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Abstract

Joint Optimization of Vertical Component Gravity and Seismic P-wave First Ar-

rivals by Simulated Annealing

Kyle Basler-Reeder1

John Louie1

Satish Pullammanappallil1,2

Graham Kent1

1 Nevada Seismological Laboratory, University of Nevada, Reno, NV

2 Optim, Reno, NV

Simultaneous joint seismic-gravity optimization improves P-wave velocity models

in areas with sharp lateral velocity contrasts. Optimization is achieved using simu-

lated annealing, a metaheuristic global optimization algorithm that does not require

an accurate initial model. Balancing the seismic-gravity objective function is accom-

plished by a novel approach based on analysis of Pareto charts. Gravity modeling uses

a newly developed convolution model, while seismic modeling utilizes the highly e�-

cient Vidale eikonal equation traveltime generation technique. Synthetic tests show

that joint optimization improves velocity model accuracy and provides velocity con-

trol below the deepest headwave raypath. Restricted o↵set range migration analysis

provides insights into both pre-critical and gradient reflections in the dataset.

Detailed first arrival picking followed by trial velocity modeling remediates incon-

sistent data. We use a set of highly refined first arrival picks to compare results of a
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convergent joint seismic-gravity optimization to the PlotrefaTM and SeisOptr ProTM

velocity modeling softwares. PlotrefaTM uses a nonlinear least squares approach that

is initial model dependent and produces shallow velocity artifacts. SeisOptr ProTM

utilizes the simulated annealing algorithm, also produces shallow velocity artifacts,

and is limited to depths above the deepest raypath. Joint optimization increases

the depth of constrained velocities, improving reflector coherency at depth. Kircho↵

prestack depth migrations reveal that joint optimization ameliorates shallow velocity

artifacts.

Seismic and gravity data from the San Emidio Geothermal field of the northwest

Basin and Range province demonstrate that joint optimization changes interpretation

outcomes. The prior shallow valley interpretation gives way to a deep valley model,

while shallow antiformal reflectors that could have been interpreted as antiformal

folds are flattened. Furthermore, joint optimization provides a more clear picture of

the rangefront fault. This technique can readily be applied to existing datasets and

could replace the existing strategy of forward modeling to match gravity data.
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One’s mind, once stretched by a new idea, never regains its original dimensions.

Oliver Wendell Holmes Sr.
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Chapter 1 Introduction

The research e↵orts outlined in this thesis were a collaborative e↵ort between the

Nevada Seismological Laboratory at the University of Nevada, Reno and Optim. The

driving force behind our work is a desire to improve seismic imaging for geothermal

resources, which in turn could result in higher geothermal exploration drilling success

rates (Faulds et al., 2010; Louie et al., 2012; Harris, 2012). Louie et al. (2012) shows

that strides have been made towards solving the velocity modeling problems inherent

to seismic imaging in the complex geologic setting of the Great Basin, but there is

still room for improvement.

This thesis utilizes high quality seismic and gravity datasets collected by Optim

and MWH Geo-Surveys for a U.S. Geothermal exploration project funded by the U.S.

Department of Energy’s American Recovery and Reinvestment Act (ARRA). The

project’s objective was to synthesize structural geology and exploration geophysics

to delineate subsurface fault intersections at a known geothermal system. These

fracture systems make desirable drilling targets for power production facilities, as

they are generally permeable conduits for high temperature fluids (Faulds et al.,

2006). Other UNR student theses based on geothermal exploration projects funded

through ARRA include, but are not limited to: Drakos (2007), Delwiche (2007), Vice

(2008), Anderson (2013), and Mayhew (2013).

Drakos (2007) concluded that northern Basin and Range normal faults are kine-

matically linked to major dextral faults of the northern Walker Lane, such as the

Pyramid Lake fault. Drakos (2007) also found that a ˜1 km thick Miocene vol-

canic section rests disconformably on thin Oligocene ash-flow tu↵s, which uncon-

formably overlies Mesozoic granitic, metasedimentary, and metavolcanic basement.

Drakos (2007) states that the Miocene and Oligocene volcanic sections have concor-

dant eastward-dipping foliations of ˜20�, suggesting the Pyramid Lake region did not

experience east-west extension prior to ˜13 Ma. Delwiche (2007) found that paleoval-
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leys in the Pah Rah Range, which is south of Pyramid Lake, trended ˜265� to ˜280�.

Delwiche (2007) also reports ˜25� to ˜40� clockwise rotations in eastern Warm Springs

Valley. Vice (2008) states that tufa towers at The Needles and Astor Pass are struc-

turally controlled and suggests that tufa towers, fault intersections, and dilational

fault tendency are good indicators of potential blind geothermal systems. Anderson

(2013) also found Miocene and Oligocene volcanic and sedimentary rocks overlying

Mesozoic basement. Anderson (2013) concluded that Astor Pass is controlled by a

west-northwest-trending least principal stress in a normal faulting regime and stresses

the importance of paying attention to regional structural patterns. Mayhew (2013)

points out that hydrologic studies indicate that the Tertiary Pyramid sequence is too

permeable and transmissive to support discrete fault-fluid conduits, but this is not

true for the Mesozoic basement.

Optim collected and processed ten lines of seismic data at San Emidio in 2010.

The survey leveraged Vibroseis sources, advanced recording equipment, and large

maximum o↵sets to produce a very high quality seismic dataset. Optim used their

software, SeisOptr ProTM, to create seismic velocity models using first arrival picks

picked o↵ shot records. SeisOptr ProTM uses the simulated annealing algorithm,

a nonlinear metaheuristic optimization technique that converges to the global error

minima through a Monte Carlo approach. In 2011, results of the seismic imaging ef-

forts were presented in Greg Rhode’s master’s thesis titled, “Structural Controls of the

San Emidio Geothermal System, Northwestern Nevada.” While geologic complexities

made imaging very di�cult, the project was remarkably successful in demonstrat-

ing the e↵ectiveness of applying advanced seismic imaging techniques to geothermal

resource characterization. I aim to improve imaging to facilitate a new series of

interpretations.

I completed initial first arrival picks for line 6 using Viewmat for Java software

(http://crack.seismo.unr.edu/jrg/). Optim used those picks to create a new velocity

model through SeisOptr ProTM. Using a custom Matlab script, I plotted computed

first-arrival traveltimes, observations, and associated residuals beside wiggle-trace
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shot records. Through detailed examination, I discovered and resolved inconsistent

data and inaccurate picks.

MWH Geo-Surveys collected and processed vertical-component gravity data in

2008. Teplow et al. (2011) examined seismic and gravity data sequentially, with a

subsurface density profile being forward modeled to match and support the results

of the seismic velocity model. In this thesis, I explore the potential of incorporating

gravity data in the seismic processing workflow at the velocity model building step.

My hypothesis is that a velocity model conforming to both seismic and gravity ob-

servations will produce superior seismic imaging results in comparison to a velocity

model that only takes advantage of seismic data. This is made possible through the

utilization of the time-honored empirical velocity-density relationship derived by G.

H. F. Gardner and L. W. Gardner in 1974.

The development of my joint seismic-gravity optimization code took place in the

Mathworks Matlabr (version R2013a) environment. My gravity forward modeling

code was built from scratch out of necessity and was chosen for oral presentation at

the 2014 Society of Exploration Geophysicists Annual International Meeting (Reeder

et al., 2014). Optim provided me with a proprietary traveltime modeling code.
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My thesis required me to conceive, write, test, and implement a variety of Mat-

lab scripts, Matlab functions, C codes, and Fortran codes. What follows is a brief

description of the most essential codes.

Matlab Scripts

1. Reeder Wiggle.m reads in a seismic shot gather in SEG-Y format, first arrival

picks in Viewmat format, and calculated first arrival traveltimes in SeisOptr

ProTM format. The ability of this script to plot calculated and observed first

arrival picks directly on shot records in wiggle trace format was leveraged to

evaluate my initial first arrival picks. Plotting residuals next to the shot records

revealed areas of inconsistent data. Reeder Wiggle.m also creates a histogram

of traveltime residuals, a plot of o↵set vs. traveltime misfit, and computes �

2

values.

2. Reeder SEGY Header.m reads in a SEG-Y file and outputs all relevant header

information. This script also scans trace headers to produce plan and cross-

sectional views of shot and receiver locations. These plots helped understand

survey geometry and gave the surveyed geophone location precision value used in

my �

2 analysis. Reeder SEGY Header.m also computes the Nyquist frequency

and Nyquist wavelength to help understand aliasing criteria.

3. Reeder TT Output.m reads in a binary floating point velocity model and shot/receiver

locations. The script loops over shot locations, plotting isotime contour plots

on the input velocity model. I used this script to troubleshoot calculated first

arrival times and demonstrated that my vertical model extension technique was

incorrectly pulling up deep velocities, resulting in first arrival times that were

too early. This was resolved by using lateral model extension. This script was

very handy for validating the robustness of my traveltime generator and also

writes the traveltime planes used by the aargKMig.c migration code.

4. Reeder DualOpt.m is my joint optimization, which reads in first arrival picks,
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gravity data, and a parameter file. The script outputs plots of iteration vs.

energy, a Pareto chart, iteration vs. temperature, iteration vs. acceptance rate,

a traveltime plot, a gravity model plot, and velocity/density models. Modifying

the code to reset the model at each temperature grants the ability to conduct

a temperature study. Running this script and examining the trend of error

reduction in the Pareto chart is essential for objective function calibration.

Matlab Functions

1. Reeder Deepray.m has inputs of a velocity model and source/receiver loca-

tions. This function loops over source and receiver locations, creating traveltime

planes. Summing traveltime planes and computing the minimum traveltime for

each easting element determines the first arrival ray path for each shot. Looping

over each source-receiver first arrival ray path plane and computing the deepest

ray path gives a vector of the deepest first arrival ray path through the model.

This is useful to understand the depth of first-arrival-based velocity modeling

control.

2. Reeder Topography.m reads in model space dimensions and source/receiver lo-

cations. The function grids source and receiver locations, emplacing null ele-

ments to the top of the model above each source and receiver location. The

function also sets elements to a value of unity below the null elements. The

model pertubation function applies element-wise multiplication to the array

that this function outputs to preserve the topography of the model.

3. Reeder Model Perturber.m reads in a velocity model and min/max velocities.

A randomly sized rectangle, with a randomly determined origin, is generated

with a random velocity in the specified range. The rectangle then replaces

the corresponding elements of the input model. In order to obtain a uniform

sampling distribution, the origin must be locatable up to one model dimension

outside of the model space. The random rectangle can breach topography, so
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topography is reset using the output of Reeder Topography.m. This function is

an essential component of any Monte Carlo style optimization.

4. Reeder Arrivals.m reads in a velocity model and source/receiver locations. This

function calls on a MEX function, Vidale TURBO.c, which is a converted C

code containing the Vidale (1988) method for traveltime generation provided to

me by Optim. Reeder Arrivals.m returns generated first arrival times for each

source-receiver pair, which are compared to observed first arrival time picks to

create residuals.

5. Talwani TURBO init.m reads in model space dimensions, element dimensions,

and a vector of gravity station easting locations. This function detects the num-

ber of null density elements at each easting location to determine the correct

vertical position of gravity stations. Running this one time prior to the opti-

mization generates a convolution vector used by the gravity model described

below.

6. Talwani TURBO.m reads in output from Talwani TURBO init.m and a density

model. It uses a convolution method to produce a gravity model. For e�ciency,

the convolution takes place in the MEX function Talwani TURBO.c. This

function outputs a gravity model that can be compared to observations for

residual generation.

7. RMS Error.m reads in two vectors of equal length and returns the RMS error

according to the following formula:

� =

sP
n

x

i=1(x
observed

i

� x

calculated

i

)2

n

x

(1.1)

I used this in my objective function during optimization.

Fortran Codes

1. Viewmat to Plotrefa.m reads in a first arrival pick file in Viewmat format. This
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code converts the picks to the input format required by Geometricsr PlotrefaTM,

which was used to create velocity models by the nonlinear least squares method.

2. Viewmat to SeisOpt.m also reads in a first arrival pick file in Viewmat format.

This code projects picks onto a plane before writing a pick file in the input

format needed for SeisOptr ProTM, which was used to create velocity models

by the simulated annealing method.

These Fortran codes are hard-coded for San Emidio line 6 seismic lines and would

need to be modified for use with other datasets.

Code Testing

Use of the aforementioned codes required thorough testing. This testing was

predominantly done in the Matlab environment, which facilitates automated viewing

of data. Output of C and Fortran codes was imported to Matlab.

Reeder Wiggle.m e↵ectively displays first arrival energy; this was accomplished

by manually setting gains, mutes, and windowing. The histogram plotting function

agrees with synthetic data. Other scientists at UNR utilized Reeder SEGY Header.m

and reported that it produced correct results. Plots of shot and receiver locations were

cross-checked with survey information. Reeder TT Output.m produced accurate

isotime contour results even when confronted with the most extreme horizontal and

vertical velocity gradients.

Reeder DualOpt.m was the focus of most of my attention. Testing included

plots of acceptance rates, energy, cooling schedule, and seismic/gravity models. Fur-

thermore, the Code Analyzer tool in Matlab revealed many potential improvements

in e�ciency; most of these improvements came from vectorization of ‘for’ loops.

Reeder Topography.m gave the correct results for a variety of synthetic models, in-

cluding models that lack topography. Reeder Deepray.m generally obtains the deepest
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ray. However, sometimes there are two shortest-time paths. When this occurs, the

shallower ray may be chosen, which can lead to inaccurate results. When this occurs,

the deepest ray will show a vertical ‘tear’ on one or both of the edges. This could be

resolved by checking for the presence of two second derivative minima and choosing

the deeper one.

Originally, Reeder Model Perturber.m’s model perturbation was restricted to the

model space, which led to a non-uniform element hitcount. Allowing perturbation

to extend outside the model dimensions resolves this issue; generated hitcount maps

now show a truly uniform distribution. Reeder Arrivals.m produces reasonable first

arrival times. However, for models with topography and flat refractors, the code

produces jagged arrivals. This is due to the discretized nature of topography, which

was mostly relieved by smoothing first arrival times.

Talwani TURBO init.m was validated by comparing computed results to ana-

lytical results of buried dikes and buried slabs. Talwani TURBO.m produces results

that are comparable to the commercial software package GM-SYS. RMS Error.m was

validated with synthetic error models. Manual checks Viewmat to Plotrefa.m output

show correctness. Viewmat to SeisOpt.m works as expected, shown by opening data

in SeisOptr ProTM and comparing to initial observations.

The main body of this thesis is a paper that will be submitted to the journal

Geophysics, which is published by the Society of Exploration Geophysicists of Tulsa,

Oklahoma.
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Chapter 2 Geophysics Paper

2.1 Introduction

2.1.1 Motivation

The United States of America is the world leader in geothermal energy extraction,

with current electrical generation capacity of 3,442 MW and 124 developing projects

(Matek, 2014). The majority of these new developments are in the state of Nevada,

due to a combination of favorable business settings and a relatively thin crust that

results in a high geothermal gradient (Blackwell et al., 2011). Matek (2014) states

that only 40% of total geothermal production potential has thus far been realized

in Nevada. Coolbaugh et al. (2006) estimate that half of the remaining potential

resides in reservoirs with no obvious surface expression, which are commonly referred

to as ‘blind’ systems (Cumming, 2009). Blind systems tend to occur in areas of high

fracture density, which produces high permeability (Colwell et al., 2012; Dering, 2013;

Jolie et al., 2015; Anderson, 2013; Kent, 2013; Mayhew, 2013; Vice, 2008). Faulds

et al. (2006) conducted a regional study and found that there is a high probability of

finding geothermal systems at fault intersections. Louie et al. (2012) point out that

due to resolution and depth of investigation constraints, seismic reflection imaging

is the only geophysical method capable of precisely imaging fault intersections at

production depths. The high cost of exploratory drilling campaigns and low success

rates hamper new development, which can be remedied by geophysical investigation

(Faulds et al., 2010; Louie et al., 2012; Harris, 2012).

2.1.2 Geologic Setting

One example of an active geothermal power plant where geophysical investigation

has been applied is San Emidio, which is operated by U.S. Geothermal and is located

roughly 100 km (60 miles) NNE of Reno, Nevada (Figure 2.1). San Emidio is situ-
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ated just east of the transtensional Walker Lane in the extensional northern Basin

and Range province. Rhodes (2012) describes the geothermal reservoir as being found

in a right-stepping series of hard-linked, north-striking, west-dipping normal faults

along the western flank of the northern Lake Range. Installed energy production

capacity of 12.75 MWe is derived from a thermal anomaly at 520 m (1,700 ft) depth,

with estimated total resource potential of 44 MWe (Rhodes, 2012; Matek, 2014)).

Eneva et al. (2011) discuss surficial temperature and subsidence anomalies that ex-

tend northward from the current production area, which suggests the possibility of

another geothermal reservoir in the northern exploration area. In order to help guide

exploratory drilling, Optim collected seismic and gravity data at San Emidio through

a U.S. Dept. of Energy American Recovery and Reinvestment Act project. Teplow

et al. (2011) states that the project’s objective was to test the feasibility of utilizing

geophysical techniques to identify large-aperture fractures at depth.

2.1.3 Objective

Sharp density and seismic velocity gradients are created by depositional and fault

contacts of unlithified valley fill adjacent to crystalline bedrock (e.g., Abbott et al.

(2001)). This complex structure produces rapid lateral velocity variations that pre-

clude the use of standard seismic analysis routines used in sedimentary systems (Louie

et al., 1988; Honjas and Pullammanappallil, 1997; Louie et al., 2012). Increased sub-

surface complexity demands more advanced migration algorithms, as well as increased

velocity model accuracy. I utilize Kirchho↵ prestack depth migration (KPSDM),

which is able to handle structure with any range of dip, and is regarded as robust in

the presence of complex velocity variations (Louie and Qin, 1991; Biondi et al., 2014).

KPSDM is based on the Born, WKBJ, and far-field assumptions (Louie et al., 1988).

As with any migration algorithm, using an accurate velocity model is essential, with

particular importance on lateral velocity variations (Louie and Qin, 1991; Tieman,

1995; Luo and Hale, 2014). This is due to the way that KPSDM deforms short-

wavelength reflectors around the long-wavelength velocity model. Pullammanappallil
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Figure 2.1: Regional map of the western United States shaded for density of high-
temperature (<150� C) geothermal systems; warm colors indicate higher density. The
drainage divide of the Great Basin is delineated with a brown line. The area of the
Walker Lane, a zone of dextral transtension, is shown by a diagonal hatched pattern.
San Emidio is located just east of the Walker Lane in the northern Basin and Range.
Stars indicate active geothermal power plants. Modified from Faulds et al. (2012).
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(1994) introduced seismic velocity optimization using the simulated annealing algo-

rithm (SA), which has proven success at sites with strong lateral velocity contrasts.

Louie et al. (2012) discusses how the paired use of KPSDM and seismic SA has solved

many of the problems inherent to imaging geothermal sites.

Optim produced a San Emidio line 6 velocity model using seismic SA (Teplow

et al., 2011). Converting the preexisting line 6 velocity model to a density model

using the empirical velocity-to-density relationship of (Gardner et al., 1974) followed

by gravity modeling reveals a noticeable misfit; this suggests that including gravity in

the velocity model building step would result in a di↵erent outcome. SA shows ambi-

guity at depths below the lowest raypath, but gravity does not share this limitation

(Pullammanappallil, 1994). Vasco et al. (1996) show there can be many equivalent-

error solutions in velocity optimization, which limits resolvability of complex structure

and sharp velocity gradients. Typically, gravity models are manually created to sup-

port seismic velocity models (e.g., O’Donnell Jr et al. (2001)). Including gravity

constraints into the velocity-building step is one means of increasing the depth of

constrained velocities and reducing nonuniqueness.

Joint seismic-gravity optimization is the most successful and well-studied tech-

nique that incorporates two geophysical datasets to arrive at one solution, and models

produced by the simultaneous optimization of multiple datasets are often more geo-

logically realistic than models constrained by a single type of data (Roy et al., 2005).

Rovetta et al. (2013) demonstrate that joint seismic-gravity optimization improves

seismic imaging in areas with rapid lateral velocity variation. San Emidio is a prime

location to test joint seismic-gravity optimization, not only because of untapped re-

source potential and an outstanding dataset, but also due to a sharp density and

velocity contrast at the alluvium-bedrock contact. However, joint optimization using

the SA algorithm is a surmountable goal, as it is often di�cult to get models to con-

verge. Di�culties stem from the choice of an objective function that balances seismic

and gravity constraints and the determination of an e↵ective cooling schedule (Basu

and Frazer, 1990; Sen and Sto↵a, 2013).
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My hypothesis is that obtaining a stable joint optimization algorithm will lead

to more accurate seismic velocity models. These improved velocity models could

increase interpretability of migrations by enhancing the resolvability of structure at

depth through increased coherency of deep reflectors. This outcome could positively

impact geothermal drilling success rates in the Great Basin.

2.2 Data and Methods

2.2.1 Seismic and Gravity Data Processing

Optim collected ten seismic lines at San Emidio (Figure 2.2). Line 6 is focused on

for its proximity to the geothermal production zone. Shot records for line 6 have

a maximum o↵set of 3,220 m (10,600 ft) and a receiver spacing of 17 m (55 ft).

Optim stacked ten 8-100 Hz Vibroseis sweeps at each shot point, followed by cross-

correlation with the source sweep as described in Cambois (2000). I made nearly

10,000 first arrival picks on raw, unfiltered records (Figure 2.3), followed by trial

velocity modeling using the seismic SA optimization of SeisOptr ProTM. I made first

arrival picks in the center peak of the Klauder wavelet that results from Vibroseis

source correlation. Careful inspection of plotted calculated and observed traveltimes

on AGC-gained wiggle trace shot records with interior and exterior muting revealed

areas where I picked inconsistent data, such as shallow di↵ractions, pre-arrival sweep

correlation artifacts, and shot-to-shot cycle skipping. Removal of picks in problem

areas reduced the number of picks by 30%, greatly reducing the amount of inconsistent

data; �2 values for the initial and final runs are 2.3 and 0.97, respectively. Obtaining a

�

2 value of 2.3 indicates the data are underfit, while a value 0.97 implies a very slight

overfit (Van Avendonk et al., 2001). Empirically determined migration processing

parameters are based on the e↵ectiveness of suppressing surface/air wave amplitudes,

while preserving fault reflections (Figure 2.4).

Gravity data consist of 726 vertical component gravity measurements (Figure 2.2).

Gravity station selection is based on proximity to seismic line 6, resulting in 16 equidis-
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tant data points with a spacing of 205 m (672 ft). Three extra stations on the western

side are provided by linear interpolation of nearest points. MWH Geo-Surveys ap-

plied drift and tidal corrections, which are on the order of 0.2 mGal; this is two orders

of magnitude smaller than the range of gravity measurements, and is therefore neg-

ligible. MWH Geo-Surveys determined terrain and elevation corrections in the field.

Due to the way that my optimization automatically handles topographic corrections

on smaller scales, inner ring corrections are not needed. When conducting a gravity

survey, precise topographic measurements are critical to proper gravitational model-

ing; an error of 1 m in vertical elevation can result in a change of 0.3 mGal (Telford

and Sheri↵, 1990). I used elevation data from SEG-Y trace headers with a precision

of 1 foot (0.3 m). Gravity stations are not located directly on the seismic line, but

relative elevation changes are preserved; these errors are assumed to be within mea-

surement error. MWH Geo-Surveys applied Bouguer corrections using a density of

2.5 g/cc, which is close to measured basement densities in this region (Drakos, 2007;

Mankhemthong, 2008).
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Figure 2.2: Overview of geophysical data collected at San Emidio. Quaternary
faults are indicated by red lines. White lines show the extent of seismic surveys. Blue
triangles show the positions of all gravity data points. Utilized gravity measurements
are indicated by orange squares and yellow triangles.
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Figure 2.3: First 2.1 seconds of a shot record with amplitude clipped at 2*RMS.
First arrival picks are indicated by black rectangles.

bad trace removal
(less than 0.3% of the dataset)

time-squared gain
(emphasize deeper reflectors, act
as spherical divergence correction)

Butterworth filter
(20-40 Hz passband)

dip filter of Hale and
Claerbout (1983)
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3-by-3 Laplacian smoother
(low-frequency summation arti-
facts and short-wavelength noise)

2*RMS amplitude clip
(enhance interpretability)

Figure 2.4: Migration pre-processing (blue) and post-processing (green) flows.
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2.2.2 PlotrefaTM Velocity Modeling

PlotrefaTM by Geometricsr creates velocity models using a least squares technique

(Figure 2.9). The software updates raypaths after each iteration, which makes it non-

linear. PlotrefaTM uses a deterministic traveltime algorithm and iteratively updates

velocity models using an approximated tomographic back projection (Geometrics,

2009). Due to the fact that PlotrefaTM only accepts new models with lower error, it

is initial model dependent and classified as a local search algorithm. The initial model

has 90 discretized horizontal layers, with velocity increasing linearly from 1,500 m/s

(4,900 ft/s) at the surface to 6,500 m/s (21,000 ft/s) at a depth of 1,500 m (4,950 ft);

tests with alternate initial models revealed that this range results in the lowest final

RMS error of 13 ms.

2.2.3 SeisOptr ProTM Velocity Modeling

Optim’s SeisOptr ProTM produces velocity models by seismic SA optimization (Fig-

ure 2.11). Similar to PlotrefaTM, the package also uses deterministic traveltime cal-

culations, but di↵ers by updating models using a Monte Carlo approach. The seismic

SA algorithm of SeisOptr ProTM does not require an accurate initial model (Pul-

lammanappallil, 1994). When optimization commences, SeisOptr ProTM initially

explores the entire solution space. Across many iterations, the SA algorithm switches

to a local optimization to begin exploiting a narrow region. Due to the fact that

the velocity model only returns values above the deepest raypath, model extension

populates the rest of my rectangular model space. Generating isotime contour plots

tests the validity of model extension. Extension by downward linear interpolation

from velocity elements along the deepest raypath to the laterally translated deepest

velocity element of the model creates a concave bedrock profile, resulting in gener-

ated traveltimes arriving too early. In order to rectify this issue, a manual and ad

hoc lateral extension strategy produces a velocity model with a flat bedrock interface

extending west towards the valley axis.
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2.2.4 Velocity to Density Conversion

My joint optimization scheme is predicated upon observations that density tends

to be nonlinearly proportional to seismic velocity. Brocher (2005) provides an ex-

cellent overview of various empirical velocity-density relationships to choose from

(Figure 2.5). Ludwig et al. (1970) produced the Nafe-Drake curve, which is valid for

all rock types with a v

p

range of 1.5 km/s to 8.5 km/s. Gardner et al. (1974) derived

the most widely used equation, which is valid for sedimentary rocks with v

p

from 1.5

km/s to 6.1 km/s. Christensen and Mooney (1995) and Godfrey et al. (1997) provide

linear relationships for crystalline rocks at 10 km depth, with v

p

ranges of 5.5 km/s to

7.5 km/s and 5.9 km/s to 7.1 km/s, respectively. The Gardner relationship provides

the most reasonable densities when extrapolated to velocities below 1.5 km/s; the

minimum velocity for my optimization is 500 m/s.

2 4 6 8
1.5

2

2.5

3

3.5

3ïZDYH�9HORFLW\��NP�V�

'
HQ
VL
W\
��J
�F
F�

9HORFLW\�WR�'HQVLW\�5HODWLRQVKLSV

1DIHï'UDNH
&KULVWHQVHQï0RRQH\
*RGIUH\
*DUGQHU
7KLV�6WXG\

Figure 2.5: Velocity-to-density relationships. The Nafe-Drake relationship is indi-
cated by a green line; Christensen-Mooney by a red line; Godfrey by a blue line; and
Gardner by a teal line. The extrapolated Gardner relationship used in this study is
shown by a dashed black line.
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2.2.5 Forward Modeling Algorithms

Sen and Sto↵a (2013) posit that fully understanding the limitations and assumptions

inherent to forward modeling is the most important step in developing a successful op-

timization algorithm. Monte Carlo optimizations can require hundreds of thousands

of iterations, necessitating the use of an e�cient forward modeling scheme. Further-

more, due to the large variety of models encountered, forward modeling algorithms

must be robust and resilient to artifacts. The setting for my San Emidio line 6 models

is a 2D cartesian coordinate space (x, z), where x is defined as distance easting and

z as depth. Each element in the model space has dimensions of 17 m by 17 m (55 ft

by 55 ft), with the origin defined as the shallowest western corner element.

The deterministic Vidale method generates my traveltime models through a

finite-di↵erence solution to the eikonal equation (Vidale, 1988). Visual examination

of isotime contour plots shows that my traveltime model produces accurate results

amidst the most extreme velocity gradients encountered during optimization.

Gravity modeling must be compatible with the model space of the Vidale method

and meet the demands of being both e�cient and robust. My gravity model obtains a

3D gravitational response from 2D density models, which Fedi et al. (1998) term 2.5D

modeling. Telford and Sheri↵ (1990) point out that this type of extrapolation is only

valid when variation in and out of the plane in minimal; examining directional gravity

gradients shows this to be a reasonable assumption. The derivation and verification

of my gravity model can be found in Reeder et al. (2014). One di↵erence between

my final model and the one shown in Reeder et al. (2014) is that the gravity model

used in this study employs the line integral method of Talwani et al. (1959) instead

of infinite cylinders.

Hubbert (1948) showed that the vertical component of an arbitrary polygon’s

gravitational response is given by a line integral along the boundaries with respect to

the angle ✓, which is measured from the positive (downward) z-axis to the positive

(eastern) x-axis. The integral can be decomposed into n separate integrals from

the points A to B, where n is the number of polygon vertices (Equation 2.1). My
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numerical implementation follows Talwani et al. (1959).
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2.2.6 Simulated Annealing Algorithm

The SA technique has been applied to a wide variety of optimization problems, in-

cluding circuit design, chemical processing, facility layout design, pattern recognition,

and wavefield inversion (Basu and Frazer, 1990; Suman and Kumar, 2005). SA takes

its name from the annealing process of petrology and metallurgy, which describes how

rock crystallizes from a melt. In contrast to local optimization algorithms, SA proba-

bilistically accepts models with higher error; this mechanism allows the algorithm to

escape local minima. One of the benefits of this technique is that it does not depend

on an accurate initial model, which is very useful in areas of complex geology with

limited a priori information.

The idea of probabilistic acceptance of higher error models during optimization

was first put forth by Metropolis et al. (1953). More than thirty years later, Kirk-

patrick et al. (1983) and Černý (1985) independently took the idea one step further

by slowly decreasing the probabilistic acceptance chance, which is colloquially known

as lowering the temperature. Szu and Hartley (1987) and Beaty et al. (2002) im-

proved e�ciency with ‘fast’ SA, which draws new models from a Cauchy-Lorentz

distribution instead of a Gaussian distribution. Next, Zhang et al. (1997) and Ingber

(1993) presented ‘very fast’ SA, which narrows the range of possible models through

iterations. Chunduru et al. (1997) utilize a hybrid SA optimization technique that

occasionally draws a new model using gradient descent. Yang et al. (2002) present

‘improved very fast’ SA, which utilizes a ‘double judge’ error-checking rule to prevent

joint optimization objective function errors when using ‘very fast’ SA. Since e�ciency

is outside the scope of this paper, my implementation of the generalized SA algorithm

follows the outline of Pullammanappallil (1994), who first applied this optimization

technique to first arrival traveltime tomography.
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Model depth of 1,526 m (5,005 ft) is based on a-priori information of maximum

bedrock depth from wells. The allowed velocity range of 500 m/s to 6,500 m/s (1,600

ft/s to 21,000 ft/s) comes from previous velocity modeling results and rock physics

estimations. Before optimization commences, each model element is populated with a

random velocity, followed by running a set number of iterations at supraliquidus tem-

peratures to achieve a state of high disorder prior to cooling (e.g., Pullammanappallil

(1994)). The velocity model is converted into a density model using my extended

Gardner’s relationship (Figure 2.5). Starting traveltime and gravity models are ob-

tained, followed by calculation of root-mean-square error � as follows:
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n
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represents the total number of measurements. Seismic and gravity error values

are calculated separately. The velocity model is perturbed by setting a random rect-

angular region of the model to a random velocity. Afterwards, the updated velocity

model is converted to a density model and new energies are calculated. The standard

and conditional model acceptance criteria are given as follows:
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Where rand[0,1] is a random number from 0 to 1; �
ns

and �

ng

represent the ‘daughter’

model errors for seismic and gravity, respectively; �
os

and �

og

are the ‘parent’ errors;

�

ss

and �

sg

are the ‘successful’ errors; T
s

and T

g

are the temperatures; and q is an

even whole number that is determined empirically. If either of the aforementioned

logical expressions are true, the daughter errors and models replace the parent. �

ss

and �

sg

equal the measurement error in seismic and gravity data, which is also used in

the stopping criteria; setting �

ss

and �

sg

equal to less than measurement errors would

allow �

2 values less than 1, which would permit model overfitting (Van Avendonk

et al., 2001). Finally, the algorithm checks all stopping criteria; these include max-

imum number of iterations, successful error, minimum temperature, and maximum
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number of successive model rejections. If no stopping criteria are met, the cooling

schedule is exercised and the algorithm loops back to the model pertubation step.

This process continues until a stopping criteria is met.

The most impactful component of a joint optimization is the objective func-

tion (Roy et al., 2005). This is where Tikonov regularization can be implemented,

such as damping (Snieder and Trampert, 2000), smoothness (Constable et al., 1987;

Boulanger and Chouteau, 2001; Vermeesch et al., 2009; Berger et al., 2011; Lelièvre

et al., 2012), or structural similarity (Xiao et al., 2011; Teranishi et al., 2012; Haber

and Holtzman Gazit, 2013). My optimization does not include additional constraints

on the objective function nor a priori information, but my objective function does

use di↵erent seismic and gravity temperatures.

The temperatures, T
s

and T

g

, are in the denominator of the exponentials; as T
s

and T

g

decrease, the probability of both exponentials being greater than rand[0,1]

tends towards zero. The seismic temperature (T
s

) is converted into a gravity tem-

perature (T
g

) at each step. The conversion factor is determined through a novel

calibration technique that uses Pareto charts (Figure 2.6). Suman and Kumar (2005)

provide a comprehensive overview of Pareto optimization. In this application, the

Pareto chart shows whether the seismic or gravity component of the objective func-

tion is dominating the optimization. I found that seismic-gravity objective function

balance occurs when gravity temperatures (T
g

) are equal to the iteration-equivalent

seismic temperatures (T
s

) divided by 100,000 (Figure 2.6b). However, this value is

model dependent.
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Figure 2.6: Three types of Pareto charts, with arrows indicating the trend through
iterations. Each circle represents an average over 5,000 iterations. (A) Gravity-
dominated Pareto chart, which indicates an increase in the seismic-to-gravity tem-
perature conversion factor is needed. (B) Balanced Pareto chart, which indicates the
joint optimization is well-calibrated. (C) Seismic-dominated Pareto chart, which can
be resolved by decreasing the seismic-to-gravity temperature conversion factor.

The cooling schedule, which controls the probabilistic acceptance criteria, consists

of an initial temperature, temperature reduction scheme, critical temperature, and

minimum temperature. The choice of an e↵ective cooling schedule is very important;

for example, Basu and Frazer (1990) show that it is cost-e↵ective to use 80% of total

computation budget on determining the critical temperature alone. Lee and Lee

(2013) conclude that there is still work to be done towards an analytical determination

of an optimal starting temperature, but as long as the initial temperature is set

su�ciently high, achieving the global minima is possible. The e↵ective temperature

range is mapped utilizing ideas taken from Basu and Frazer (1990). Short tests (1,000

iterations) over a discretized temperature series ranging from 10100 to ⇠ 0 establish

the liquidus and solidus (Figure 2.7). The liquidus boundary occurs at a temperature

of 105.5, while the solidus – where probabilistic acceptance tends to zero – is located

at 102.6.

The critical temperature is a fixed temperature across many iterations that occurs

just before reaching the solidus. For single objective functions, Basu and Frazer (1990)

present a very e↵ective method of critical temperature determination, in which a series
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of tests are run at static temperatures to find where error is minimized. However,

their method is not e↵ective for a joint seismic-gravity objective function. My final

joint optimization critical temperature of 1002.8 is deduced empirically by exploring

values slightly above the solidus; this value is model-dependent, and must be rederived

when new observations are used. Upon discovery of the critical temperature, similar

testing is carried for the value of q that minimizes error, which is equal to 2.
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Figure 2.7: Results of a joint optimization cooling study. (A) Cooling schedule.
Tested temperatures are given by blue circles, with the final temperature given by a
green circle. The liquidus and solidus are indicated by ‘L’ and ‘S’, respectively. The
critical temperature is labeled; in this case the optimization stayed at that tempera-
ture for 200,000 iterations. (B) Acceptance rate plots. The standard and probabilistic
acceptance rates are given by green and black lines, respectively. The rejection rate,
indicated by a red line, begins at 0% and increases to just below 100% at the critical
temperature. The rejection rate is 0% while the temperature is above the liquidus
(‘L’) and reaches 100% at the solidus (‘S’).

2.2.7 Kirchho↵ Prestack Depth Migration Algorithm

The most straightforward way to judge the quality of two velocity models is by com-

paring the magnitude of traveltime misfits. However, a lower error does not necessarily

mean a velocity model is better. Comparing coherency of migrated seismic sections
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allows further analysis of velocity model quality. The Kirchho↵ prestack depth mi-

gration (KPSDM) code aaRGkmig.c creates my seismic images (Louie, 2014, Per-

sonal Comm.). KPSDM has proven e↵ectiveness in areas with sharp lateral velocity

variations (Louie et al., 1988; Louie and Qin, 1991; Honjas and Pullammanappallil,

1997; Chávez-Pérez et al., 1998; Louie et al., 2012). KPSDM has been described

as a ray-equation back-projection inversion of the acoustic wave field (Louie et al.,

1988). Three assumptions are inherent to this technique: the Born approximation,

the WKBJ approximation, and the far field assumption. The Born approximation

assumes that reflections are caused by rapid variation in material properties and

data only include primary reflections. The WKBJ approximation, also known as the

geometric optics approximation, implies seismic energy propagates along infinitely

high-frequency rays through material with properties that vary slowly (Robinson,

1986). This facilitates solving the wave equation and grants low-frequency energy

unrealistic sensitivity to thin refractors (Brown, 1982). The far field assumption im-

plies receivers are at least two wavelengths away from sources, which precludes the

inclusion of complex near-field di↵raction interactions.

The aaRGkmig.c code includes operator anti-aliasing as described by Lumley

et al. (2012), the obliquity factor of Claerbout (1985), and the kirchfast speedup

described in Claerbout (1997). Setting the anti-aliasing distance parameter equal

to the shot spacing (67 m or 220 ft) produces less noisy migrations than using the

receiver spacing (17 m or 55 ft). I generate traveltime planes using the algorithm

described in Vidale (1988). Since migration resolution is equivalent to the resolution

of input traveltime planes, I conduct testing to ensure image aliasing does not occur.

Preferred model dimensions are 195 easting elements by 91 depth elements. Each

element is square with dimensions of 17 m by 17 m (55 ft by 55 ft). After migration,

I apply the rho filter of Thorson and Claerbout (1984), which consists of two time-

derivatives followed by element-wise multiplication by -1; this is colloquially known as

a frequency recovery filter (Figure 2.4). I then smooth the migration image with a 3

by 3 smoothing kernel. This combination acts to suppress low-frequency summation
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artifacts and short-wavelength noise, while preserving reflectors of interest.

2.3 Results

My results come from one seismic line collected at one geothermal field. The geologic

setting of my survey is typical of most geothermal resources in the Great Basin,

suggesting general applicability of this method. Comparisons between seismic SA

optimization and joint seismic-gravity SA optimization are made using synthetics,

but these tests do not make use the same proprietary seismic SA features of SeisOptr

ProTM.

2.3.1 Synthetic Testing

Synthetic testing shows how joint optimization further constrains velocity models.

The synthetic velocity model consists of a bedrock interface with two downward

steps (Figure 2.8a). Gardner’s relation converts the synthetic velocity model into

a density model. A gravity model is generated using the synthetic density model,

followed by density optimization using SA (Figure 2.8b). Traveltime optimization

is performed on generated synthetic traveltimes (Figure 2.8c). Joint optimization is

used to obtain a velocity-density model from the synthetic traveltimes and gravity

model (Figure 2.8d).



27

0 3000

0

1500

Velocity Optimization (m/s)

Easting (m)

De
pt

h 
(m

)
0 3000

0

1500

Synthetic Model (g/cc, m/s)

Easting (m)
De

pt
h 

(m
)

0 3000

0

1500

Density Optimization (g/cc)

Easting (m)

De
pt

h 
(m

)

0 3000

0

1500

Joint Optimization (g/cc, m/s)

Easting (m)

De
pt

h 
(m

)

2.83

2.72

2.6

2.46

2.29

2.07

1.74

2.83

2.72

2.6

2.46

2.29

2.07

1.74

A

C

B

D

2.83

2.72

2.6

2.46

2.29

2.07

1.74

Figure 2.8: Results of the synthetic testing study. (A) Synthetic velocity model.
Sediments have a velocity of 1,500 m/s (4,900 ft/s) and the bedrock has a velocity
of 6,500 m/s (23,000 ft/s). Corresponding densities are 1.93 g/cc and 2.78 g/cc.
(B) Gravity optimization results with an RMS error of 0.41 mGal. (C) Seismic
optimization results, which have an RMS error of 33.7 ms. (D) Joint seismic-gravity
optimization with RMS errors of 102.6 ms for seismic and 2.56 mGal for gravity.

Gravity optimization successfully recovered the shallow structure and general

trend of down-to-the-west bedrock with an RMS error of 0.41 mGal (Figure 2.8b).

However, gravity optimization produces a strong density inversion near the bottom of

the model. Seismic optimization produces a models with insu�ciently high velocities

that are di↵used through the model space and an RMS error of 33.7 ms (Figure 2.8c).

The shallow velocity inversion on the east side of the velocity model is below the deep-

est ray; typically, everything below the deepest ray would be clipped and the empty

elements in the remaining rectangular model space would be populated by model

extension. Qualitatively, joint optimization most successfully recovered the synthetic

model, but showed higher RMS errors of 2.56 mGal and 102.6 ms (Figure 2.8d).

These results show that my joint optimization is superior to my stand-alone seismic

and gravity optimizations, but has higher RMS error.
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2.3.2 PlotrefaTM Velocity Model

PlotrefaTM produces a velocity model with a flat valley floor (Figure 2.9a), a promi-

nent shallow velocity pull-up (Figure 2.9b2), and a blocky alluvium-bedrock interface.

Elements near the flat valley floor assume the velocity distribution of the initial model,

as this area is below the deepest raypath, and was not updated across iterations (Fig-

ure 2.9a). The RMS error of this model is 13 ms and the corresponding �

2 value is

1.94; this indicates that the model underfit the data by converging to a local minima.

Reflectors in the shallow western part of the migration are arcuate and lack strong

coherency (Figure 2.10b1). A shallow velocity pull-up results in pronounced antifor-

mal deformation of the shallow reflector in the migration image (Figure 2.10b2). The

two vertical discontinuities separating horizontal bedrock in the velocity model sug-

gest the presence of vertical, down-to-the-west normal faults (Figure 2.9). However,

this observation does not match reflectivity in the migration (Figure 2.10). Subtle

reflectivity is observed on the eastern edge of the migration at 500 m (1,600 ft) depth

(Figure 2.10d1). This reflectivity has increasing wavelength towards the eastern edge

of the model caused by NMO stretch. Reflectors in the migration generally lack co-

herency, which can be attributed to an abundance of high-amplitude cross-cutting

migration artifacts (Figure 2.10a, b1, c, d2).
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Figure 2.9: PlotrefaTM velocity model with receiver locations indicated by white
circles. (A) Deep velocity gradient indicating the sediment-bedrock contact. (B1)
Velocities consistent with sediment. (B2) Shallow velocity pull-up. (C) Shallow
velocity gradient indicating the sediment-bedrock contact. (D1) Velocities consistent
with igneous rock. (D2) Velocities consistent with igneous rock.
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Figure 2.10: Migration using the PlotrefaTM velocity model. (A) Deep, arcuate
reflector with low coherency. (B1) Shallow reflector that dips to the east. (B2)
Shallow antiformal reflector. (C) Shallow, incoherent reflector (D1) Shallow reflector
that intersects the edge of the migration. (D2) Incoherent deep reflector.
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2.3.3 SeisOptr ProTM Velocity Model

The SeisOptr ProTM velocity model shows a flat valley floor (Figure 2.11a), shallow

velocity pull-up (Figure 2.11b2), and a jagged sediment-bedrock interface that gen-

erally dips to the west at 30�. The RMS error for this model is 6.5 ms; this gives

a �

2 value of 0.97, indicating these data are slightly overfit. The velocity gradient

is very sharp on the western side of the velocity model at 1,400 m (4,600 ft) depth;

this region was populated by manual lateral model extension. This sharp gradient

corresponds to a concave and highly coherent deep valley reflector (Figure 2.12a).

Shallow reflectors on the west side of the migration are incoherent (Figure 2.12b1).

Antiformal deformation of a shallow reflector is congruent with the shallow velocity

pull-up (Figures 2.11b2 and 2.12b2). The continuous shallow reflector observed in

the PlotrefaTM migration is now truncated on the east side (Figure 2.12d1), while the

deep reflector is more coherent, but lower amplitude (Figure 2.12d2).
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Figure 2.11: SeisOptr ProTM velocity model with receiver locations indicated by
white circles. (A) Deep velocity gradient indicative of the sediment-bedrock inter-
face. (B1) Velocities consistent with sediment. (B2) Shallow velocity pull-up. (C)
Velocities consistent with sediment. (D1) Shallow velocity gradient caused by the
sediment-bedrock contact. (D2) Velocities consistent with igneous rock.
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Figure 2.12: Migration using the SeisOptr ProTM velocity model. (A) Deep, con-
cave reflector with good coherency. (B1) Incoherent shallow reflector. (B2) Shallow
antiformal reflector. (C) Incoherent shallow reflector (D1) Shallow reflector that is
truncated on the east side. (D2) Incoherent deep reflector.
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2.3.4 Joint Seismic-Gravity Optimization Velocity Model

Joint optimization provides a velocity model with an absence of a deep valley bedrock

interface (Figure 2.13a), minor velocity inversions (Figure 2.13b1, d2), and a smooth,

convex bedrock profile (Figure 2.13c). The RMS error for gravity is 1.25 mGal and 27

ms for seismic traveltimes; this gives a �2 value of 4, indicating that this velocity model

noticeably underfits first arrival data. On the westernmost side, velocities consistent

with sedimentary rock extend from the surface to the bottom of the velocity model;

this suggests the valley is deeper than 1,500 m (4,900 ft) (Figure 2.13a). Reflectors

on the west side of the migration are straight and coherent (Figure 2.14a, b1). The

sediment-bedrock velocity interface has a westward dip of 20� on the eastern margin,

which gradually increases to a dip of 60� near the center of the model (Figure 2.13c).

The top side of this velocity gradient is congruent with a very coherent reflector

(Figure 2.14c). Minor velocity inversions occur in valley fill at 500 m (1,600 ft) depth

on the west side (Figure 2.13b1) and at 1,200 m (3,900 ft) depth in the bedrock

(Figure 2.13d2). In this migration, the shallow antiformal reflector observed in the

PlotrefaTM and SeisOptr ProTM migrations is flat (Figure 2.14b2). The truncated

shallow reflector on the east side (Figure 2.14d1) is now intersected by subtle reflectors

that dip westward at 45�. These dipping reflectors transition to horizontal westward

forming a highly coherent, long-wavelength deep reflector (Figure 2.14d2).
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Figure 2.13: Joint seismic-gravity optimization velocity model result with source
locations indicated by white rectangles. (A) Velocities consistent with lithified sed-
iment. (B1) Shallow velocity inversion in sediment velocities. (B2) Weak velocity
gradient from sedimentary to igneous velocities. (C) Strong velocity gradient from
sediment to igneous rock. (D1) Velocities consistent with igneous rock. (D2) Deep
velocity inversion with igneous rock velocities.
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Figure 2.14: Migration using the velocity model created through joint optimization.
(A) Coherent, straight deep reflectors. (B1) Shallow horizontal reflector. (B2) Shal-
low horizontal reflector (C) Coherent shallow reflector that dips to the west. (D1)
Shallow reflector that is truncated on the east side. (D2) Deep, long-wavelength
reflector with moderate coherency.
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2.3.5 Restricted O↵set Range Migrations

Restricted o↵set range migrations of the SeisOptr ProTM velocity model (Figure 2.11)

reveal which o↵set ranges the reflector energy in my final migration images is coming

from (Figure 2.15). Empirically, there are three discernable e↵ective o↵set ranges;

the ‘near’ o↵set range of 0 m to 1,500 m (0 to 4,900 ft) (Figure 2.15I); the ‘mid’ o↵set

range of 1,500 m to 2,000 m (4,900 ft to 6,600 ft) (Figure 2.15II); and the ‘far’ o↵set

range of 2,000 m to 3,200 m (6,600 ft to 10,600 ft) (Figure 2.15III).
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Figure 2.15: Results of the restricted o↵set range migration analysis. (I) Near-
o↵set migration from 0 m to 1,500 m (0 ft to 4,900 ft). (II) Mid-o↵set migration
from 1,500 m to 2,000 m (4,900 ft to 6,600 ft). (III) Far-o↵set migration from 2,000
m to 3,200 m (6,600 ft to 10,600 ft).

The near-o↵set migration contains the deep valley reflector (Figure 2.15I-a),

deep basement reflector (Figure 2.15I-d2), and minor shallow reflector energy (Fig-

ures 2.15I-b1 and 2.15I-d1). The mid-o↵set migration contains a high amplitude con-

cave reflector in the center, part of the deep basement reflector energy (Figure 2.15II-

d2), highly sinuous shallow reflector energy (Figure 2.15II-b2), and a smooth, concave

shallow reflector (Figure 2.15II-c). The far-o↵set migration is dominated by the highly

sinuous shallow reflector energy (Figure 2.15III-b2) that transitions eastward into the

smooth shallow reflector (Figure 2.15III-c).
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2.4 Discussion

2.4.1 Geologic Interpretations

The flat valley floor interpretation that would naturally come from the PlotrefaTM

(Figure 2.9a) and SeisOptr ProTM (Figure 2.11a) velocity model results is not sup-

ported by seismic data, as that region of the velocity model is below the deepest

headwave raypath, and is therefore unconstrained. In the case of PlotrefaTM, this

region matches the initial model, as it was not subjected to model pertubation. For

the SeisOptr ProTM results, the deep valley velocity gradient is purely a function of

arbitrary lateral model extension from the deepest raypath. Since I observed that

creating a concave refractor using vertical model extension produces arrival times

that are too early, the bedrock interface must not be shallowing substantially on the

west side of the velocity model. Reflectors in this area are incoherent in the migration

using the PlotrefaTM velocity model and arcuate in the migration using the SeisOptr

ProTM velocity model (Figures 2.10a and 2.12a). The added deep velocity control

from gravity in the joint optimization results in a velocity model that shows the val-

ley being at least 1,500 m (4,900 ft) deep (Figure 2.13a). The reflectors in this region

also become flat and coherent when the jointly optimized velocity model is used for

migration, which is expected for undeformed Tertiary sediments (Figure 2.14a). Most

of the energy in these reflectors comes from robust near-o↵set data (Figure 2.15I-a).

The deep valley model that results from joint optimization conflicts with the prior

shallow valley interpretation of Rhodes (2012), who was basing his interpretations on

surficial geologic mapping. My new interpretation could be validated by conducting

a seismic survey with greater maximum o↵set or comparing to well log data. Matlick

(1995) reports that Chevron’s Kosmos 1-8 well, which is located 700 m north of

the western edge of line 6, did not encounter Mesozoic basement rock (Nightingale

formation) at target well depth of 1,223 m (4,013 ft).

Convex velocity pull-ups in the PlotrefaTM (Figure 2.9b2) and SeisOptr ProTM

(Figure 2.11b2) velocity models translate to antiformal reflectors in corresponding
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migrations (Figures 2.10b2 and 2.12b2). Incidentally, a similar velocity pull-up is

observed in the synthetic traveltime optimization, because velocities are spread along

sparse rays in all of these cases (Figure 2.8c). Vasco et al. (1996) shows that sharp

velocity interfaces can be equivalently represented by models with lower magnitude

velocity gradients that di↵use velocity contrasts over a broader region. The creation of

these features in PlotrefaTM can also be explained by the way that the velocity model

is perturbed along concave raypaths; the prominent velocity pull-up follows an area

of high ray coverage density and sharp velocity gradients (Geometrics, 2009). This

antiformal reflector is flattened when the jointly optimized velocity model is used for

migration (Figure 2.14b2). As shown in the synthetic models, density optimization

was most e↵ective at recovering shallow structure (Figure 2.8b). The flattening of this

shallow reflector demonstrates that including gravity constraints in the velocity op-

timization improves the resolvability of shallow velocity structure. This constraint is

caused by the decay of gravity sensitivity as the inverse of the distance squared; grav-

ity models are very sensitive to shallow density model elements. Furthermore, shallow

reflectors on the western side of the model are more straight and coherent when the

joint optimization velocity model is used for migration (Figure 2.14b1). Restricted

o↵set range migrations reveal that the sinuous shallow reflectors are primarily found

in o↵sets greater than 1,500 m (4,900 ft); this suggests that these reflectors may just

be migrated refraction energy instead of true reflectors (Figures 2.15II-b2 and 2.15III-

b2). This also helps explain the sensitivity of the antiformal reflectors to the input

velocity model (Figures 2.9b2, 2.11b2, and 2.13b2). On the contrary, the presence of

this reflector is well-established by drilling; Matlick (1995) states that Phillips ST-1

intersected the sediment-basalt contact roughly 250 m (820 ft) south of line 6 at an

easting of 1,700 m (5,700 ft) and depth of 485 m (1,590 ft). This lithological contact

is found within 75 m (250 ft) of the shallow reflector in all of my migrations (Fig-

ures 2.10b1, 2.12b1, and 2.14b1). The sensitivity of these reflectors to the velocity

model and lack of presence in near-o↵set migrations suggests that this contact may be

gradational in nature, which produces pseudoreflections or diving waves. The sinuous
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reflector at 500 m (1,600 ft) depth and 2,500 m (8,200 ft) easting is most coherent in

the migration using the jointly optimized velocity model (Figure 2.14c), in which this

reflector corresponds to a sharp velocity gradient (Figure 2.13c). This shallow reflec-

tor is incoherent in the PlotrefaTM and SeisOptr ProTM migrations (Figures 2.10c and

2.12c), and is not congruent with sharp velocity gradients (Figures 2.9c and 2.11c).

This is further evidence that joint optimization improves shallow regions of velocity

models. Restricted o↵set range migrations indicate that this reflector is primarily

concentrated in the far o↵sets; this could actually be a pseudoreflector (diving wave)

caused by the velocity gradient (Figure 2.15). This is strong evidence for a velocity

gradient in this region of the model space. Typically, smoothing shallow reflectors

can be accomplished by manual refinement of the velocity model or by migration ve-

locity analysis; using joint optimization removes the need for this step, saving human

interaction time.

Applying knowledge of the well control given by Phillips ST-1 reveals that the

reflector at b2 and c is very likely the alluvium-basalt interface. The stratigraphic col-

umn suggests that the next deeper reflector should be a basalt-tu↵ interface, followed

by a tu↵-basement reflector. None of the migrations demonstrate the basalt-tu↵ re-

flector, due to the fact that theoretically it is a weakly negative impedance contrast.

Mayhew (2013) also could not di↵erentiate the basalts and tu↵s in seismic migrations

at nearby Astor Pass; this seismic facies was verified by subsequent drilling. How-

ever, evidence for the basement interface is observed. The first line of evidence are

reflection terminations in both the SeisOptr ProTM and jointly optimized velocity

model migrations at the depth-projected position of the mapped surficial rangefront

fault (Figures 2.12d1 and 2.14d1). Following the surficial fault project deeper re-

veals a strong, slightly concave reflector that appear o↵set (Figure 2.14d2). The deep

reflector interpreted to be the tu↵-basement contact is poorly resolved in the mi-

grations that use PlotrefaTM and SeisOptr ProTM velocity models (Figures 2.10d2

and 2.12d2). This region is situated below the deepest first-arrival raypath, and is

therefore unconstrained by standard velocity modeling techniques; this indicates that
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joint optimization produces a more accurate velocity model at depth, which helps

focus the seismic image below the basalt refractor.

Two velocity inversions are observed in the jointly optimized velocity model (Fig-

ure 2.13b1, d2). The shallow rectangular velocity inversion at Figure 2.13b1 corre-

sponds to flat reflectors in the migration image (Figure 2.14b1). These flat reflectors

are not very coherent in the PlotrefaTM (Figure 2.9b1) and SeisOptr ProTM (Fig-

ure 2.11b1) migrations. Most of this shallow velocity inversion is below the deepest

raypath, but these shallow elements are very sensitive to the gravity component of

the the joint optimization; this suggests that this shallow velocity inversion may be

real. Assuming that the shallow reflector discussed earlier is the sediment-basalt con-

tact, the deep velocity inversion at the bottom of the jointly optimized velocity model

is situation stratigraphically in the Mesozoic section (Figure 2.13d2). This velocity

inversion is below the deepest raypath, poorly constrained in the gravity model, and

does not correspond to reflectors. For these reasons, this velocity inversion is most

likely an artifact of joint optimization. Implementing regularization could resolve this

artifact. In the end, the deep velocity inversion does not have a meaningful impact

on the resultant migration image (Figure 2.13d2).

Previous researchers in the Pyramid Lake area have shown that blind geothermal

systems tend to exist on north-northeast trending normal faults in highly faulted

areas, such as fault intersections and fault tips (Drakos, 2007; Vice, 2008; Rhodes,

2012; Mayhew, 2013; Anderson, 2013). Phillips ST-1 intersected a major fault 200 m

(660 ft) south of line 6 at an easting of 1,700 m (5,700 ft) and depth of 588 m (1,930

ft). This fault is not well-resolved in my migration images (Figures 2.10b2, 2.12b2,

and 2.14b2). However, Mayhew (2013) states that the Pyramid sequence rocks that

this fault cuts are too permeable to focus fluid motion through faults; he suggests that

the real target should be fault intersections in the Mesozoic basement. The migration

that uses a velocity model produced by joint optimization successfully imaged a fault

in the Mesozoic section (Figure 2.14d1). Reflector truncations around the area of

1,200 m (3,900 ft) easting and 1,100 m (3,600 ft) depth in migrations using velocity
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models produced by SeisOptr ProTM and jointly optimization could be produced

by a fault contact of Tertiary sediments adjacent to volcanic rocks (Figures 2.12,

and 2.14). This fault could be the Mesozoic conduit for fluids that Mayhew (2013)

suggests looking for.

Rhodes (2012) mapped a surficial down-to-the-west normal fault 100 m (330 ft)

east of the eastern edge of my model space. Assuming this fault has a 60� dip that

projects into the surface, the bedrock interface dips too shallowly in all of my velocity

models (Figures 2.9, 2.11, and 2.13). The easternmost edge of the velocity model has

very low fold and is poorly constrained, particularly at depth. When gravity con-

straints are added, a deep reflector is observed dipping to the west (Figure 2.14) that

could be projected to the surface location of the rangefront fault in Rhodes (2012).

This reflector is concave and flattens westward from 45� to 0� from Figure 2.14d1 to

Figure 2.14d2, suggesting that this normal fault is listric. This reflector shows a breach

in coherency at 2,000 m (6,500 ft) easting and 1,300 m (4,300 ft) depth, which could

indicate another fault in the Mesozoic section. Given that the Oligocene and Miocene

sections dip to the east at 20�, the hydrothermal fluids could be concentrated in this

Mesozoic fault before following stratigraphic boundaries up and to the west. Upon

reaching the Tertiary clastic section, the fluids could be rising up, creating the current

production zone discovered by Phillips ST-1. This production zone is located within

the region of gradational velocity suggested by pseudoreflections (Figure 2.13b2).

2.4.2 Implications

The e�ciency of joint optimization is comparable to PlotrefaTM and SeisOptr ProTM.

The final run of PlotrefaTM, which consisted of just 14 total iterations, took roughly

13 hours; the bulk of this time was used for matrix inversion. The run of SeisOptr

ProTM took 16 hours. I completed all joint optimizations in under 20 hours, with

the time requirement depending on the number of iterations specified. I greatly

improved the e�ciency of the joint optimization by the inclusion of Matlab MEX

codes, which takes advantage of the C language, and by vectorization of ‘for’ loops.
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Further e�ciency improvement can be obtained by porting my optimization to C.

Comparing the RMS errors of jointly optimized velocity models to PlotrefaTM

and SeisOptr ProTM reveals that joint optimization produces higher RMS errors.

Traveltime RMS error are 6.5 ms for SeisOptr ProTM, 13 ms for PlotrefaTM, and

27 ms for my joint optimization. Only SeisOptr ProTM produces a velocity model

with a �

2 value below unity, while the other two techniques both underfit data.

Using this criteria, SeisOptr ProTM performed the best. Lower RMS errors could be

achieved with the joint optimization by also optimizing the coe�cients of the velocity-

to-density conversion polynomial; it is possible that using the Gardner relationship

causes inconsistencies between the gravity and seismic datasets. However, similar

results are observed in the synthetic models, which uses a flawless’ velocity-to-density

conversion; the synthetic velocity optimization has an RMS error of 33.7 ms, while

the synthetic joint optimization has an RMS error of 102.6 ms. This indicates that

adding gravity constraints comes at the cost of seismic RMS error. Qualitatively

comparing the optimized synthetic velocity models suggests that joint optimization

produces superior results to traveltime optimization alone, which suggests that RMS

error is only a secondary indicator of relative velocity model quality.

My method of using Pareto charts to calibrate joint optimization objective func-

tions applies to many optimization problems beyond just geophysics. The technique

that I described should be explored by anyone experiencing di�culty obtaining a con-

vergent joint optimization. The logical next step would be to automate this process

by examining how well the trend of the Pareto chart matches a linear fit. The way

that I mapped the solidus and liquidus is a very straight-forward method to create

the outline of a cooling schedule, particularly the initial and final temperatures. Here,

I determined the critical temperature empirically by testing temperatures just above

the solidus. While this proved e↵ective, this is an area of ongoing research.

The improvements to seismic imaging demonstrated in this thesis can influence

new development at San Emidio. U.S. Geothermal has the added ability to compare

velocity model results with both the known stratigraphic section and proprietary well
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data to tie lithologic contacts to reflectors. Furthermore, a more accurate velocity-to-

density conversion can be calibrated by looking at velocity and density logs collected

by Chevron in the 70’s that I did not have access to; this relationship could also

include an extra term to account for variation with depth. Using an empirical velocity-

density relationship could reduce seismic-gravity data inconsistency and refine seismic

imaging even further. Imaging may also be improved by using a more advanced

migration algorithm, such as full waveform inversion. My results shed light on the

lateral position of three faults, including one in the Mesozoic basement; that fault

would be an ideal target according to Mayhew (2013). I showed that the valley is at

least 1,500 m (4,900 ft) deep, which was not constrained in previous velocity models.

The joint optimization procedure can also positively impact geothermal explo-

ration worldwide. This technique should be tried anywhere that di�cult seismic imag-

ing is encountered. First, velocity models should be converted to density models and

gravity profiles computed; if these profiles match gravity already, joint optimization

might not result in a di↵erent outcome. Second, directional gravity gradients must be

examined to check if cylindrical symmetry is a valid assumption. The old strategy of

forward-modeling density models to match gravity data could be replaced by my joint

optimization technique, removing the need to purchase a separate gravity-modeling

software package.

2.5 Conclusions

A stable, convergent joint seismic-gravity optimization algorithm has been presented.

Seismic migrations that use velocity models produced by PlotrefaTM and SeisOptr

ProTM have shallow velocity pull-ups; joint optimization resolves these shallow veloc-

ity artifacts. Synthetics demonstrate that joint optimization produces more accurate

results than standalone seismic optimization. Jointly optimized velocity models are

constrained below the deepest seismic raypath, which improves coherency of reflectors

at depth. In this case, deeper velocity control reveals that the valley at San Emidio is

deeper than 1,500 m (4,900 ft), which conflicts with the prior shallow valley interpre-
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tation of Rhodes (2012). The migration using my jointly optimized velocity model

shows evidence for the rangefront fault, which is partially observed in the migration

using the SeisOptr ProTM velocity model, and absent in the migration that uses

the PlotrefaTM velocity model. Joint optimization produces velocity models that are

more accurate, but have higher RMS error. All velocity modeling techniques I used

have similar e�ciency and time costs.



43

Chapter 3 Future Work

Further testing is needed to validate the benefits of joint optimization shown in this

thesis. Applying this technique to other seismic lines at San Emidio would be a good

start, particularly with access to well logs. The methods outlined here can also be

applied to other geothermal sites in the Great Basin that have long-o↵set seismic and

gravity data, such as Astor Pass and Soda Lake. It would be interesting to optimize

the entire 3D grid of gravity data and 10 lines of seismic data simultaneously; this

could reveal bedrock morphology in three dimensions. Calibrating the velocity-to-

density relationship with density and sonic (P-wave velocity) logs could help remove

the inconsistencies that are resulting in higher RMS errors when joint optimization

is used. Well logs could also be easily incorporated as a priori information into the

simulated annealing algorithm as a form of Tikonov regularization in the objective

function.

In this thesis, my standard acceptance criteria is met when seismic AND gravity

RMS errors are reduced; this could be changed to accepting any model that expands

the Pareto front. Optimizing this way would produce a suite of models ranging from

the lowest gravity error to the lowest seismic error; this would reveal how adding

gravity constrains the velocity model. It would be useful to explore what types of

models joint optimization performs better on; for instance, I found that joint opti-

mization performs poorly using synthetics with low-velocity zones. Quantifying the

joint optimization sensitivity kernel would be good evidence that we are in fact con-

straining elements below the deepest raypath. Running multiple simulated annealing

optimizations allowed the creation of stochastic velocity models with attached figures

of element-wise variance; this showed that shallow regions are robust, while areas

below the primary refractor were poorly constrained. This type of analysis could

provide quantitative control on the location of the bedrock interface. It would be

interesting to test genetic algorithms, particularly due to their compatibility with
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parallel computing. With a supercomputer, the fitness landscape could be mapped

fully, which would facilitate insights into the convergence process.

As opposed to the technique presented here, which only utilizes first arrival in-

formation, full waveform inversion (FWI) takes advantage of all the reflectors in the

seismogram. Implementing FWI would help tune up velocity models at geothermal

sites, particularly by fully modeling triplications. However, researchers must first

figure out how to cope with the increased noise encountered in our dataset. One

suggestion would be to first perform FWI on the long-wavelength features before

scaling up to higher frequencies. I suspect that the cycle-skipping problem of FWI

would make convergence very di�cult, unless the starting model was very close to the

answer. Solving the cycle-skipping problem of FWI and reducing the steep compu-

tational costs are currently areas of intensive ongoing research. Another route could

be implementing reflector coherency into the objective function.

We showed how adding gravity to the optimization can improve velocity model

accuracy at a geothermal site, but it remains to be seen what e↵ects adding magnetic

susceptibility or electrical resistivity into the optimization would do. Joint seismic-

magnetic optimization has been shown to be very e↵ective. Converting my gravity

model into a magnetic model is as easy as converting density into magnetic suscep-

tibility and changing the scaling factors. Joint seismic-electrical optimization could

even take advantage of magneto-telluric and multichannel DC-resistivity datasets si-

multaneously.

If anyone is interested in utilizing the data, codes, and scripts described and used

in this thesis, you can find them by contacting Dr. John Louie at louie@seismo.unr.edu

or Kyle Basler-Reeder at metaheurist@gmail.com.
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