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Abstract

Medical imaging studies generate tremendous amounts of data that are reviewed

manually by physicians every day. Medical image segmentation aims to automate the

process of extracting (segmenting) “interesting” structures from background struc-

tures in the images, saving physicians time and opening the door to more sophisti-

cated analysis such as automatically correlating studies over time. This work focuses

on segmenting blood vessels (in particular the retinal vasculature), a task that re-

quires integrating both local and global properties of the vasculature to produce good

quality segmentations. We use the Tensor Voting framework as it naturally groups

structures together based on the consensus of locally voting segments. We investigate

several ways of encoding the image data as tensors and compare our results quantita-

tively with a publically available hand-labeled data set. We demonstrate competitive

performance versus previously published techniques.
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Introduction

Few areas of image processing have the kind of impact that medical image process-

ing does. From performing reconstructions from MRI and CT scans to contrast

enhancement of X-rays to techniques aimed at allowing more automated diagnoses

by physicians, advancements in medical image processing have the potential to save

lives and to save medical facilities time and money by realizing improved efficiency

in delivery of care.

One area of particular difficulty is the process of segmenting blood vessels from

medical images. As a brief review, the human vascular system is composed of arteries

which carry oxygenated blood from the heart out the the extremities; capillaries,

where gases and nutrients are exchanged; and veins, which carry deoxygenated blood

back to the heart and lungs.

Imaging of the vasculature is carried out for many reasons: to detect blood clots in

veins, to diagnose stenosis (narrowing) of arteries, to monitor cerebral vessels for post-

operative vasospasm, and for early detection of atheroscelrosis (plaque build up on the

walls of the arteries), and to support many other diagnoses. These imaging studies are

carried out using a wide-variety of imaging modalities as well: ultrasound, fluoroscopy,

computed tomography (CT) angiography (using X-rays), magnetic resonance (MR)

angiography, and in rare cases even visible light can be used. In particular that is the

case with retinal fundus imaging, the application area of this work.

Many typical approaches to segmentation rely on texture information or the fact

that objects of interest (like cars and people) form closed contours in images. This is

not the case with blood vessels. Blood vessels do not necessarily follow simple paths,

but instead can be “tortuous” as clinicians describe them. In addition the size (or
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caliber) of vessels varies tremendously, from millimeter wide capillaries to the 300mm

aorta. The changes in size serve an important physiological purpose: to maintain

sufficient blood pressure to perfuse the tissues in the body, but they make the task

of automatically finding vessels difficult.

Our particular interests are, long-term, in the cerebro-vasculature (the brain’s

blood supply), and more immediately (in this work) segmenting blood vessels from

retinal fundus images. Retinal fundus photography uses visible light to image the

interior of the eye, allowing the physician to inspect the vasculature, the optic disc,

and the retina. There are also several kinds of lesions that a physician might be inter-

ested such as hard exudates (See Figure 1) which are lipids deposited in the eye from

leaking capillaries. The patient in this image most likely has diabetes and/or hyper-

tension (high blood pressure) We are not focused on detecting these other structures

in this work, but they do provide additional challenges for our vessel segmentation

procedure because along with the blood vessels they are also “salient” objects that

we must not confuse with vessels.

Compared with other imaging modalities retinal fundus images have readily avail-

able benchmark data to enable us to validate the direction of our research before

moving on to more challenging types of images such as computed tomography (CT)

angiograms of the cerebro-vasculature.

Retinal fundus images are essentially visible light photographs of the eye taken

through a microscope lens. As a result they present several challenges to effectively

analyze (refer to Figure 1 again as it exhibits nearly all of these problems)

1. Aperture effects from the lens (the sharp circular border at the edge of the eye

pixels)
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Figure 1: Challenging DRIVE image showing vignetting from poor lighting, the pres-
ence of exudates (the yellow spots), and central vessel reflex.

2. Uneven illumination from the light source on the camera

3. Pathology (hard exudates, red lesions, etc.)

4. Extravascular structures (the dark macula in the center of the image, the bright

optic disc).

5. The irregular structure of the vessels (for example, try to image the convex hull

that contains all of the vessel pixels in Figure 1)

Our specific approach to medical image segmentation will use the ideas of per-

ceptual grouping as implemented in the Tensor Voting framework [10]. Perceptual

grouping refers to the goal of comprehending higher level objects from their lower

level parts (at the lowest level, from the pixels in the image). The Tensor Voting
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framework refers to the work done in Gerard Medioni’s group at USC to encode geo-

metric knowledge about the scene using tensor representations and then propagating

that information throughout the image using a voting process. In this work our con-

tributions are an encoding scheme for segmenting thick vessel segments (rather than

extracting only the border of an object) by merging information from morphological

operations and edge gradient information. We have additionally implemented a soft-

ware framework in Python for easily performing grid search of the parameter space

for voting. We will discuss Tensor Voting in detail in the following sections, but for

now let us say that we will use image processing techniques to deal with the first and

second problems above and we believe that Tensor Voting can compensate for the

others.

Background

Due to the existence of two standard datasets (with labeled ground truth) retinal

vessel segmentation is a very popular area of research with many publications to

compare with. These works can be divided in many ways, but one of the most

simple divisions is to compare learning-based (supervised) approaches to unsupervised

techniques. Supervised techniques are those that require training data with labeled

ground truth data so that a mapping can be learned from the feature inputs (such as

edges strength, color intensity, etc.) to the classification output (in this case vessel

or not-vessel).
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Unsupervised methods

All classification systems perform image processing to extract features that we hope

will make it easier for the software to correctly label each pixel as vessel or not vessel,

however unsupervised systems (like this work) do not require additional training data

to develop the classification criteria to assign the label. Sometimes this is simply

because the decision criteria is implicit or hand-tuned (e.g., a hand chosen threshold

value).

One of the earliest approaches published used matched filters at 12 orientations

to approximate linear segments of blood vessels at all orientations [4] unlike the other

papers, this was implemented in hardware and takes a very classical signal processing

approach to extracting vessels, its strengths are its simplicity. The method (along

with hand-tuned parameters) builds a relatively simple model that still produces

qualitatively good results. It does fail to account for illumination conditions both

uneven illumination, and the central vessel reflex.

Zana and Klein applied sophisticated morphological processing based on a Gaus-

sian model of (the profile of) blood vessels these included a sum of directional top-hat

filters and what they call geodesic reconstruction [25] this amounts to a sum of top

hat filters then filtering noisy segments by curvature (using the Laplacian).

[7] dealt with the uneven illumination and irregular vessel structures using an

adaptive thresholding scheme with a verification procedure to reject non-vessel points.

The verification procedure is where the prior information about the shape character-

istics of the blood vessels are introduced. Specifically, for each chosen threshold they

calculate the distance transform they then “prune” the result to find the vessel cen-

terlines using critera based on angle, width, contrast and a minimum size. They then



6

reconstruct the final image by taking the logical OR of all of the processed images

at each threshold value. Finally they post-process the images using non-maximal

suppression by calculating the gradient magnitude and orientation using the Sobel

operator and then for each orientation removing the pixels that do not have the

greatest gradient magnitude.

[11] implemented another variant on morphological reconstruction. They prepro-

cess the image to account for irregular illumination by subtracting the resulting image

from convolving with a large arithmetic mean kernel, then enhance small vessels by

adding the strongest result of convolving the image with line detecting features at 0,

45, 90, and 135 degrees at each pixel. Like [7] they then extract center lines, in this

case with 4 Difference of Offset Gaussian filters which are then connected by region

growing and filtered by a validation procedure. The authors then construct a multi-

scale representation using the morphological top-hat filter (albeit a modified version,

to try to suppress noise) using circular structuring elements with radii from 1 to 8

pixels. Finally the authors perform another round of vessel filling using a so-called

“Double Threshold operator” and post-process by considering pixels with 6 out of 8

connected neighbors that are vessel pixels to also be labeled as vessel pixels.

The unsupervised approaches are very similar to each other in that they each

attack the known difficulties with these images and attempt to use the geometry of

the vessels to guide the labeling of pixels. Every paper so far has applied operations

to compensate for uneven illumination and/or aperture effects, find the center-line of

the vessels and then, having identified the most easily labeled vessel pixels they then

extend out to try to label the rest of the vessel (this is another challenge of this data

set, it is not sufficient to generate thin line boundaries, but one must instead densely

label the vessel).
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An important disadvantage of the proposed methods is that most of them take

ad-hoc approaches to trying to find the paths of the vessels, as a result they have

many thresholds and parameters that must be tuned (and in general which hurt the

prospects that these systems could ultimately be deployed in the real world with

varying hardware and environmental conditions). Additionally we have seen that the

methods above assume an explicit model (e.g., Gaussian intensity profile ) for the

shape of the vessels. We hope to show in this thesis that with very simple feature

extraction and the Tensor Voting framework that we have implemented a system

that is conceptually similar to these related works, but which naturally and elegantly

expresses these constraints on shape while being model-free with respect to the shape

of the vessels (and which can easily be extended to 3D data).

Supervised learning methods

In contrast with the unsupervised techniques, supervised learning methods require

labeled ground truth data and pre-training to adapt the system to the task at hand,

in this case vessel pixel segmentation. Supervised methods tend to follow the same

pattern: the problem is formulated as a binary classification task (vessel vs not vessel).

Image features are hand-engineered and then a machine learning classifier is trained

to map from those features (such as gradient information, interest point descriptors,

responses to image processing filters like Gabor wavelets, etc.) to either a probability

that that pixel is a vessel or directly to the binary classification (vessel / not vessel).

For example, [5] computes features based on pixel responses to Gaussian Deriva-

tive filters, then applies an interesting result to “rotate” feature vectors via multi-

plication with a linear operator. They use this idea to achieve rotation invariance
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(since the blood vessels appear at all orientations). With feature vectors in hand

they then apply Support Vector Machines (SVM) as its classifier. One downfall of

their approach is that by not explicitly modelling the vessels, but instead trying to

learn their features they developed a classifier that also produced a strong result from

the optic disc giving them many false positive detections across the testing data set.

[21] introduced the DRIVE database to test their system which started with

ridge detection based on the curvature (using the Hessian) to find the center-lines.

These lines are then grouped together into convex sets by an region growing process

that looks in a neighborhood around the pixel and check (via the eigenvectors) that

the direction of adjacent lines are similar and that they are not on parallel lines.

Interestingly this is like an ad-hoc test for the perceptual grouping employed by

tensor voting. The authors then extract 18 different features based on color and

various properties of the detected ridge lines and convex sets. These features are fed

into a k-NN classifier (with k = 101 in their case). Their system produces excellent

results with an area under the curve score of 0.95 however the disadvantages of using

a k-NN classifier are classification time (at the time of publication it took 15 minutes

to classify an image on a 1 Ghz Pentium computer), additionally k-NN classifiers

require large amounts of memory because their “training” regime simply consists of

memorizing all of the training data. This was not a problem for them, however they

mention that handling certain failure cases could be improved with more training

data, however this would directly increase the memory requirements of the system

since there is no “compression.”

[19] implements their own preprocessing to deal with camera aperture issues by

extending the border of the image (by replicating pixel values), they invert the green

channel and then compute the Wavelet transform using 2D Gabor wavelet because
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of their good properties for localizing details. The Gabor wavelet can be steered

and so they compute the transform at from 0 degrees to 180 degrees in steps of 10

degrees and for each pixel select the maximum Wavelet response as that pixels feature

value. They pass the pixel intensity value and maximum Wavelet response into two

classifiers, a Gaussian mixture model classifer and through logistic regression.

[20] is more closely related to our work in the sense that his features are simple

(matched filters) and he trains a conditional probability density function using his-

tograms to use as the decision criteria for assigning a likelihood ratio to the vessel vs

non-vessel classification problem.

With a few exceptions the supervised learning approaches produce outstand-

ing results. Various combinations of features and learning have all produced results

around 0.95 area under the ROC curve (our metric of choice because it is widely re-

ported by others). However, supervised approaches require labeled data to train with,

and depending on their features may need to be retrained for example, for systems

with different camera Field of View (FOV), or other changes in the input data versus

the training data. We will come back to this point in the conclusion.

The Tensor Voting Framework

Tensor voting is an algorithm for discovering “salient” structures in multi-dimensional

data. In our case this is image data (in 2D) but it has been applied in higher di-

mensional spaces for tasks like stereo reconstruction (3D, [13]), motion analysis (4D,

[15]), and even epipolar geometry (estimating the fundamental matrix, 8D [22]) and

manifold learning [14]. The English word salient means noticeable or important, in

the context of Tensor Voting this is still the case, but in particular we make this
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concrete by defining it in terms of two principles defined by Gestalt psychology [24]:

proximity and good continuation. We try to extract important (salient) structures

in the image (globally) by looking locally for agreement among tensors about the

structures that they are a part of.

Tensor Representation

Tensor Voting consists of two parts: the tensor representation of the data and the

voting procedure for propagating information about orientation and saliency. In the

general case each tensor in tensor voting is represented by a D×D symmetric positive

semi-definite matrix. If we consider the 2D case then these matrices can be interpreted

visually as ellipses whose major and minor axes are given by the eigenvalues, λ1, λ2,

of the 2 × 2 matrix and whose directions are similarly encoded in the eigenvectors,

e1, e2 of the matrix. We consider these in sorted order such that λ1 ≥ λ2 and e1 and

e2 are the respective eigenvectors of λ1 and λ2. This describes a “generic tensor.” The

tensor can be represented as a matrix S (equation 1)

S = λ1 · e1e
T
1 + λ2 · e2e

T
2 (1)

There are two “fundamental” tensors in tensor voting that represent the two

types of features that exist in 2D data (geometrically speaking): curves and points.

The first is the ball tensor, the tensor representation of a point. It is represented

by the D × D identity matrix with λ1 = λ2 = 1. Ball tensors encode complete

uncertainty about the orientation of the structure that the tensor is located on. The
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(a) Stick voting field (b) Ball voting field

Figure 2: The fundamental tensors from [8]

other end of the spectrum is the stick tensor. This tensor is represented by a tensor

with e1 = the normal vector of the curve (and e2 is the tangent), λ1 = 1 and λ2 =

0. It has only one non-zero eigenvalue and it’s normal direction is in the direction

of the associated eigenvector (it represents absolute certainty about the orientation

of the structure it is on). Between these two extremes are the generic tensors that

we began with, they may encode a preferred orientation with one eigenvalue larger

than the other (and therefore the orientation described by the associated eigenvector)

and additionally the salience of a particular generic tensor (in 2D) is given by the

difference of the eigenvalues (λ1 − λ2).

In the most simple use of tensor voting we encode our points as ball tensors or if

we have edge information we can encode them as stick tensors.

Vote Propagation

The voting portion of tensor voting refers to the way that salient structures are

extracted by local analysis. Voting happens in a pairwise fashion between a receiver

tensor and each of its neighbors within a neighborhood determined by the only free
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parameter in the algorithm: σ. Each neighbor “votes” with its orientation. The vote

is weighted by the distance and curvature ρ between the voter and the votee. This is

given by the so-called “Saliency Decay Function” (Equation 2)

V S(−→d ) = exp(−|
−→
d |2 + c · ρ2

σ2 ) (2)

Vball(
−→
d ) =

∫ 2π

0
RθVstick(R−1

θ

−→
d )RT

θ dθ (3)

We can try to get an intuitive feel for equation 2 by first noticing that it appears

to be a Gaussian. So we know that the strength of votes decay exponentially with

distance between voter and receiver.

d is the distance from voter to receiver. ρ is the curvature between voter and

receiver. If we consider just the voting point and think back to basic calculus, we know

that the tangent line is the line that best approximates a curve at a point. With tensor

voting we extend this to consider the osculating circle, which is the circle that best

approxmates the curve at a point (because we want the best smooth path connecting

points). c is a constant that controls the interaction of distance and curvature, in

our C++ implementation of tensor voting c = (σ−1)×−log(0.1)
π
4

2 . Refer back to Figure

2a once more and notice there is one other key difference, the field is truncated at

the 45 degree angles giving it a barbell type of shape. This is another measure to try

to ensure smooth continuation (and additionally a performance optimization since

perpendicular votes would have been penalized due to the curvature anyway). This
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is the stick voting case.

On the other hand the ball tensor vote is conceptually the integration of a rotating

stick tensor (Equation 3). It is isotropic and so essentially votes strictly based on

distance to it’s neighbors. It is good for estimating density primarily.

Each tensor “collects votes” via tensor addition (i.e., element-wise addition) re-

sulting in a generic tensor as described above. Consider Figure 3: each receiver

(Q,Q′, Q′′) receives votes with the orientation that they should have according to P

with saliency strength proportional to the distance and curvature from P . If P is on

a consistent structure then the Q tensors will receive many consistent votes from P

and P ’s neighbors and they will all agree that they are on the same structure. On the

other hand, if P is a noisy segment it will still contribute the same vote, but presum-

ably neighbor tensors that share a common structure with the Q’s will overwhelm

the information received from the noisy voter.

Figure 3: Collecting votes, the blue arrows denote the orientation of the Q’s according
to P

In this work we also follow the work of [8] in implementing iterative removal of

low salience segments to improve the results of tensor voting. Given a number of

iterations, i, and a threshold value Ts we encode our tensors and save a copy then

perform each round of tensor voting. After each iteration we calculate the curve
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salience value, λ1 − λ2, for all tensors then remove those tensors that fall below Ts

from the originally encoded tensors and then continue to the next iteration (voting

again from the filtered original tensor values). Through this process we progressively

improve our confidence in the tensors that exist on consistent structures (i.e., blood

vessels in our case).

Typical image processing techniques might look at something like the image

gradient as computed by the Sobel operator to find simple salient features (i.e., edges)

in the image. The gradient of the image contains one piece of geometric information:

the orientation of the vector that is normal (perpendicular) to the curve at that point.

Tensor voting extends things from this vector representation to a more general tensor

(in 2D this is a matrix). Now continuing the example above we encode not only the

orientation of the gradient in the normal direction, but we also encode the tangent

information as well as the magnitude at each point (tensor). This gives us our tensor

representation, it also extends to arbitrary dimensional spaces (N-D) but for clarity of

exposition we will not explore that further and instead refer the interested reader to

[14]. Without belaboring the point it might be worthwhile to contextualize this one

more time: a scalar encodes magnitude, a vector encodes magnitude and direction,

our tensor representation encodes direction (normal and tangent), magnitude and

salience (or this can be considered something like confidence). So we can see how this

is a richer representation.
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Proposed Methodology

Preprocessing

We begin by preprocessing our image (see Figure 10a for the raw image). We extract

the green channel based on the empirical observation that it provides the best contrast

and least noise of the three color channels (Figure 4). Additionally reducing the

problem to a grayscale image more closely mimics the types of images encountered

in medical imaging (which is typically not done with visible light and therefore color

information is usually not available).

(a) The red channel (b) The green channel (c) The blue channel

Figure 4: Viewing each color channel separately clearly shows the best contrast in
the green channel.

We then perform morphological closing (•) with a circular structuring element

(SE) to model the uneven illumination. We will denote the green channel image

as G see Figure 5. Finally we subtract the green channel image from the result of

morphological closing, this is known as the black top-hat transform (Equation 4) and

is illustrated in Figure 6a. Although Figure 6a looks promising there is unfortunately

still quite a bit of noise left behind, this is more evident when the image contrast is
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enhanced (Figure 6b)

TH(G) = (G • SE)−G (4)

Figure 5: Grayscale morphological closing produces a good model of the background.

The result of the black top-hat transform gives us the intensity values that we

use to initialize our ball tensors for the interior vessel pixels. As we will explain in

Section we can actually perform tensor voting directly at this stage, however given

the amount of noise it is helpful to guide the process more by using the strong edge

pixels of the vessel walls and encoding them as stick tensors. This shows one of the

strengths of tensor voting, that we are able to use one unified framework to encode

both of these types of information. As an optimization we also threshold the intensity

values of the black top-hat image to remove excessively noisy segments. This is merely

an attempt to prevent encoding and voting on tensors that were a priori unlikely to

belong to a vessel.
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(a) The result of the black top-hat
transform.

(b) Contrast enhanced result of the
black top-hat.

Figure 6: Black top-hat results

We use a combination of the Sobel gradient operator and the Canny edge detector

[3] to extract edge information from the image. In principle this could be done in

one step with a modified Canny procedure (because the Canny algorithm computes

this same information during the course of generating its output) but for simplicity of

implementation we perform the steps separately. The Canny edge detector gives us

better detections of the thinnest end vessels due to the use of hysteresis (completing

edges).

We convolve the image with directional derivative filters (Sobel’s kernel) to esti-

mate the gradient of the image in the x and y directions, Gx, Gy. We then follow the

well known procedure to compute the gradient magnitude (Equation 5) image (See

Figure 7 for an example) and calculate the orientation of the edges (Equation 6).

‖∇G‖ =
√
G2
x +G2

y (5)
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Figure 7: Gradient magnitude edges of the retinal fundus image

Θ = arctan(Gy

Gx

) (6)

Finally we use the gradient magnitude to decide which edges are strong enough

to be encoded as stick tensors and then create their tensor representation with e1 =

[cos(Θ), sin(Θ)], e2 should be orthogonal, since we are in 2D this is simply e2 =

[−sin(Θ), cos(Θ)]. All of these operations are carried out in an element-wise fashion

across the whole image.

Our contribution here is to steer the voting process by using ball tensors on the

interior of the vessel (to find the densest regions of vessel pixels) with stick tensors on

the vessel walls to guide the process using better estimation of the vessel orientation.
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Figure 8: A schematic representation of decomposing an elliptical generic tensor into
a ball component and a stick component

Applying and Interpreting Tensor Voting

With the image input cleaned up and encoded as tensors we now apply tensor voting

on the input (stick and ball) tensors, and the output of the process are generic tensors

as described previously.

The fundamental idea is that any generic tensor can be decomposed into its stick

and ball components. We depict it graphically in Figure 8.

More formally Equation 7 shows the first term λ1 − λ2 (the stick salience) mul-

tiplied by the outer product of e1, which is the normal vector to the curve, so this is

our stick component. The 2nd term incorporates both eigenvectors and is scaled by

λ2, the ball salience.

T = (λ1 − λ2)e1e
T
1 + λ2(e1e

T
1 + e2e

T
2 ) (7)

In 2D tensor voting, as mentioned previously, we get two eigenvalues when we

decompose a generic tensor. Analzying these values gives us three cases:

1. λ1 − λ2 > λ2 - High stick saliency, probably on a curve.

2. λ1 ≈ λ2 > 0 - Uncertain direction but high saliency implies a junction

3. λ1 ≈ λ2 ≈ 0 - Low saliency overall implies this is noise (an outlier)
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In the following section we will review the results of our experiments and when

we display result images we are visualizing the stick saliency as a gray-level intensity

value.

Iterative Voting

To further improve results of the system we have implemented iterative voting fol-

lowing the work of [8]. For 2D figures this idea extends back to [23]. As before we

pre-process the images and encode the edge pixels as stick tensors and non-edge pixels

(i.e., the center of the vessels, noisy segments, the optic disc) as ball tensors. Our idea

now is that after a round of tensor voting tensors that are likely to be on a common

structure will have increased their salience more than isolated noisy segments. Rather

than directly (and optimally) try to threshold the salience map at this stage, instead

we can choose a very conservative threshold value and eliminate tensors that were

not sufficiently salient after the first round of voting.

At each iteration, i, of voting we calculate the saliency map for Ti then threshold

low salience segments, we then remove the low salience tensors from the original

tensor list (i.e., T0) and then vote again using the filtered version of T0. Over time

there is a greater and greater separation between the salience of noisy segments and

vessel segments as demonstrated in the results section.

Implementation

In this section we will briefly review the implementation of the software. The foun-

dation of the system is the original Tensor Voting application from Dr. Medioni’s
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lab, courtesy of Dr. Mircea Nicolescu. This application is a generic C++ library that

includes the implementation of tensor voting and eigendecomposition as well as a

Microsoft Foundation Class (MFC) based Windows application for the user interface.

For our purposes, knowing that we would be running many experiments, we

modified this application to remove the GUI (making it portable to Linux in the

process). We also conducted profiling of the code and optimized some IO code to

improve the speed by approximately 20%.

To facilitate faster prototyping we then implemented a Python based wrapper

around the Tensor Voting C++ code. Over the course of this research this system

evolved considerably, from initially being a script that wrote out a serialized form

of the tensors (hence the improvements to IO mentioned before), to a cross-platform

GUI application using Qt (Figure 9).

In its final form we implemented a Cython [2] binding directly between the Tensor

Voting library and Python, which allowed us to directly communicate using shared

memory rather than files and eliminated the need for messing text file parsing. We also

returned to the script format, but implemented a Pipeline approach with facilities for

grid search of parameters inspired by the scikit-learn project [17]. This is the software

that has produced the tables of results in the next section.

The use of the pipeline simply requires code like

X = np.load(’drive_images.npy’)

image_pipe = Pipeline([(’tophat’, TophatCannyPreprocessor())

,(’tenslist’, ImageTenslistAdapter(5.0))

,(’vote’, IterativeTensorVotingTransformer(9.0, 4, 3))

])
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Figure 9: Screenshot of the GUI incarnation of this work
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voting_result = image_pipe.transform(X)

The code for the pipeline clearly mirrors the approach proposed in this paper,

making it very easy to swap components while maintaining an uniform interface in

between. There are Preprocessor objects that correspond to each strategy described

in this thesis, the ImageTenslistAdapter carries out the transformation from pixels to

tensors (via the gradient and intensity methodology described previously), and finally

there are TensorVotingTransformers which carry out either single scale, or iterative

tensor voting on the tensors encoded by the adapter.

Each step is named in the above code (’tophat’, ’tenslist’, ’vote) because the

system uses introspection to allow the programmer to specify ranges of parameters

for each component by name, then it will compute and log all of the results.

Experimental procedure and results

Retinal Fundus Imaging

There are two ground truth data sets that are used by most researchers in the field:

the DRIVE data set and the STARE [6] dataset. The anatomic variability described

above manifests itself in the images of the vessels as tremendous variability in size

ranging from approximately 1 to 12 pixels in diameter.

There are 40 images in the DRIVE data set split into 20 training images and 20

tests images. Figure 10 shows an example image with its corresponding ground truth

labeling.
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(a) Color fundus image (b) Hand labeled ground truth

Figure 10: An example DRIVE image and its corresponding groundtruth segmenta-
tion

The DRIVE (Digital Retinal Images for Vessel Extraction) database, con-

sists of a total of 40 color fundus photographs. [. . . ] The photographs were

obtained from a diabetic retinopathy screening program in The Nether-

lands. The screening population consisted of 453 subjects between 31 to

86 years of age. Each image has been JPEG compressed, which is com-

mon practice in screening programs. Of the 40 images in the database,

7 contain pathology, namely exudates, hemorrhages and pigment epithe-

lium changes. [. . . ] The images were acquired using a Canon CR5 non-

mydriatic 3CCD camera with a 45 degree field of view (FOV). Each image

is captured using 8 bits per color plane at 768× 584 pixels. The FOV of

each image is circular with a diameter of approximately 540 pixels. [16]
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Figure 11: DRIVE image after encoding Sobel edges and voting

Tensor Voting with only stick tensors

Initially we attempted using edge detectors like the Sobel operator and the Canny

edge detector by themselves to initialize voting. Although these work well, they miss

the interior of the vessels as shown in Figure 11 (which are segmented in the ground

truth data as seen in 10b).

Compared to the input edge data (Figure 7) we can see however that much of

the noise has been suppressed and the optic disc that is visible on the left of Figure

7 (the semi-circular structure) is not present here. Unfortunately the center of the

vessels and the smallest end vessels are missing.
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Figure 12: DRIVE image after encoding vessel with ball tensors

Tensor Voting with ball tensors

To accomodate for the lost interior vessel pixels we attempted to vote with ball tensors

throughout, using the intensity of the black top-hat image (discussed in the previous

section) to determine the initial saliency.

Table 1 shows the results of our experiments using ball tensors and varying

the free parameter σ to determine the best size of the voting neighborhood given

this choice on initialization. We also were searching for the best implementation

and optimization specific parameters. In each experiment the computational cost

increased so in this experiment we chose the structuring element size, in the following

we selected the threshold.

The effect of σ in this case is modest.
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Table 1: Results of varying σ with ball tensor voting on the training set

Vote σ Gradient threshold Structuring element size AUC

2 8 (13, 13) 0.859953487

2.5 8 (13, 13) 0.861561565

3 8 (13, 13) 0.863176824

3.5 8 (13, 13) 0.864529811

4 8 (13, 13) 0.865610557

4.5 8 (13, 13) 0.866483513

5 8 (13, 13) 0.867199552

5.5 8 (13, 13) 0.867765332

6 8 (13, 13) 0.868193213

6.5 8 (13, 13) 0.868542593

2 9 (13, 13) 0.84080648

2.5 9 (13, 13) 0.841689584

3 9 (13, 13) 0.84257189

3.5 9 (13, 13) 0.843354123

4 9 (13, 13) 0.843968725

4.5 9 (13, 13) 0.844496999

5 9 (13, 13) 0.844890078

5.5 9 (13, 13) 0.845232286

6 9 (13, 13) 0.845486168

6.5 9 (13, 13) 0.845705778

2 8 (14, 14) 0.860024819

2.5 8 (14, 14) 0.86159816
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Table 1: Results of varying σ with ball tensor voting on the training set

Vote σ Gradient threshold Structuring element size AUC

3 8 (14, 14) 0.863187343

3.5 8 (14, 14) 0.864540403

4 8 (14, 14) 0.865618034

4.5 8 (14, 14) 0.866508101

5 8 (14, 14) 0.867191459

5.5 8 (14, 14) 0.867767472

6 8 (14, 14) 0.86820653

6.5 8 (14, 14) 0.868529446

2 9 (14, 14) 0.840779716

2.5 9 (14, 14) 0.841722306

3 9 (14, 14) 0.842557567

3.5 9 (14, 14) 0.843342227

4 9 (14, 14) 0.843988393

4.5 9 (14, 14) 0.84449337

5 9 (14, 14) 0.844895704

5.5 9 (14, 14) 0.845231426

6 9 (14, 14) 0.845497979

6.5 9 (14, 14) 0.845700744

This produces substantially better results as can be seen in Figure 12, but tends

to lose very thin end vessels (which are so small as to almost only consist of edges).
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Voting with stick and ball tensors

In this experiment we use the complete method described in the proposed methods

section except the use of iteration. Based on the previous experiment we’ve restricted

the size of the structuring element parameter to 13 and increased the upper limit on

σ.

We can see that encoding the stick information has made a significant difference

in the results

Table 2: Detailed parameter search of proposed method on the training set

Vote σ Gradient threshold AUC

2 3 0.779993435

2.5 3 0.787726112

3 3 0.802415061

3.5 3 0.816458224

4 3 0.831090158

4.5 3 0.847334387

5 3 0.858788663

5.5 3 0.869152561

6 3 0.877471899

6.5 3 0.883786157

7 3 0.889147886

7.5 3 0.893259303

8 3 0.896504815

8.5 3 0.899216099

9 3 0.90110371
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Table 2: Detailed parameter search of proposed method on the training set

Vote σ Gradient threshold AUC

9.5 3 0.902659276

2 4 0.824114309

2.5 4 0.833179657

3 4 0.844802392

3.5 4 0.857753232

4 4 0.869488711

4.5 4 0.880683633

5 4 0.889160185

5.5 4 0.896714781

6 4 0.902551969

6.5 4 0.907135678

7 4 0.910642017

7.5 4 0.913471751

8 4 0.915498243

8.5 4 0.917291697

9 4 0.918542644

9.5 4 0.919340945

2 5 0.856961697

2.5 5 0.865134271

3 5 0.875293609

3.5 5 0.885512018

4 5 0.893472027
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Table 2: Detailed parameter search of proposed method on the training set

Vote σ Gradient threshold AUC

4.5 5 0.901241274

5 5 0.907207318

5.5 5 0.912370725

6 5 0.916081636

6.5 5 0.918875711

7 5 0.921123327

7.5 5 0.922775713

8 5 0.924030631

8.5 5 0.925026027

9 5 0.9256225

9.5 5 0.926208098

Iterative Voting

Informed by the previous experiment we narrowed the space of parameters for the grid

search in this experiment. We observe rapid improvement in classification accuracy

initially however it does plateau quickly.

Table 3: The effect of varying σ on iterative voting results on the training set.

vote sigma AUC

2 0.871572725

2.5 0.917430881
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Table 3: The effect of varying σ on iterative voting results on the training set.

vote sigma AUC

3 0.932194443

3.5 0.937527454

4 0.939023867

4.5 0.939707897

5 0.939891583

5.5 0.94009257

6 0.940165766

6.5 0.940230886

7 0.940236311

The results reported above demonstrate the effect of varying parameters on the

training set of images for DRIVE. Choosing the best parameters from our experiments

there and applying them to the test set yields an area under the ROC curve of 0.93.

Figure 13 shows the corresponding ROC curve. Figure 14 shows an example binary

segmentation made by thresholding the saliency image. Figures 15 shows two example

“soft” segmentations, or probability maps for vessel salience (likelihood).

Comparison with other methods

The following performance numbers are taken from their respective papers, only

Soares provides access to his source code so that it is possible to repeat the ex-

periments.
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Figure 13: Receiver Operator Curve for the complete test set. AUC = 0.93



34

Figure 14: Binary segmentation by thresholding salience image

Figure 15: Example soft segmentations on the test set
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Table 4: Comparison of our method vs other published approaches

Paper Approach Area Under ROC Curve

Chaudhuri Unsupervised 0.79

Zana & Klein Unsupervised 0.89

This work Unsupervised 0.93

Ricci & Perfetti Supervised 0.95

Soares Supervised 0.96

The learning (discriminative) approaches are clearly able to outperform the un-

supervised methods, however they require training. Training does not just refer to

the CPU time required to train the model, but also refers to obtaining sample data

for that particular sensor, and then labeling it by hand. For example, for the DRIVE

database the authors say, “it took an observer 2 hours on average to label a single

image” [21] That means to obtain a similar amount of training data would require

40 hours of manual labeling effort by trained medical staff, and depending on the

machine learning technique this may have to be repeated for new equipment (new

sensors, new Field of View of cameras, etc) depending on how well the classifier gen-

eralizes. Additionally because our method has only one critical parameter (the size

of the neighborhood for tensor voting) it would be easy to create a semi-automatic

application where a clinician could interactively select the best setting to produce the

best accuracy (on a per-image basis rather than across the entire data set).

Two published papers ([9], [18]) have conducted the experiment alluded to above,

cross-training their supervised systems on the DRIVE database and testing on STARE

and vice versa. As we expected they show noticeable drops in performance, in fact



36

[18] falls from AUC of 0.949 to 0.927, slightly below the performance we achieve in

this work. [9] seems to have a more robust classifier, but they also report a drop in

AUC from 0.959 to 0.945 (when trained on STARE and tested on DRIVE). These

examples clearly show the benefits of a model free, unsupervised technique.

Future Work

For future work it may be possible to add a classifier on top of the Tensor Voting

output to further improve delineation of vessel vs non-vessel pixels. This should be

straight forward to experiment with due to shared pipeline architecture with scikit-

learn, which has many classifiers already such as Random Forests, Support Vector

Machines, Naive Bayes, etc.

Additionally because Tensor Voting naturally extends to higher dimensions it will

be interesting to perform further experiments on 3D (such as 3D CT angiograms) and

4D data sets such as 4D MRI. Our choice for pre-processing can theoretically scale

up as well (i.e., Sobel can be extended to find gradients in 3D) so this could be an

interesting avenue of research.

However the current implementation, despite being well implemented C++ code

is prohibitively slow to compute with dense data sets.In the future we should consider

some combination of developing a multi-core or GPU implementation of tensor voting

and possibly working with more sparse data (although this is quite difficult to do with

medical imaging because the accuracy requirements are so high). We investigated the

feasibility of updating the code to run on the Graphics Processing Unit (GPU) for

significantly greater parallelism, but ultimately abandoned this attempt. The reason

for this is that GPUs require more predictable memory accesses but the current
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implementation uses Approximate Nearest Neighbor (ANN, [1]) search to determine

the neighborhood based on σ. Additionally the fundamental data structure, the

“tenslist” is implemented as a linked-list. This is a perfectly good representation on

the CPU, but pointer chasing on the GPU is an anti-pattern. In the future it would

be more straightforward to write a clean room implementation starting with arrays.

There has been previous work on GPU implementation [12], but it implemented on

top of the frame buffer objects, this could almost certainly be improved today using

CUDA or OpenCL.

Conclusion

We have detailed a unique initialization strategy for segmenting thick tubular struc-

tures (i.e., blood vessels). Using our software framework we performed extensive

searches of the parameter space to arrive at an iterative 2D tensor voting process and

subsequent tensor analysis for the task of retinal vessel segmentation. We achieve

results that are competitive with the state-of-the-art supervised techniques and par-

ticularly among the best for unsupervised approaches. Tensor Voting naturally incor-

porates the types of geometric verification that have been implemented in an ad-hoc

way by other unsupervised approaches.
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