*-test was performed the *P*-value = 0.7912. B) Percentage (%) fatigue was calculated based on grip strength shown in Figure 26 A. There was no statistical difference in forelimb muscle fatigue. Therefore laminin-111 treatment was not effective in increasing muscle strength.

С

Figure 26. Muscle strength and histology was assessed for 10 week old *mdx* mice

C) Centrally located nuclei quantification is used as a marker for degeneration and regeneration. One-Way *ANOVA* statistical analysis of the 3 treatment groups showed *P*-value < 0.0001. Laminin-111 helped to prevent muscle damage as there was reduced percentage CLN when compared to PBS treated animals.

Figure 27. Sarcolemmal proteins after laminin treatment in 10 week old *mdx* mice

A) Immunoblotting shows that there is no effect on levels of α 7 integrin protein after laminin-111 treatment for a two week treatment regime. B) However there is a distinct increase in β -Dystroglycan protein upon laminin treatment compared to PBS treatment visualized via confocal microscopy and this is quantified in Figure 27 B. Magnification = 400 X. Scale bar = 40 µm. Figure 27A was kindly provided by Apurva Sarathy.

β-DG

Figure 27. Sarcolemmal proteins after laminin treatment in 10 week old *mdx* mice

C) Quantification of β -DG protein levels measured from confocal images shown in Figure 27 B. Intensity was normalized by High Intensity/ Low intensity for individual images and averaged for each treatment group. PBS treatment had a normalized intensity of 274.5 ± 204.2 and laminin-111 treatment had a normalized intensity of 3128 ± 2121. Statistical *t*-testing revealed the *P*-value = 0.2561. Chapter V

Loss of alpha7 integrin exacerbates skeletal and cardiac dysfunction in the

dy^w mouse model of MDC1A

ABSTRACT

Merosin-deficient congenital muscular dystrophy type 1A (MDC1A) is caused by the loss of Laminin-211 and Laminin-221 heterotrimers which are most abundant in skeletal and cardiac muscle basal lamina; mutations in the LAMA2 gene cause the loss of these Laminin isoforms. This reduction of Laminin reduces the capacity for myofiber adhesion, loss of sarcolemmal integrity and subsequently affects the ability of the skeletal muscle syncytium to generate force in a coordinated and efficient manner. Patients experience progressive muscle wasting which confines them to a wheelchair at an early age and respiratory failure that leads to their untimely death. Currently, there is still no effective treatment or cure for this devastating disease. Recently, our lab has shown that transgenic overexpression of the $\alpha7$ integrin reduces muscle pathology and improves viability in the laminin- α^2 deficient mouse model of (MDC1A)⁶⁵. However, what remains unclear is what role other significant sarcolemma related proteins play towards this rescue in MDC1A disease progression; complete ablation of both α 7 integrin and laminin- α 2 has never been characterized in the dy^W mouse model¹⁷³. Thus, the overall hypothesis to be tested is that a loss of both α 7 integrin and laminin- α 2 will increase the overall degeneration of skeletal and cardiac muscle in this α 7 integrin/ laminin- α 2 double knockout (dko) mouse model¹⁷³.

INTRODUCTION

Merosin deficient congenital muscular dystrophy (MDC1A) affects approximately 0.89/100,000 individuals worldwide (1:100,000 - 1:500,000) and is thought to be the most common form of congenital muscular dystrophy affecting 30-40% of all diagnosed CMD cases⁸⁸. Loss of merosin (Laminin- α 2 protein) is caused by mutations occurring in the LAMA2 gene which is located on chromosome 6q22-23 spanning ~260 kb with 64 exons 73,89-100. This loss of Laminin-a2 protein in MDC1A results in the absence of Laminin-211 and Laminin-221 heterotrimers which are abundant in skeletal and cardiac muscle basal lamina. Patients, also experience demyelinating neuropathy, muscle atrophy, limited eye movement and also respiratory failure that leads to their untimely death which can be as early as the first decade of life ^{88,92–94}. There is an increased likelihood of seizures occurring after six months of age due to changes in white matter of the brain ^{97,101-102}. Symptoms depend on where the mutation occurs and a mutation which results in no laminin- $\alpha 2$ protein being produced will result in a more severe clinical phenotype compared to a mutation which produces a truncated form of laminin- $\alpha 2$. Currently, there is still no effective treatment or cure for this cruel disease ^{24,88}.

The $\alpha 7\beta 1$ integrin is a heterodimeric cell surface receptor member of the large family of integrins⁶⁰ (Figure 1). The α chain and β chain are noncovalently linked and integrins in general are evolutionarily conserved^{55,61}. Integrins act as receptors for a variety of cellular components to include, leukocytes, RGD,

collagen and laminin⁵⁵. The α 7 β 1 integrin is prevalent within skeletal, cardiac and vascular smooth muscle. There are many splice variants of α 7 β 1 integrin that exist. There are 3 intracellular (α 7A, α 7B and α 7C) and 2 extracellular (X1 and X2) splice variants^{28,62,63,64}. The β 1 integrin possesses variants β 1A and β 1D, with β 1D being the major isoform in mature skeletal muscle⁵¹. The α 7 β 1 integrin complex is elevated in order to compensate for the instability of the dystrophin in Duchenne Muscular dystrophy (DMD)⁵⁰. α 7 integrin overexpression is able to rescue the severe dystrophic phenotype of *mdx/utr* ^{-/-} mice and improve the viability of these mice⁵¹. MDC1A patients have decreased α 7 β 1 integrin expression⁶⁵. This integrin is found localized at costameres, myotendinous junctions and neuromuscular junctions^{59,60}.

The absence of laminin- α 2 in Merosin Deficient Congenital muscular dystrophy (MDC1A) has been well documented in the dy^{W} mouse model^{124,133}. What remains unclear is the exact role of α 7 integrin (laminin- α 2 binding partner) and the biological effects caused by the absence of α 7 integrin. Hence, we generated double knockout (dko) α 7 -/-:: Laminin- α 2 -/- mice and studied them alongside their littermate controls. Results from this study correlate with findings from a recent publication that suggests deletion of alpha7 integrin in laminin- α 2 deficient dy3k-/- mice does not increase severity of the phenotype.

MATERIALS AND METHODS

Generation of α 7 -/-:: Laminin- α 2 -/- mice

All experiments involving mice were performed under an approved protocol from the University of Nevada, Reno Institutional Animal Care and Use Committee. $\alpha 7$ +/- mice (C57BL6- α 7 β gal strain) produced in the Nevada Transgenic Center were bred with Dy^{W} +/- (C57BL6 strain) mice. The dy^{W} +/- mice were a gift from Eva Engvall via Paul Martin (The Ohio State University, Columbus, OH, USA). The resulting F1 progeny generated from mating mice that were heterozygous at both the α 7 locus and laminin- α 2 locus were genotyped in order to detect α 7 -/-:: Laminin- α 2 -/- double knockouts. The wild-type control strain used in this study was C57BL6. Age-matched littermate controls were used for analysis.

In order to genotype mice, genomic DNA was isolated from tail snips or ear notches using a Wizard SV DNA purification system (Promega, Madison, WI) following manufacturers instructions. Mice were genotyped using multiplex PCR to detect the wild-type and targeted α 7 integrin allele using the following primers: α7F10 (5'-TGAAGGAATGAGTGCACAGTGC-3'), (5'α7exonR1 AGATGCCTGTGGGCAGAGTAC-3') (5'and βgalR2 GACCTGCAGGCATGCAAG-3'). PCR conditions for α 7 integrin were as follows: 94°C for 3 minutes, then 35 cycles of 94°C for 20 seconds, 62°C for 30 seconds, 72°C for 1 minute. After these cycles, then 72°C for 10 minutes. A wild-type band was 727 bp, whereas the α7 integrin targeted allele produced a 482 bp band. To genotype the α 7 integrin gene, separate PCR reactions were performed since there were two different reverse primers needed in wild-type and α 7 integrin null mice.

To detect the mutation in the laminin- α^2 gene, the following primers were used: DYWF (5'-ACTGCCCTTTCTCACCCACCCTT-3'), LAMA2exonR1 (5'-GTTGATGCGCTTGGGAC-3') and Lac/ZR2 (5'-GTCGACGACGACAGTATCGGCCTCAG-3'). PCR conditions were as follows: 95°C for 5 minutes then 33 cycles of 94°C for 20 seconds, 62°C for 30 seconds and 72°C for 45 seconds. After these cycles, then 72°C for 10 minutes. A wildtype band was 250 bp whereas the laminin- α^2 targeted allele produced a 480 bp band.

Experimental procedures were performed once mice were 14 days of age with weekly weighing until the end of study which was at 10 weeks of age where all mice were subject to *in vivo* experiments. To reduce experimental bias, investigators assessing and quantifying experimental outcomes were blinded to the treatment and control groups.

Survival and weights

Weights for all mice of each genotype were recorded on a weekly basis. Softened kibble was provided fresh daily in a petri dish on the bottom of the cage in order to ensure there was no significant weight loss within the mice.

Muscle strength

Muscle strength assessed at 10 weeks of age using the Chatillon DFE Digital Force Gauge (San Diego Instruments Inc., San Diego, CA). A total of six measurements per mouse were recorded and all results averaged for each group. The mice were analyzed by grasping a horizontal platform with their forelimbs and pulled backwards. The peak tension (grams of force) was recorded on a digital force gauge as mice released their grip.

X-ray digital imaging

Radiographs were obtained for each mouse at the end of the 10 week study through the use of a Summit digital X-ray unit model 50-520, allowing radiographic measurement of kyphotic index. Calculations for Kyphotic Index were carried out as previously described by Hoey *et al.* 1985.

Activity

Opto-Varimex 4 Activity Meter (Columbus Instruments) offered unbiased data due to the machine possessing lasers that monitor and auto-track the activity of each mouse for a period of 30 minutes.

Plethysmography

Animals were subjected to plethysmography at 10 weeks of age. Animals for each genotype were used. Animals were placed in the plethysmography chamber (unrestrained) and then subjected to increasing does of aerosolized Acetyl-methacholine (6.25, 12.5, 25, 50 and 100 mg/mL), after an initial time period to acclimatize in the chamber. First mice were exposed to aerosolized PBS to gather baseline data. Experimental values were automatically generated by the pneumograph in the wall of the chamber. FinePointe software (Buxco©) was used to collect all data.

Echocardiography

In vivo echocardiography was performed on mice using a VisualSonics Vevo 2100 system with a MS 550D transducer¹⁷⁴. This allowed ultrasound imaging of the heart to take place. Mice were anesthetized with 1.5-2.0% isoflurane and placed in a supine position on a heated stage. 2-D short-axis recordings of the left ventricle at the level of the papillary muscle were obtained in M-mode. Measurements were taken to help compare the efficiency of the left ventricle during diastole and systole. Heart rate and body temperature were monitored during imaging. Left ventricle wall thickness and cavity dimensions were measured at systole and diastole for three cycles, averaged, and used with Vevo 2100 software to calculate values for fractional shortening, ejection fraction, and LV mass^{175,176,177}. Comparisons between groups of mice were made using single-factor ANOVA in Microsoft Excel; *P* values < 0.05 were considered statistically significant.

Isolation of skeletal muscle

10 week old wild-type, α 7WT:: laminin- α 2 -/-, α 7-/-:: laminin- α 2WT, and α 7-/-::laminin- α 2-/- mice were euthanized by CO₂ inhalation in accordance with a protocol approved by the University of Nevada, Reno Animal Care and Use Committee. The Tibialis Anterior and cardiac muscles from these mice were dissected, flash-frozen in liquid nitrogen and stored at -80°C.

Immunofluorescence

Tibialis Anterior (TA) muscle were embedded in Tissue-TEK Optimal Cutting Temperature compound (Sakura Finetek USA Inc, Torrance, CA). 10 μ m sections were cut using leica CM1850 cryostat and placed onto Surgipath microscope slides (surgipath Medical Industries, Richmond, IL). The α 7 integrin was detected with a 1:500 dilution of CA5.5 mouse monoclonal antibody (Sierra Biosource, Morgan Hill, CA) followed by a 1:100 dilution of FITC-conjugated antimouse IgG. Myofibers were outlined with a 1:1000 dilution of FITC-conjugated Wheat Germ Agglutinin. Laminin- α 2 was detected with a 1: 500 dilution of *LAMA2* mouse monoclonal followed by a 1: 200 dilution of Alexa Fluo 594 nm anti-mouse IgG. Myofibers were outlined with a 1:1000 dilution of TexasRedconjugated Wheat Germ Agglutinin.

Sirius Red Staining

TA muscle sections were stained with Sirius Red to measure fibrosis in the skeletal muscle tissue. 10 μ m cryosections on slides were fixed in 100%

ethanol and then hydrated through an alcohol series (95 and 80% ethanol) and rinsed in tap water. The sections were stained with Sirius Red (0.1% in saturated aqueous picric acid solution, Rowley Biochemical Institute, Danvers, MA, USA) for 30 min followed by two washes in acidified water. The sections were dehydrated through an alcohol series, rinsed in xylene and mounted with DEPEX Mounting media (Electron Microscopy Science, Hat- field, PA, USA). Representative montages were captured and analyzed using Axiovision 4.8 software. Montages were assembled using Photoshop and Microsoft Powerpoint. Images were captured at 200 X magnification. Areas of red in the TA were considered fibrotic. Circled fibrotic areas were added together, and any nonfibrotic fibers within the fibrotic area were subtracted from the calculated area. The percentage of muscle fibrosis was quantified in treated and control muscles as a percentage of total TA muscle area. Sirius red slides were also used to measure minimal feret's diameter for mice of all 4 genotypic groups. All muscle fibers within an entire TA montage were used to determine the minimal feret's diameter.

Masson's Trichrome Staining

TissueTek OCT-embedded TA muscles were cryosectioned and stained using a Masson's Trichrome Staining Kit (American Master Tech Scientific, Lodi, CA). Images were captured at 100 X magnification under bright field using a Zeiss Axioskop 2 Plus fluorescent microscope, and images were captured with Hamamatsu Color Chilled 3CCD digital camera with HPS-SCSI (C5810) software. Images were processed and measured with the use of Axiovision 4.8 software. All muscle fibers within an entire montage were used to determine the percentage (%) of blue collagen deposition. Therefore helping to determine the extent to which fibrosis is occurring within cardiac muscle.

Statistical Analysis

All averaged data are reported as the mean \pm s.d. *P*-values of < 0.05 were considered to be statistically significant.

RESULTS

Mendelian Inheritance for F1 progeny (n =341) produced from breeding parent mice that are both heterozygous for α 7 integrin and laminin- α 2

Categories for progeny genotypes are as described in tables 3 & 4. Chisquared analysis was used as a statistical test for these results for Mendelian Inheritance. $X^2 = 35.3546$ with 3 degrees of freedom. Embryonic lethality is observed for α 7-/-:: *dy*-/- with an approximate 66% deviation from the higher expected number of double knockout mice.

Immunofluorescence to show laminin-alpha2 reduction in the α 7 -/- :: dy -/mouse model

Laminin- α 2 protein is minimally present within the laminin- α 2 knockout mouse genotype as it is only a partial knockout within the Dy^{W} laminin- α 2
deficient strain of mice (Figure 30). α7 WT :: dy WT (*n*= 12), α7 WT :: dy -/- (*n*= 11), α7 -/- :: dy WT (*n*= 5), α7 -/- :: dy -/- (*n*= 5).

Immunofluorescence to show both alpha7 reduction in the α 7 -/- :: dy -/mouse model

α7 integrin protein is reduced within α7-/- (α7-/-:: dyWT and α7-/-:: dy -/-) tissues (Figure 31). α7 WT :: dy WT (n= 12), α7 WT :: dy -/- (n= 11), α7 -/- :: dy WT (n= 5), α7 -/- :: dy -/- (n= 5).

Kyphosis analysis via digital X-rays comparing α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/- :: dy WT, and α 7 -/- :: dy -/- 10 week old mice

The kyphotic index calculations were carried out following a technique previously described¹⁷⁸. Radiographs were assessed in a blinded manner and visibly there is a similar increase in the severity of kyphosis occurring in α 7-/-:: *dy*-/- animals compared with a7WT::dy-/- animals(Figure 32). This result is visible in the representative radiographs presented. Statistically this result was significant.

Weights and muscle function assessment comparing α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/- :: dy WT, and α 7 -/- :: dy -/- mice

No statistical significance was observed for α 7-/-:: *dy*-/- grip strength assessing forelimb muscle strength compared to the other 3 genotypes (Figure 33). Percentage of forelimb muscle fatigue was also elevated within α 7-/-:: *dy*-/- compared to the other genotypes. Activity box data showed consistent statistical

significance with regards to distance moved and ambulatory time which was severely reduced in α 7-/-:: dy-/- mice. The number of vertical stand-ups were also reduced for α 7-/-:: dy-/- animals and this was coupled with an extension in resting time for these animals.

Heart analysis comparing α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/- :: dy WT, and α 7 -/- :: dy -/- 10 week old mice

Whenever heart weight was normalized to body weight there was an increase in mass evident for α 7-/-:: *dy*-/- mice which was similar to α 7WT:: *dy*-/-. Within *in vivo* echocardiography, the representative B-mode screenshots reflect the vast range of cardiac functions within all genotypes of this study (Figure 34). The worst phenotype was observed in α 7-/-:: *dy*-/- mice with atrial flutter/fibrillation evident and increased Left Ventricular wall thickness. These α 7-/-:: *dy*-/- mice had very much reduced left ventricular volume during systole.

Echocardiography data comparing α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/- :: dy WT, and α 7 -/- :: dy -/- 10 week old mice

For α7WT:: dyWT versus α7WT:: dy-/- the most significant differences are with Left ventricular Internal diameter (LVID) in both diastole and systole (Figure 35 A). There was also a huge reduction in the ability of the left ventricle to pump blood and this is indicated by the significant reduction in Left ventricular volume for both diastole and systole. For α7WT:: dyWT versus α7-/-:: dy-/- it is a very similar situation to the one previously described, small internal diameter and therefore less efficient blood pumping due to the decreased size of the ventricle and reduced volume in both diastole and systole (Figure 35 B).

For α 7-/-:: dyWT versus α 7WT:: dy-/-, it is the same situation. These results indicate that α 7 integrin plays a critical role in rescuing cardiac muscle whenever laminin- α 2 is absent (Figure 35 C). In the absence of both α 7 integrin and laminin- α 2 there are detrimental consequences with regards heart function due to reduced blood filling capacity with reduced ventricular volume during systole and the occurrence of atrial flutter.

Increased collagen visible within α 7 -/- :: dy -/- cardiac muscle

Heart tissue cryosections show elevated blue fibrotic tissue deposition within the cardiac montages for α 7-/-::dy-/- (Figure 36). Quantification of this shows that laminin- α 2 deficiency has similar effects for both α 7WT:: dy-/- and α 7-/-:: dy-/-. This result therefore indicates that laminin- α 2 is important for protection against collagen deposition however this result was not statistically significant and would warrant the need for more *n* numbers.

Fibrotic tissue analysis within Tibialis Anterior muscle of α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/- :: dy WT, and α 7 -/- :: dy -/- 10 week old mice

Again, as above, montages were assembled this time for TA muscle (Figure 37). Visibly laminin- α 2 deficiency for both α 7WT:: dy-/- and α 7-/-:: dy-/-

mice results in a more degradative muscle pathology due to excessive scar tissue formation indicated here by red color which is labeled fibrotic tissue. There was no statistical significance but single loss of laminin- α 2 seemed to have a more severe effect but very similar to double knockout of both α 7 integrin and laminin- α 2. Single loss of only α 7 integrin resulted in the most muscle hypertrophy when assessing myofiber minimal ferret's diameter.

DISCUSSION

The α 7 integrin is an important transmembrane cell surface receptor in skeletal, cardiac and vascular smooth muscle. Laminin- α 2 is an important binding partner for α 7 integrin^{92,108,117}. It connects the extracellular matrix to the integrin on the sarcolemma. α 7 integrin plays an important role in cell signaling as it binds to talin and cytoskeletal F-actin. Laminin-integrin binding complex helps to transduce external mechanical stresses involved with muscle contraction and connect them with a cellular response via signaling. It is important to remember that this laminin-integrin interaction is very much a two-way system i.e. there can be inside- outside signaling and also outside-inside signaling. The relationship between them is very much a bi-directional one. Disruption of these components causes neuromuscular disease in both humans and mice. This emphasizes the importance of this binding complex in maintaining the integrity of the sarcolemmal to withstand the mechanical forces associated with muscle contraction.

Together these results suggest that laminin- α^2 plays a critical role in maintaining proper function of skeletal and cardiac muscle. Transgenic overexpression of α^7 integrin in skeletal muscle in previous studies demonstrated that overexpression can help partially rescue the disease phenotype and extend the lifespan of the mice. This study helps to reiterate previous literature¹⁷³. The severe embryonic lethality of double knockout α^7 -/-:: *dy*-/- mice furthers this previous knowledge and emphasizes the importance of α^7 integrin in rescuing the loss of laminin- α^{265} . The duplicity of their bi-directional relationship of protecting the structural and functional integrity of muscle is very much highlighted in the generation of this double knockout mouse model.

We observed severe muscle pathology in 10 week old α 7-/-:: *dy*-/- mice which is a new result for this field of study as no one has ever created this particular double knockout mouse model in the *dy*^W-/-¹⁷³. Partial knockdown of both proteins in α 7-/-:: *dy*-/- mice results in severe skeletal and cardiac muscle degeneration, reduced functional activity and fibrotic scar tissue deposition. Here, compensation by α 7 integrin helps these mice to maintain functional integrity. The α 7-/-:: *dy*-/- mice analyzed in this study exhibited a phenotype similar to that of single knockout of laminin- α 2 in *dy*^W-/- mice. This phenotypic similarity between these two genotypes suggests that there is functional overlap in the role of α 7 integrin in maintaining muscle structure and function. The alpha7 integrin has a redundant role as loss of laminin- α 2 is detrimental to muscle pathology. Double knockout α 7-/-:: *dy*-/- mice exhibit a severe cardiac phenotype similar to that of the *dy-/-* mice suggesting that laminin- α 2 is very critical to cardiac muscle function by its presence^{179–185}. It also suggests there is no active sarcolemmal complex able to cope and compensate for the loss of both of them. Therefore, the heart is not able to pump efficiently in a coordinated manner and we see the atrial fibrillation occurring^{175–177,186}.

The α 7-/-:: *dy*-/- mouse is a new mouse model for muscular dystrophy that has been identified which lacks both α 7 integrin and laminin- α 2. This has never been studied before in this particular *dy*^W -/- mouse model¹⁷³. Further investigation will reveal the effects on pathophysiology and expression of sarcolemmal proteins. Results from characterization of this new α 7 integrin / laminin- α 2 double knockout mouse model will aid in understanding the exact role that α 7 integrin and laminin- α 2 play in MDC1A. It will also potentially help with the identification of novel therapeutic targets for this devastating neuromuscular disease.

ACKNOWLEDGEMENTS

The project described was supported by grants from the National Center for Research Resources (SP20RR016464-11), Institute of General Medical Sciences (8 P20 GM103440-11) from the National Institutes of Health, CureCMD and Struggle Against Muscular Dystrophy. I would especially like to thank Dr. Andrea Agarwal for Echocardiography training and blinded analysis.

 α 7 integrin binding to laminin- α 2 acts as a strengthening molecular glue in the WT sarcolemma. However, this strength is lost upon the absence of laminin- α 2 in muscle. We wish to investigate ablation of the α 7 integrin- laminin- α 2 binding complex in this α 7/laminin- α 2 double knockout (DKO mouse model).

Figure 29. Photographs of 10 week old dy^{W} -/- and a7-/- :: dy-/- mice

 α 7 integrin-laminin- α 2 double knockout (DKO) mouse alongside its littermate control laminin- α 2 knockout (Dy^{W}) mouse at 10 weeks of age. More advanced kyphosis is evident within the DKO mouse.

Category	Observed	Expected		Actual %	Expected %
Wild-type (WT)	240	192		70.381%	56.305%
Alpha7 KO	36	64		10.557%	18.768%
Dy ^w (Lamα2KO)	59	64		17.302%	18.768%
Double Knockout	6	21		1.760%	6.158%
Categories:					
WT:			alpha7 WT & Dy ^W WT, alpha7 Het & Dy ^W WT, alpha7 WT & Dy ^W Het, alpha7 Het & Dy ^W Het		
Alpha7 KO:			alpha7 Knockout & Dy ^W WT, alpha7 Knockout & Dy ^W Het		
Dy ^w KO :			alpha7 WT & Dy ^W Knockout, alpha7 Het & Dy ^W Knockout		
Double Knockout:			alpha7 Knockout & Dy ^W Knockout		

Table 3 & Table 4: Mendelian Inheritance for F1 progeny (n =341) produced from breeding parent mice that are both heterozygous for α 7 integrin and laminin- α 2

Categories for each genotype are labeled here in order to define how Mendelian inheritance was calculated. Chi-squared value was 35 with 3 degrees of freedom. Embryonic lethality is evident within the DKO mouse.

Confocal microscopy was employed to show presence or reduction of laminin- α 2 protein in TA muscle cryosections. Wheat germ agglutinin (WGA) was used to outline the myofibers. Magnification = 400 X. Scale bar = 100 µm. Green

represents WGA and red represents laminin- $\alpha 2$. $\alpha 7$ -/- :: dy -/- protein localization in muscle is more disorganized compared to the other 3 genotypes.

Confocal images were collected and analyzed for the presence of alpha7 integrin protein. Wheat germ Agglutinin (WGA) was used to outline the myofibers. Magnification = 400 X. Scale bar = 100 μ m. Red represents WGA and green represents α 7 integrin presence. alpha7 integrin protein was greatly reduced in *dy-/-* animals.

175

Figure 32. Kyphosis analysis via digital X-rays comparing α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/- :: dy WT, and α 7 -/- :: dy -/- 10 week old mice

(B) Kyphosis is used to describe the curvature of the spine. In muscular dystrophy there is degradation of muscles associated with the spine and

therefore more spinal curvature (kyphosis) occurs as the disease progresses. Kyphotic Index calculations for each of the genotypes: α 7 WT :: dy WT (*n*= 12), α 7 WT :: dy -/- (*n*= 11), α 7 -/- :: dy WT (*n*= 5), α 7 -/- :: dy -/- (*n*= 5). A lower kyphotic index indicates a higher degree of kyphosis present. In this way, WT animals had a higher kyphotic index therefore indicating less kyphosis occurring. The calculations were based on radiographs as shown in Figure 32 B. Loss of laminin- α 2 protein causes severe kyphosis and whenever alpha7 integrin protein is reduced in addition, it causes slightly more kyphosis. One-Way *ANOVA* analysis produced a *P*-value = 0.0026.

Figure 32. Kyphosis analysis via digital X-rays comparing α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/- :: dy WT, and α 7 -/- :: dy -/- 10 week old mice

(A) Representative X-ray radiographs for each of the genotypes: α 7 WT :: dy WT (n= 12), α 7 WT :: dy -/- (n= 11), α 7 -/- :: dy WT (n= 5), α 7 -/- :: dy -/- (n= 5). Visibly, the severity of kyphosis looks similar for both α 7 WT :: dy -/- mice and α 7 -/- :: dy -/- mice. Kyphotic index calculations are presented in Figure 32 A.

А

Figure 33. Weights and muscle function assessment comparing α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/- :: dy WT, and α 7 -/- :: dy -/- mice

(A) Weights (g) were recorded in a weekly manner for all mice until 10 weeks old. Each genotype weighed on average at 10 weeks old : α 7 WT :: dy WT mice weighed 19.07 g ± 1.723 g, α 7 WT :: dy -/- mice weighed 12.44 g ± 1.025 g, α 7 -/-:: dy WT mice weighed 16.43 g ± 1.306 g, and α 7 -/- :: dy -/- mice weighed 12.32 g ± 0.8777 g at 10 weeks old. One-Way *ANOVA* statistical analysis revealed the *P*-value = 0.0013. α 7 WT :: dy -/- mice and α 7 -/- :: dy -/- mice had very similar weight gain over the entire period of the study therefore suggesting that there was no detrimental effect by additionally reducing alpha7 integrin alongside laminin- α 2.

178

Figure 33. Weights and muscle function assessment comparing α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/- :: dy WT, and α 7 -/- :: dy -/- 10 week old mice

(B) Forelimb muscle grip strength measurements (six in total) were recorded (grams of force) and normalized to body weight. The percentage (%) fatigue for forelimb muscles was calculated. No statistical significance was found between the 4 different genotypes.

179

С

Figure 33. Weights and muscle function assessment comparing α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/- :: dy WT, and α 7 -/- :: dy -/- 10 week old mice

(C) Activity box data was collected for mice in a non-biased way for 30 minutes. The results for resting time (sec) and ambulatory time (sec) are presented. α 7 WT :: dy WT mice had a resting time of 318.8 sec ± 34.03 sec and ambulatory time of 1052 sec ± 48.24 sec, α 7 WT :: dy -/- mice had a resting time of 542.7 sec ± 47.88 sec and ambulatory time of 768.0 sec ± 39.67 sec, α 7 -/- :: dy WT mice had a resting time of 308.0 sec ± 34.37 sec and ambulatory time of 1074 sec ± 48.75 sec, α 7 -/- :: dy -/- mice had a resting time of 860.3 sec ± 277.9 sec and ambulatory time of 589.0 sec ± 194.5 sec. Student *t*-test's revealed a ** *P*-value = 0.0063 for resting time (sec) and ** *P*-value = 0.0048 for ambulatory time (sec).

Figure 33. Weights and muscle function assessment comparing α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/- :: dy WT, and α 7 -/- :: dy -/- 10 week old mice

(D) Activity box data was collected for mice in a non-biased way for 30 minutes. The results for distance moved (cm) and vertical counts are presented. Vertical counts act as a way of measuring how many stand-ups each mouse can accomplish. α 7 WT :: dy WT moved 7296 cm ± 756.4 cm and stood 374.0 times ± 59.40, α 7 WT :: dy -/- moved 4319 cm ± 360.1 cm and stood 136.0 times ± 38.33, α 7 -/- :: dy WT moved 7883 cm ± 939.2 cm and stood 315.0 times ±

60.37, α 7 -/- :: dy -/- moved 3385 cm ± 1146 cm and stood 62.00 times ± 27.00. Student *t*-tests revealed for distance moved ** *P*-values = 0.0039 and * = 0.0174, for vertical counts P-values were 0.0050 and 0.0092 respectively. Therefore based on these results it looks as though α 7-/- :: dy -/- knockdown produces no additive effects.

Figure 34. Heart analysis comparing α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/-:: dy WT, and α 7 -/- :: dy -/- 10 week old mice

(A) Heart weights (mg) were recorded and normalized to body weight. There was no statistical significance found between the 4 genotypes.

Figure 34. Heart analysis comparing α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/-:: dy WT, and α 7 -/- :: dy -/- 10 week old mice

(B) Representative M-mode frames captured during echocardiography for each genotype. Atrial flutter or fibrillation is clearly evident within α 7 -/- :: dy -/- mice.

185

Figure 35. Echocardiography data

A, B and C) M-mode analysis provided a plethora of parameters to scrutinize. Significant values in KO WT versus KO KO: LVAW, s (mm) *P*-value = 0.0315, LVID, d (mm) *P*-value = 0.0180, Mass AW, corr. (mg) *P*-value = 0.0183, LV vol, d (μ L) *P*-value = 0.0204. The data for this figure was kindly provided by Dr. Andrea Agarwal. B a7WT:: dyWT versus a7-/-:: dy-/-

Figure 35. Echocardiography data

A, B and C) M-mode analysis provided a plethora of parameters to scrutinize. Significant values in KO WT versus KO KO: LVAW, s (mm) *P*-value = 0.0315, LVID, d (mm) *P*-value = 0.0180, Mass AW, corr. (mg) *P*-value = 0.0183, LV vol, d (μ L) *P*-value = 0.0204. The data for this figure was kindly provided by Dr. Andrea Agarwal.

Figure 35. Echocardiography data

A, B and C) M-mode analysis provided a plethora of parameters to scrutinize. Significant values in KO WT versus KO KO: LVAW, s (mm) *P*-value = 0.0315, LVID, d (mm) *P*-value = 0.0180, Mass AW, corr. (mg) *P*-value = 0.0183, LV vol, d (μ L) *P*-value = 0.0204. The data for this figure was kindly provided by Dr. Andrea Agarwal.

 α 7WT :: dyWT

А

α7WT :: dy -/-

α7-/- :: dyWT

α7-/- :: dy-/-

Figure 36. Increased collagen visible within α 7 -/- :: dy -/- cardiac muscle

A) Masson's trichrome staining was carried out on heart cryosections to analyze the presence of collagen within cardiac muscle. Collagen is represented by blue color. Magnification = 100 X. Scale bar = 200 µm. B) The percentage of collagen present in cardiac muscle shown in Figure 36 A was quantified. No statistical significance was found and One-Way *ANOVA* analysis was performed with *P*value = 0.3032. Surprisingly, there is a lot of fibrosis evident in WT cardiac muscle and this was consistently found. Again, α 7WT:: dy-/- and α 7-/- :: dy-/have similar phenotypes further suggesting that the double knockout has no additive effects.

Figure 37. Fibrotic tissue analysis within Tibialis Anterior muscle of α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/- :: dy WT, and α 7 -/- :: dy -/- 10 week old mice

A) Representative TA cryosections stained with Sirius red. Increased red color indicates that there is more fibrotic tissue present. Magnification = 200 X. Scale bar = 200 μ m. B) Sirius red staining was carried out in order to calculate the percentage (%) of fibrotic tissue within TA cryosections shown in Figure 37 A. One-Way *ANOVA* showed statistical significance with *P*-value = 0.0039. Elevated fibrosis is evident for both α 7WT:: dy-/- and α 7-/- :: dy-/- muscle showing that loss of laminin- α 2 alone is sufficient enough to cause a fibrotic environment.

Figure 37. Fibrotic tissue analysis within Tibialis Anterior muscle of α 7 WT :: dy WT, α 7 WT :: dy -/-, α 7 -/- :: dy WT, and α 7 -/- :: dy -/- 10 week old mice

C) Minimal Feret's diameter was also calculated for muscle groups shown in Figure 37 A. Minimal ferret's diameter is used to measure the size of myofibers. One-way *ANOVA* resulted in *P*-value = 0.1454 and therefore no statistical significance was found. Interestingly, α 7WT:: dy-/- and α 7-/- :: dy-/- muscle showed similar myofiber sizes.

Chapter VI

Conclusions and Future Directions

The main hypothesis of this dissertation is that laminin-111 can act as an effective replacement protein therapy for the loss of laminin- $\alpha 2$ in dy^{W} -/-(MDC1A) and indeed dystrophin in *mdx* (DMD).

Patients with MDC1A are usually diagnosed after disease onset. Because systemic laminin-111 treatment was able to have many beneficial effects before disease onset (previously published), we therefore carried out this study to investigate whether laminin-111 protein would be able to have the same beneficial effects when treatment was started after disease onset in the dy^{W} -/- mice. Chapter 2 discusses laminin protein therapy after disease onset.

Laminin-111 treatment was effective in reducing percentage (%) muscle fatigue in 8 week old dy^{W} -/- mice. Our studies suggest that treatment with laminin-111 after disease onset had a minimal effect to improve the overall integrity of the muscle whilst helping to reduce scar tissue formation. This in turn helped to minimally improve activity of these animals post-treatment after disease onset. This study would be a step towards trying to link what happens at the patient bedside to one of the current mouse models used to study this disease. As with all scientific studies it is important that they correlate to what is currently experienced in the medical field. Results from this study along with an understanding of laminin-111 pharmacokinetics will help pave the way in developing this protein as an exciting potential therapeutic for MDC1A patients.

Recently we have shown that EHS derived mouse laminin-111 protein can act as a substitution therapy in laminin- α 2 deficient mice ¹⁴². Our studies showed

that dy^{W} -/- mice treated with laminin-111 showed reduced muscle pathology, maintained muscle strength and dramatically increased longevity (Rooney et al., 2012). In this study presented in Chapter 3, we investigated the transcriptional changes that occur during disease progression within diaphragm muscle of the dy^{W} -/- mouse model of MDC1A. We also examined how treatment with laminin-111 protein before disease onset altered transcriptional changes in the diaphragm muscle to identify on-target and off-target drug action.

Using RNAseq technology we were able to show that more than 800 transcripts were altered as a result of disease progression in the diaphragm muscle of 2 week old dy^{W} -/- mice. Our studies showed that at 2 weeks of age transcript variability in the diaphragm muscle between animals is low. At 5 weeks of age there is significant variability in transcript abundance in the diaphragm muscle between animals. Laminin-111 treatment reduced the number of transcripts that changed and we identified several specific transcripts that changed and we identified several specific transcripts that changed as a result of laminin-111 treatment.

These RNA-Seq experiments helped us to identify osteoactivin (GPNMB) as a novel biomarker of MDC1A disease progression. Given the transcript and protein level changes in Osteoactivin observed during disease progression in the dy^{W} -/- mouse model, we next wanted to confirm that this occurred on patient muscle. Immunofluorescence for Osteoactivin using muscle from an MDC1A patient and unaffected control showed that Osteoactivin is normally located in the extracellular matrix in unaffected muscle, but in the MDC1A muscle it is localized within the muscle cells. This may cause misregulation of MAPK signaling (and

potentially activation of TGF-beta and fibrotic pathways) in muscle cells. Although laminin-111 treatment did not change transcript levels, treatment in mice appears to restore normal localization of Osteoactivin in skeletal muscle and therefore would potentially restore MAPK signaling in muscle and prevent further fibrosis.

Our results also reemphasized the role of Galectin-3 as a biomarker in this disease. Laminin-111 treatment also helped to restore many sarcolemmal proteins and improved muscle function by reducing muscle fibrosis. Laminin-111 treatment is likely acting to stabilize proteins and is not altering signaling pathways in skeletal muscle to a great extent. Laminin-111 helps to strengthen and reinforce the sarcolemma in the dy^{W} -/- mouse during prolonged progressive muscle injury induced by contraction offering a protective niche against the occurrence of this degenerative scenario by reducing inflammation, fibrosis and apoptosis via improved matrix-mechanotransduction. Significant changes may be being masked by huge misregulation in individuals. This study may help to pave the way in teasing out the molecular pathways associated with MDC1A disease progression and treatment. In this study we show that loss of laminin-211/221 in the diaphragm muscle of mice results in a large number of transcript changes that may serve as markers for disease progression and to report the efficacy of potential therapies.

Future avenues of research experiments will include continued evaluation and individual mouse transcriptome confirmation of the RNA-seq data to identify a set of genes misregulated in all animals. For this analysis we will focus on the 2-week and 5-week Wild-type versus untreated dy^{W} -/- data. Genes which are
altered early in the process will be evaluated during embryogenesis (for example Osteoactivin). Immunofluorescence will be used to confirm altered protein levels in skeletal muscle of

Chapter 4 looks at long term laminin treatment of *mdx* mice. The lack of significance in the results for laminin treated animals could reflect the fact that the *mdx* mice have no overt dystrophic phenotype after 10 weeks of age. However, there was elevated EBD uptake and increased kyphosis within PBS treated animals. Laminin treatment helped to reduce muscle hypertrophy at 10 weeks old. Treatment also reduced muscle fatigue experienced and there was an increase in the sarcolemmal protein, β -DG. There may be a better result in delivering laminin-111 in a cocktail recipe of additional therapeutic drugs in order to have a more improved effect. Future directions will include assessing TA muscle via immunoblotting for any change in the abundance of sarcolemmal proteins that are related to the dystrophin-glycoprotein laminin-binding complex after treatment compared to PBS controls. These proteins will include the dystroglycans, sarcoglycans and sarcospan. Immunofluorescence will also be used on the same TA muscle in order to confirm the immunoblot results.

The rhLam-111 recombinant protein is still in the early stages of trial production and it is difficult to produce due to its large size (~900 kDa). Various avenues of human laminin-111 production were explored to date. The main method of production of human recombinant laminin (rhLAM-111) involved transient transfection with laminin- α 1 into a stable CHO_s cell line that produced

the $-\beta$ and $-\gamma$ chains of laminin. Talon technology could be used in order to knockout hamster α -4 and α -5 produced by the CHO_S cells. However, the purification protocol may have precipitated out most of the laminin-111 with which we are interested. The exact concentration of hrLAM-111 will need to be determined. A new strategy has been devised in order to generate a huge batch of hrLAM-111 with the CHO_S system and the resulting media will be harvested and sent for FPLC purification.

The $\alpha 7\beta 1$ integrin is an important transmembrane cell surface receptor in skeletal, cardiac and vascular smooth muscle. Laminin- $\alpha 2$ is an important binding partner for $\alpha 7$ integrin. It connects the extracellular matrix to the integrin on the sarcolemma. $\alpha 7$ integrin plays an important role in cell signaling as it binds to talin and cystoskeletal F-actin. Laminin-integrin binding complex helps to transduce external mechanical stresses involved with muscle contraction and connect them with a cellular response via signaling. Disruption of these components causes neuromuscular disease in both humans and mice. This emphasizes the importance of this binding complex in maintaining the integrity of the sarcolemmal to withstand the mechanical forces associated with muscle contraction. Transgenic overexpression of $\alpha 7$ integrin in skeletal muscle in previous studies demonstrated that overexpression can help partially rescue the disease phenotype and extend the lifespan of the mice.

Similar to how experimental animals were designed as double knockouts to lack both dystrophin and α 7 integrin ($mdx/\alpha 7^{-7}$) and resulted in a more severe

phenotype than single knockout animals, a double knockout of both laminin- $\alpha 2$ and $\alpha 7$ integrin was created in order to study the full extent to which $\alpha 7$ integrin plays in laminin- $\alpha 2$ deficient muscle. Chapter 5 studies the new mouse model $\alpha 7$ integrin -/-:: laminin- $\alpha 2$ -/- double knockout for muscular dystrophy. Together these results suggest that both $\alpha 7$ integrin and laminin- $\alpha 2$ play critical roles in maintaining proper function of skeletal and cardiac muscle. This study analyzes the effects on skeletal and cardiac muscle with severe kyphosis and atrial fibrillation occurring within this new double knockout mouse model. There was also elevated scar tissue deposition within cardiac muscle and embryonic lethality experienced.

The severe embryonic lethality of double knockout α 7-/-:: dy-/- mice furthers previous knowledge and emphasizes the importance of α 7 integrin in rescuing the loss of laminin- α 2. The duplicity of their bi-directional relationship of protecting the structural and functional integrity of muscle is very much highlighted in the generation of this double knockout double knockout mouse model. We observed severe muscle pathology in 10 week old α 7-/-:: dy-/- mice which is a new result for this field of study as no one has ever created this double knockout mouse model. Absence of both proteins in α 7-/-:: dy-/- mice results in severe skeletal and cardiac muscle degeneration, reduced functional activity and fibrotic scar tissue deposition. Here, compensation by α 7 integrin helps these mice to maintain functional integrity. The α 7-/-:: *dy*-/- mice analyzed in this study exhibit a phenotype similar to that of single knockout of α 7 integrin. This phenotypic similarity between these two genotypes suggests that there is functional overlap in the role of α 7 integrin in maintaining muscle structure and function. Double knockout α 7-/-:: *dy*-/- mice exhibit a hugely severe cardiac phenotype suggesting that both α 7 integrin and laminin- α 2 are very critical to cardiac muscle function by their presence. It also suggests there is no active sarcolemmal complex able to cope and compensate for the loss of both of them. Therefore, the heart is not able to pump efficiently in a coordinated manner and we see the atrial fibrillation occurring.

The α 7-/-:: *dy*-/- mouse is a new mouse model for muscular dystrophy that has been identified which lacks both α 7 integrin and laminin- α 2. This has never been studied before in the *dy*^W mouse model¹⁷³. Further investigation will reveal the effects on pathophysiology and expression of sarcolemmal proteins. Future directions will include TA, heart and diaphragm tissue being assessed via immunoblotting for any changes in the abundance of proteins that are related to the dystophin-glycoprotein laminin binding complex. These proteins will include dystroglycans, sarcoglycans, sarcospan, integrin-linked kinase and AKT. Immunofluorescence will be used on the same TA, heart and diaphragm muscle in order to confirm the immunoblot results.

Results from characterization of this new α 7 integrin / laminin- α 2 dko mouse model will aid in understanding the exact role that α 7 integrin and laminin-

α2 play in MDC1A. It will also potentially help with the identification of novel therapeutic targets for this devastating neuromuscular disease.

This dissertation provides evidence that laminin-111 is beneficial with treatment before disease onset by reducing muscle pathology and increasing functional activity within mice. It is also the first time that the α 7 integrin -/-:: laminin- α 2 -/- double knockout mouse model has been studied and described for this particular dy^{W} -/- mouse model.

Appendix A

Laminin-111 pharmacokinetics/ pharmacodynamics and rhLam-111

production

MATERIAL AND METHODS

EHS mLAM-111

Engelbreth-Holm Swarm mouse laminin-111 supplied at 1 mg in 50 mM Tris-HCL (pH 7.4), 0.15 M NaCl was used to treat mice. The laminin was thawed slowly overnight at 4°C.

Generation of laminin-111 DNA

DNA for rhLAM-111 transfection into the CHOs system was prepared and cleaned via illustra plasmidPrep Midi Flow kit (GE Healthcare). It had to be RNased via the RNAeasy kit following manufacturers guidelines. The α chain was on one plasmid and $\beta \& \gamma$ chains on the second plasmid. The plasmids had to be linearized before transfection into the CHOs cells. Lipofectamine transfection reagent was needed and DNA had to be purified in order to perform the transient transfections into the naïve CHO_S cell system in order to harvest a huge batch of rhLam-111 media to be sent for FPLC purification. A key note with regards to the previous attempt is that any rhLAM-111 protein that had been produced may have degraded before harvest during the seven day experiment which was at 37 °C. So far I have performed MIDI preps, extracted and purified both α and $\beta \& \gamma$ DNA in preparation for transfection. However, the DNA yield has been low due to their large size. Therefore, more reagents will be needed in order to grow and purify more DNA that is necessary for large scale rhLAM-111 production.

Purification of recombinant human laminin-111 protein

rhLam-111 protein was concentrated and then was dialyzed in Tris buffered Saline (TBS).

Silver staining

ProteoSilver Stain kit (Sigma) was used to stain after SDS-PAGE gel electrophoresis. Gels were fixed for 20 minutes then subject to a 10 minute 30% ethanol wash, 10 minute water wash. After this step, the gels were immersed in sensitizer solution for 10 minutes, the gels were then washed for 10 minutes and put into silver solution for 10 minutes. There was then a water wash and gel development before stop solution was finally added.

Coomassie Staining

Coomassie staining was performed using a Fairbanks Quick coomassie staining protocol.

Immunoblotting

Protein was harvested from CHOs cell media. Proteins were separated via 4% SDS-PAGE gel electrophoresis with no stacking gel. They were then transferred to nitrocellulose membrane and blocked with (carnation milk) for 1 hour. Proteins were incubated with primary antibody overnight before being incubated with secondary antibody (1 hour) and washed with 1X TBST buffer. Protein sizes were: α 400 kDa, β 200 kDa & γ 180 kDa. Proteins were imaged using the Licor Odyssey system after detection with Laminin α -1 (H-300): sc

5582, Laminin β-1 (H-300): sc 5583, and Laminin γ -1 (H-190): sc-5584 (Santa Cruz) antibodies.

Generation of mice

Laminin-α2 -/- mice

All experiments involving mice were performed under an approved protocol from the University of Nevada, Reno Institutional Animal Care and Use Committee. The dy^{W} +/- mice were a gift from Eva Engvall via Paul Martin (The Ohio State University, Columbus, OH, USA). Male and female heterozygous mice were bred. In order to genotype mice, genomic DNA was isolated from tail snips or ear notches using a Wizard SV DNA purification system (Promega, Madison, WI) following manufacturers instructions. To detect the mutation in the lamininα2 gene. the following primers were used: DYWF (5'-ACTGCCCTTTCTCACCCACCCTT-3'), LAMA2exonR1 (5'-GTTGATGCGCTTGGGAC-3') (5'and Lac/ZR2 GTCGACGACGACAGTATCGGCCTCAG-3'). PCR conditions were as follows: 95°C for 5 minutes then 33 cycles of 94°C for 20 seconds, 62°C for 30 seconds and 72°C for 45 seconds. After these cycles, then 72°C for 10 minutes. A wildtype band was 250 bp whereas the laminin- $\alpha 2$ targeted allele produced a 480 bp band.

Experimental procedures were performed once mice were 10 days and 2 weeks of age with weekly weighing until the end of study which was at 2 weeks and 5 weeks of age where all mice were subject to *in vivo* experiments. To

reduce experimental bias, investigators assessing and quantifying experimental outcomes were blinded to the treatment and control groups.

<u>Mdx mice</u>

The mutation in the dystrophin gene was detected using a modified ARMS assay. The following primers were used: p259E (5'GTCACTCAGATAGTTGA AGCCATTTAA-3'), p260E (5'-GTCACTCAGATAGTTGAAGCCATTTAG-3') and p306F (5'-CATAGTTATTAATGCATAGATATTCAG-3'). PCR conditions were as follows: 95°C for 4 minutes then 34 cycles of 95°C for 1 minute, 55°C for 1 minute and 72°C for 1 minute. Primer set p259 and p306 produced a 275 bp wild-type dystrophin allele. Primer set p260 and p306 detects the *mdx* point mutation which produced a 275 bp product. To genotype the dystrophin gene, separate PCR reactions were performed since the product sizes are identical in wild-type and *mdx* mice.

Husbandry

 dy^{W} -/- mice and mdx were housed with their wild-type littermates alongside the provision of mashed kibble and access to water. Husbandry and protocols were carried out via IACUC approval. Knockout mice that lost $\geq 20\%$ body weight (g) were euthanized. Pups were genotyped at 10 days old and at the end of each study, the female WT and dy^{W} -/- mice were euthanized by CO₂ inhalation in accordance with a protocol approved by the University of Nevada, Reno Animal Care and Use Committee. The diaphragm muscles from these mice were dissected, flash-frozen in liquid nitrogen and stored at -80°C as previously reported by ¹³⁴.

Treatment with rhLam-111 and EHS mLam-111in dy^W-/-

Female dy^{W} -/- mice were systemically injected at 11 days old weekly with 0.01mg/g of rhLam-111 or EHS mLam-111 until they were 5 weeks old. Control littermate dy^{W} -/- mice were injected with the equivalent volume of sterile Tris buffered saline (TBS). Male dy^{W} -/- mice were systemically injected at 2 weeks old weekly with 0.01 mg/g of rhLam-111 or EHS mLam-111 until they were 10 weeks old. Control littermate dy^{W} -/- mice were injected with the equivalent volume of sterile Solid. Control mg/g of rhLam-111 or EHS mLam-111 until they were 10 weeks old. Control littermate dy^{W} -/- mice were injected with the equivalent volume of sterile Solid. Control littermate dy^{W} -/- mice were injected with the equivalent volume of sterile Solid. Control littermate dy^{W} -/- mice were injected with the equivalent volume of sterile Solid. Control littermate dy^{W} -/- mice were injected with the equivalent volume of sterile Solid. Control littermate dy^{W} -/- mice were injected with the equivalent volume of sterile Solid. Control littermate dy^{W} -/- mice were injected with the equivalent volume of sterile Solid.

Pharmacokinetic Intramuscular in vivo Imaging

Intramuscular Injection with DyLight-488nm labelled laminin-111 was at the same volume that would be administered as if giving a 0.01 mg/g systemic injection. The IVIS system (XENOGEN, VivoVision systems, CA) was employed to image the mouse post-intramuscular injection.

Muscle Strength

Muscle strength assessed at 5 weeks & 10 weeks of age for male mice using the Chatillon DFE Digital Force Gauge (San Diego Instruments Inc., San Diego, CA). A total of six measurements per mouse were recorded and all results averaged for each group. The mice were analyzed by grasping a horizontal platform with their forelimbs and pulled backwards. The peak tension (grams of force) was recorded on a digital force gauge as mice released their grip.

ELISA

For Pharmacokinetic analysis of laminin-111, systemic injection of EHS mLAM-111 in dy^{W} -/- and mdx mice was followed by retro-orbital bleeds performed at various time points (0 min, 30 min, 1 hour, 2 hour, 4 hour, 8 hour and 24 hour). An ELISA designed to detect the laminin- α 1 chain demonstrated that laminin-111 had a half-life of ~90 minutes within the serum of dy^{W} -/- mice. The protein was cleared from the bloodstream much more quickly than that of the WT littermate controls. This phenomenon suggests that the laminin-a2 deficient muscle is much more leaky and therefore requires laminin-111 to help stabilize the sarcolemma and provide protection against the sheer stresses of mechanotransduction. Labeled EHS mLAM-111 was detected 18 hours post-intramuscular injection.

Hematoxylin and Eosin staining

Tibialis Anterior muscle was cryosectioned and 10 µm sections were placed on surgipath microscope slides. Tissue sections were fixed with ice-cold 95 % ethanol for 2 minutes followed by 70 % ethanol for 2 minutes and then rehydrated in running water for 5 minutes. Gill's hematoxylin (Fisher Scientific, Fair Lawn, NJ) was then used to stain the sections and rinsed in water for 5 minutes. Scott's solution (0.024 M NaHCO₃, 0.17 M MgSO₄) was then applied for 3 minutes and rinsed in water for 5 minutes. Tissue cryosections were then immersed in eosin solution (Sigma-Aldrich, St. Louis, MO) for 2 minutes. Sections were then dehydrated in ice cold 70 % and 95 % ethanol for 30 seconds each, followed by 100 % ethanol for 2 minutes. Xylene was then used to clear the sections for 5 minutes prior to mounting with DepeX mounting medium (Electron Microscopy Services, Washington, PA). Centrally located Nuclei were counted from images composing representative montages for each mouse. Images were assessed at 200 X magnification by bright field microscopy. The number of centrally located nuclei per muscle fiber was determined by counting each image which contributed to myofibers being counted per treatment group. At least 4 animals from each treatment group were analyzed.

Statistical Analysis

All averaged data are reported as the mean \pm s.d. P-values of < 0.05 were considered to be statistically significant.

RESULTS

Laminin-111 half-life calculation for dy^{W} -/- mice

The ELISA results for the half-life of laminin-111 (Figure 38) revealed that once intraperitoneally injected laminin remains in the serum of WT mice for 120 minutes whereas dy^{W} -/- serum retains the laminin for 90 minutes. The protein was cleared from the bloodstream much more quickly than that of the WT littermate controls. This phenomenon suggests that the laminin-a2 deficient

muscle is much more leaky and therefore requires laminin-111 to help stabilize the sarcolemma and provide protection against the sheer stresses of mechanotransduction. One has to ponder over where the laminin is going. Pharmacodynamic studies will need to be employed to help answer these questions.

Laminin-111 Half-life calculation for mdx mice

The laminin-111 half-life worked out to be 140 minutes for WT mice and only 50 minutes for mdx mice before it was cleared out of the serum (Figure 39). The n numbers were good at n=3 each treatment group.

EHS mouse Laminin-111 detection in a WT CD1 mouse 18 hrs postintramuscular injection

The IVIS system was utilized after EHS mLam-111 had been labelled with Dylight-488. The labelled laminin was then intramuscularly injected into the tibialis anterior muscle of a WT CD1 mouse (Figure 40). Laminin was detected up to 18 hours post-injection showing that laminin-111 had a long half-life when injected directly into target muscle.

rhLAM-111 DNA for CHOs cells

DNA for rhLAM-111 was purified in preparation for transfection into the CHOs system was cleaned (Figure 42). It had to be RNased. α was on one plasmid and β & γ chains on the second plasmid. The plasmids had to be linearized before transfection into the CHOs cells. However, the DNA yield has

been low due to the large size of each plasmid. Therefore, more reagents will be needed in order to grow and purify more DNA that is necessary for large scale rhLAM-111 production.

rhLam-111 protein production verification and quality control

Silver staining is an extremely sensitive method with which showed the purity of rhLam-111 protein produced from the CHOs system (Figure 43). Immunoblotting revealed that all three chains of laminin-111 (α , β , & γ) were able to be produced after transfection and were demonstrated via separate immunoblots. The control used was manufactured human laminin-111. Fairbanks coomassie staining was used as a second verification to look at the total number of proteins in the cell supernatant of the rhLam-111 CHOs media compared to naïve media. Controls used included supernatant from the dialysis of rhLam-111 and CHOs naïve dialyzed media.

Clustering and cell adhesion assays

rhLaminin-111 in a 100 nM concentration was able to form neuromuscular junctions (NMJs) in clustering assays of differentiated C2C12 cells (Figure 44) and rhLam-111 proved to be more adherent to *mdx* myoblasts compared to WT C2C12 myoblasts in cell adhesion assays¹⁸⁷.

Immunofluorescent detection of laminin-111

After systemic treatment both mouse laminin-111 and human recombinant laminin forms were able to be detected in dy^{W} -/- Tibialis anterior muscle (Figure

45). This showed that the rhLAM-111 was able to be delivered systemically to the target muscle of interest.

Functional assessment of dy^{W} -/- mice treated with laminin

There was no real significant difference in the functional activity of mice treated with EHS mLam-111 compared to mice treated with rhLam-111 (Figure 46). This could mean that this study needs more n numbers to comment further. More pure rhLam-111 needs to be produced.

Integrin immunoblotting after laminin-111 treatment

rhLam-111 was not effective in producing the same effects as EHS mLaminin-111 on α 7A or α 7B integrin in dy^{W} -/- mice treated with the recombinant protein (Figure 47).

Histological analysis of laminin treated dy^{W} -/- mice

There was no difference regards muscle pathology between EHS mLam-111 treated and rhLam-111 treated animals (Figure 48). However there was a trend towards WT for rhLam-111 treatment regards increased minimal feret's diameter measurements. Laminin-111 treatment, especially rhLam-111 was able to increase myofiber size.

Immunological response to laminin-111 treatment

With the rhLAM-111, we tested whether there was any immunogenicity whenever it was injected systemically into the dy^{W} -/- mouse every week from 2

weeks old up to 5 weeks old (Figure 49). It had already been contemplated that other contaminating proteins in the rhLAM-111 coupled with the fact that human protein injected into a mouse could elicit an immune response especially during a 3 week experiment. An ELISA was performed on the harvested serum from these mice alongside WT, PBS and EHS mLAM-111 treated littermate controls. Preliminary results showed that there was an immune response elicited towards the injected hrLAM-111 upon the detection of elevated IgG antibodies in the serum of these mice.

hLam-111 transgenic mouse production

Gawlik *et al.* 2004 demonstrated feasibility of transgenic expression in dy^{W} -/- mice by generation of Laminin- $\alpha 1 dy^{W}$ -/- mice. Recently, the Burkin lab has been able to generate transgenic founder mouse lines positive for human Laminin- $\alpha 1$, $\beta 1$ and $\gamma 1$ chains (Figure 50). This transgenic overexpression of Laminin-111 will be included within the study in order to investigate the most exaggerated effect due to the presence of Laminin-111.

DISCUSSION

These were disappointing results for rhLam-111 *in vivo* trials but it is important to remember that this recombinant protein is still in the early stages of trial production and it is difficult to produce due to its large size (~900 kDa). Various avenues of human laminin-111 production were explored to date. The main method of production of human recombinant laminin (hrLAM-111) involved transient transfection with laminin- α 1 into a stable CHO_S cell line that produced the $-\beta$ and $-\gamma$ chains of laminin. This transfection proved successful in that immunblotting performed on the media harvested showed that all three chains of LAM-111 were present. Talon technology could be used in order to knockout hamster α -4 and α -5 produced by the CHO_S cells. However, the purification protocol may have precipitated out most of the laminin-111 with which we are interested. The exact concentration of hrLAM-111 will need to be determined. A new strategy has been devised in order to generate a huge batch of hrLAM-111 with the CHO_S system and the resulting media will be harvested and sent for FPLC purification.

ACKNOWLEDGEMENTS

I would like to thank Dr. Mark Hubbard, Dr. Breeana Hubbard and Dr. Ryan Wuebbles for their technical assistance in the design of the CHO_s system and ELISA experiments. I would also like to thank Apurva Sarathy for the immunofluorescent clustering assay.

Figure 38. Laminin-111 half-life calculation for dy^{W} -/- mice

Half-life of EHS mouse laminin-111 (intraperitoneally injected), was calculated using an ELISA designed to detect laminin- α 1 in mouse serum collected over a period of time. This figure was kindly provided by Dr. Ryan Wuebbles.

Figure 39. Laminin-111 Half-life calculation for mdx mice

Half-life determination performed using Graphpad Prism non-linear regression (curve fit) with exponential one-phase decay from the peak Laminin-111 concentration. A more complete insight into the action of laminin-111 will be achieved by investigating the pharmacokinetics and pharmacodynamics of laminin-111 administered to *mdx* mice. Pharmacokinetics involved collecting

serum (30 min, 1 hour, 2 hour, 4 hour, 8 hour, 24 hour, 48 hour, 72 hour) via retro-orbital bleeds from 5 WT and 5 *mdx* mice injected intraperitoneally (I.P) with 0.01 mg/g mLAM-111. Baseline serum will be collected at 0 hour prior to the initial injection. ELISA assays were carried out on the serum in order to help determine the movement of laminin-111 once it was *in vivo* and how fast laminin-111 can clear out of the lymphatic system. This information will ultimately help decide this protein's mechanism of action alongside the collection of pharmacodynamics data which will involve the collection of tissue at various time points after injection in order to discover how quickly laminin-111 can be delivered to the muscle. This figure was kindly provided by Dr. Ryan Wuebbles.

Figure 40. EHS mouse Laminin-111 detection in a WT CD1 mouse 18 hours post-intramuscular injection

Dylight-488 labelled laminin-111 was detected 18 hours post-intramuscular injection using the IVIS Lumina System. Half-life of EHS mouse laminin-111 (intraperitoneally injected), was calculated using an ELISA designed to detect laminin- α 1 in mouse serum collected over a period of time. This figure was kindly provided by Dr. Ryan Wuebbles.

Figure 41. Diagrammatic representation of rhLam-111 production in the CHO_s system

CHOs system was utilized in order to produce rhLAM-111 after transfection with α , β & γ linearized plasmids.

Figure 42. rhLAM-111 DNA for CHOs cells

Recombinant human laminin-111 (α , β , γ) DNA was prepared and cleaned. Confirmation was via Agarose gel electrophoresis. The process of production involved growing naïve CHO_s cells, transfecting them, harvesting the media and sending it for FPLC purification.

Figure 43. rhLam-111 protein production verification and quality control

A) rhLAM-111 production from CHO_s cells and application for *in vivo* studies. B) Different concentrations of rhLAM-111 protein that was subject to silver staining to help assess its purity.

Figure 43. rhLam-111 protein production verification and quality control

C) Immunoblotting helped to confirm the presence of laminin - α 1 chain (lanes 3, 4 & 5), - β 1 chain (lanes 7,8 &9) and - γ 1 chain (lanes 11, 12 &13) in the rhLAM-111 protein produced from the CHO_s system. D) Coomassie staining revealed that lots of the initial rhLAM-111 harvested from the CHO_s system was eventually lost through the dialysis purification process.

DAPI + α -Bungarotoxin

А

Figure 44. Clustering and cell adhesion assays

A) Clustering assay with detection of α -Bungarotoxin at neuromuscular junctions within C2C12 cells. Laminin-111 treatment aids formation of NMJs and is evident here with punctate red areas. Scale bar: 40 μ m. This figure was kindly provided by Apurva Sarathy.

Figure 44. Clustering and cell adhesion assays

B) C2C12 myoblasts and *mdx* myoblasts were used in cell adhesion assays to help test how effective the rhLAM-111 protein produced using the CHO_s system was compared to the manufactured EHS mLAM-111 protein. There was no statistical difference evident.

Figure 45. Immunofluorescent detection of laminin-111

Mice were intraperitoneally treated with either mouse Lam-111 or recombinant human Lam-111 produced using the CHO_s system. Laminin-1 (green) was able to be detected via immunofluorescence on the sarcolemma in TA muscle of treated animals.

A) dy^{W} -/- mice were treated with PBS, EHS m-Lam-111 or rhLam-111. Mice were assessed for function at both 5 (left) and 10 (right) weeks of age. Grip strength measurements were recorded. B) Number of stand-ups accomplished by each treatment group were averaged and shown here. rhLAM-111 was not effective in causing a beneficial effect.

Figure 47. Integrin immunoblotting after laminin-111 treatment

Comparison of rhLam-111 effects with EHS mLam-111 effects after intraperitoneal treatment. rhLAM-111 had no beneficial effect in elevating alpha7 integrin protein.

А

В

Figure 48. Histological analysis of laminin treated dy^{W} -/- mice

A) Hematoxylin and Eosin staining of 10 week old dy^{W} TA muscle. B) Minimal feret's diameter was measured for these mice and results were considered statistically significant with *P* values < 0.05. Average myofiber size increased towards WT upon treatment with rhLAM-111 protein.

Figure 49. Immunological response to laminin-111 treatment

Intraperitoneal treatment with rhLAM-111 in dy^{W} mice amounted to an immune response to the human laminin-111 protein injected into the mouse species.

Figure 50. hLam-111 transgenic mouse production

Mice expressing all three chains of human laminin-111 have been generated.

The Burkin lab has been able to generate transgenic founder mouse lines positive for human Laminin- α 1, β 1 and γ 1 chains (Figure 50). This transgenic overexpression of Laminin-111 will be used in order to investigate the most exaggerated effect due to the presence of Laminin-111. This figure was kindly provided by Dr. Dean Burkin and Rebecca Evans.

Appendix B

Transcriptome Data
ABSTRACT

Merosin deficient congenital muscular dystrophy type 1A (MDC1A) is caused by loss of laminin-211 and laminin-221 within the basal lamina of skeletal and cardiac muscle. This absence of laminin-211/221 reduces the capacity for myofiber adhesion, loss of sarcolemmal integrity and subsequently the ability of the skeletal muscle syncytium to generate force in a coordinated and efficient manner. Patients experience progressive muscle wasting which confines them to a wheelchair at an early age and respiratory failure that leads to their untimely death. Currently, there is no effective treatment or cure for this devastating disease. This study set out to determine the transcriptional changes that occur within the diaphragm muscle during MDC1A disease progression using RNA-Seq technology. Our results show major transcriptional changes with age in pathways associated with immune response, cell growth and survival and muscle repair. Galectin-3 is known to help stabilize myofibers and these transcripts were found to be upregulated (six-fold) in diseased muscle compared to wild-type muscle. Together, this study will help to identify novel therapeutic targets that may be useful in the treatment of MDC1A.

INTRODUCTION

Merosin deficient congenital muscular dystrophy (MDC1A) is caused by the loss of Laminin-211 and Laminin-221 heterotrimers which are most abundant in skeletal and cardiac muscle basal lamina; mutations in the *LAMA2* gene cause the loss of these Laminin isoforms. This reduction of Laminin reduces the capacity for myofiber adhesion, loss of sarcolemmal integrity and subsequently affects the ability of the skeletal muscle syncytium to generate force in a coordinated and efficient manner. Patients, from birth, experience progressive muscle wasting which confines them to a wheelchair at an early age and respiratory failure that leads to their untimely death. Currently, there is still no effective treatment or cure for this devastating disease.

Merosin deficient congenital muscular dystrophy (MDC1A) affects approximately 0.89/100,000 individuals worldwide (1:100,000 - 1:500,000) and is deemed to be the most common form of congenital muscular dystrophy. Loss of merosin (Laminin- α 2 protein) is caused by mutations occurring in the *LAMA2* gene which is located on chromosome 6q22-23 ^{90,91}. This loss of Laminin- α 2 protein in MDC1A results in the absence of Laminin-211 and Laminin-221 heterotrimers which are abundant in skeletal and cardiac muscle basal lamina. Patients, also experience demyelinating neuropathy, muscle atrophy, limited eye movement and also respiratory failure that leads to their untimely death which can be as early as the first decade of life (Jones *et al.*, 2001; Muntoni *et al.*, 2004; Philpot *et al.*, 1999). There is an increased likelihood of seizures occurring after six months of age due to changes in white matter of the brain (Jones *et al.*, 2001; Muntoni *et al.*, 2004; Philpot *et al.*, 1999). Currently, there is still no effective treatment or cure for this cruel disease (Mendell, *et al.*, 2006; Muntoni *et al.*, 2004).

MATERIALS AND METHODS

Generation of Laminin-α2 -/- mice

All experiments involving mice were performed under an approved protocol from the University of Nevada, Reno Institutional Animal Care and Use Committee. The $dyW_{+/-}$ mice were a gift from Eva Engvall via Paul Martin (The Ohio State University, Columbus, OH, USA). Male and female heterozygous mice were bred together. In order to genotype mice, genomic DNA was isolated from tail snips or ear notches using a Wizard SV DNA purification system (Promega, Madison, WI) following manufacturers instructions. To detect the mutation in the laminin- $\alpha 2$ gene, the following primers were used: DYWF (5'-(5'-ACTGCCCTTTCTCACCCACCCTT-3'), LAMA2exonR1 GTTGATGCGCTTGGGAC-3') (5'and Lac/ZR2 GTCGACGACGACAGTATCGGCCTCAG-3'). PCR conditions were as follows: 95°C for 5 minutes then 33 cycles of 94°C for 20 seconds, 62°C for 30 seconds and 72°C for 45 seconds. After these cycles, then 72°C for 10 minutes. A wildtype band was 250 bp whereas the laminin- $\alpha 2$ targeted allele produced a 480 bp band.

Experimental procedures were performed once mice were 10 days old and 2 weeks of age with weekly weighing until the end of study which was at 2 weeks and 5 weeks of age where all mice were subject to *in vivo* experiments. To reduce experimental bias, investigators assessing and quantifying experimental outcomes were blinded to the treatment and control groups.

Husbandry

 dy^{W} -/- mice were housed with their wild-type littermates alongside the provision of mashed kibble and access to water. Husbandry and protocols were carried out via IACUC approval. Knockout mice that lost \geq 20% body weight (g) were euthanized. Pups were genotyped at 10 days old and at the end of each study, the female WT and dy^{W} -/- mice were euthanized by CO₂ inhalation in accordance with a protocol approved by the University of Nevada, Reno Animal Care and Use Committee. The diaphragm muscles from these mice were dissected, flash-frozen in liquid nitrogen and stored at -80°C as previously reported by ¹³⁴.

Laminin-111 protein treatments

 dy^{W} -/- mice were systemically injected with 0.01 mg/g/week of laminin-111 protein (Invitrogen). Laminin-111 was stored at -80°C and thawed slowly at 4°C overnight before use. dy^{W} -/- mice were systemically injected (weekly) from 10 days old until 5 weeks old.

Experimental Design

Female Wild-type (n=5) and dy^{W} -/- (n=5) mice were sacrificed at 2 weeks old untreated. Another treatment group within this study incorporated female dy^{W} -/- (n=4) systemically treated from 10 days old to 5 weeks old with 0.01 mg/g/week laminin-111. Alongside this treatment group dy^{W} -/- control mice (n=4) were systemically injected with a volume of sterile Phosphate buffered saline (PBS) that equated to such in the laminin-111 treatment group. At 5 weeks of age, PBS and laminin-111 treated dy^{W} -/- mice were sacrificed following a protocol approved by the Animal Care and Use Committee at the University of Nevada, Reno. Temporal analysis of WT, PBS and Laminin-111 treatment groups at 5 weeks of age was planned with the hope of identifying what changes occur within the transcriptome of these animals.

Muscle transcripts

The muscle transcript ontology groups of interest included: Integrin signaling, Inflammation, Fibrosis, Apoptosis (ILK, AKT), Extracellular Matrix signaling, Cell surface receptors and signaling (integrins and dystrophin and utrophin glycoproteins) and Cell Survival pathways (AKT).

RNA-Sequencing

Diaphragm tissue was homogenized and suspended in TRIzol reagent (GibcoBRL, Life Technologies). Total RNA was isolated following the manufacturer's instructions (GibcoBRL, Life Technologies). The pooled samples were DNased and cleaned before being sent to the UC Davis genome center for RNA-Sequencing. The RNA samples were measured after cleaning and were then pooled in order to reduce cost. Aliquots of individual mouse RNA samples were stored at -80°C and then used for qRT-PCR in order to confirm the results received from the RNA-Seq data generated. TRIzol was added to individual samples, RNA was extracted, DNased, RNA samples were pooled, cleaned and eluted using RNeasy Mini Spin Columns (Qiagen) according to the manufacturer's instructions (double sample pool for cleaning), RNA was measured for content using the nanodrop.

Data Analysis

Microsoft Excel and Ingenuity Pathway Analysis (IPA) software were employed in order to visualize the signaling pathways affected within the treatment groups. Protein expression levels were analyzed and processed using GraphPad Prism software. Fold-changes in protein were calculated using changes in intensity within ImageJ software.

Statistical Analysis of RNA-Seq data

Each sample was subjected to alignment and counting of mapped reads. For this, TopHat was used for alignment to the genome, then reads were counted per locus (all isoforms counted together for one gene) using htseq-counts. In order to adjust for large differences in the number of mapped reads in each sample (with the sample with the most reads having more than 6 times as many reads as the sample with the fewest reads), prior to analysis, counts were downsampled using binomial sampling as described by¹⁴³. Genes with less than 1 count per million reads in all 8 samples were filtered from the counts table, leaving 15,026 genes in the analysis. Differential expression analysis was conducted using the Bioconductor package edgeR, version $3.4.2^{144-147}$. Analysis was conducted using a multifactorial GLM with factors for time, group (WT, PBS treated dy^{W} -/- and LAM-111 treated dy^{W} -/-), and their interaction. This multifactorial method was chosen during analysis as it is considered to be more powerful than running each discrete comparison. Due to the lack of replication, tagwise dispersion parameters were estimated from a multifactorial GLM with factors for time and group but no interaction effect. *P*-values were adjusted for multiple testing using the false-discovery rate (FDR) method of Benjamini and Hochberg (1995)¹⁴⁸. Log2-fold changes and FDR-adjusted p-values less than 0.1 for all 15,026 genes included in the analysis.

RESULTS

Transcriptome data analysis encompassed changes in 5 week old diaphragm tissue harvested from PBS treated dy^{W} -/- versus LN-111 Treated- dy^{W} -/- mice. Relatively few significant changes (~275 total genes), most genes have apparently little to do with muscle or ECM, many genes associated with bone growth and maintenance, muscle and ECM associated genes which were found to be significantly

altered were tenascin N, elane (elastase), aggrecan, MMP8, MMP9, MMP13,

proteinase-3. Several genes associated with neuronal signaling. Our results at this age may represent individual disease state changes and not changes specifically associated with Laminin-111 treatment. 5 week old diaphragm from Wild-type versus Untreated dy^{W} -/- changes: Over 1,000 genes were significantly altered, current analysis is continuing on the known functions for all genes on the list, one interesting gene upregulated in the dy^{W} -/- diaphragm is osteoactivin (GPNMB).

Heat map for 2 week old dy^{W} -/- mouse signaling networks misregulated by loss of laminin- α 2

Signaling networks upregulated include immune cell trafficking, cellular movement and inflammatory response. Signaling networks down-regulated include cell death and cellular maintenance. It is important to remember that this is before disease onset (Figure 51). A main overview of pathways affected include: Inflammatory Response, Cellular movement, Immune cell trafficking, Apoptosis, Fibrosis, Scar tissue formation and ROS.

Heat map for 5 week old dy^{W} -/- mouse signaling networks that were misregulated upon laminin-111 treatment

Networks upregulated include vitamin and mineral metabolism alongside lipid metabolism. Networks down-regulated include inflammatory response and immune cell trafficking (Figure 52). A main overview of pathways affected include Inflammatory response, Cellular movement, Immune cell trafficking, Necrosis, and Repair pathways upregulated with laminin treatment.

2 week old dy^{W} -/- Integrin involvement in extracellular matrix interactions, cellular movement and survival signaling pathways

Integrin is consistently involved in the alteration of signaling pathways (Figure 53) and there is also involvement in initiating ERK/MAPK downstream signaling pathways (Figure 54) in 2 week old Dy^{W} -/-.

Comprehensive summary of \geq 4-fold changes in 2 week old dy^{W} -/- mice

138 transcripts misregulated \geq 4–fold between WT and dy^{W} -/- at 2 weeks old.

Comprehensive summary of \geq 4-fold changes in 5 week old dy^{W} -/- mice

468 transcripts misregulated \geq 4–fold between dy^{W} -/- PBS treated and Dy^W-/- Laminin treated at 5 weeks old.

DISCUSSION

The aim of this study was to identify transcriptional changes within diaphragm muscle for the MDC1A mouse model compared to wild type controls. Muscle contraction causes acute damage to the integrity of the sarcolemma within healthy skeletal muscle resulting in myofiber rupture that releases many susceptible candidates for immune targeting. This process may be aberrantly activated in the progressive disease state of Laminin- α 2 deficient skeletal muscle resulting in chronic injury with the prolonged release of many intracellular molecules including proinflammatory cytokines, growth factors and cytosolic calcium which is directly involved in the activation and recruitment of t-lymphocytes facilitating a positive feedback mechanism for further myofiber contraction, rupture, apoptosis and fibrotic scar tissue formation. It is unclear from past and current studies what exact role or what key immune players have in the pathophysiology of MDC1A. Treatment with Laminin-111 (found embryonically) reduces muscle pathology and improves viability in the dy^{W} -/-MDC1A mouse model. Laminin-111 helps to strengthen and reinforce the sarcolemma in the dy^{W} -/- mouse during prolonged progressive muscle injury induced by contraction offering a protective niche against the occurrence of this degenerative scenario by reducing inflammation, fibrosis and apoptosis via improved matrix-mechanotransduction.

At 2 weeks of age the variability between animals is low and the RNA-Seq data appears solid. At 5 weeks of age there is significant variability between mice and the RNA-Seq data requires more interpretation. The changes observed in some of the transcripts were the result of only one mouse in the 5 week study. RT-PCR data analysis confirms this result. Osteoactivin is involved in differentiation of skeletal and muscle tissue and may serve as a novel biomarker for disease progression. RT-PCR confirmed that it is increased in mice and also now in an MDC1A patient muscle that we have in our tissue archive.

Osteoactivin (OA) is a (Dchil) dendritic-cell associated heparin sulphate proteoglycan- dependent integrin ligand ^{155,156}. In humans, OA is known as the GPNMB gene. The osteoactivin gene encodes a protein of 572 amino acids and is localized to the membrane as a Type-1 transmembrane glycoprotein ^{151,156}. OA is expressed in osteoblasts actively involved in bone matrix production and mineralization. OA is also necessary for osteoblast differentiation in vitro ¹⁵⁰. Syndecan-4 is a receptor on T-cells for OA which therefore initiates an inhibitory function on T cell activation¹⁵⁷. OA is upregulated in muscle denervation and unloading stress. The regulatory mechanisms of OA in muscle and bone have not yet been determined, however the role of OA in transdifferentiation of myoblasts into osteoblasts has been eluded to in a published study by ¹⁴⁹. Interestingly, osteoblast differentiation is characteristically identified by expression of markers which include Osteoactivin (Gpnmb) and Osteocalcin (Bglap) ¹⁵⁸. Transdifferentiation is the manner in which a somatic cell retains plasticity and can be transformed into another somatic cell. This process can also described as lineage reprogramming. It was first demonstrated whenever mouse embryonic fibroblasts became myoblasts by forced expression of MyoD¹⁵⁹.

Laminin-111 is the predominant Laminin isoform found in the basal lamina of developing embryonic skeletal muscle¹¹⁵. However in adult skeletal and cardiac muscle Laminin-111 is replaced by Laminin-211 and Laminin-221 isoforms which help to anchor myofibers to the basement membrane and form neuromuscular junctions^{116,188}. Laminin- α 2 protein is an essential component of the basal lamina that surrounds muscle fibers and is composed of α , β , and γ heterotrimers¹⁶¹. MDC1A is caused by the loss of Laminin- α 2 protein. Regeneration of Laminin- α 2 deficient muscle is also dependent on the presence of Laminin^{124,162}. Molecules that reinforce muscle-basal lamina interactions and restore normal survival signaling pathways are likely candidates for drug-based therapeutics for MDC1A.

Laminin-111 can be systemically delivered to all major muscles affected in MDC1A patients helping to enhance muscle integrity and addresses the primary defect of cellular adhesion in MDC1A. Laminin-111 is unlikely to elicit and immune response since it is naturally expressed during embryonic development and in the adult kidney basement membrane¹⁴². Treatment with Laminin-111 has been shown recently to reduce muscle pathology and improve viability in the $(dy^{W}-/-)$ MDC1A mouse model ¹³¹. In one such study, Evan's Blue Dye uptake was used to examine the integrity of the sarcolemma and Laminin-111 treatment had beneficial effects in Laminin- α 2 deficient muscle by causing a 7.3-fold reduction in sarcolemmal rupture. The α 7 β 1 integrin is the major Laminin-binding integrin in cardiac and skeletal muscle¹⁶³. MDC1A patients and $dy^{W}-/-$ mice have reduced levels of α 7 integrin contributing to severe muscle pathology ¹⁸⁸ Laminin-111 has been shown to increase α 7 integrin expression in mouse and human muscle cells ¹⁶⁴.

Laminin-111 treatment in mice appears to block Osteoactivin expression and therefore would potentially restore MAPK signaling in muscle and prevent further fibrosis. The immunofluorescence data confirms in patients the mouse RNA-Seq data and RT-PCR studies.

ACKNOWLEDGEMENTS

Dr. Ryan Wuebbles for assistance with RNA-Seq and qRT-PCR studies. I would like to thank Dr. Joseph Fass and Dr. Ryan Kim for generating and processing the RNA-Seq data at the UC Davis Genome center. I would also like to thank Dr. Paul Brewer for kindly performing the ERK immunoblots and Rebecca Evans for genotyping the dy^{W} -/- mice.

Upregulated genes represented by orange. Downregulated genes represented by blue.

Upregulated genes represented by orange. Down regulated genes represented by blue.

Figure 53. 2 week old dy^{W} -/- Integrin involvement in extracellular matrix interactions, cellular movement and survival signaling pathways

Figure 54. 2 week old dy^{W} -/- Integrin involvement in initiating ERK/MAPK downstream signaling pathways

2 week ≥ 4-fold difference

GENE	logFC_KO_over_WT	FDR	Function
Sach1a1			Secretedebin Femily 1A
Scybrai			Member 1 Binds
			nhosphatidylcholine
			phosphatidylinositol
			polychlorinated biphenyls
			(PCB) and weakly
	-13.2038	2.89E-39	progesterone
Sec14I3			Selenocysteine involved in
	-10.5178	1.23E-18	antioxidant behavior
Sftpb			Surfactant, Pulmonary-
			Associated Protein C for
	-10.4183	1.23E-18	alveolar stability
Sftpd			Surfactant, Pulmonary-
			Associated Protein C for
0 11 (0	-10.3659	5.46E-18	alveolar stability
Cldn18			Claudins are found at tight
			junctions as a physical barrier
			and known for maintaining cell
	0.07400		polarity and signal
Chie	-9.87196	3.72E-15	Chitingge Acidia Its function
Chia			chilinase, Acidic its function
			rosponso and in protocting
			celle against apontosis is
			inhibited by allosamidin
			suggesting that the function of
			this protein depends on
	-8 03046	4 59E-06	carbohydrate binding
Scnn1a			Sodium Channel. Non-
			Voltage-Gated 1. Gamma
	-7.98484	9.80E-06	Subunit
Scgb3a2			Secretoglobin, Family 1A,
			Member 1 Binds
			phosphatidylcholine,
			phosphatidylinositol,
			polychlorinated biphenyls
			(PCB) and weakly
	-7.61726	0.000146	progesterone
Sftpc			Surfactant, Pulmonary-
	-7.29131	3.17E-20	Associated Protein C for

			alveolar stability
Sftpa1			Surfactant, Pulmonary-
			Associated Protein C for
	-6.96979	6.44E-23	alveolar stability
E030019B13Rik			RIKEN cDNA E030019B13
	-6.94359	0.003973	gene
Sfta2			Surfactant, Pulmonary-
			Associated Protein C for
	-6.94359	0.003973	alveolar stability
S100g			S100 Calcium Binding Protein
			G This cytosolic protein
			belongs to a family of calcium-
			binding proteins that includes
			calmodulin, parvalbumin,
	-6.94359	0.004956	troponin C, and S100 protein.
SIC34a2			Solute Carrier Family 23
			(Ascorbic Acid Transporter),
			Member 1 Sodium/ascorbate
			collansporter. Mediales
			C with a staichiomatry of 2
	6 77696	1 20 - 19	O_{1} With a Storenio metry of 2
Phha	-0.77000	1.30E-10	Ph Family R Glycoprotoin
KIIDY			(Gene/Pseudogene)
			Functions as a specific
	-6 50039	0.023785	ammonium transporter
MIc1	0.00000	0.020100	
			Leukoencephalopathy With
			Subcortical Cysts 1 Regulates
			the response of astrocytes to
			hypo-osmosis by promoting
	-6.50039	0.023785	calcium influx
Pnliprp1			Pancreatic Lipase-Related
			Protein 1 May function as
			inhibitor of dietary triglyceride
			digestion. Lacks detectable
			lipase activity towards
			triglycerides, diglycerides,
			phosphatidylcholine,
			galactolipids or cholesterol
01.05.04	-6.36448	0.036951	esters (in vitro) (By similarity)
SIC25a21			Solute Carrier Family 23
			(Ascorbic Acid Transporter),
	0.00440	0.000054	wiember 1 Sodium/ascorbate
	-0.30448	0.036951	cotransporter. Mediates

			lectrogenic uptake of vitamin
			C, with a stoichiometry of 2
			Na(+) for each ascorbate
118			Interleukin-8 important
			mediator of the innate immune
	-6.22697	1.36E-10	response
Lamp3			Lysosome associated
	-6.01392	1.69E-09	membrane protein
Ager			Advanced Glycosylation End Product-Specific Receptor The advanced glycosylation end product (AGE) receptor encoded by this gene is a member of the immunoglobulin superfamily of cell surface receptors. It is a multi-ligand receptor, and besides AGE, interacts with other molecules implicated in homeostasis, development, and inflammation, and certain diseases, such as diabetes
	-4.38287	0.012432	and Alzheimer's disease.
lrx1			Iroquois Homeobox 1 role in
	4 0000	0.040700	many developmental
0	-4.2336	0.010733	processes
Carsa	0.004.40	0.005004	Carbonic annydrase 5a,
	-3.82149	0.065864	mitochondrial
NKX2-1	-3.61684	0.089384	NK2 Homeobox 11 Transcription factor that binds and activates the promoter of thyroid specific genes such as thyroglobulin, thyroperoxidase, and thyrotropin receptor. Crucial in the maintenance of the thyroid differentiation phenotype. May play a role in lung development and surfactant homeostasis
Gm4956	-3.02513	0.035316	Predicted gene
Lama2	-3.0068	8.05E-11	Laminin-α2
Wfdc2	-2.45846	0.041273	WAP Four-Disulfide Core Domain 2 Broad range protease inhibitor

Plek			Pleckstrin Major protein
	2.010477	0.036951	kinase C substrate of platelets
Cyp4f18			Mucosa-specific cytochrome
			P450 enzyme active in the
			metabolism of sex steroids
	2.010628	0.05633	and xenobiotic substrates
Ms4a6b			Membrane-spanning 4-
			domains, subfamily A,
	2.015674	0.005589	member 6B immune?
Plac8			Placenta-Specific 8 brown fat
			cell differentiation, defense
			response to bacterium,
			nucleus chromatin binding,
	2.042618	0.000878	protein binding
Cd52			CD52 Molecule May play a
			role in carrying and orienting
			carbohydrate, as well as
	2.048367	0.01817	having a more specific role
Dio2			Deiodinase, lodothyronine,
			Type II1 Responsible for the
			deiodination of T4 (3,5,3',5'-
			tetraiodothyronine) into 13
			(3,5,3'-triiodothyronine).
			Essential for providing the
			brain with appropriate levels
	0.070554	0.000000	of 13 during the critical period
01-44	2.070554	0.002823	
Stx11			Syntaxin 11 SNARE that acts
			to regulate protein transport
	0.070040	0.04470	between late endosomes and
	2.079843	0.04176	the trans-Golgi network
Latz			Calle For Activation OF 1
			Cells Family, Member 2
			offinity immunoglobulin
			anning minutoglobulin ansilon recenter) mediated
			signaling in mast calls. May
			also be involved in BCP (B
			cell antigen recontor)
			mediated signaling in B-cells
			and ECGR1 (high affinity
			immunoglobulin gamma Ec
			recentor I)-mediated signaling
			in myeloid cells. Couples
	2 111883	0.008663	activation of these recentors
	2.111000	0.000000	

			and their associated kinases
			with distal intracellular events
			through the recruitment of
			GRB2
Emr1			Egf-Like Module Containing,
			Mucin-Like, Hormone
			Receptor-Like 1 Could be
			involved in cell-cell
	2.116129	0.024873	interactions
Cybb			Cytochrome B-245, Beta
			Polypeptide Critical
			component of the membrane-
			bound oxidase of phagocytes
			that generates superoxide. It
			is the terminal component of a
			respiratory chain that transfers
			single electrons from
			cytoplasmic NADPH across
			the plasma membrane to
			molocular oxygon on tho
	2 136770	0 027832	overior
Slomf7	2.130779	0.027052	lasform 1 modiatos NK coll
Siailiir	2 140172	0 000000	activation
	2.140175	0.000202	C type lestin demain family 4
Clec4az			C-type lectin domain family 4,
			member az immune system
			process, innate immune
			response integral component
			of membrane, membrane
	2.142002	0.002082	carbohydrate binding
Runx1			Runt-Related Transcription
			Factor 1 The protein encoded
			by this gene represents the
			alpha subunit of CBF and is
			thought to be involved in the
			development of normal
			hematopoiesis. Chromosomal
			translocations involving this
			gene are well-documented
			and have been associated
			with several types of
	2.14289	0.00018	leukemia.
Gpr34			G Protein-Coupled Receptor
			34 G protein-coupled
			receptors (GPCRs), such as
	2.146967	0.003833	GPR34, are integral

			domains (TMs). These proteins mediate signals to the interior of the cell via activation of heterotrimeric G proteins that in turn activate various effector proteins, ultimately resulting in a physiologic response.
Itgam	2.178598	0.039179	Macrophage antigen-1
Atp8b4			ATPase, Class I, Type 8B, Member 4 This gene encodes a member of the cation transport ATPase (P-type) family and type IV subfamily. The encoded protein is involved in phospholipid
	2.189358	0.049184	transport in the cell membrane
Ly9	2.200132	0.062293	Lymphocyte Antigen 9 May participate in adhesion reactions between T lymphocytes and accessory cells by homophilic interaction
Msr1	2.223096	0.054442	Macrophage Scavenger Receptor 1 Membrane glycoproteins implicated in the pathologic deposition of cholesterol in arterial walls during atherogenesis. Two types of receptor subunits exist. These receptors mediate the endocytosis of a diverse group of macromolecules, including modified low density lipoproteins (LDL). Isoform III does not internalize actetylated LDL
Lst1	2 229202	0.019488	Leukocyte Specific Transcript 1 Possible role in modulating immune responses. Induces morphological changes including production of filopodia and microspikes

			when overexpressed in a
			variety of cell types and may
			be involved in dendritic cell
			maturation. Isoform 1 and
			Isoform 2 nave an inhibitory
			effect on lymphocyte
0 1/0			proliferation
Cxcl10			Chemokine (C-X-C Motif)
			Ligand 10 Chemotactic for
			monocytes and I-
	2.232386	0.023785	lymphocytes. Binds to CXCR3
Evi2b			Ecotropic Viral Integration Site
	2.233146	0.055725	2B
Card14			Caspase Recruitment Domain
			Family, Member 14 Plays a
			role in signaling mediated by
			TRAF2, TRAF3 and TRAF6
			and protects cells against
			apoptosis. Activates NF-
			kappa-B via BCL10 and IKK.
			Stimulates the
	2.257698	0.057749	phosphorylation of BCL10
Egr1			Early Growth Response 1
-			Transcriptional regulator.
			Recognizes and binds to the
			DNA sequence 5'-
			CGCCCCCGC-3'(EGR-site).
			Activates the transcription of
			target genes whose products
			are required for mitogenesis
	2.280286	0.009349	and differentiation
Arl11			ADP-Ribosylation Factor-Like
			11 May play a role in
			apoptosis. May act as a tumor
	2.281866	0.023785	suppressor
Thbs4			Thrombospondin 4 Acts as an
			extracellular mitogen and
			stimulates early erythroid
			progenitors proliferation in
			presence of EPO. Adhesive
			glycoprotein that mediates
			cell-to-cell and cell-to-matrix
			interactions. Can bind to
			fibrinogen, fibronectin, laminin
	2,292313	6.20E-06	and type V collagen
		0.202 00	

	-		
SIc2a6			Solute Carrier Family 23 (Ascorbic Acid Transporter), Member 1 Sodium/ascorbate cotransporter. Mediates lectrogenic uptake of vitamin
	2.326007	0.086347	C, with a stoichiometry of 2 Na(+) for each ascorbate
lfi44l	2.329776	0.022705	Interferon-Induced Protein 44- Like Exhibits a low antiviral activity against hepatitis C virus
Ccr2	2.330837	0.001005	Chemokine (C-C Motif) Receptor 2 migration of immune cells. Other functions include angiogenic activity, apoptosis, T-cell differentiation and phagocyte activation. Inadvertent activation of chemokine receptors leads to autoimmunity by inappropriately targeting self- antigens for destruction by cytotoxic T-cells and macrophages.
Lilrb3	2 222020	0.002021	Leukocyte Immunoglobulin- Like Receptor, Subfamily B (With TM And ITIM Domains), Member 3 May act as receptor for class I MHC antigens. Becomes activated upon colligation of LILRB3 and immune receptors, such as FCGR2B and the B-cell receptor. Down-regulates antigen-induced B-cell activation by recruiting phosphatases to its immunoreceptor tyrosine- based inhibitor motifs (ITIM)
Pmaip1	2.000000	0.002031	Phorbol-12-Myristate-13- Acetate-Induced Protein 1
	2.339957	0.021507	Promotes activation of caspases and apoptosis.

			Promotes mitochondrial
			membrane changes and efflux
			of apoptogenic proteins from
			the mitochondria. Contributes
			to p53/TP53-dependent
			apoptosis after radiation
			exposure. Promotes
			proteasomal degradation of
			MCL1.
Wfdc17			WAP four-disulfide core
	2.352242	0.031692	domain 17 ?
S100a4			S100 Calcium Binding Protein
			A4 S100 proteins are
			localized in the cytoplasm
			and/or nucleus of a wide
			range of cells, and involved in
			the regulation of a number of
			cellular processes such as cell
			cycle progression and
	2.354645	0.0002	differentiation.
Clec7a			C-Type Lectin Domain Family
			7, Member A1 innate immune
			response The encoded
			glycoprotein is a small type II
			membrane receptor with an
			extracellular C-type lectin-like
			domain fold and a cytoplasmic
			domain with an
			immunoreceptor tyrosine-
	2.35468	0.012432	based activation motif.
Gm6377	2.378228	0.0912	Predicted gene
Socs3			Suppressor Of Cytokine
			Signaling 3 SSI family
			members are cytokine-
			inducible negative regulators
			of cytokine signaling. The
			expression of this gene is
			induced by various cytokines,
			including IL6, IL10, and
	2.394801	0.013639	Interferon (IFN)-gamma.
Ly86			Lymphocyte Antigen 86 May
			cooperate with CD180 and
			ILR4 to mediate the innate
			immune response to bacterial
	2.396271	0.002823	lipopolysaccharide (LPS) and

			cytokine production. Important for efficient CD180 cell
			similarity)
Adam8	2.425141	0.00152	ADAM Metallopeptidase With Thrombospondin Type 1 Motif, 15
Ankrd1	2.47285	0.007531	Ankyrin Repeat Domain 1 (Cardiac Muscle) May play an important role in endothelial cell activation. May act as a nuclear transcription factor that negatively regulates the expression of cardiac genes. Induction seems to be correlated with apoptotic cell death in hepatoma cells
Clec4a3	2.481941	0.003883	C-type lectin domain family 4, member a3 C-type lectins are an important group of proteins found in the immune system of animals.
Milr1	2 485463	0.026871	Mast Cell Immunoglobulin- Like Receptor 1 Immunoglobulin-like receptor which plays an inhibitory role in degranulation of mast cells. Negatively regulates IgE- mediated mast cell activation and suppresses the type I immediate hypersensitivity reaction (By similarity)
Lilrb4	2.490647	0.00152	Leukocyte Immunoglobulin- Like Receptor, Subfamily B (With TM And ITIM Domains), Member 4 Inhibits receptor- mediated phosphorylation of cellular proteins and mobilization of intracellular calcium ions
Ccr5	2.534424	0.020598	Chemokine (C-C Motif) Receptor 5 (Gene/Pseudogene) Receptor for a number of inflammatory CC-chemokines including

			MIP-1-alpha, MIP-1-beta and RANTES and subsequently transduces a signal by
			increasing the intracellular calcium ion level.
Evi2a	2.563247	0.002919	Ecotropic Viral Integration Site 2A May complex with itself or/and other proteins within the membrane, to function as part of a cell-surface receptor
Mx1	2.570041	0.069429	Myxovirus (Influenza Virus) Resistance 1, Interferon- Inducible Protein P78 (Mouse) Enhances ER stress-mediated cell death after influenza virus infection. May regulate the calcium channel activity of TRPCs
Sox11	2.584335	4.99E-05	SRY (Sex Determining Region Y)-Box 17
Tir1	2.584702	0.030108	Toll-Like Receptor 1 Participates in the innate immune response to microbial agents. Specifically recognizes diacylated and triacylated lipopeptides. Cooperates with TLR2 to mediate the innate immune response to bacterial lipoproteins or lipopeptides. Acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response (By similarity)
Cd72	0 50744	0.040007	Cluster of differentiation Plays a role in B-cell
NIrc5	2.616321	0.078665	NLR Family, CARD Domain Containing 5 Probable regulator of the NF-kappa-B and type I interferon signaling pathways. May also regulate the type II interferon signaling pathway. Plays a role in

			homeostatic control of innate
			immunity and in antiviral
			defense mechanisms
Cd200r1			CD200 Receptor 1 Both the
			receptor and substrate are cell
			surface alvcoproteins
			containing two
	2 647261	0 012242	immunoglobulin-like domains
C3ar1	2.011201	0.012212	Complement Component 3a
oourr			Recentor 1 Recentor for the
			chemotactic and inflammatory
			This recentor stimulates
			chemolaxis, granule enzyme
	0.050440	0 0004 40	release and superoxide anion
	2.653413	0.000146	production
Ms4a6d			Membrane-Spanning 4-
			Domains, Subfamily A,
			Member 3 (Hematopoietic
			Cell-Specific) Hematopoietic
			modulator for the G1-S cell
	2.665341	4.59E-06	cycle transition.
Gpr141			G Protein-Coupled Receptor
			34 G protein-coupled
			receptors (GPCRs), such as
			GPR34, are integral
			membrane proteins containing
			7 putative transmembrane
			domains (TMs). These
			proteins mediate signals to
			the interior of the cell via
			activation of heterotrimeric G
			proteins that in turn activate
			various effector proteins.
			ultimately resulting in a
	2,669057	0.008658	physiologic response.
lafn1			Immunoglobulin-Like And
.9			Fibronectin Type III Domain
	2 679489	0 093525	Containing 1
Clec12a		0.000020	C-Type Lectin Domain Family
			12 Member A Cell surface
			recentor that modulates
			signaling operados and
			modiatos turosino
	2 600102	0.000450	neurales lyrusifie
	2.000102	0.000152	phosphorylation of target MAP

			kinases
Lgals3	2.699016	4.20E-05	Lectin, Galactoside-Binding, Soluble, 3 Involved in acute inflammatory responses including neutrophil activation and adhesion, chemoattraction of monocytes macrophages, opsonization of apoptotic neutrophils, and activation of mast cells
Clec4n	2.720614	0.000662	C-type lectin domain family 4, member n defense response to fungus, immune system process,integral component of membrane, membrane carbohydrate binding, protein binding
Ccr1	2.738489	0.016852	Chemokine (C-C Motif) Receptor 1 Receptor for a C- C type chemokine. Binds to MIP-1-alpha, MIP-1-delta, RANTES, and MCP-3 and, less efficiently, to MIP-1-beta or MCP-1 and subsequently transduces a signal by increasing the intracellular calcium ions level. Responsible for affecting stem cell proliferation
Gm7325	2.749498	0.000134	predicted gene
Saa1	2.788181	0.052635	Serum Amyloid A1 Major acute phase reactant. Apolipoprotein of the HDL complex
Fcgr4	2.793587	0.012277	Fc receptor, IgG, low affinity IV cellular response to lipopolysaccharide, NK T cell proliferation cell surface, external side of plasma membrane
Mcoln2	2.854397	0.007715	Mucolipin 2 cation channel proteins
Oas1a	2.890803	0.011099	2'-5'-Oligoadenylate Synthetase 1, 40/46kDa critical role in cellular innate

			antiviral response. In addition, it may also play a role in other cellular processes such as apoptosis, cell growth, differentiation and gene regulation.
Rrad	2.893496	6.90E-11	Ras-Related Associated With Diabetes1 May play an important role in cardiac antiarrhythmia via the strong suppression of voltage-gated L-type Ca(2+) currents. Regulates voltage-dependent L-type calcium channel subunit alpha-1C trafficking to the cell membrane (By similarity). Inhibits cardiac hypertrophy through the calmodulin-dependent kinase II (CaMKII) pathway. Inhibits phosphorylation and activation of CAMK2D
Havcr2	2 800380	0.000878	Hepatitis A Virus Cellular Receptor 2 Regulates macrophage activation. Inhibits T-helper type 1 lymphocyte (Th1)-mediated auto- and alloimmune responses and promotes immunological tolerance. May be also involved in T-cell
Tnc	2.946252	1.59E-09	Tenascin C Extracellular matrix protein implicated in guidance of migrating neurons as well as axons during development, synaptic plasticity as well as neuronal regeneration. Promotes neurite outgrowth from cortical neurons grown on a monolayer of astrocytes. Ligand for integrins alpha- 8/beta-1, alpha-9/beta-1, alpha-V/beta-3 and alpha-

			V/beta-6
Myh3			Myosin, Heavy Chain 6,
			Cardiac Muscle, Alpha
	2.948189	2.06E-05	Muscle contraction
Cx3cr1			Chemokine (c-x-c motif)
	0.000444	0 705 00	ligand 13 chemotactic for b
	3.009414	3.78E-06	lymphocytes
Tac1			Tachykinin, Precursor 1
			racnykinins are active
			pepildes which excite
			vasodilators and
			secretagogues and contract
			(directly or indirectly) many
	3.015431	0.083316	smooth muscles
Ctss			Cathepsin S Thiol protease.
			Key protease responsible for
			the removal of the invariant
			chain from MHC class II
			molecules. The bond-
			specificity of this proteinase is
			in part similar to the
			specificities of cathepsin L
	3.048477	0.00151	and cathepsin N
Mpeg1	2 004700	0.001267	Macrophage Expressed 1
Chrng	3.004700	0.001367	Chalipargia Pacaptar
Chring			Nicotinic, Camma (Musclo)
			After binding acetylcholine
			the AChR responds by an
			extensive change in
			conformation that affects all
			subunits and leads to opening
			of an ion-conducting channel
	3.107202	1.37E-05	across the plasma membrane
Bcl2a1b			B cell leukemia/lymphoma 2
			related protein A1b extrinsic
			apoptotic signaling pathway in
			absence of ligand, intrinsic
			apoptotic signaling pathway in
			response to DINA
	2 15206	0.00100	mamage, mitochondriai outer
Clfn1	3.15306	0.00136	
SIIII	3.100401	0.042972	Schlaien i ceil cycle arrest,

			negative regulation of cell proliferation, Component cytoplasm, nucleus Function
Dura			protein binding
Kgs1			Regulator Of G-Protein Signaling 1 Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP- bound form. This protein may
			of R coll activation and
	2 167701	0.002191	or D-Cell activation and
Tir12	3.107701	0.003101	Toll-Like Recentor 3 Toll-like
11113			receptors (TLRs) are single transmembrane cell-surface receptors, which have a key role in the innate immune
	3.197299	0.002081	system.
Slfn4			Schlafen 4 ?????
	3.274274	0.002823	Macrophage activition
Clec4e	3.303059	0.040944	C-Type Lectin Domain Family 4, Member E Induces secretion of inflammatory cytokines through a pathway that depends on SYK, CARD9 and NF-kappa-B
Clec4d	3.320008	0.018258	C-Type Lectin Domain Family 4, Member D Functions as an endocytic receptor. May be involved in antigen uptake at the site of infection, either for clearance of the antigen, or for processing and further presentation to T cells
AF251705	3.338226	4.59E-06	Cd300C antigen
Gp49a	3.354174	0.000132	Glycoprotein 49 A integral component of membrane, membrane
Lair1	3.393095	4.20E-05	Leukocyte-Associated Immunoglobulin-Like Receptor 1 Leukocyte- Associated Immunoglobulin- Like Receptor 1

MyI7	2 427005	0.05720	Myosin, Light Chain 7, Regulatory mediates plus- ended movement along microfilaments. It is involved in muscle contraction through cyclic interactions with actin- rich thin filaments, creating a contractile force. It is regulated by phosphorylation via myosin light chain kinase (MLCK) and by intracellular
Conmb	3.427885	0.05736	Ca2+ concentrations.
Gpnmb	3.513174	1.71E-06	(Transmembrane) Nmb GPNMB may be involved in growth delay and reduction of metastatic potential.
Tnnt2	3.528144	5.39E-06	Troponin T Type 2 (Cardiac) Troponin T is the tropomyosin-binding subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity
B3gnt5	3.568479	0.00959	UDP-GlcNAc:BetaGal Beta- 1,3-N- Acetylglucosaminyltransferase 5 Probably plays a central role in regulating neolacto- series glycolipid synthesis during embryonic development
Trem2	3.62577	5.62F-09	Triggering Receptor Expressed On Myeloid Cells 2 May have a role in chronic inflammations and may stimulate production of constitutive rather than inflammatory chemokines and cytokines.
Cd300lb	3.713677	0.000585	CD300 Molecule-Like Family Member B Acts as an activating immune receptor through its interaction with

Timp1 TYROBP, and also independently by recruitment of GR82 Timp1 3.741032 2.32E-11 Dcx Doublecortin Microtubule-associated protein required for initial steps of neuronal dispersion and cortex lamination during cerebral cortex development Doublecortin Microtubule-associated protein required for initial steps of neuronal dispersion and cortex lamination during cerebral cortex development 4930433N12Rik				ITAM-bearing adapter
Timp1 independently by recruitment of GRB2 Timp1 3.741032 2.32E-11 Dcx Doublecortin Microtubule-associated protein required for initial steps of neuronal dispersion and cortex lamination during cerebral cortex development 4930433N12Rik 0.046214 Cortex development 4930433N12Rik RIKEN cDNA 4930433N12 3.765629 0.046214 cortex development 4930433N12Rik RIKEN cDNA 4930433N12 3.795366 0.002081 chloride channel Myl4 Myosin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin. Does not bind calcium 3.800622 1.24E-12 not bind calcium Ms4a7 Sa80414 1.77E-11 Ccl8 Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 3.867142 0.003541 Interleukin 1 Receptor Antagonist This protein can bind heparin.				TYROBP, and also
Timp1 of GRB2 Timp1 3.741032 2.32E-11 Dex Doublecorin Microtubule- associated protein required for initial steps of neuronal dispersion and cortex lamination during cerebral 4930433N12Rik RIKEN CDNA 4930433N12 gene unclassified gene AI747448 RIKEN CDNA 4930433N12 gene unclassified gene AI747448 AI747448 calcium-activated chloride channel 3.795366 0.002081 Myl4 Myosin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin. Does not bind calcium Ms4a7 Member 7 May be involved in signal transduction as a component of a multimeric receptor complex Ccl8 SA0414 1.77E-11 Ccl8 Chemokatic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 Il1rn Interleukin 1 Receptor Antagonist This protein can bink equipart of a				independently by recruitment
Timp1 3.741032 2.32E-11 Tissue inhibitor metalloproteinases Dcx Doublecorin Microtubule- associated protein required for initial steps of neuronal dispersion and cortex lamination during cerebral 4930433N12Rik 3.765629 0.046214 cortex development 4930433N12Rik 3.765629 0.056142 gene unclassified gene AI747448 3.795366 0.002081 chloride channel Myl4 Myosin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin. Does a 3.800622 1.24E-12 not bind calcium Ms4a7 Membrane-Spanning 4- Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complex Ccl8 Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 3.867142 0.003541 antecptor Antagonist This protein can bing rotein of				of GRB2
3.741032 2.32E-11 metalloproteinases Dex Doublecortin Microtubule-associated protein required for initial steps of neuronal dispersion and cortex lamination during cerebral 3.765629 0.046214 cortex development 4930433N12Rik RIKEN CDNA 4930433N12 3.765629 0.056142 gene unclassified gene AI747448 A1747448 RIKEN CDNA 4930433N12 3.795366 0.002081 chloride channel Myl4 Myosin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin. Does not bind calcium Ms4a7 Membrane-Spanning 4-Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complex Ccl8 Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, layophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 3.867142 0.003541 and Sc Of CCL2 and CCL5 111rn Interleukin 1 Receptor Antagonist This protein	Timp1			Tissue inhibitor
DcxDoublecortin Microtubule- associated protein required for initial steps of neuronal dispersion and cortex lamination during cerebral cortex development4930433N12Rik0.0462144930433N12RikRIKEN CDNA 4930433N12 gene unclassified geneAI747448RIKEN CDNA 4930433N12 gene unclassified geneAI7474480.002081AI747448A1747448 calcium-activated chloride channelMyl4Myosin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin, Does 3.800622Ms4a73.800622Ms4a7Membrane-Spanning 4- Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complexCcl8Ccl8Al141.77E-11Ccl8Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5II1rnInterleukin 1 Receptor Antagonist This protein in bib in the orbiting of		3.741032	2.32E-11	metalloproteinases
4930433N12Rik associated protein required for initial steps of neuronal dispersion and cortex lamination during cerebral cortex development 4930433N12Rik 0.046214 cortex development 4930433N12Rik RIKEN cDNA 4930433N12 gene unclassified gene AI747448 Expressed sequence AI747448 calcium-activated 3.795366 0.002081 chloride channel Myl4 Myosin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin. Does a.800622 not bind calcium Ms4a7 Membrane-Spanning 4- Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complex Ccl8 Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, Jymphocytes, basphils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 Il1rn 0.003541 Interleukin 1 Receptor Antagonis This protein	Dcx			Doublecortin Microtubule-
4930433N12Rik initial steps of neuronal dispersion and cortex lamination during cerebral cortex development 4930433N12Rik 3.765629 0.046214 cortex development AI747448 3.765629 0.056142 gene unclassified gene AI747448 3.795366 0.002081 RIKEN cDNA 4930433N12 Myl4 3.795366 0.002081 chloride channel Myl4 Myosin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin. Does not bind calcium Ms4a7 Membrane-Spanning 4-Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complex Ccl8 Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(e-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 3.867142 0.003541 Interleukin 1 Receptor Antagonist This protein can bind heparin. The processed form MCP-2(e-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5				associated protein required for
3.765629 0.046214 dispersion and cortex lamination during cerebral cortex development 4930433N12Rik 3.765629 0.056142 gene unclassified gene AI747448 3.765629 0.056142 gene unclassified gene AI747448 3.795366 0.002081 chloride channel Myl4 Mysin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin. Does not bind calcium Ms4a7 Membrane-Spanning 4- Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric 3.80414 1.77E-11 receptor complex Ccl8 Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 3.867142 0.003541 Interleukin 1 Receptor Antagonist This protein in bit the networking of				initial steps of neuronal
3.765629 0.046214 lamination during cerebral cortex development 4930433N12Rik RIKEN cDNA 4930433N12 3.765629 0.056142 gene unclassified gene AI747448 Expressed sequence AI747448 A.747448 calcium-activated 3.795366 0.002081 chloride channel Myl4 Myl4 Myosin, Light Chain 4, Alkali; Ms4a7 Aston of myosin. Does not bind calcium Ms4a7 Membrane-Spanning 4- Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric acomponent of a multimeric 3.80414 1.77E-11 receptor complex Ccl8 Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 3.867142 0.003541 and CCL2 and CCL5 Il1rn Aston CL2 0.003541 interleukin 1 Receptor Antagonist This protein				dispersion and cortex
3.765629 0.046214 cortex development 4930433N12Rik RIKEN cDNA 4930433N12 3.765629 0.056142 gene unclassified gene AI747448 Expressed sequence 3.795366 0.002081 chloride channel Myl4 Myosin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin. Does not bind calcium 3.800622 1.24E-12 not bind calcium Ms4a7 Sa80414 1.77E-11 Membrane-Spanning 4- Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric ccl8 Ccl8 Chemotatic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 II1rn 2.046287 0.003541 Interleukin 1 Receptor Antagonist This protein				lamination during cerebral
4930433N12Rik 3.765629 RIKEN cDNA 4930433N12 gene unclassified gene AI747448 Expressed sequence AI747448 calcium-activated 0.002081 chloride channel Myl4 Myosin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin. Does not bind calcium Ms4a7 Ms4a7 Sa80414 1.77E-11 Ccl8 Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 a.867142 Il1rn 2.046287 0.056142		3.765629	0.046214	cortex development
3.765629 0.056142 gene unclassified gene AI747448 Expressed sequence 3.795366 0.002081 chloride channel Myl4 Myosin, Light Chain 4, Alkali; Ms4a7 Membrane-Spanning 4- 0.800622 1.24E-12 Ms4a7 Membrane-Spanning 4- 0.002081 Chemotal calcium Ms4a7 Member 7 May be involved in signal transduction as a component of a multimeric receptor complex Ccl8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 3.867142 0.003541 Interleukin 1 Receptor Antagonist This protein can bind receptor Antagonist This protein for a material section and also of CCL2 and CCL5	4930433N12Rik			RIKEN cDNA 4930433N12
AI747448 Expressed sequence 3.795366 0.002081 Myl4 Myosin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin. Does 3.800622 1.24E-12 Ms4a7 Membrane-Spanning 4- Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric 3.80414 1.77E-11 Ccl8 Chemotine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, Ilymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte 3.867142 0.003541 and also of CCL2 and CCL5 and also of CCL2 and CCL5 3.867142 0.005641 Interleukin 1 Receptor Antagonist This protein cantagonist This prote		3.765629	0.056142	gene unclassified gene
3.795366 0.002081 Al747448 calcium-activated chloride channel Myl4 Myosin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin. Does not bind calcium Ms4a7 Nembrane-Spanning 4-Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complex Ccl8 Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 3.807142 0.003541 Interleukin 1 Receptor Antagonist This protein can bird heparist protex protein can bird heparist protex protein can bird hep	AI747448			Expressed sequence
3.795366 0.002081 chloride channel Myl4 Myosin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin. Does 3.800622 1.24E-12 not bind calcium Ms4a7 Membrane-Spanning 4- Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric 3.80414 1.77E-11 receptor complex Ccl8 Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 Il1rn Interleukin 1 Receptor Antagonist This protein 3.867142 0.005541				AI747448 calcium-activated
Myl4Myosin, Light Chain 4, Alkali; Atrial, Embryonic Regulatory light chain of myosin. Does not bind calciumMs4a7Membrane-Spanning 4- Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complexCcl8Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5Illrn0.003541Interleukin 1 Receptor Antagonist This protein is protein		3.795366	0.002081	chloride channel
Atrial, Embryonic Regulatory light chain of myosin. Does not bind calciumMs4a7Membrane-Spanning 4- Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complexCcl8Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can time inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5Il1rn2.0462970.056141	Myl4			Myosin, Light Chain 4, Alkali;
3.800622 1.24E-12 light chain of myosin. Does not bind calcium Ms4a7 Membrane-Spanning 4-Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complex Ccl8 1.77E-11 Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 Il1rn 2.046287 0.005541				Atrial, Embryonic Regulatory
3.800622 1.24E-12 not bind calcium Ms4a7 Membrane-Spanning 4- Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complex Ccl8 Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 II1rn 0.003541 Interleukin 1 Receptor Antagonist This protein				light chain of myosin. Does
Ms4a7 Membrane-Spanning 4- Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complex Ccl8 1.77E-11 Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 and CCL8 II1rn 0.003541 Interleukin 1 Receptor Antagonist This protein inhibits the protein		3.800622	1.24E-12	not bind calcium
Domains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimericCcl8Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5IllrnDomains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complexIllrnDomains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complexIllrnDomains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complexIIIrnDomains, Subfamily A, Member 7 May be involved in signal transduction as a component of a multimeric receptor complexO.003541Interleukin 1 Receptor Antagonist This protein in biblits the activities of	Ms4a7			Membrane-Spanning 4-
Ccl8Member 7 May be involved in signal transduction as a component of a multimeric receptor complexCcl8Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5II1rn2.0462870.005541Interleukin 1 Receptor Antagonist This protein is biblit the activition of hist the activition of				Domains, Subfamily A,
Signal transduction as a component of a multimeric receptor complexCcl8Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 and CCL8Il1rn2.0462870.0056142Interleukin 1 Receptor Antagonist This protein in biblist the orthwiting of can bind the partin 1 here protein				Member 7 May be involved in
3.804141.77E-11component of a multimeric receptor complexCcl8Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5Il1rn3.8671420.003541Interleukin 1 Receptor Antagonist This protein ishibits the activitian of				signal transduction as a
3.80414 1.77E-11 receptor complex CcI8 Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 3.867142 0.003541 Interleukin 1 Receptor Antagonist This protein				component of a multimeric
CcI8Chemokine (C-C Motif) Ligand 8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5II1rn3.8671420.003541Interleukin 1 Receptor Antagonist This protein		3.80414	1.77E-11	receptor complex
8 Chemotactic factor that attracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 3.867142II1rn0.003541II1rn0.0561412	Ccl8			Chemokine (C-C Motif) Ligand
Illrnattracts monocytes, lymphocytes, basophils and eosinophils. May play a role in neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 and CCL8Illrn0.003541Interleukin 1 Receptor Antagonist This protein inhibits the activities of				8 Chemotactic factor that
Image:				attracts monocytes,
interleukin 1interleukin 1 </th <th></th> <th></th> <th></th> <th>lymphocytes, basophils and</th>				lymphocytes, basophils and
Illrna.8671420.003541neoplasia and inflammatory host responses. This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5IllrnInterleukin 1 Receptor Antagonist This protein inhibits the protein				eosinophils. May play a role in
II1rnA 0.0561420.056142Interleukin 1 Receptor Antagonist This protein can bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5				neoplasia and inflammatory
II1rnCan bind heparin. The processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 and CCL8II1rn0.003541Interleukin 1 Receptor Antagonist This protein inhibits the activities of				host responses. This protein
processed form MCP-2(6-76) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL53.8671420.003541II1rnInterleukin 1 Receptor Antagonist This protein inhibits the activities of				can bind heparin. The
intervention L(c + c) does not show monocyte chemotactic activity, but inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 3.867142 0.003541 and CCL8 II1rn Interleukin 1 Receptor Antagonist This protein inhibits the activities of				processed form MCP-2(6-76)
interview interview inhibits chemotactic activity, but inhibits inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 3.867142 0.003541 interleukin 1 Receptor Antagonist Antagonist This protein				does not show monocyte
inhibits the chemotactic effect most predominantly of CCL7, and also of CCL2 and CCL5 and CCL8 II1rn 2.046287 0.056142				chemotactic activity, but
3.867142 0.003541 Interleukin 1 Receptor Antagonist This protein 2.046287 0.056142 inhibite the activities of				inhibits the chemotactic effect
3.867142 0.003541 and also of CCL2 and CCL5 and CCL8 II1rn Interleukin 1 Receptor Antagonist This protein 2.046387 0.056142				most predominantly of CCL7
3.867142 0.003541 and CCL8 II1rn Interleukin 1 Receptor Antagonist This protein 2.046397 0.056142 inhibits the activities of				and also of CCI 2 and CCI 5
II1rn Interleukin 1 Receptor Antagonist This protein		3.867142	0.003541	and CCL8
Antagonist This protein	ll1rn			Interleukin 1 Receptor
				Antagonist This protein
		3.946387	0.056142	inhibits the activities of

			-
			interleukin 1, alpha (IL1A) and interleukin 1, beta (IL1B) and
			modulates a variety of
			interleukin 1 related immune
			and inflammatory responses
Ccl7			Chemokine (C-C Motif) Ligand
••••			7 Chemotactic factor that
			attracts monocytes and
			eosinophils, but not
			neutrophils. Augments
			monocyte anti-tumor activity.
			Also induces the release of
			gelatinase B. This protein can
			bind heparin. Binds to CCR1.
	3.96701	0.000472	CCR2 and CCR3
Ccl2			Chemokine (C-C Motif) Ligand
			2 Chemotactic factor that
			attracts monocytes and
			basophils but not neutrophils
			or eosinophils. Augments
			monocyte anti-tumor activity.
			Has been implicated in the
			pathogenesis of diseases
			characterized by monocytic
			infiltrates, like psoriasis,
			rheumatoid arthritis or
			atherosclerosis. May be
			involved in the recruitment of
			monocytes into the arterial
			wall during the disease
	3.998562	0.001005	process of atherosclerosis
Dio3			Deiodinase, lodothyronine,
			Type III May play a role in
			preventing premature
			exposure of developing fetal
			tissues to adult levels of
			tnyrold normones. Can
			the regulate circulating fetal
			concentrations throughout
			gestation. Essential role for
			inactivation during
	4 095224	0.016762	ambruological development
Medado	4.000204	0.010703	Membrono Channing 4
10154446	4.164097	2.20E-05	wembrane-Spanning 4-
			Domains, Subfamily A, Member 3 (Hematopoietic Cell-Specific) Hematopoietic modulator for the G1-S cell cycle transition.
-------	----------	----------	--
Fgr	4.197254	0.002033	Feline Gardner-Rasheed Sarcoma Viral Oncogene Homolog Non-receptor tyrosine-protein kinase that transmits signals from cell surface receptors devoid of kinase activity and contributes to the regulation of immune responses, including neutrophil, monocyte, macrophage and mast cell functions, cytoskeleton remodeling in response to extracellular stimuli, phagocytosis, cell adhesion and migration.
Ccr7	4.285654	0.007423	Chemokine (C-C Motif) Receptor 7 Receptor for the MIP-3-beta chemokine. Probable mediator of EBV effects on B-lymphocytes or of normal lymphocyte functions
Fcgr1	4.308408	6.39E-06	Fc Fragment Of IgG, High Affinity Ia, Receptor (CD64) Functions in both innate and adaptive immune responses
Spp1	4.54767	4.59E-06	Secreted Phosphoprotein 1 Binds tightly to hydroxyapatite. Appears to form an integral part of the mineralized matrix. Probably important to cell-matrix interaction Function: Acts as a cytokine involved in enhancing production of interferon-gamma and interleukin-12 and reducing production of interleukin-10 and is essential in the pathway that leads to type I

			immunity (By similarity)
Gm14635	6.136662	0.078665	Predicted gene
Slurp1	6.286614	0.055416	Secreted LY6/PLAUR Domain Containing 1 Has an antitumor activity. Was found to be a marker of late differentiation of the skin. Implicated in maintaining the physiological and structural integrity of the keratinocyte layers of the skin
Ccl3	6.422436	0.034844	Chemokine (C-C Motif) Ligand 3 Monokine with inflammatory and chemokinetic properties. Binds to CCR1, CCR4 and CCR5. One of the major HIV- suppressive factors produced by CD8+ T-cells.
Gal	6.546565	0.023785	Galanin/GMAP Prepropeptide Contracts smooth muscle of the gastrointestinal and genitourinary tract, regulates growth hormone release, modulates insulin release, and may be involved in the control of adrenal secretion
Alpi	6.546565	0.023785	Alkaline Phosphatase, Intestinal The intestinal alkaline phosphatase gene encodes a digestive brush- border enzyme. This enzyme is upregulated during small intestinal epithelial cell differentiation.
LOC100038947	6 766751	0.011099	Signal-regulatory protein beta 1-like macrophages
Dnahc1	6.766751	0.019805	Dynein, Axonemal, Heavy Chain 1 Force generating protein of respiratory cilia. Produces force towards the minus ends of microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Involved in

			sperm motility; implicated in sperm flagellar assembly (By similarity)
R3hdml			R3H Domain Containing-Like
			Putative serine protease
	7.277344	0.001005	inhibitor (By similarity)

Table 5: Comprehensive summary of \geq 4-fold transcript changes in 2 week old dy^{W} -/- mice

Upregulated genes in 2 week old dy^{W} -/- versus WT mice are represented by red. Downregulated genes in 2 week old dy^{W} -/- versus WT mice are represented by green. There were 138 transcripts affected \geq 4-fold (up- or down- regulated) in total.

Gene	logFC_KOB_over_ KOA	FDR	Function
lbsp	-10.95044485	4.05E-22	Integrin binding sialoprotein cell to matrix interaction especially bone
Gypa	-9.606432069	0.000878	Glycophorins A (GYPA), major sialoglycoproteins of the human erythrocyte membrane
Bglap	-9.526367475	7.13E-13	Osteocalcin Bone Gamma- Carboxyglutamate (Gla) Protein bone building
Dmp1	-9.397267856	9.18E-10	Dentin Matrix Acidic Phosphoprotein 1
Hemgn	-9.170222597	1.25E-10	proliferation and differentiation of hematopoetic cells /may prevent apoptosis through activation of NFkB
Tnn	-8.767674471	8.23E-07	Tenascin N neuron outgrowth and cell migration
Rhag	-8.621187693	3.41E-08	RHAG (Rh-Associated Glycoprotein) is a Protein Coding gene. Associated with rhesus blood group antigen expression.
Cldn13	-7.624846904	0.000111	This gene encodes a member of the claudin family. Plays a major role in tight junction-specific obliteration of the intercellular space, through calcium-independent cell- adhesion activity.
Bglap2	-7.403672161	0.000418	Osteocalcin Bone Gamma- Carboxyglutamate (Gla) Protein bone building
Tspo2	-7.27891563	0.000762	TSPO2 (Translocator Protein 2), binds cholesterol and mediates its redistribution during erythropoiesis
Ms4a3	-6.991471919	0.003859	Membrane-Spanning 4- Domains, Subfamily A.

			Member 3 (Hematopoietic
			Cell-Specific)
Rep15			RAB15 Effector Protein
			Regulates transferrin
			receptor recycling from the
			endocytic recycling
	-6.991471919	0.008997	compartment
Fcnb			Ficolin B marks apoptotic
D'(4	-6.909676539	0.004621	and necrotic cells
Pit1	-6.730703309	0.00977	PIF1 5-10-3 DNA Helicase
Nphs2	0 5000 40704	0.040440	Nephrosis 2, Idiopathic,
	-6.526340781	0.018413	Steroid-Resistant (Podocin)
Parpbp	-6.526340781	0.019033	PARP1 Binding Protein
4833427F10Rik	-6.412167249	0.035432	Unclassified gene
Мро			Myeloperoxidase
			polymorphonuclear
	-6.207865915	4.41E-14	leukocytes
Gm694	-6.152516921	0.043782	Unclassified gene
Mmp13			Matrix metalloproteinase 8
			are zinc-dependent
			endopeptidases that are
			the major proteases
	6 016964202	0.041090	degradation
Nan	-0.010004393	0.041969	Neutrophilic grapulo protoin
Ngp	-5 823036637	0.021/28	
l ff	-5 588858274	0.021420	
Camp	-0.00000274	0.000323	Cathelicidin Antimicrobial
Camp	-5 545496993	0.053769	Pentide
Slc4a1			Solute Carrier Family 4
			(Anion Exchanger).
			Member 1 (Diego Blood
	-5.463455071	0.02011	Group)
Kel			Kell Blood Group, Metallo-
	-5.342640808	4.75E-06	Endopeptidase
Acan			Aggrecan proteoglycan in
			ECM aims to resist
	-5.283918037	5.01E-06	compression in cartilage
Rhd	-5.283918037	6.97E-06	Rh Blood Group, D Antigen
Neil3			Nei Endonuclease VIII-Like
	-4.745290481	0.000588	3 (E. Coli)
S100a9			S100 Calcium Binding
			Protein A9 S100A9 is a
	-4.408537824	0.050901	calcium- and zinc-binding

			protein which plays a
			prominent role in the
			regulation of inflammatory
			processes and immune
			response.
Elane			Elastase, Neutrophil
	-4.294346398	3.26E-06	Expressed
Hoxc8			Homeobox protein hox-3a
			housekeeping gene
			developmental regulatory
			system that provides
			cells with specific positional
	-4.111315601	0.003463	identities
Ctsg	-4.033736233	0.000457	Cathepsin G
Myb			Nuclear Receptor
			Subfamily 0, Group B,
			Member 2 The protein has
			been shown to interact with
			retinoid and thyroid
	-3.944059969	0.00977	hormone receptors,
Calca			Calcitonin-Related
	-3.929580387	0.000145	Polypeptide Alpha
Prss34			Protease, Serine, 34
	-3.794188791	0.030307	(Trypsin 34)
Mmp9	-3.749450484	0.023531	Matrix Metallopeptidase 9
Vpreb3			Histidine Decarboxylase
			Histamine regulates
			several physiologic
			processes, including
			neurotransmission, gastric
			acid secretion, inflamation,
••	-3.6941367	0.011112	and smooth muscle tone
Nnat			Sp7 Transcription Factor
			I ranscriptional activator
			essential for osteoplast
			CD1 and EKLE approximation
			SP1 and EKLF consensus
			Sequences and to other
	2 695227025	0.024244	G/C-nch sequences (By
Ctoo	-3.003327933	0.024241	Clouding are found at tight
CISE			iunctions as a physical
			barrier and known for
			maintaining cell polarity
	-3 501608702	0.000702	and signal transductions
	-3.391000703	0.000792	and signal transuuctions

Gfi1b			Growth Factor Independent
	-3.516649854	0.057457	1B Transcription Repressor
Igll1			Asialoglycoprotein
			Receptor 2 Mediates the
			endocytosis of plasma
			glycoproteins to which the
			terminal sialic acid residue
			on their complex
			carbohydrate moieties has
	-3.516649854	0.05866	been removed.
Sp7	-3.516649854	0.059139	Sp7 Transcription Factor
F2rl2			Coagulation Factor II
	-3.516649854	0.0597	(Thrombin) Receptor-Like 2
Cdca2			Cell Division Cycle
	-3.488735315	0.023702	Associated 2
Rag1			Cadherin-Related Family
			Member 3 Cadherins are
			calcium-dependent cell
			adhesion proteins. They
			preferentially interact with
			themselves in a homophilic
			manner in connecting cells;
			cadherins may thus
			contribute to the sorting of
-	-3.488/35315	0.045873	heterogeneous cell types
Ermap			Erythroblast Membrane-
	2 4 4 9 9 9 2 4 9	0.000705	Associated Protein
Dhav	-3.448203348	0.009765	(Scianna Biood Group)
Pnex			
			Protoin May function as a
			GTPase activating protain
			and may play important
	-3 132166185	0.017168	activation
Enh4 2	-3.432400403	0.017100	Secreted Phosphoprotein 1
Срот.2			Binds tightly to
			hydroxyapatite Appears to
			form an integral part of the
			mineralized matrix
			Probably important to cell-
			matrix interaction Function
			Acts as a cytokine involved
			in enhancing production of
	-3.432466485	0.018413	interferon-gamma and

			interleukin-12 and reducing
			production of interleukin-10
			and is essential in the
			pathway that leads to type I
			immunity (By similarity)
Retnig	-3.38541844	0.062538	Resistin Like Beta
ltgb2l			Mucosa-specific
			cytochrome P450 enzyme
			active in the metabolism of
			sex steroids and xenobiotic
	-3.373913642	0.018413	substrates
Gata1			GATA Binding Protein 1
			(Globin Transcription
	-3.318690488	0.006966	Factor 1)
Dcstamp			Dendrocyte Expressed
			Seven Transmembrane
	-3.296679501	0.097338	Protein
Fam150b			Cartilage oligomeric matrix
			protein play a role in
			structural integrity of
			cartilage via its interaction
			with other extracellular
			matrix proteins such as
	0.075004004	0 000 400	
T 1 40	-3.275804321	0.028438	collagens and fibronectin.
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3-
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3-
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein that catalyzes the bydroxylation of L
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein that catalyzes the hydroxylation of L-
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein that catalyzes the hydroxylation of L- tryptophan metabolite, L- kynurening, to form L 2
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein that catalyzes the hydroxylation of L- tryptophan metabolite, L- kynurenine, to form L-3- bydroxykypuropine
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein that catalyzes the hydroxylation of L- tryptophan metabolite, L- kynurenine, to form L-3- hydroxykynurenine. Required for synthesis of
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein that catalyzes the hydroxylation of L- tryptophan metabolite, L- kynurenine, to form L-3- hydroxykynurenine. Required for synthesis of quipolinic acid, a neurotoxic
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein that catalyzes the hydroxylation of L- tryptophan metabolite, L- kynurenine, to form L-3- hydroxykynurenine. Required for synthesis of quinolinic acid, a neurotoxic NMDA recentor antagonist
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein that catalyzes the hydroxylation of L- tryptophan metabolite, L- kynurenine, to form L-3- hydroxykynurenine. Required for synthesis of quinolinic acid, a neurotoxic NMDA receptor antagonist and potential endogenous
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein that catalyzes the hydroxylation of L- tryptophan metabolite, L- kynurenine, to form L-3- hydroxykynurenine. Required for synthesis of quinolinic acid, a neurotoxic NMDA receptor antagonist and potential endogenous inhibitor of NMDA recentor
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein that catalyzes the hydroxylation of L- tryptophan metabolite, L- kynurenine, to form L-3- hydroxykynurenine. Required for synthesis of quinolinic acid, a neurotoxic NMDA receptor antagonist and potential endogenous inhibitor of NMDA receptor signaling in axonal
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein that catalyzes the hydroxylation of L- tryptophan metabolite, L- kynurenine, to form L-3- hydroxykynurenine. Required for synthesis of quinolinic acid, a neurotoxic NMDA receptor antagonist and potential endogenous inhibitor of NMDA receptor signaling in axonal targeting, synaptogenesis
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein that catalyzes the hydroxylation of L- tryptophan metabolite, L- kynurenine, to form L-3- hydroxykynurenine. Required for synthesis of quinolinic acid, a neurotoxic NMDA receptor antagonist and potential endogenous inhibitor of NMDA receptor signaling in axonal targeting, synaptogenesis and apoptosis during brain
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein that catalyzes the hydroxylation of L- tryptophan metabolite, L- kynurenine, to form L-3- hydroxykynurenine. Required for synthesis of quinolinic acid, a neurotoxic NMDA receptor antagonist and potential endogenous inhibitor of NMDA receptor signaling in axonal targeting, synaptogenesis and apoptosis during brain development. Ouipolinic
Trim10	-3.275804321	0.028438	collagens and fibronectin. Kynurenine 3- Monooxygenase (Kynurenine 3- Hydroxylase) gene encodes a mitochondrion outer membrane protein that catalyzes the hydroxylation of L- tryptophan metabolite, L- kynurenine, to form L-3- hydroxykynurenine. Required for synthesis of quinolinic acid, a neurotoxic NMDA receptor antagonist and potential endogenous inhibitor of NMDA receptor signaling in axonal targeting, synaptogenesis and apoptosis during brain development. Quinolinic acid may also affect NMDA

			receptor signaling in
			pancreatic beta cells,
			osteoblasts, myocardial
			cells, and the
			gastrointestinal tract
Gfi1	0 400 405045	0.054505	Growth Factor Independent
0.1477	-3.182485215	0.051525	1 I ranscription Repressor
Cd177	-3.160436406	0.001573	CD177 Molecule
S100a8			S100 Calcium Binding
<u> </u>	-3.080480416	0.070974	Protein A8
Rprml	-3.039119059	0.080927	Reprimo-Like
Wnt9b			Solute Carrier Family 23
			(Ascorbic Acid
			Transporter), Member 1
			Sodium/ascorbate
			cotransporter. Mediates
			steichiometry of 2 No(1) for
	-2 063207833	0.01551	soch ascorbato
Dott	-2.903297033	0.01331	Aldolase B. Fructose-
Diff			Bisphosphate The
			developing embryo
			produces aldolase A which
			is produced in even greater
			amounts in adult muscle
			where it can be as much as
			5% of total cellular protein.
			kev role in carbohydrate
			metabolism as it catalyzes
			one of the major steps of
			the glycolytic-
	-2.9617134	0.056854	gluconeogenic pathway
Mtfr2			Mitochondrial Fission
	-2.9617134	0.057284	Regulator 2
GaInt3			Baculoviral IAP Repeat
			Containing 5 dual roles in
			promoting cell proliferation
	-2.9617134	0.058369	and preventing apoptosis.
Mogat1			Monoacylglycerol O-
	-2.877251095	0.029946	Acyltransferase 1
Mki67	0.050400500	0 000075	Marker Of Proliferation Ki-
	-2.859186566	0.008055	6/
Prtn3	-2.788143116	0.001812	Proteinase 3

Wif1			Activin A Receptor, Type IC
			Plays a role in cell
			differentiation, growth
	-2.729034071	0.001573	arrest and apoptosis
Sez6l			Seizure Related 6 Homolog
	-2.656107386	0.006878	(Mouse)-Like
1700023L04Rik	-2.647620278	0.019397	Unclassified gene
Spta1			Spectrin, Alpha,
	-2.607594526	0.056854	Erythrocytic 1
Car1	-2.552610624	0.006966	Unclassified gene
Nr4a3			Nucleolar And Spindle
			Associated Protein 1
			Microtubule-associated
			protein with the capacity to
			bundle and stabilize
			microtubules (By similarity).
			May associate with
			chromosomes and promote
			the organization of mitotic
			spindle microtubules
	-2.546230669	0.029946	around them
Mmp8			Matrix Metallopeptidase 3
			(Stromelysin 1,
			Progelatinase) Can
			degrade fibronectin,
			laminin, gelatins of type I,
			II, IV, and V; collagens III,
			IV, X, and IX, and cartilage
			proteoglycans. Activates
.	-2.534225828	0.001111	procollagenase
Depdc1a	-2.533589198	0.047483	DEP Domain Containing 1
Cenpe	0 50000 40 40	0.0000.00	Centromere Protein E,
0.1	-2.508894249	0.029946	312kDa
Siglecg	0.400404000	0.000400	Sialic Acid Binding Ig-Like
	-2.496124962	0.002128	Lectin
	-2.467122255	0.038728	Niacin Receptor
Espin	0 404074040	0.004054	Extra Spindle Pole Bodies
17:54.4	-2.464271043	0.004251	Homolog 1 (S. Cerevisiae
KIT11	-2.442622389	0.018205	Kinesin Family Member 11
Spp1	-2.44185001	0.038728	Secreted Phosphoprotein 1
HapIn1			Hyaluronan And
	-2.431191311	0.028791	Proteoglycan Link Protein 1
Dtl			Denticleless E3 Ubiquitin
	-2.407179369	0.03852	Protein Ligase Homolog

			(Drosophila)
2810417H13Rik	-2.397477367	0.008967	Unclassified gene
Fignl1	-2.377528766	0.045873	Fidgetin-Like 1
Ankef1			Ankyrin Repeat And EF-
	-2.377528766	0.047668	Hand Domain Containing 1
Faim3	-2.327154754	0.05713	Fas Apoptotic Inhibitory
Lep	-2.322644249	0.029946	Leptin
Calcb			Calcitonin-Related
	-2.28962057	0.017078	Polypeptide Beta
Kif14			Plasminogen acts as a
			proteolytic factor in a
			variety of other processes
			including embryonic
			development, tissue
	0.074050040	0.0507	remodeling, tumor invasion,
Edilo	-2.274958018	0.0597	and Inflammation.
Eulis	-2 2610775/7	0.055502	Discoidin I-I ike Domains 3
Tnx2	-2.201311341	0.000002	Glutamine-Fructose-6-
1972			Phosphate Transaminase 2
			Most likely involved in
			regulating the availability of
			precursors for N- and O-
			linked glycosylation of
	-2.254603707	0.027915	proteins
Ptprr			Protein Tyrosine
	0.045400404	0.007000	Phosphatase, Receptor
Arbaof20	-2.245188104	0.037086	Type, R Rho, Cupping, Nucleotide
Arngers9	-2 220801683	0.070074	Exchange Eactor (GEE) 39
Clsnn	-2.220001003	0.070814	
Nsl1	-2.220001003	0.07 9044	NSL1 MIS12 Kinetochore
	-2.220801683	0.084671	Complex Component
Inhba	-2.205099173	0.013598	Inhibin, Beta A
Spib			Spi-B Transcription Factor
	-2.200493208	0.014836	(Spi-1/PU.1 Related)
Aurkb	-2.175281992	0.042606	Aurora Kinase B
Map7d2			Ubiquitin-Conjugating
			Enzyme E2C Accepts
			ubiquitin from the E1
			complex and catalyzes its
	0.404500054	0.007440	covalent attachment to
	-2.164532854	0.08/416	other proteins. In vitro

			-
			catalyzes 'Lys-11'- and 'Lys-48'-linked polyubiquitination. Acts as an essential factor of the anaphase promoting complex/cyclosome (APC/C), a cell cycle- regulated ubiquitin ligase that controls progression through mitosis. Acts by initiating 'Lys-11'-linked
			polyubiquitin chains on APC/C substrates, leading to the degradation of
			APC/C substrates by the proteasome and promoting mitotic exit
Ccna2	-2.160383935	0.021508	Cyclin A2
Aspm	-2.144968526	0.038978	Asp (Abnormal Spindle) Homolog, Microcephaly Associated (Drosophila)
lrf4	-2 13431486	0.018205	Myosin, Heavy Chain 6, Cardiac Muscle, Alpha Muscle contraction
Pax5	-2.120620413	0.090294	AlanineGlyoxylate Aminotransferase 2 ADMA is a potent inhibitor of nitric-oxide (NO) synthase, and this activity provides mechanism through which the kidney regulates blood pressure
Cidec	-2.10808921	0.051139	Cell Death-Inducing DFFA- Like Effector C
Mis18bp1	-2.063222678	0.055502	MIS18 Binding Protein 1
Ccnb1	-2.058955602	0.038978	Cyclin B1
Pdcd1	-2.056088511	0.051361	Serine protease which hydrolyzes a range of proteins including type I collagen, fibronectin and fibrinogen. Remodeling
SIc7a10	-2.044090126	0.099946	Solute Carrier Family 7 (Neutral Amino Acid Transporter Light Chain,

			Asc System), Member 10
Ccnb2	-2.043079292	0.055502	Cyclin B2
Angptl7	-2.035644481	0.014339	Angiopoietin-Like 7
Aldh3b2	-2.016879317	0.079989	Antigen Identified By Monoclonal Antibody Ki-67 Thought to be required for maintaining cell proliferation
Cxcl13			Chemokine (C-X-C Motif)
	-2.011669224	0.041525	Ligand 13
Slc36a2	-2.007439944	0.053918	Solute Carrier Family 36 (Proton/Amino Acid Symporter), Member 2
Adra1b	2.014180343	0.02392	WNT Inhibitory Factor 1 Binds to WNT proteins and inhibits their activities
Gm20752	2.016110787	0.062065	Unclassified gene
Mfsd2a	2.028565728	0.043719	Olfactory receptor 1033 sensory perception of smell
lgsf5	2.037940342	0.026037	Immunoglobulin Superfamily, Member 5
MyI7	2.041020676	0.053648	UDP-N-Acetyl-Alpha-D- Galactosamine:Polypeptide N- Acetylgalactosaminyltransf erase 3 (GalNAc-T3) Individual GalNAc- transferases have distinct activities and initiation of O- glycosylation is regulated by a repertoire of GalNAc- transferases.
Esrp2	2.041074169	0.021267	Cyclin B1 essential for cell cycle control at G2/M mitosis transmission
Akr1c19	2.043224705	0.080648	Interleukin-8 important mediator of the innate immune response
Acnat2	2.047226654	0.093949	Unclassified gene
Serpina3m	2.065105674	0.056854	Serpin Peptidase Inhibitor, Clade A (Alpha-1 Antiproteinase, Antitrypsin), Member 3
Gpld1	2.077970089	0.089321	Glycosylphosphatidylinosito

			I Specific Phospholipase
C730036E19Rik			Nephrosis 1, Congenital,
			Regulates glomerular
			vascular permeability.
			Plays a role in skeletal
			muscle formation through
			regulation of myoblast
V	2.08107011	0.083775	fusion (By similarity)
KMO			Kynurenine 3-
			(Kynurenine 3-
	2.081921044	0.093015	Hydroxylase)
Cyp3a44			Occludin May play a role in
			the formation and
			regulation of the tight
			junction (TJ) paracellular
			permeability barrier. It is
			able to induce adhesion
	2 084205029	0.050901	lacking tight junctions
Soat2	2 092703909	0.030307	Sterol O-Acyltransferase 2
Khk			Leucine Rich Repeat
			Neuronal 1 associated with
			LRRN1 include
	0.40700004	0.054400	atrioventricular septal
Lintd of h	2.107269661	0.051139	defect, and neuronitis.
Ugriabb			UDP Glucuroposyltransferase 1
	2 108829803	0.079989	Family Polypeptide A6
Gm16157	2.112719281	0.045873	Unclassified gene
Dhtkd1			Dehydrogenase E1 And
			Transketolase Domain
	2.118052723	0.059139	Containing 1
Cyp2d40			Quinolinate
			Phosphoribosyltransferase
			of quipolipic acid (QA)
			elevated levels causes
			neurodegenerative
	2.119675634	0.085216	diseases
Serpina3k			Serpin Peptidase Inhibitor,
			Clade A (Alpha-1
	2.119804566	0.05713	Antiproteinase, Antitrypsin).

			-
			Member 3
Creb3I3			CAMP Responsive
			Element Binding Protein 3-
	2.120047828	0.057457	Like 3
Gjb2			Gap Junction Protein, Beta
	2.12240577	0.093015	2, 26kDa
Dak			Dihydroxyacetone Kinase 2
	2.125577296	0.028536	Homolog (S. Cerevisiae)
Pecr			Insulin-Like Growth Factor
			Binding Protein, Acid Labile
			Subunit Involved in protein-
			protein interactions that
			result in protein complexes,
	0 4 4004 4 5 0 7	0.040700	receptor-ligand binding or
	2.148211567	0.043782	Cell adnesion
Arnget26	2 150760091	0.045150	Rho Guanine Nucleotide
	2.150760061	0.045159	Aldebude Debudrogenees
Aldnin	2 16/3/2275	0.047668	1 Eamily Momber 1
BC021614	2.104342273	0.047000	Linclassified dene
10021014 1002	2.170030021	0.02715	
Aass	2 208201588	0.080927	Semialdehyde Synthase
Chic	2.200231300	0.000327	Proprotein Convertase
			Subtilisin/Kexin Type 9
			Crucial player in the
			regulation of plasma
			cholesterol homeostasis.
			Binds to low-density lipid
			receptor family members
			Regulates neuronal
			apoptosis via modulation of
			LRP8/APOER2 levels and
			related anti-apoptotic
	2.217261709	0.094626	signaling pathways
Ahcy	2.242676451	0.053918	Adenosylhomocysteinase
Mettl7b			Spectrin, Alpha,
			Erythrocytic 1
			(Elliptocytosis 2) Spectrin is
			the major constituent of the
			cytoskeletal network
			underlying the erythrocyte
			plasma membrane. It
			associates with band 4.1
	2.257747786	0.08564	and actin to form the

			cytoskeletal superstructure
			of the erythrocyte plasma
			membrane
Masp1			Adiponectin, C1Q And
			Collagen Domain
			Containing Important
			adipokine involved in the
			control of fat metabolism
			and insulin sensitivity with
			direct anti-diabetic anti-
			atherogenic and anti-
	2 265010615	0.043782	inflammatory activities
Tat	2.203019013	0.043702	Tyrosino Aminotronsforaço
1 dl	2.274794699	0.081026	Tyrosine Animotransierase
HSJStJD1			Heparan Sulfate
	0 000 171001	0.004700	(Glucosamine) 3-O-
01 00 1	2.290471061	0.084768	Sulfotransferase 3B1
SIC38a4			Adenosine Kinase
			Inhibition of this enzyme
			has been implicated in
			tissue-protective
			mechanisms against
			various physiological
			stresses, including
			ischemia, seizures,
			inflammation and pain, thus
			there is much interest in
			developing
			pharmacological ADK
	2.293220337	0.082763	inhibitors
SIc17a8			Solute Carrier Family 17
			(Vesicular Glutamate
	2.297675402	0.070399	Transporter), Member 8
0610012H03Rik			Myeloperoxidase
			polymorphonuclear
	2.297675402	0.083435	leukocytes
Adh1			Acid-Sensing (Proton-
			Gated) Ion
			Channel Functions as a
			postsynaptic proton
			receptor that influences
			intracellular Ca(2+)
			concentration and
			calmodulin-dependent
			protein kinase II
	2.303294478	0.080858	phosphorylation and

			thereby the density of
			dendritic spines.
Tmem86b			Chloride Channel, Voltage-
			Sensitive 1 The protein
			encoded by this gene
			regulates the electric
			excitability of the skeletal
	2.303561966	0.083775	muscle membrane.
1810053B23Rik			Tenascin N neuron
			outgrowth and cell
	2.309411016	0.01551	migration
Gldc			Glycine Dehydrogenase
	2.314854863	0.03852	(Decarboxylating)
Sptbn2			Spectrin, Beta, Non-
	2.317483531	0.056854	Erythrocytic 2
1300002K09Rik			Proliferation and
			differentiation of
			hematopoetic cells /may
			prevent apoptosis through
	2.338665347	0.05713	activation of NFkB
6430571L13Rik	2 346608392	0.043782	Unclassified gene
Cth	2.01000002	0.010102	Cystathionine Gamma-
our	2 347820083	0.08208	l vase
Cyn2f2	2.0 11 020000	0.00200	Monoacylglycerol O-
•)			Acyltransferase 1
			Catalyzes the formation of
			diacylolycerol from 2-
			monoacylglycerol and fatty
			acvl-CoA. Probably not
			involved in absorption of
			dietary fat in the small
	2.351470422	0.057284	intestine (By similarity)
Nipsnap1			Nipsnap Homolog 1 (C.
	2.357817549	0.079844	Elegans)
SIc17a3			Protein Z, Vitamin K-
			Dependent Plasma
			Glycoprotein Appears to
			assist hemostasis by
			binding thrombin and
			promoting its association
			with phospholipid vesicles.
			Inhibits activity of the
			coagulation protease factor
			Xa in the presence of
	2.36367621	0.050957	SERPINA10, calcium and

			phospholipids
Ttpa			Phosphatidylethanolamine
			N-Methyltransferase The
			protein isoforms encoded
			by this gene localize to the
			endoplasmic reticulum and
			mitochondria-associated
	2.364675089	0.089321	membranes.
Onecut2	2.369478936	0.060404	One Cut Homeobox 2
Mchr1			Melanin-Concentrating
	2.376066417	0.08208	Hormone Receptor 1
Cyp4f15			Desmoglein 11 Component
			of intercellular desmosome
			junctions. Involved in the
			interaction of plaque
			proteins and intermediate
			filaments mediating cell-cell
	2.381345281	0.060404	adhesion
Acot12	2.387267722	0.052273	Acyl-CoA Thioesterase 12
OcIn			Kruppel-Like Factor 4 (Gut)
			Plays an important role in
			maintaining embryonic
			stem cells, and in
			preventing their
			differentiation. Required for
			establishing the barrier
			function of the skin and for
			posinatal maturation and
			maintenance of the ocular
			differentiation of enitbolial
			colle and may also function
			in skolotal and kidnov
	2 101630508	0.030487	development
Tm4sf4	2.40400000	0.000-07	Transmembrane 4 I Siv
1111-31-4	2 407955293	0 057284	Family Member 4
Aaxt2l1	2.107000200	0.007201	AlanineGlyoxylate
Agazi	2 412592903	0 02392	Aminotransferase 2-Like 1
Tm6sf2	2.112002000	0.02002	Carbonic anhydrase 3 slow
			twitch skeletal muscle and
	2,412899312	0.029181	mvogenesis
Cosf4l		51025101	Cleavage And
			Polyadenvlation Specific
	2.426651453	0.022987	Factor 4-Like

Leap2			Liver Expressed
	2.428615595	0.006796	Antimicrobial Peptide 2
Tymp	2.430509087	0.00213	Fibrinogen Alpha Chain
SIc38a3			Solute Carrier Family 38,
	2.434089028	0.055502	Member 3
Aspg			WNT outside to inside cell
	2.437864099	0.045057	signaling
Shmt1			Glutamic-Pyruvate
			I ransaminase (Alanine
			Participatos in collular
			nitrogen metabolism and
			also in liver
			gluconeogenesis starting
			with precursors transported
			from skeletal muscles (By
	2.442176393	0.019397	similarity)
Myh6			Myosin, Heavy Chain 6,
0 1 1 0	2.446107263	0.053402	Cardiac Muscle, Alpha
Sec1412	2 447269724	0.020191	SEC14-LIKE 2 (S.
Hed17b13	2.447200731	0.029101	Programmed Cell Death 1
115017015			Inhibitory cell surface
			receptor involved in the
			regulation of T-cell function
			during immunity and
			tolerance. Upon ligand
			binding, inhibits T-cell
			effector functions in an
			antigen-specific manner.
			in association with other
	2 453927186	0.086342	factors
SIc10a5	2.100027100	0.000012	Solute Carrier Family 10.
	2.460263008	0.051139	Member 5
Mat1a			Golgi Transport 1A May be
			involved in fusion of ER-
			derived transport vesicles
	2.465772512	0.047483	with the Golgi complex
Aldh1b1			Carbonic annydrase 5a,
	2 468548321	0.046008	transfer
Pemt	2.400040021	0.040008	Phosphatidylethanolamine
	2.468976542	0.094665	N-Methyltransferase

Saa4			Serum Amyloid A4.
	2.47040722	0.051323	Constitutive
Gm4952	2.475492914	0.050901	Coagulation factor 11
Nr1i3			Nuclear Receptor
			Subfamily 1, Group I,
	2.478338137	0.045057	Member 3
Hrsp12			Heat-Responsive Protein
	2.485437319	0.055502	12
Pax7			PAx7 Secreted
			Phosphoprotein 2, 24kDa
			of bono turnovor (By
	2 /88211312	0.006583	similarity)
Pklr	2.400211312	0.090303	Cell Death-Inducing DEFA-
			Like Effector B Activates
	2.499710313	0.066993	apoptosis
Sardh	2.509430038	0.038728	Sarcosine Dehydrogenase
Apoc1	2.510518264	0.045534	Apolipoprotein C-I
Hsd17b2			Apolipoprotein F Minor
			apolipoprotein that
			associates with LDL.
			Inhibits cholesteryl ester
			transfer protein (CETP)
			activity and appears to be
			an important regulator of
			cholesterol transport. Also
			degree with VI DI Apo-Al
	2 512555427	0.08208	and Apo-All
Cldn14	2.515471094	0.030307	Claudin 14
Apon	2.517351953	0.052927	Unclassified gene
2810007J24Rik	2.518769834	0.099946	Unclassified gene
SIc22a18			Solute Carrier Family 22,
	2.520164954	0.045159	Member 18
Hamp			Hepcidin Antimicrobial
	2.521360194	0.012396	Peptide
Sec14l4			Inter-Alpha-Trypsin
			Inhibitor Heavy Chain 1
			binding protein between
			matrix protoin including
			those on cell surfaces in
			tissues to regulate the
	2.526325679	0.025271	localization, synthesis and

			degradation of hyaluronan
			which are essential to cells
			undergoing biological
			processes Function:
			Contains a potential
			peptide which could
			stimulate a broad spectrum
			of phagocytotic cells
1700001C19Rik			Surfactant, Pulmonary-
			Associated Protein C for
	2.527795195	0.035907	alveolar stability
Asl	2.528828883	0.019341	Argininosuccinate Lyase
Bhmt			Kinesin Family Member 11
			Kinesin superfamily
			proteins (KIFs) are motor
			proteins that convert
			chemical energy, typically
			in the form of ATP, into
			mechanical force. They act
			upon microtubules to move
			vesicles and organelles
			within cells, cause the
			beating of flagella and cilia,
			and act within the mitotic
			and meiotic spindles to
			segregate replicated
			chromosomes to progeny
	2.536332732	0.012396	cells.
Dhcr24			24-Dehydrocholesterol
-	2.536747411	0.074172	Reductase
Dnase2b	2.544462481	0.019397	Deoxyribonuclease II Beta
Marc1			Mitochondrial Amidoxime
	2.548646948	0.054751	Reducing Component 1
Cdhr5			Cadherin-Related Family
	2.550079346	0.07193	Member 5
Mup6			Neuronal Growth Regulator
			1 May be involved in cell-
			adhesion. May function as
			a trans-neural growth-
			promoting factor in
			regenerative axon
	0 550007700	0.001.100	sprouting in the mammalian
	2.559687729	0.021428	brain (By similarity)
Cml2	2.560778952	0.047668	Camello-Like Protein 2

ltih1			Myosin, Light Chain 7, Regulatory mediates plus-
			ended movement along
			involved in muscle
			contraction through cyclic
			interactions with actin-rich
			thin filaments, creating a
			contractile force. It is
			regulated by
			phosphorylation via myosin
			light chain kinase (MLCK)
	2 565300405	0.070844	concontrations
Uat2a3	2.303300493	0.073044	Paired Box 7
ogizao			Transcription factor playing
			a role in myogenesis
			through regulation of
			muscle precursor cells
	2.573838614	0.070974	proliferation (By similarity)
Lect2			EGF-Like Repeats And
			Discoidin I-Like Domains 3
			Promotes adhesion of
			interaction with the alpha-
			v/beta-3 integrin receptor.
			Inhibits formation of
			vascular-like structures.
			May be involved in
			regulation of vascular
			morphogenesis of
	0 500075000	0.090250	remodeling in embryonic
BC089597	2.000070020	0.060359	Calcitonin acts to reduce
D0003337	2.589805289	0.061603	blood calcium
Gcgr	2.590829792	0.056854	Glucagon Receptor
Cyp2b13			Cytochrome P450, Family
			2, Subfamily B, Polypeptide
	2.590888717	0.004327	6
Glyat	/ - /		Mitochondrial matrix
Cominato	2.5909104	0.069401	enzyme
Serpinata			Serpin Peptidase Inhibitor,
			Antiproteinase Antitrunsin)
	2,595254805	0.056854	Member 1
		0.00000	

Fga2.6002572570.09491Fibrinogen Alpha Chain ImmunoglobulinIgsf112.6126345170.00977Superfamily, Member 112.6126345170.00977Superfamily, Member 11Fgg2.6156632110.099946Fibrinogen Gamma ChainSlc25a13Solute Carrier Family 25 (Aspartate/Glutamate 2.620476414Solute Carrier), Member 13PrhoxnbGlutathione S-Transferase Alpha 2 Conjugation of reduced glutathione protect against ROSCyp2d130.280450.028045Cyp2d13Nuclear Receptor Subfamily 4, Group A, Member 3 steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this gene and other genes.Gstm62.6336686810.070974Mu 6Reep62.635635520.082465Cell Death-Inducing DFFA- Like Effector BCpn2Immunoglobulin Superfamily. Member 5				
Igsf11Immunoglobulin2.6126345170.00977Superfamily, Member 11Fgg2.6156632110.099946Fibrinogen Gamma ChainSlc25a13Solute Carrier Family 25 (Aspartate/Glutamate 2.620476414Solute Carrier), Member 13PrhoxnbGlutathione S-Transferase Alpha 2 Conjugation of reduced glutathione protect against ROSCyp2d130.028045Glutathione S-Transferase Alpha 2 Conjugation of reduced glutathione protect against ROSCyp2d13Nuclear Receptor Subfamily 4, Group A, Member 3 steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRF). Three different versions of extraskeletal myxoid chondrosarcomas (EMCS) are the result of reciprocal translocations between this2.6274580510.082465Glutathione S-Transferase (Algent et al.)Algent 22.6336686810.070974Cideb2.6356444060.0437822.6455635520.069948Like Effector BCpn2Immunoglobulin Superfamily. Member 5	Fga	2.600257257	0.09491	Fibrinogen Alpha Chain
2.6126345170.00977Superfamily, Member 11Fgg2.6156632110.099946Fibrinogen Gamma ChainSlc25a13Solute Carrier Family 25 (Aspartate/Glutamate 2.620476414Solute Carrier), Member 13PrhoxnbGlutathione S-Transferase Alpha 2 Conjugation of reduced glutathione protect against ROSCyp2d13Nuclear Receptor Subfamily 4, Group A, Member 3 steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCS) are the result of reciprocal transfocations between this 2.633668681O.070974Mu 6Reep6Caltable 2.645563552O.082465 0.08948Glutathione S-Transferase adiment (NBRE)Cideb2.645563552O.08948Like Effector BCpn2Immunoglobulin Superfamily. Member 5	lgsf11			Immunoglobulin
Fgg2.6156632110.099946Fibrinogen Gamma ChainSlc25a13Solute Carrier Family 25 (Aspartate/Glutamate2.6204764140.074259Carrier), Member 13PrhoxnbGlutathione S-Transferase Alpha 2 Conjugation of reduced glutathione protect against ROSCyp2d130.028045gainst ROSCyp2d13Nuclear Receptor Subfamily 4, Group A, Member 3 steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this gene and other genes.Gstm62.6336686810.070974Mu 6Reep62.6358444060.043782Gell Death-Inducing DFFA- Like Effector BCideb2.6455635520.069948Like Effector BCpn2Immunoglobulin Superfamily. Member 5Immunoglobulin		2.612634517	0.00977	Superfamily, Member 11
Sic25a13Solute Carrier Family 25 (Aspartate/Glutamate Carrier), Member 13Prhoxnb0.074259Glutathione S-Transferase Alpha 2 Conjugation of reduced glutathione protect against ROSCyp2d130.028045Subfamily 4, Group A, Member 3 steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this gene and other genes.Gstm62.6336686810.070974Mu 6Reep62.6358444060.043782Glutathione S-Transferase Hyaluronan Binding Protein 2 Activates coagulation factor VIICideb2.6455635520.069948Like Effector B Like Effector BCpn2Immunoglobulin Superfamily. Member 5	Fgg	2.615663211	0.099946	Fibrinogen Gamma Chain
2.620476414(Aspartate/Glutamate Carrier), Member 13PrhoxnbGlutathione S-Transferase Alpha 2 Conjugation of reduced glutathione protect against ROSCyp2d13Nuclear Receptor Subfamily 4, Group A, Member 3 steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this 2.6336686810.082465 0.070974Glutathione S-Transferase aditione S-Transferase Bub and the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this 2.6336686810.082465 0.070974Glutathione S-Transferase Bub and the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this 2.6336686810.082465 0.070974Glutathione S-Transferase Bub and the genes.Gstm62.6358444060.043782Cell Death-Inducing DFFA- Like Effector BCideb2.6455635520.069948Like Effector BCpn2Immunoglobulin Superfamily. Member 5	SIc25a13			Solute Carrier Family 25
2.6204764140.074259Carrier), Member 13PrhoxnbGlutathione S-Transferase Alpha 2 Conjugation of reduced glutathione protect against ROS2.6242646250.028045against ROSCyp2d13Nuclear Receptor Subfamily 4, Group A, Member 3 steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this 2.6358444060.082465 0.069948Gent and the genes.Gibit Cideb2.6455635520.069948Hyaluronan Binding Protein 2 Activates coagulation factor VIICidebCell Death-Inducing DFFA- Like Effector BCell Death-Inducing DFFA- Like Effector B				(Aspartate/Glutamate
PrhoxnbGlutathione S-Transferase Alpha 2 Conjugation of reduced glutathione protect against ROSCyp2d130.028045Subfamily 4, Group A, Member 3 steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this gene and other genes.Gstm6Glutathione S-Transferase Alpha 2 Conjugation of reduced glutathione protect against ROSCideb2.6358444060.043782CidebCell Death-Inducing DFFA- Like Effector BCpn2Immunoglobulin Superfamily. Member 5		2.620476414	0.074259	Carrier), Member 13
Alpha 2 Conjugation of reduced glutathione protect against ROSCyp2d13Nuclear Receptor Subfamily 4, Group A, Member 3 steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this 2.627458051Gstm6Glutathione S-Transferase 2.633668681Glutathione S-Transferase 2.625844406CidebCentCell Death-Inducing DFFA- Like Effector BCpn2Immunoglobulin Superfamily. Member 5	Prhoxnb			Glutathione S-Transferase
2.6242646250.028045reduced glutathione protect against ROSCyp2d13Nuclear Receptor Subfamily 4, Group A, Member 3 steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this gene and other genes.Gstm62.6336686810.070974Mu 6Reep62.6358444060.043782factor VIICideb2.6455635520.069948Like Effector BCpn2Immunoglobulin Superfamily. Member 5				Alpha 2 Conjugation of
2.6242646250.028045against ROSCyp2d13Nuclear Receptor Subfamily 4, Group A, Member 3 steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this gene and other genes.Gstm62.6336686810.070974Mu 6Reep62.6358444060.043782Gent Versions of extrasted corr BCideb2.6455635520.069948Like Effector BCpn2Immunoglobulin Superfamily. Member 5				reduced glutathione protect
Cyp2d13Nuclear Receptor Subfamily 4, Group A, Member 3 steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this gene and other genes.Gstm62.6274580510.082465Glutathione S-Transferase Glutathione S-TransferaseReep62.6336686810.070974Mu 62.6455635520.069948Hyaluronan Binding Protein 2 Activates coagulation factor VIICidebCell Death-Inducing DFFA- Like Effector BCell Death-Inducing DFFA- Like Effector B		2.624264625	0.028045	against ROS
Subfamily 4, Group A, Member 3 steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this gene and other genes.Gstm62.6274580510.082465 gene and other genes.Qstm62.6336686810.0709742.6358444060.043782Glutathione S-Transferase Activates coagulation 2 Activates coagulation 2 Activates coagulation 2 Activates coagulation factor VIICideb2.6455635520.069948Like Effector BCpn2Immunoglobulin Superfamily. Member 5	Cyp2d13			Nuclear Receptor
Member 3 steroid-thyroid hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this gene and other genes.Gstm6Glutathione S-Transferase 2.633668681Reep6Hyaluronan Binding Protein 2.645563552CidebCell Death-Inducing DFFA- Like Effector BCpn2Immunoglobulin Superfamily. Member 5				Subfamily 4, Group A,
hormone-retinoid receptor superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this gene and other genes.Gstm60.082465 gene and other genes.2.6336686810.070974Reep60.043782 factor VIICideb2.6455635520.069948Like Effector BCpn2Immunoglobulin Superfamily. Member 5				Member 3 steroid-thyroid
Superfamily. The encoded protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this2.6274580510.082465gene and other genes.Gstm6Glutathione S-Transferase 2.633668681Glutathione S-Transferase 2.6358444062.6455635520.069948Like Effector BCideb2.6455635520.069948Like Effector BCpn2Immunoglobulin Superfamily. Member 5				hormone-retinoid receptor
Protein may act as a transcriptional activator. The protein can efficiently bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this gene and other genes.2.6274580510.082465 gene and other genes.Gstm6Glutathione S-Transferase 2.6336686812.6336686810.070974Nu 6Hyaluronan Binding Protein 2 Activates coagulation factor VIICidebCell Death-Inducing DFFA- Like Effector BCpn2Immunoglobulin Superfamily. Member 5				superfamily. The encoded
CidebCell Death-Inducing DFFA- 2.645563552Cell Death-Inducing DFFA- Like Effector BCpn2Immunoglobulin Superfamily. Member 5				protein may act as a
Get meInterprotein can endentity bind the NGFI-B Response Element (NBRE). Three different versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this gene and other genes.Gstm6Glutathione 2.633668681Glutathione 0.070974S.Transferase Mu 6Reep6Hyaluronan Binding Protein 2.635844406Hyaluronan Binding Protein 2 Activates coagulation factor VIICideb2.6455635520.069948Like Effector BCpn2Immunoglobulin Superfamily. Member 5				The protein cap officiently
Gstm6Cell Description2.6274580510.0824652.6336686810.070974Reep62.6358444062.6455635520.069948Cpn2Immunoglobulin Superfamily. Member 5				hind the NGELB Response
CidebCell Chief (NDRC). Hilde2.6274580510.0824652.6274580510.082465gene and other genes.2.6336686810.070974Mu 6Reep62.6358444062.6455635520.069948Like Effector BCpn2ImmunoglobulinSuperfamily, Member 5				Element (NBRE) Three
Children Versions of extraskeletal myxoid chondrosarcomas (EMCs) are the result of reciprocal translocations between this 2.627458051Gstm60.082465 gene and other genes.Gstm6Glutathione S-Transferase 2.633668681Reep6Hyaluronan Binding Protein 2 Activates coagulation factor VIICidebCell Death-Inducing DFFA- Like Effector BCpn2Immunoglobulin Superfamily. Member 5				different versions of
OutcomotionMutual Statutionchondrosarcomas (EMCs) are the result of reciprocal translocations between this gene and other genes.2.6274580510.082465Gstm6Glutathione S-Transferase Glutathione S-Transferase2.6336686810.070974Reep6Hyaluronan Binding Protein 2.6358444062.6358444060.043782Cideb2.6455635522.6455635520.069948Like Effector BCpn2Immunoglobulin Superfamily, Member 5				extraskeletal myxoid
Gstm62.6274580510.082465gene and other genes.Gstm62.6336686810.070974Mu 6Reep62.6358444060.043782factor VIICideb2.6455635520.069948Like Effector BCpn2Immunoglobulin Superfamily. Member 5				chondrosarcomas (FMCs)
ConstructionConstruction2.6274580510.082465gene and other genes.Glutathione2.6336686810.070974Mu 6Reep62.6358444060.043782Hyaluronan Binding Protein 2 Activates coagulation factor VIICideb2.6455635520.069948Like Effector BCpn2Immunoglobulin Superfamily, Member 5				are the result of reciprocal
2.6274580510.082465gene and other genes.Gstm6GlutathioneS-Transferase2.6336686810.070974Mu 6Reep6Hyaluronan Binding Protein 2 Activates coagulation factor VIICidebCell Death-Inducing DFFA- Like Effector BCpn2Immunoglobulin Superfamily, Member 5				translocations between this
Gstm6 2.633668681 0.070974 Glutathione S-Transferase Reep6 0.070974 Mu 6 Hyaluronan Binding Protein 2.635844406 0.043782 factor VII Cideb 2.645563552 0.069948 Like Effector B Cpn2 Immunoglobulin Superfamily, Member 5		2.627458051	0.082465	gene and other genes.
2.6336686810.070974Mu 6Reep6Hyaluronan Binding Protein 2 Activates coagulation factor VIICidebCell Death-Inducing DFFA- Like Effector BCpn2Immunoglobulin Superfamily, Member 5	Gstm6			Glutathione S-Transferase
Reep6Hyaluronan Binding Protein 2 Activates coagulation factor VII2.6358444060.043782factor VIICidebCell Death-Inducing DFFA- Like Effector BCpn2Immunoglobulin Superfamily, Member 5		2.633668681	0.070974	Mu 6
2.635844406 0.043782 2 Activates coagulation factor VII Cideb 2.645563552 0.069948 Cell Death-Inducing DFFA-Like Effector B Cpn2 Immunoglobulin Superfamily, Member 5	Reep6			Hyaluronan Binding Protein
2.635844406 0.043782 factor VII Cideb Cell Death-Inducing DFFA- 2.645563552 0.069948 Cpn2 Immunoglobulin Superfamily, Member 5				2 Activates coagulation
Cideb Cell Death-Inducing DFFA- 2.645563552 0.069948 Like Effector B Cpn2 Immunoglobulin Superfamily, Member 5		2.635844406	0.043782	factor VII
2.645563552 0.069948 Like Effector B Cpn2 Immunoglobulin Superfamily, Member 5	Cideb			Cell Death-Inducing DFFA-
Cpn2 Immunoglobulin Superfamily, Member 5	-	2.645563552	0.069948	Like Effector B
Superfamily, Member 5	Cpn2			Immunoglobulin
				Superfamily, Member 5
Provides, together with				Provides, together with
MAGI1, adnesion				MAGI1, adnesion
machinery at tight				inachinery at tight
junctions, which may				regulate the permechility of
kidnov domorulus and				kidney domorulus and
small intestinal onitholial				small intestinal enithelial
smail mesunai epimeliai				cells Mediates calcium
2.650154062 0.032905 independent homophilic		2 650154062	0.032905	independent homophilic

			cell adhesion.
SIc2a9			Solute Carrier Family 2
			(Facilitated Glucose
	2.650190179	0.043782	Transporter), Member 9
Cyp3a41a			Cytochrome P450, Family
			3, Subfamily A, Polypeptide
	2.656839519	0.060404	41
Gcnt4			Rho Guanine Nucleotide
			Activatos Phoc CTPaso by
			promoting the exchange of
			GDP by GTP Required for
			the formation of membrane
			ruffles during
			macropinocytosis.
			Required for the formation
			of cup-like structures during
			trans-endothelial migration
			of leukocytes. In case of
			Salmonella enterica
			infection, activated by
			SopB, which induces
			cytoskeleton
	0.050000540	0.075740	rearrangements and
E12	2.000039019	0.075716	Coogulation Easter XII
F1Z	2,658890268	0.040904	(Hageman Factor)
Marcksl1-ps4			Inter-Alpha-Trypsin
-			Inhibitor Heavy Chain 3
			May act as a carrier of
			hyaluronan in serum or as
			a binding protein between
			hyaluronan and other
			matrix protein, including
			those on cell surfaces in
			tissues to regulate the
			localization, synthesis and
			which are essential to colle
			undergoing biological
	2,670699756	0.037689	processes
Mmd2	2.010000100	0.001000	Glucagon Receptor
			important in controlling
	2.670699756	0.038978	blood glucose levels.
F7	2.673319736	0.050901	Coagulation Factor VII

			(Serum Prothrombin
			Conversion Accelerator)
Ces1g			Cadherin-Related Family
			Member 3 Cadherins are
			calcium-dependent cell
			adhesion proteins. They
			preferentially interact with
			themselves in a homophilic
			manner in connecting cells;
			cadherins may thus
	0.074400400	0.007700	contribute to the sorting of
A free	2.674186169	0.027783	Aforesia
Afm	2.674359521	0.080056	Atamin
Gm10319			Fidgetin-Like 1 May
			regulate osteoplast
	2 670404524	0.00745	differentiation and
<u>C</u> 9a	2.079104524	0.02715	DAPD1 Pinding Protoin
Coy			PARE I binding Flotein
			repair and in the
			maintenance of genomic
	2,67916316	0.067583	stability
Aadac			Claudins are found at tight
			junctions as a physical
			barrier and known for
			maintaining cell polarity
	2.679392746	0.083536	and signal transductions
Cyp2j5			Cytochrome P450, Family
			2, Subfamily J, Polypeptide
	2.687014429	0.051361	5
Spp2			Secreted Phosphoprotein
	2.687788106	0.064504	2, 24kDa
Pcbd1			Pterin-4 Alpha-
			Carbinolamine
			Denydratase/Dimerization
	0 000 475077	0.074470	Cofactor Of Hepatocyte
Afraid	2.688475977	0.074172	Nuclear Factor 1 Alpha
Annu Dalvre?	2.089/40058	0.055656	Arynormannuase
Fgiyipz			rolated to coloium ion
	2 603866628	0.051312	hinding
Ttr	2.033000020	0.001012	Transthyretin
Nr1i2	2.090007000	0.095069	Vitropectin Vitropectin is a
	2 60777710	0 03//75	cell adhesion and
	2.0311113	0.004475	

			spreading factor found in
			serum and tissues.
			Vitronectin interact with
			glycosaminoglycans and
			proteoglycans. Is
			recognized by certain
			members of the integrin
			family and serves as a cell-
			to-substrate adhesion
			molecule. Inhibitor of the
			membrane-damaging effect
			of the terminal cytolytic
			complement pathway
Sult1d1			Heparan Sulfate
			(Glucosamine) 3-O-
	2.702094544	0.051361	Sulfotransferase 3B1
Cyp3a25			Protease, serine 34
			peptide cross-linking via
			chondroitin 4-sulfate
			glycosaminoglycan,
			proteolysis Component
			extracellular matrix,
			extracellular space
			Function
			glycosaminoglycan binding,
	2.705934786	0.085328	heparin binding,
F13b			Mannan-binding lectin
			serine peptidase 2
			important role in the
			activation of the
	2.721750009	0.083353	complement system
Apof	2.721775643	0.051361	Apolipoprotein F
Mafa			C-Reactive Protein,
			Pentraxin-Related Displays
			several functions
			associated with host
			defense: it promotes
			agglutination, bacterial
			capsular swelling,
			phagocytosis and
			complement fixation
			through its calcium-
			dependent binding to
			phosphorylcholine. Can
	2.722636289	0.019397	interact with DNA and

			histones and may
			scavenge nuclear material
			released from damaged
			circulating cells
Vtn	2.724939798	0.060404	Vitronectin
9030619P08Rik	2.725088771	0.01421	Unclassified gene
Cyp3a13			Claudins are found at tight
			junctions as a physical
			barrier and known for
			maintaining cell polarity
	2.730187574	0.02715	and signal transductions
ltih3			Inter-Alpha-Trypsin
	2.730197604	0.055656	Inhibitor Heavy Chain 3
Gc			Group-Specific Component
	2.731122478	0.084768	(Vitamin D Binding Protein)
Alb	2.740710898	0.079844	Albumin
Hpn			Transcription Factor 23
			Lacks DNA binding activity.
			Seems to play a role in the
			inhibition of myogenesis
	2.742282429	0.047668	(By similarity)
Cyp2a12			Cytochrome P450, Family
			2, Subfamily A, Polypeptide
	2.745035777	0.053402	13
Prodh2			Carboxylesterase 1
			Involved in the
			detoxification of xenobiotics
			and in the activation of
	2.745077892	0.022186	ester and amide prodrugs.
Cps1			Carbamoyl-Phosphate
	2.752975783	0.079989	Synthase 1, Mitochondrial
F9	2.757502507	0.045806	Coagulation Factor IX
Aldob			Ankyrin Repeat And Sterile
	0 75700 40 4	0.007750	Alpha Motif Domain
A = 4	2.75783464	0.037759	Containing 4B
Asgri	0 7005 400 40	0.050050	Asialogiycoprotein
1/m ard	2.760542813	0.052953	
rigi	2.760911134	0.098386	
F2			Polassium
			Intermediate/Small
			A stivete d Observed
			Activated Channel,
	0 704040744	0.070074	Subtamily IN, Member 2
	2.761612741	0.070974	Forms a voltage-

			independent potassium
			channel activated by
			intracellular calcium.
			Activation is followed
			by membrane
			hyperpolarization.
Hal			Gap Junction Protein, Beta
			1, 32kDa One gap junction
			consists of a cluster of
			closely packed pairs of
			transmembrane channels,
			the connexons, through
			which materials of low MW
			diffuse from one cell to a
	2.770854795	0.000457	neighboring cell
Baat			Von Willebrand Factor C
			And EGF Domains May be
			a regulatory element in the
			beta-catenin signaling
			pathway and a target for
			chemoprevention of
	2.778243606	0.019594	hapatocellular carcinoma
Abcg8			Osteocalcin Bone Gamma-
			Carboxyglutamate (Gla)
	2.780288082	0.085798	Protein bone building
Cpb2			Carboxypeptidase B2
	2.783670735	0.067583	(Plasma)
Fmo5			Mannan-binding lectin
			serine peptidase 2
			important role in the
			activation of the
	2.785606334	0.046008	complement system
Hnf4a	0.700000500	0.05700.0	Hepatocyte Nuclear Factor
41400074	2.793002523	0.057284	4, Alpha
AI182371	2.802086494	0.083435	Unclassified gene
Cyp17a1			Cystathionine-beta-
			synthase Important
			regulator of hydrogen
			sulfide, especially in the
			brain, utilizing cysteine
			instead of serine to
			catalyze the formation of
			hydrogen sulfide. Hydrogen
			sulfide is a
	2.803365334	0.038728	gastratransmitter with

			signaling and
			cytoprotective effects such
			as acting as a
			neuromodulator in the brain
			to protect neurons against
			hypoxic injury (By
			similarity)
Zfp750	2.807804337	0.045159	Zinc Finger Protein 750
Dpys	2.816179157	0.043853	Dihydropyrimidinase
SIc6a13			Anillin, Actin Binding
			Protein Required for
			cytokinesis. Essential for
			the structural integrity of
			the cleavage furrow and for
	2 021275005	0 00200	
Ano22	2.021270000	0.06206	
Apuaz	2.822801971	0.055656	C Reactive Protein
Crp	2 838365226	0.055656	C-Reactive Protein,
Asar2	2.030303220	0.000000	
ASYIZ	2 839350371	0.037086	Recentor 2
Cpn1	2.00000011	0.007000	Selenocysteine involved in
opini	2.842127601	0.08377	antioxidant behavior
Rhbg			Rh Family, B Glycoprotein
5	2.849832393	0.081594	(Gene/Pseudogene)
Gm20337	2.849832393	0.082841	Unclassified gene
Hgfac	2.852604219	0.058987	HGF Activator
Fgb	2.852860973	0.065778	Fibrinogen Beta Chain
Masp2			Mannan-Binding Lectin
	2.854041271	0.040635	Serine Peptidase 2
Tfr2	2.854891105	0.05808	Transferrin Receptor 2
Glyctk	2.855620374	0.047668	Glycerate Kinase
Lcat			Lecithin-Cholesterol
	2.863591498	0.069948	Acyltransferase
Арос3	2.867709671	0.023702	Apolipoprotein C-III
Ces1e	2.869353896	0.070974	Carboxylesterase 1
Hrg	2.871702688	0.051139	Histidine-Rich Glycoprotein
Cfhr2			Complement Factor H-
	2.87267761	0.064749	Related 2
Cyp2c50			Melanoma Inhibitory
			Activity Elicits growth
			inhibition on melanoma
	2.872843692	0.084085	cells in vitro as well as

			some other
			neuroectodermal tumors,
			including gliomas
Tmprss6			Transmembrane Protease,
	2.877900189	0.066993	Serine 6
1300017J02Rik			Dentin Matrix Acidic
	2.887647252	0.058369	Phosphoprotein 1
Ces1b	2.892194086	0.019397	Unclassified gene
SIc26a1			Solute Carrier Family 26
			(Anion Exchanger),
	2.899427534	0.029464	Member 1
Apoc4	2.90323266	0.03157	Apolipoprotein C-IV
Azgp1			Alpha-2-Glycoprotein 1,
	2.905867778	0.055656	Zinc-Binding
Plg	2.905893263	0.054751	Plasminogen
Cyp2c68			Cytochrome P450, Family
			2, Subfamily C, Polypeptide
	2.92894573	0.045873	68
SIc23a1			Solute Carrier Family 23
			(Ascorbic Acid
	2.936737923	0.011953	Transporter), Member 1
Cyp2d10			Cytochrome P450, Family
			2, Subfamily D, Polypeptide
	2.937540789	0.047483	10
SIc22a27			Solute Carrier Family 22
			(Organic Anion
	2.93760266	0.055656	Transporter), Member 27
Proz			Protein Z, Vitamin K-
	0 000744404		Dependent Plasma
	2.938711184	0.08155	Glycoprotein
Aadat	0.040407000	0.045007	Aminoadipate
A	2.942427808	0.015937	Aminotransferase
Agxt2			Homeobox protein nox-3a
			nousekeeping gene
			developmental regulatory
			system that provides
	2 040410520	0.064227	identities
Pdb7	2.349410329	0.004327	Potinol Dobydrogonogo 7
Kulli	2 050113823	0.065051	(All-Trans)
Anoh	2.000110020	0.000001	Apolipoprotein H (Reta-2
Арон	2 952108441	0.056854	Glycoprotein I)
Sult2a5		0.000004	Sulfotransferase Family
Cultzas	2 95345137	4 69E-05	Cytosolic 24
			<i></i> ,

			Dehydroepiandrosterone
			(DHEA)-Preferring,
			Member 5
Adh4			Alcohol Dehydrogenase 4
	2.95345137	0.056854	(Class II), Pi Polypeptide
Kcnn2			Potassium Channel,
			Calcium Activated
			Intermediate/Small
			Conductance Subfamily N
	2.954895302	0.013598	Alpha, Member 2
1190003J15Rik	2.957167744	0.01551	Unclassified gene
Cyp3a59			Cytochrome P450, Family
			3, Subfamily A, Polypeptide
	2.957457234	0.086107	59
Hamp2			Hepcidin Antimicrobial
	2.959202867	0.000115	Peptide 2
Acox2			Acyl-CoA Oxidase 2,
	2.966017249	0.023531	Branched Chain
Nr0b2			Nuclear Receptor
			Subfamily 0, Group B,
	2.968112329	0.05832	Member 2
Cbs			Cystathionine-Beta-
<u> </u>	2.9753635	0.028399	Synthase
Dmgdh	0.070004500	0.050004	Dimethylglycine
	2.976881529	0.050901	Denydrogenase
Pipox	2.977336073	0.046442	Pipecolic Acid Oxidase
Akr1c12	0 077 470050	0.005074	Aldo-Keto Reductase
D	2.977476853	0.025271	Family 1, Member C12
Proc			S100 Calcium Binding
			Protein A9 S100A9 Is a
			calcium- and zinc-binding
			protein which plays a
			regulation of inflammatory
			processes and immuno
	2 9813/0/83	0.046794	response
Amhn	2.3013-0-03	0.040734	Alpha-1-
			Microalobulin/Bikunin
	2 982403628	0.081594	Precursor
Pah	2.984956402	0.053402	Phenylalanine Hydroxylase
Fbp1	2.001000102	0.000+02	Desmoglein 2 Component
			of intercellular desmosome
			junctions. Involved in the
	2.9854912	0.044152	interaction of plaque

			proteins and intermediate
			filaments mediating cell-cell
•			adhesion
Cml1			Neuronatin May participate
			in the maintenance of
			segment identity in the
			hindbrain and pituitary
			development, and
			of the overall structure of
			the pervoue system May
			function as a regulatory
	2 087504250	0.032750	subunit of ion channels
Ran	2.907394239	0.032739	Regucalcin
lvd	2.00628826	0.070014	Indotyrosine Deiodinase
Akr1c20	2.99020020	0.000001	Aldo-Keto Reductase
	3,003607499	0.07171	Family 1. Member C20
Serpinc1			Serpin Peptidase Inhibitor.
			Clade C (Antithrombin),
	3.004517545	0.043782	Member 1
Sult2a3			Sulfotransferase Family,
			Cytosolic, 2A,
			Dehydroepiandrosterone
			(DHEA)-Preferring,
	3.0082184	0.022331	Member 3
Hoga1			4-Hydroxy-2-Oxoglutarate
	3.012196349	0.067585	Aldolase 1
Cyp2c70	3.019497052	0.060664	Unclassified gene
Habp2			Hyaluronan Binding Protein
N4	3.019922607	0.074172	2
IVIUg1	3.035155395	0.099636	Unclassified gene
Abcg5			ATP-Binding Cassette,
	2 025045752	0.00155	Sub-Family G (WHITE),
A020016022Di	3.030043733	0.06155	
A930010022Ki	3 038171586	0.043782	
Sic6a12	3.030171300	0.043702	Solute Carrier Family 6
CIUCUTZ			(Neurotransmitter
	3.038799244	0.028791	Transporter). Member 12
C8b			Complement Component 8.
	3.0404134	0.083536	Beta Polypeptide
Serpina1b			Serpin Peptidase Inhibitor,
			Clade A (Alpha-1
	3.047712744	0.047483	Antiproteinase, Antitrypsin),

			Member 1
Agmat			Agmatine Ureohydrolase
-	3.05216902	0.019341	(Agmatinase)
Pbld2			Phenazine Biosynthesis-
			Like Protein Domain
• •	3.052728089	0.040833	Containing
Cesza			Forknead Box A3
			thought to get as a 'pioneer'
			factor opening the
			compacted chromatin for
			other proteins through
			interactions with
			nucleosomal core histones
			and thereby replacing linker
			histones at target enhancer
			and/or promoter sites
			Involved in regulation of
			neuronal-specific
			transcription. May be
	3 052080003	0.080027	spermatogenesis
Sernind1	3.052303003	0.000327	Serpin Peptidase Inhibitor
Corpinar			Clade D (Heparin
	3.059090798	0.078095	Cofactor), Member 1
Timd2			Paired box 5 differentiation
	3.064278526	0.039953	of b cells, neural regulation
Bhmt2			Integrin b cell adhesion cell
	3.071062126	0.016586	to matrix adhesion
Cyp2d26			Leptin May function as part
			of a signaling pathway that
			the body fat depot. An
			increase in the level of LEP
			may act directly or
			indirectly on the CNS to
			inhibit food intake and/or
			regulate energy
			expenditure as part of a
			homeostatic mechanism to
	0.00000704	0.054004	maintain constancy of the
Mia2	3.086998721	0.051361	Spootrin Pote Non
IVIIdZ			Enuthropytic 2 Probably
	3.095540611	0.029464	plays an important role in
	0.000010011	0.0101	

			neuronal membrane
			skeleton
0610005C13Rik			Integrin binding sialoprotein
	2 101045722	0.047669	
Abaa6	3.101943733	0.047000	ATP Rinding Cossette
ADCCO			Sub-Eamily
	3 105270819	0.007388	(CETR/MRP) Member 6
Tdo2	3.103270013	0.037300	Glycosylphosphatidylinosito
1002			I Specific Phospholipase
			D1 This protein hydrolyzes
			the inositol phosphate
			linkage in proteins
			anchored by
			phosphatidylinositol
			glycans (GPI-anchor) thus
			releasing these proteins
	3.119418527	0.029946	from the membrane
Mir133a-2	3.127588324	0.080858	MicroRNA 133a-2
Arg1			Inhibin, Beta A
			Inhibins/activins are
			involved in regulating a
			number of diverse functions
			such as hypothalamic and
			bormono socration, dorm
			cell development and
			maturation erythroid
			differentiation insulin
			secretion, nerve cell
			survival, embryonic axial
			development or bone
			growth, depending on their
	3.127932184	0.012396	subunit composition.
Akr1b7			Ficolin B marks apoptotic
	3.128003	0.005831	and necrotic cells
1810008I18Rik	3.128147614	0.008883	Unclassified gene
SIc17a4			Solute Carrier Family 17,
	3.128221182	0.014339	Member 4
Hpd			Cell death-inducing DNA
			tragmentation factor-like
	0.404400700	0.04440	effector involved in
	3.134423723	0.04116	apoptosis

Grb7			Growth Eactor Receptor-
	3.13455911	0.01683	Bound Protein 7
Cfhr1			Complement Factor H-
	3.135059509	0.055656	Related 1
Serpina1c			Serpin Peptidase Inhibitor,
			Antiprotoinaso Antitrupsin
	3,145614427	0.053918	Member 1
Serpinf2			Serpin Peptidase Inhibitor,
-			Clade F (Alpha-2
			Antiplasmin, Pigment
	2 4 40202002	0.054505	Epithelium Derived Factor),
Det	3.146203902	0.051525	Member 2
DCI			Cyclodeaminase Binds and
			promotes bundling of
			vimentin filaments
			originating from the Golgi
	3.170904657	0.008883	(By similarity)
Foxa2	3.170904657	0.061603	Forkhead Box A2
Qprt	2 171064902	0.00046	Quinolinate
Asndh	3.171004093	0.029940	Aspartate Debydrogenase
Aspun	3 175473602	0.021193	Domain Containing
SIc27a5		0.021100	Pyrimidinergic Receptor
			P2Y, G-Protein Coupled, 4
			They have diverse
			physiological roles
			including regulation of
			platelet aggregation,
			neurotransmission, and
			epithelial cell
			communication and
	3.178800433	0.057457	migration.
Hnf1a	3.196589308	0.012396	HNF1 Homeobox A
Mst1	3.201750618	0.028399	Macrophage Stimulating 1
Atp7b			Al Pase, Cu++
	3 209440083	0.031830	Polypentide Beta
Hnf1b	0.200440000	0.001009	Nuclear Receptor
			Subfamily 5, Group A,
			Member 2 Key regulator of
	3.209440083	0.035907	cholesterol 7-alpha-

			hydroxylase gene (CYP7A)
			expression in liver. May
			also contribute to the
			regulation of pancreas-
			specific genes and play
			important roles in
			embryonic development
Ryr2			Nicotinamide Riboside
			Kinase 2 Reduces laminin
			matrix deposition and cell
			adhesion to laminin, but not
			to fibronectin. Involved in
			the regulation of PXN at the
			protein level and of PXN
			tyrosine phosphorylation.
			May play a role in the
			regulation of terminal
	3.209440083	0.037086	myogenesis
Cyp2c40			Selenocysteine involved in
	3.209440083	0.088358	antioxidant behavior
Hgd			Dimethylglycine
			Dehydrogenase This gene
			encodes an enzyme
			involved in the catabolism
			of choline, catalyzing the
			oxidative demethylation of
			dimethylglycine to form
			sarcosine. The enzyme is
			found as a monomer in the
			mitochondrial matrix, and
			uses flavin adenine
			dinucleotide and folate as
			cofactors. Mutation in this
			gene causes
			dimethylglycine
			dehydrogenase deficiency,
			characterized by a fishlike
			body odor, chronic muscle
			aligue, and elevated levels
	2 212000102	0.047000	
Cup2o54	3.213909162	0.047933	Creatine kinase in serum.
Cypzc54			2 Subformily C. Dolumentide
	2 210969672	0.002200	
Angenti3	2 227925555	0.092399	DAR15 Effector Drotein
Angpus	3.227033335	0.030307	RADIS Effector Protein
			Regulates transferrin
------------	----------------	----------	-----------------------------
			receptor recycling from the
			endocytic recycling
			compartment
Upb1			HOP Homeobox
			Overexpression causes
			cardiac hypertrophy (By
	0 0005 4 4 405	0.055500	similarity). May act as a
	3.230544405	0.055502	tumor suppressor
FtCd	2 22200004	0.004040	Formimidoyitransferase
0	3.23200034	0.034048	Cyclodeaminase
Cyp4f14			Cytochrome P450, Family
	2 2224 46002	0.052402	
Cm10769	3.233140992	0.053402	14
Giii 10700	3.23340507	0.080858	
Ethkz			differentiation encoded 2
			kov plover in muscular
	2 226611161	0.022005	dystrophy
Somala	5.250011101	0.032903	Soma Domain
Jennary			Immunoglobulin Domain
			(Ig) Transmembrane
			Domain (TM) And Short
			Cytoplasmic Domain.
	3.241139985	0.045159	(Semaphorin) 4G
Abcb11			Selenocysteine involved in
	3.248935938	0.055502	antioxidant behavior
Mug-ps1			CAMP Responsive
			Element Binding Protein 3-
			Like 3 Transcription factor
			that may act during
			endoplasmic reticulum
			stress by activating
			unfolded protein response
			target genes. Activated in
			response to cAMP
			stimulation. In acute
			inflammatory response,
			may activate expression of
			acute phase response
			(AFR) genes. May be
	2 2/0220101	0.020012	
SIc10a1	3.249230191	0.029912	Soluto Carrier Family 10
SICTUAT	3 25230001	0.039507	(Sodium/Bilo
	5.25250001	0.030307	

			Cotransporter), Member 1
SIc22a30			Solute Carrier Family 22
			(Organic Ánion
	3.255356308	0.079989	Transporter), Member 30
Car5a			Carbonic Anhydrase VA,
	3.263940659	0.00044	Mitochondria
Rgs16			Regulator Of G-Protein
-	3.266306131	0.018413	Signaling 16
SIc2a2			Solute Carrier Family 2
			(Facilitated Glucose
	3.277581446	0.046008	Transporter), Member 2
Aldh8a1			Aldehyde Dehydrogenase
	3.281164141	0.045057	8 Family, Member A1
Sall1			Spalt-Like Transcription
	3.281691929	0.03852	Factor 1
Gstm3			Type II transmembrane
			serine protease involved in
			blood coagulation and cell
			growth and morphology
	3.295955467	0.059895	maintenance
Cyp2a5			Cytochrome P450, Family
			2, Subfamily A, Polypeptide
	3.296794317	0.069401	5
Uox			Urate Oxidase,
	3.328465674	0.058382	Pseudogene
Gnmt			Glycine N-
	3.336355746	0.013882	Methyltransferase
Gjb1			Zinc Finger Protein 750
			Transcription factor
			involved in epidermis
			differentiation. Required for
			terminal epidermal
	3.34218346	0.048648	differentiation:
Hsd3b3			Hydroxy-Delta-5-Steroid
			Dehydrogenase, 3 Beta-
			And Steroid Delta-
	3.345704209	0.022829	Isomerase 3
Otc			Ornithine
	3.351946566	0.045806	Carbamoyltransferase
Sult2a7			Sulfotransferase Family,
			Cytosolic, 2A,
			Dehydroepiandrosterone
			(DHEA)-Preferring,
	3.360404901	0.035475	Member 7

Keg1	3.380950701	0.000601	Unclassified gene
Serpina1d			Serpin Peptidase Inhibitor,
			Clade A (Alpha-1
			Antiproteinase, Antitrypsin),
	3.383334435	0.044152	Member 1
Agxt			Synaptotagmin I regulatory
			role in the membrane
			interactions during
			trafficking of synaptic
			vesicles at the active zone
	3.385754357	0.07193	of the synapse.
Acsm1			Acyl-CoA Synthetase
			Medium-Chain Family
	3.397470054	0.041922	Member 1
Adamts13			ADAM Metallopeptidase
			With Thrombospondin Type
	3.4125908	0.08155	1 Motif, 13
P2ry4			Pyrimidinergic Receptor
	3.4125908	0.082319	P2Y, G-Protein Coupled, 4
Ccdc151			Coiled-Coil Domain
	3.4125908	0.082763	Containing 151
Acat3			Acetyl-CoA
	3.420619147	0.004491	Acetyltransferase 2
0610031016Rik			Osteocalcin Bone Gamma-
			Carboxyglutamate (Gla)
	3.430349025	0.018942	Protein bone building
Gckr			Glucokinase (Hexokinase
	3.442102174	0.044684	4) Regulator
Akr1d1			Seizure Related 6 Homolog
			(Mouse)-Like ontribute to
			specialized endoplasmic
	0 4 4 7 4 0 0 0 0	0.004004	reticulum functions in
	3.444713939	0.024084	neurons
Наао	0 453503530	0.000440	3-Hydroxyanthranilate 3,4-
01-00-7	3.45/56/5/3	0.022112	Dioxygenase
SICZZAI			Solute Carrier Family 22
	2 40000704	0.070504	(Organic Anion
DC004000	3.466830764	0.076594	Transporter), Member 7
DCU24380			Bound Drotoin 7 Adopter
			protoin that interacts with
			the extendermin demain of
			and modulates down
	3 178587777	0.030903	stroom signaling Promotos
	3.4/030////	0.009000	SUCALL SULLAILU. FIULUUES

			activation of down-stream protein kinases, including
			STAT3, AKT1, MAPK1
			and/or MAPK3. Promotes
			activation of HRAS. Plays a
			role in signal transduction
			a role in the regulation of
			cell proliferation and cell
			migration. Plays a role in
			the assembly and stability
			of RNA stress granules.
2810459M11Rik			Aggrecan proteoglycan in
			ECM aims to resist
	3.492435219	0.024241	compression in cartilage
Gls2	0.40000000	0.00.100	Glutaminase 2 (Liver,
	3.49290308	0.02466	Mitochondrial)
Mup9	3.497058371	0.096948	Unclassified gene
Uroc1	3.520338054	0.019218	Urocanate Hydratase 1
Pbld1			Phenazine Biosynthesis-
	2 526020021	0.022005	Like Protein Domain
Cyp2621	3.520000021	0.032905	Cutochromo P450 Eamily
Cypzoal			26 Subfamily A
	3.531412444	0.015937	Polypeptide 1
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for hematopoiesis. Functions
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for hematopoiesis. Functions in a cell-context and
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for hematopoiesis. Functions in a cell-context and development-specific
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for hematopoiesis. Functions in a cell-context and development-specific manner. Regulates
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for hematopoiesis. Functions in a cell-context and development-specific manner. Regulates neutrophil differentiation, promotes proliferation of
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for hematopoiesis. Functions in a cell-context and development-specific manner. Regulates neutrophil differentiation, promotes proliferation of lymphoid cells, and is
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for hematopoiesis. Functions in a cell-context and development-specific manner. Regulates neutrophil differentiation, promotes proliferation of lymphoid cells, and is required for granulocyte
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for hematopoiesis. Functions in a cell-context and development-specific manner. Regulates neutrophil differentiation, promotes proliferation of lymphoid cells, and is required for granulocyte development. Mediates,
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for hematopoiesis. Functions in a cell-context and development-specific manner. Regulates neutrophil differentiation, promotes proliferation of lymphoid cells, and is required for granulocyte development. Mediates, together with U2AF1L4, the
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for hematopoiesis. Functions in a cell-context and development-specific manner. Regulates neutrophil differentiation, promotes proliferation of lymphoid cells, and is required for granulocyte development. Mediates, together with U2AF1L4, the alternative splicing of CD45
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for hematopoiesis. Functions in a cell-context and development-specific manner. Regulates neutrophil differentiation, promotes proliferation of lymphoid cells, and is required for granulocyte development. Mediates, together with U2AF1L4, the alternative splicing of CD45 and controls T-cell receptor
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for hematopoiesis. Functions in a cell-context and development-specific manner. Regulates neutrophil differentiation, promotes proliferation of lymphoid cells, and is required for granulocyte development. Mediates, together with U2AF1L4, the alternative splicing of CD45 and controls T-cell receptor signaling. Regulates the
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for hematopoiesis. Functions in a cell-context and development-specific manner. Regulates neutrophil differentiation, promotes proliferation of lymphoid cells, and is required for granulocyte development. Mediates, together with U2AF1L4, the alternative splicing of CD45 and controls T-cell receptor signaling. Regulates the endotoxin-mediated Toll-
Mup4	3.531412444	0.015937	Polypeptide 1 Growth Factor Independent 1 Transcription Repressor Transcription repressor essential for hematopoiesis. Functions in a cell-context and development-specific manner. Regulates neutrophil differentiation, promotes proliferation of lymphoid cells, and is required for granulocyte development. Mediates, together with U2AF1L4, the alternative splicing of CD45 and controls T-cell receptor signaling. Regulates the endotoxin-mediated Toll- like receptor (TLR)

			antagonizing RELA
Ttc36	2 55220222	0.040204	Cbl Proto-Oncogene C, E3 Ubiquitin Protein Ligase Regulator of EGFR mediated signal
Hao2	3.553368363	0.012381	transduction Hydroxyacid Oxidase 2
	3.56948483	0.021428	(Long Chain)
Foxa3	3.570853365	0.02217	Forkhead Box A3
Cyp7a1	3.591204075	0.019065	Chemokine-Like Receptor 1 Receptor for the chemoattractant adipokine chemerin/RARRES2 and for the omega-3 fatty acid derived molecule resolvin E1. Interaction with RARRES2 induces activation of intracellular signaling molecules, such as SKY, MAPK1/3 (ERK1/2), MAPK14/P38MAPK and PI3K leading to multifunctional effects, like, reduction of immune responses, enhancing of adipogenesis and angionesis.
Nags	3.603383439	0.047668	N-Acetylglutamate Synthase
Aqp8	3.620851616	0.000325	Aquaporin 8
Upp2	3.642869945	0.056526	Dendrocyte Expressed Seven Transmembrane Protein Probable cell surface receptor that plays several roles in cellular fusion, cell differentiation, bone and immune homeostasis.
Amdhd1	3.661765286	0.015975	RIKEN cDNA 2810417H13 gene chromatin binding cellular response to DNA damage
Nr5a2	3.703605046	0.051043	Carbohydrate (Chondroitin

			6) Sulfotransferase 3
			Chondroitin sulfate
			constitutes the predominant
			proteoglycan present in
			cartilage and is distributed
			on the surfaces of many
			cells and extracellular
			matricos. May play a rolo in
			the maintenance of noive
			T lymphosytop in the
Sult2a2	2 7/2021629	1 51 5 1 2	Spieen
	3.742921030	4.51E-12	Cut Like Homoshov 2
	3.748697977	0.014695	
2610528J11RIK	3.756886737	0.03852	Unclassified gene
Lrit2			Leucine-Rich Repeat,
			Immunoglobulin-Like And
			Transmembrane Domains
	3.756886737	0.043177	2
Cdhr3			Neutrophilic granule protein
	3.790938756	0.02217	neutrophils immune
Ugt1a5			Vitamin D (1,25-
			Dihydroxyvitamin D3)
			Receptor Plays a central
	3.791214918	0.047483	role in calcium homeostasis
Sds	3.887522026	0.007376	Serine Dehydratase
F11	3.891558943	0.046511	Coagulation Factor XI
Svt1			PDZ Domain Containing 1
			encodes a PDZ domain-
			containing scaffolding
			protein PDZ domain-
			containing molecules bind
			to and mediate the
			subcellular localization of
	3.942248085	0.002959	target proteins.
Cvp2d9			Cytochrome P450, Family
0)0-00			2. Subfamily D. Polypeptide
	3 946254616	0.080927	6
Pkhd1		0.000027	Polycystic Kidney And
			Hepatic Disease 1
	4.034642668	0.026111	(Autosomal Recessive)
Dsg1c		0.020111	Desmoglein 11 Component
209.0			of intercellular desmosome
			junctions. Involved in the
	4 034642668	0.032318	interaction of plaque
	7.007072000	0.052510	interaction of plaque

			proteins and intermediate filaments mediating cell-cell
l rit1			Leucine-Rich Repeat
			Immunoglobulin-Like And
			Transmembrane Domains
	4.034967101	0.00979	1
Xkr9			XK, Kell Blood Group
			Complex Subunit-Related
	4.034967101	0.045873	Family, Member 9
Gsta2			Glutathione S-Transferase
			Alpha 2 Conjugation of
			reduced glutathione protect
	4.103177744	6.20E-06	against ROS
5033403H07Rik	4.122085393	0.014761	Unclassified gene
Pcsk9			Proprotein Convertase
			Subtilisin/Kexin Type 9
			Crucial player in the
			regulation of plasma
			cholesterol homeostasis.
			Binds to low-density lipid
			Receptor family members
			Regulates neuronal
			apoptosis via modulation of
			LRP6/APOER2 levels and
	1 127105551	0.010307	signaling pathways
Sult1o1	4.127103334	0.019397	Sulfotransferase Family 1F
Suitter			Estrogen-Preferring
	4,149450823	6.56E-06	Member 1
ldo2		0.001 00	Indoleamine 2.3-
	4.165918534	0.001065	Dioxygenase 2
Sftpa1			Surfactant, Pulmonary-
			Associated Protein A for
	4.23486603	8.31E-06	alveolar stability
Gm8883	4.281969586	0.000203	Unclassified gene
Pnpla1			Patatin-Like Phospholipase
	4.337403369	0.026621	Domain Containing 1
Hsd3b2			Hydroxy-Delta-5-Steroid
			Dehydrogenase, 3 Beta-
	4 007400000	0.050.400	And Steroid Delta-
0.110.4	4.337403369	0.053402	Isomerase 2
Sult3a1	4.355723394	0.000133	Unclassified gene
Fam47e	4.525127289	0.000325	Family With Sequence

			Similarity 47, Member E
Adh6-ps1	4.528934836	0.001411	Unclassified gene
Vwce			Von Willebrand Factor C
	4.617976069	0.016182	And EGF Domains
Sftpc			Surfactant, Pulmonary-
			Associated Protein C for
	4.686973256	1.68E-08	alveolar stability
Cyp2g1			Cytochrome P450, Family
			2, Subfamily G,
	4.697993101	0.000517	Polypeptide 1 Pseudogene
Asic5			Acid-Sensing (Proton-
			Gated) Ion
			Channel Functions as a
			postsynaptic proton
			intropolition Co(2)
			intracellular Ca(2+)
			protein kinase II
			phosphorylation and
			thereby the density of
	4,697993101	0.000792	dendritic spines.
Sec14I3			Selenocysteine involved in
	4.896406666	0.000169	antioxidant behavior
Sult1b1			Sulfotransferase Family,
	5.122234712	0.021428	Cytosolic, 1B, Member 1
Sftpb			Surfactant, Pulmonary-
			Associated Protein B for
	5.262777738	6.56E-06	alveolar stability
Meiob			Meiosis Specific With OB
	5.366787213	4.75E-06	Domains
Anks4b			Ankyrin Repeat And Sterile
	5 500050530	0.000000	Alpha Motif Domain
Olduda 10	5.538959579	0.008883	Containing 4B
Clan18			Claudins are found at tight
			Junctions as a physical
	6 270225205	0.027640	and signal transductions
Nnna	6.219233393	5.01E.06	Natriuretic Pentide A
Cloc2b	0.313437720	5.01E-06	C-Type Loctin Domain
	6 415049264	0.023444	Eamily 2 Member H
Lamn3	0.410040204	0.020444	Lysosome associated
Lampo	6.539170587	0.014339	membrane protein
		3.0	

118			Interleukin-8 important
			mediator of the innate
	6.759345201	0.006796	immune response
Sftpd			Surfactant, Pulmonary-
			Associated Protein D for
	6.950324684	0.002876	alveolar stability
Slc34a2			Solute Carrier Family 34
			(Type II Sodium/Phosphate
	8.191482395	6.93E-07	Cotransporter), Member 2

5 weeks old

Table 6: Comprehensive summary of \geq 4-fold transcript changes in 5 week old dy^{W} -/- mice

Upregulated genes in 5 week old LAM-111 treated versus untreated dy^{W} -/- mice are represented by red. Downregulated genes in 5 week old LAM-111 treated versus untreated dy^{W} -/- mice are represented by green. There were 468 transcripts affected \geq 4-fold (up- or down- regulated) in total.

Bibliography

- 1. Meinen, S. *et al.* Apoptosis inhibitors and mini-agrin have additive benefits in congenital muscular dystrophy mice. *EMBO Mol. Med.* **3**, 465–79 (2011).
- 2. Kinnett, K. *et al.* Imperatives for DUCHENNE MD: a Simplified Guide to Comprehensive Care for Duchenne Muscular Dystrophy. *PLoS Curr.* **7**, (2015).
- 3. Jungbluth, H. & Gautel, M. Pathogenic Mechanisms in Centronuclear Myopathies. *Front. Aging Neurosci.* **6**, 339 (2014).
- 4. Ramspacher, C. *et al.* Developmental Alterations in Heart Biomechanics and Skeletal Muscle Function in Desmin Mutants Suggest an Early Pathological Root for Desminopathies. *Cell Rep.* **11**, 1564–1576 (2015).
- 5. Smith, L. L., Gupta, V. A. & Beggs, A. H. Bridging integrator 1 (Bin1) deficiency in zebrafish results in centronuclear myopathy. *Hum. Mol. Genet.* **23**, 3566–3578 (2014).
- 6. Gregor, M. *et al.* Mechanosensing through focal adhesion-anchored intermediate filaments. *FASEB J.* **28**, 715–29 (2014).
- Nelson, B. R. *et al.* Skeletal muscle-specific T-tubule protein STAC3 mediates voltage-induced Ca2+ release and contractility. *Proc. Natl. Acad. Sci.* 110, 11881–11886 (2013).
- 8. Sandonà, D. & Betto, R. Sarcoglycanopathies: molecular pathogenesis and therapeutic prospects. *Expert Rev. Mol. Med.* **11**, e28 (2009).
- 9. Sztal, T. E., Sonntag, C., Hall, T. E. & Currie, P. D. Epistatic dissection of laminin-receptor interactions in dystrophic zebrafish muscle. *Hum. Mol. Genet.* **21**, 4718–31 (2012).
- 10. Adams, J. C. & Brancaccio, A. The evolution of the dystroglycan complex, a major mediator of muscle integrity. *Biol. Open* **4**, 1163–79 (2015).
- 11. Peters, M. F., Adams, M. E. & Froehner, S. C. Differential association of syntrophin pairs with the dystrophin complex. *J. Cell Biol.* **138**, 81–93 (1997).
- 12. Le Rumeur, E. Dystrophin and the two related genetic diseases, Duchenne and Becker muscular dystrophies. *Bosn. J. Basic Med. Sci.* **15**, 14–20 (2015).

- 13. Roberts, T. C. *et al.* Multi-level omics analysis in a murine model of dystrophin loss and therapeutic restoration. *Hum. Mol. Genet.* (2015). doi:10.1093/hmg/ddv381
- 14. Taniguchi, K. *et al.* Mammalian formin fhod3 regulates actin assembly and sarcomere organization in striated muscles. *J. Biol. Chem.* **284**, 29873–81 (2009).
- 15. Razzaq, A. *et al.* Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. *Genes Dev.* **15**, 2967–79 (2001).
- 16. Petersen, J. A. *et al.* Dysferlinopathy in Switzerland: clinical phenotypes and potential founder effects. *BMC Neurol.* **15**, 182 (2015).
- 17. Zhong, M., Pan, S.-Y. & Li, W. [Identification of Duchenne muscular dystrophy carrier by detecting junction fragments between the breakpoints of introns]. *Nan Fang Yi Ke Da Xue Xue Bao* **35**, 1308–11 (2015).
- 18. Jenkins, C. A. & Forman, O. P. Identification of a novel frameshift mutation in the DMD gene as the cause of muscular dystrophy in a Norfolk terrier dog. *Canine Genet. Epidemiol.* **2**, 7 (2015).
- Sciandra, F., Bigotti, M. G., Giardina, B., Bozzi, M. & Brancaccio, A. Genetic Engineering of Dystroglycan in Animal Models of Muscular Dystrophy. *Biomed Res. Int.* 2015, 635792 (2015).
- Timpani, C. A., Hayes, A. & Rybalka, E. Revisiting the dystrophin-ATP connection: How half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology. *Med. Hypotheses* (2015). doi:10.1016/j.mehy.2015.08.015
- 21. Pandey, S. N., Kesari, A., Yokota, T. & Pandey, G. S. Muscular Dystrophy: Disease Mechanisms and Therapies. *Biomed Res. Int.* **2015**, 1–2 (2015).
- 22. Suneja, B., Suneja, E. S., Adlakha, V. K. & Chandna, P. A Rare Case Report of Neurodegenerative Disease: Duchenne Muscular Dystrophy in Two Male Siblings. *Int. J. Clin. Pediatr. Dent.* **8**, 163–5
- Orengo, J. P., Ward, A. J. & Cooper, T. A. Alternative splicing dysregulation secondary to skeletal muscle regeneration. *Ann. Neurol.* 69, 681–90 (2011).

- 24. Mendell, J. R., Boué, D. R. & Martin, P. T. The congenital muscular dystrophies: recent advances and molecular insights. *Pediatr. Dev. Pathol. Off. J. Soc. Pediatr. Pathol. Paediatr. Pathol. Soc.* **9**, 427–443 (2006).
- 25. Taratuto, A. L. *et al.* Merosin-deficient congenital muscular dystrophy associated with abnormal cerebral cortical gyration: an autopsy study. *Neuromuscul. Disord.* **9**, 86–94 (1999).
- Wang, M., Wu, B., Tucker, J. D., Lu, P. & Lu, Q. Cationic polyelectrolytemediated delivery of antisense morpholino oligonucleotides for exonskipping in vitro and in mdx mice. *Int. J. Nanomedicine* **10**, 5635–46 (2015).
- 27. Foster, R. F., Thompson, J. M. & Kaufman, S. J. A laminin substrate promotes myogenesis in rat skeletal muscle cultures: analysis of replication and development using antidesmin and anti-BrdUrd monoclonal antibodies. *Dev. Biol.* **122**, 11–20 (1987).
- 28. Burkin, D. J. & Kaufman, S. J. The alpha7beta1 integrin in muscle development and disease. *Cell Tissue Res.* **296**, 183–90 (1999).
- 29. Kaufman, S. J. & Foster, R. F. Replicating myoblasts express a musclespecific phenotype. *Proc. Natl. Acad. Sci. U. S. A.* **85**, 9606–10 (1988).
- 30. Velling, T. *et al.* Distinct alpha 7A beta 1 and alpha 7B beta 1 integrin expression patterns during mouse development: alpha 7A is restricted to skeletal muscle but alpha 7B is expressed in striated muscle, vasculature, and nervous system. *Dev. Dyn.* **207**, 355–71 (1996).
- 31. Brancaccio, M. *et al.* Differential onset of expression of alpha 7 and beta 1D integrins during mouse heart and skeletal muscle development. *Cell Adhes. Commun.* **5**, 193–205 (1998).
- Gu, M., Wang, W., Song, W. K., Cooper, D. N. & Kaufman, S. J. Selective modulation of the interaction of alpha 7 beta 1 integrin with fibronectin and laminin by L-14 lectin during skeletal muscle differentiation. *J. Cell Sci.* 107 (Pt 1, 175–81 (1994).
- Ross, J. J., Duxson, M. J. & Harris, A. J. Formation of primary and secondary myotubes in rat lumbrical muscles. *Development* 100, 383–94 (1987).
- 34. Sanes, J. R., Engvall, E., Butkowski, R. & Hunter, D. D. Molecular heterogeneity of basal laminae: Isoforms of laminin and collagen IV at the

neuromuscular junction and elsewhere. *J. Cell Biol.* **111**, 1685–1699 (1990).

- Harris, A. J., Duxson, M. J., Fitzsimons, R. B. & Rieger, F. Myonuclear birthdates distinguish the origins of primary and secondary myotubes in embryonic mammalian skeletal muscles. *Development* **107**, 771–84 (1989).
- 36. George-Weinstein, M., Foster, R. F., Gerhart, J. V & Kaufman, S. J. In vitro and in vivo expression of alpha 7 integrin and desmin define the primary and secondary myogenic lineages. *Dev. Biol.* **156**, 209–29 (1993).
- Echtermeyer, F., Schöber, S., Pöschl, E., von der Mark, H. & von der Mark, K. Specific induction of cell motility on laminin by alpha 7 integrin. *J. Biol. Chem.* 271, 2071–5 (1996).
- Yao, C. C., Ziober, B. L., Sutherland, A. E., Mendrick, D. L. & Kramer, R. H. Laminins promote the locomotion of skeletal myoblasts via the alpha 7 integrin receptor. *J. Cell Sci.* **109 (Pt 1,** 3139–50 (1996).
- 39. Song, W. K., Wang, W., Foster, R. F., Bielser, D. A. & Kaufman, S. J. H36alpha 7 is a novel integrin alpha chain that is developmentally regulated during skeletal myogenesis. *J. Cell Biol.* **117**, 643–57 (1992).
- Kaufman, S. J., Foster, R. F., Haye, K. R. & Faiman, L. E. Expression of a developmentally regulated antigen on the surface of skeletal and cardiac muscle cells. *J. Cell Biol.* **100**, 1977–87 (1985).
- 41. Alberts, B. *et al. Molecular Biology of the Cell, Fifth Edition. Molecular Biology* (2008).
- 42. Garland Science Molecular Biology of the Cell, Fifth Edition Resources. at http://www.garlandscience.com/garlandscience_resources/book_resources.sijsf?isbn=9780815341055&landing=student
- 43. Pisciotta, A. *et al.* Stem cells isolated from human dental pulp and amniotic fluid improve skeletal muscle histopathology in mdx/SCID mice. *Stem Cell Res. Ther.* **6**, 156 (2015).
- 44. Shoji, E. *et al.* Early pathogenesis of Duchenne muscular dystrophy modelled in patient-derived human induced pluripotent stem cells. *Sci. Rep.* **5**, 12831 (2015).

- 45. Hagiwara, H. *et al.* Bone marrow transplantation improves outcome in a mouse model of congenital muscular dystrophy. *FEBS Lett.* **580**, 4463–8 (2006).
- Gao, Y., Li, Y., Guo, X., Wu, Z. & Zhang, W. Loss of STAT1 in bone marrow-derived cells accelerates skeletal muscle regeneration. *PLoS One* 7, e37656 (2012).
- 47. Zhang, Y. *et al.* Long-term engraftment of myogenic progenitors from adipose-derived stem cells and muscle regeneration in dystrophic mice. *Hum. Mol. Genet.* **24**, 6029–6040 (2015).
- 48. Yoshida, T., Pan, Y., Hanada, H., Iwata, Y. & Shigekawa, M. Bidirectional signaling between sarcoglycans and the integrin adhesion system in cultured L6 myocytes. *J. Biol. Chem.* **273**, 1583–90 (1998).
- 49. Yoshida, M. & Ozawa, E. Glycoprotein complex anchoring dystrophin to sarcolemma. *J. Biochem.* **108**, 748–52 (1990).
- 50. Hodges, B. L. *et al.* Altered expression of the alpha7beta1 integrin in human and murine muscular dystrophies. *J. Cell Sci.* **110 (Pt 2,** 2873–81 (1997).
- Burkin, D. J., Wallace, G. Q., Nicol, K. J., Kaufman, D. J. & Kaufman, S. J. Enhanced expression of the alpha 7 beta 1 integrin reduces muscular dystrophy and restores viability in dystrophic mice. *J. Cell Biol.* **152**, 1207– 18 (2001).
- 52. Burkin, D. J. *et al.* Transgenic expression of {alpha}7{beta}1 integrin maintains muscle integrity, increases regenerative capacity, promotes hypertrophy, and reduces cardiomyopathy in dystrophic mice. *Am. J. Pathol.* **166**, 253–63 (2005).
- 53. Capetanaki, Y., Bloch, R. J., Kouloumenta, A., Mavroidis, M. & Psarras, S. Muscle intermediate filaments and their links to membranes and membranous organelles. *Exp. Cell Res.* **313**, 2063–2076 (2007).
- 54. Hynes, R. O. & Zhao, Q. The evolution of cell adhesion. *J. Cell Biol.* **150**, F89–96 (2000).
- 55. Hynes, R. O. Integrins: versatility, modulation, and signaling in cell adhesion. *Cell* **69**, 11–25 (1992).
- 56. Senter, L. *et al.* Interaction of dystrophin with cytoskeletal proteins: binding to talin and actin. *Biochem. Biophys. Res. Commun.* **192**, 899–904 (1993).

- 57. Samarel, A. M. Costameres, focal adhesions, and cardiomyocyte mechanotransduction. *Am. J. Physiol. Heart Circ. Physiol.* **289**, H2291–301 (2005).
- 58. Ervasti, J. M. Costameres: the Achilles' heel of Herculean muscle. *J. Biol. Chem.* **278**, 13591–4 (2003).
- 59. Bao, Z. Z., Lakonishok, M., Kaufman, S. & Horwitz, A. F. Alpha 7 beta 1 integrin is a component of the myotendinous junction on skeletal muscle. *J. Cell Sci.* **106 (Pt 2,** 579–89 (1993).
- 60. Belkin, A. M. *et al.* Beta 1D integrin displaces the beta 1A isoform in striated muscles: localization at junctional structures and signaling potential in nonmuscle cells. *J. Cell Biol.* **132**, 211–26 (1996).
- 61. Hynes, R. O. Integrins: bidirectional, allosteric signaling machines. *Cell* **110,** 673–87 (2002).
- Song, W. K., Wang, W., Sato, H., Bielser, D. A. & Kaufman, S. J. Expression of alpha 7 integrin cytoplasmic domains during skeletal muscle development: alternate forms, conformational change, and homologies with serine/threonine kinases and tyrosine phosphatases. *J. Cell Sci.* 106 (Pt 4, 1139–52 (1993).
- 63. Ziober, B. L. *et al.* Alternative extracellular and cytoplasmic domains of the integrin alpha 7 subunit are differentially expressed during development. *J. Biol. Chem.* **268**, 26773–83 (1993).
- 64. Collo, G., Starr, L. & Quaranta, V. A new isoform of the laminin receptor integrin alpha 7 beta 1 is developmentally regulated in skeletal muscle. *J. Biol. Chem.* **268**, 19019–24 (1993).
- Doe, J. A. *et al.* Transgenic overexpression of the α7 integrin reduces muscle pathology and improves viability in the dy(W) mouse model of merosin-deficient congenital muscular dystrophy type 1A. *J. Cell Sci.* 124, 2287–97 (2011).
- 66. Lidov, H. G. & Kunkel, L. M. Dystrophin and Dp140 in the adult rodent kidney. *Lab. Invest.* **78**, 1543–51 (1998).
- 67. Cohn, R. D. & Campbell, K. P. Molecular basis of muscular dystrophies. *Muscle Nerve* **23**, 1456–71 (2000).
- 68. Porter, G. A., Dmytrenko, G. M., Winkelmann, J. C. & Bloch, R. J. Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal

domains in mammalian skeletal muscle. *J. Cell Biol.* **117**, 997–1005 (1992).

- 69. Straub, V., Bittner, R. E., Léger, J. J. & Voit, T. Direct visualization of the dystrophin network on skeletal muscle fiber membrane. *J. Cell Biol.* **119**, 1183–91 (1992).
- 70. Miyagoe-Suzuki, Y., Nakagawa, M. & Takeda, S. Merosin and congenital muscular dystrophy. *Microsc. Res. Tech.* **48**, 181–91
- 71. Colognato, H. & Yurchenco, P. D. Form and function: the laminin family of heterotrimers. *Dev. Dyn.* **218**, 213–34 (2000).
- 72. Colognato, H., Winkelmann, D. A. & Yurchenco, P. D. Laminin polymerization induces a receptor-cytoskeleton network. *J. Cell Biol.* **145**, 619–31 (1999).
- Helbling-Leclerc, A. *et al.* Mutations in the laminin α2–chain gene (LAMA2) cause merosin–deficient congenital muscular dystrophy. *Nat. Genet.* 11, 216–218 (1995).
- 74. Koeppen, B. & Stanton, B. Berne & Levy Physiology. (elsevier, 2015).
- 75. Berne & Levy Physiology, Updated Edition | 978-0-323-07362-2 | Elsevier. at <https://www.elsevier.com/books/berne-and-levy-physiology-updatededition/koeppen/978-0-323-07362-2>
- Severs, N. J., Bruce, A. F., Dupont, E. & Rothery, S. Remodelling of gap junctions and connexin expression in diseased myocardium. *Cardiovasc. Res.* 80, 9–19 (2008).
- 77. Pyle, W. G. & Solaro, R. J. At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. *Circ. Res.* **94**, 296–305 (2004).
- 78. Granzier, H. L. The Giant Protein Titin: A Major Player in Myocardial Mechanics, Signaling, and Disease. *Circ. Res.* **94**, 284–295 (2004).
- Tzu, J. & Marinkovich, M. P. Bridging structure with function: Structural, regulatory, and developmental role of laminins. *Int. J. Biochem. Cell Biol.* **40**, 199–214 (2008).
- 80. Aumailley, M. *et al.* A simplified laminin nomenclature. *Matrix Biology* **24**, 326–332 (2005).

- 81. Ekblom, P., Lonai, P. & Talts, J. F. Expression and biological role of laminin-1. *Matrix Biol.* **22**, 35–47 (2003).
- 82. Miner, J. H. & Yurchenco, P. D. LAMININ FUNCTIONS IN TISSUE MORPHOGENESIS. *Annu. Rev. Cell Dev. Biol.* **20**, 255–284 (2004).
- Yamauchi, J., Kumar, A., Duarte, L., Mehuron, T. & Girgenrath, M. Triggering regeneration and tackling apoptosis: a combinatorial approach to treating congenital muscular dystrophy type 1 A. *Hum. Mol. Genet.* 22, 4306–17 (2013).
- 84. Gupta, V. A. *et al.* A splice site mutation in laminin-α2 results in a severe muscular dystrophy and growth abnormalities in zebrafish. *PLoS One* **7**, e43794 (2012).
- 85. Kim, H. J. *et al.* Congenital muscular dystrophy type 1A with residual merosin expression. *Korean J. Pediatr.* **57**, 149–52 (2014).
- Gawlik, K. I., Akerlund, M., Carmignac, V., Elamaa, H. & Durbeej, M. Distinct roles for laminin globular domains in laminin alpha1 chain mediated rescue of murine laminin alpha2 chain deficiency. *PLoS One* 5, e11549 (2010).
- Vohra, R., Accorsi, A., Kumar, A., Walter, G. & Girgenrath, M. Magnetic Resonance Imaging Is Sensitive to Pathological Amelioration in a Model for Laminin-Deficient Congenital Muscular Dystrophy (MDC1A). *PLoS One* **10**, e0138254 (2015).
- 88. Muntoni, F. & Voit, T. The congenital muscular dystrophies in 2004: a century of exciting progress. *Neuromuscul. Disord.* **14,** 635–49 (2004).
- 89. Naom, I. *et al.* The role of immunocytochemistry and linkage analysis in the prenatal diagnosis of merosin-deficient congenital muscular dystrophy. *Hum. Genet.* **99**, 535–40 (1997).
- 90. Helbling-Leclerc, A. *et al.* Readjusting the localization of merosin (laminin alpha 2-chain) deficient congenital muscular dystrophy locus on chromosome 6q2. *C. R. Acad. Sci. III.* **318**, 1245–52 (1995).
- 91. Naom, I. S. *et al.* Refinement of the laminin alpha2 chain locus to human chromosome 6q2 in severe and mild merosin deficient congenital muscular dystrophy. *J. Med. Genet.* **34**, 99–104 (1997).

- 92. Jones, K. J. *et al.* The expanding phenotype of laminin alpha2 chain (merosin) abnormalities: case series and review. *J. Med. Genet.* **38**, 649–57 (2001).
- 93. Philpot, J. *et al.* Merosin-deficient congenital muscular dystrophy: the spectrum of brain involvement on magnetic resonance imaging. *Neuromuscul. Disord.* **9**, 81–5 (1999).
- 94. Philpot, J. & Muntoni, F. Limitation of eye movement in merosin-deficient congenital muscular dystrophy. *Lancet (London, England)* **353,** 297–8 (1999).
- 95. Yiu, E. M. & Kornberg, A. J. Duchenne muscular dystrophy. *Neurol. India* **56**, 236–47
- 96. Teijeira, S. & Navarro, C. [Dystrophinopathies: concept and diagnostic methodology]. *Neurologia* **9**, 191–7 (1994).
- 97. Jennekens, F. G., ten Kate, L. P., de Visser, M. & Wintzen, A. R. Diagnostic criteria for Duchenne and Becker muscular dystrophy and myotonic dystrophy. *Neuromuscul. Disord.* **1**, 389–91 (1991).
- Nigro, G., Comi, L. I., Politano, L. & Bain, R. J. The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. *Int. J. Cardiol.* 26, 271–7 (1990).
- 99. Bulfield, G., Siller, W. G., Wight, P. A. & Moore, K. J. X chromosome-linked muscular dystrophy (mdx) in the mouse. *Proc. Natl. Acad. Sci. U. S. A.* **81**, 1189–92 (1984).
- 100. Sicinski, P. *et al.* The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. *Science* **244**, 1578–80 (1989).
- Tanabe, Y., Esaki, K. & Nomura, T. Skeletal muscle pathology in X chromosome-linked muscular dystrophy (mdx) mouse. *Acta Neuropathol.* 69, 91–5 (1986).
- DiMario, J. X., Uzman, A. & Strohman, R. C. Fiber regeneration is not persistent in dystrophic (MDX) mouse skeletal muscle. *Dev. Biol.* 148, 314–21 (1991).
- Stedman, H. H. *et al.* The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. *Nature* 352, 536– 539 (1991).

- 104. Cox, G. A. *et al.* Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. *Nature* **364**, 725–9 (1993).
- 105. Yu, X., Bao, B., Echigoya, Y. & Yokota, T. Dystrophin-deficient large animal models: translational research and exon skipping. *Am. J. Transl. Res.* **7**, 1314–31 (2015).
- 106. Miyagoe, Y. *et al.* Laminin alpha2 chain-null mutant mice by targeted disruption of the Lama2 gene: a new model of merosin (laminin 2)-deficient congenital muscular dystrophy. *FEBS Lett.* **415**, 33–9 (1997).
- Kuang, W. *et al.* Merosin-deficient congenital muscular dystrophy: Partial genetic correction in two mouse models. *J. Clin. Invest.* **102**, 844–852 (1998).
- Guo, L. T. *et al.* Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice. *Neuromuscul. Disord.* 13, 207–15 (2003).
- Sunada, Y., Bernier, S. M., Kozak, C. A., Yamada, Y. & Campbell, K. P. Deficiency of merosin in dystrophic dy mice and genetic linkage of laminin M chain gene to dy locus. *J. Biol. Chem.* 269, 13729–32 (1994).
- 110. Xu, H., Christmas, P., Wu, X. R., Wewer, U. M. & Engvall, E. Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. *Proc. Natl. Acad. Sci. U. S. A.* **91**, 5572–5576 (1994).
- 111. Besse, S. *et al.* Spontaneous muscular dystrophy caused by a retrotransposal insertion in the mouse laminin alpha2 chain gene. *Neuromuscul. Disord.* **13**, 216–22 (2003).
- 112. Allamand, V. *et al.* Mild congenital muscular dystrophy in two patients with an internally deleted laminin alpha2-chain. *Hum. Mol. Genet.* **6**, 747–52 (1997).
- 113. Timpl, R. *et al.* Laminin--a glycoprotein from basement membranes. *J. Biol. Chem.* **254**, 9933–7 (1979).
- 114. Aumailley, M. & Smyth, N. The role of laminins in basement membrane function. *J. Anat.* **193 (Pt 1,** 1–21 (1998).
- Gullberg, D., Tiger, C. F. & Velling, T. Laminins during muscle development and in muscular dystrophies. *Cell. Mol. life Sci. C.* 56, 442– 460 (1999).

- Sasaki, T., Giltay, R., Talts, U., Timpl, R. & Talts, J. F. Expression and distribution of laminin alpha1 and alpha2 chains in embryonic and adult mouse tissues: an immunochemical approach. *Exp. Cell Res.* 275, 185–99 (2002).
- 117. Gawlik, K. I. & Durbeej, M. Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. *Skelet. Muscle* **1**, 9 (2011).
- 118. Sewry, C. A., Chevallay, M. & Tomé, F. M. Expression of laminin subunits in human fetal skeletal muscle. *Histochem. J.* **27**, 497–504 (1995).
- Pedrosa-Domellöf, F., Tiger, C. F., Virtanen, I., Thornell, L. E. & Gullberg, D. Laminin chains in developing and adult human myotendinous junctions. *J. Histochem. Cytochem.* 48, 201–10 (2000).
- 120. Patton, B. L. *et al.* Distribution of ten laminin chains in dystrophic and regenerating muscles. *Neuromuscul. Disord.* **9**, 423–33 (1999).
- 121. Vachon, P. H., Loechel, F., Xu, H., Wewer, U. M. & Engvall, E. Merosin and laminin in myogenesis; specific requirement for merosin in myotube stability and survival. *J. Cell Biol.* **134**, 1483–1497 (1996).
- 122. Kuang, W., Xu, H., Vachon, P. H. & Engvall, E. Disruption of the lama2 gene in embryonic stem cells: laminin alpha 2 is necessary for sustenance of mature muscle cells. *Exp. Cell Res.* 241, 117–125 (1998).
- 123. Smolina, N. *et al.* Primary Murine Myotubes as a Model for Investigating Muscular Dystrophy. *Biomed Res. Int.* **2015**, 594751 (2015).
- 124. Kuang, W., Xu, H., Vilquin, J. T. & Engvall, E. Activation of the lama2 gene in muscle regeneration: abortive regeneration in laminin alpha2-deficiency. *Lab. Invest.* **79**, 1601–13 (1999).
- 125. Marks, A. R. Calcium cycling proteins and heart failure: mechanisms and therapeutics. *J. Clin. Invest.* **123**, 46–52 (2013).
- George, C. H., Parthimos, D. & Silvester, N. C. A network-oriented perspective on cardiac calcium signaling. *Am. J. Physiol. Cell Physiol.* 303, C897–910 (2012).
- Marian, A. J., Salek, L. & Lutucuta, S. Molecular genetics and pathogenesis of hypertrophic cardiomyopathy. *Minerva Med.* 92, 435–51 (2001).

- Sabri, A., Pak, E., Alcott, S. A., Wilson, B. A. & Steinberg, S. F. Coupling function of endogenous alpha(1)- and beta-adrenergic receptors in mouse cardiomyocytes. *Circ. Res.* 86, 1047–53 (2000).
- 129. Townsend, D. Diastolic dysfunction precedes hypoxia-induced mortality in dystrophic mice. *Physiol. Rep.* **3**, e12513 (2015).
- 130. Kono, T. *et al.* Cardiac resynchronization therapy in a young patient with Duchenne muscular dystrophy. *Int. Med. Case Rep. J.* **8**, 173–5 (2015).
- Rooney, J. E., Knapp, J. R., Hodges, B. L., Wuebbles, R. D. & Burkin, D. J. Laminin-111 protein therapy reduces muscle pathology and improves viability of a mouse model of merosin-deficient congenital muscular dystrophy. *Am. J. Pathol.* **180**, 1593–602 (2012).
- 132. Van Ry, P. M., Minogue, P., Hodges, B. L. & Burkin, D. J. Laminin-111 improves muscle repair in a mouse model of merosin-deficient congenital muscular dystrophy. *Hum. Mol. Genet.* **23**, 383–396 (2013).
- Guo, L. T. *et al.* Laminin α2 deficiency and muscular dystrophy; genotypephenotype correlation in mutant mice. *Neuromuscul. Disord.* **13**, 207–215 (2003).
- 134. Rooney, J. E. *et al.* Severe muscular dystrophy in mice that lack dystrophin and alpha7 integrin. *J. Cell Sci.* **119**, 2185–95 (2006).
- 135. Verheijden, K. A. T., Henricks, P. A. J., Redegeld, F. A., Garssen, J. & Folkerts, G. Measurement of airway function using invasive and noninvasive methods in mild and severe models for allergic airway inflammation in mice. *Front. Pharmacol.* 5, 190 (2014).
- 136. Berndt, A. *et al.* Comparison of unrestrained plethysmography and forced oscillation for identifying genetic variability of airway responsiveness in inbred mice. *Physiol. Genomics* **43**, 1–11 (2011).
- 137. LoMauro, A., D'Angelo, M. G. & Aliverti, A. Assessment and management of respiratory function in patients with Duchenne muscular dystrophy: current and emerging options. *Ther. Clin. Risk Manag.* **11**, 1475–88 (2015).
- Van Ry, P. M., Wuebbles, R. D., Key, M. & Burkin, D. J. Galectin-1 Protein Therapy Prevents Pathology and Improves Muscle Function in the mdx Mouse Model of Duchenne Muscular Dystrophy. *Mol. Ther.* 23, 1285–97 (2015).

- 139. Yu, Q. *et al.* Omigapil Treatment Decreases Fibrosis and Improves Respiratory Rate in dy2J Mouse Model of Congenital Muscular Dystrophy. *PLoS One* **8**, e65468 (2013).
- 140. Erb, M. *et al.* Omigapil ameliorates the pathology of muscle dystrophy caused by laminin-alpha2 deficiency. *J. Pharmacol. Exp. Ther.* **331**, 787–95 (2009).
- Erb, M. *et al.* Omigapil ameliorates the pathology of muscle dystrophy caused by laminin-alpha2 deficiency. *J. Pharmacol. Exp. Ther.* **331**, 787– 95 (2009).
- 142. Rooney, J. E., Knapp, J. R., Hodges, B. L., Wuebbles, R. D. & Burkin, D. J. Laminin-111 protein therapy reduces muscle pathology and improves viability of a mouse model of merosin-deficient congenital muscular dystrophy. *Am. J. Pathol.* **180**, 1593–602 (2012).
- 143. Li, J. & Tibshirani, R. Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. *Stat. Methods Med. Res.* **22**, 519–36 (2013).
- 144. McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. *Nucleic Acids Res.* **40**, 4288–97 (2012).
- 145. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* **26**, 139–40 (2010).
- Robinson, M. D. & Smyth, G. K. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. *Biostatistics* 9, 321– 32 (2008).
- 147. Robinson, M. D. & Smyth, G. K. Moderated statistical tests for assessing differences in tag abundance. *Bioinformatics* **23**, 2881–7 (2007).
- 148. Controlling the False discovery rate: A practical and powerful approach to multiple testing. at http://www.math.tau.ac.il/~ybenja/MyPapers/benjamini_hochberg1995.pdf >
- 149. Sondag, G. R. *et al.* Osteoactivin induces transdifferentiation of C2C12 myoblasts into osteoblasts. *J. Cell. Physiol.* **229**, 955–66 (2014).

- Selim, A. A. *et al.* Anti-osteoactivin antibody inhibits osteoblast differentiation and function in vitro. *Crit. Rev. Eukaryot. Gene Expr.* 13, 265–75 (2003).
- 151. Safadi, F. F. *et al.* Cloning and characterization of osteoactivin, a novel cDNA expressed in osteoblasts. *J. Cell. Biochem.* **84**, 12–26 (2001).
- Moghadaszadeh, B. *et al.* Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased α7 integrin, utrophin and associated glycoproteins. *Hum. Mol. Genet.* 12, 2467–2479 (2003).
- 153. Kronqvist, P. *et al.* ADAM12 alleviates the skeletal muscle pathology in mdx dystrophic mice. *Am. J. Pathol.* **161**, 1535–1540 (2002).
- 154. Engvall, E. & Wewer, U. M. The new frontier in muscular dystrophy research: booster genes. *FASEB J.* **17**, 1579–1584 (2003).
- 155. Sheng, M. H.-C. *et al.* Targeted overexpression of osteoactivin in cells of osteoclastic lineage promotes osteoclastic resorption and bone loss in mice. *PLoS One* **7**, e35280 (2012).
- 156. Shikano, S., Bonkobara, M., Zukas, P. K. & Ariizumi, K. Molecular cloning of a dendritic cell-associated transmembrane protein, DC-HIL, that promotes RGD-dependent adhesion of endothelial cells through recognition of heparan sulfate proteoglycans. *J. Biol. Chem.* **276**, 8125–34 (2001).
- 157. Chung, J.-S., Dougherty, I., Cruz, P. D. & Ariizumi, K. Syndecan-4 mediates the coinhibitory function of DC-HIL on T cell activation. *J. Immunol.* **179**, 5778–84 (2007).
- 158. Xian, L. *et al.* Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. *Nat. Med.* **18**, 1095–101 (2012).
- Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. *Cell* 51, 987–1000 (1987).
- Liu, L. *et al.* Mouse adhalin: primary structure and expression during late stages of muscle differentiation in vitro. *Biochem. Biophys. Res. Commun.* 235, 227–235 (1997).

- Patton, B. L., Miner, J. H., Chiu, A. Y. & Sanes, J. R. Distribution and function of laminins in the neuromuscular system of developing, adult, and mutant mice. *J. Cell Biol.* **139**, 1507–21 (1997).
- 162. Rooney, J. E., Gurpur, P. B. & Burkin, D. J. Laminin-111 protein therapy prevents muscle disease in the mdx mouse model for Duchenne muscular dystrophy. *Proc. Natl. Acad. Sci. U. S. A.* **106**, 7991–7996 (2009).
- 163. Burkin, D. J. & Kaufman, S. J. The alpha7beta1 integrin in muscle development and disease. *Cell Tissue Res.* **296**, 183–190 (1999).
- 164. Rooney, J. E., Gurpur, P. B., Yablonka-Reuveni, Z. & Burkin, D. J. Laminin-111 restores regenerative capacity in a mouse model for alpha7 integrin congenital myopathy. *Am. J. Pathol.* **174**, 256–64 (2009).
- 165. Deconinck, N. & Dan, B. Pathophysiology of duchenne muscular dystrophy: current hypotheses. *Pediatr. Neurol.* **36**, 1–7 (2007).
- 166. Campbell, K. P. Three muscular dystrophies: loss of cytoskeletonextracellular matrix linkage. *Cell* **80**, 675–9 (1995).
- 167. Haslett, J. N. *et al.* Gene expression comparison of biopsies from Duchenne muscular dystrophy (DMD) and normal skeletal muscle. *Proc. Natl. Acad. Sci. U. S. A.* **99**, 15000–5 (2002).
- Radley-Crabb, H. G., Fiorotto, M. L. & Grounds, M. D. The different impact of a high fat diet on dystrophic mdx and control C57Bl/10 mice. *PLoS Curr.* 3, RRN1276 (2011).
- 169. Yamamoto, H. *et al.* Desensitization by different strategies of epidermal growth factor receptor and ErbB4. *J. Pharmacol. Sci.* **124**, 287–93 (2014).
- 170. Allouche, S., Noble, F. & Marie, N. Opioid receptor desensitization: mechanisms and its link to tolerance. *Front. Pharmacol.* **5**, 280 (2014).
- 171. Franck, E. *et al.* Immunological tolerance to muscle autoantigens involves peripheral deletion of autoreactive CD8+ T cells. *PLoS One* **7**, e36444 (2012).
- 172. Dolgikh, M. S. [Role of innate immunity in tolerance induction]. *Biomed. Khim.* **61**, 560–578 (2015).
- Gawlik, K. I. & Durbeej, M. Deletion of integrin α7 subunit does not aggravate the phenotype of laminin α2 chain-deficient mice. *Sci. Rep.* 5, 13916 (2015).

- Visual Sonics Vevo 2100 Imaging System. at http://www.uib.no/filearchive/vevo2100-manual.pdf>
- 175. Moran, C. M., Thomson, A. J. W., Rog-Zielinska, E. & Gray, G. A. Highresolution echocardiography in the assessment of cardiac physiology and disease in preclinical models. *Exp. Physiol.* **98**, 629–644 (2013).
- 176. Liu, X., Tobita, K., Francis, R. J. B. & Lo, C. W. Imaging techniques for visualizing and phenotyping congenital heart defects in murine models. *Birth Defects Res. C. Embryo Today* **99**, 93–105 (2013).
- 177. Ram, R., Mickelsen, D. M., Theodoropoulos, C. & Blaxall, B. C. New approaches in small animal echocardiography: imaging the sounds of silence. *Am. J. Physiol. Heart Circ. Physiol.* **301**, H1765–80 (2011).
- Laws, N. Progression of kyphosis in mdx mice. J. Appl. Physiol. 97, 1970– 1977 (2004).
- 179. Wu, J. *et al.* Effects of heart rate and anesthetic timing on high-resolution echocardiographic assessment under isoflurane anesthesia in mice. *J. Ultrasound Med.* **29**, 1771–8 (2010).
- Tournoux, F. *et al.* Validation of Noninvasive Measurements of Cardiac Output in Mice Using Echocardiography. *J. Am. Soc. Echocardiogr.* 24, 465–470 (2011).
- ZHAO, J. *et al.* [Echocardiographic evaluation of pressure overloadinduced cardiac remodeling in mice using different ultrasound machines]. *Nan Fang Yi Ke Da Xue Xue Bao* **31**, 443–7 (2011).
- 182. Kim, G. H. Murine Fetal Echocardiography. J. Vis. Exp. (2013). doi:10.3791/4416
- 183. Franchi, F. *et al.* Non-invasive assessment of cardiac function in a mouse model of renovascular hypertension. *Hypertens. Res.* **36**, 770–775 (2013).
- 184. Hermans, H. *et al.* Murine pressure overload models: a 30-MHz look brings a whole new 'sound' into data interpretation. *J. Appl. Physiol.* **117**, 563–571 (2014).
- 185. Hahurij, N. D. *et al.* Echocardiographic assessment of embryonic and fetal mouse heart development: a focus on haemodynamics and morphology. *ScientificWorldJournal.* **2014**, 531324 (2014).

- 186. Guasch, E. *et al.* Atrial fibrillation promotion by endurance exercise: demonstration and mechanistic exploration in an animal model. *J. Am. Coll. Cardiol.* **62**, 68–77 (2013).
- 187. Pratt, S. J. P., Valencia, A. P., Le, G. K., Shah, S. B. & Lovering, R. M. Preand postsynaptic changes in the neuromuscular junction in dystrophic mice. *Front. Physiol.* **6**, 252 (2015).
- 188. Vachon, P. H. *et al.* Integrins (alpha7beta1) in muscle function and survival. Disrupted expression in merosin-deficient congenital muscular dystrophy. *J. Clin. Invest.* **100**, 1870–81 (1997).