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Abstract

This dissertation details our work on optically levitating and cooling micro-

spheres in vacuum for use as force sensors. We have extensively modeled various

optical trap configurations to determine stable trap geometries for µm sized spheres

in a dual-beam optical trap. Techniques have been developed for overcoming insta-

bilities which occur when pumping trapped micro-spheres from low to high vacuum.

We have also improved on methods for depositing micro-spheres in optical traps.

We have shown that optically levitated micro-spheres are excellent force sen-

sors. By eliminating the need to tether the spheres to a solid substrate, excellent

environmental decoupling is achieved. In this work we present the realization of aN

force sensitivity. The intended use for the technology developed is to extend the

search for non-Newtonian gravity by several orders of magnitude at the micrometer

length scale [1]. This technology is also suitable for investigating the Casimir effect

in the unexplored regime where neither the Proximity Force Approximation or the

Casimir-Polder limits are valid.
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Chapter 1

Motivation for This Experiment

1.1 Levitated Micro-Spheres as Force Sensors

Optically levitated and cooled dielectric micro-spheres in high vacuum show great

promise as resonant force detectors. By eliminating the need to tether the spheres

to a solid substrate, excellent environmental decoupling is expected. In this work we

present the realization of attonewton force sensitivity.

We intend to use this new technology to extend the search for non-Newtonian

gravity by several orders of magnitude at the micrometer length scale [1]. This tech-

nology is also suitable for investigating the Casimir effect in the unexplored regime

between where the Proximity Force Approximation and the Casimir-Polder limits are

valid.

Figure 1.1 depicts the basic experiment we are developing for measuring the

Casimir force and gravity at the micrometer length scale. Two lasers are injected

into an optical cavity composed of a curved glass mirror and a grounded gold mirror.

One laser traps a micro-sphere at an anti-node of a standing wave created by the

trapping laser. The second laser cools the center-of-mass mode of the sphere along

the cavity axis via sideband cooling. This laser also measures the center-of-mass

motion of the sphere by measuring the phase shift δϕ of the light reflected from the

cavity. The phase shift is proportional to the sphere’s displacement δx.
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Figure 1.1: The basic experiment we are developing for measuring short range forces.
Two lasers are injected into an optical cavity composed of a curved mirror and a
grounded flat gold mirror. One laser traps a micro-sphere at an anti-node. The
second laser cools the center-of-mass motion of the sphere along the cavity axis.
The change in phase δϕ of the cooling laser light reflected from the optical cavity
results from the sphere displacement δx. A test mass with varying density oscillates
transverse to the optical cavity and applies a time varying gravitational force on the
sphere. We plan to use this system to investigate corrections to Newtonian gravity
and the Casimir force at the µm scale.

1.2 Corrections to Newtonian Gravity

1.2.1 The Hierarchy Problem

A phenomenon that perplexes many scientists is the large discrepancy between the

strength of the other Standard Model forces and gravity. Many scientists feel that

there should only be one fundamental scale in nature. Based on our current mea-

surements and theories, there appear to be two unique energy scales in nature. The

electroweak scale, given from the Standard Model, is roughly EEW ∼ 103 GeV. These

interactions have been extensively probed through various high energy physics ex-

periments. For example, the Large Hadron Collider has performed experiments with

energy up to 8 TeV [2]. The Planck energy scale, EPl ∼ 1.22 × 1019 GeV, is by

definition the energy where quantum effects of gravity can no longer be ignored. This

energy corresponds to a length scale of lPl ∼ 1.6 × 10−35 m. In 2007, the record for

shortest interaction measurement of gravity was 55 µm [3]. This approximately 1030
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orders of magnitude greater than the Planck scale. It is the belief of many scien-

tists that somewhere within this enormous experimental space lies the unification of

gravity and the Standard Model.

1.2.2 Parameterizing Corrections to Newtonian Gravity

A number of theories predict a Yukawa-type correction to gravity. Refs. [4, 5] suggest

new forces mediated by light moduli from string theory and Refs. [6, 7, 8] predict

exotic particles in “large” extra dimensions as force mediators. The Yukawa-type

correction to Newtonian gravity is given by:

V (r) = −Gm1m2

r
[1 + αe−r/λ], (1.1)

where m1 and m2 are two masses interacting at a distance r. α is the strength of

the potential compared to classical gravity and λ is the potential interaction length.

The interaction length corresponds to the Compton wavelength of the particle being

exchanged. For r � λ, the second term in equation 1.1 vanishes and only the New-

tonian term remains. If λ ∼ r or smaller, a non-negligible and non-classical term

remains. Figure 1.2 shows the experimental phase space Yukawa-type corrections to

Newtonian gravity at short range. The area shaded in yellow has already been ex-

cluded by experiments, while the remaining area is space that has yet to be explored.

We expect our levitated micro-sphere system to further the search into the areas out-

lined in red and centered around λ=1 µm. Curve (a) is for a 300 nm and curve (b)

is for a 3 µm sphere.

1.2.3 Measuring Gravity at Short Range

Ref. [9] is a review from 1996 which shows that new forces with a strength weaker

than or comparable to gravity over distances between 1 cm and 1017 cm have been

excluded by experiment. Figure 1.3 give the α and λ constraints from experiments

conducted up until 1996 [9].

The first sub-cm measurements were reported by Lamoreaux [10] in 1997. Tor-

sional balance experiments investigated large deviations (α > 108) in the 0.6 to 6
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Figure 1.2: Experimental phase space plot for corrections to Newtonian gravity. α
is the strength of corrections relative to Newtonian gravity and λ is the gravitational
interaction length. The area in yellow has already been excluded by previous exper-
iments where α was not measured and measurements agree with Newtonian gravity.
The red curves a and b represent the areas where we expect to further the search. The
difference between curves a and b is the size of the micro-sphere used, respectively,
300 nm and 3 µm spheres. Adapted from Ref. [1]

µm range. In 2003, Chiaverini et al. reported on cantilever experiments which put a

lower limit of α ∼104 at length scales of 20 µm [11]. Also in that year, Long et al. [12]

used a planar oscillator to place limits at the ∼100 µm range. In 2005, Decca et al.

[13] used a microelectromechanical torsional oscillator to place a limit of α < 1012 at

200 nm. Then, in 2007, a similar experiment [14] placed constraints for the 29.5 nm

to 86 nm range with α > 1014. Also in 2007, Kapner et al. [3] reported the first (and

only to date) sub-mm result that placed α < 1. This experiment was performed at 55

µm with a torsional balance. In 2008, Mesuda et al. [15] placed limits at the 1.0-2.9

µm range with a torsional balance experiment and Geraci et al. [16] placed limits on

the range of 5 - 15 µm with cantilever experiments. The most recent sub-mm gravity
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Figure 1.3: Experimental phase space plot for corrections to Newtonian gravity up
to and prior to 1996. α is the strength of corrections relative to Newtonian gravity
and λ is the gravitational interaction length. Taken from Ref. [9]

measurement was performed by Sushkov et al. [17], where they placed limits on the

0.7 µm and 7.0 µm range with a torsional balance. All of the results discussed in this

section, with the exception of ref. [12], are plotted in figure 1.2 and represent the

current limits.

1.3 Casimir Effect

The intuitive picture of vacuum as a volume completely void of particles with a tem-

perature of absolute zero fails to capture the presence of fluctuating fields, such as

electromagnetic fields in that volume. Quantum mechanics tells us that all fields

fluctuate around a mean value and that fields in a vacuum are not exempt. As such,
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Virtual
Particles

Infinite
Parralel
Plates

Figure 1.4: Two infinite uncharged parallel plates spaced closely together. A) The
plates feel an attractive force since fewer vacuum fluctuation modes meet the bound-
ary conditions between the plates a than outside of the plates. B) The plates feel an
attractive force because fewer modes of virtual particles fit within the space between
the plates a than outside of the plates.

vacuums have energy known as the zero-point energy resulting from field fluctua-

tions know as vacuum fluctuations. Vacuum fluctuations can be described as virtual

particles randomly popping into and out of the vacuum.

A different method for representing a non-zero vacuum energy is to look at the

energy time uncertainty.

4E · 4t ≥ h̄

2
, (1.2)

where 4E is the vacuum energy uncertainty, 4t is the uncertainty in time of the

measurement and h̄ is Planck’s constant. The vacuum energy uncertainty will always

be non-zero allowing for a zero-point energy.

The example typically used to illustrate the Casimir Effect is depicted in figure

1.4. Two uncharged infinite parallel plates are placed closely together in vacuum. In

figure 1.4 there is a net force on each plate bringing them together. This is because

fewer modes of virtual particles fit within the plates than outside due to boundary

conditions. The force pushing the two plates together is known as the Casimir force.
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The force per unit area for the infinite parallel plate example was calculated by

Casimir in 1948 [18] and given by

Fc
A

= − d

dx

〈E〉
A

= − h̄cπ2

240a4
. (1.3)

〈E〉 is the vacuum energy expectation value, c is the speed of light and a is the

separation between the plates.

The Casimir effect is in fact a real phenomenon and the Casimir force has been

measured previously. In practice, it is very difficult to have two planes perfectly par-

allel. This caused early attempts to measure the Casimir force to be overwhelmed

with uncertainty [19][20]. However, in the late 1990s, the Casimir force between a

plane and sphere (see figure 1.5) were measured by two groups [10][21]. In these

experiments, the of curvature of the sphere R was very large compared to the sepa-

ration between the sphere and plate L (figure 1.5.B.) In this limit, where R � L, a

mathematical solution exists know as the proximity force approximation (PFA). The

formula for the PFA is provided in Ref. [10] and given by

FPFA = 2πR

(
1

3

π2

240

h̄c

a3

)
, (1.4)

where R is the radius of the sphere. A solution also exists for the limit where R� L

(figure 1.5.A) know as the Casimir-Polder limit where experiments agree [22][23]. The

Casimir-Polder force for a metallic plane and dielectric sphere is given by

FCP = − 3h̄cα

8π2ε0

1

a5
, (1.5)

where α is the electric polarizability and ε0 is the vacuum permitiivity [24].

The PFA and Casimir-Polder limit are both not valid in the limit where R ∼ L

(figure 1.5.C.) Measuring the Casimir force in this regime has proven difficult because

the force sensor, such as a cantilever in an atomic force microscope, is mechanically

clamped to the sphere and contributes to the Casimir effect by a non-trivial amount.

Since our system is completely mechanically decoupled from the environment, we

expect to successfully measure the Casimir force within this unexplored regime. The
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L

A

R << L

L

B

R >> L

L

C

R ~ L

Figure 1.5: Depiction of the plane-sphere geometry for measuring the Casimir force.
A) The the Casimir-Polder limit where the radius of curvature R of the sphere is
significantly smaller then the separation between the sphere and plane L (R � L.)
B) The PFA limit where R� L. C) The unexplored limit where R ∼ L. We expect
levitated micro-sphere force sensors to significantly improve measurements within this
regime.

theory for this has been worked out in Ref. [25]. An undergraduate from our group

performed calculations for our particular experimental geometry of a metallic mirror

and dielectric sphere [26] where the PFA and Casimir-Polder limits disagree and are

incorrect. Measurements within this regime could aid in the understanding of the

heating of ultracold neutrons (UCNs) in traps near a surface [27, 28, 29].
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Chapter 2

Laser Radiation Forces on
Dielectric Spheres

2.1 History of micro-sphere trapping

In 1619, Johannes Kepler suggested that light radiated from the Sun could explain

the observed phenomenon that a comet’s tail always points away from the Sun [30]. A

little over 250 years later, Maxwell worked out the mathematical framework for elec-

tricity and magnetism which suggests that electromagnetic radiation has momentum

[31]. This was shown experimentally in 1900 by Pyotr Lededev [32] and by Ernest

Nichols in 1901 [33]. Although the study of radiation forces was very exciting at the

time, little progress was made in the field before the invention of the laser in 1960 by

Charles Townes [34].

Without a doubt, Arthur Ashkin is the godfather of bead trapping. In 1970, while

working at Bell Labs, Ashkin published the first experimental results showing that a

focused laser beam can alter the dynamics of particles in liquid by radiation pressure

[35]1. Within this work, Ashkin identified two different radiation force components.

The first component is referred to as the scattering force and is directed along the axis

of laser propagation. The second component is referred to as the gradient force and

is along the direction of the intensity gradient of the laser field. By exploiting these

forces, Ashkin was able to show that a single focused laser beam could accelerate and

1An interesting factoid about [35] is that Arthur Ashkin proposes using frequency tuned lasers
to trap and cool atoms which later earned Steve Chu, Claude Cohen-Tannoudji and Bill Phillips the
1997 Nobel Prize in Physics.
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had the potential to three dimensionally trap particles. Ashkin’s early work laid the

foundation for the optical tweezers technology which revolutionized certain aspects

biology and nanotechnology [36]. In 1971, Ashkin and Dziedzic reported the stable

trapping of 20 µm glass spheres in air and vacuum at pressures down to ∼ 1 Torr

[37]. In 1975, Ashkin and Dziedzic successfully trapped oil droplets down to ∼ 10−6

Torr, which is well within the high vacuum regime[38]. Within this work, radiometric

forces, which arise from temperature gradients near the sphere and destabilize the

trapped sphere are addressed. Radiometric forces are discussed in great detail in

chapter 5. In 1976, Ashkin and Dziedzic published a paper describing a feedback

stabilization technique for trapping glass spheres in air and vacuum [39], which aided

in countering the radiometric forces responsible for trap loss at pressures around 1

Torr. It wasn’t until 2011 that nm and µm scale glass spheres were successfully

trapped at high vacuum pressures [40][41].

2.2 Arthur Ashkin’s “Back of the Envelope” Ra-

diation Pressure Calculation

Radiation pressure is simply defined as the pressure exerted on any surface exposed

to electromagnetic radiation. In his seminal paper on radiation forces [35], Arthur

Ashkin provided an intuitive “back of the envelope” calculation on the strength of

radiation pressure. Below we reproduce his calculation.

Figure 2.1 depicts the free body diagram for a single photon reflecting from a flat

mirror. The magnitude of the momentum of the photon before and after reflection is

given by p = hν
c

; where p is momentum, h is Boltzmann’s constant, ν is the photon

frequency and c is the speed of light. The total change in momentum of the photon

from the reflection is:

|~pout − ~pin| = 2p = 2
hν

c
. (2.1)

Now, assume we have a laser with power P incident on the same mirror instead

of a single photon. P
hν

photons strike the mirror per second, which produces a force
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Figure 2.1: Free body diagram illustrating the change in momentum ~∆p for a sin-
gle photon reflecting from a flat mirror with incident momentum ~pin and reflected
momentum ~pout.

Fradiation on the mirror given by:

Fradiation =
∆p

∆t
= 2

hν

c

P

hν
=

2P

c
. (2.2)

For P = 1W ,

Fradiation =
2x1W

3x108m/s
= 6.7nN. (2.3)

Although the force calculated above is small in absolute terms, it is useful for

accelerating particles with small masses. Figure 2.2 depicts a 1 W laser focused to

a diffraction limited spot of roughly 1 µm in diameter incident on 100% reflecting

particle made of fused silica which is also 1 µm in diameter. The density, ρ, of fused

silica (glass) is ∼ 2200 kg
m3 which gives a particle mass of

m = ρ× V ≈ 1.3x10−15kg (2.4)

The acceleration, a, experienced by the particle is

Fradiation
m

=
6.7nN

4x10−18kg
≈ 109m

s2
≈ 108g, (2.5)

where g, is the Earth’s gravitational acceleration. Although this “back of the enve-

lope” calculation provides an upper limit to the radiation force, it does suggest that

focused laser beams can be used to overcome the Earth’s gravity.

The remainder of this chapter is dedicated to improving Ashkin’s ”back of the en-

velope” calculation to more precise calculations of the radiation force from a focused
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Fradiation

Fgravity

1μm

Figure 2.2: Free body diagram of a vertical optical trap. The radiation force Fradiation
counters the gravitational force Fgravity providing a stable trapping potential.

laser beam on fused silica spheres. There are three models typically used for calculat-

ing the radiation force on micro-spheres which differ by the ratio of laser wavelength

λ to the length scale of the bead r. For r � λ we can use a ray optics approach. For

r � λ Rayleigh scattering provides an analytic solution. Lastly, when r ≈ λ we need

to use a more complicated numerical Mie scattering approach.

2.3 Ray Optics Regime r � λ

Perhaps the most intuitive radiation force model is within the ray optics regime where

the length scale r of the trapped particle is significantly larger than the trapping laser

wavelength λ. In his first publication on radiation forces [35], Ashkin improved on the

flat mirror description given in the previous section by replacing the 100% reflecting

mirror with a refractive sphere near the focus of a laser beam as depicted in Figure

2.3. In figure 2.3, a particle is located just off of the beam axis of a Gaussian laser

beam. Two photons a and b refract through the sphere at the same time. Since

the photons’ paths change direction they experience a change in momentum which
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Figure 2.3: Depiction of a micro-sphere off axis within a Gaussian beam. The sphere
experiences a scattering force Fscat along the axis of laser propagation and a gradient
force Fgrad in the direction of the laser intensity gradient. Figure taken from Ref.
[35].

results in a radiation force of equal magnitude from both photons onto the particle.

The net force from all photons incident at location a, Fa, is greater in magnitude

than the net force from all photons incident at location b, Fb, since the laser intensity

is greater at location a. Integrating the force over the face of the sphere in figure

2.3 results in a total force with a component parallel to the laser beam axis and a

component pointing in the direction of the gradient of the laser intensity. These force

components are referred to as the scattering force, Fscat, and the gradient force, Fgrad,

respectively.

Ashkin provided a second picture for visualizing radiation forces by treating the

sphere as a lens near the focus of a laser beam [42], which is depicted in figure 2.4.

When the sphere is located at the beam focus, rays pass through the sphere with a

refraction angle equal to 0 resulting in no change of photon momentum and thus no
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(A) (B) (C)

Figure 2.4: Illustration of a micro-sphere trapped near a tight laser focus. A) A
sphere trapped at the laser focus experiences no gradient force. However, it does
experience a scattering force along the axis of propagation. B) A sphere positioned
near the focus but offset axially experiences an axial restoring force. C) A sphere
positioned near the focus but offset radially experiences an radial restoring force.

force on the sphere ( figure 2.4.A.) When the sphere is offset from the focus slightly

along the beam axis, as in 2.4.B, the beam is more focused, resulting in a force that

returns the micro-sphere towards the beam focus. For a sphere offset radially from

the beam axis, as depicted in 2.4.C, the laser is deflected in such a way that a force

on the bead moves it radially towards the beam focus. The forces drawn in 2.4 all

restore the sphere to the beam focus resulting in a 3D harmonic trapping potential.

It should be noted that the force in 2.4.B is a gradient force along the trap axis and

the force in 2.4.C is a radial gradient force. In this picture we assume the laser focus

is tight enough that we can ignore a scattering force along the beam propagation axis.

If the laser focus was not sufficiently tight, the scattering force would dominate over

the gradient in figure 2.4 resulting in sphere trap loss.

Although the ray optics pictures described in this section are simple and intuitive,

actual force calculations are non-trivial due to the fact that the laser light can be

reflected from the spheres and that there can be many internal reflections within

the sphere. In our experiments, the ray optics picture served only as an intuitive

mental picture for radiation forces. We primarily use 300 nm and 3 µm spheres in our

experiments with 1064 nm and 1596 nm lasers. For more detailed analyses of radiation
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forces in the ray optics regimes, [42, 43, 44, 45] provide for excellent references. Ref.

[45] provides a thorough computational toolbox in MATLAB for calculating optical

forces in the ray optics regime called Optical Tweezers in Geometrical Optics (OTGO)

which is freely available for download.

2.4 Rayleigh Scattering Regime

The experiment described in section 1.1 requires a sphere to be trapped at the anti-

node of a standing wave in an optical cavity. This imposes the requirement that

the sphere’s size be significantly smaller than the trapping laser wavelength(r � λ.)

Conveniently, Rayleigh scattering provides an analytic solution for calculating the

radiation force on the sphere.

In simple terms, the electric field of the laser induces an electric dipole moment in

the dielectric sphere. Since the laser field is time varying, the dipole oscillates within

the field. This oscillation, in turn, radiates. The radiation force on the sphere is simply

the result of the change in momentum of the incoming and out going field scattered

from the sphere. Here we present the theory of radiation forces on a dielectric sphere

in the Rayleigh scattering regime which is taken directly from Ref. [46].

The geometry for this model is given in figure 2.5. A linearly polarized Gaus-

sian beam (TEM00 mode) is focused to a minimum waist of w0 at the coordinates

(x,y, z) = (0, 0, 0). The polarization direction of the laser’s electric field is parallel

to the x-axis and the laser propagates along the z-axis. A dielectric sphere of radius

a is located at r within the Gaussian envelope of the laser.

The waist of a Gaussian beam as a function of axial position z is given by

w(z) = w0

[
1 +

(
λz

πw2
0

)2
]1/2

. (2.6)

where w0 is the minimum waist at z = 0 and λ is the laser wavelength. The intensity

profile of a Gaussian beam is given by

I(x, y, z) = I0(z)e
−2(x2+y2)

w(z) =
2P

πw2(z)
e

−2(x2+y2)
w(z) , (2.7)
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Figure 2.5: A linearly polarized Gaussian beam (TEM00 mode) is focused to a min-
imum waist of w0 at the coordinates (x,y, z) = (0, 0, 0). The polarization direction
of the laser’s electric field is parallel to the x-axis and the laser propagates along the
z-axis. A dielectric sphere of radius a is located at r within the Gaussian envelope of
the laser.

where I0(z) is the intensity at the beam center and P is the laser power. As discussed

in section 2.3, the radiation force can be separated into a force directed along the

the beam propagation axis called the scattering force, Fscat, and a force along the

gradient of the laser intensity called the gradient force, Fgrad. The gradient force

is proportional to the gradient of the beam intensity and provides a conservative

trapping potential at the beam focus. However, the scattering force accelerates the

sphere away from the beam focus. As such, the gradient force must be greater than

the scattering force for a stable trap to be realized.

Fscat is given by [46]

~Fscat =
(nmd

c

)
CscatI(x, y, z)ẑ =

128π5a6

3cλ4

(
m2 − 1

m2 + 2

)
n5
mdI(x, y, z)ẑ (2.8)

and Fgrad is given

~Fgrad = −2πnmda
3

c

(
m2 − 1

m2 + 2

)
∇I(x, y, z); (2.9)

where nmd is the index of refraction for the medium the particle is in, and Cscat is the

scattering cross section of the sphere. m is a unit-less parameter that quantifies the
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surface reflection of the sphere and is defined as the ratio of the index of refraction for

the sphere nsphere to the index of refraction of the medium: given by m = nsphere/nmd.

These force equations are valid for a particle near the trap center.

Since the intensity profile is symmetric about the x and y axes it is useful to

look at the radial and axial radiation forces separately. Table 2.1 contains typical

parameters used in our lab to calculate the forces plotted in figures 2.6 and 2.7.

Parameter Value Comments

a 300 nm Typical bead radius used in our lab.
λ 1064 nm Trap laser used in our lab
P 2.2 W Trap laser power
w0 10 µm Trap laser minimum waist
nglass 1.46 Refractive index at 1064nm
nvacuum 1 By definition
m 1.46 nglass/nvacuum

Table 2.1: The parameters used for the force calculations presented in this section.

In figure 2.6, the scattering and gradient force contributions to the axial force

are plotted. Since the non-conservative scattering force, figure 2.A, is significantly

larger than the conservative gradient force, figure 2.6.B, the parameters in table 2.1

do not produce a stable trap along the beam axis. We dealt with this issue by using

two counter propagating laser beams focused to the same spot. In this case, the

scattering forces cancel each other and the gradient restoring force is doubled. This

trap configuration is commonly known as a Dual-Beam Dipole Trap and is discussed

in greater detail in chapter 3.

The radial gradient force is plotted in figure 2.7 for the parameters listed in table

2.5. Also plotted in figure 2.7 is the weight force for a 300 nm fused silica sphere. The

radial radiation restoring force dominates over the weight force allowing for a stable

trapping potential along the vertical axis.

Since the Rayleigh solution provides analytical expressions, it is typically the

preferred method for particles significantly smaller than the trapping wavelength. In

section 2.5 we discuss numerical methods for estimating radiation forces using Mie
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Figure 2.6: The calculated Rayleigh optical force on a 300 nm micro-sphere with a
2.2 W 1064nm laser and waist of 10 µm. A) The scattering force along the laser
propagation axis. B) The gradient force along the laser propagation axis. The beam
waist for this configuration is 10 µm and the Rayleigh length is .0003 m. Note the
different force scales.
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Figure 2.7: The calculated radial Rayleigh gradient force on a 300 nm micro-sphere
with a 2.2 W 1064 nm laser and waist of 10 µm. The beam waist for this configuration
is 10 µm.



19

scattering. These solutions hold true within the Rayleigh regime as well as for larger

particles, but the models are significantly more complicated.

2.5 Mie Scattering Regime

For much of the work presented in this dissertation we used 3 µm spheres because

they are easy to deposit into the optical trap (section 4.3.1.) We also used a 1064

nm laser for our dipole trap. This combination is well within the Mie scattering

regime where r ∼ λ. Several codes have been written that model Mie scattering of

electromagnetic waves from spherical particles. [47, 48, 49, 50]. The results presented

in this chapter were primarily computed with a modified version of a MATLAB code

written by Christian Mätzler [47]. A detailed review on Mie scattering of a focused

Gaussian laser beam by a spherical particle is provided by Ref. [51].

The Mie scattering solution for the radiation force is similar to Rayleigh scatter-

ing in that the radiation force results from a change in momentum of the scattered

electromagnetic field. However, there is not a concise analytic solution because the

incoming and radiated fields are expanded into radiating spherical vector wave func-

tions, which necessitate high order Bessel functions. The mathematical computation

is quite complex and omitted from this dissertation.

Plotted in figure 2.8 is the radiation force on a micro-sphere calculated at the

laser focus for both the Rayleigh and Mie solutions as a function of sphere radius.

The laser wavelength in these calculations is 1064 nm. The two solutions agree quite

well in the limit r � λ. However, they diverge around r = .15 µm where r
λ
∼ 1

2π
.
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Figure 2.8: The calculated Mie and Rayleigh optical forces on a micro-sphere at the
focus of a 2.2 W laser with 1064 nm wavelength as a function of sphere radius. The
two theories agree very well within the Rayleigh limit.



21

Chapter 3

Dipole Optical Trapping

As discussed in chapter 2, the optical forces on a micro-sphere from a focused laser

beam are of two types. The first type being a scattering force FScat along the axis of

laser propagation ẑ. The second type is a gradient force FGrad in the direction of the

gradient of the laser intensity.

The intensity of a focused Gaussian laser beam is given by

I(r, z) = I0

(
w0

w(z)

)2

e
−2r2

w2(z) , (3.1)

where z is a position coordinate along the axis of propagation, r is the radial position

from the beam axis, I0 is the intensity at the beam center and w0 is the minimum

beam waist at the focus. The beam waist w(z) is given by

w(z) = w0

√
1 +

(
z

zR

)2

, (3.2)

where zR is the Rayleigh length given by zR =
πw2

0

λ
. A micro-sphere located within

the beam but off axis will experience a gradient force pushing it towards the beam

axis.

Plotted in figure 3.1 is a contour plot of a Gaussian laser beam intensity in the

plane perpendicular to the axis of propagation. Also plotted is the intensity gradient

field.



22

Figure 3.1: A) Contour plot of a Gaussian laser beam intensity in the plane perpen-
dicular to the axis of propagation. B) Gradient field, ∇I, plot of a Gaussian laser
beam in the plane perpendicular to the axis of propagation.

3.1 Single Beam Dipole Trap

The simplest dipole traps are formed by focusing a single laser beam with a high

numerical aperture1 (NA) lens. The minimum beam waist w0 as a function of NA for

a focused Gaussian beam is given by [52]

w0 =
nλ

π(NA)
, (3.3)

where n is the index of refraction of the medium the lens acts in. By using higher NA

lenses, smaller waists are produced. When the focus of the beam is sufficiently small

the gradient force is larger than the scattering force along the beam axis providing a

restoring force centered on the focus. Plotted in figures 3.2 and 3.3 are the optical

forces on a 300 nm sphere trapped in vacuum and air respectively. As illustrated in

figure 3.2.C, a NA∼ .9 is required for the magnitude of the gradient force to roughly

equal the magnitude of the scattering force for a 300 nm sphere. Since the index of

refraction for water is greater than the index of refraction of vacuum, a larger NA is

1See appendix C for a relevant description of NA
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Figure 3.2: The scattering and gradient forces on a 300 nm sphere trapped in vacuum.
2.2 W of 1064 nm laser light is focused with a single lens of varying NA. The ratio of
the gradient force to the scattering force increases as NA increases.
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Figure 3.3: The scattering and gradient forces on a 300 nm sphere trapped in water.
2.2 W of 1064 nm laser light is focused with a single lens of varying NA. The NA
used for the calculations is the NA for a lens in Air. The ratio of the gradient force
to the scattering force increases as NA increases.



24

ScatteringCForce
GradientCForce

300CnmCsphere

100CnmCsphere
50CnmCsphere

OpticalCForcesConCaCSphereCTrappedCinCVaccuumCWithCaCSingleC1064CnmCDipoleCTrapCCreatedCbyCaCNAC=C21CLens

x1

ForceC(fNfForceC(pNf ForceC(fNf

A B CPositionCAlongCtheCBeamCAxisC(μmf PositionCAlongCtheCBeamCAxisC(μmfPositionCAlongCtheCBeamCAxisC(μmf
400200x200x400

400200x200x400

400200x200x400

325
320

225

220
125

120
025

5

4

3

2

1

022

021

x021

x022

Figure 3.4: The scattering and gradient forces on spheres of varying size trapped in
vacuum. 2.2 W of 1064 nm laser light is focused with a single lens with NA = 0.1.
The ratio of the gradient force to the scattering force increases as the diameter of the
sphere decreases.

achieved with the same lens when acting in water.

From equations 2.8 and 2.9 we see that Fscat ∝ a6 and Fgrad ∝ a3. So, the ratio

of the gradient force to the scattering force scales as one over the radius cubed.

Fgrad
Fscat

∝ a−3 (3.4)

Plotted in figure 3.4 are the optical forces from a single beam 2.2 W dipole trap for

micro-spheres of various diameters.

There are two drawbacks with single beam traps which prevent us from using

their simple geometry in our experiments. First, the working length of most high NA

lenses is typically under a few millimeters. We need a longer working length in order

to trap a sphere in both a dipole trap and optical cavity with the cavity perpendicular

to the dipole trap. Secondly, we are interested in trapping micro-spheres in air and

vacuum. The highest NA lenses are designed to operate in liquid where the higher

index of refraction is advantageous.

3.2 Dual Beam Traps

Dual beam dipole traps use two counter propagating lasers focused to the same spot.

With this configuration the axial scattering forces cancel each other while the axial

gradient restoring forces add to create a deeper trapping potential. We opted to use

a dual beam dipole trap configuration in our experiments.
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A B

Figure 3.5: A) An optical schematic for the first proof of concept dual beam dipole
trap in our lab. A 2.2 W 1064 nm laser is split into two perpendicularly polarized
beams of equal power with a half-wave-plate and polarizing cube beam splitter. Two
50 mm lenses focus the beams to the same point in space. The optical trap is located
at the foci of the beams. A quartz cell surrounds the trap to reduce air currents in
the room and a CCD camera images the trapped sphere. B) A photograph of the
first dual beam dipole trap in our lab. Note that very few optics were used.

The first dipole trap built in our lab is depicted in figure 3.5. A 2.2 W 1064

nm laser beam is expanded to ∼ 1 cm in diameter and split into two perpendicularly

polarized beams of equal power with a half-wave-plate and polarizing cube beam

splitter. The two beams are then focused to the same position in space with 50 mm

lenses. A quartz cell was place at the trap location to minimize air currents which can

easily knock a micro-sphere from the trap. Figure 3.5.B is a photograph of the first

trap which clearly shows the simplicity. With roughly a dozen optical components

we were able to trap micro-spheres in air with ease.

3.3 Trapping potential

The magnitude of the electric field for a Gaussian beam is given by

E(r, z) =

√
2I(r, z)

cε0
, (3.5)

where c is the speed of light, ε0 is the vacuum permitivity and I(r, z) is the laser

intensity given in equation 3.1. The gradient force provides a trapping potential
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given by

U(r, z) = −1

4
αE2(r, z). (3.6)

α is the polarizability of the micro-sphere given by

α = 3ε0V
(ε− 1)

(ε+ 2)
, (3.7)

where V and ε are the volume and permitivity of the micro-sphere respectively. Plot-

ted in figure 3.6 are the trapping forces and trap potentials for a 300 nm sphere

trapped in a dual beam trap with 2.2 W total Nd:YAG power and 10 µm minimum

beam waists.

We define the axial force as the optical force along the dipole lasers’ axis of propa-

gation. The vertical axis is perpendicular to both the dipole trap axis and the optical

table plane. The horizontal axis is parallel to the optical table and perpendicular to

the dipole axis and vertical axis.

Although the intensity profile of the laser is the same along the horizontal and

vertical axes, the sphere experiences the additional weight force along the vertical

axis. As such, the vertical and horizontal potentials differ slightly (figure 3.6 B and

D.) We refer to the effect added by the weight force of the sphere to the potential as

droop.

3.4 Dipole Trap Frequency

Here we derive the the trap frequency for the dipole trapping potential given in

equation 3.6. By combining equations 3.1, 3.2, 3.5, 3.6 and 3.7 we can rewrite the

potential as

U(r, z) = −3I0V (ε− 1)e

− 2r2

w2
0

(
λ2z2

π2w4
0

+1

)

2c(ε+ 2)
(
λ2z2

π2w4
0

+ 1
) . (3.8)
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Figure 3.6: Three dimensional optical forces and trapping potentials for a dual beam
dipole trap on a 300 nm sphere. 2.2 W of 1064 nm laser light was used for these
calculations.
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The radial force Fi at the trap center are obtained by taking the first partial derivatives

of the potential.

Fr = −∂U(r, 0)

∂r
, (3.9)

Fr = −6I0rV (ε− 1)e
− 2r2

w2
0

cw2
0(ε+ 2)

, (3.10)

Fz = −∂U(0, z)

∂z
, (3.11)

Fz = − 3I0λ
2V z(ε− 1)

π2cw4
0(ε+ 2)

(
λ2z2

π2w4
0

+ 1
)2 . (3.12)

The spring constants ki are derived by Taylor expanding the forces Fi, looking at the

first order terms and comparing them to Hook’s Law: Fi = −kixi.

Fr = −6I0V (ε− 1)

cw2
0(ε+ 2)

r +O(r2), (3.13)

=⇒ kr =
6I0V (ε− 1)

cw2
0(ε+ 2)

, (3.14)

Fz = −3I0λ
2V (ε− 1)

π2cw4
0(ε+ 2)

z +O(z2), (3.15)

=⇒ kz =
3I0λ

2V (ε− 1)

π2cw4
0(ε+ 2)

. (3.16)

Finally, we obtain the trap frequency ωi by taking the square root of the spring

constant ki divided by the micro-sphere mass m = ρV .

ωr =

√
6I0(ε− 1)

cρw2
0(ε+ 2)

, (3.17)

ωz =

√
3I0λ2(ε− 1)

cπ2ρw4
0(ε+ 2)

. (3.18)
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Figure 3.7: The radial and axial trap frequencies, ωr and ωz, for a 300 nm sphere
in a 1064 nm dual beam trap with a total power of 2.2 W split evenly between the
beams. As the spot size w0 increases the trap frequency decreases for both cases.

The ratio of the radial frequency to the axial frequency for constant intensity is given

by

ωr
ωz

=

√
2πw0

λ
=
√

2
zr
w0

. (3.19)

The radial frequency scales as one over the spot size and the axial frequency scales as

one over the Rayleigh length for fixed intensity. As the spot size decreases, the radial

intensity gradients increases near the trap center. Similarly, as the Rayleigh length

decreases, the axial intensity gradient increases near the trap center. The greater the

intensity gradient, the greater the restoring force on the micro-sphere which results

in a greater trap frequency.

Plotted in figure 3.7 are the axial and radial trap frequencies for a 300 nm glass

sphere in a 1064 nm dual beam trap with a total power of 2.2 W split evenly between

the beams. The trap frequencies are plotted as a function of beam spot size which is

equal for both beams. Plotted in figure 3.8 is the ratio of the trap frequencies verses

spot size for the same parameters.
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Figure 3.8: The ratio of the radial trap frequency ωr to the axial trap frequency ωz
plotted as a function of laser spot size w0.

3.5 Capture Velocity

The maximum velocity of a trappable sphere can be calculated by setting the potential

equal to the kinetic energy of the sphere,

|U(0, 0, 0)| = 1

2
mv2. (3.20)

By rewriting the mass of the sphere m in terms of density ρ and volume V we get

1

4

(
3ε0V

(ε− 1)

(ε+ 2)

)
2I

cε0
=

1

2
(ρV ) v2, (3.21)

Solving for the velocity v we get

v =

√
3I

cρ

ε− 1

ε+ 2
. (3.22)

For a dual beam trap with 2.2 W total Nd:YAG power and 10 µm minimum beam

waists, the capture velocity is 13.2 cm/s. Plotted in figure 3.9 is the capture velocity

verses trapping power and laser spot size. Since the acceleration required to launch

micro-spheres is quite large, > 106 m/s2, we cannot launch micro-spheres at high

vacuum without accelerating the beads to a velocity greater than the capture velocity.

Low vacuum is required because collisions with the gas in the vacuum chamber slows

the micro-sphere. The lowest vacuum chamber pressure where we consistently capture

micro-spheres is ∼5 mBar.
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P Beam Focus S Beam Focus

Figure 3.10: Illustration of the offset between the two foci of a dual beam dipole
trap. The space between the two foci allow for small power imbalances between the
two beams while maintaining a stable trap.

3.6 Dual Beam Trap with Foci Offset Axially

Typically, the scattering force is much greater than the gradient force for small NA

traps as depicted in figures 3.2, 3.3 and 3.4. In order for the dual beam trap de-

scribed in section 3.2 to work, the power in both beams need to be equal for the

non-conservative scattering forces to cancel. If there is even a slight power imbalance

between the beams the scattering force may produce an unstable trap. A simple so-

lution to this problem is to offset the foci of the two beams as depicted in figure 3.10.

This configuration allows for a ”sweet spot” to exist where the scattering forces cancel

somewhere between the foci. Since it is nearly impossible to get two laser beams with

exactly the same power, an offset is a necessary consideration when designing a dual
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Figure 3.12: Axial forces on a 3 µm sphere from a 2.2 W 1064nm dual beam trap
with 10 µm minimum waists. The power imbalance between the trapping beams
varies from 0% to 4%. Power imbalance is defined so that e.g. 1% indicates 51% of
the power is in the P-beam. The offset is 0 in A, 25 µm in B and 75 µm in C. As the
offset increases the trap is capable of accommodating greater power imbalances.

beam dipole trap.

Plotted in figures 3.11 and 3.12 are the optical forces from a dual beam trap on

a 3 µm sphere for various power imbalances and offsets. The difference between the

two plots are the beam spot sizes. Figure 3.11 contains information for a trap with

15 µm waists and figure 3.12 contains information for a trap with 10 µm waists.

Plotted in figures 3.13 and 3.14 are the optical forces from a dual beam trap on

a 300 nm. Figure 3.13 contains information for a trap with 15 µm waists and figure

3.14 contains information for a trap with 10 µm waists.
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Figure 3.14: Axial forces on a 300 nm sphere from a 2.2 W 1064nm dual beam trap
with 10 µm minimum waists. The power imbalance between the trapping beams
varies from 0% to 4%. Power imbalance is defined so that e.g. 1% indicates 51% of
the power is in the P-beam. The offset is 0 in A, 25 µm in B and 75 µm in C. As the
offset increases the trap is capable of accommodating greater power imbalances.
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Figure 3.15: Axial forces on a 30 nm sphere from a 2.2 W 1064nm dual beam trap
with 10 µm minimum waists. The power imbalance between the trapping beams
varies from 0% to 4%. Power imbalance is defined so that e.g. 1% indicates 51% of
the power is in the P-beam. Even though the offset is zero a wide range of power
imbalances still provide a stable trap.

The first thing to note in all these figures is that when the offset is set to zero

very good power balance is required to produce a stable trap. If there is even a 1%

power imbalance there are no stable traps for every configuration plotted. A second

effect to note is that as the beam waists decrease, we see that the traps with an offset

can accommodate greater power imbalances. This is because as the beam waists

decrease, the gradient force increases as a result of an increase in the gradient of the

intensity. A third effect to note is that the smaller spheres can be stably trapped with

greater power imbalances. Here again, the gradient force to the scattering force ratio

increases as the spheres get smaller. Plotted in figure 3.15 are the trapping forces

for a 30 nm sphere with various power imbalances and no offset. This figure clearly

shows a stable trap with a 4% power imbalance.

Plotted in figure 3.16 is the maximum allowed power imbalance as a function

of micro-sphere diameter for a trap with no offset and a 75 µm offset. The total

power is 2.2 W and the beam waists are 9 µm. Power imbalance is defined so that

e.g. 1 indicates 100% of the power is in the P-beam and 0 indicates a 50/50 balance

between the beams. For both traps, 100% power in the P-beam allowed for a stable
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Figure 3.17: Radial forces on a 300 nm sphere (A) and a 3 µm sphere (B) from a
2.2 W 1064nm dual beam trap with 10 µm minimum waists. The axial offset varies
from 25 µm to 125 µm. Note that the strength of the radial force decreases slightly
as the axial offset increases.

trap for micro-spheres under 42.2 nm in diameter. This is because the gradient force

dominates in this region. The maximum allowable power imbalance is at a minimum

for ∼1 µm. The behavior of the curve above 4 µm appears odd to us and we do not

have a good explanation for it. Possibly our Mie scattering code is failing as the force

on the micro-sphere enter the ray optics regime.

Lastly, as the offsets get larger, the strength of the trap forces increase and the

traps can accommodate greater power imbalances. This is because the scattering

forces are less effective at canceling each other away from the trap center. Plotted in

figure 3.17 are the radial forces on 300 nm and 3 µm spheres with various offsets. As

the offset increases, the strength of the radial force decreases slightly. A typical offset

used for our trap is 75 µm.

3.7 Asymmetrical Dipole Trap

In an effort to fend off thermal drift in our optics that caused misalignment of the

dipole trap foci we experimented with an optical trap which we refer to as the Asym-

metrical Dipole Trap; this is depicted in figure 3.18. Instead of focusing two collimated

beams of equal diameter, as depicted in figure 3.5, this configuration uses collimated

beams with different diameters. This produces two different spot sizes because spot
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Figure 3.18: Illustration of an asymmetrical dipole trap. Two counter propagating
collimated beams with different beam diameters are focused near each other with a
small offset ∼3 µm. The focus of one beam is nested within the other beam. This
configuration makes the alignment of the trap simpler. It is also resistant to small
thermal drifts in the optics and power imbalances between the beams.

size is inversely proportional to the diameter of a collimated beam focused by a lens.

The advantage of having different spot sizes is that the small spot can be nested

within the larger spot. When one of the trapping beams drifts slightly, the effect on

the trap is less noticeable when one focus is smaller than the other. This configuration

also makes alignment simpler since it is not as critical to have the foci completely

overlap.
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Chapter 4

Experimental Setup

4.1 Vacuum System

The vacuum system was designed and built in house. Figure 4.1 is a SolidWorks

drawing of our vacuum chamber. The chamber is made from an eight inch diameter
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Figure 4.1: A SolidWorks rendering of the vacuum chamber used for our experiments.

stainless steel cylinder with seven 1.5 inch diameter ports and one 3 inch x 3 inch

square port on the sides. We refer to the square port as the “dog house” and it houses
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most of the electrical feed-throughs and part of the diving board for launching micro-

spheres. Four of the ports are entries for laser beams used for trapping and cooling

and have windows mounted on them with antireflective coatings for 780 nm, 1064

nm and 1596 nm. Port 1 is where the S-polarized dipole trap laser enters. The axial

feedback and P-polarized trap lasers enter through port 5. The horizontal feedback

and cavity lasers enter port 3. The vertical feedback cooling laser enters through the

bottom port, which is not visible in figure 4.1. A six way conflat cross is attached to

port 4 for attaching the vacuum pumps and the nitrogen backfill hose.

Within the vacuum chamber, there is a breadboard, figure 4.2, which holds two

lenses for the dual beam dipole trap, the optical cavity and the diving board system

for launching micro-spheres. The breadboard can be removed if needed. The 1

inch diameter dipole trap lenses are mounted in custom built lens mounts which are

mounted on custom Newport ultra high vacuum xy stages for fine adjustment of the

trap.

UHV
XYpStage

1CpLens
Mount

DivingpBoard
Assembly

Breadboard

Optical
Cavity

Figure 4.2: A SolidWorks rendering of the breadboard mounted within the vacuum
chamber. Mounted on the breadboard are two lenses for the dipole trap, an optical
cavity and the diving board assembly.

Two pumps are used to evacuate the chamber. The first pumping unit is a



40

Oerlikon Leybold Vacuum TURBOPUMP 80, which has both a forepump and a

turbo pump. The second pumping unit is a 60 l/s VarianTriode VacIon ion pump

model 911-5033. A IONIVAC ITR 90 vacuum gauge is mounted on the turbo pump

which has roughly 2 meters of 2 inch bellows between it and the 6 way cross. Figure

4.3 is a photograph of the vacuum system 6 way cross. Mounted on the 6 way cross is

a convectron vacuum gauge. Two valves allow chamber gas to flow towards the turbo

pump. One is a large Kurt J. Lesker right angle valve which is attached to a 2 inch

diameter bellows and the other is a smaller gas shut-off valve that attaches to a 7 mm

diameter bellows. The smaller valve is used when sensitive control of the flow rate

is required while the large valve is used to pump down quickly or at low pressures.

Pumping down from atmospheric pressure with the large valve open causes too much

turbulence within the chamber and results in micro-sphere loss from the chamber.

Figure 4.3: A photograph of the 6 way cross mounted on the vacuum chamber.
Mounted on the cross are various valves for pumping out the chamber and backfilling
it with nitrogen gas.
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4.2 Dual Beam Dipole Trap

Depicted in figure 4.4 is the optical circuit for our dual beam dipole trap. A 1064 nm

Figure 4.4: A simplified illustration if the optical layout for the dual-beam dipole
trap.

Nd:Yag laser with a maximum power output of 3 W is used to create the dipole trap.

The specific model of the laser is the Laser Quantum Ventus. The light is expanded

with a telescope composed of a 30 mm plano-convex (pcx) and 125 mm acromat lens

which brings the beam diameter to ∼9 mm. Next, the linear polarization of the beam

is rotated with a λ
2

waveplate. The primary purpose of the waveplate is to balance

the power between the S-polarized and P-polarized beams created by splitting the

laser beam with a polarizing cube beam splitter (PBS). Both beams are raised to the
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chamber height with a periscope. Two Thorlabs Best Form 50 mm lenses mounted

within the chamber focus the beams near each other creating the optical trap. The

trap laser coherence length is ∼1 cm, so interference between the S and P beams

is not an issue. When the P polarized laser leaves the vacuum chamber, 1-10% of

it is picked off and imaged onto quadrant photo-detector 1 for imaging the micro-

sphere’s motion in the horizontal-vertical plane. The S polarized light and remaining

P polarized light terminate at a beam stop behind the PBS.

4.3 Bead Loading

One of the first engineering challenges we encountered was how to actually deposit a

single bead into our dipole trap. After a fair amount of brain storming, we determined

that producing a dry aerosol was the solution with the most bang for its buck. The

system we designed was cheap to build, relatively clean for a high vacuum system

and an already proven method by Dr. Tongcang Li while working on his dissertation

[53] at the University of Texas in Austin under Professor Mark Raizen. However, this

method proved to be less successful when launching beads smaller than 1µm, so we

designed a second delivery method that produced a “fine mist” of beads and solution

into the vacuum chamber. For both systems, a cloud of micro-spheres is produced

which falls under gravity in a partially evacuated chamber towards the dipole trap.

4.3.1 Diving Board Method

Basic Diving Board Launching Method

The method we used to produce a dry aerosol of beads was developed in Ref. [54] and

is depicted in figure 4.5. Dry beads are smeared onto the end of a glass microscope

slide which is clamped onto a piezoelectric transducer. A time varying signal from a

home built high current pulse generator is applied across the piezoelectric transducer

such that it drives the piezoelectric transducer at a resonance which in returns drives

the glass slide which shakes the beads off creating a dry aerosol. Figure 4.6 is a

Solidworks drawing of the diving board system we use. The slide is at a 45◦ angle so
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Piezoelectric 
Transducer

Clamp

Microscope Slide

Beads

Figure 4.5: Illustration of the diving board launching mechanism. A typical glass
microscope slide is clamped onto a piezoelectric transducer. At the end of the slide
micro-spheres are deposited. The dominant force holding the spheres onto the slide
is the van der Waals force. The piezoelectric transducer is driven at a resonance with
a home built pulse power generator. In return, the slide is driven by the piezoelectric
transducer knocking micro-spheres off of the slide. An aerosol of micro-spheres is
produced which falls towards the optical trap under the force of gravity.
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that a laser beam is reflected out of the top of the vacuum chamber for monitoring

the slides motion.

Figure 4.6: Rendering of the Solidworks mechanical drawing for the micro-sphere
launching stage used in our experiments. A glass microscope slide is clamped onto a
piezoelectric transducer. The slide is mounted at a 45◦ angle to steer a laser which
monitors the slides motion.

Stiction Forces

The primary stiction force holding the beads onto the microscope slide are Van der

Waals forces. The force required to flick the beads off is called the “pull-off force” and

is calculated in [55, 56] for glass micro-spheres stuck together and glass micro-spheres

stuck to a flat glass surface. The stiction forces are given by

Fsphere−flat = 4πrγ (4.1)

Fsphere−sphere = 2πrγ (4.2)

where r is the sphere radius and γ is the effective surface energy1. Something inter-

esting to note about equations 4.1 and 4.2, is that the pull-off force for two spheres is

half that for a sphere and flat surface. This is convenient for us because it increases

the chance of trapping a single bead and not a clump of beads since it requires more

force to remove a bead from the slide than the neighbor it is stuck to.

1Surface energy is defined as the excess energy at the surface of a material compared to the bulk.
Intuitively, is makes sense that the surface of a material is less favorable energetically than the bulk,
otherwise the bulk would prefer to be the surface. Typical units are mJ/m2.
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For a bead of mass m and density ρ we can rearrange equation 4.1 to calculate

the acceleration a needed to detach a bead from the diving board.

ma = Fsphere−flat, (4.3)

(
ρ

4

3
πr3
)
a = 4πrγ, (4.4)

a =
3γ

ρr2
∝ 1

r2
. (4.5)

For fused silica, ρ ∼ 2300g/m3 and γ ∼.014 J/m2. The acceleration required to

remove various bead sizes is presented in table 4.1.

Sphere Diameter Pull-Off Acceleration Comments

20 µm 1.85x105 m/s2 Typical for early air experiments.
3 µm 8.11x106 m/s2 “Big” beads we use.
1 µm 7.30x107 m/s2

300 nm 8.12x108 m/s2 “Small” beads we use.
30 nm 8.12x1010 m/s2

Table 4.1: The pull-off acceleration required to launch micro-spheres of various sizes
from a glass surface.

In our lab, we typically launch 3 µm and 300 nm beads. Our diving board system

is very effective at launching single 3 µm spheres. One slide with beads smeared on

the end will provide single 3 µm beads for days to weeks of frequent driving. However,

our system is not as effective with the 300 nm beads. We have successfully launched

and trapped 300 nm beads with this method, but the flux rate of single beads leaving

the diving board is very low. As such, we designed a second delivery method for

smaller beads we call the Nebulizer Method. The flux of single beads is significantly

higher with this method, but long pump down times are required for experiments in

vacuum. This is because the experiment chamber pressure must be near atmospheric

pressure. Beads can be launched with the diving board method at a few Torr.
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Figure 4.7: Photographs of the diving board assembly from various angles. The
base is machined from a single block of aluminum and is attached to the vacuum
chamber breadboard with a 1” clamping fork. The top plate is machined from a
vacuum compatible plastic called Techtron which is an electrical insulator. Clamped
between the base and top are a piezoelectric transducer and glass microscope slide.
Micro-spheres are smeared onto the far end of the glass microscope slide.

Diving Board Assembly

Figure 4.7 contains photographs of the diving board assembly used in our experiments.

A piezoelectric (piezo) ring and glass microscope slide are clamped between a Techtron

top plate (white material in figure 4.7) and an aluminum base machined from a single

block of aluminum. The piezo transducer is made of lead zirconate / lead titanate

ceramic and manufactured by APC International Ltd. The piezo ring has an outer

diameter of 38 mm, an inner diameter of 13 mm and a thickness of 6.35 mm. The

top plate of the assembly is made from a high vacuum compatible plastic material

called Techtron which has very low electrical conductivity. The electrical insulation

of Techtron is desirable for this application to prevent electrical arcing between the

grounded aluminum base and the top plate when high voltage signals are applied to

the top surface of the piezoelectric transducer.
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High-Power Pulse Generator

The impedance of the piezoelectric transducer is only about 12 Ω when on resonance,

so a large current is needed to attain the high ultrasonic power required to accelerate

the micro-spheres off of the microscope slide. Figure 4.8 contains a simplified electrical

schematic for our home built high-power pulse generator which is based on a design

by [53]. A high voltage (0-180 V) power supply charges a large 6.8 mF capacitor.

Fuse R1:=:5:Ω

R2:=:15:Ω

C1:=:6.8:mF:

P
iezoelectric

R
ing

Vishay:Siliconix::
IRFPS40N50
MOSFET

Control

0:-:180:V

Figure 4.8: A simplified schematic of the home built pulsed power generator for
driving the diving board micro-sphere delivery system.

Pulses are controlled by a high-power MOSFET (Vishay Siliconix: IRFPS40N50L)

which has an input current limit of 24 A and voltage limit of 500 V. The driving

signal frequency is controlled with a DS345 Stanford Reasearch Systems function

generator. The input capacitance of the power-MOSFET is too high to be driven

with the function generator so a high-current MOSFET (Microchip: TC4422) is used

to drive the control terminal of the power-MOSFET. We found that driving the piezo

at a resonance ∼140 kHz provides the largest flux of 3 µm spheres accelerated off

of the microscope slide. For 300 nm spheres, driving at ∼339 Hz provides the best

results.
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Slide Preparation

The micro-spheres we use in our lab are commercially available from Bangs Labora-

tories Inc. and are suspended in a liquid solution with roughly 10% solids. The first

step in preparing the diving board slide is to place a few drops of the micro-sphere

solution onto a glass microscope slide. The capillary action of the liquid adds an

undesirable stiction force. As mentioned in section 4.3.1, the stiction forces between

micro-spheres and the glass slide can be quite substantial. In order to remove the

undesired capillary force we heat the bead solution droplets to 120◦ C on a hotplate.

Once the droplets are dry we use a fine needle to scrape a small portion of the dry

micro-sphere off of the preparation slide and smear them onto the end of a launching

slide. Effort is made to minimize clumping on the launching slide to increase the

change of launching individual micro-spheres.

Heating

As mentioned in section 4.3.1, the flux of 300 nm beads leaving the diving board

was quite low as a result of the strong stiction forces between the beads and the

diving board. In order to improve the flux of smaller spheres we used a variety of

incandescent and halogen bulbs to increase the thermal energy of the beads stuck

to the diving board. Our results were rather subjective, but they do suggest that

heating increased the flux of beads released from the diving board based on simple

visual observations. In an effort to determine the effect of heating more quantitatively,

we produced scanning electron microscope (SEM) samples by depositing beads onto

silicon wafers with the diving board with and without heat. After looking at the

samples under the SEM it was determined that more beads were deposited on the

samples where heat was used which can be interpreted as an improvement in flux

resulting from heating the beads on the diving board.

Although we saw an improvement in the flux of the beads with heat we also

observed an increase in the kinetic energy of the beads. In simple terms, the heat

lamp aided in releasing the beads from the diving board but the heat also caused the
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beads to whiz around the vacuum chamber. This extra kinetic energy decreased the

success rate of trapping beads.

Teflon

According to equation 4.1, reducing the surface energy γ will reduce the stiction force.

The easiest and most obvious method for reducing γ is to use a diving board material

with a smaller γ. Bulk glass has a surface energy anywhere from 2N
m

to 4N
m

. Teflon

(PTFE) has a surface energy of ∼ 20mN
m

. From equation 4.5, the acceleration required

to flick a sphere off a glass surface is roughly 150 times the acceleration needed for a

Teflon surface. We found that the flux of single micro-spheres launched from Teflon

coated slides was noticeably improved. Also, SEM photos suggest that Teflon coated

slides produce fewer clumps.

Spin Coating

When by launching the smaller 300 nm spheres, we discovered that it was significantly

more likely to trap a clump of spheres than a single sphere. This is likely due to the

spheres clumping on the glass microscope slide. In an effort to minimize clumping

on the slide we implemented a method of spin coating slides with a diluted micro-

sphere solution and centrifuge. A detailed description of the procedure is given by

[26]. Figure 4.9 contains an SEM image of 300 nm spin coated onto a silicon wafer.

This method provides a nice mono-layer of spheres and reduces clumping.

4.3.2 Nebulizer Method

The second bead loading method we used is depicted in figure 4.10, which we refer

to as the nebulizer method. This method is very simple and has produced some nice

results. The method works by producing ultrasonic waves in water with a piezoelec-

tric transducer to create a mist of water droplets ∼ 2 µm in diameter by disturbing

the surface tension of the water. This technology is used extensively the medical
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Figure 4.9: SEM photographs of 300 nm spin coated spheres on a silicon wafer.

field to deliver drugs for inhalation and in household humidifiers2. The piezoelec-

tric transducer we used was the APC International LTD: 50-1011.1 because it comes

mounted on a circuit board with the all the electronics needed to drive the piezo-

electric transducer, other than a power supply, and the seals to attach it to a liquid

reservoir.

The piezoelectric transducer requires at least two inches of water above it in order

to prevent depolarization. Due to the small volume ( 1-2 drops of bead solution) we

designed a reservoir with a thin Kapton drum head, as illustrated in figure 4.10.A. The

piezoelectric transducer generates ultrasonic waves in the water within the reservoir

which drive the Kapton drum head. The drum head then breaks the surface tension

of the bead solution placed on the drum head. The result is a mist of beads and

solution suspended in the air. This air is then blown with a fan or compressed dry

nitrogen into the experiment chamber towards the optical trap.

2Caution should be used with nebulizer humidifiers. If regular tap water is used, the nebulizer
will produce a fine aerosol of salts in the air and deposit them evenly throughout the room you are
attempting to raise the humidity. This aerosol can also irritate human respiratory systems.
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A B

C D

Figure 4.10: A) A piezoelectric transducer generates acoustic waves in water which
drives a thin membrane drum head. Deposited on the drum head is a small volume of
micro-sphere solution. The drum head breaks the surface tension of the micro-sphere
solution creating a fine mist of liquid droplets with micro-spheres suspended in air.
B) Birds eye view into the nebulizer system. C) Side view of the nebulizer system.
D) A fine mist exiting the nebulizer system.

Nebulizer Micro-sphere Delivery Method

Figure 4.11 contains a drawing with the major components for delivering nebulized

micro-spheres from the system described in section 4.3.2 into the vacuum chamber.

We use dry compressed nitrogen to push the micro-spheres from the nebulizer to the

chamber through a 0.25 inch Teflon hose. It is important to have a flow rate that is

large enough to transport the spheres to the chamber but small enough that the speed

of the micro-spheres does not exceed the trap capture velocity discussed in section

3.5. A flow meter, needle valve and leak valve provide sufficient control of the flow

rate.
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Figure 4.11: Drawing of the primary components of the nebulizer micro-sphere deliv-
ery system. Dry nitrogen pushes the nebulized mist of micro-spheres into the vacuum
chamber.

The procedure for operating the Nebulizer delivery system is as follows.

• Place one to three drops of diluted micro-sphere solution on the nebulizer drum-

head. This should provide enough micro-spheres for a few days of regular op-

erations. Only add more solution when the flux of micro-spheres near the trap

is insufficient.

• Fill the remainder of the drum head reservoir with isopropyl alcohol. This

volume should be sufficient for a day or two. When the micro-sphere flux in the

chamber is poor, first refill the drumhead reservoir with alcohol. If the flux is

still poor, add more micro-sphere solution.

• Open the nitrogen chamber.

• Adjust the flow meter to roughly 0.1 liters per min.

• Adjust the needle valve so that the flow meter ball moves roughly half a mm.

• Pulse the nebulizer twice for less than a second each pulse.

• Open the leak valve slowly. Stop when micro-spheres start to scatter laser light

in the chamber.
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• The valves should be properly adjusted at this point. All that is required to

deliver micro-spheres is to pulse that nebulizer.

The above procedure is somewhat over simplified and should be used as a starting

point. As an operator gains experience with the system they will most likely develop

their own preferred procedure.

Alcohol Nebulizer Solution

A major drawback of the nebulization method is that liquid is introduced to the

vacuum chamber. Ultimately, we would like to pump our chamber down to ultra

high vacuum. Spraying water into the chamber only makes this more difficult. By

diluting the micro-spheres in isopropyl alcohol, a solvent typically used for cleaning

vacuum chambers, we were successful in producing a seemingly dry aerosol of micro-

spheres within the vacuum chamber. The nebulizer still creates a mist with beads

suspended in alcohol droplets, but the alcohol evaporates before the micro-spheres

enter then chamber. Figure 4.12 contains an SEM photograph of nebulized 300 nm

micro-spheres. The image on the left is of spheres diluted in clean water and the

image on the right is of spheres diluted in alcohol. The difference in concentration of

micro-sphere solution between the two photos is uncertain. The photos suggest that

the alcohol solution is better at producing individual spheres while the water solution

produces more clumping. Both photos are the result of a single droplet. The alcohol

drop is noticeably smaller and produces less residue.

4.4 Imaging Trapped Micro-Spheres

The center-of-mass motion of the micro-spheres is imaged with one of two quadrant

photo-detectors (QPDs.) In our experiments, we either image the shadow of the

micro-sphere or the scattered light from a micro-sphere in the trapping laser onto a

QPD. Figure 4.13 contains illustrations of our imaging optics. In figure 4.13.A, part

of the P-polarized dipole trap beam is picked off and imaged onto a QPD with a lens.

In figure 4.13.B, light scattered from the micro-sphere is collected with a lens and
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Figure 4.12: SEM photographs of 300 nm spheres deposited on a silicon wafer with
the nebulizer System. The image on the left is of spheres diluted in clean water and
the image on the right is of spheres diluted in alcohol.

Axial

V
er

ti
ca

l

A B

Axial

H
or

iz
on

ta
l

QFD 1

QFD 2

P Beam

Figure 4.13: Illustration of the micro-sphere imaging optics. A) The shadow from a
micro-sphere in the P-polarized trap beam is imaged onto a QPD. This image looks
at the horizontal-axial plane. B) Light scattered from a micro-sphere is imaged onto
a second QPD. This image looks at the vertical-axial plane. Using both QPDs we
can image a micro-spheres motion in 3-D.

imaged onto a second QPD. This configuration allows us to image micro-spheres in

three dimensions.

Figure 4.14 is a simple drawing of a quadrant photo-diode. A quadrant photo-

diode is simply a single chip with four photo-diodes (PDs) printed on it. Each PD

is given a name: A, B, C or D. Using various analog operational amplify circuits,

the signals from the PDs are combined to measure the micro-sphere’s motion in 2-D.

Figure 4.15 contains a simplified schematic of the QPD circuit.

Each PD of the QPD has a current to voltage amplifier which produces an output
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Figure 4.14: A simple drawing of the four photo-diodes (PDs) on a quadrant photo-
diode chip.
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Figure 4.15: A simplified schematic of the quadrant photo-detector.

voltage Vi that is proportional to the power of light incident on the PD; where i = A,

B, C, D. The signal along axis 1, in figure 4.14, is produced by first summing signal

VA with signal VB and summing signal VC with VD. This provides the signal VAB,
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which is proportion to the light incident on the top half of the QPD, and signal VCD,

which is proportional to the light incident on the bottom half of the QPD. VCD is

then inverted and summed with VAB to produce the signal along axis one; given by

V1 = VA + VB − VC − VD. (4.6)

A similar sequence of operations provides the signal along axis 2, which is given by

V2 = VC + VC − VA − VD. (4.7)

Figure 4.16 contains plots of the 3-D motion of a 3 µm sphere.

QPD Alignment

We have previously defined the lab frame as the horizontal, vertical and axial axes.

It is important to insure that the QPDs are aligned with the lab frame in order to

get the best feedback signal and to minimize crosstalk between channels. To perform

this alignment we place a cross-hair outside of the vacuum chamber where the trap

laser exits, so that the shadow from the cross-hair is visible on the QPD. We then

rotate the QPD so that its axis is aligned with the lab frame.

4.5 Data Collection and Analysis

The micro-sphere’s motion is measured in 3-D with two quadrant photo-detectors

(QPD) as described in section 4.4. The signal data is recorded on a personal com-

puter (PC) with LabVIEW and a National Instruments BNC-2120 data acquisition

device (DAQ) with a sample rate of 125 kHz. The signal from a Stanford Research

Systems DS345 a function generator is also captured. Figure 4.17 is a screen shot

of the LabVIEW VI we used for our data acquisition. The left most column con-

tains fields for inputing various experimental parameters. The center contains plots

of the micro-sphere’s motion in 3-D. The x and y-axis extend radially from the dual

beam dipole trap axis and the z-axis is along the trap axis. Since the intensity profile

of the trapping lasers is symmetric about the x and y axis the trap frequencies are
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Figure 4.16: A screen shot of the 3-D motion signal of a 3 µm sphere. The x and
y-axis are transverse to the trap axis. the z-axis is along the trap axis. Because of
laser intensity symmetry, the frequencies of the transverse motions are similar.

roughly the same. However, the axial trap frequency is notably lower than the radial

frequencies.

The LabVIEW program performs and plots a discrete Fourier transform (DFT)

for all four channels. Although the DFT data is not recorded at this stage of the

process, the visual of the DFT on the VI is valuable. It allows the operator to quickly

determine whether a single micro-sphere or a clump of micro-spheres is trapped.
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Raw Signal FFT of Raw SignalInput Parameters

Figure 4.17: Screen shot shot of the micro-sphere motion in 3-D. The x and y
axes extend radially from the dual beam dipole trap axis and the z-axis is along the
trap axis. The radial frequencies are higher than the axial frequency because of the
difference in the trap intensity profile.

When more than one micro-sphere is trapped, obvious rotational modes are present

in the DFT.

By modulating a feedback laser or the force calibration wires at the trap fre-

quency, the center of mass motion of a micro-sphere can be driven. This modulation

signal is created with a DS345 function generator and is also plotted on the VI. Figure

6.4 contains the DFT of a 3 µm sphere driven micro-sphere.

Once data has been collected it is transfered to a second PC for analysis. We

have a variety of MATLAB codes for averaging the data, performing FFT and fitting

FFT peaks.
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4.6 Active Feedback Cooling

4.6.1 Equation of Motion for a Micro-Sphere Optically Trapped
in a Gas

The equation of motion for a classical harmonic oscillator in one dimension is given

by

d2x

dt2
+
ω0

Q

dx

dt
+ ω2

0x =
F

M
, (4.8)

where x is the oscillator’s position, ω0 is the resonance frequency, Q is the quality

factor, M is the mass and F is an applied force. Equation 4.8 can be rewritten as

d2x

dt2
+ Γ0

dx

dt
+ ω2

0x =
Fdrive
M

, (4.9)

where Γ0 = ω0

Q
is a damping coefficient, which tends to reduce the amplitude of

oscillations, and Fdrive is a force that drives the motion of the oscillator. For an

optically trapped micro-sphere trapped in thermal equilibrium with air; Γ0 = Γair is

the viscous damping coefficient due to air molecules and Fdrive = Fth is the stochastic

force from Brownian motion. So, the equation of motion for an optically trapped

micro-sphere in equilibrium with a surrounding gas is given by

d2x

dt2
+ Γgas

dx

dt
+ ω2

0x =
Fth
M

, (4.10)

The equation for Fth is provided in reference [53] and given by

Fth
M

= ζ(t)

√
2kbTΓgas

M
. (4.11)

ζ(t) is a white noise process, kb is Boltzmann’s constant and T is the temperature of

the gas.

It is interesting to note that Γgas is a parameter of Fth. As reference [53] points

out, if the mechanical energy of the micro-sphere is greater than kbT , the damping

term will dominate. However, if the mechanical energy is less than kbT , the thermal

driving term will dominate. This mechanism ensures that the average mechanical

energy is kbT . This is related to the fluctuation-dissipation theorem in statistical

mechanics [57].
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4.6.2 Gas Damping Coefficient

Beresnev et al. [58] provide an equation for Γgas, which is given by

Γgas =
6πηR

M

.619

.619 +Kn
(1 + cK). (4.12)

R is the radius of the micro-sphere,η is the viscosity coefficient, M is the mass of the

micro-sphere and Kn = l/R is called the Knudsen number. The Knudsen number is

simply the ratio of the mean free path, l, of the gas molecules to the physical length

scale of the oscillator (R.) cK is a function of Kn and given by cK = (0.31Kn)/(0.785+

1.152Kn +Kn
2).

Since the mean free path is inversely proportional to the pressure of the gas,

Γgas decreases with pressure. Plotted in figure 4.18 are measured gas damping rates

for two different 3 µm spheres in N2 without feedback cooling. The damping rates

were measured by fitting the position spectrum peaks to determine the oscillator

quality factor Q. The damping rate is then given by Γ0 = ω0

Q
. The dashed line is
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Figure 4.18: The measured gas damping rates for two different 3 µm spheres in N2

without feedback cooling. The dashed line is the theoretical value from equation 4.12.
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the theoretical value from equation 4.12. There is reasonable agreement between the

measured and calculated values.

4.6.3 Optical Cooling

The center of mass (COM) temperature of an optically trapped micro-sphere can be

cooled by applying a an external force, which can be written as

Fcool = −Γcool
dx

dt
(4.13)

= −Γcoolv(t). (4.14)

v(t) is the velocity of the micro-sphere and Γcool a cooling damping coefficient. This

force is proportional to the velocity of the micro-sphere, but in the opposite direction.

The equation of motion for a cooled micro-sphere in one dimension is given by

d2x

dt2
+ (Γgas + Γcool)

dx

dt
+ ω2

0x =
Fth
M

= ζ(t)

√
2kbTΓgas

M
. (4.15)

With feedback cooling, we define the effective damping coefficient and effective tem-

perature as

Γeff = Γgas + Γcool (4.16)

Teff =
T0Γgas
Γeff

. (4.17)

T0 is the temperature without feedback cooling.

4.6.4 Optical Heating

If the external force in equation 4.13 were in the same direction as the velocity, heating

would occur. For an external force given by

Fheat = Γheat
dx

dt
, (4.18)

the effective damping coefficient would become

Γheateff = Γgas − Γheat. (4.19)
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The effective temperature is then given by

T heateff =
T0Γgas
Γheateff

, (4.20)

which is less than T0. Experimentally, it is easy to change the sign of the driving

force relative to the velocity of the micro-sphere. On many occasions we have lost

trapped spheres because of this.

4.6.5 Active Feedback Cooling System

We used three intensity modulated 780 nm lasers to cool and damp the center of

mass (COM) motion of trapped micro-spheres in 3-D. Figure 4.19 contains the optical

circuit for our feedback cooling system. The feedback beams are oriented along the

axial, vertical and horizontal exes. Each beam is power modulated with an acousto-

optical modulator (AOM.) The position signals from the QPDs are phase shifted 90◦

to provide a signal proportional to the micro-sphere’s instantaneous velocity. This

signal is then used to drive the AOMs.

Plotted in figures 4.20 and 4.21 are 3-D position for a 3 µm sphere trapped at 2

mbar. Figure 4.20 is an example of our early cooling efforts. The data presented in

figure 4.21 is after we refined our feedback cooling methods. The blue spectra were

taken when no feedback was applied and the red spectra are with feedback cooling.

For each spectra, the temperature was determined from the integrated area under

the peak. The cooling ratio ξ is the ratio of the temperature without cooling to the

temperature with cooling.

Plotted in figure 4.22 is the amplitude and phase of the beads motion plotted on

a complex plane. For these plots, the radial distance from the origin is proportional

to the amplitude of the beads motion. The angle from the real axis is the phase of the

beads motion relative to a known signal provided by a Standford Research Systems

DS345 function generator. The frequency of the reference signal is set to the trap

frequency. Each point corresponds to a DFT of one second worth of data at 125 kHz.

The red dots correspond to the signal from a bead without cooling and the black dots
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Figure 4.19: Illustration of the feedback cooling optical circuit. Three 780 nm lasers
are power modulated with AOMs to damp a micro-spheres COM motion.

are with cooling. As expected, the phase is random for all data sets. When cooling

is applied, the amplitudes decease while the phase remains random.
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3-D Feedback at 2 mbar

ξ = ~4.5

ξ = ~7.9

ξ = ~4.3

Figure 4.20: 3-D feedback cooling of a 3 µm sphere at 2 mbar
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ξ = ~105.3

ξ = ~64.0

ξ = ~34.4

Figure 4.21: Improved 3-D feedback cooling of a 3 µm sphere at 2 mbar
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Figure 4.22: The radial distance from the origin is proportional to the amplitude
of the beads motion. The angle from the real axis is the phase of the beads motion
relative to a known signal provided by a Standford Research Systems DS345 function
generator. The frequency of the reference signal is set to the trap frequency. Each
point corresponds to a DFT of one second worth of data at 125 kHz.
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Chapter 5

Laser Trapping and Cooling at
High Vacuum

When the vacuum chamber pressure is above 1 Torr, we can easily keep a micro-

sphere trapped without feedback damping. However, feedback damping is required for

pressures below 1 Torr. Plotted in figure 5.1 are the average pressures micro-spheres

are lost at as a function of trapping laser intensity without feedback damping. Each

point represents an average of 5 micro-spheres. For intensities greater than 4 x 109

W/m2, the loss pressure increases rapidly. However, for intensities below this value,

the loss pressure is relatively constant. As discussed in chapter 3, the trap potential

depth increases linearly with intensity. So, one would expect the loss pressure to

decrease as intensity increases. The fact that this does not occur can be partially

explained by the non-conservative scattering force from the trap laser [59, 60] and

radiometric forces from uneven heating of the sphere’s surface [38, 61].

5.1 Non-Conservative Trapping Forces

Instabilities can arise from the non-conservative scattering force discussed in chapter

2, because it is very difficult the achieve perfect anti-parallel alignment of the dual-

beam dipole trap. We have observed cyclic motion of micro-spheres when alignment

was poor. Figure 5.2 is an illustration of a dual-beam trap with a radial offset between

the counter propagating beams.

A micro-sphere trapped within this configuration will have a cyclic component
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Figure 5.1: The average chamber pressure when micro-spheres are lost as a function
of laser intensity. Each point represents the average loss pressure for 5 micro-spheres
at a given intensity. The loss pressure increases rapidly for intensities greater than 4
x 109 W/m2.

Figure 5.2: An illustration of the possible cyclic motion of a micro-sphere due to
poor trap alignment.

to its motion. This motion is easily detected with our imaging system as additional

rotational modes in the position DFT. In an effort to minimize these instabilities, we
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use a mirror mounted on two piezo-electric (PZT) transducers to fine-tune the steering

of the S-polarized trap beam, which is not the beam used for imaging. Figure 5.3

contains three screen shots of the position DFT for the same micro-sphere. The

images differ only by the voltage across the PZT (VPZT .) For this particular trap

Figure 5.3: DFT power spectrums for a trapped micro-sphere with slight trap mis-
alignment. VPZT is the voltage across a PZT mounted mirror used for fine tuning trap
alignment. When the trap alligment is off, sharp peaks appear in the DFT. These
peaks are the result of undesirable rotational modes of the micro-sphere’s motion.

alignment, the best alignment is when VPZT = 30.7 V. By changing the voltage to

VPZT = 24.8 V, the trap is intentionally misaligned slightly causing sharp peaks to

appear in the DFT. The extra peaks are the result of the new cyclic and rotational

motion of the micro-sphere. Setting VPZT = 15.6 V causes the trap to be even more

misaligned and more peaks are viable in the DFT.

5.2 Radiometric Forces

The micro-spheres we use have a finite optical absorption. As such, increasing the

trapping laser intensity increases the surface temperature of the micro-spheres. As

gas molecules collide with the micro-sphere, they carry away more kinetic energy

than they had before the collision. When heating of the micro-sphere is uneven, due

to material impurities, surface imperfections or the laser intensity gradient, currents

in the gas are created near the micro-sphere. If the currents are great enough, the
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sphere can be lost from the trap. As the laser intensity increases, so does this effect;

which partially explains the behavior in figure 5.1.

During his earlier work, Arthur Ashkin argued in Ref. [38] that these instabilities

are at a maximum when the mean free path l of the surrounding gas is similar to the

length scale as the micro-sphere. We define the pressure at which the l ∼ r as the

mean free path pressure P0. Plotted in figure 5.4 is P0 as a function of micro-sphere

diameter 2r. For a 3 µm sphere, the MFP pressure is ∼ 20 Torr. Experimentally, we
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Figure 5.4: The mean free path pressure P0 plotted as a function of bead diameter.
According to Ref. [38], radiometric forces should be dominant at this pressure.

have found that the radiometric instabilities are only a nuisance below ∼1 Torr and

that it is relatively easy to keep a 3 µm sphere trapped at 20 Torr indefinitely. In

order to better understand this, we can parameterize the micro-sphere absorption as

the imaginary part of the complex permitivity of the sphere.

The complex permitivity is given by

ε = ε1 + iε2. (5.1)

The real part, ε1, is parameterizes the energy stored within the medium. The

imaginary part, ε2, parameterizes the absorption or dissipation of energy within the

medium.
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In thermal equilibrium, the sum of the power absorbed from the trap laser and

blackbody radiation from the environment must equal the sum of the power lost to

gas collisions and emitted through blackbody radiation.

P abs
bb + P abs

laser = P rad
bb + P rad

col , (5.2)

The Stefan-Boltzmann law provides the blackbody power absorbed from the environ-

ment and radiated, which is given by

P abs
bb = εσ(4πr2)T 4, (5.3)

P rad
bb = εσ(4πr2)T 4

int, (5.4)

where ε is the emissivity of the blackbody, σ is the Stefan-Boltzmann constant, r is

the sphere radius, T is the temperature of the external environment and Tint is the

internal; temperature of the micro-sphere. Ref. [62] provides a solution for P abs
laser and

P rad
col

P abs
laser =

12πI0V

λ
Im

[
ε1 + iε2 − 1

ε1 + iε2 + 2

]
, (5.5)

where I0 is the laser intensity, V is the sphere volume and λ is the laser wavelength.

P rad
col = −αg

√
2

3π
(πr)2Pvrms

γsh + 1

γsh − 1

(
Tint
T
− 1

)
, (5.6)

where P is the background gas pressure, vrms is the gas root-mean square speed and T

is the gas temperature. γsh is the gas specific heat ratio and αg is factor (0 ≤ αg ≤ 1),

which characterizes the degree to which a gas molecule thermalizes with the sphere

upon a single collision.

The actual value of ε2 is uncertain for our micro-spheres. According to Ref.

[63], ε2 = 10−7 for bulk fused silica. We have observed trapped micro-spheres at high

vacuum (10−6 Torr) with trap intensity I0 ∼ 1010 W/m2. As such, we can set an upper

bound on ε2 < 10−6. Solving equation 5.2 for Tint with these parameters gives a value

of Tint = 1042 K, which is ∼ 300 K below the continuous use temperature of fused

silica. We expect 10−7 < ε2 < 10−6. In Collaboration with Dr. Pat Arnott’s group at
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UNR, we have also begun investigations of bead optical absorption coefficients using

photoacoustic methods [64].

Figure 5.5 contains a plot of the theoretical internal temperature for a 3 µm sphere

with ε2 = 10−6. At high pressure (> 10 Torr,) the micro-sphere is primarily cooled
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Figure 5.5: Radiometric force and internal temperature vs. vacuum chamber pres-
sure. These calculations are for a 3 µm sphere with a laser intensity of 2 x 109 W/m2.
We assumed ε2 = 10−6.

by collisions with the background gas. However, at high vacuum (< 10−3) Torr, heat

is primarily dissipated through blackbody radiation. The shape of the curve remains

roughly the same for smaller ε2, however the Tint values will be smaller.

Ref. [65] provides a model for radiometric forces on aerosols. The radiometric

force is given by

FT = −
πr2η

√
αRg
MT

Γi
P
P0

+ P0

P

, (5.7)
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where η is the gas viscosity, M is the molar mass, Rg is the is the gas constant, Γi is the

temperature gradient and P0 is the MFP pressure. Plotted in figure 5.5 are FT for the

limits that P � P0 (red dashed line) and P � P0 (blue dotted line.) For P � P0, FT

scales with 1
P

. In this region, thermalization is dominated by gas collisions and Tint is

constant. However, for P � P0, blackbody radiation is the dominant thermalization

mechanism. In this region, FT scales with P . In this model, FT has a maximum value

at P0, which agrees with Ashkin’s model in Ref. [38]. As mentioned previously, we

have not observed dominant radiometric forces at P0 experimentally.

Both of the radiometric force models presented so far (Ref. [38, 65]) assume that

the temperature gradient of the micro-sphere Γi is pressure independent. The solid

black curve in figure 5.5 is FT from equation 5.7 with Γi(P ) ∝ 1
P

. This estimate

assumes a 1% change in temperature across the surface of a 3 µm sphere due to

the intensity gradient of the trap laser. We also assume the temperature gradient

of the surface scales with the internal temperature if the micro-sphere. This results

in a region where FT is independent of P . In the regions far away from P0, this

model agrees with the models presented in Refs. [38, 65]. The shape of this curve is

qualitatively similar for other temperature variations on the sphere’s surface. At high

pressure and high vacuum, FT will still converge with the dotted and dashed curves.

However, for other temperature variations, the flat region will change in magnitude.

Since the value we used for ε2 is an upper limit, we expect the magnitude of the

force plotted to also be an upper limit. If the absorption were lower, the temperature

gradient on the micro-sphere surface would decease resulting in a weaker radiometric

force. In this flat region FT is constant while gas damping decreases as pressure

decreases, as seen in figure 4.18. Thus, when P is of order 1 Torr or less, radiometric

forces continue to be significant as the pressure is lowered and can contribute to trap

loss.

Figure 5.6 contains the COM temperature of the bead along the horizontal axis

as a function of pressure for two beads. At sufficiently high pressures (> 3-5 Torr),

the temperature is largely independent of pressure. So, we assume that the bead
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Figure 5.6: The measured center of mass temperature along the horizontal axis vs
pressure. The trapping laser intensity is 2 x 109 W/m2. At sufficiently high pressures,
the temperature is largely independent of pressure. So, we assume that the bead is
in thermal equilibrium with the gas above 5 Torr.

is in thermal equilibrium with the room temperature gas above 5 Torr. This is a

reasonable assumption since the thermal conductivity of the gas is increasing with

pressure until the transition out of the ballistic regime at ∼10-20 Torr. According the

figure 4.18, Γgas begins to be non-linear with pressure above ∼10-20 Torr. Since the

temperature equilibration has occurred around 5 Torr in the linear damping region,

where the thermal conductivity of the gas is still increasing with pressure, we estimate

that the equilibrium temperature is room temperature.

As another way to check the equilibrium temperature of the bead, we can study

the temperature of the COM motion versus trap laser power at fixed pressure. Figure

5.7 contains position spectra for a 3 µm sphere trapped with a trap intensity of 2 x

109 W/m2 and with the intensity reduced by a factor of 4 to 5 x 108 W/m2 at 1.7

Torr. The lower intensity data is rescaled by the ratio of power (211/52) for better

visualization of the trap frequency difference. The fitted temperature for the reduced

intensity data is lower by a factor of .72. This data shows that the bead temperature
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Figure 5.7: Position spectra for a 3 µm sphere trapped with a laser intensity of 2 x
109 W/m2 and reduced intensity of 5 x 108 W/m2 at 1.7 Torr. The lower intensity
data was rescaled by the ratio of power (211/52) for better visualization of the trap
frequency difference. Also shown are Lorentzian fits to the position spectra.

increases with trap intensity at 1.7 Torr and is not quite in thermal equilibrium with

the surrounding gas. It is also below the 5 Torr cutoff, where we believe the bead is in

thermal equilibrium with the surrounding gas. This is consistent with the behavior

shown in figure 5.6. In the future, we plan to further validate our assumption by

collecting further data involving varying the trap intensity at pressures above 3 Torr,

where we do not expect to see a variance in bead COM temperature. Ref. [61]

provides data for similarly sized beads and intensities. They do not see a change in

COM temperature when varying the trap power at ∼ 3.75 Torr.

The average phonon 〈n〉 number in the trap can be written in 1-D as

〈n〉(Γgas + Γcool − αNC) = 〈nth〉Γgas + Γsc, (5.8)

where αNC corresponds to heating from the non-conservative scattering force and

radiometric force. Γsc is due to laser noise and photon recoil. Γgas and Γcool are the gas

and laser damping coefficients respectively. By turning off the feedback cooling we can

get rid of Γcool from equation 5.8. The right hand side of equation 5.8 vanishes at the

pressure where the micro-sphere is lost. Under these circumstances, the Γgas ≈ αNC .

By experimentally measuring Γgas, we can estimate αNC . For trap intensities under
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4 x 109 W/m2, the loss pressure is ∼ 250 mTorr ( figure 5.1). This corresponds to

a range of 20 - 50 Hz for the non-conservative heating rate αNC . Variations in this

value may be due to differences in the absorption coefficient of a particular bead or

variations in the trap alignment.

5.3 Feedback Cooling at High Vacuum

In an effort to minimize the effect of radiometric forces while pumping down from ∼2

Torr, we reduce the trap intensity to 2 x 109 W/m2. This lowers the loss pressure, as

plotted in figure 5.1, and the temperature gradient across the sphere’s surface. The

lower intensity still provides a sufficient trap depth (∼3 x 106 K along the vertical

axis) while the feedback cooling system provides adequate damping and stabilization.

The feedback intensity typically ranges from ∼107 W/m2 to ∼108 W/m2 in the radial

directions. The gain of the feedback signal is adjusted so that the linewidth of the

mechanical resonace is ∼ 400 - 500 Hz in the radial directions and ∼300 Hz along the

axial axis. Once the trap intensity has been decreased and the feedback is optimized,

we slowly open the valve between the turbo pump and vacuum chamber. The purpose

of slowly opening the valve is to not create air currents that cause bead loss. Once

the trapped bead is at high vacuum, we can increase the laser power to provide a

deeper trap depth.

Figure 5.8 contains the DFT power spectrum along the horizontal axis for a

3 µm sphere cooled with various feedback laser powers at 5 x 10−6 Torr. As the

laser power increases so does Γcool, the feedback damping coefficient. As such, the

resonant peaks decrease in amplitude and broaden with increasing power. The fact

that we can reduce the feedback power at high vacuum without bead loss suggests

that radiometric forces are a mechanism for trap loss at inetermediate pressure. This

is also consistent with the theoretical model for the radiometric force presented in

figure 5.5.

Figure 5.9 contains horizontal position spectra for various trap powers at 5 x
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Figure 5.8: DFT power spectrum for a 3 µm sphere with active feedback cooling at
5 x 10−6 Torr. As the feedback laser power increases the peaks decrease in amplitude
and broaden.

10−6 Torr. By changing the intensity of the trap, we are able to tune the frequency
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Figure 5.9: Horizontal Position Spectra for Various Trap Powers at High Vacuum.

of the oscillator. In this example, we were able to vary the trap frequency by roughly
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a factor of 2.

From our analysis of dual-beam dipole trap instabilities while pumping down,

we have come to two conclusions. First, the alignment of the counter propagating

trap beams is critical. We have dealt with this issue by steering the non-imaging

trap beam with a mirror mounted on piezoelectric transducers. Ref. [40] address

the issue of fine alignment by steering trap beams with acoustic optical modulators.

Second, our theoretical analysis of radiometric forces suggests that the pressure range

over which radiometric forces are at a maximum is larger than previously thought.

By lowering the trap intensity sufficiently, we succeeded in reducing the radiometric

forces enough to allow us to pump down to high vacuum rapidly. At high vacuum, we

increase the trap intensity and maintain trap lifetimes of days. The previous record

for dual-beam trap lifetime at high vacuum is 88 minutes [40].

Plotted in figure 5.10 are characteristic 3-D position spectra of a bead held at

1.7 Torr with no feedback cooling (red,) and at 5 x 10−6 Torr with feedback damping.

The transverse frequencies are 1073 Hz and 1081 Hz for the horizontal and vertical

Figure 5.10: Typical position spectrum of a bead held at low vacuum of 1.7 Torr with
no feedback cooling applied (red), and at high vacuum of 5×10−6 Torr with feedback
cooling applied (blue). Also shown (light blue) is a Lorentzian fit to the peaks in the
high vacuum data, with fit parameters as discussed in the text.
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modes respectively. The axial mode frequency is 312 Hz. By performing a Lorentzian

fit to the peaks, we can determine the effective COM temperatures for each mode. For

the high vacuum spectra, we get 10± 3 K, 55± 9 K, and 12± 2 K for the horizontal,

vertical and axial modes respectively. These temperatures equate to the following

effective damping rates: 454± 29 Hz, 448± 16 Hz, and 340± 120 Hz. The amplitude

of the cooled peak along the horizontal axis corresponds to a force sensitivity of

S
1/2
F,xhorizontal

= 217 ± 48 aN/
√

Hz. The error is dominated by the uncertainty in the

micro-sphere size and the distance to voltage calibration.

Theoretically, the predicted sensitivity at 5 x 10−6 Torr should be 100 times

better. Cross talk between the feedback lasers prevents us from reaching the lowest

attainable temperatures. Plotted in figures 5.11 and 5.12 is the laser noise (green)

and electrical noise (light blue) on the same axes as the position spectrum for a bead

at low vacuum (red) and high vacuum (dark blue.) This data was collected by

first recording the low vacuum spectrum. Next, the the chamber was pumped down

to high vacuum with the same bead used for the low vacuum data. Data was then

recorded at high vacuum. Next, the bead was intentionally lost from the trap and the

laser noise was recorded. Lastly, the laser was turned off and the electric noise in the

QPDs was recorded. Within the frequency range of the horizontal and vertical modes

there is a significant amount of laser noise. Note that the laser noise dominates over

the electronics noise. Figure 5.13 contains the laser and electronics noise from the

axial channel. In this figure, the laser noise is significantly less than in figure 5.11.

This is because the axial channel uses the scattered light from the bead to image

its motion while the horizontal channel uses the shadow of the bead in the laser. In

this situation there is no laser light being measured, so the laser noise spectrum is

similar to the electronic noise spectrum. The steep roll off around 5000 Hz results

from detector bandwidth. A peak from DAQ digitization noise is also visible in the

spectrum at ∼10.7 kHz. In the near future, we have plans to stabilize the dipole trap

laser with a proportional-integral-derivative controller.
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Figure 5.11: The power spectrum of the laser and electronics noise from our system.
Also plotted is the position spectrum for a bead trapped at ∼1 Torr and ∼5 x 10−6

Torr. Laser noise limits the ability to cool the micro-sphere.
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Chapter 6

Force Measurements

The eventual goal of the work presented in this dissertation is to measure corrections

to Newtonian gravity at the micro-meter length scale with a 300 nm diameter fused

silica sphere near a test mass. The theoretical best force sensitivity for this config-

uration is ∼ 1zN/
√
Hz [1]. In this chapter, we describe a force calibration method

and provide results showing the current state of the system with a force sensitivity

of ∼200 aN/
√
Hz. We estimate improved sensitivity is possible with reduced laser

noise. Our results have also been posted to the arxiv [66].

6.1 Force Sensing

Harmonic oscillators are suitable force measuring devices since the measured ampli-

tude is proportional to an applied driving force. In the case of this experiment, we

apply a sinusoidal electric force to a micro-sphere trapped in a dual-beam optical

trap.

Thermal fluctuations ultimately limit the force sensitivity of a levitated micro-

sphere. The minimum force detectable can be calculated from the Equipartition The-

orem from Statistical Mechanics by treating the micro-sphere as a harmonic oscillator

in thermal equilibrium with a bath at temperature T [67],

Fmin =

√
4kbTbk

ω0Q
, (6.1)

where b is the measurement bandwidth, k is the spring constant of the oscillator, kb
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is Boltzmann’s constant, w0 is the resonance frequency, and Q is the quality factor

(Q-factor). Equation 6.1 be written as

Fmin =
√

4kbTmγb, (6.2)

where γ = 16P/(πρvr) is the damping coefficient of the surrounding gas, v is the

average thermal velocity of the gas, m is the mass of the sphere, r is the radius,

mgas is the mass of the gas, P is the pressure, and ρ is the density of the object.

Looking at equations 6.1 and 6.2, we see that there are a few experimentally modifiable

parameters that can improve force sensitivity.

1. Increase the measurement integration time (decease b.)

2. Decrease the temperature T .

3. Increase the oscillator quality factor Q by decreasing vacuum chamber pressure

P

It is believed that optically trapped micro-sphere oscillators can attain Q ∼ 1012

in ultra high vacuum. With such a high Q and our typical radial trap frequency of

3500 Hz, the ring down time would be τ = 2Q
ω0
∼ 6 · 108 seconds. Since such a high Q

is unacceptable experimentally, we use a feedback cooling method to optically damp

(decrease Q) and cool the center of mass temperature of the of the micro-sphere

simultaneously. Fortunately, the feedback damping system reduces Q and T by a

similar amount, except for small effects due to photon recoil [68].

The two main parameters we can tweak to improve force sensitivity are integra-

tion time and vacuum pressure. Reducing the chamber pressure turned out to be

a non-trivial engineering feat because of turbulence while pumping and radiometric

forces.

6.2 Experimental Setup

The experimental setup is illustrated in figure 6.1. This system is similar to that

presented in chapter 4. Two copper wires and a grounded metallic plane are placed
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near the trapped micro-sphere and are used to apply a time varying electric force to

the micro-sphere. By applying a known electric force on the micro-sphere, we can

determine the conversion factor for converting the QPD voltage to a force.

Figure 6.2 contains an illustration of the force calibration wires and grounded

plane. An AC voltage was applied to the two wires. The sum of the electric fields

from the the wires is directed along the horizontal axis at the micro-sphere’s location.

A sphere with polarizability α and charge q experience the following force F when

interacting with an electric field E,

F =
1

2
α5 E2 + qE. (6.3)

The charge q is the result of excess electrons on the micro-sphere. The second term

in equation 6.3 dominates when electrons are present.

6.3 Force Calibration Procedure

Once a micro-sphere is trapped we measure its position spectrum at a pressure above 5

Torr. As discussed in chapter 5, we believe the micro-sphere is in thermal equilibrium

with the surrounding gas at this pressure. Figure 6.3 contains the position power

spectrum along the horizontal axis for a 3 µm sphere trapped above 5 Torr. A

Lorentzian fit was performed on the peak to determine the amplitude Vpeak, frequency

ω0 and Q of the oscillator. The force-to-voltage conversion factor is then given by

dividing equation 6.1) with Vpeak:

force-to-voltage =
Fmin
Vpeak

. (6.4)

Once the force-to-voltage conversion factor is known, we can test our systems

force sensitivity by applying a known electric force on the micro-sphere with the

wire and grounded plane system at frequency ω. When the bead is driven at the

trap frequency (ω = ω0,) the amplitude of the mechanical motion increases with

Q. However, when we drive the motion of the bead at an off resonance frequency

(ω � ω0,) the mechanical amplitude of the mechanical motion scales as 1
ω2 . By taking
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Figure 6.1: The optical dipole trap is created by focusing two orthogonality polarized
laser beams at the same point in space. This is achieved by splitting a 2.2 W 1064
nm laser beam into two orthogonality polarized beams with a λ

2
waveplate and a

polarizing cube beam splitter. The two beams carry roughly half the total laser
power and are focused to the same spatial location with 50 mm lenses. Three 780 nm
active feedback lasers stabilize trapped beads in vacuum and provide optical damping.

the difference between the amplitude of the on and off resonance driven peaks, we

determine how much of the on resonance driving signal is electronics noise and how
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Figure 6.2: Force calibration wire and grounded plane drawing. A time varying
voltage is applied to the wires which produces a time vary electric field along the
horizontal axis at the micro-sphere’s position.

much of the signal is mechanical motion. Figure 6.4 contains DFTs with on and off

resonance driving. This calibration method and the data presented is provided by

Ref. [69] and taken at ∼1 Torr. The force measurements results presented later in

this chapter were performed for trap resonances near 1.1 kHz and not ∼3815 kHz as

plotted in figure 6.4. The off resonance driving was taken at 7 kHz.

6.4 Results

Plotted in figure 6.5 is the calculated minimum force from equation 6.1 (red) and the

measured thermal force (black) along the horizontal axis as a function of averaging

time. Without an applied force, we expect from equation 6.1, the thermal noise to

average down as the square root of the measurement bandwidth. After averaging for

10 hours, we have shown sensitivity of ∼2 aN. Theoretically, the predicted sensitivity
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Figure 6.3: Lorentzian fit of the horizontal peak for a 3 µm sphere trapped above
5 Torr. The amplitude of the peak is used to convert the QPD signal in Volts to
Newtons.

at 5 x 10−6 Torr should be 100 times better. Cross talk between the feedback lasers

and trap laser noise prevent us from reaching the lowest attainable temperatures as

discussed in section 5.3.

We found that ∼80% of trapped beads have excess electric charge due to extra

electrons. Typical charge ranged from 0 to 40 e−. By applying UV light we were

able to remove some of the excess charge, but not all [69]. With a more energetic

UV source we hope to remove all excess charge. The charge on the bead can be

determined by knowing the electric field and measuring the bead displacement.

Plotted in figure 6.6 are the measured electric forces on beads with no charge or

2e− charge as a function of averaging time for various applied electric fields. The driv-

ing signal frequency is on resonance with the trap frequency for these measurements.

When the applied field is turned off, the thermal noise averages down as expected.
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A

B

Figure 6.4: [DFT of on and off resonance driving with the force calibration wires.
A) The horizontal position spectrum while driving on resonance frequency with the
calibration wires. B) The horizontal position spectrum while driving off resonance
frequency with the calibration wires. This data was taken at ∼1 Torr and not at high
vacuum.

When no charge is on the bead, only the gradient term in equation 6.3 remains. The

sensitivity of the gradient force is currently within the noise of our system. When a

non-zero charge is on the micro-sphere, the second term in equation 6.3 dominates.

In this case, the applied force is much greater than the thermal force. For driving
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Figure 6.5: The measured thermal force on a 3 µm sphere along the horizontal axis
without driving versus averaging time.

voltages up to 8 V, we found that the electronic noise is insignificant after averaging

for 100 s.

The driving force uncertainty was determined by propagating the uncertainty in

the bead radius (5%,) and Lorentzian fit (1σ confidence interval.) Both uncertain-

ties translate into uncertainty in the distance to voltage conversion factor Kdv, the

oscillator spring constant k = mω2
0 and Q. The error in Kdv is given by

∆Kdv = Kdv

√(
∆xth
xth

)2

+

(
∆Vth
Vth

)2

, (6.5)

where Vth is the amplitude of the fitted position spectrum voltage and xth is the

theoretical RMS amplitude of the beads COM motion. The uncertainty in xth is from
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Figure 6.6: The force on a neutral bead (0e−) and a charged bead (2e−) versus
avreraging time with various driving driving voltages.

the uncertainty in the size of the bead. The is also uncertainty in k is given by

∆k = k

√(
∆m

m

)2

+

(
2∆ω0

ω0

)2

. (6.6)

The error in the driving force is then given by

∆Fdriven = Fdriven

√(
∆k

k

)2

+

(
∆Kdv

Kdv

)2

+

(
∆Q

Q

)2

. (6.7)

Since the driving field E is known, the charge on the bead q is given by the second

term in equation 6.3. The measured value for the charged bead in figure 6.6 was 1.83

± .21. So, we assigned it a value of 2e.

Plotted in figure 6.7 are the forces on beads with various charge as a function

of applied electric field. The uncertainty in charge increases with number of elec-
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Figure 6.7: The force on beads of varying charge vs. the applied driving voltage and
corresponding electric field.

trons, because the applied force scales with charge. A Monte-Carlo simulation was

performed to determine the error in the charge number. In the Monte-Carlo, each

point in figure 6.7 is varied according to the experimental uncertainty and the overall

uncertainty of the slope is determined. The resulting error in number of electrons

appears in parenthesis.
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Chapter 7

Future Outlook

7.1 Current Technical Challenges

7.1.1 Dipole Trap Power Stabilization

As discussed in section 5.3, noise in the dipole trap laser limits our ability to cool the

COM of trapped micro-spheres. The trap laser model is the Ventus HP 1064 3 W

Laser manufactured by Laser Quantum. Before purchasing the laser, we had the fore-

sight to purchase one with constant power control. Unfortunately, the manufacturer

sent us a laser without this functionality, even though the terms of purchase included

it. Fortunately, the laser controller has the option to control the power with a 0 - 5

V pin on a D-sub connector. In the very near future we will attempt to address this

issue by feedback stabilizing the laser with a PID controller.

7.1.2 Imaging 300 nm Micro-Spheres

Ideally, we would like to use the same QPD imaging system for 300 nm micro-spheres.

Since the smaller spheres scatter significantly less light and produce a smaller shadow

in the trap beam, we need to make modifications to the system.

We have already seen a small signal along the axial channel with the scattering

QPD. As such, we are hopeful that the only modification needed to the scattering

detector is to change the gain of the transimpedance amplifiers in the QPD circuit,

depicted in 4.15. We may also need to modify the imaging optics to produce a larger

image on the QPD.
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With the current shadow QPD system, we have not seen a signal from 300 nm

micro-spheres. Most likely, we will need to modify the imaging optics to provide a

larger shadow on the QPD. Another option would be to use two scattering detectors

for 3-D imaging.

In an ideal world, we would prefer to have one imaging system for a wide range

of micro-sphere sizes. Although all future experiments will predominantly use the

smaller 300 nm spheres, it is convenient to have the ability trap and image 3 µm

spheres for alignment purposes.

7.1.3 Launching Small Spheres

In section 4.3.1, we discussed the difficulty of launching micro-spheres under 1 µm in

diameter with the diving board method. We have successfully launched and trapped

300 nm micro-spheres with our current diving board system, but there are two major

issues that need to be addressed. First, we only catch a few 300 nm per day; whereas

we can catch 3 µm within minutes. Second, we regularly break piezos, microscope

slides and the piezo driver because of the high voltages required to launch 300 nm

spheres.

The nebulizer method is successful at depositing micro-spheres in the optical trap.

However, it has two major drawbacks. First, the chamber pressure needs to be close

to atmospheric pressure. Otherwise, the pressure gradient between the nebulizer and

vacuum chamber is too great. The pressure gradient accelerates the micro-spheres to

velocities well above the trap capture velocity. Once a 300 nm bead is trapped, it

takes many hours to pump down to a few mbar. The second drawback of the nebulizer

method is that some of the micro-sphere solution enters the chamber, which is not

convenient for pumping down to high or ultra-high vacuum.

Ref. [70] has developed a clever technique for depositing nm scale diamonds into

a dipole trap. They deposit the nano-diamonds onto a single atom layer of graphene

and burn a hole through the graphene with a laser. We have already purchased

graphene and hope to try this technique out for ourselves.
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7.2 Optical Cavity Trapping and Cooling

A primary goal for our research group is to optically trap and cool micro-spheres

in an optical cavity. Illustrated in figure 7.1 is the cavity we are currently working

with. Two lasers are injected into the cavity. A 1596 nm laser traps the micro-sphere

Levitaded
Sphere

Figure 7.1: Illustration of the experiment optical cavity. The input mirror is a curved
glass mirror and the output mirror is a flat gold mirror. Two lasers are injected into
the cavity and on resonance with it. A 1596 nm laser traps a micro-sphere and a 1064
nm laser cools the COM motion along the cavity axis.

at the first anti-node from a flat gold mirror. The second laser, 1064 nm, cools the

micro-sphere’s center of mass (COM) motion along the cavity axis. The lasers were

chosen because the ratio of their wavelengths is 2/3. With this ratio, the intensity

gradient of the cooling laser is at a maximum which is convenient for measuring the

micro-sphere’s displacement. The challenge we faced was locking two lasers to a cavity

and maintaining a 2/3 ratio of their wavelengths. The solution we came up with was

to first frequency stabilize both lasers to a reference cavity with very little thermal

expansion. Second, we locked the experiment cavity to the trapping laser. With this

configuration, the two lasers should maintain the 2/3 wavelength ratio.

7.2.1 Reference Cavity

The reference cavity is composed of a two curved mirrors and a glass spacer between

the mirrors. Both of the mirrors and the spacer are made from ultra low expansion
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(ULE) glass and optically fused together. The cavity is roughly 1 cm long which

corresponds to a FSR of 15 Ghz. Figure 7.2 contains a photograph of the reference

cavity mounted in a 3 way conflat T, which acts as a vacuum chamber. The cavity is

Figure 7.2: The reference cavity mounted in its low vacuum chamber.

mounted on a conflate with a 1 inch window for the laser input. On the opposit end

of the T is a 2.5 inch window for monitoring the cavity transmittion with either a

CCD camera or wavelength meter. A conflat with electrical feedthroughs is mounted

on the top of the T and provides electrical connections for temperature control.

7.2.2 Experiment Cavity

Our experiment cavity, pictured in figure 7.3, has a length of roughly 5 cm, which

corresponds to a FSR of 3 GHz. The input mirror has a radius of curvature of 5

cm and the output mirror is a flat gold coated mirror. The input side of the input

mirror has AR coatings for 1064 nm, 1596 nm and 780 nm. The reflective curved

side has reflective coatings for 1064 nm and 1596 nm. The spacer is machined from

two blocks of aluminum. However, this is a temporary proof of concept cavity. The
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Figure 7.3: The experiment optical cavity.

actual experiment cavity spacer will be machined from a single block of Invar, which

has very low thermal expansion. Figure 7.4 is a photograph of the experiment within

the vacuum chamber.

7.3 Prospects for the Future of the Field

In this section we discuss some of the future experiments planned in the field of

levitated micro-spheres. Although it is not an exhaustive list (we have certainly left

out a lot of amazing experiments) we hope to share with the reader our excitement

of the future of the field.

Cooling macroscopic systems, like a micro-sphere, to the quantum ground state

is a hot topic today. Many groups have efforts in this area [40, 41, 71, 72]. Our



97

Figure 7.4: The experiment cavity mounted within the experiment vacuum chamber.

group proposes cooling optically levitated micro-spheres to the COM ground state

by sympathetic cooling of a cold atomic gas coupled to a micro-sphere trapped in an

optical cavity [73]. An extension of this experiment is presented in Ref. [74], where

our proposes using a nanoparticle cooled near the quantum ground state as a mater-

wave interferometer for sensing short range forces. Refs. [75] [76] propose optically

levitating and cooling nano-diamonds with nitrogen-vacancy centers to investigate hy-

brid opto-mechanical systems that contain both mechanical oscillators and two-level

quantum systems. Ref. [77] proposes the use of micro-spheres or micro-discs trapped

within an optical cavity for detection of gravitational waves. Whether investigating

macroscopic quantum systems, searching for gravitational waves or testing gravity at

short range, there are many exciting experiments planned in this field.
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Appendix A

Numerical Aperture

Numerical aperture (NA) is a unitless number that characterizes the range of angles

at which a system can emit or accept light. In the context of laser physics, NA

describes the cone shaped profile of a Gaussian focused beam depicted in figure A.1.

NA is given by

NA = n sin(θ) = n sin

[
tan−1

(
D

2f

)]
≈ n

D

2f
(A.1)

where n is the index of refraction for the medium in which the lens is working, θ is the

divergence angle of the focused beam, D is the beam diameter of a collimated beam

incident on a lens and f is the focal length of the lens. D is defined as the width of

the collimated beam where the intensity is 1/e2 times the maximum intensity, which

is on the beam axis. The focal length f is the distance from the lens to the axial

location where the beam waist is at a minimum ω0. As such,

θ = tan−1

(
D

2f

)
. (A.2)

For a diffraction limited spot size w0

θ =
λ

πw0

, (A.3)

where λ is the laser wavelength. By combining equations A.1 and A.3 we get

w0 =
nλ

π(NA)
. (A.4)

Increasing the NA decreases the minimum spot size. For applications of trapping a

micro-spheres it is quite often desirable to have a small spot size.
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D

f

Figure A.1: Illustration of a collimated laser beam focused by a single lens. D is the
1
e2

diameter of the incident collimated beam on a focusing lens. The focal length of
the lens is f and the divergence angle of the beam is θ.
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Appendix B

The Classical Cheshire Cat

The Cheshire Cat phenomenon has recently received significant attention from pop-

ular science outlets after the Nature publication of a recent neutron interferometry

experiment [78]. In their work, Denkmayr et al. argue that their results can be inter-

preted as the spin of a neutron being located in one arm of a matter interferometer

while the neutron is located in the other. We have reproduced and extended these

results with an equivalent optical interferometer. In our experiment, it also appears

as if the photon travels through one arm of the interferometer, while its polarization

travels through the other. However, we show that these experimental results belong

to the domain where quantum and classical wave theories coincide; there is nothing

uniquely quantum about the illusion of this Cheshire cat. The work presented in this

appendix is published in Ref. [79].

B.1 Weak Measurements

The concept of weak measurements is important for understanding Dankmayr et

als. work. Simply put, weak measurements are quantum measurements where the

measured system is very weakly coupled to the measuring device, preserving the wave

function in an non-collapsed form. Although the concept might appear to contradict

basic aspects of quantum mechanics, the formalism lies within the boundaries of

theory. The concept was first introduced in 1988 by Aharonov et al. [80]. In 1991,

weak measurements were experimentally realized [81]. Ref. [82] is a recent review
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(2014) on weak measurements which provides a nice overview of the theory and

experiments. The concept has been controversial though [83, 84, 85].

B.2 Quantum Cheshire Cat

In 2013, Aharonov et al. published a paper [86] titled ”Quantum Cheshire Cats.”

Within the paper, they discuss a pre- and post-selected experiment where the circular

polarization of a photon is located within one path of an interferometer while the

photon itself is located in the other arm. The effect was named after the Alice in

Wonderland character, the Cheshire Cat, who has the ability to remove is grin from

his body. Dankmayr et al. responded to this paper with the work presented in this

appendix.

B.3 Dankmayr et al. Experiment

Figure B.1 contains a simplified drawing of Dankmayr’s experiment. A neutron beam

Figure B.1: Dankmayr el al. experiment.
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is split into two paths with opposite spin orientations. Each arm contains an absorber

location where a weak neutron absorber can be placed for weak location measure-

ments. Also, a weak external magnetic field can be applied to either arm to rotate

the neutron spin and perform weak spin measurements. A phase shifter changes the

relative phase of the mater waves before the two arms are combined. An analyzer,

which blocks spin up particles, is place in front of O-Detector. O-detector is used for

all measurements.

B.3.1 Neutron Absorption Measurements

Figure B.2 contains the experimental results and experimental setup for Dankmayr

et al.’s absorption measurements for determining the location of the neutron. The

Figure B.2: Dankmayr el al. absorption measurements.

center panel contains a drawing of their system without an absorber placed in either

path. The left plot is the signal as a function of phase when an absorber is place

in path I and the right plot is the signal when an absorber is placed in path II. A

very small effect is observed while the absorber is in path I, whereas a large effect is

observed when an absorber is placed in path II. These results can be interpreted as

the neutron’s location being in path II.
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B.3.2 Neutron Spin Measurements

Figure B.3 contains the experimental results and experimental setup for Dankmayr

et al.’s spin measurements for determining the location of the neutron’s spin. For

Figure B.3: Dankmayr el al. spin measurements.

these experiments, they applied an external magnetic field in either arm to rotate the

neutron’s spin. The center plot contains the results for when no external magnetic

field was applied. The left plot contains their results for a spin rotation in path I and

the right plot contains their results for a spin rotation in path II. For this case, very

little interference is observed when a magnetic field is applied to path II. However,

noticeable interference is observed when the magnetic field is applied to path I. These

results can be interpreted as the spin being located in path I.

B.4 Denkmayr el als. Interpretation

Although the results of Denkmayr et al. are fascinating and thought provoking, we

feel that the Cheshire Cat phenomenon is not a uniquely Quantum Mechanical effect.

We tested this by reproducing their results with classical laser fields as a photon

polarization is mathematically equivalent to a neutron’s spin.
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B.5 Experiment

The experimental setup is illustrated in FIG. B.4. The laser used was a 780 nm

fiber coupled laser stabilized to Rubidium. With a half wave plate and Wollaston

prism, the beam was split into two orthogonally polarized beams of equal power. The

beams were then mixed with a non-polarizing cube beam splitter. Interference signals

from the output of the interferometer were measured with two silicon photo-detectors

centered on an interference fringe from the interferometer. The detectors are referred

to as detector 1 and detector 2 in FIG. B.4. All measurements reported were obtained

with detector 1. Detector 2 was primarily used for alignment purposes. The length

of the upper arm in FIG. B.4 is modulated by a mirror mounted on a piezoelectric

actuator (piezo.) We refer to this path as ”path P” since it contained the piezo.

The lower arm is refereed to as ”path NP,” for ”No Piezo.” Location A and location

B in in FIG. B.4 are the locations where either a half wave plate or neutral density

(ND) filter were placed for weak photon polarization and weak location measurements

respectively. A linear polarizer placed between the non-polarizing cube beam splitter

and detector 1 was rotated to block the polarization of path NP when no wave plate

was mounted at location A.

The polarization measurements were taken by rotating the beams’ polarization

by −20◦,−10◦, 0◦, 10◦ and 20◦ with a half wave plate placed at either location A or

B. A rotation angle of 0◦ results in mixing of two orthoginal beams. A DC signal

is measured as the piezo mirror modulates the length of path P as there is no inter-

ference. A rotation angle greater than or less than 0◦ projects part of one beam’s

polarization vector onto the other beam’s polarization vector resulting in interference.

A sinusoidal signal is measured as the piezo mirror modulates the length of path P.

Location measurements were obtained by placing a ND filter at either location

A or B. Measuring a drop in power on the detector implies that the ND filter absorbs

some of the photons from the path it is placed in. Not measuring a drop in power

can be interpreted as no photons located in the path containing the ND filter.
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Figure B.4: Experimental setup.

B.6 Results

Plotted in FIG. B.5 is the case where an absorber is placed in either path P or path

NP. Also plotted is the signal when no absorber is in place. A drop in DC power was

observed when the filter was placed in path P. However, no significant change was

observed when the absorber was placed in path NP.

Fig. B.6 contains our polarization results. For rotations in Path P we see very

little effect. The DC shift is attributed to a change in total power due to the projec-

tion of the path P polarization vector onto the path NP polarization vector. When

rotations are performed in path NP, we see a large effect.

In FIG. B.7 we have plotted measurements for the case when an absorber is

placed in one beam and rotations are performed on the other beam. This effectively

measures the absorption of one beam while measuring the polarization of the other

beam simultaneously. For the case where rotations are performed to path P and the
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Figure B.5: Location “measurement”.

absorber is placed in path NP we see no significant effect to absorption or polarization.

However, for the case where rotations are performed in path NP and the absorber is

placed in path P we see a significant effect to both absorption and polarization.

B.7 Conclusions

We have reproduced the Cheshire cat results of Dankmay et al. using classical fields.

Although Dankmay et al. use a quantum system ( mater interferometer) their results

are not a purely quantum effect, because we have shown the same effect with classical

fields. There is no separation of spin from neutron or polarization from photon. The

Cheshire Cat phenomenon is provocative but should be thought of as an illusion and

not new science.
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Appendix C

PID Controler

A proportional-integral-derivative controller was designed and built for our experi-

ments. Figure C.1 contains the electronic schematic for the PID controller.

Figure C.1: ExpressPCB schematic for the PID controller.

The instrument requires ±15 V power supplies at the Power-Supply input junc-

tion. The ErrorIn junction is where the input signal is input. The set point signal is

obtained in one of there ways. The first option is to input a signal from an external

source at the Setpoint junction. The second option is to terminate Setpoint to ground

and set ±15 V DC set point with a potentiometer connected to SetPointOffset. The



110

third option is to use both the SetPointOffset and Setpoint signal input.

Once the input and set point signals are provided, instrumentation amplifier

InAmp2 provides the difference of the two. A toggle switch swaps the inputs of

Inamp2 to provide a sign flip of the out put. The output from InAmp2 can be

monitored via ErrorMonitor before the amplification circuits. Potentiometers are

connected to the board at P Pot, I Pot and D Pot for the proportional, integral

and derivative circuits respectively. The integral circuit has two 10 position toggle

switches connected at the RTCT junctions. The switches provide a variety of feedback

resistor and capacitor options. The three amplifier outputs are summed with opamp

IC2D along with the ErrorTrim signal. The Error trim simply adds a DC -15 - 15

V signal to the error signal. The instrument has a low voltage follower and high

voltage follower option for the output. Placing a Molex jumper at either JP1 or JP2

determines which amplifier is used.

Figures C.2 and C.3 contain screen shots of the top and bottom layers of the

PID printed circuit board respectively. Figure C.4 is a photograph of the front panel

Figure C.2: Top layer of the PID PCB
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Figure C.3: Bottom layer of the PID PCB

with input, output and control options.

Figure C.4: PID front panel with input, output and control options.
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Appendix D

Parametric Feedback Cooling

In ref. [41], Gieseler et al. reported sub-Kelvin cooling of a 30 nm micro-sphere in

a single beam dipole trap. In their work, they used a parametric feedback cooling

method, which is different from the active feedback cooling we used for the work

reported in this dissertation. Parametric feedback cooling works by changing the

trap stiffness as a function of bead position. Figure D.1 is a simple illustration of this

technique. When the bead moves away from the trap equilibrium position, the trap

Varying
Trap
Depth

Figure D.1: With parametric feedback cooling, the trap potential is dependent on
the position of the micro-sphere.

stiffness ( spring constant k) increases. When the bead moves towards the equilibrium

position, k is reduced. Since the stiffness of the trap is proportional to the intensity

gradient for a dipole trap, the stiffness can be modulated my modulating the trap

laser power. The modulation signal is twice the oscillator frequency.
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We have modified Gieseler et als. design for possible implementation into our

system. Figure D.2 contains an illustration of our design. The imaging system is

essentially identical to that presented in this dissertation in that two quadrant photo-

detectors (QPD) provide voltages (Vx, Vy, Vz), which are proportional to the position

of the bead on a rectangular coordinate system. The three signals are first indepen-

dently frequency doubled. This is achieved by multiplying a position signal by its first

derivative (velocity signal.) Next, they are each phase shifted independently. Lastly,

they are summed together. The summed signal drives and EOM which modulates

the power of the trapping laser at twice the trap frequency of each COM modes of

the bead.

The position signals are frequency doubled since we need modulate the trap laser

at both turn around points. The phase shifters ensure that the laser modulation is

properly in phase with the beads position. The following electronic boxes have already

been built for implementation into our system:

• Three phase shifter circuits. Two are optimized for the radial bead motion and

one for the axial.

• Three derivative circuits. Two are optimized for the radial bead motion and

one for the axial.

• A box with 3 frequency doubling circuits and high pass filters. Each circuit has

two inputs. One is for the position signal and the other is for the derivative

of the position signal. An AD633 multiplier IC provides a signal proportional

twice the input frequencies.

• A simple opamp summing circuit.

• An electronics box with three low pass filters.

Although we have not implemented this system yet, we expect the procedure to

parametrically cool a micro-sphere as follows. First, obtain a real time 3-D position
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Figure D.2: Proposed parametric feedback feedback cooling system. Two QPDs
measure the position of a bead trapped in a dual-beam dipole trap. The x, y, z
signals are first frequency doubled by multiplying the position signals by their first
derivative (velocity signal.) Next, they are independently phase shifted. Lastly, they
are summed. The summed signal drives and EOM which modulates the power of the
trapping laser.
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power spectrum. Second,individually adjust the phase shifters to maximize cooling.

A major advantage of this system over the active feedback method is simplicity.
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