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Abstract 
 

 The aza-oxyallylic cation is a reactive intermediate that undergoes a [4+3] 

cycloaddition reaction with dienes to form seven-membered nitrogen heterocycles. Although 

the existence of this intermediate had been proposed for over 50 years, only recently has 

experimental evidence been established to support its existence. The intermediate was 

generated by base-mediated dehydrohalogenation of α-haloamide precursors synthesized from 

the corresponding acid halide in dichloromethane, respectively. From the analogous aza-

oxyallylic cation intermediates generated in situ, a series of bicyclic lactam scaffolds were 

easily prepared from a [4+3]-cycloaddition reaction of the corresponding α-haloamide and 

either furan or cyclopentadiene as the diene moiety. With the exception of one case, all 

monoaryl and monoalkyl haloamides provided selectively the endo diastereoisomer (≥19:1). 

Computational and experimental evidence suggest that an N-alkoxy substituent provides 

necessary stabilization to the aza-oxyallylic cation intermediate. 

 Balanol is a fungal metabolite first isolated from Verticillium balanoides and has been 

shown to be a potent protein kinase C (PKC) inhibitor. Starting from the α-chlorocycloadduct 

synthesized in Chapter 2, a concise synthesis of the hexahydroazepine-containing fragment was 

undertaken that was both scalable and stereoselective. Polyhydroxylated azepanes are a 

relatively new class of compounds with broad therapeutic potential in a variety of biological 

and pharmaceutical applications. A general synthesis of (±)-(4R, 5R, 6R)-4,5,6-trihydroxy-3,3-

dimethylazepane is achieved in only five short synthetic steps starting from the corresponding 

cycloadduct, allowing for rapid access to the seven-membered iminosugar class of compounds. 

The reaction sequence is efficient, diastereoselective, scalable, and has the capability of 

incorporating a wide variety of functional groups at the ring three-postion. 

Polyhydroxylated piperidines are a functionally rich class of biologically active 

compounds that also have broad therapeutic potential. Previously described aza-[4+3] 
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cycloadditions of putative aza-oxyallylic cations provide heterocyclic scaffolds that enabled a 

concise synthesis of polyhydroxylated piperidines. Chemoselective amide reduction and 

subsequent hemiaminal ether ring opening of four α-chlorocycloadducts by aluminum hydride 

provided in one pot four novel 3-chloroazepines. Aziridinium ion-mediated ring contraction 

and chloride displacement was triggered by silver acetate, followed by acetate hydrolysis under 

basic conditions to give the corresponding tetrahydropyridine diols. Alkene dihydroxylation 

catalyzed by osmium tetroxide installed the final hydroxyl groups, which yielded four novel 

polyhydroxylated N-alkoxypiperidine iminosugar analogs in good overall yield and high 

diastereoselectivity. 

Expanding on the originally reported methodology of dehyrohalogenation of α-

haloamides as a means to generate aza-oxyallylic cation intermediates, efforts were undertaken 

to explore alternative methods to generate the afformentioned intermediates that could 

incorporate heteroatoms at the α-position. 2-methoxy-N-(phenylmethoxy)acetamide and 2-

phthalyl-N-(phenylmethoxy)acetamide were synthesized to serve as model substrates and 

screened according to solvent, base, and oxidant in order to determine conditions that would 

allow for aza-oxyallylic cation formation. 

 All compounds were fully characterized by NMR, IR, and high-resolution mass 

spectrometry. Additionally, six compounds that were of exceptionally high crystallinity were 

characterized by single crystal X-ray diffraction. 
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Chapter 1: Introduction 

 

1.1 Natural Products as a Template to Organic Synthesis 

 Natural products, also known as secondary metabolites, are organic compounds produced 

by plants that are not directly part of normal growth, development, or reproduction of the 

organism.1 Unlike primary metabolites, the absence of secondary metabolites does not result in 

immediate death, but rather may in the long term impair the organism’s survivability, fecundity, 

aesthetics, or could in contrast not result in any significant change at all. Plants utilize secondary 

metabolites for their defense characteristics against herbivorous predators and as interspecies 

defense strategies, whereas humans have found these compounds to have wide applications in 

medicinal drugs and food flavorings.2,3 Throughout history, organic chemists have continued to 

draw inspiration from natural products as motivation for total synthesis, or the development of 

new reaction methodology. In 1828 Friedrich Wöhler discovered that urea could be synthesized 

from the simple inorganic starting materials silver cyanate and ammonium chloride (Figure 

1.1.1).4 This significant finding represented a major milestone in chemistry because it was 

demonstrated that a substance previously thought to be only a biological product could be 

synthesized in the lab. The synthesis of acetic acid from elemental carbon by Kolbe in 1845 

marked the second major feat in the field of total synthesis, and additionally was the first time the 

word “synthesis” was used to describe the process of assembling a compound from other 

substances.5 Perhaps the most striking and spectacular early total synthesis was that of glucose by 

H2N NH2

O

H3C OH

O OHO
HO OH

OH

OH

urea
Wöhler, 18284

acetic acid
Kolbe, 18455

glucose
Fischer, 18906

Figure 1.1.1. Selected examples of nineteenth century landmarks in total synthesis. 
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Fischer, not only for its structural complexity, which for the first time included stereogenic 

centers, but also for the exceptional degree of stereochemical control that accompanied his 

method.6 These compounds, although simple and primitive in form, piqued the curiosity of early 

synthetic chemists and represent the foundations from which the fields of total synthesis and 

organic reaction methodology were built. 

 Natural products of significant biological and pharmaceutical importance have been and 

continue to be a driving force for the development of new organic reaction methodologies to 

either aid in their total synthesis, or provide a general means to construct an important but 

challenging aspect of their architecture. For example, the spirocyclopentaneoxindole scaffold is a 

common structural motif found in a wide variety of biologically active natural products (1, 2, 3, 

Scheme 1.1.1), and motivated Kanger and co-workers to develop an organocatalytic cascade 

reaction of simple isatin derivatives 4 and nitroketones 5 to access the core skeleton 6.7 Inspired 

by the indolizine core being a common structural unit found in many bioactive natural alkaloids 

(7-11, Scheme 1.1.2), Barbas and co-workers utilized a pyrrole enolate intermediate 12 formed in 

situ as an electron donor for the general synthesis of 5,6-dihydroindolizine frameworks 14.8 As 

new natural products continue to emerge with pharmaceutical relevance, organic chemists will be 

challenged with the task of devising methods to aid in the synthesis of these complex compounds. 
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Scheme 1.1.1. Spirocyclopentaneoxindole natural products and organocatalytic cascade reaction.7 

	  

Scheme 1.1.2. Representative hydroindolizine-containing natural and biologically active products. Dual 
iminium-enolate activated catalytic strategy.8 

 
1.2 Heterocycle Synthesis Using Dipolar Aza-Electrophilic Intermediates: Toward New 

Dipoles for Cycloaddition Reactions 

 Nitrogen containing heterocycles are a common moiety found in many pharmaceuticals, 

materials, and natural products. In the last 40 years, the dipolar cycloaddition reaction has been 

HN
O

O

O N
O

N

HOH

HN
N

O

O

O

N

H

NO2

H

Cintrinadin A (2)Cyclopiamine B (1)
O

O

N
H

O

N
HN

O

Marcfortine B (3)

N
O

Boc

R1

R2

O

NO2

Catalyst
(10 mol%)

DCM, r.t.
+

N
Boc

O

O2N

OH
R2

R1
Michael
Addition

Aldol
Reaction

4 5
6

N

O

OR
N

H
N

O

N

OO

HO

OH CH3

O

O

Polygonatine A, 7  R = H
Polygonatine B, 8 R = Et
Kinganone, 9 R = n-Bu (-)-Rhazinilam 10

Dehydroretrorsine Derivatives 11

N

O

Y

EWG

in situ
enolate

Leaving
groups

N

X

Dual
activation N

O

X

Y O

+

12 13 14



4 

established as an invaluable method in the synthesis of heterocyclic natural products.9 Despite 

extensive research in this area, reactions of dipolar intermediates that feature an electrophilic 

nitrogen atom at one terminus of the dipole have not been comprehensively explored. Indeed, 

methods for forming C-N bonds that avoid the use of azides and hydrazine, as well as green 

souces of electrophilic nitrogen species remain a priority in pharmaceutical manufacturing.10 

Lactams are nitrogen-containing heterocycles that are an important functional group in organic 

chemistry, and have been widely used in the synthesis of complex molecules, with applications 

being found in medicinal chemistry and materials research. This structural unit can be found in 

many natural products and biologically active compounds such as the bengamides 15, vitronecin 

antagonist receptors 16, and tuberostemonone 17 (Figure 1.2.1). With the flexible and direct 

synthesis of lactams still posing a challenge, it was recognized that a modular and concise 

synthesis that afforded highly substituted and stereodefined nitrogen heterocycles was needed. 

We envisioned that the types of compounds in Figure 1.2.1 could be accessed by a hetero [4+3] 

cycloaddition of an aza-oxyallylic cation intermediate 18 with a diene 19 to give a seven-

membered lactam 20. 
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Figure 1.2.1. Representative lactam-containing natural products and proposed access via aza-[4+3] 
cycloaddition. 

 
 If lactam skeletons could be accessed from this intermediate, it would provide insight into 

novel reactivity as well as entry into several classes of biologically active target compounds. The 

use of oxyallylic cationic intermediates in [4+3] cycloaddition reactions with dienes has become a 

powerful method for the construction of seven-membered carbocycles.11 Our group considered 

that an analogous aza-oxyallylic cation intermediate could be employed for the synthesis of 

seven-membered azacycles. The aza-oxyallyic cation intermediate has previously been discussed 

in the context of α-lactams 21, namely their synthesis, reactions, and rearrangements (Scheme 

1.2.1). Sheehan and Lengyl suggested that these intermediates could possibly be relevant to the 

regioselectivity trends of the nucleophilic ring opening of α-lactams.12 Conversely, Stang and 

Anderson proposed an aza-oxyallylic cation intermediate to be involved in the conversion of an 

alkylidine oxazirine 22 to an α-lactam.13 However despite both theoretical and stereochemical 

studies on the nucleophilic ring opening of alkyl-substituted α-lactams, attempts to trap the 
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proposed intermediate have failed to provide any experimental and thus compelling evidence for 

its involvement in these types of processes.14,15 Base mediated dehydrohalogenation of α-

haloketones has been a commonly employed method of generating oxyallylic cation 

intermediates,11 therefore we considered that a similar dehydrohalogenation reaction of an α-

haloamide 23 could provide an aza-oxyallylic cation intermediate 18 in situ. Research efforts 

towards the exploration of aza-oxyallylic cations as intermediates for heterocycle synthesis are 

outlined in more detail in Chapter 2. 

 

	  

Scheme 1.2.1. Previously proposed methods to access aza-oxyallylic cation intermediate 18, proposal to 
trap intermediate with a diene to generate seven-membered heterocycles 20. 

	  
1.3 Balanol and Iminosugars: Target Directed Studies Utilizing Aza-[4+3] Cycloaddition 

Scaffolds 

 Recently, there has been a growing recognition of the importance of protein kinase 

inhibitors and their important role in an variety of cellular events.16 Although the number of 

known protein kinases continues to expand, the significance associated with protein kinase C 

(PKC) has remained incomparable.17 Phosphorylation of proteins by PKC is known to lead to a 

number of cell responses including cell proliferation and gene expression.18 Activated PKC has 

been associated with a broad range of clinical conditions such as cancer, asthma, HIV, 
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cardiovascular disorders, inflammation, diabetes, and CNS disfunction.18 With regard to cancer, 

the observation that tumor-promoting phorbol esters cause PKC activation has led to the 

conclusion that PKC inhibitors could prove beneficial in cancer therapy applications. Balanol 24 

(Scheme 1.3.1) is a fungal metabolite produced by Verticillium balanoides and represents an 

significant new discovery in the ongoing search for effective PKC inhibitors.19 Balanol has been 

observed to inhibit the majority of PKC isozymes in nanomolar concentrations, and its unique 

novel structure has provided a guiding template in the advancement of new potent and selective 

PKC inhibitors.16 The assets of devising a concise and flexible synthesis of balanol and 

derivatives of balanol include providing understanding into single transduction pathways 

involving PKC, and also allowing for the discovery of new drug candidates with substantial 

therapeutic value.18 The structural features of balanol led us to consider the strategic bond 

disconnections shown in Scheme 1.3.1. The hexahydroazepine ring could be simplified by 

removal of the 4-hydroxybenzoic acid residue through the amide bond, and further dissection of 

the ester linkage would provide the necessary seven-membered heterocyclic core 25. We 

envisioned the hexahydroazepine ring 25 to be a reduced form of cycloadduct 27, with the amine 

functionality arising from nucleophilic displacement of a leaving group on 26 by nitrogen. 

Finally, 27 could be formed from the reaction of a simple functionalized α-haloamide 28 and 

furan 29. Progress in utilizing simple aza-[4+3] scaffolds toward the synthesis of balanol are 

described in Chapter 3. 
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Scheme 1.3.1. Balanol 24 and retrosynthetic analysis to lead back to simple starting materials. 
 
 

 Polyhydroxylated azepanes and piperidines, also referred to as iminosugars, are a class of 

small organic compounds where the endocyclic oxygen atom has been replaced with a nitrogen 
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inhibitory properties, which make them good candidates for therapeutic applications in the 

treatment of HIV, cancer, and diabetes.20, 21 They occupy a region of space similar to traditional 

carbohydrates but on the same hand they remain different from other small heterocyclic 
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complement compound libraries for pharmaceutical companies. As small polar molecules, they 

resemble carbohydrates enough to allow efficient cellular uptake, but remain chemically distinct 

enough from traditional sugars to avoid degredation by carbohydrate-modifying enzymes.23 This 

“dual personality” allows for iminosugars to serve as a special class of compounds in the ongoing 

search for new drug targets.24 Many types of iminosugars exist, both natural and synthetic, and 

can range from five to seven-membered ring sizes as well as bicyclic systems. Our curiosity was 

piqued towards the possibility of using aza-[4+3] cycloaddition skeletons to provide a concise 

and general synthesis of iminosugars (Scheme 1.3.2). We envisioned that polyhydroxylated 

azepanes 32 (seven-membered iminosugars) and polyhydroxylated piperidines 33 (six-membered 

iminosugars) could be accessed by simple synthetic manipulations of a richly functionalized 

cycloadduct 31. Chapters 3 and 4 provide a detailed description of our synthetic efforts to access 

the iminosugars class of compounds. 

	  

Scheme 1.3.2. Polyhydroxylated azepanes and piperidines through a general 
aza-[4+3] cycloadduct. 

	  
	  
1.4 Alternative Methods for Generating Aza-Oxyallylic Cation Intermediates 

	   Our initial report of the first experimental evidence supporting the existence of aza-

oxyallylic cations was centered around base mediated dehydrohalogenation of α-haloamides as a 
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means of generating the desired intermediates.28,29 As part of our lab’s ongoing interest in 

electrophilic nitrogen species, we were eager to explore the viability of utilizing other starting 

materials and alternative methods to generate aza-oxyallylic cations. Chapter 5 details progress 

toward the alternative generation of aza-oxyallylic cation intermediates beyond our current 

methodology. 

The intriguing properties of aza-oxyallylic cations and the highly functionalized and 

stereodefined scaffolds they could potentially afford led us to further exploration of these 

intermediates and their application toward the synthesis of seven-membered heterocycles. This 

dissertation is divided into four major sections, with additional chapters including an introduction, 

conclusion, and appendix. Chapter 2 describes our studies on aza-oxyallylic cations and their 

application for the synthesis of 7-membered heterocycles, and includes computational and 

experimental results toward developing this new methodology. Chapter 3 highlights our target 

directed studies on utilizing the aforementioned scaffolds for the synthesis of balanol and 

polyhydroxylated azepanes. Chapter 4 involves utilizing an unexpected ring contraction to access 

polyhydroxylated N-alkoxypiperidines in good overall yield and high diastereoselectivity. 

Chapter 5 outlines our work on the exploration of using α-heteroatom substituted amides and 

alternative methods to generate aza-oxyallylic cations other than dehydrohalogenation of α-

haloamides. Finally, Chapter 6 concludes with a general summary and future directions based on 

the results of this dissertation. 



11 

1.5 References 

1. Gottfried, F.S. Science 1959, 129, 1466. 

2. Stamp, N. The Quarterly Review of Biology 2003, 79, 23. 

3. Raven, P.H. Biology of Plants 6th edn., W.H. Freeman, 1999 ISBN 1 5725 9041 6. 

4. Wöhler, F. Ann. Phys. Chem. 1828, 12, 253. 

5. Kolbe, H. Ann. Chem. Pharm. 1845, 54, 145. 

6. Fischer, E. Ber. Dtsch. Chem. Ges. 1890, 23, 799. 

7. Noole, A.; Ilmarinen, K.; Järving, I.; Lopp, M.; Kanger, T. J. Org. Chem. 2013, 78, 8117. 

8. Jiang, X.; Tan, B.; Barbas, C.F. Angew. Chem. Int. Ed. 2013, 52, 9261. 

9. (a) Antiline, J.E.; Hsung, R.P.; Huang, J.; Song, Z.; Li, G. Org. Lett. 2007, 9, 1275. (b) 

Huang, J.; Hsung, R.P. J. Am. Chem. Soc. 2005, 127, 50. (c) Harmata, M.; Ghosh, S.K.; 

Hong, X.; Wacharasindhu, S.; Kirchhoefer, P. J. Am. Chem. Soc. 2003, 125, 2058. (d) 

Walters, M.A.; Arcand, H.R. J. Org. Chem. 1996, 61, 1478. 

10. Constable, D.J.C.; Dunn, P.J.; Hayler, J.D.; Humphrey, G.R.; Leazer, J.L.; Linderman, 

R.J.; Lorenz, K.; Manley, J.; Pearlman, B.A.; Wells, A.; Zaks, A.; Zhang, T.Y. Green 

Chemistry 2007, 9, 411. 

11. (a) Lohse, A.G.; Hsung, R.P. Chem.-Eur. J. 2011, 17, 3812. (b) Harmata, M. Chem. 

Commun. 2010, 8904. (c) Harmata, M. Chem. Commun. 2010, 8886. (d) Huan, J.; Hsung, 

R.P. Chemtracts 2005, 18, 207. (e) Harmata, M. Adv. Synth. Catal. 2006, 2297. (f) 

Harmata, M. Acc. Chem. Res. 2001, 34, 595. (g) Cha, J.K.; Oh, J. Curr. Org. Chem. 

1998, 2, 217. (h) Harmata, M. In Advances in Cycloaddition; Lautens, M., Ed.; JAI: 

Greenwich, 1997; Vol. 4, pp 41-86. (i) West, F.G. In Advances in Cycloaddition; 

Lautens, M., Ed.; JAI: Greenwich, CT, 1997; Vol. 4 pp 1-40. (j) Harmata, M. 

Tetrahedron 1997, 53, 6235. (k) Padwa, A.; Schoffstall, A. In Advances in 

Cycloaddition; Curran D.P., Ed.; JAI Press: Greeenwich, CT, 1990; Vol. 2, pp1-89. (l) 



12 

Harmata, M. Recent Res. Dev. Org. Chem. 1997, 1, 523. (m) Rigby, J.H.; Pigge, F.C. 

Org. React. 1997, 51, 351. (n) Mann, J. Tetrahedron 1986, 42, 4611. (o) Hoffmann, 

H.M.R. Angew. Chem., Int. Ed. Engl. 1984, 23, 1. (p) Hoffmann, H.M.R. Angew. Chem., 

Int. Ed. Engl. 1973, 12, 819. 

12. Lengyel, I.; Sheehan, J.C. Angew. Chem. Int. Ed. 1968, 7, 25. 

13. Stang, P.J.; Anderson, G.H. Gazz. Chim. Itl. 1995, 125, 329. 

14. Tantillo, D.J.; Houk, K.N.; Hoffman, R.V.; Tao, J. J. Org. Chem. 1999, 64, 3830. 

15. Hoffman, R.V. In The Amide Linkage: Selected Structural Aspects in Chemistry, 

Biochemistry, and Material Science; Greenberg, A.; Breneman, C.M., Liebman, J.F., 

Eds.; John Wiley & Sons Inc.: New York, 2000; p 137. 

16. Nicolaou, K.C.; Koide, K.; Bunnage, M.E. Chem. Eur. J. 1995, 1, 455. 

17. (a) Newton., A.C. Annu. Rev. Eiophys. Eiomol. Srrucr. 1993, 22, 1. (b) Farago, A.; 

Nishizuka, Y. FEBS Lett. 1990, 268, 350. (c) Stabel, S.; Parker, P.J. Pharmac. Ther. 

1991, 51, 71. d) Nishizuka, Y. Nature 1988, 334, 661. (e) Nishizuka, Y. Science 1986, 

233, 305. (f) Nishizuka, Y. Nature 1984, 308, 693. (g) Nishizuka, Y. Science 1992, 258, 

607. 

18. Bradshaw, D.; Hill, C.H.; Nixon, J.S.; Wilkinson, S.E. Agents Actions 1993, 38, 135. 

19. (a) Kulanthaivel, P.; Hallock, Y.F.; Boros, C.; Hamilton, S.M.; Janzen, W.P.; Ballas, 

L.M.; Loomis, C.R.; Jiang, J.B.; Katz, B.; Steiner, J.R.; Clardy, J. J. Am. Chem. Soc. 

1993, 115, 6452. (b) Ohshima, Y.; Yanagisawa, M.; Katoh, A.; Fujii, T.; Sano, T.; 

Matsukuma, S.; Furumai, T.; Fujiu, M.; Watanabe, K.; Yokose, K.; Arisawa, M.; Okuda, 

T. J. Antibiot. 1994, 47, 639. 

20. Davis, B.G. Tetrahedron: Asymmetry 2009, 20, 652. 

21. Winchester, B.G. Tetrahedron: Asymmetry 2009, 20, 645. 



13 

22. Horne, G.; Wilson, F.X.; Tinsley, J.; Williams, D.H.; Storer, R. Drug Discovery Today 

2011, 16, 107. 

23. Mellor, H.R. Biochem. J. 2004, 381, 861. 

24. D’Alonzo, D. Curr. Med. Chem. 2009, 16, 473. 

25. Baliah, V.; Jeyraman, R.; Chandrasekaran, L. Chem. Rev. 1983, 83, 379. 

26. (a) Laschat, S.; Dickner, T. Synthesis 2000, 13, 1781. (b) Bates, R.W.; Sa-Ei, K. 

Tetrahedron 2002, 58, 5957.  

27. Buffat, M.G.P. Tetrahedron 2004, 60, 1701. 

28. Jeffrey, C.S.; Barnes, K.L.; Eickhoff, J.E.; Carson, C.R. J. Am. Chem. Soc. 2011, 133, 

7688. 

29. Barnes, K.L.; Koster, A.K.; Jeffrey, C.S. Tetrahedron Lett. 2014, 55, 4690. 



	   14 

Reproduced in part with permission from Jeffrey, C.S.; Barnes, K.L.; Eickhoff, J.E.; Carson, 

C.R. J. Am. Chem. Soc. 2011, 133, 7688. Copyright 2011 American Chemical Society. 

 

Reproduced in part with permission from Barnes, K.L.; Koster, A.K.; Jeffrey C.S. 

Tetrahedron Letters 2014, 55, 4690. Copyright 2014 Elsevier. 

 

Chapter 2: Generation and Reactivity of Aza-Oxyallylic Cations: Aza-[4+3] 

Cycloaddition Reactions for Heterocycle Synthesis 

 

2.1 Introduction 

 The aza-oxyallylic cation is a reactive intermediate that has eluded chemists for 

decades, with its existence only being hypothesized but never proven with experimental 

evidence. The Jeffrey lab’s interest in the generation of electrophilic nitrogen species piqued 

our curiosity towards exploring this intermediate and its potential use for the rapid synthesis 

of 7-membered aza-cycles. The proposal to intercept the aza-oxyallylic cation 45 was largely 

inspired by the comprehensive body of work related to oxyallylic cation intermediates (46, 

Scheme 2.1.1) and their reactivity in [4+3]-cycloaddition reactions with dienes to form 7-

Scheme 2.1.1. Established methods to access oxyallylic cation 
intermediate and the analogous underexplored aza-oxyallylic cation 

equilibrium. 
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membered rings.1 More specifically, we envisioned a base-mediated dehydrohalogenation 

event of an α-halo amide 42 as a way to generate the desired intermediate, much in the same 

way that the dehydrohalogenation process of α-halo ketones 47 to give oxy-allyl cations 46.1 

With the larger goal of developing new C-N bond forming reactions with broad applications 

in target directed syntheses, we envisioned that cycloadditions of aza-oxyallylic cations could 

be employed as a powerful method to prepare nitrogen-containing seven-membered 

heterocycles. 

 Trapping or even establishing the existence of the aza-oxyallylic cation has been a 

long road and was not a novel idea when we began experimenting with the intermediate. The 

aza-oxyallylic cation 45 was first proposed by Sheehan in the 1960s during his foray into the 

chemistry of α-lactams such as 43 (Scheme 2.1.1).2 The first α-lactam to be isolated and 

characterized was synthesized in 1962 by Baumgarten.3 Prior to this, α-lactams were believed 

to be intermediates in a variety of reactions, but it was still unknown if the 3-membered ring 

would encumber too much ring strain to permit isolation. Building on the work of 

Baumgarten, Sheehan and Lengyel observed that the stability of the α-lactams was enhanced 

by the presence of a tert-butyl group or other bulky substituent on the nitrogen atom.2 Despite 

this general trend however, attempted syntheses of α-lactams with bulky phenyl substituents 

on the nitrogen atom were surprisingly unsuccessful. Sheehan hypothesized that charge 

delocalization through the phenyl rings made possible a highly reactive acyclic intermediate 

45 (an aza-oxyallylic cation) that was more stable than the corresponding α-lactam 43 he was 

trying to synthesize, but was not isolable.2 Sheehan also suggested the involvement of this 

dipolar intermediate in the thermal decomposition of some α-lactams and their nucleophilic 

ring opening. Following the analogy of the oxyallylic cation in the Favorskii rearrangement 

previously described by House and Gilmore,4 Sheehan did not rule out the possibility of an 

analogous dipolar aza-oxyallylic cation intermediate in the nucleophilic substitution reaction 

of isolable α-lactams. Moreover, the proposed intermediate could explain the dichotomous C-

2 versus C-3 nucleophilic ring opening of this highly reactive aza-cycle (Scheme 2.1.2). 
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Scheme 2.1.2. The stereospecific nucleophilic ring opening of 
enantiopure α-lactams to give products 51 and 52. 

	  
 The proposal of Sheehan and Lengyel along with the ambivalent reactivity of α-

lactam electrophiles 50 stimulated numerous theoretical and mechanistic studies of their 

nucleophilic ring opening.5 While it remained difficult to predict whether nucleophilic attack 

would be favored at the C-2 or C-3 position of the lactam 50, an elegant set of experiments by 

Hoffman and co-workers using enantiopure α-lactams 50 established that attack at the C-2 

position consistently produced an amino acid derivative 51 with retention in stereochemistry, 

while attack at the C-3 position produced an amide 52 with inversion of stereochemistry 

(Scheme 2.1.2).5 The stereospecificity of the reaction at C-3 was inconsistent with the 

formation of a planar aza-oxyallylic cation intermediate, which instead would have resulted in 

product racemization. Several other research groups also suggested the role of the aza-

oxyallylic cation as an intermediate or transition state in transformations involving α-lactams 

α-haloamides, and related species. In 1955, Stang and Anderson proposed an aza-oxyallylic 

cation intermediate in their studies of the interactions of alkylidene carbenes with nitroso 

compounds.6 In 2004, Toscano and co-workers performed a computational study that 

illustrated an aza-oxyallylic cationic transition state in their isomerization studies of the 

conversion of an alkylidene oxazirine 44 to the α-lactam (Scheme 2.1.1).7 Despite all of these 

hypotheses however, the intermediacy of an aza-oxyallylic cation was yet to be 

experimentally supported. 
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Scheme 2.1.3. The solvolysis experiment of Kikugawa and co-workers that highlights the importance 
of a donor group in the possible strategy for stabilizing aza-oxyallylic cations. 

	  
 The most promising evidence of the viability of an aza-oxyallylic cation intermediate 

came from the Kikugawa group in 1993.8 A series of solvolysis experiments on α-haloamides 

53 and 55 demonstrated the importance of an alkoxy donor group on the nitrogen atom 

(Scheme 2.1.3). They observed that the 2-chloro-N-alkoxyphenylacetamide 53 underwent 

rapid solvolysis when treated with a base in ethanol to provide the amide 54; however, no 

reaction was observed when the N-methylamide 55 was subjected to the same conditions. 

This result implied that the alkoxy-substituent in 53 could stabilize a pathway through a 

highly electrophilic aza-oxyallylic cation, thereby accelerating the rate of solvolysis of the N-

methoxyphenylacetamide 53. Coupled with the previously described reports of an increase in 

the stability of oxyallylic cations and N-acyl nitrenium ions9 with the addition of an alkoxy 

donor group, the Kikugawa experiment led us to believe that an electron-donating substituent 

could potentially stabilize an aza-oxyallylic cation intermediate and give it enough of a 

lifetime to react with a diene in a [4+3]-cycloaddition reaction (Scheme 2.1.4). 
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Scheme 2.1.4. Proposed aza-[4+3] cycloaddition reaction of a stabilized aza-oxyallylic cation with a 
diene. 

	  
 One of the primary methods of generating oxyallylic cations for [4+3]-cycloadditions 

is through the dehydrohalogenation of α-haloketones.1 The first example of such a reaction 

was reported by Fort in 1962.9 In this experiment, Fort reacted α-chlorodibenzylketone with 

furan in the presence of a base to yield a 7-membered carbocycle with a bridging oxygen 

atom. Hoffman continued work in this area, pioneering much of the chemistry surrounding 

the synthesis of 7-membered rings through the reaction of allyl cations with dienes.10 In 1965, 

Woodward and Hoffman published a Letter proposing that a concerted cycloaddition reaction 

of a diene and an allyl cation was thermally allowed by orbital symmetry.11 To support his 

theory, Hoffman published the first example of such a reaction in 1968.12 Following 

Hoffman’s work, numerous examples of [4+3]-cycloaddition reactions through oxyallylic 

cations have been reported.1 Strategic incorporation of electron-donating groups such as 

nitrogen,13 oxygen,14 or sulfur,15 on the dienophile have been shown to facilitate [4+3]-

cycloaddition reactions of oxyallylic cations through the extra stability afforded to the 

intermediate. It was this very simple but thus far overlooked observation that led us to the 

capture of the aza-oxyallylic cation. The difference between the aza-oxyallylic cation and the 

oxyallylic cation is, of course, the replacement of a carbon atom with a more electronegative 

nitrogen atom. 
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2.2 Preliminary Computational Studies of Stabilized Aza-Oxyallylic Cations 

 Initial studies of stabilized aza-oxyallylic cations began by computationally modeling 

our hypothesis.16 Two α-lactams, one N-substituted with an ethyl group 57, and one N-

substituted with a methoxy group 58 (Figure 2.2.1) were chosen as model systems. The 

relaxed potential energy plot for the heterolytic cleavage of the C(2)-N bond of each α-lactam 

to an aza-oxyallylic cation 59 in methanol was predicted using a B3LYP/6-31G* level of 

theory with a conductor polarized continuum model (CPCM)17 to simulate solvent effects.18,19 

As expected, the ethyl-substituted α-lactam 57 did not arrive at a second energy minimum 

corresponding to the aza-oxyallylic cation intermediate. However, the α-lactam with a 

strongly electron-donating methoxy substitutent 58 showed that the aza-oxyallylic cation 59 

was in a second energy minimum, consistent with our hypothesis and with Kikugawa’s 

solvolysis experiments. Comparison of isomerization in the gas phase and in methanol for the 

methoxy α-lactam demonstrated qualitative differences in the well depth for the intermediate 

Figure 2.2.1. Relaxed potential energy scans along the C(3)-N(1) coordinate of α-lactams 57 
and 58. Green line = 57 in methanol, red line = 58 in methanol, black line = 59 in the gas phase. 
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59. According to these calculations, the aza-oxyallylic cation intermediate was more stable in 

a polar solvent than in the gas phase, which was consistent with the proposed zwitterionic 

structure of an aza-oxyallylic cation intermediate. 

2.3 Preliminary Experimental Studies of the Reaction of Stabilized Aza-Oxyallylic 

Cations with Furan 

 Experimentally, our investigation began with synthesizing 2-bromo-N-

benzylbutyramide 60 from the corresponding acid bromide and benzylamine (Scheme 2.3.1). 

As expected for the reaction of an α-haloamide lacking a donor group, treatment of this 

substrate with a base in the presence of furan as the diene and trifluoroethanol (TFE) as the 

solvent only resulted in recovery of the starting material. To test our hypothesis of a donor 

group being crucial for stabilizing the desired intermediate, a 2-bromohydroxamate 62 was 

synthesized from again the corresponding acid bromide but this time O-

benzylhydroxylamine. Treatment of 62 to the Föhlisch conditions20 provided the desired 

cycloadduct 63 and trifluoroether 64, providing the first example of a reaction of an aza-

oxyallylic cation with a diene. 

 

	  

Scheme 2.3.1. First example of an aza-[4+3] reaction and a control experiment that demonstrates the 
importance of an alkoxy donor group. 
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2.4 The Aza-[4+3] Cycloaddition Reaction as a New Method for the Synthesis of 

Caprolactams 

 Initial optimization studies were aimed at minimizing the solvolysis product 64 and 

thereby increase the yield of the cycloadduct. Switching to the bulkier hexafluoroisopropanol  

solvent was found to circumvent solvolysis and provide the desired product in 78% yield.21 

Carbonate bases were found to provide the desired cycloadduct in comparable yields to the 

reaction using triethylamine (entries 4-6, Table 2.4.1). The reaction could also be effected in 

ether by using triethylamine with lithium perchlorate as a Lewis acid additive,22 but under 

these reaction conditions a methacrylamide was isolated as the major product from 

elimination of the cationic intermediate or a transient α-lactam. 

 

Entry R Solvent Base Yielda % 

1 Bn TFE Et3N no reaction 

2 OBn TFE Et3N 38%b 

3 OBn HFIP Et3N 78% 

4 OBn HFIP Cs2CO3 58% 

5 OBn HFIP K2CO3 67% 

6 OBn HFIP Na2CO3 74% 

7 OBn TFE imidazole decomp. 

8 OBn TFE pyridine no reaction 

9 OBn Et2O Et3N, LiClO4 See text 

aIsolated yield of 63. bProvided a 56% yield of 64. 

N
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O
RH3C

BrH3C

Base (2.0 equiv.)
O
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solvent (1:1 v/v)
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O

O

RH3C
H3C +

N
H

O
RH3C

OH3C

60: R = Bn
62: R = OBn

61: R = Bn
63: R = OBn

64: R = OBn
CF3

Table 2.4.1. Solvent and Base Effects on the Yield of
the Aza-[4+3] Reaction of 62 with Furan
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The aza-[4+3] cycloaddition reaction was found to be general, providing the desired 

cycloadducts in good to excellent yields with a variety of alkyl and halo substrates substituted 

at the α-carbon (Table 2.4.2). Monoalkyl stubstituted bromo amides (entries b-f) provided the 

highest yields of the cycloadduct, and all monoaryl and monoalkyl haloamides selectively 

demonstrated a preference for the endo-diastereoisomer (> 19:1).23 In the case of entry f, it 

was observed that the ratio of diastereoisomers at about 40% conversion was > 19:1 

endo:exo, but upon complete consumption of the starting material equilibrated to a ratio of 

2:1 endo:exo. Monoalkyl bromoamides were found to react slower than aryl and dialkyl 

substituted haloamides, and α-chloroamides reacted slower than α-bromoamides (cf. b and e). 

α -Chloromethoxyacetamide proved difficult to handle and decomposed under the 

cycloaddition conditions, and the unsubstituted bromoacetamide (X = Br, R1 = R2 = H, entry 

a) was unreactive and resulted in recovery of the starting material. Dialkyl and aryl substrates 

provided the desired cycloadduct in moderate yields when run in HFIP (entries h, i, and l). 

Cyclopentadiene was also found to be a viable diene for the [4+3] cycloaddition, affording 

the cycloadducts in comparable yields to those of furan, albeit with less selectivity for the 

endo diastereoisomer (entries j-l). As mentioned previously for the case of the α,α-

dichloroamide substrate, the ratio of diastereoisomers at early conversion (> 19:1, endo:exo at 

ca. 40%) was greater than at complete conversion (2:1, endo:exo). In order to gain more 

insight on this observation, the purified endo cycloadduct was resubjected to the reaction 

conditions. After 24 hours, it was found that the endo cycloadduct had equilibrated to a 1:1 

mixture of diastereoisomers, suggesting that there is a kinetic preference for the endo-product. 

The exact nature of this selectivity is a project still under investigation. 
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aConditions: solvent was furan or cyclopentadiene (1:1 v/v, 0.25 M) at 0 to 25 °C with Et3N (2.0 
equiv.). Diastereoisomeric ratio (dr) was determined from crude 1H NMR analysis. b ≥ 19:1 dr indicates 
that the minor diastereoisomer was not detected. cIsolated yield of both diastereoisomers. 
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 The experimental and computaional data support a mechanism whereby 

dehydrohalogenation of an α-haloamide 67 under basic conditions generates an aza-oxyallylic 

cation intermediate 68 that reacts as a dienophile in an aza-[4+3] cycloaddition (Scheme 

2.4.1). An alkoxy electron donating group (OBn) is essential for allowing the cycloaddition to 

take place, and was computationally found to stabilize the proposed intermediate. Aryl 

substituents accellerate the overall rate of conversion. In conjunction with the all-carbon 

[4+3] cycloaddition with cyclic dienes, the aza-[4+3] cycloaddition demonstrates a preference 

for the formation of the endo diastereoisomer. The observation that the diastereoisomeric 

ratio of cycloadducts (entry f, Table 2.4.1) was high at early conversion and that the purified 

endo-adduct isomerized to a 1:1 ratio of diastereoisomers (69-endo to 69-exo, R = Cl, Scheme 

2.4.1) under the reaction conditions suggests that there is a kinetic preference for the endo-

cycloadduct. 

	  

Scheme 2.4.1. Proposed mechanism for the aza-[4+3] cycloaddition reaction with furan (A = O) and 
cyclopentadiene (A = CH2). 
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2.5 Experimental 

 All reactions were carried out under an atmosphere of nitrogen in oven-dried 

glassware with magnetic stirring, unless otherwise specified. Dichloromethane was purified 

by passage through a bed of activated alumina. Cyclopentadiene was distilled from 

dicyclopentadiene immediately prior to use. All other reagents and solvents were purchased 

from Sigma-Aldrich Chemical Company and used without any further purification. TLC 

information was recorded on Silicycle glass 60 F254 plates and developed by staining with 

KMnO4 or ceric ammonium molybdate. Purification of reaction products was carried out by 

flash chromatography using Silicycle Siliaflash® P60 (230-400 mesh). 1H-NMR spectra were 

measured on Varian 400 (400 MHz), Varian MR400 (400 MHz), or Varian 500 (500 MHz) 

spectrometers and are reported in ppm (s = singlet, d = doublet, t = triplet, q = quartet, m = 

multiplet, br = broad; integration; coupling constant(s) in Hz), using TMS as an internal 

standard (TMS at 0.00 ppm) in CDCl3 or the solvent peak (1.94 ppm) in CD3CN. 13C-NMR 

spectra were recorded on V400 or V500 spectrometer and reported in ppm using solvent as an 

internal standard (CDCl3 at 77.16 ppm) or (CD3CN at 118.26 ppm). Infrared (IR) spectra 

were recorded on a Nicolet 6700 FT-IR with a diamond ATR and data are reported as cm-1 (br 

= broad, st = strong). High-resolution mass spectra were obtained using an Agilent 6230 TOF 

LC/MS with an (atmospheric pressure photo- ionization (APPI) or electrospray (ESI) source 

with purine and HP-0921 as an internal calibrants. Haloamides HRMS were obtained with an 

inlet temperature of 200 °C. 

General Procedure A: For the synthesis of alpha-haloamides  

 To a suspension of the O-benzylhydroxylamine hydrochloride in dichloromethane 

(0.25 M) and triethylamine was added the alpha-haloacid halide dropwise at 0 °C. The 

reaction mixture was stirred at that same temperature until TLC analysis (3:1 hexanes:ethyl 

acetate) revealed complete consumption of the starting material. The mixture was then 

warmed to room temperature and quenched with water. The aqueous phase was extracted 3x 

with dichloromethane and the combined organic extracts were washed with water, brine, and 
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dried over anhydrous sodium sulfate. The solvent was removed under reduced pressure and 

the crude residue was purified by column chromatography (3:1 hexanes:ethyl acetate) to 

afford the pure haloamides in 45 – 90% yield as white crystalline solids. 

 

General Procedure B: For the cycloaddition reaction of furan or cyclopentadiene in 

trifluoroethanol or hexafluoroisopropanol. 

 To a solution of the haloamide (1 equiv.) in CF3CH2OH and furan [1:1 (v/v) 0.25 M] 

or (CF3)2CHOH was added triethylamine (2 equiv.) dropwise at 0 °C. The solution was then 

allowed to warm to room temperature and the reaction progress monitored by TLC (3:1 or 2:1 

hexanes:ethyl acetate) until complete consumption of the haloamide. The volatiles were 

removed under reduced pressure and the crude residue purified by flash column 

chromatography (4:1 to 3:1 hexanes:ethyl acetate) to afford the pure cycloadducts as oils (54 

– 85% yield). 

 

2-bromo-2-methyl-N-(phenylmethyl)propanamide (60): 

 

 Prepared in 91% yield (0.42 mmol, 10.7 g) from the reaction of 2-bromo-2-

methylpropanoyl bromide (0.46 mmol, 10.6 g) with benzylamine (0.46 mmol, 5.1 mL) via 

general procedure A. Rf = 0.84 (3:1 hexanes:ethyl acetate); M.P. = 73.4 – 75.5 °C; 1H NMR 

(400 MHz, CDCl3): δ 7.41 – 7.23 (m, 5H), 7.03 (br s, 1H), 4.46 (d, J = 5.8 Hz, 2H), and 1.99 

(s, 6H); 13C NMR (125 MHz, CDCl3): δ 172.0, 137.8, 128.8, 127.6, 62.8, 44.4, and 32.6; IR 

(neat) 3291 (br), 3065, 3014, 3008, 2938, 2919, 1642 (st), and 1533 cm-1; HR-ESIMS 

requires for C11H15BrNO (M+H)+ 256.0332, found 256.0329. 
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2-bromo-2-methyl-N-(phenylmethoxy)propanamide (62, 65h): 

 

 Prepared in 87% yield (11.3 mmol, 3.53 g) from the reaction of 2-bromo-2-

methylpropanoyl bromide (13 mmol, 3.0 g) with O-benzylhydroxylamine hydrochloride (13 

mmol, 2.13 g) via general procedure A. Rf = 0.58 (3:1 hexanes:ethyl acetate); M.P. = 88.6 – 

91.1 °C; 1H NMR (500 MHz, CDCl3): δ 9.05 (br s, 1H), 7.45 – 7.34 (m, 5H), 4.94 (s, 2H), 

and 1.93 (s, 6H); 13C NMR (126 MHz, CDCl3): δ 169.7, 134.9, 129.6, 129.1, 128.8, 78.4, 

59.5, and 32.6; IR (neat) 3195 (br), 3034, 2954, 2890, 1652 (st), 1505, 1469, 1454, 1112, 

1032, and 1004 cm-1; HR-ESIMS requires for C11H18BrNO2 (M+NH4)+ 289.0546, found 

289.0543. 

 

 (±)-2-bromo-N-(phenylmethoxy)propanamide (65b): 

 

 Prepared in 53% yield (631 mg, 2.44 mmol) from the reaction of 2-bromo-2- 

methylpropanoyl bromide (1.0 g, 4.6 mmol) with O-benzylhydroxylamine hydrochloride (742 

mg, 4.6 mmol) via general procedure A. Rf = 0.28 (3:1 hexanes:ethyl acetate); M.P. = 75.3-

77.4 °C; 1H-NMR (500 MHz, CDCl3): δ 9.61 (br s, 1H), 7.44 – 7.26 (m, 5H), 4.90 (s, 2H), 

4.31 (q, J = 7.7 Hz, 1H), and 1.77 (d, J = 6.4 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ 167.5, 

134.8, 129.45, 128.9, 128.7, 78.3, 40.5, and 22.2; IR (neat) 3110 (br), 2924, 2852, 1675 (st), 

1508, 1495, 1453, 1364, 1188, 1038, and 1023 cm-1; HR-ESIMS requires for C10H12BrNO2 

(M+H)+ 259.1225, found 259.1222. 
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(±)-2-bromo-N-(phenylmethoxy)butanamide (65c): 

 

 Prepared in 72% yield (4.71 g, 17.3 mmol) from the reaction of 2-bromobutyryl 

bromide (5.0 g, 24 mmol) with O-benzylhydroxylamine, hydrochloride via general procedure 

A. Rf = 0.49 (3:1 hexanes:ethyl acetate); M.P. = 99.3 - 101.6 °C; 1H-NMR (500 MHz, 

CDCl3): δ 8.92 (br s, 1H), 7.52 – 7.31 (m, 5H), 4.93 (s, 2H), 4.12 (app q, J = 7.2 Hz 1H), 2.02 

- 1.94 (m, 2H), and 1.00 (t, J = 7.0 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ 166.6, 134.8, 

129.5, 129.0, 128.7, 78.4, 48.8, 28.8, and 11.8; IR (neat) 3112, 2963, 2933, 2874, 1695, 1668 

(s), 1528, 1496, 1454, 1364, 1177, 1089, 1023 cm-1; HR-ESIMS requires for C11H15BrNO2 

(M+H)+ 256.0332, found 256.0329. 

 

(±)-2-bromo-2,2-dimethyl-N-(phenylmethoxy)butanamide (65d): 

 

 Prepared in 61% yield (11.8 mmol, 3.5 g) from the reaction of 2-bromo-2,2- 

dimethylpropanoyl chloride (19.3 mmol, 4.98 g) with O-benzylhydroxylamine (19.3 mmol, 

3.12 g), hydrochloride via general procedure A. Rf = 0.33 (3:1 hexanes:ethyl acetate); 1H-

NMR (500 MHz, CDCl3): δ 8.73 (br s, 1H), 7.55 – 7.29 (m, 4H), 4.92 (s, 2H), 3.95 (s, 1H), 

1.11 (s, 9H); 13C-NMR (126 MHz, CDCl3): δ 166.1, 135.0, 129.6, 129.0, 128.8, 78.3, 59.4, 

35.2, and 27.4; IR (neat): 3179 (br), 3037, 2985, 2960, 2944, 2885, 1657 (st), 1511, 1479, 

1371, 1241, 1159, 1052 cm-1; HR-ESIMS requires for C13H19BrNO2 (M+H)+ 300.0594, found 

300.0595. 
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(±)-2-chloro-N-(phenylmethoxy)propanamide (65e): 

 

 Prepared in 48% yield (3.9 mmol, 0.97 g) from the reaction of 2-chloropropanoyl 

chloride (8.2 mmol, 1.03 g) with O-benzylhydroxylamine, hydrochloride (8.2 mmol, 1.03 g) 

via general procedure A. Rf = 0.43 (3:1 hexanes:ethyl acetate); M.P. = 70.1-72.8 °C; 1H-NMR 

(500 MHz, CDCl3): δ 9.09 (br s, 1H), 7.44 – 7.35 (m, 5H), 4.93 (s, 4H), 4.33 (q, J = 7.1 Hz, 

1H), and 1.69 (d, J = 6.8 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ 167.1, 134.8, 129.5, 129.1, 

128.8, 78.5, 53.2, and 22.3.; IR (neat): 3112 (br), 2931, 1678 (st), 1494, 1454, 1364, 1222, 

1204, 1074 cm-1; HR-ESIMS requires for C10H12ClNO2 (M+Na)+ 236.0449, found 236.0445. 

 

2,2-dichloro-N-(phenylmethoxy)acetamide (65f): 

 

 Prepared in 82% yield (11.1 mmol, 2.6 g) from the reaction of 2,2-dichloroacetyl 

chloride (13.6 mmol, 2.0 g) with O-benzylhydroxylamine, hydrochloride (13.6 mmol, 2.15 g) 

via general procedure A. Rf = 0.52 (3:1 hexanes:ethyl acetate); 1H NMR (400 MHz, CD3CN) 

δ 9.89 (br s, 1H), 7.63 – 7.17 (m, 4H), 6.02 (s, 1H), and 4.89 (s, 2H); 13C NMR (101 MHz, 

CD3CN) δ 162.2, 136.1, 130.4, 129.7, 129.4, 78.8, and 65.6; IR (film) 3135 (br), 2996, 2880, 

2860, 1700, 1677 (st), 1531, 1468, 1454, 1367, 1341, 1214, 1200, 1046, 1027 cm-1; HR-

APPIMS requires for C9H9Cl2NO2 (M*)+ 233.0005, observed 232.9976. 
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(±)-2-chloro-2-(4-chlorophenyl)-N-(phenylmethoxy)acetamide (65g): 

 

 A suspension of the epoxynitrile (1.2 mmol, 315 mg ~ 80 % pure) and O- 

benzylhydroxylamine hydrochloride (1.5 mmol, 240 mg) in acetonitrile (0.1 M, 15 mL) was 

heated to reflux overnight. The suspension was cooled and the mixture was concentrated to 5 

mL. The residue was partitioned between water and ethyl acetate and the aqueous phase was 

extracted with ethyl acetate (3 x 15 mL). The combined organic layers were washed with 

brine (15 mL), dried over Na2SO4, filtered, and evaporated under reduced pressure. The 

residue was recrystallized from hexanes and ethyl acetate to provide the product as a colorless 

solid (0.69 mmol, 215 mg, 58% yield). Rf = 0.20 (3:1 hexanes:ethyl acetate); 1H NMR (400 

MHz, CD3CN) δ 9.76 (s, 1H), 7.51 – 7.29 (m, 9H), 5.27 (s, 1H), and 4.84 (s, 2H). 13C NMR 

(101 MHz, CD3CN) δ 165.2, 136.6, 136.3, 135.5, 130.6, 130.4, 129.8, 129.6, 129.4, 78.6, and 

57.9; IR (neat): 3115.8 (br), 2942, 2842, 2662, and 1492 (st) cm-1; HR-ESIMS requires for 

C15H13Cl2NO2 (M+Na)+ 332.0216, found 332.0216. 

 

(±)-2-bromo-N-(phenylmethoxy)carboxamide (65i, 65l): 

 

 Prepared in 72% yield (14.5 mmol, 4.5 g) from the reaction of 2-bromocyclohexanoyl 

bromide (20.1 mmol, 4.53 g) with O-benzylhydroxylamine, hydrochloride (20.1 mmol, 3.21 

g) via general procedure A. Rf = 0.47 (3:1 hexanes:ethyl acetate); M.P. = 84.6-86.1 °C; 1H 

NMR (400 MHz, CDCl3) δ 8.98 (br s, 1H), 7.51 – 7.31 (m, 5H), 4.94 (s, 2H), 2.13 (ddd, J = 

Cl

H O

CN
CN

O NH2

HCl

CH3CN
N
H

O

Cl

OBn

Cl

Br

OBr
N
H

OBr OBn
O

CH2Cl2, Et3N
0 °C

NH2

HCl



	   31 

14.6, 10.9, 4.0 Hz, 2H), 2.00 (dt, J = 14.0, 4.1 Hz, 2H), 1.80 – 1.57 (m, 5H), 1.42 – 1.23 (m, 

1H); 13C NMR (101 MHz, CDCl3) δ 169.6, 135.0, 129.6, 129.0, 128.7, 78.2, 38.1, 24.7, and 

22.6. IR (neat): 3235 (br), 3034, 2936, 2862, 1680, 1651 (st), 1470, 1459, 1270, 1249, 1210, 

1122, 1025, 1000 cm-1; HR-APPIMS requires for C14H16BrNO2 (M+H)+ 312.0594, found 

312.0206. 

 

(±)-(4S, 5R, 1S)-4-methyl-8-oxo-2-(phenylmethoxy)-2-azabicyclo[3.2.1]oct-6-en-3-one 

(66b): 

 

 Prepared in 67% yield (0.26 mmol, 63.3 mg) from the reaction of 2-bromo-N- 

(phenylmethoxy)propanamide (0.39 mmol, 100.7 mg) with furan via general procedure B. Rf 

= 0.3 (3:1 hexanes:ethyl acetate); 1H-NMR (500 MHz, CDCl3): δ 7.47 – 7.32 (m, 5H), 6.57 

(dd, J = 6.2, 1.0 Hz, 1H), 6.41 (dd, J = 6.0, 1.7 Hz, 1H), 5.25 (d, J = 1.5 Hz, 1H), 5.00 (d, J = 

11.0 Hz, 1H), 4.87 (d, J = 11.0 Hz, 1H), 4.85 (dd, J = 5.0, 1.9 Hz, 1H), 3.17 (qd, J = 7.4, 5.0 

Hz, 1H), and 1.09 (d, J = 7.4 Hz, 3H); 13C-NMR (126 MHz, CDCl3): δ 172.7, 136.1, 135.8, 

133.8, 129.7, 128.9, 128.7, 91.6, 82.9, 78.1, 45.1, and 10.6; IR (film) 3089, 2970, 2970, 2934, 

2876, 1697, 1497, 1455, 1377, 1209, and 1053 cm-1; HR-ESIMS requires for C14H16NO3 

(M+H)+ 246.1125, found 246.1118. 
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(±)-(4S, 5R, 1S)-4-ethyl-8-oxo-2-(phenylmethoxy)-2-azabicyclo[3.2.1]oct-6-en-3-one 

(66c): 

 

 Prepared in 86% yield (0.157 mmol, 40.6 mg) from the reaction of 2-bromo-N- 

(phenylmethoxy)butanamide (0.183 mmol, 50.0 mg) with furan via general procedure B. Rf = 

0.3 (3:1 hexanes:ethyl acetate); Rf 0.50 (3:1, hexanes: ethyl acetate); 1H-NMR (500 MHz, 

CDCl3): δ 7.45 – 7.42 (m, 2H), 7.41 – 7.32 (m, 3H), 6.51 (dd, J = 6.0, 1 Hz, 1H), 6.38 (dd, J = 

6.0, 1.8 Hz, 1H), 5.25 (d, J = 1.2 Hz, 1H), 4.99 (d, J = 11.0 Hz, 1H), 4.95 (dd, J = 5.1, 1.8 Hz, 

1H), 4.87 (d, J = 11.0 Hz, 1H), 2.99 (dt, J = 10.1, 5.1 Hz, 1H), 2.01 (dqd, J = 15.4, 7.5 5.3, 

7.5, 15.4 Hz, 1H), 1.24 – 1.14 (m, 1H), and 1.03 (t, J = 7.5 Hz, 3H). 13C-NMR (126 MHz, 

CDCl3): δ 172.1, 135.8, 133.6, 129.7, 128.8, 128.6, 91.4, 91.4, 81.3, 78.0, 51.8, 19.5, and 

12.3; IR (film) 3250 (br), 3032, 2966, 2929, 2877, 1696 (st), 1497, 1455, 1371, 1209, 1104, 

1055, and 1033 cm-1; HR-ESIMS requires for C15H17NO3 (M+Na)+ 282.1101, found 

282.1083. 

 

(±)-(4S, 5R, 1S) 4-(2,2-dimethylethyl)-8-oxo-2-(phenylmethoxy)-2- azabicyclo[3.2.1]oct-

6-en-3-one (66d): 

 

 Prepared in 54% yield (52.7 mg, 0.18 mmol) from the reaction of 2-bromo-2,2-

dimethyl-N- (phenylmethoxy)propanamide (103.5 mg, 0.34 mmol) with furan via general 

procedure B. Rf = 0.49 (3:1 hexanes:ethyl acetate); 1H-NMR (500 MHz, CDCl3): δ 7.43 (m, 

2H), 7.41 – 7.33 (m, 3H), 6.42 (dd, J = 6.0, 1.8 Hz, 2H), 6.35 (dd, J = 6.0, 1.5 Hz, 1H), 5.20 
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(d, J = 1.3 Hz, 1H), 5.00 (dd, J = 4.8, 1.8 Hz, 1H), 4.98 (d, J = 11.0 Hz, 1H), 4.88 (d, J = 11.0 

Hz, 1H), 3.04 (d, J = 4.8 Hz, 1H), and 1.10 (s, 9H); 13C-NMR (126 MHz, CDCl3): δ 141.6, 

136.0, 134.5, 134.0, 129.8, 128.8, 128.6, 91.6, 81.5, 78.0, 60.5, 32.3, and 29.8; IR (film): 

3210, 3090, 3064, 3032, 2958, 2871, 1672 (st), 1497, 1480, 1455, 1365(s), 1231, 1211, 1162, 

1054, and 1038 cm-1; HR-ESIMS requires for C17H21NO3 (M+Na)+ 312.1455, found 

312.1446. 

 

(±)-(4S, 5R, 1S)-4-chloro-8-oxo-2-(phenylmethoxy)-2-azabicyclo[3.2.1]oct-6-en-3-one 

(endo-66f) and (±)-(4R, 5R, 1S)-4-chloro-8-oxo-2-(phenylmethoxy)-2- 

azabicyclo[3.2.1]oct-6-en-3-one (exo-66f): 

 

 Prepared in 73% yield (0.31 mmol, 72 mg) from the reaction of 2,2-dichloro-N- 

(phenylmethoxy)acetamide (0.43 mmol, 100.2 mg) with furan via general procedure B. Rf = 

0.50 (3:1 hexanes:ethyl acetate) 1H NMR (400MHz, CDCl3) δ 7.51 – 7.30 (m, 3H), 6.54 (dd, 

J = 6.0, 1.1 Hz, 1H), 6.51 (dd, J = 6.0, 1.7 Hz, 1H), 5.27 (d, J = 1.1 Hz, 1H), 5.09 (dd, J = 5.1, 

1.6 Hz, 1H), 5.00 (d, J = 11.0 Hz, 1H), 4.89 (d, J = 11.0 Hz, 1H), and 4.76 (d, J = 5.2 Hz, 

1H); 13C NMR (101 MHz, CDCl3) δ 165.9, 136.8, 135.3, 133.1, 129.8, 129.2, 128.2, 92.1, 

82.1, 78.3, and 56.9; IR (film): 3032, 2950, 2922, 2852, 1712 (st), 1455, 1369, 1213, 1189, 

1059, and 1023 cm-1. HR-ESIMS requires for C13H12ClNO3 (M+Na)+ 288.0398, found 

288.0391. exo-diastereoisomer: Rf = 0.3 (3:1 hexanes:ethyl acetate); 1H NMR (400MHz, 

CDCl3): δ 7.48 – 7.35 (m, 2H), 6.68 (d, J = 5.9 Hz, 1H), 6.34 (dd, J = 6.0, 1.1 Hz, 1H), 5.28 

(s, 1H), 5.02 (d, J = 10.9 Hz, 1H), 4.98 (s, 1H), 4.92 (d, J = 10.9 Hz, 1H), and 4.09 (s, 1H); 

13C NMR (101 MHz, CDCl3) δ 165.5, 138.2, 135.0, 131.4, 129.9, 129.2, 128.8, 91.3, 84.2, 
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78.4, and 56.1; IR (neat): 3067, 3034, 2946, 2885, 1694, and 1046 cm-1; HR-ESIMS requires 

for C13H12ClNO3 (M+Na)+ 288.0398, found 288.0399. 

 

(±)-(4S, 5R, 1S)-4-(4-chlorophenyl)-8-oxo-2-(phenylmethoxy)-2-azabicyclo[3.2.1]oct-6- 

en-3-one (66g): 

 

 Prepared in 53% yield (0.16 mmol, 54.4 mg) from the reaction of 2-choro-2-(4- 

chlorophenyl)-N-(phenylmethoxy)acetamide (0.31 mmol, 95.5 mg) with furan via general 

procedure B. Rf = 0.48 (3:1 hexanes:ethyl acetate); 1H-NMR (500 MHz, CDCl3): δ 7.50 – 

7.44 (m, 2H), 7.44 – 7.34 (m, 3H), 7.28 (ABd, J = 8.5 Hz, 2H), 7.05 (ABd, J = 8.5 Hz, 2H), 

6.55 (dd, J = 6.0, 1.1 Hz, 1H), 6.19 (dd, J = 6.0, 1.7 Hz, 1H), 5.36 (d, J = 1.3 Hz, 1H), 5.05 

(d, J = 11.0 Hz, 1H), 4.96 (d, J = 11.0 Hz, 1H), 4.94 (dd, J = 5.3, 1.8 Hz, 1H), and 4.38 (d, J = 

5.3 Hz, 1H); 13C-NMR (126 MHz, CDCl3): δ 169.7, 136.0, 136.0, 135.6, 133.8, 133.8, 132.0, 

131.1, 129.83, 129.1, 128.8, 128.7, 91.8, 91.8, 83.1, 83.1, 78.3, and 56.5; IR (film): 3089, 

3064, 3031, 2924, 1688 (st), 1492, 1454, 1368, 1275, 1260, 1211, 1091, 1059, and 1017 cm-1; 

HR-ESIMS requires for C19H17ClNO3 (M+H)+ 342.0891, found 342.0886. 
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(±)-(1R, 5S)-4,4-dimethyl-8-oxo-2-(phenylmethoxy)-2-azabicyclo[3.2.1]oct-6-en-3-one 

(63, 66h): 

 

 Prepared in 78% yield (0.32 mmol, 85.2 mg) from the reaction of 2-bromo-2-methyl 

N- (phenylmethoxy)propanamide (0.42 mmol, 115.0 mg) with furan via general procedure B. 

Rf = 0.40 (3:1 hexanes:ethyl acetate); 1H-NMR (500 MHz, CDCl3): δ 7.46 – 7.28 (m, 5H), 

6.56 (dd, J = 5.9, 1 Hz, 1H), 6.43 (dd, J = 5.9, 1.9 Hz, 1H), 5.21 (d, J = 1.1 Hz, 1H), 4.97 (d, J 

= 10.9 Hz, 1H), 4.87 (d, J = 10.9 Hz, 1H), 4.46 (d, J = 1.8 Hz, 1H), 1.49 (s, 3H), and 1.05 (s, 

3H); 13C-NMR (126 MHz, CDCl3): δ 175.7, 135.7, 135.5, 134.6, 129.8, 128.9, 128.6, 91.5, 

87.4, 78.0, 49.3, 27.1, and 19.9; IR (film): 3055 (br), 1692 (st), 1470, 1385, 1362, 1265, 1217, 

1174, 1055, 1008 cm-1; HR-ESIMS requires for C15H17NO3 (M+Na)+ 282.1101, found 

282.1098. 

 

(±)-(1ʼR, 5ʼS)-spiro[cyclohexane-1,2'-[8]oxo-4ʼ-(phenylmethoxy)-4ʼ- 

azabicyclo[3.2.1]oct[6]en]-3'-one (66i): 

 

 Prepared in 65% yield (0.22 mmol, 65.9 mg) from the reaction of 2-bromo-N- 

(phenylmethoxy)cyclohexane carboxamide (0.34 mmol, 107.2 mg) with furan via general 

procedure B. Rf = 0.62 (3:1 hexanes:ethyl acetate); 1H-NMR (500 MHz, CDCl3): δ 7.48 – 

7.29 (m, 5H), 6.54 (d, J = 5.8 Hz, 1H), 6.43 (dd, J = 6.0, 1.7 Hz, 1H), 5.18 (d, J = 1.1Hz, 1H), 

4.96 (d, J = 10.9 Hz, 1H), 4.93 (d, J = 1.4 Hz, 1H), 4.86 (d, J = 10.9 Hz, 1H), 2.06 (d, J = 

12.7 Hz, 2H), 1.89 (td, J = 13.5, 6.8 Hz, 3H), 1.75 (s, 2H), 1.62 (dd, J = 13.3, 7.5 Hz, 5H), 

N
H

O
OBnH3C

Br

Et3N (2.0 equiv.)

: HFIP (1:1 v/v)

0 °C to 25 °C

O
N

O
H3C

H3C O

OBn

H3C

N
H

O
OBn Et3N (2.0 equiv.)

: HFIP (1:1 v/v)

0 °C to 25 °C

O
N

O

O

OBnBr



	   36 

and 1.47 – 1.19 (m, 6H); 13C-NMR (101 MHz, CDCl3): δ 175.7, 135.8, 135.5, 134.5, 129.8, 

128.8, 128.6, 91.2, 82.9, 77.9, 53.3, 33.7, 28.9, 25.5, 21.7, and 21.5; IR (film): 3063, 3031, 

2927, 2858, 1690, 1496, 1454, 1367, 1210, 1187, 1076, and 1064 cm-1. HR-ESIMS requires 

for C18H21NO3 (M+Na)+, 322.1414, found 322.1424. 

 

(±)-(4S, 5R, 1S)-4-ethyl-2-(phenylmethoxy)-2-azabicyclo[3.2.1]oct-6-en-3-one (endo-66j) 

and (±)-(4R, 5R, 1S) 4-ethyl- -2-(phenylmethoxy)-2-azabicyclo[3.2.1]oct-6-en-3- one 

(exo-66j): 

 

 Prepared in 85% yield (0.32 mmol, 82.3 mg) from the reaction of 2-bromo-N- 

(phenylmethoxy)butanamide (0.37 mmol, 100.4 mg) with cyclopentadiene via general 

procedure B (characterized as a mixture 2.5:1 exo:endo). Endo diastereoisomer: Rf = 0.54 

(3:1 hexanes:ethyl acetate); 1H-NMR (500 MHz, CDCl3): δ 7.53 – 7.28 (m, 5H), 6.30 (dd, J = 

5.5, 2.0 Hz, 1H), 6.12 (dd, J = 5.4, 2.7 Hz, 1H), 4.95 (d, J =10.8 Hz, 1H), 4.88 (d, J = 10.8 

Hz, 1H), 3.90 (d, J = 6.1 Hz, 1H), 2.93 (app q, J = 4.2 Hz, 1H), 2.59 (dt, J = 10.4, 4.1 Hz, 

1H), 2.09 (dt, J = 12.1, 7.8 Hz, 1H), 1.99 (dd, J = 11.0, 5.3 Hz, 1H), 1.85 (d, J = 10.8 Hz, 1H), 

1.37 – 1.16 (m, 2H), and 1.01 (t, J = 7.5 Hz, 3H); 13C-NMR (101 MHz, CDCl3): δ 171.6, 

137.2, 137.0, 136.0, 129.8, 129.7, 128.7, 128.5, 77.19, 64.5, 51.5, 42.4, 40.8, 21.6, and 12.3; 

IR (film): 3063, 3031, 2961, 2874, 1668 (st), 1455, and 1368 cm-1; HR-ESIMS requires for 

C16H19NO2 (M+Na)+ 280.1308, found 280.1296. Exo diastereoisomer: Rf = 0.41 (3:1 

hexanes:ethyl acetate); 1H NMR (500 MHz, CDCl3): δ 7.5 – 7.3 (m, 5H), 6.30 (dd, J = 5.5, 

2.5 Hz, 1H), 6.17 (dd, J = 5.5, 2.9 Hz, 1H), 4.93 (d, J = 10.7 Hz, 1H), 4.86 (d, J = 10.7 Hz, 

1H), 3.86 (br s, 1H), 2.73 (app t, J = 4.2 Hz, 1H), 2.20 (dd, J = 10.1, 5.3 Hz, 1H), 2.12-2.16 

(m, 1H), 2.05-1.98 (m 1H), 1.92 (d, J = 11.3 Hz, 1H), 1.74 (ddd, J = 10, 5, 5 Hz, 1H), 1.62- 
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1.59 (m, 1H), 1.31-1.18 (m, 1H), and 1.05 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 

174.5, 138.3, 136.4, 136.0, 129.9, 128.8, 128.5, 77.0, 64.4, 51.5, 42.2, 38.8, 34.3, 30.5, 25.7, 

21.6, and 21.3. IR (film): 3063, 3031, 2961, 2874, 1679, 1496, 1455, 1370 cm-1; HR-ESIMS 

requires for C16H19NO2 (M+Na)+ 280.1308, found 280.1303. 

 

(±)-(4S, 5R, 1S)-4-chloro-2-(phenylmethoxy)-2-azabicyclo[3.2.1]oct-6-en-3-one (endo-

66k) and 

(±)-(4R, 5R, 1S)-4-chloro-2-(phenylmethoxy)-2-azabicyclo[3.2.1]oct-6-en-3-one (exo-

66k): 

 

 Prepared in 64 % yield (0.28 mmol, 73.8 mg) from the reaction of 2-bromo-N- 

(phenylmethoxy)butanamide (0.43 mmol, 100.8 mg) with cyclopentadiene via general 

procedure B. Rf = 0.53 (3:1 hexanes:ethyl acetate); 1H-NMR (500 MHz, CDCl3): δ 7.46 – 

7.34 (m, 3H), 6.32 (dd, J = 5.7, 2.2 Hz, 1H), 6.31 – 6.28 (m, 1H), 4.98 (d, J = 10.9 Hz, 1H), 

4.92 (d, J = 10.9 Hz, 1H), 4.71 (d, J = 4.4 Hz, 1H), 2.06 (dt, J = 11.6, 4.8 Hz, 1H), and 1.90 

(d, J = 11.5 Hz, 1H); 13C-NMR (126 MHz, CDCl3): δ 164.7, 138.0, 136.5, 135.5, 129.9, 

129.0, 128.6, 77.4, 65.0, 61.0, 46.8, and 41.7; IR (film): 3066, 3033, 2926, 2853, 1679, 1455, 

and 1372 cm-1; HR-ESIMS requires for C14H15ClNO2 (M+H)+ 264.0786, found 264.0779. 
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(±)-(1ʼR, 5ʼS)-spiro[cyclohexane-1,2' -4ʼ-(phenylmethoxy)-4ʼ- azabicyclo[3.2.1]oct[6]en]-

3'-one (66l): 

 

 Prepared in 81 % yield (0.26 mmol, 72.9 mg) from the reaction of 2-bromo-N- 

(phenylmethoxy)butanamide (0.32 mmol, 100.4 mg) with cyclopentadiene via general 

procedure B. Rf = 0.6 (3:1 hexanes:ethyl acetate); 1H-NMR (400 MHz, CDCl3): 7.42 (d, J = 

7.5 Hz, 2H), 7.40 – 7.29 (m, 3H), 6.25 (dd, J = 5.6, 2.0 Hz, 1H), 6.16 (dd, J = 5.6, 2.9 Hz 

1H), 4.92 (d, J = 10.4 Hz, 2H), 4.88 (d, J = 10.3 Hz, 2H), 3.84 (dd, J = 4.2, 3.5 Hz, 1H), 2.98 

(dd, J = 4.1, 3.1 Hz, 1H), 1.98 (d, J = 11.2 Hz, 1H), 1.94 (dt, J = 16.6, 12.6 Hz, 1H) 1.88-1.84 

(m, 1H), 1.83 (dt, J = 10.6, 4.5 Hz, 1H), 1.75 (dq, J = 13.4, 3.6 Hz, 1H), 1.70- 1.60 (m, 3H), 

1.55-1.42 (m, 2H), and 1.42-1.31 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 174.5, 138.6, 

136.4, 136.0, 130.0, 128.7, 128.5, 77.0, 64.4, 51.5, 42.3, 38.8, 34.3, 30.5, 25.7, 21.6, and 21.3; 

IR (film): 3062, 3030, 2925, 2858, 1662 (st), 1454, and 1371 cm-1; HR-ESIMS requires for 

C19H24NO2 (M+Na)+ 321.1699, found 321.1651. 

 

2-methyl-2-(2,2,2-trifluoroethoxy)-N-(phenylmethoxy)-propanamide (64): 

 

 Produced as a byproduct in 56% yield from the reaction of 2-bromo-2-methyl-N- 

(phenylmethoxy) propanamide with TEA in furan and trifluoroethanol. Rf = 0.26 (3:1 

hexanes:ethyl acetate); 1H NMR (500 MHz, CDCl3) δ 8.88 (s, 1H), 7.56 – 7.31 (m, 5H), 4.94 

(s, 2H), 3.68 (q, J = 8.3 Hz, 2H), 1.43 (s, 6H); 13C NMR (125 MHz, CDCl3) δ 170.8, 134.9, 

129.4, 129.0, 128.7, 123.7 (q, J = 278 Hz), 80.4, 78.3, 61.6 (q, J = 35 Hz), and 23.6; IR 
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(neat): 3218 (br), 3036; 2942, 2886, 1663 (st), 1430, 1455, 1485, 1386, 1369, 1307, 1285, 

1217, 1181, 1145, 1029, and 1010 cm-1; HR-ESIMS requires for C13H17F3NO3 (M+H)+ 

292.1155, found 292.1160. 

 

2-methyl-N-(phenylmethoxy)-2-propenamide: Elimination product from the reaction 

attempted cycloaddition of 62 with LiClO4/Et3N in diethyl ether. 

 

 Produced in 61% yield from the reaction of 2-bromo-2-methyl-N- (phenylmethoxy) 

propanamide with LiClO4/Et3N in furan and diethyl ether. Rf = 0.4 (3:1 hexanes:ethyl 

acetate); 1H NMR (400 MHz, CDCl3) δ 8.19 (br s, 1H), 7.49 – 7.29 (m, 5H), 5.55 (pent, J = 1 

Hz, 1H), 5.32 (dq, J = 1.6, 1.0 Hz, 1H), 4.96 (s, 2H), and 1.92 (dd, J = 1.6, 1.2 Hz, 3H); 13C 

NMR (101 MHz, CDCl3) δ 167.2, 138.0, 135.4, 129.5, 129.0, 128.8, 120.4, 78.3, and 18.6; IR 

(film): 3199 (br), 3064, 3032, 2954, 2878, 1658, 1620, 1496, 1453, 1372, 1322, 1209, and 

1039 cm-1; HR-ESIMS requires for C11H13NO2 (M+Na)+ 215.0871, found 215.0869. 
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Chapter 3: Target Directed Studies Of Aza-[4+3] Cycloaddition Scaffolds 

 

3.1 Introduction 

 The family of protein kinase C (PKC) enzymes catalyzes the transfer of the γ-phosphate 

from adenosine triphosphate (ATP) to serine or threonine residues on their respective substrate 

proteins.1-7 Phosphorylation that is mediated by PKC had been found to be pivitol in a number of 

cellular processes, including but not limited to gene expression and cell proliferation. Unregulated 

PKC activation has been discovered to play a part in a variety of clinical disease states, with the 

most prominent being carcinogenesis.8 Thus, extensive efforts have been made over the last 

several years to identify selective and potent inhibitors of PKC. Balanol 70 is a secondary 

metabolite of the fungus Verticillium balanoides, and was first isolated and characterized in 1993 

by Kulanthaivel and co-workers.9 Balanol was found to be a powerful inhibitor of PKC at low 

nanomolar concentrations, and its total synthesis has been reported by several research groups.10-

13 Given the seven-membered nitrogen ring at the core of its structure, we were curious to explore 

the possibility of utilizing our cycloaddition methodology (described in Chapter 2) toward a new 

approach to synthesizing balanol in an overall shorter and more concise route (Scheme 3.1.1). 

The first portion of this chapter outlines our progress in applying an aza-[4+3] cycloaddition 

substrate to the synthesis of balanol. 
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Scheme 3.1.1. Proposal to synthesize balanol 70 starting from a simple pre-functionalized α-haloamide. 

	  
 Iminosugars are analogues of monosaccharides where the endocyclic oxygen is replaced 

with a nitrogen atom, a substitution that prevents the metabolism of these compounds.14 

Polyhydroxylated piperidines, or six-membered ring-size iminosugars, have received the most 

attention to detail, owing to their ability to mimic their analogous pyranoses in interactions with 

carbohydrate-processing enzymes. Deoxynojirimycin 71 (DNJ) (Figure 3.1.1), an analogue of 

glucose, is the archetypal iminosugar and occurs naturally in mulberry plants, Streptomyces, and 

Bacillus.15 Miglitol 72 is an FDA approved anti-diabetic drug that functions by inhibiting the 
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body’s ability to breakdown carbohydrates into glucose, and has more recently been shown to 

reduce plasma lipids as well as inhibit free radical generation.16 Miglustat 73 (marketed under the 

trade name Zavesca) is an inhibitor of glucosylceramide synthase, and is used to treat adults with 

mild to moderate Type I Gaucher disease.17 Due to their similarity, iminosugars share many 

chemical features with mono- and disaccharides. With respect to spatial aspects, they occupy an 

area of chemical space similar to that of carbohydrates, but different from that of other small 

heterocyclic molecules typically explored in screening libraries.18 The attraction of iminosugars 

however extends beyond being simply different. As small polar molecules they possess the ability 

for efficient uptake by the body,19 while at the same time they remaining adequately distinct from 

carbohydrates to avoid processing by carbohydrate-modifying enzymes, thus giving them 

chemical and biological stability. This “dual nature” of properties sets apart iminosugars as a 

special class in the on-going search for new drug molecules. Continuing developments in the 

depths of understanding of glycobiology are constantly identifying new targets to which 

iminosugars can appropriately be applied in the search for drug candidates.18 Since the 

commercialization of the first iminosugar-based drug (GlysetTM) in 1996, the rate at which new 

discoveries in the field of sugar mimetics with nitrogen replacement of the endocyclic oxygen has 

been steadily on the rise.20 Several structures either have been, or are currently involved in 

clinical trials for the treatment of cancers,21 diabetes,22 viral infections,23 and rare genetic 

diseases.24,25  

 Our goal in the contribution to this rapidly growing field of research was to demonstrate 

the utility of our new reaction methodology (described in Chapter 2) to provide a general means 

to access iminosugar scaffolds. More specifically, we wanted to establish a versatile synthetic 

strategy that allowed for the option to access a variety of derivatives from our general aza-[4+3] 

cycloaddition scheme. Herein, the latter part of this chapter describes synthetic efforts devoted to 
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the construction of seven-membered iminosugar analogues from commercially available starting 

materials and a common intermediate in high yields and diastereoselectivity. 

3.2 Towards a Concise and Stereoselective Synthesis of Balanol 

 Synthetic studies toward the total synthesis of balanol began with α-chlorocycloadduct 74 

(from Chapter 2) (Scheme 3.2.1), thinking that the halogen functionality could provide a 

necessary handle for functional group manipulation at the 3-position of the azepane ring. 

Reduction of 74 using lithium aluminum hydride and aluminum trichloride proceeded cleanly to 

give azepine 75 in good yield. The next step of our synthesis would involve displacement of 

chloride by a nitrogen-centered nucleophile. Reaction of 75 with sodium azide in dimethyl 

sulfoxide (DMSO) at 90 °C was found to effectively install a nitrogen functionality. A one-pot 

reductive acylation sequence was carried out, using first palladium-catalyzed hydrogenation 

followed by acylation of the resulting free amine with p-methoxybenzoyl chloride. However upon 

purification, instead of the expected seven-membered azepane, piperidine 78 was recovered as the 

sole product, presumably to have arisen from ring contraction during the azide displacement step. 

Although we observed an unwanted ring size, we were able to demonstrate proof of concept 

toward realizing the core structure of balanol by esterifying the alcohol of 78 with benzoic 

anhydride, catalyzed by 4-dimethylaminopyridine (DMAP) to give 79 in good yield. 
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Scheme 3.2.1. Synthetic efforts directed toward balanol starting from cycloadduct 74. 

	  
 Given the exceptional electron rich character on the nitrogen atom due to the electron-

donating benzyloxy group, we proposed a plausible mechanism for the observed ring contraction 

in which intramolecular nucleophilic attack by nitrogen would give aziridinium ion 80 (Scheme 

3.2.2). Subsequent nucleophilic attack by azide to relieve the three-membered ring strain would 

ultimately give rise to piperidine 79. Attempts to directly displace chloride from the starting 

cycloadduct 74 including microwave and the previously described conditions all resulted in 

decomposition of the substrate. In light of ring contraction being an inevitable result of our 

current methodology, current work on this project is being focused on the development of new 

cycloaddition conditions that avoid the use of halogens. We are investigating conditions whereby 

an aza-oxyallylic cation intermediate 82 is generated by direct oxidation of α-nitrogen substituted 

amides 81, giving a cycloadduct such as 83. Reduction would provide pre-functionalized azepine 

84 with no need for nucleophilic substitution and circumventing the ring contraction problem. 
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Scheme 3.2.2. Proposed ring contraction mechanism and current work to circumvent problem. 

	  
3.3 Synthesis of 7-Membered Iminosugar Analogues: A General Strategy for the Rapid 

Construction of Polyhydroxylated Azepane Derivatives 

 Compared to naturally occurring five- and six-membered iminosugar homologues, 

polyhydroxylated azepanes or azepane iminosugars have garnered less attention and thus been 

less investigated. The first azepane iminosugars were first synthesized in 1967 by Paulsen,26 with 

more interest in this field being acquired thirty years later when Wong studied their bioactivities 

and found comparable outcomes with their five- and six-membered relatives.27-32 Over the past 

several years, new azepane iminosugar family members have surfaced including seven-membered 

DNJ homologues,28 and 1-N-iminosugars,29 both of which showed promising inhibitory 

properties. Additionally, acetylamino group substituted azepanes have been shown to be potent 

inhibitors of N-acetyl-β-hexosaminidases.30 Azepanes in bicyclic form, known as 

polyhydroxylated perhydroazaazulenes, have been synthesized although no significant biological 
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activity has been reported yet.31 Several other higher homologues of calystegine have also shown 

promising inhibitory properties.32 Despite all of the promising biological leads and increased 

interest in these types of compounds, currently no general synthetic strategies exist that allow for 

convenient structural modifications. We considered the possibility of utilizing aza-[4+3] 

cycloaddition reactions and the privileged scaffolds they afford, as well as the rich functionality 

produced from a single synthetic step, as potential building blocks for azepane iminosugars. 

Given the versatility of our method and the ability to readily tune the substituent groups at the 3-

position (Scheme 3.3.1), we sought to consider if seven-membered iminosugars could be 

accessed diastereoselectively and in only a few short synthetic steps. 

	  

Scheme 3.3.1. Using aza-[4+3] cycloaddition scaffolds to access seven-membered iminosugar derivatives. 

	  

	  
	  

Scheme 3.3.2. Synthesis of polyhydroxylated azepane 89 starting from cycloadduct 63. 
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 To explore the viability of our proposal, dimethyl cycloadduct 63 (Scheme 3.3.2) was 

chosen as a model substrate. Alkene dihydroxylation of 63 catalyzed by osmium tetroxide 

proceeded in high yield, giving syn-diol 85 as a single diastereoisomer. Protection of the diol as 

its acetal using 2,2-dimethoxypropane and catalyzed by camphor sulfonic acid gave cleanly 86 in 

excellent yield.33 Selective reductive N-O bond cleavage was accomplished by the action of 

Mo(CO)6 in refluxing acetonitrile and water to provide amide 87 in high yield.34 For the next 

step, it was found that refluxing of 87 in excess lithium aluminum hydride (LAH) not only 

provided reduction of the carbonyl, but also ring opening of the hemiaminal ether had occurred to 

give the desired azepane 88 in excellent yield and install the first hydroxyl group. The structure 

and relative stereochemistry of 88 was unambiguously assigned by single crystal X-ray 

diffraction (Figure 3.3.1). Finally, stirring of 88 in trifluoroacetic acid and water was found to 

cleanly deprotect the diols to give the desired polyhydroxylated azepane 89 in good overall yield 

starting from cycloadduct 63. 

 

	  

Figure 3.3.1.	  Thermal ellipsoid plot of azepane 88 at 50% probability. Hydrogen atoms are represented as 
spheres of arbitrary radius. Grey = carbon, red = oxygen, blue = nitrogen. 
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Alternatively, it was found that we could eliminate the protection/deprotection steps and 

synthesize 89 more directly and efficiently simply by reordering the reaction sequence. Reductive 

cleavage of the N-O bond of 63 by Mo(CO)6 provided amide 90 with no sacrifice in yield 

(Scheme 3.3.3). Next, LAH mediated amide reduction and subsequent hemiaminal ether ring 

opening gave azepine 91. Catalytic dihydroxylation again by osmium tetroxide yielded 89 in 

excellent overall yield, completing the synthesis and providing access to the seven-membered 

iminosugar family of compounds in only five synthetic steps and excellent overall yield from 

commercially available starting materials. Although simple in form, the reaction sequence 

described provides access to seven-membered iminosugar scaffolds in only 5 short synthetic steps 

and relatively easy reactions. Additionally, the methodology provides for a large degree of 

variability at the C-terminus of a simple α-haloamide starting material. This type of methodology 

could easily be employed to assist in the construction of libraries of compounds to test for 

biological activity as well as structure activity relationship (SAR) studies. 

 

	  

Scheme 3.3.3. Alternative synthesis of polyhydroxylated azepane 89 starting from a simple acid halide. 
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Attention was turned towards the α-chloro-cycloadduct, thinking that the halogen 

functionality could provide the necessary handle for installing a fourth hydroxyl group on the 

ring. Initial studies began by subjecting either endo or exo α-chloro-cycloadduct 66 to N-O bond 

cleaving conditions, however this reaction proved ineffective and resulted in decomposition of 

the starting material (Scheme 3.3.4). Other reductive conditions including Zn/AcOH, SmI2, and a 

titanocene (III) chloride procedure reported by Miller and co-workers35 were all found to be 

incompatible with the substrate and could not affect the desired N-O bond cleavage. Under 

palladium catalyzed hydrogenation conditions, C-O bond reduction resulted in recovery of 

undesired hydroxamic acid 92 as the sole product. 

 

	  

Scheme 3.3.4. Screening of N-O reduction conditions of 66. 
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proved to be unproductive and resulted in either decomposition or recovery of the starting 

material (Scheme 3.3.5). In an effort to circumvent these issues, we thought that re-ordering of 

the reaction scheme could provide a solution to the observed difficulties. At this point, studies 

were conducted on α-alkyl-substituted substrates as model systems in parallel with the α-chloro 

cycloadduct material for purposes of reaction exploration/optimization. Dihydroxylation of 

cycloadducts endo 66f and 66c by osmium tetroxide was found to proceed in good yield 

providing syn-diols 93 and 95 (Scheme 3.3.6). Subsequent protection of the alcohols using 2,2-

dimethoxypropane and catalyzed by camphor sulfonic acid as previously described gave acetals 

94 and 96 in excellent yield, setting the stage for reduction of the amide and ring opening of the 

hemiaminal ether.33 Treatment of 96 to LAH following the previously mentioned conditions 

however was found to be unproductive, which instead of the desired product, resulted in recovery 

of carbinol amine 97, albeit as a single diastereoisomer. The structure of 97 was confirmed as 

well as the relative stereochemical configuration unambiguously assigned by single crystal X-ray 

analysis (Figure 3.3.2). 



	   54 

	  

Scheme 3.3.6. Synthesis of acetal-protected diols 94 and 96 starting from cycloadducts endo 66f and 66c. 
LAH reduction of 96 to give carbinol amine 97. 
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Figure 3.3.2. Thermal ellipsoid plot of carbinol amine 97 at 50% probability. Hydrogen atoms are 
represented as spheres of arbitrary radius. Grey = carbon, red = oxygen, blue = nitrogen. 

	  
	   Aluminum hydride, or alane (generated in situ from lithium aluminum hydride and 

aluminum trichloride), has been shown to be an excellent overall reducing agent that reduces a 

wide variety of functional groups while leaving unaltered halogens, alkenes, and nitro groups.36 

Although evidence supporting single electron pathway mechanisms has been reported,37 

reductions by alane take place primarily by a two-electron mechanism.38,39 In this light, we 

proposed that alane would be a suitable reducing reagent that could chemoselectively reduce the 

amide while at the same time leaving the chloride unaffected. Indeed, upon subjection of acetal-

protected diol 94 to a solution of LAH and aluminum trichloride in THF, it was found that the 

amide was reduced to the desired amine as well as the aminal ether ring opened to give an 

alcohol, however the acetal had also been reduced to give isopropyl ether 98 as the final product 

(Scheme 3.3.6). After consulting the literature we discovered that reduction of acetals by alane to 

give the half protected diol is a known transformation.40 Other reducing agents such as borane, 

lithium triethylborohydride (super hydride), diisobutylaluminum hydride (DIBAL), and sodium 
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borohydride all failed to give the desired reactivity as well and resulted in recovery of the starting 

material. 

	  

Scheme 3.3.7. Alane reduction of 94 to give isopropyl ether 98. 

	  
 Once again we thought that perhaps re-ordering of the reaction scheme could possibly 

circumvent the observed unwanted reactivity. Since alane has been shown to be tolerant of both 

halogens and double bonds, it was hypothesized that reduction of α-chloro cycloadduct endo 66f 

as the first step in our synthesis could be a viable option. Exposure of endo 66f to a slight excess 

of aluminum hydride under refluxing conditions was found to effectively provide azepine 75 

(previously synthesized in Section 3.2) in good yield and as a single diastereoisomer (Scheme 

3.3.8). Attempts to displace chloride with oxygen-centered nucleophiles under previously 

described conditions (Scheme 3.3.5) resulted in either decomposition or recovery of the starting 

material, with the exception of one case. We found that 3-chloroazepine 75 underwent facile ring 

contraction when reacted with silver acetate in DMF at 90 °C, giving tetrahydropyridine 100 in 

modest yield, albeit as a single diastereoisomer. Again, given the exceptional electron-rich 

character of the nitrogen atom, a plausible mechanism would involve the ring contraction going 

through an aziridinium ion intermediate such as 99 and ultimately collapsing to the six-membered 
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serendipitous result as an opportunity to extend our aza-[4+3] cycloaddition scaffolds to the 
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electron donating character on the nitrogen atom. Therefore, ring contraction turned out to be an 

inevitable result and we were unable to install a fourth oxygen functionality with our current 

methodology and retain the seven-membered ring, regardless of reaction conditions or re-ordering 

of the synthetic scheme. 

 

	  

Scheme 3.3.8. Alane reduction of cycloadduct endo 66f to give azepine 75 and subsequent silver acetate-
mediated ring contraction to give tetrahydropyridine 100. 

	  
	  
3.4 Experimental 
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was recorded on Silicycle glass 60 F254 plates and developed by staining with KMnO4 or ceric 

ammonium molybdate. Purification of reaction products was carried out by flash chromatography 

using Silicycle Siliaflash® P60 (230-400 mesh). 1H-NMR spectra were measured on Varian 400 

(400 MHz) or Varian 500 (500 MHz) spectrometers and are reported in ppm (s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet, br = broad; integration; coupling constant(s) in Hz 
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internal standard (CDCl3 at 77.36 ppm), (CD3CN at 118.26 ppm) or (CD3OD at 49.86 ppm). 

Infrared (IR) spectra were recorded on a Nicolet 6700 FT-IR with a diamond ATR and data are 

reported as cm-1 (br = broad, st = strong). High-resolution mass spectra were obtained using an 

Agilent 6230 TOF LC/MS with an atmospheric pressure photo-ionization (APPI) or electrospray 

(ESI) source with purine and HP-0921 as internal calibrants. 

 

(±)-(4S, 5R, 1S)-4-chloro-8-oxo-2-(phenylmethoxy)-2-azabicyclo[3.2.1]oct-6-en-3-one (66f 

endo, 74) 

 

 To a solution of 2,2-dichloro-N-(phenylmethoxy)acetamide (100.2 mg, 0.43 mmol) in 

CF3CH2OH (TFE) and furan [1:1 (v/v) 0.25 M] at 0 °C was added triethylamine (2 equiv.) 

dropwise. The solution was allowed to warm to room temperature and the reaction mixture was 

stirred for 72 hours. After removal of the volatiles under reduced pressure, the crude mixture was 

purified by flash column chromatography (3:1 hexanes:ethyl acetate) to afford 72 mg of 74 endo 

(0.31 mmol, 79% yield) (2:1 endo:exo) as a yellow oil. Rf = 0.50 (3:1 hexanes:ethyl acetate); 1H 

NMR (400 MHz, CDCl3) δ 7.51 – 7.30 (m, 3H), 6.54 (dd, J = 6.0, 1.1 Hz, 1H), 6.51 (dd, J = 6.0, 

1.7 Hz, 1H), 5.27 (d, J = 1.1 Hz, 1H), 5.09, (dd, J = 5.1, 1.6 Hz, 1H), 5.00 (d, J = 11.0 Hz, 1H), 

4.89 (d, J = 11.0 Hz, 1H), 5.09 (dd, J = 5.1, 1.6 Hz, 1H), 5.00 (d, J = 11.0 Hz, 1H), 4.89 (d, J = 

11.0 Hz, 1H), and 4.76 (d, J = 5.2 Hz, 1H); 13C NMR (101 MHz, CDCl3) δ 165.9, 136.8, 135.3, 

133.1, 129.8, 129.2, 128.2, 92.1, 82.1, 78.3, and 56.9; IR (film) 3032, 2950, 2922, 2852, 1712 (s), 

1455, 1369, 1213, 1189, 1059, 1023 cm-1. HR-ESIMS requires for C13H12ClNNaO3 (M+Na)+ 

288.0398, found 288.0391. 
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(±)-(3S, 4R)-N-phenylmethoxy-3-chloro-4-hydroxy-2,3,4,7-tetrahydro-1H-azepine (75) 

 

 To an oven dried 100 mL Schlenk flask equipped with a magnetic stir bar was added dry 

THF (19 mL) under an atmosphere of nitrogen. The flask was placed in an ice bath and aluminum 

chloride (7.57 mmol, 1.01 g) was added in portions over a period of 5 minutes. Upon complete 

dissolution of the aluminum chloride, a solution of lithium aluminum hydride in dry THF (11.4 

mmol, 5.7 mL) was added dropwise at that same temperature over a period of 15 minutes and the 

resulting solution was stirred at 0 °C for 20 minutes. The cycloadduct 74 (3.79 mmol, 1.01 g) was 

then added in THF (25 mL) dropwise over a period of 20 minutes and the reaction mixture was 

refluxed under nitrogen for 1.5 hours. The reaction flask was cooled to 0 °C and quenched with 

water followed by 10% NaOH. The aluminum salts were filtered off and the filtrate was dried 

over Na2SO4 and concentrated under reduced pressure. The crude residue was purified by column 

chromatography (10% - 33% Hex:EtOAc) to afford 0.67 g of 75 as a white crystalline solid (2.64 

mmol, 70% yield). Rf = 0.54 (2:1 hexanes:ethyl acetate); M.P. 59.5 – 62.0 °C; 1H NMR (500 

MHz, CDCl3): δ 7.35 – 7.30 (m, 5H), 5.81 (dt, J = 11.9, 3.1 Hz, 1H), 5.67 (dt, J = 12.0, 6.0 Hz, 

1H), 4.69 (s, 2H), 4.36 (d, J = 8.2 Hz, 1H), 4.18 (td, J = 8.3, 4.7 Hz, 1H), 3.77 (dd, J = 14.1, 4.7 

Hz, 1H), 3.62 (dd, J = 15.9, 6.2 Hz, 1H), 3.44 – 3.39 (m, 1H), 3.22 (dd, J = 14.0, 8.0 Hz, 1H), and 

2.86 – 2.83 (m, 1H); 13C NMR (101 MHz, CDCl3): δ 137.20, 132.20, 128.71, 128.38, 128.03, 

126.27, 74.64, 73.34, 64.26, 61.87, and 57.41; IR (neat) 3556, 3105 (br), 3006, 2987, 2965, 1464, 

1376, 1055 (s), and 1037 cm-1; HR-ESIMS requires for C13H17ClNO2 (M+H)+ 254.0948, found 

254.0950. 
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(±)- (2S, 3R)-N-phenylmethoxy-2-azidomethyl-3-hydroxy-1,2,3,6-tetrahydropyridine (76) 

 

 To a solution of 75 (4.94 mmol, 1.46 g) in DMSO (36 mL) was added sodium azide (28.8 

mmol, 1.88 g) all at once and the resulting solution was stirred at 90 °C until TLC analysis 

indicated complete consumption of the starting material (3 days). The reaction was quenched with 

water and the aqueous layer was extracted with ethyl acetate (3 x 25 mL). The combined organic 

extracts were washed with water, brine, and then dried over anhydrous sodium sulfate. After 

concentration under reduced pressure the crude residue was purified by column chromatography 

to afford 1.05 g of azide 76 (4.03 mmol, 82% yield) as a pale yellow oil. Rf = 0.4 (2:1 

hexanes:ethyl acetate); 1H NMR (400 MHz, CD3OD): δ 7.35 – 7.25 (m, 5H), 5.69 (t, J = 6.2 Hz, 

1H), 5.62 (ddd, J = 9.9, 4.0, 1.9 Hz, 1H), 4.80 (s, 1H), 4.74 (d, J = 1.7 Hz, 2H), 4.21 (d, J = 9.6 

Hz, 1H), 3.73 (d, J = 13.2 Hz, 1H), 3.65 – 3.57 (m, 2H), 3.31 (d, J = 15.3 Hz, 1H), and 2.72 (br s, 

1H); 13C NMR (101 MHz, CD3OD): δ 137.16, 128.82, 128.56, 128.01, 127.67, 123.94, 74.72, 

67.76, 65.05, 53.49, and 48.63; IR (neat) 3361 (br), 3087, 3063, 3031, 2919, 2872, 2822, 2094 

(st), 1493, 1451, 1363, 1280, 1260, 1207, 1080, 1018, 909, 868, 844, and 741 cm-1; HR-ESIMS 

requires for C13H16N4O2 (M+H)+ 261.1346, found 261.1344. 
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(±)- (2S, 3R)-N-phenylmethoxy-2-((4-methoxybenzene)amido)-3-hydroxypiperidine (78) 

 

 To a solution of 76 (2.0 mmol, 520 mg) in methanol (10 mL) was added palladium 

hydroxide on activated carbon (10 mol%, 5 mg) and the resulting black suspension was placed 

under an atmosphere of hydrogen (atmospheric pressure) and stirred at room temperature until 

TLC analysis indicated complete consumption of the starting material and appearance of a polar 

spot (4 hours). The reaction mixture was filtered over celite and the pad washed with methanol (3 

x 10 mL) and then concentrated under reduced pressure. The resulting residue was then taken up 

in dichloromethane (20 mL) and triethylamine (2.4 mmol, 0.3 mL) and cooled to 0 °C. 4-

methoxybenzoyl chloride was added dropwise and the reaction mixture was allowed to reach 

room temperature. When TLC analysis indicated complete consumption of the polar spot the 

solvent was removed under reduced pressure and the crude residue was purified by column 

chromatography (3:1 to 2:1 hexanes:ethyl acetate) to give 580 mg of 78 (1.6 mmol, 78% yield) as 

a yellow oil. Rf = 0.2 (1:1 hexanes:ethyl acetate); 1H NMR (400 MHz, CDCl3): δ 7.54 – 7.27 (m, 

6H), 6.88 – 6.76 (m, 2H), 5.46 (s, 1H), 5.01 – 4.96 (m, 1H), 4.69 (dd, J = 12.1, 4.2 Hz, 1H), 4.57 

(dd, J = 12.1, 4.1 Hz, 1H), 4.09 – 4.03 (m, 1H), 3.94 (ddt, J = 11.9, 7.5, 4.1 Hz, 1H), 3.79 (s, 3H), 

3.48 – 3.40 (m, 2H), 3.13 (br s, 1H), 2.44 – 2.26 (m, 2H), 1.98 (d, J = 4.8 Hz, 1H), 1.91 – 1.84 

(m, 1H), 1.70 (d, J = 9.2 Hz, 1H), 1.42 – 1.24 (m, 2H), and 1.20 (td, J = 7.1, 3.0 Hz, 1H); 13C 

NMR (101 MHz, CDCl3): δ 162.29, 138.22, 129.51, 129.04, 128.71, 128.31, 125.76, 122.62, 

113.44, 73.19, 66.80, 60.31, 55.37, 37.01, 31.10, 20.98, and 14.17; IR (neat) 3420, (br), 3343 

(br), 3028, 2939, 2860, 2833, 1631, 1605, 1534, 1496, 1457, 1443, 1298, 1251, 1177, 1098, 1030, 

912, 844, and 768 cm-1; HR-ESIMS requires for C21H27N2O4 (M+H)+ 371.1965, found 371.1964. 

N

HO

OBnN3 1. H2, Pd(OH)2(C)

2. p-(OMe)C6H5COCl

MeOH, R.T.

Et3N

N

HO

OBnNH

O

MeO



	   62 

(±)-(2S, 3R)-N-phenylmethoxy-2-((4-methoxybenzene)amido)-3-hydroxybenzoic acid 

piperidine (79) 

 

 To a solution of 78 (0.7 mmol, 250 mg) in pyridine was added benzoic anhydride (1.4 

mmol, 318 mg) and DMAP (20 mol%, 30 mg) and the resulting solution was stirred at room 

temperature overnight. Upon completion, the reaction was quenched with saturated sodium 

bicarbonate solution and extracted with ether (3 x 15 mL). The combined organic extracts were 

washed with water, brine, dried over anhydrous sodium sulfate, and concentrated under reduced 

pressure to give 273 mg of 79 (0.6 mmol, 82% yield) as a pale yellow oil that was used without 

further purification. Rf = 0.4 (2:1 hexanes:ethyl acetate); 1H NMR (400 MHz, CDCl3): δ 8.62 – 

8.59 (m, 1H), 8.06 – 8.01 (m, 3H), 7.55 – 7.51 (m, 3H), 7.44 – 7.39 (m, 3H), 7.30 – 7.25 (m, 5H), 

6.83 (d, J = 8.8 Hz, 2H), 4.72 (d, J = 7.5 Hz, 2H), 3.82 (s, 3H), 3.50 (d, J = 11.7 Hz, 1H), 2.63 (s, 

1H), 2.23 (d, 11.3 Hz, 1H), 1.79 – 1.70 (m, 2H), and 1.50 – 1.40 (m, 1H); 13C NMR (101 MHz, 

CDCl3): δ 166.58, 161.86, 149.78, 135.92, 133.05, 132.85, 129.72, 129.53, 128.68, 128.55, 

128.38, 128.31, 123.69, 113.48, 106.48, 55.33, 39.14, 38.13, and 29.65; IR (neat) 3063, 3031, 

3007, 2945, 2860, 2836, 1717 (st), 1658, 1605, 1531, 1493, 1452, 1313, 1295, 1251, 1177, 1107, 

1065, 1027, 989, 936, 912, 841, and 762 cm-1; HR-ESIMS requires for C28H30N2O5 (M+H)+ 

475.2227, found 475.2224. 
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(±)-(6R, 7R, 5R, 1S)-4,4-dimethyl-6,7-dihydroxy-8-oxo-2-(phenylmethoxy)-2-

azabicyclo[3.2.1]oct-3-one (85) 

 

 To a solution of 63 (3.86 mmol, 1.00g) in acetonitrile, water, and acetone (23 mL total, 

1:1:1 v/v) at room temperature was added NMO (7.72 mmol, 0.8 mL, 50 wt% in H2O) followed 

by an OsO4 solution (5.02 mL of 1 wt% in H2O). The reaction mixture was stirred overnight at 

that same temperature followed by filtering of the solution over a pad of celite. The pad was 

washed with ethyl acetate (3 x 15 mL) and the solvent removed under reduced pressure. The 

crude product was recrystallized from DCM:hexanes to give the pure diol 975 mg of 85 as light 

green crystals (3.32 mmol, 86% yield). Rf = 0.2 (1:1 hexanes:ethyl acetate); M.P. = 116.4 – 117.9 

°C; 1H NMR (500 MHz, CDCl3): δ 7.45 – 7.34 (m, 5H), 4.96 (d, J = 10.6 Hz, 1H), 4.84 (d, J = 

10.7 Hz, 1H), 4.82 (d, J = 1.0 Hz, 1H), 4.36 (dd, J = 5.2, 1.0 Hz, 1H), 4.22 (q, J = 6.2 Hz, 2H), 

3.48 (s, 2H), 2.72 (dt, J = 9.4, 5.4 Hz, 1H), 1.27 (s, 3H), and 1.19 (s, 3H); 13C NMR (126 MHz, 

CDCl3): δ 169.19, 134.60, 129.67, 129.11, 128.66, 93.94, 85.53, 77.58, 74.02, 69.75, 47.49, 

18.70, and 12.26; IR (neat) 3272 (br), 3031, 2992, 2969, 2928, 2869, 1690, 1658 (st), 1454, 1401, 

1384, 1357, 1333, 1242, 1216, 1107, 1095, 1051, 1036 (st), 1009, 989, 933, 824, 765, 741, and 

700 cm-1; HR-ESIMS requires for C15H19NO5 (M+Na)+ 316.1155, found 316.1160. 
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(±)-(6R, 7R, 5R, 1S)-4,4-dimethyl-6,7-dimethyldioxolan-8-oxo-2-(phenylmethoxy)-2-

azabicyclo[3.2.1]oct-3-one (86) 

 

 To a solution of 85 (8.3 mmol, 2.4 g) in dichloromethane (35.0 mL) and 2,2-

dimethoxypropane (12.5 mmol, 1.5 mL) was added camphor-10-sulfonic acid (2 mol%, 39 mg) 

and the resulting solution was stirred at room temperature for 3 hours. The reaction mixture was 

quenched with saturated sodium bicarbonate and the aqueous layer was extracted with 

dichloromethane (3 x 25 mL). The combined organic layers were washed with brine, dried over 

anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was 

purified by column chromatography (3:1 hexanes:ethyl acetate) to afford 1.86 g of 86 as a white 

crystalline solid (5.6 mmol, 96% yield). Rf = 0.5 (3:1 hexanes:ethyl acetate); M.P. = 101.3 °C; 1H 

NMR (500 MHz, CDCl3): δ 7.43 – 7.35 (m, 5H), 4.97 (d, J = 10.7 Hz, 1H), 4.87 (d, J = 10.7 Hz, 

1H), 4.79 (s, 1H), 4.74 (d, J = 5.6 Hz, 1H), 4.69 (d, J = 5.6 Hz, 1H), 3.98 (s, 1H), 1.44 (s, 3H), 

1.41 (s, 3H), 1.27 (s, 3H), and 1.19 (s, 3H); 13C NMR (121 MHz, CDCl3): δ 172.67, 134.81, 

129.82, 129.09, 128.64, 112.82, 92.22, 89.23, 82.41, 79.05, 43.87, 27.37, 25.96, 24.86, and 19.54; 

IR (neat) 3034, 2984, 2931, 2869, 1672 (st), 1490, 1472, 1457, 1395, 1378, 1254, 1230, 1207, 

1163, 1065 (st), 1045, 1009, 962, 892, 818, and 744 cm-1; HR-ESIMS requires for C18H23NO5 

(M+Na)+
 356.1468, found 356.1467. 
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(±)-(6R, 7R, 5R, 1S)-4,4-dimethyl-6,7-dimethyldioxolan-8-oxo-2-azabicyclo[3.2.1]oct-3-one 

(87) 

 

 To a stirred solution of 86 (3.6 mmol, 1.2 g) degassed under nitrogen in ACN:H2O (35.0 

mL, 9:1 v/v) was added Mo(CO)6 (4.32 mmol, 1.14 g) all at once and the resulting solution was 

degassed again. The reaction mixture was refluxed vigorously overnight followed by filtering 

through a pad of celite. The pad was washed with 3 x 20 mL portions of ethyl acetate and the 

filtrate was concentrated under reduced pressure. The crude residue was purified by column 

chromatography (1:1 hexanes:ethyl acetate) to afford 668 mg of the pure amide 87 as a white 

solid (2.94 mmol, 82% yield). Rf = 0.1 (1:1 hexanes:ethyl acetate); M.P. = 194.8 °C; 1H NMR 

(500 MHz, CDCl3): δ 6.87 (br s, 1H), 5.04 (d, J = 3.3 Hz, 1H), 4.87 (d, J = 5.6 Hz, 1H), 4.65 (d, J 

= 5.6 Hz, 1H), 4.04 (s, 1H), 1.48 (s, 3H), 1.40 (s, 3H), 1.32 (s, 3H), and 1.19 (s, 3H); 13C NMR 

(121 MHz, CDCl3) δ 174.70, 112.87, 88.67, 85.83, 85.51, 79.12, 42.27, 27.51, 26.10, 25.04, and 

19.86; IR (neat) 3181 (br), 2989, 2975, 2945, 2877, 1672 (st), 1634, 1484, 1469, 1451, 1366, 

1263, 1224, 1207, 1189, 1166, 1092, 1059 (st), 1042, 1015, 971, 933, 871, 836, 818, and 785 cm-

1; HR-ESIMS requires for C11H17NO4 (M+Na)+ 250.1055, found 250.1054. 
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(±)-(6R, 7R, 5R, 1S)-4,4-dimethyl-6,7-dimethyldioxolan-2,3,4,7-tetrahydro-1H-azepine (88) 

 

 To a stirred solution of 87 (0.44 mmol, 100 mg) in dry THF (5 mL) at 0 °C was added a 

solution of LAH (1.76 mmol, 0.88 mL) in dry THF dropwise. Upon addition the ice bath was 

removed and the reaction mixture was refluxed overnight. Upon completion the reaction mixture 

was quenched with water and sodium hydroxide at 0 °C followed by filtration of the inorganic 

salts. The filtrate was dried over anhydrous magnesium sulfate, filtered, and concentrated under 

reduced pressure. The crude residue was purified by column chromatography 

(EtOAc:MeOH:Et3N 2% MeOH, 1% Et3N) to afford 78.4 mg of the pure azepane 88 as an 

opaque solid (0.36 mmol, 83% yield). X-ray quality crystals were grown by slow evaporation of a 

dichloromethane/hexanes solution of 88. Rf = 0.3 (EtOAc:MeOH:Et3N 2% MeOH, 1% Et3N); 

M.P. = 126.9 °C; 1H NMR (500 MHz, CDCl3): δ 4.36 (dd, J = 7.8, 2.9 Hz, 1H), 4.30 (ddd, J = 

10.5, 7.8, 5.5 Hz, 1H), 3.64 (d, J = 2.7 Hz, 1H), 3.10 (d, J = 10.0 Hz, 1H), 3.01 (dd, J = 12.8, 10.5 

Hz, 1H), 2.34 (d, J = 13.0 Hz, 1H), 1.49 (s, 3H), 1.36 (s, 3H), 1.01 (s, 3H), and 0.98 (s, 3H); 13C 

NMR (121 MHz, CDCl3): δ 107.96, 78.07, 77.52, 56.11, 49.85, 37.47, 27.43, 26.61, 23.66, and 

22.23; IR (neat) 3087 (br), 2984, 2954, 2916, 2866, 2845, 1466, 1451, 1378, 1354, 1266, 1213, 

1168, 1145, 1104, 1060 (st), 1033, 1009, 978, 877, 827, and 809 cm-1; HR-ESIMS requires for 

C11H21NO3 (M+H)+ 216.1594, found 216.1593. 
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(±)-(4R, 5R, 6R)-4,5,6-trihydroxy-3,3-dimethylazepane (89) 

 

 To a solution of trifluoroacetic acid (10 mL) and water (5 mL) was added 88 (0.23 mmol, 

50 mg) and the resulting solution was stirred at room temperature for 3 hours. After removal of 

the volatiles under reduced pressure, the crude residue was ran through a short plug of silica gel 

(EtOAc:MeOH:Et3N 20% MeOH, 1% Et3N, eluent) and concentrated to give 35 mg of 89 as a 

colourless oil (0.2 mmol, 87% yield). Rf = 0.3 (EtOAc:MeOH:Et3N 20% MeOH, 1% Et3N); 1H 

NMR (400 MHz, CD3OD): δ 4.15 – 4.07 (m, 1H), 4.00 (t, J = 2.2 Hz, 1H), 3.51 (d, J = 2.0 Hz, 

1H), 3.28 (dtd, J = 3.4, 2.0, 1.2 Hz, 1H), 3.25 (d, J = 4.6 Hz, 1H), 3.16 (d, J = 0.7 Hz, 1H), 2.87 

(d, J = 13.8 Hz, 1H), 1.12 (s, 3H), and 1.07 (s, 3H); 13C NMR (101 MHz, CD3OD): δ 78.92, 

74.95, 68.86, 53.33, 46.39, 36.50, 25.12, and 23.20; IR (neat) 3352 (br), 3090, 2975, 2913, 2880, 

1666, 1472, 1425, 1198, 1177, 1089, 1062, 1012, 936, 836, 800, and 718 cm-1; HR-ESIMS 

requires for C8H17NO3 (M+H)+ 176.1281, found 176.1282. 

 

(±)-(1R, 5S)-4,4-dimethyl-8-oxo-2-azabicyclo[3.2.1]oct-6-en-3-one (90) 

 

 To a stirred solution of 63 (3.02 mmol, 783.5 mg) degassed under nitrogen in ACN:H2O 

(20.1 mL, 9:1 v/v) was added Mo(CO)6 (3.62 mmol, 957 mg) all at once and the resulting 

solution was degassed again. The reaction mixture was refluxed vigorously overnight followed by 

filtering through a pad of celite. The pad was washed with 3 x 15 mL portions of ethyl acetate and 
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the filtrate was concentrated under reduced pressure. The crude residue was purified by column 

chromatography (1:1 hexanes:ethyl acetate) to afford 420 mg of the pure amide 90 as a white 

solid (2.74 mmol, 91% yield). Rf = 0.1 (1:1 hexanes:ethyl acetate); M.P. = 130.5 – 133.5 °C; 1H 

NMR (500 MHz, CDCl3): δ 7.65 (s, 1H), 6.55 (dd, J = 6.0, 1.4 Hz, 1H), 6.40 (dd, J = 5.9, 1.9 Hz, 

1H), 5.44 (dd, J = 3.0, 1.4 Hz, 1H), 4.50 (d, J = 1.9 Hz, 1H), 1.46 (s, 3H), and 1.04 (s, 3H); 13C 

NMR (101 MHz, CDCl3): δ 176.17, 136.80, 132.08, 86.26, 84.65, 47.21, 27.29, and 19.79; IR 

(neat) 3163 (br), 3053, 2998, 2961, 2933, 2903, 2872, 1647 (st), 1473, 1460, 1393, 1356, 1326, 

1262, 1246, 1179, 1048, 944, 892, 852, and 742 cm-1; HR-ESIMS requires for C8H11NO2 

(M+Na)+ 176.0682, found 176.0682. 

 

(±)-4-hydroxy-3,3-dimethyl-2,4,7-trihydro-1H-azepine (91) 

 

 To a solution of 90 (0.71 mmol, 100 mg) in dry THF (3 mL) at 0 °C was added a solution 

of LAH (2.84 mmol, 1.42 mL) in dry THF dropwise. The ice bath was removed and the reaction 

mixture was refluxed overnight under a nitrogen atmosphere. Upon completion, the reaction was 

quenched with water and 10% NaOH. The inorganic salts were filtered and the filtrate was dried 

over anhydrous sodium sulfate followed by concentration under reduced pressure. The crude 

residue was purified by flash chromatography (EtOAc:MeOH:Et3N 10% MeOH, 1% Et3N) to 

afford 82 mg of azepine 91 as a light brown oil (0.6 mmol, 82% yield). (Rf = 0.3 (ethyl acetate, 

10 % methanol, 1% triethylamine); 1H NMR (400 MHz, CDCl3): δ 5.99 – 5.92 (m, 1H), 5.65 

(dtd, J = 11.5, 3.9, 0.8 Hz, 1H), 3.74 (d, J = 6.3 Hz, 1H), 3.59 – 3.52 (m, 1H), 3.42 (s, 2H), 3.36 – 

3.28 (m, 1H), 2.91 (dd, J = 13.6, 1.0 Hz, 1H), 2.58 (d, J = 13.6 Hz, 1H), 1.09 (s, 3H), and 0.84 (s, 

3H); 13C NMR (101 MHz, CDCl3): δ 133.54, 129.73, 76.32, 60.18, 50.70, 39.74, 26.23, and 
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25.16; IR (neat) 3308 (br), 3022, 2948, 2901, 2866, 1646, 1622, 1454, 1407, 1384, 1360, 1307, 

1278, 1216, 1121, 1042 (st), 1021, 956, and 871 cm-1; HR-ESIMS requires for C8H15NO (M+H)+ 

142.1226, found 142.1224. 

 

(±)-(4R, 5R, 6R)-4,5,6-trihydroxy-3,3-dimethylazepane (89) 

 

 Osmium tetroxide (0.5 mL of a 1 wt% solution in water) and NMO (0.71 mmol, 0.1 mL) 

were added to a stirred solution of 91 (0.35 mmol, 50 mg) in acetonitrile, water, and acetone (2.1 

mL, 1:1:1 v/v) and the resulting reaction mixture was stirred under nitrogen overnight. The 

reaction mixture was filtered over celite and the pad washed with methanol (3 x 10 mL) followed 

by concentration under reduced pressure. The residue was passed through a plug of silica gel 

(EtOAc:MeOH:Et3N 20% MeOH, 1% Et3N, eluent) followed by concentration to give 49.5 mg of 

89 as a colourless oil (0.28 mmol, 81% yield). Rf = 0.3 (EtOAc:MeOH:Et3N 20% MeOH, 1% 

Et3N); 1H NMR (400 MHz, CD3OD): δ 4.15 – 4.07 (m, 1H), 4.00 (t, J = 2.2 Hz, 1H), 3.51 (d, J = 

2.0 Hz, 1H), 3.28 (dtd, J = 3.4, 2.0, 1.2 Hz, 1H), 3.25 (d, J = 4.6 Hz, 1H), 3.16 (d, J = 0.7 Hz, 

1H), 2.87 (d, J = 13.8 Hz, 1H), 1.12 (s, 3H), and 1.07 (s, 3H); 13C NMR (101 MHz, CD3OD): δ 

78.92, 74.95, 68.86, 53.33, 46.39, 36.50, 25.12, and 23.20; IR (neat) 3352 (br), 3090, 2975, 2913, 

2880, 1666, 1472, 1425, 1198, 1177, 1089, 1062, 1012, 936, 836, 800, and 718 cm-1; HR-ESIMS 

requires for C8H17NO3 (M+H)+ 176.1281, found 176.1282. 
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(±)-(4R, 5R, 1S)-4-chloro-8-oxo-2-(hydroxy)-2-azabicyclo[3.2.1]oct-3-one (92) 

 

 To a solution of 66f (4.22 mmol, 1.12 g) in ethyl acetate (21.1 mL) was added palladium 

on activated carbon (10% by mass, 0.11 g) and the resulting suspension was evacuated under 

vacuum and hydrogenated at atmospheric pressure for 30 minutes. The reaction mixture was 

filtered over a pad of celite and the pad washed with 3 x 10 mL portions of ethyl acetate to give 

675 mg of hydroxamic acid 92 (3.8 mmol, 90% yield) as an orange solid that was used without 

any further purification. Rf = 0.1 (1:1 hexanes:ethyl acetate); M.P. = Decom. 1H NMR (500 MHz, 

CDCl3): δ 9.74 (br s, 1H), 6.10 (s, 1H), 5.41 (d, J = 4.1 Hz, 1H), 4.77 (d, J = 2.7 Hz, 2H), 2.55 

(ddd, J = 12.4, 9.4, 2.7 Hz, 1H), 2.33 – 2.24 (m, 1H), 2.15 (dddd, J = 13.2, 11.1, 6.2, 2.7 Hz, 1H), 

and 2.05 (tdd, J = 11.7, 6.7, 4.0 Hz, 1H); 13C NMR (126 MHz, CDCl3): δ 162.66, 91.25, 78.77, 

64.11, 56.28, 32.13, and 22.19; IR (neat) 3072 (br), 3031, 2998, 2951, 2842, 1646 (st), 1501, 

1460, 1437, 1354, 1289, 1245, 1204, 1142, 1068, 1042, 947, 921, 838, 782, 724, and 656 cm-1; 

HR-ESIMS requires for C6H8ClNO3 (M+Na)+ 200.0085, found 200.0087. 

 

(±)-(4S, 6R, 7R, 5R, 1S) 4-chloro-6,7-dihydroxy-8-oxo-2-(phenylmethoxy)-2-

azabicyclo[3.2.1]oct-3-one (93) 

 

 To a solution of 66f endo (1.0 mmol, 275.3 mg) in acetonitrile, water, and acetone (6 mL 

total, 1:1:1 v/v) at room temperature was added NMO (2.0 mmol, 0.24 mL, 50 wt% in H2O) 
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followed by an OsO4 solution (1.3 mL of 1 wt% in H2O). The reaction mixture was stirred 

overnight at that same temperature followed by filtering of the solution over a pad of celite. The 

pad was washed with ethyl acetate (3 x 10 mL) and the solvent removed under reduced pressure. 

The crude product was recrystallized from dichloromethane:hexanes to give 255 mg of the pure 

diol 93 as a colourless oil (0.85 mmol, 85% yield). Rf = 0.3 (1:1 hexanes:ethyl acetate); 1H NMR 

(500 MHz, CDCl3): δ 7.38 (tdd, J = 7.0, 3.3, 1.4 Hz, 5H), 4.98 (dd, J = 10.6, 1.2 Hz, 1H), 4.90 – 

4.85 (m, 1H), 4.59 (dd, J = 5.4, 1.3 Hz, 1H), 4.55 (t, J = 6.1 Hz, 1H), 4.47 (dd, J = 5.4, 1.2 Hz, 

1H), 4.24 (td, J = 6.0, 1.4 Hz, 1H), 4.10 (qd, J = 7.2, 1.5 Hz, 1H), and 3.72 (ddd, J = 15.5, 10.1, 

5.7 Hz, 1H); 13C NMR (121 MHz, CDCl3): δ 161.88, 133.65, 129.97, 129.50, 128.80, 93.72, 

87.90, 73.17, 71.20, and 55.10; IR (neat) 3408 (br), 3378, 3057, 3001, 2981, 2954, 2922, 1702 

(st), 1440, 1369, 1339, 1295, 1233, 1210, 1101, 1001, 945, 906, 838, 753, 715, and 659 cm-1; 

HR-ESIMS requires for C13H14ClNO5 (M+Na)+ 322.0453, found 322.0452. 

 

(±)-(4S, 6R, 7R, 5R, 1S) 4-chloro-6,7-dimethyldioxolan-8-oxo-2-(phenylmethoxy)-2-

azabicyclo[3.2.1]oct-3-one (94) 

 

 To a solution of 93 (2.12 mmol, 740 mg) in dichloromethane (10.0 mL) and 2,2-

dimethoxypropane (4.24 mmol, 0.4 mL) was added camphor-10-sulfonic acid (2 mol%, 10 mg) 

and the resulting solution was stirred at room temperature for 3 hours. The reaction mixture was 

quenched with saturated sodium bicarbonate and the aqueous layer was extracted with 

dichloromethane (3 x 10 mL). The combined organic layers were washed with brine, dried over 

anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was 
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purified by column chromatography (3:1 hexanes:ethyl acetate) to afford 670 mg of 94 as a white 

crystalline solid (0.82 mmol, 95% yield). Rf = 0.5 (3:1 hexanes:ethyl acetate); M.P. = 112.3 – 

114.1 °C; 1H NMR (500 MHz, CDCl3): δ 7.45 – 7..37 (m, 5H), 5.03 (d, J = 10.8 Hz, 1H), 4.96 (d, 

J = 5.7 Hz, 1H), 4.92 (d, J = 10.8 Hz, 1H), 4.90 (t, J = 0.5 Hz, 1H), 4.70 (d, J = 5.7 Hz, 1H), 4.65 

(d, J = 5.6 Hz, 1H), 4.58 (dd, J = 5.6, 0.6 Hz, 1H), 1.45 (d, J = 0.9 Hz, 3H), 1.29 (d, J = 0.9 Hz, 

3H); 13C NMR (101 MHz, CDCl3): δ 163.15, 134.45, 130.37, 129.39, 128.08, 113.31, 93.38, 

83.21, 81.75, 79.34, 53.83, 52.60, 26.25, and 25.44; IR (neat) 3031, 2987, 2945, 2895, 1699 (st), 

1496, 1463, 1454, 1381, 1333, 1278, 1242, 1204, 1157, 1092 (st), 1071, 1048, 1012, 986, 965, 

945, 909, 862, 853, 812, and 700 cm-1; HR-ESIMS requires for C16H18ClNO5 (M+H)+ 340.0946, 

found 340.0949. 

 

(±)-(4S, 6R, 7R, 5R, 1S) 4-ethyl-6,7-dihydroxy-8-oxo-2-(phenylmethoxy)-2-

azabicyclo[3.2.1]oct-3-one (95) 

 

 To a solution of 66c (3.86 mmol, 1.00g) in acetonitrile, water, and acetone (23 mL total, 

1:1:1 v/v) at room temperature was added NMO (7.72 mmol, 0.8 mL, 50 wt% in H2O) followed 

by an OsO4 solution (5.02 mL of 1 wt% in H2O). The reaction mixture was stirred overnight at 

that same temperature followed by filtering of the solution over a pad of celite. The pad was 

washed with ethyl acetate (3 x 15 mL) and the solvent removed under reduced pressure. The 

crude product was recrystallized from DCM:hexanes to give 975 mg of the pure diol 95 as light 

green crystals (3.32 mmol, 86% yield). Rf = 0.2 (1:1 hexanes:ethyl acetate); M.P. = 116.4 – 117.9 

°C; 1H NMR (500 MHz, CDCl3): δ 7.45 – 7.34 (m, 5H), 4.96 (d, J = 10.6 Hz, 1H), 4.84 (d, J = 

N
O OBn

Et
O

OsO4, NMO
N

O

HO OH

Et
O OBn

R.T., 24 hrs.
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10.7 Hz, 1H), 4.82 (d, J = 1.0 Hz, 1H), 4.36 (dd, J = 5.2, 1.0 Hz, 1H), 4.22 (q, J = 6.2 Hz, 2H), 

3.48 (s, 2H), 2.72 (dt, J = 9.4, 5.4 Hz, 1H), 2.06 (dqd, J = 15.3, 7.7, 5.4 Hz, 1H), 1.37 – 1.25 (m, 

1H), and 1.04 (t, 3H); 13C NMR (126 MHz, CDCl3): δ 169.19, 134.60, 129.67, 129.11, 128.66, 

93.94, 85.53, 77.58, 74.02, 69.75, 47.49, 18.70, and 12.26; IR (neat) 3272 (br), 3031, 2992, 2969, 

2928, 2869, 1690, 1658 (st), 1454, 1401, 1384, 1357, 1333, 1242, 1216, 1107, 1095, 1051, 1036 

(st), 1009, 989, 933, 824, 765, 741, and 700 cm-1; HR-ESIMS requires for C15H19NO5 (M+Na)+ 

316.1155, found 316.1160. 

 

(±)-(4S, 6R, 7R, 5R, 1S) 4-ethyl-6,7-dimethyldioxolan-8-oxo-2-(phenylmethoxy)-2-

azabicyclo[3.2.1]oct-3-one (96) 

 

 To a solution of 95 (0.871 mmol, 255.4 mg) in dichloromethane (2.0 mL) and 2,2-

dimethoxypropane (1.31 mmol, 0.16 mL) was added camphor-10-sulfonic acid (2 mol%, 4 mg) 

and the resulting solution was stirred at room temperature for 3 hours. The reaction mixture was 

quenched with saturated sodium bicarbonate and the aqueous layer was extracted with 

dichloromethane (3 x 5 mL). The combined organic layers were washed with brine, dried over 

anhydrous sodium sulfate, and concentrated under reduced pressure. The crude residue was 

purified by column chromatography (3:1 hexanes:ethyl acetate) to afford 275 mg of 96 as a white 

crystalline solid (0.82 mmol, 95% yield). Rf = 0.5 (3:1 hexanes:ethyl acetate); M.P. = 111.3 – 

114.1 °C; 1H NMR (500 MHz, CDCl3): δ 7.49 – 7.33 (m, 5H), 5.00 (dd, J = 10.6, 0.6 Hz, 1H), 

4.87 (d, J = 5.6 Hz, 1H), 4.85 (s, 1H), 4.71 (d, J = 5.7 Hz, 1H), 4.63 (d, J = 5.7 Hz, 1H), 4.45 (d, J 

= 5.4 Hz, 1H), 2.76 (dt, J = 9.4, 5.5 Hz, 1H), 2.17 – 2.05 (m, 1H), 1.45 (s, 3H), 1.34 (dtd, J = 

N

HO OH

Et
OBnO

O
N

O O

Et
OBnO

O

MeO OMe
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15.1, 7.1, 2.1 Hz, 1H), 1.27 (s, 3H), and 1.07 (t, J = 7.5 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 

169.43, 134.91, 129.60, 128.97, 128.62, 112.76, 92.05, 82.96, 78.56, 47.02, 25.87, 24.72, 18.70, 

and 12.30; IR (neat) 2995, 2981, 2966, 2936, 2872, 1687 (st), 1460, 1448, 1378, 1348, 1333, 

1269, 1233, 1207, 1157, 1080 (st), 1051, 1018, 986, 974, 900, 862, 812, 750, and 691 cm-1; HR-

ESIMS requires for C18H23NO5 (M+H)+ 334.1649, found 334.1659. 

 

(±)-(4S, 3R, 6R, 7R, 5R, 1S) 4-ethyl-3-hydroxy-6,7-dimethyldioxolan-8-oxo-2-

(phenylmethoxy)-2-azabicyclo[3.2.1]octane (97) 

 

 To a solution of LAH (3.0 mmol, 114 mg) in dry THF under a nitrogen atmosphere at 0 

°C was added 96 dropwise over a period of 10 minutes. The reaction mixture was then refluxed 

overnight followed by cooling to 0 °C. The reaction was quenched with water and 10% sodium 

hydroxide, filtered, and dried over anhydrous Na2SO4. The solvent was removed under reduced 

pressure and the crude residue was recrystallized from hexanes to give 97 as a white solid (1.2 

mmol, 402 mg, 80% yield). X-ray quality crystals were grown by slow evaporation of a 

dichloromethane/hexanes solution of 93. Rf = 0.4 (2:1 hexanes:ethyl acetate); M.P. = 64.6 – 66.4 

°C; 1H NMR (400 MHz, CDCl3): δ 7.40 – 7.30 (m, 5H), 4.86 (s, 1H), 4.81 (s, 2H), 4.51 (d, J = 

5.7 Hz, 1H), 4.25 (d, J = 3.7 Hz, 1H), 3.73 (dd, J = 9.4, 7.6 Hz, 1H), 1.80 – 1.70 (m, 2H), 1.48 (s, 

3H), 1.32 (s, 3H), and 0.99 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 136.85, 129.02, 

128.54, 128.34, 111.78, 82.19, 81.57, 78.42, 75.56, 42.22, 25.95, 24.65, 20.46, 19.76, 11.93, and 

11.25; IR (neat) 3154 (br), 3031, 2936, 2925, 1702, 1678, 1499, 1481, 1451, 1378, 1257, 1080, 

N

O O

Et
OBnO

O
LAH, THF

reflux, 16 hrs.

N
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980, 815, 765, and 729 cm-1; HR-ESIMS requires for C18H25NO5 (M+H)+ 336.1805, found 

336.2492. 

 

(±)-(3S, 4R, 5R, 6R)-N-phenylmethoxy-3-chloro-4-hydroxy-5-isopropyloxy-6-hydroxy-

azepane (98) 

 

 To an oven dried 100 mL Schlenk flask equipped with a magnetic stir bar was added dry 

THF (25 mL) under an atmosphere of nitrogen. The flask was placed in an ice bath and aluminum 

chloride (5.3 mmol, 704 mg) was added in portions over a period of 10 minutes. Upon complete 

dissolution of the aluminum chloride, a solution of lithium aluminum hydride in dry THF (7.9 

mmol, 4.0 mL) was added dropwise at that same temperature over a period of 15 minutes and the 

resulting solution was stirred at 0 °C for 20 minutes. The acetal-protected diol 90 (2.6 mmol, 895 

mg) was then added in THF (10 mL) dropwise over a period of 20 minutes and the reaction 

mixture was refluxed under nitrogen for 1.5 hours. The reaction flask was cooled to 0 °C and 

quenched with water followed by 10% NaOH. The aluminum salts were filtered off and the 

filtrate was dried over Na2SO4 and concentrated under reduced pressure. The crude residue was 

purified by column chromatography (3:1 – 2:1 Hex:EtOAc) to afford 94 as a white crystalline 

solid (2.2 mmol, 730 mg, 84% yield). Rf = 0.2 (2:1 hexanes:ethyl acetate); M.P. 70.4 – 75.8 °C; 

1H NMR (500 MHz, CDCl3): δ 7.39 – 7.29 (m, 5H), 4.69 (d, J = 2.8 Hz, 2H), 4.15 (ddd, J = 7.2, 

5.3, 4.2 Hz, 1H), 4.08 – 4.05 (m, 1H), 3.89 (td, J = 6.8, 2.1 Hz, 1H), 3.64 (ddd, J = 8.0, 5.9, 2.2 

Hz, 1H), 3.61 (d, J = 5.5 Hz, 1H), 3.60 – 3.57 (m, 1H), 3.39 (dd, J = 15.1, 5.9 Hz, 1H), 3.19 (dd, 

J = 11.3, 5.8 Hz, 1H), 3.05 (dd, J = 12.3, 7.6 Hz, 1H), 2.97 (d, J = 6.8 Hz, 1H), and 1.13 (dd, J = 

N
O

O O

Cl
OBn
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0 °C to reflux

N
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9.8, 6.1 Hz, 1H); 13C NMR (126 MHz, CDCl3): δ 137.22, 128.99, 128.35, 128.04, 77.54, 75.10, 

74.61, 73.13, 71.07, 63.09, 61.58, 59.63, 22.69, and 22.27; IR (neat) 3305 (br), 3087, 3060, 2972, 

2925, 2889, 2845, 1496, 1454, 1366, 1322, 1269, 1222, 1157, 1121, 1080, 1018 (st), 968, 921, 

862, 735, and 694 cm-1; HR-ESIMS requires for C16H24ClNO4 (M+Na)+ 352.1286, found 

352.1256. 

 

(±)-(2S, 3R)-N-phenylmethoxy-2-acetoxymethyl-3-hydroxy-1,2,3,6-tetrahydropyridine (100) 

 

 To a stirred solution of 75 (1.0 mmol, 250 mg,) in DMF (12 mL) was added AgOAc (2.0 

mmol, 334 mg,) all at once and the resulting suspension was heated in a sealed flask at 90 °C for 

72 hours. The crude reaction mixture was filtered through a pad of celite and the pad was washed 

with ethyl acetate (2 x 15 mL) followed by methanol (15 mL). The filtrate was concentrated 

under reduced pressure at 65 °C to remove DMF and the crude residue was purified by column 

chromatography (33% to 50% hexanes:ethyl acetate) to afford 224 mg of 100 as a pale yellow oil 

(0.81 mmol, 60% yield). Rf = 0.33 (1:1 hexanes:ethyl acetate); 1H NMR (500 MHz, CD3OD): δ 

7.34 – 7.24 (m, 5H), 5.74 – 5.66 (m, 2H), 4.83 (s, 1H), 4.70 (d, J = 10.7 Hz, 1H), 4.65 (d, J = 10.6 

Hz, 1H), 4.48 (d, J = 12.7 Hz, 1H), 4.40 (dd, J = 11.5, 5.0 Hz, 1H), 4.24 (dd, J = 8.3, 3.6 Hz, 1H), 

3.66 (d, J = 15.8 Hz, 1H), 3.39 – 3.32 (m, 1H), 2.81 (s, 1H), and 2.05 (s, 3H); 13C NMR (101 

MHz, CD3OD): δ 171.54, 137.13, 128.78, 128.60, 127.90, 127.60, 123.97, 74.88, 66.99, 64.61, 

60.89, 53.67, and 19.49; IR (neat) 3405 (br), 3034, 2917, 2860, 1736, 1451, 1363, 1236, 1024, 

and 698 cm-1; HR-ESIMS requires for C15H19NO4 (M+H)+ 278.1387, found 278.1384. 
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Chapter 4: New Building Blocks for Iminosugars: A Concise Synthesis of Polyhydroxylated 

N-Alkoxypiperidines through an Aza-[4+3] Cycloaddition 

 

4.1 Introduction 

 Recently, iminosugars functionalized through a hydroxylamine N-O bond have been an 

attractive synthetic target due to the fact that the barrier to inversion at the nitrogen atom of 

trialkylhydroxylamines is higher than simple amines.1 However, at approximately 15 kcal/mol 

this barrier is not sufficient to prevent rapid inversion at room temperature.1 Ideally with this low 

barrier to inversion, it is anticipated that any iminosugar derivative possessing a hydroxylamine 

motif could sample the full extent of conformational space available at room temperature and 

adapt in order to effectively bind to enzymes specific for either axial or equatorially linked 

substrates.2 Therefore, we saw this void as a motive for developing a general and concise 

synthesis of N-alkoxy iminosugar analogs that had the potential for incorporating a wide variety 

of alkyl chains and functional groups at the N-O terminus. 

 

	  

Scheme 4.1.1. Facile ring contraction observed from Chapter 3. 

	  
 We recently found that α-chloroazepane 75 (Scheme 4.1.1) underwent facile ring 

contraction when treated with a nucleophile to give tetrahydropyridine 100. Given the exceptional 
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electron rich character of the nitrogen atom, a plausible mechanism would involve the ring 

contraction going through an aziridinium ion intermediate such as 99 and ultimately collapsing to 

the six-membered ring. It was this discovery that led us to believe that simple functional group 

manipulations could provide access to the iminosugar class of compounds in a way that was not 

only stereoselective and concise, but that also was scalable. Moreover, we envisioned that the 

stereochemical flexibility our methodology afforded would enable a diversity-oriented approach 

for the synthesis of a library of compounds for biological screening as well as structure activity 

relationship (SAR) studies. With the goal of developing new C-N bond forming reactions with 

broad applications in target directed syntheses, we envisioned an α-chlorocycloadduct formed 

from the cycloaddition of an aza-oxyallylic cation as a general means to easily and 

stereoselectively construct the cyclic core of polyhydroxylated N-alkoxypiperidines (Scheme 

4.1.2). Additionally, we thought that the rich functionality our method afforded could provide the 

necessary handles needed for functional group manipulations in order to elaborate these cores to 

the desired targets. We also envisioned that our synthesis could provide easy access to 

stereoisomers that are traditionally difficult to synthesize with current methodology. This chapter 

focuses on our report of a general strategy for the preparation of polyhydroxylated N-

alkoxypiperidines that is concise, scalable, diastereoselective, and highly versatile to allow for the 

construction of a library of derivatives for both biological activity and SAR studies. 

 

	  

Scheme 4.1.2. Proposal to synthesize polyhydroxylated N-alkoxypiperidines from general aza-[4+3] 
cycloaddition scaffolds. 
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4.2 A Concise and Diastereoselective Synthesis of Polyhydroxylated N-Alkoxypiperidines 

through an Aza-[4+3] Cycloaddition 

 Initial studies commenced with synthesizing dichloroamides 101 (Synthesized in Chapter 

2) and 104 from dichloroacetyl chloride and either O-benzylhydroxylamine or methoxy amine 

hydrochloride (Scheme 4.2.1). Cycloaddition of the amide substrates provided α-

chlorocycloadducts 102 and 103 (previously reported in Chapter 2), as well as 105 and 106 in 

good overall yield with a diastereoisomeric ratio of 2:1 endo:exo.3,4 It is worth mentioning that 

although the diastereoselectivity of these reactions was rather poor, our goal was to develop a 

methodology that could access a variety of stereoisomers, thus both diastereoisomers were 

considered useful and elaborated to the desired targets. Slow addition of the corresponding 

cycloadducts to a solution of aluminum hydride at 0 °C followed by refluxing for 90 minutes 

gave cleanly 3-chloroazepine products 107-108 and 111-112 in good yield and as single 

diastereoisomers (Scheme 4.2.2). The exceptionally high crystalline quality of azepine 108 

allowed for its analysis by single crystal X-ray diffraction, thus confirming its structure as well as 

Scheme 4.2.1. Synthesis of cycloadducts 102, 103, 105, and 106 from a  
simple acid halide starting material. 
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the relative trans stereochemical configuration of the 3-chloride and 4-hydroxyl group (Figure 

4.2.1). Silver acetate mediated ring contraction provided tetrahydropyridine products 109-110 and 

113-114 in fair yield and as single diastereoisomers. 

 

 

Scheme 4.2.2. Synthesis of 3-chloroazepines 107-108 and 111-112; subsequent ring contraction to give 
tetrahydropyridines 109-110 and 113-114. 

 

	  

Figure 4.2.1. Thermal ellipsoid plot of azepine 108 at 50% probability. Hydrogen atoms are represented as 
spheres of arbitrary radius. Gray = carbon, red = oxygen, blue = nitrogen, green = chlorine. 
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position with a leaving group. A similar azepine ring contraction example was reported in the 

literature by Davies and co-workers, albeit their substrate was not pre-functionalized with an 

appended leaving group.5 In this respect, we have developed a new methodology for the rapid and 

stereoselective construction of tetrahydropyridine cores in only a few short synthetic steps from 

commercially available starting materials. Additionally, the resulting skeletons are richly 

functionalized and could be envisioned as versatile building blocks for the construction of other 

iminosugar derivatives or piperidine natural products of interest. Acetate hydrolysis using 

potassium carbonate in methanol6 produced diols 115-116 and 119-120 (Scheme 4.2.3) in high 

yields, with 119 being of particular interest due to its high crystallinity and potential for X-ray 

analysis. Indeed, slow evaporation of benzene from 119 afforded crystals of suitable quality for 

X-ray diffraction studies (Figure 4.2.2). 

 

	  

Scheme 4.2.3. Acetate hydrolysis products 115-116 and 119-120; Osmium tetroxide-mediated olefin 
oxidation to install final hydroxyl groups to give iminosugar derivatives 117-118 and 121-122. 
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Figure 4.2.2. Thermal ellipsoid plot of tetrahydropyridine 119 at 50% probability. Hydrogen atoms are 
represented as spheres of arbitrary radius. Gray = carbon, red = oxygen, blue = nitrogen. 

	  
We found the observed stereochemistry of diol 119 intriguing, and led us to consider the 

following mechanistic hypothesis. The resulting stereochemistry suggests a double inversion-type 

mechanism, whereby a Lewis acid catalyzed abstraction of chloride by silver would lead to 

backside nucleophilic attack by ring nitrogen to form the aziridinium ion intermediate 123 

(Scheme 4.2.4). Subsequent nucleophilic attack by acetate onto the aziridinium ion 123 would 

provide tetrahydropyridine 113. With the desired diols in hand, the last step to complete the 

syntheses would involve utilization of the alkene to install the remaining alcohol groups. 

Dihydroxylation of the alkene using catalytic osmium tetroxide was	   found to be a simple and 

high-yielding method for installing the remaining hydroxyl groups. Exposure of the substrates 

115-116 and 119-120 to a solution of osmium tetroxide in water and NMO as the co-oxidant 
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provided the final polyhydroxylated products 117-118 and 121-122 in	  good yields and as single 

diastereoisomers (Scheme 4.2.3). Upon analysis of 121 by single crystal X-ray diffraction, the 

oxidation was determined to occur selectively from the opposite face of the allylic carbinol group 

resulting in a trans-configuration relative to the C-3 alcohol group in all cases (Figure 4.2.3). 

These scaffolds represent 4 novel iminosugar derivatives with unique stereochemical 

configurations that are scarcely found in the literature.7 

	  

	  
	  

Figure 4.2.3. Thermal ellipsoid plot of polyhydroxylated piperidine 121. Hydrogen atoms are represented 
as spheres of arbitrary radius. Gray = carbon, red = oxygen, blue = nitrogen. 
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4.3 Experimental 

All reactions were carried out under an atmosphere of nitrogen in oven-dried glassware 

with magnetic stirring, unless otherwise specified. All reagents and solvents were purchased from 

Sigma-Aldrich Chemical Company and used without any further purification. TLC information 

was recorded on Silicycle glass 60 F254 plates and developed by staining with KMnO4 or ceric 

ammonium molybdate. Purification of reaction products was carried out by flash chromatography 

using Silicycle Siliaflash® P60 (230-400 mesh). 1H-NMR spectra were measured on Varian 400 

(400 MHz) or Varian 500 (500 MHz) spectrometers and are reported in ppm (s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet, br = broad; integration; coupling constant(s) in Hz 

using TMS as an internal standard (TMS at 0.00 ppm) in CDCl3, CD3CN, or CD3OD. 13C-NMR 

spectra were recorded on V400 or V500 spectrometers and reported in ppm using solvent as an 

internal standard (CDCl3 at 77.36 ppm), (CD3CN at 118.26 ppm) or (CD3OD at 49.86 ppm). 

Infrared (IR) spectra were recorded on a Nicolet 6700 FT-IR with a diamond ATR and data are 

reported as cm-1 (br = broad, st = strong). High-resolution mass spectra were obtained using an 

Agilent 6230 TOF LC/MS with an atmospheric pressure photo-ionization (APPI) or electrospray 

(ESI) source with purine and HP-0921 as internal calibrants. Single crystal X-ray diffraction was 

performed at 100 K on a Bruker SMART Apex II CCD instrument using graphite-

monochromated Mo Kα radiation. The crystals were covered in Paratone oil and mounted on glass 

fibers. Lorentz and polarization effects were corrected using SAINTSI and absorption corrections 

were applied using SADABS.S2 The structures were solved using direct methods using OLEX2.S3 

References 

S1 SAINT: Program for data reduction, Version 7.68A; Bruker AXS: Madison, WI, 2009. 

S2 G. M. Sheldrick. Acta Crystallogr., Sect. A.: Found. Crystallogr. 2008, 64, 112.  

S3 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard,  and H. Puschmann, J. Appl. 
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(±)-2,2-dichloro-N-(methoxy)acetamide (104): 

 

 To a suspension of methoxyamine hydrochloride (27.1 mmol, 2.26 g) and triethylamine 

(54.2 mmol, 5.48) in CH2Cl2 (0.25 M) at 0 °C was added dropwise 2,2-dichloroacetyl chloride 

(27.1 mmol, 4.0 g,) dropwise. The reaction mixture was then warmed to room temperature and 

stirred until TLC analysis (3:1 hexanes:ethyl acetate) indicated complete consumption of the 

starting material (1 hour). The solvent was then removed under reduced pressure and the crude 

product was purified via flash column chromatography (2:1 hexanes:ethyl acetate) to provide 3.5 

g of the pure haloamide 104 as a white crystalline solid (3.5 g, 22.2 mmol, 82% yield). Rf = 0.3 

(2:1 hexanes: ethyl acetate); M.P. = 40.5 – 42.8 °C; 1H NMR (500 MHz, CDCl3) δ 11.38 (br s, 

1H), 6.28 (s, 1H), and 3.90 (s, 3H); 13C NMR (101 MHz, CDCl3) δ 162.51, 64.17, and 63.95; IR 

(neat) 3172 (br), 2998, 2940, 1674 (st), 1500, 1439, 1335, 1210, 1057, and 974 cm-1; HR-ESIMS 

requires for C3H5ClNO2 (M+H)+ 158.9798, found 158.9784. 

 

(±)-(4S, 5R, 1S)-4-chloro-8-oxo-2-(methoxy)-2-azabicyclo[3.2.1]oct-6-en-3-one (endo) and 

(±)-(4R, 5R, 1S)-4-chloro-8-oxo-2-(methoxy)-2-azabicyclo[3.2.1]oct-6-en-3-one (exo) (105, 

106): 

 

 To a solution of 2,2-dichloro-N-(phenylmethoxy)acetamide (22.2 mmol, 3.5 g) in 

CF3CH2OH and furan [1:1 (v/v) 0.25 M] at 0 °C was added triethylamine (2 equiv.) dropwise. 
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The solution was allowed to warm to room temperature and the reaction mixture was stirred for 

24 hours. After removal of the volatiles under reduced pressure, the crude mixture was purified 

by flash column chromatography (3:1 hexanes:ethyl acetate) to afford 3.4 g (17.9 mmol, 80 % 

yield) of the pure cycloadduct endo isomer as a yellow solid and the exo isomer as a yellow oil 

(2:1 endo:exo). Endo-diastereoisomer: Rf = 0.4 (2:1 hexanes:ethyl acetate); M.P. = 87.8 °C; 1H 

NMR (500 MHz, CDCl3): δ 6.81 (dd, J = 6.0, 1.3 Hz, 1H), 6.60 (dd, J = 6.0, 1.8 Hz, 1H), 5.63 (d, 

J = 1.4 Hz, 1H), 5.18 (dd, J = 5.1, 1.9 Hz, 1H), 4.80 (d, J = 5.1 Hz, 1H), 3.82 (s, 3H); 13C NMR 

(101 MHz, CDCl3): δ 165.53, 136.79, 133.22, 90.80, 82.05, 63.56, and 56.67; IR (neat) 3101, 

3015, 3091, 2990, 2942, 1679 (st), 1442, 1394, 1325, 1242, 1062, 1030, 926, and 834 cm-1; HR-

ESIMS requires for C7H8ClNO3 (M+Na)+ 212.0085, found 212.0083. Exo-diastereoisomer: Rf = 

0.3 (2:1 hexanes:ethyl acetate); 1H NMR (500 MHz, CDCl3): δ 6.87 (dd, J = 6.1, 1.4 Hz, 1H), 

6.50 (dd, J = 5.9, 2.0 Hz, 1H), 5.70 (d, J = 1.5 Hz, 1H), 5.08 (d, J = 2.1 Hz, 1H), 4.16 (d, J = 1.0 

Hz, 1H), and 3.84 (s, 3H); 13C NMR (101 MHz, CDCl3): δ 165.16, 137.88, 131.70, 89.90, 84.06, 

63.41, and 55.69; IR (neat) 3094, 2987, 2939, 2901, 1692 (st), 1439, 1363, 1274, 1236, 1157, 

1046 (st), 986, 903, and 834 cm-1; HR-ESIMS requires for C7H8ClNO3 (M+Na)+ 212.0085, found 

212.0087. 

 

(±)-(3S, 4R)-N-phenylmethoxy-3-chloro-4-hydroxy-2,3,4,7-tetrahydro-1H-azepine (107) 

 

 To an oven dried 100 mL Schlenk flask equipped with a magnetic stir bar was added dry 

THF (19 mL) under an atmosphere of nitrogen. The flask was placed in an ice bath and aluminum 

chloride (7.57 mmol, 1.01 g) was added in portions over a period of 5 minutes. Upon complete 

dissolution of the aluminum chloride, a solution of lithium aluminum hydride in dry THF (11.4 
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mmol, 5.7 mL) was added dropwise at that same temperature over a period of 15 minutes and the 

resulting solution was stirred at 0 °C for 20 minutes. The cycloadduct 102 (3.79 mmol, 1.01 g) 

was then added in THF (25 mL) dropwise over a period of 20 minutes and the reaction mixture 

was refluxed under nitrogen for 1.5 hours. The reaction flask was cooled to 0 °C and quenched 

with water followed by 10% NaOH. The aluminum salts were filtered off and the filtrate was 

dried over Na2SO4 and concentrated under reduced pressure. The crude residue was purified by 

column chromatography (10% - 33% Hex:EtOAc) to afford 0.67 g of 107 as a white crystalline 

solid (2.64 mmol, 70% yield). Rf = 0.54 (2:1 hexanes:ethyl acetate); M.P. 59.5 – 62.0 °C; 1H 

NMR (500 MHz, CDCl3): δ 7.35 – 7.30 (m, 5H), 5.81 (dt, J = 11.9, 3.1 Hz, 1H), 5.67 (dt, J = 

12.0, 6.0 Hz, 1H), 4.69 (s, 2H), 4.36 (d, J = 8.2 Hz, 1H), 4.18 (td, J = 8.3, 4.7 Hz, 1H), 3.77 (dd, J 

= 14.1, 4.7 Hz, 1H), 3.62 (dd, J = 15.9, 6.2 Hz, 1H), 3.44 – 3.39 (m, 1H), 3.22 (dd, J = 14.0, 8.0 

Hz, 1H), and 2.86 – 2.83 (m, 1H); 13C NMR (101 MHz, CDCl3): δ 137.20, 132.20, 128.71, 

128.38, 128.03, 126.27, 74.64, 73.34, 64.26, 61.87, and 57.41; IR (neat) 3556, 3105 (br), 3006, 

2987, 2965, 1464, 1376, 1055 (s), and 1037 cm-1; HR-ESIMS requires for C13H17ClNO2 (M+H)+ 

254.0948, found 254.0950. 

 

(±)-(3S, 4R)-N-methoxy-3-chloro-4-hydroxy-2,3,4,7-tetrahydro-1H-azepine (108) 

 

 To an oven dried 100 mL Schlenk flask equipped with a magnetic stir bar was added dry 

THF (19 mL) under an atmosphere of nitrogen. The flask was placed in an ice bath and aluminum 

chloride (12.1 mmol, 1.61 g) was added in portions over a period of 5 minutes. Upon complete 

dissolution of the aluminum chloride, a solution of lithium aluminum hydride in dry THF (18.1 

mmol, 9.1 mL) was added dropwise at that same temperature over a period of 15 minutes and the 
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resulting solution was stirred at 0 °C for 20 minutes. The cycloadduct 105 (6.03 mmol, 1.14 g) 

was then added in THF (40 mL) dropwise over a period of 20 minutes and the reaction mixture 

was refluxed under nitrogen for 1.5 hours. The reaction flask was cooled to 0 °C and quenched 

with water followed by 10% NaOH. The aluminum salts were filtered off and the filtrate was 

dried over Na2SO4 and concentrated under reduced pressure. The crude residue was purified by 

column chromatography (25% - 33% Hex:EtOAc) to afford 0.75 g of 108 as a white crystalline 

solid (4.22 mmol, 70% yield). X-ray quality crystals were grown by slow evaporation of a 

dichloromethane/hexanes solution of 108. Rf = 0.55 (1:1 hexanes:ethyl acetate); M.P. = 63.9 – 

65.4 °C; 1H NMR (500 MHz, CDCl3): δ 5.84 (dt, J = 11.9, 2.9 Hz, 1H), 5.75 – 5.70 (m, 1H), 4.39 

(d, J = 7.2 Hz, 1H), 4.19 (td, J = 8.6, 4.5 Hz, 1H), 3.82 (ddd, J = 13.9, 4.5, 1.5 Hz, 1H), 3.68 

(ddd, J = 15.9, 6.5, 1.2 Hz, 1H), 3.53 (s, 3H), 3.42 (d, J = 16.2 Hz, 1H), 3.19 (dd, J = 13.8, 8.4 

Hz, 1H), and 2.86 (br s, 1H); 13C NMR (101 MHz, CDCl3): δ 132.97, 125.91, 73.42, 63.72, 62.07, 

59.68, and 56.50; IR (neat) 3326 (br), 3031, 2949, 2810, 1458, 1385, 1350, 1283, 1198, 1062, 

1024 (st), 897, and 774 cm-1; HR-ESIMS requires for C7H12ClNO2 (M+H)+ 178.0629, found 

178.0627. 

 

(±)-(2S, 3R)-N-phenylmethoxy-2-acetoxymethyl-3-hydroxy-1,2,3,6-tetrahydropyridine (109) 

 

 To a stirred solution of 107 (1.0 mmol, 250 mg,) in DMF (12 mL) was added AgOAc 

(2.0 mmol, 334 mg,) all at once and the resulting suspension was heated in a sealed flask at 90 °C 

for 72 hours. The crude reaction mixture was filtered through a pad of celite and the pad was 

washed with ethyl acetate (2 x 15 mL) followed by methanol (15 mL). The filtrate was 

concentrated under reduced pressure at 65 °C to remove DMF and the crude residue was purified 
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by column chromatography (33% to 50% hexanes:ethyl acetate) to afford 224 mg of 109 as a pale 

yellow oil (0.81 mmol, 60% yield). Rf = 0.33 (1:1 hexanes:ethyl acetate); 1H NMR (500 MHz, 

CD3OD): δ 7.34 – 7.24 (m, 5H), 5.74 – 5.66 (m, 2H), 4.83 (s, 1H), 4.70 (d, J = 10.7 Hz, 1H), 4.65 

(d, J = 10.6 Hz, 1H), 4.48 (d, J = 12.7 Hz, 1H), 4.40 (dd, J = 11.5, 5.0 Hz, 1H), 4.24 (dd, J = 8.3, 

3.6 Hz, 1H), 3.66 (d, J = 15.8 Hz, 1H), 3.39 – 3.32 (m, 1H), 2.81 (s, 1H), and 2.05 (s, 3H); 13C 

NMR (101 MHz, CD3OD): δ 171.54, 137.13, 128.78, 128.60, 127.90, 127.60, 123.97, 74.88, 

66.99, 64.61, 60.89, 53.67, and 19.49; IR (neat) 3405 (br), 3034, 2917, 2860, 1736, 1451, 1363, 

1236, 1024, and 698 cm-1; HR-ESIMS requires for C15H19NO4 (M+H)+ 278.1387, found 

278.1384. 

 

(±)-(2S, 3R)-N-methoxy-2-acetoxymethyl-3-hydroxy-1,2,3,6-tetrahydropyridine (110) 

 

 To a stirred solution of 108 (1.1 mmol, 200 mg,) in DMF (15 mL) was added AgOAc 

(2.2 mmol, 367 mg,) all at once and the resulting suspension was heated in a sealed flask at 90 °C 

for 72 hours. The crude reaction mixture was filtered through a pad of celite and the pad was 

washed with ethyl acetate (2 x 15 mL) followed by methanol (15 mL). The filtrate was 

concentrated under reduced pressure at 65 °C to remove DMF and the crude residue was purified 

by column chromatography (33% to 50% hexanes:ethyl acetate) to afford 143 mg of 110 as a pale 

yellow oil (0.71 mmol, 64% yield). Rf = 0.23 (1:1 hexanes:ethyl acetate); 1H NMR (500 MHz, 

CDCl3): δ 5.81 – 5.77 (m, 1H), 5.73 (dddd, J = 10.1, 3.8, 2.3, 1.3 Hz, 1H), 4.55 (dd, J = 11.7, 4.3 

Hz, 1H), 4.35 (dd, J = 11.7, 4.2 Hz, 1H), 4.23 (d, J = 7.6 Hz, 1H), 3.70 – 3.64 (m, 1H), 3.57 (s, 

3H), 3.43 – 3.38 (m, 1H), 2.97 – 2.93 (m, 1H), 2.56 (d, J = 11.3 Hz, 1H), and 2.12 (s, 3H); 13C 

NMR (101 MHz, CD3OD): δ 170.92, 126.54, 124.31, 75.52, 68.85, 60.70, 59.39, 58.22, and 
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19.65; IR (neat) 3444 (br), 2937, 2891, 2845, 2811, 1729 (st), 1454, 1439, 1372, 1228 (st), 1029, 

965, and 901 cm-1; HR-ESIMS requires for C9H15NO4 (M+Na)+ 224.0893, found 224.0890. 

 

(±)-(3R, 4R)-N-phenylmethoxy-3-chloro-4-hydroxy-2,3,4,7-tetrahydro-1H-azepine (111) 

 

 To an oven dried 250 mL Schlenk flask equipped with a magnetic stir bar was added dry 

THF (55 mL) under an atmosphere of nitrogen. The flask was placed in an ice bath and aluminum 

chloride (21.8 mmol, 2.91 g) was added in portions over a period of 5 minutes. Upon complete 

dissolution of the aluminum chloride, a solution of lithium aluminum hydride in dry THF (32.7 

mmol, 16.4 mL) was added dropwise at that same temperature over a period of 15 minutes and 

the resulting solution was stirred at 0 °C for 20 minutes. The cycloadduct 103 (10.9 mmol, 2.89 

g) was then added in THF (72 mL) dropwise over a period of 20 minutes and the reaction mixture 

was refluxed under nitrogen for 1.5 hours. The reaction flask was cooled to 0 °C and quenched 

with water followed by 10% NaOH. The aluminum salts were filtered off and the filtrate was 

dried over Na2SO4 and concentrated under reduced pressure. The crude residue was purified by 

column chromatography (10% - 33% Hex:EtOAc) to afford 1.96 g of 111 as a colorless oil (1.96 

g, 7.72 mmol, 71% yield). Rf = 0.36 (3:1 hexanes:ethyl acetate); 1H NMR (500 MHz, CDCl3): δ 

7.35 – 7.31 (m, 5H), 5.86 (dd, J = 11.7, 6.2 Hz, 1H), 5.72 (dt, J = 11.6, 4.7 Hz, 1H), 4.69 (s, 2H), 

4.45 (td, J = 8.0, 1.3 Hz, 1H), 4.32 (ddd, J = 8.0, 6.0, 2.2 Hz, 1H), 3.70 (dd, J = 16.5, 5.0 Hz, 1H), 

3.59 (dd, J = 13.8, 7.8 Hz, 1H), 3.55 – 3.49 (m, 2H), 2.91 (d, J = 8.9 Hz, 1H); 13C NMR (101 

MHz, CDCl3): δ 137.01, 131.06, 129.20, 128.77, 128.46, 128.17, 74.74, 71.45, 62.00, 60.19, and 

57.05; IR (neat) 3498 (br), 3150, 2976, 2865, 2852, 1489, 1424, 1176, and 1054 cm-1; HR-ESIMS 

requires for C13H17ClNO2 (M+H)+ 254.0948, found 254.0940. 
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(±)-(3R, 4R)-N-methoxy-3-chloro-4-hydroxy-2,3,4,7-tetrahydro-1H-azepine (112) 

 

 To an oven dried 100 mL Schlenk flask equipped with a magnetic stir bar was added dry 

THF (19 mL) under an atmosphere of nitrogen. The flask was placed in an ice bath and aluminum 

chloride (7.48 mmol, 0.997 g) was added in portions over a period of 5 minutes. Upon complete 

dissolution of the aluminum chloride, a solution of lithium aluminum hydride in dry THF (11.2 

mmol, 5.6 mL) was added dropwise at that same temperature over a period of 15 minutes and the 

resulting solution was stirred at 0 °C for 20 minutes. The cycloadduct 106 (3.74 mmol, 1.01 g) 

was then added in THF (25 mL) dropwise over a period of 20 minutes and the reaction mixture 

was refluxed under nitrogen for 1.5 hours. The reaction flask was cooled to 0 °C and quenched 

with water followed by 10% NaOH. The aluminum salts were filtered off and the filtrate was 

dried over Na2SO4 and concentrated under reduced pressure. The crude residue was purified by 

column chromatography (10% - 33% Hex:EtOAc) to afford 0.46 g of 112 as a colorless oil (2.59 

mmol, 69% yield). Rf =  (2:1 hexanes:ethyl acetate); 1H NMR (500 MHz, CDCl3): δ 5.94 – 5.89 

(m, 1H), 5.78 (dt, J = 11.4, 4.8 Hz, 1H), 4.49, (ddd, J = 8.7, 6.6, 2.4 Hz, 1H), 4.41 – 4.35 (m, 1H), 

3.75 (dd, J = 16.3, 5.0 Hz, 1H), 3.66 – 3.60 (m, 1H), 3.58 – 3.55 (m, 1H), and 3.55 (s, 3H); 13C 

NMR (101 MHz, CDCl3): δ 131.40, 129.12, 71.47, 61.17, 60.21, 59.75, and 55.96; IR (neat) 3405 

(br), 2971, 2939, 2860, 2825, 1458, 1435, 1369, 1312, 1052 (st), 1033, 1017, 926, and 745 cm-1; 

HR-ESIMS requires for C7H12ClNO2 (M+Na)+ 200.0449, found 200.0447. 
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(±)-(2R, 3R)-N-phenylmethoxy-2-acetoxymethyl-3-hydroxy-1,2,3,6-tetrahydropyridine (113) 

 

 To a stirred solution of 111 (0.9 mmol, 229 mg,) in DMF (11 mL) was added AgOAc 

(1.81 mmol, 302 mg,) all at once and the resulting suspension was heated in a sealed flask at 90 

°C for 72 hours. The crude reaction mixture was filtered through a pad of celite and the pad was 

washed with ethyl acetate (2 x 10 mL) followed by methanol (10 mL). The filtrate was 

concentrated under reduced pressure at 65 °C to remove DMF and the crude residue was purified 

by column chromatography (20% to 33% hexanes:ethyl acetate) to afford 174 mg of 113 as a pale 

yellow oil (0.63 mmol, 69% yield). Rf = 0.36 (2:1 hexanes:ethyl acetate); 1H NMR (500 MHz, 

CD3OD): δ 7.37 – 7.25 (m, 5H), 5.88 – 5.81 (m, 1H), 5.74 (dd, J = 10.0, 4.9 Hz, 1H), 4.81 (d, J = 

1.8 Hz, 1H), 4.73 – 4.69 (m, 1H), 4.65 (dd, J = 11.0, 1.6 Hz, 1H), 4.56 (dd, J = 10.8, 5.5 Hz, 1H), 

4.32 (ddd, J = 11.2, 7.3, 1.7 Hz, 1H), 4.12 (d, J = 4.1 Hz, 1H), 3.74 (dd, J = 16.6, 4.5 Hz, 1H), 

3.28 – 3.22 (m, 1H), 3.04 (s, 1H), and 2.00 (d, J = 1.7 Hz, 3H); 13C NMR (101 MHz, CD3OD): δ 

171.42, 137.22, 128.67, 127.95, 127.66, 126.71, 125.74, 75.32, 64.99, 62.20, 58.72, 54.23, and 

19.56; IR (neat) 3467 (br), 3028, 2922, 2860, 2816, 1728 (st), 1454, 1366, 1236, 1086, 1039, and 

735 cm-1; HR-ESIMS requires for C15H19NO4 (M+H)+ 278.1387, found 278.1388. 

 

(±)-(2R, 3R)-N-methoxy-2-acetoxymethyl-3-hydroxy-1,2,3,6-tetrahydropyridine (114) 

 

 To a stirred solution of 112 (1.4 mmol, 252 mg,) in DMF (13 mL) was added AgOAc 

(2.8 mmol, 467 mg,) all at once and the resulting suspension was heated in a sealed flask at 90 °C 
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for 72 hours. The crude reaction mixture was filtered through a pad of celite and the pad was 

washed with ethyl acetate (2 x 15 mL) followed by methanol (15 mL). The filtrate was 

concentrated under reduced pressure at 65 °C to remove DMF and the crude residue was purified 

by column chromatography (33% to 50% hexanes:ethyl acetate) to afford 186 mg of 114 as a pale 

yellow oil (0.92 mmol, 186 mg, 65% yield). Rf = 0.23 (1:1 hexanes:ethyl acetate); 1H NMR (400 

MHz, CD3OD): δ 5.89 – 5.83 (m, 1H), 5.79 (ddd, J = 10.0, 4.5, 1.9 Hz, 1H), 4.55 (dd, J = 10.9, 

5.7 Hz, 1H), 4.34 (dd, J = 10.9, 7.5 Hz, 1H), 4.11 (d, J = 7.2 Hz, 1H), 3.82 (dd, J = 16.6, 4.6 Hz, 

1H), 3.52 (s, 3H), 3.26 – 3.20 (m, 1H), 3.02 (t, J = 5.8 Hz, 1H), and 2.07 (s, 3H); 13C NMR (101 

MHz, CD3OD): δ 171.37, 126.71, 125.56, 64.55, 61.95, 59.72, 58.65, 53.46, and 19.49; IR (neat) 

3443, 3003, 2967, 2939, 2920, 2860, 2844, 1727 (st), 1454, 1369, 1236, 1052 (st), 1012, and 748 

cm-1; HR-ESIMS requires for C9H15NO4 (M+Na)+ 224.0893, found 224.0893. 

 

(±)-(2S, 3R)-N-phenylmethoxy-2-hydroxymethyl-3-hydroxy-1,2,3,6-tetrahydropyridine 

(115) 

 

 To a solution of 109 (2.24 mmol, 620 mg) in methanol (45 mL) was added potassium 

carbonate (46.6 mmol, 6.44 g) all at once and the resulting suspension was stirred for 16 hours at 

room temperature. After concentration under reduced pressure, the crude residue was taken up in 

45 mL of water and extracted with CHCl3:i-PrOH (3:1 v:v, 3 x 25 mL). The combined organic 

extracts were washed with brine, dried over Na2SO4, and concentrated to afford the crude diol. 

The crude product was then ran through a short plug of silica gel (eluent 1:1 hexanes:ethyl 

acetate) to give 440 mg of the pure diol 115 as a colorless oil (1.87 mmol, 83% yield). Rf = 0.14 

(1:1 hexanes:ethyl acetate); 1H NMR (400 MHz, CD3OD): δ 7.39 – 7.21 (m, 5H), 5.72 – 5.61 (m, 
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2H), 4.76 (s, 2H), 4.24 (d, J = 8.2 Hz, 1H), 3.94 (dd, J = 10.94, 2.55 Hz, 1H), 3.85 (dd, J = 11.1, 

5.2 Hz, 1H), 3.66 – 3.59 (m, 1H), 3.37 – 3.30 (m, 1H), and 2.65 (s, 1H); 13C NMR (101 MHz, 

CD3OD): δ 137.35, 128.79, 128.51, 127.87, 127.53, 123.95, 74.83, 69.62, 65.12, 58.89, and 

53.49; IR (neat) 3364, 3063, 3028, 2930, 2879, 2825, 1496, 1451, 1366, 1264, 1242, 1030, 1002, 

913, and 736 cm-1; HR-ESIMS requires for C13H17NO3 (M+Na)+ 258.1101, found 258.1097. 

 

(±)-(2S, 3R)-N-methoxy-2-hydroxymethyl-3-hydroxy-1,2,3,6-tetrahydropyridine (116) 

 

 To a solution of 110 (1.36 mmol, 273 mg) in methanol (27 mL) was added potassium 

carbonate (28.3 mmol, 3.9 g) all at once and the resulting suspension was stirred for 16 hours at 

room temperature. After concentration under reduced pressure, the crude residue was taken up in 

10 mL of water and extracted with CHCl3:i-PrOH (3:1 v:v, 3 x 15 mL). The combined organic 

extracts were washed with brine, dried over Na2SO4, and concentrated to afford 190 mg of diol 

116 as a white solid that was used without further purification (1.19 mmol, 88% yield). Rf = 0.4 

(5% DCM:MeOH); M.P. = 121.2 – 123.4 °C; 1H NMR (400 MHz, CD3OD): δ 5.85 – 5.79 (m, 

1H), 5.74 (dd, J = 9.7, 4.2 Hz, 1H), 4.15 (s, 1H), 3.96 (ddd, J = 10.9, 5.6, 1.0 Hz, 1H), 3.88 (ddd, 

J = 10.9, 6.7, 1.0 Hz, 1H), 3.77 (ddd, J = 16.5, 4.5, 1.2 Hz, 1H), 3.51 (s, 3H), 3.18 (d, J = 16.6 

Hz, 1H), and 2.78 (s, 1H); 13C NMR (101 MHz, CD3OD): δ 127.01, 125.51, 67.74, 65.12, 59.82, 

59.63, and 53.75; IR (neat) 3352 (br), 3245 (br), 2921, 2851, 2808, 1457, 1384, 1265, 1243, 

1225, 1121, 1026, 947, 895, 870, and 846 cm-1; HR-ESIMS requires for C7H13NO3 (M+Na)+ 

182.0788, found 182.0785. 
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(±)-(2S, 3R, 4S, 5S)-N-phenylmethoxy-2-hydroxymethyl-3,4,5-trihydroxypiperidine (117) 

 

 To a solution of 115 (1.83 mmol, 430 mg) in acetonitrile, acetone, and deionized water 

(11 mL, 1:1:1 v/v) was added NMO (3.66 mmol, 0.4 mL) followed by 2.4 mL of a 1 wt. % 

solution of osmium tetroxide in deionized water and the resulting solution was stirred overnight at 

room temperature. The reaction mixture was then filtered through a pad of celite and the pad 

washed with methanol (3 x 15 mL). After concentration under reduced pressure, the crude residue 

was purified by column chromatography (5% - 10% DCM:MeOH) to afford 431 mg of the pure 

piperidine 117 as an off white solid (1.6 mmol, 88% yield). Rf = 0.3 (10% DCM:MeOH); M.P. = 

98.6 – 100.8 °C; 1H NMR (400 MHz, CD3OD): δ 7.38 – 7.22 (m, 5H), 4.73 (d, J = 1.0 Hz, 1H), 

4.00 (ddd, J = 11.2, 2.8, 1.0 Hz, 1H), 3.91 – 3.88 (m, 1H), 3.79 (td, J = 9.7, 1.0 Hz, 1H), 3.54 

(ddd, J = 11.4, 3.5, 1.0 Hz, 1H), 3.35 (ddd, J = 9.6, 3.6, 1.0 Hz, 1H), 3.29 (dq, J = 3.0, 1.5 Hz, 

1H), 2.67 (dd, J = 11.6, 1.8 Hz, 1H), and 2.34 (d, J = 9.7 Hz, 1H); 13C NMR (101 MHz, CD3OD): 

δ 136.94, 128.54, 127.93, 127.61, 74.77, 74.61, 70.91, 68.18, 67.40, 58.50, and 58.25; IR (neat) 

3225 (br), 3031, 2978, 2951, 2919, 2842, 1460, 1451, 1437, 1366, 1319, 1210, 1101, 1062, 1042, 

974, 909, and 856 cm-1; HR-ESIMS requires for C13H19NO5 (M+Na)+ 292.1155, found 292.1155. 
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(±)-(2S, 3R, 4S, 5S)-N-methoxy-2-hydroxymethyl-3,4,5-trihydroxypiperidine (118) 

 

 To a solution of 116 (0.69 mmol, 109 mg) in acetonitrile, acetone, and deionized water 

(4.05 mL, 1:1:1 v/v) was added NMO (1.37 mmol, 0.2 mL) followed by 0.9 mL of a 1 wt. % 

solution of osmium tetroxide in deionized water and the resulting solution was stirred overnight at 

room temperature. The reaction mixture was then filtered through a pad of celite and the pad 

washed with methanol (3 x 10 mL). After concentration under reduced pressure, the crude residue 

was purified by column chromatography (5% - 20% DCM:MeOH) to afford 122 mg of the pure 

piperidine 118 as a colorless gum (0.6 mmol, 92%). Rf = 0.5 (20% DCM:MeOH); 1H NMR (400 

MHz, CD3OD): δ 3.99 (ddd, J = 7.0, 3.7, 1.8 Hz, 1H), 3.73 (td, J = 7.6, 3.2 Hz, 1H), 3.66 (ddd, J 

= 5.9, 1.8, 0.5 Hz, 1H), 3.47 (s, 3H), 3.33 (s, 1H), 3.23 – 3.16 (m, 1H), 3.11 (dd, J = 3.2, 0.9 Hz, 

1H), 3.09 – 3.07 (m, 1H), and 3.06 – 3.03 (m, 1H); 13C NMR (101 MHz, CD3OD): δ 76.42, 

75.11, 70.78, 67.43, 59.86, 58.99, and 58.00; IR (film) 3346 (br), 2952, 2921, 2903, 2851, 2072, 

1463, 1375, 1225, 1118, 1087, 1057, 1042, 971, 898, and 818 cm-1; HR-ESIMS requires for 

C7H15NO5 (M+Na)+ 216.0842, found 216.0840. 

 

(±)-(2R, 3R)-N-phenylmethoxy-2-hydroxymethyl-3-hydroxy-1,2,3,6-tetrahydropyridine 

(119) 

 

 To a solution of 114 (0.958 mmol, 266 mg) in methanol (19 mL) was added potassium 

carbonate (20.0 mmol, 2.75 g) all at once and the resulting suspension was stirred for 16 hours at 
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room temperature. After concentration under reduced pressure, the crude residue was taken up in 

25 mL of water and extracted with CHCl3:i-PrOH (3:1 v:v, 3 x 15 mL). The combined organic 

extracts were washed with brine, dried over Na2SO4, and concentrated to afford 224 mg of diol 

119 as an off-white solid that was used without further purification (0.95 mmol, 99% yield). X-

ray quality crystals were grown by slow evaporation of a benzene solution of 119. Rf = 0.15 (1:1 

hexanes:ethyl acetate); M.P. = 89.5 – 91.8 °C; 1H NMR (500 MHz, CD3OD): δ 7.41 – 7.25 (m, 

5H), 5.87 – 5.81 (m, 1H), 5.73 (ddd, J = 9.9, 4.8, 1.9 Hz, 1H), 4.84 (s, 2H), 4.71 (q, J = 10.9 Hz, 

2H), 4.20 (br s, 1H), 4.01 (dd, J = 10.9, 5.3 Hz, 1H), 3.92 (dd, J = 10.9, 7.0 Hz, 1H), 3.73 (dd, J = 

16.8, 4.6 Hz, 1H), 3.24 (d, J = 16.8 Hz, 1H), and 2.85 (br s, 1H); 13C NMR (101 MHz, CD3OD): 

δ 137.31, 128.63, 127.95, 127.64, 127.00, 125.71, 75.32, 67.82, 65.48, 59.83, and 54.55; IR 

(neat) 3322 (br), 3034, 2872, 2813, 1454, 1401, 1369, 1124, 1089, 1045, 998, and 953 cm-1; HR-

ESIMS requires for C13H17NO3 (M+H)+ 236.1281, found 236.1283. 

 

(±)-(2R, 3R)-N-methoxy-2-hydroxymethyl-3-hydroxy-1,2,3,6-tetrahydropyridine (120) 

 

 To a solution of 114 (0.82 mmol, 165 mg) in methanol (16 mL) was added potassium 

carbonate (17.1 mmol, 2.36 g) all at once and the resulting suspension was stirred for 16 hours at 

room temperature. After concentration under reduced pressure, the crude residue was taken up in 

10 mL of water and extracted with CHCl3:i-PrOH (3:1 v:v, 3 x 15 mL). The combined organic 

extracts were washed with brine, dried over Na2SO4, and concentrated to afford 117 mg of diol 

120 as an off-white solid that was used without further purification (0.73 mmol, 89% yield). Rf = 

0.3 (5% DCM:MeOH); M.P. = 67.4 – 70.1 °C; 1H NMR (400 MHz, CD3OD): δ 5.85 – 5.79 (m, 

1H), 5.74 (dd, J = 9.7, 4.2 Hz, 1H), 4.15 (s, 1H), 3.96 (ddd, J = 10.9, 5.6, 1.0 Hz, 1H), 3.88 (ddd, 
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J = 10.9, 6.7, 1.0 Hz, 1H), 3.77 (ddd, J = 16.5, 4.5, 1.2 Hz, 1H), 3.51 (s, 3H), 3.18 (d, J = 16.6 

Hz, 1H), and 2.78 (s, 1H); 13C NMR (101 MHz, CD3OD): δ 127.01, 125.51, 67.74, 65.12, 59.82, 

59.63, and 53.75; IR (neat) 3303, 2980, 2930, 2885, 2816, 1470, 1451, 1388, 1337, 1299, 1223, 

1125, 1078, 1049, 1008, 986, 935, and 751 cm-1; HR-ESIMS requires for C7H13NO3 (M+Na)+ 

182.0788, found 182.0788. 

 

(±)-(2R, 3R, 4S, 5S)-N-phenylmethoxy-2-hydroxymethyl-3,4,5-trihydroxypiperidine (121) 

 

 To a solution of 119 (0.992 mmol, 233.3 mg) in acetonitrile, acetone, and deionized 

water (6 mL, 1:1:1 v/v) was added NMO (1.98 mmol, 0.21 mL) followed by 1.3 mL of a 1 wt. % 

solution of osmium tetroxide in deionized water and the resulting solution was stirred overnight at 

room temperature. The reaction mixture was then filtered through a pad of celite and the pad 

washed with methanol (3 x 10 mL). After concentration under reduced pressure, the crude residue 

was purified by column chromatography (5% - 10% DCM:MeOH) to afford 220 mg of the pure 

piperidine 121 as a white solid (0.82 mmol, 82% yield). X-ray quality crystals were grown by 

vapor diffusion of pentane into an ethanol solution of 121. Rf = 0.2 (10% DCM:MeOH); M.P. = 

130.7 – 133.5 °C; 1H NMR (400 MHz, CD3OD): δ 7.40 – 7.21 (m, 5H), 4.83 (s, 2H), 4.70 (d, J = 

10.7 Hz, 1H), 4.63 (d, J = 10.6 Hz, 1H), 3.97 (d, J = 8.9 Hz, 1H), 3.95 – 3.92 (m, 1H), 3.89 (d, J 

= 10.8 Hz, 1H), 3.76 (s, 1H), 3.23 (ddd, J = 9.6, 4.6, 1.0 Hz, 1H), 2.84 (s, 1H), and 2.76 (d, J = 

10.4 Hz, 1H); 13C NMR (101 MHz, CD3OD): δ 137.17, 128.56, 127.94, 127.60, 74.87, 70.61, 

70.15, 65.51, 64.32, 59.72, and 55.90; IR (neat) 3225 (br), 3031, 2978, 2951, 2919, 2842, 1460, 

N

HO

OH OBn
N

HO

OH OBn

OH
OH

OsO4, NMO

ACN, Acetone, H2O
R.T., 16 hrs.



	   103 

1451, 1437, 1366, 1319, 1210, 1101, 1062, 1042, 974, 909, and 856 cm-1; HR-ESIMS requires 

for C13H19NO5 (M+H)+ 270.1336, found 270.1337. 

 

(±)-(2R, 3R, 4S, 5S)-N-methoxy-2-hydroxymethyl-3,4,5-trihydroxypiperidine (122) 

 

 To a solution of 120 (0.63 mmol, 100 mg) in acetonitrile, acetone, and deionized water 

(3.75 mL, 1:1:1 v/v) was added NMO (1.26 mmol, 0.13 mL) followed by 0.8 mL of a 1 wt. % 

solution of osmium tetroxide in deionized water and the resulting solution was stirred overnight at 

room temperature. The reaction mixture was then filtered through a pad of celite and the pad 

washed with methanol (3 x 10 mL). After concentration under reduced pressure, the crude residue 

was purified by column chromatography (5% - 20% DCM:MeOH) to afford 97.3 mg of the pure 

piperidine 122 as an off white gum (0.5 mmol, 80%). Rf = 0.4 (20% DCM:MeOH); 1H NMR 

(500 MHz, CD3OD): δ 4.03 – 3.93 (m, 2H), 3.89 (dt, J = 12.1, 6.0 Hz, 2H), 3.80 – 3.72 (m, 1H), 

3.48 (s, 3H), 3.23 (dd, J = 9.7, 4.6 Hz, 1H), 2.77 (s, 1H), and 2.69 (s, 1H); 13C NMR (500 MHz, 

CD3OD): δ 70.42, 70.18, 65.37, 64.36, 59.68, 59.15, and 55.04; IR (neat) 3297, (br), 2961, 2940, 

2918, 2891, 2845, 1454, 1369, 1228, 1103, 1072, 1051, 1039, 1014, 974, and 950 cm-1; HR-

ESIMS requires for C7H15NO5 (M+Na)+ 216.0842, found 216.0840. 
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Chapter 5: Alternative Methods of Generating Aza-Oxyallylic Cations 

 

5.1 Introduction 

 As discussed in Chapter 2, one of the limitations encountered in our methodology was the 

inability to incorporate heteroatoms at the α-carbon of the α-haloamide starting materials. This 

disadvantage turned out to be quite significant, as the only way to incorporate oxygen or nitrogen 

into a cycloadduct was by nucleophilic displacement of a chloride atom and always resulted in 

ring contraction to a six-membered tetrahydropyridine core. Recently, our group has reported the 

oxidative 1,4-diamination of dienes using simple urea derivatives 124 to construct diaza-seven-

membered heterocycles 126 (Scheme 5.1.1).1 This reaction hinges on formation of a diaza-

oxyallylic cation intermediate 125 in situ through a series of deprotonation and oxidation events 

of a dibenzyloxyurea derivative respectively. Given that hypervalent iodide reagents have been 

shown to be effective oxidants for the generation of N-acylnitrenium ions from O-alkyl 

hydroxamates,2,3 it was our vision to explore the possibility of generating an aza-oxyallylic cation 

by deprotonation followed by oxidation of an O-alkyl hydroxamate functionalized at the α-

position with either oxygen or nitrogen. 

 

	  

Scheme 5.1.1. Oxidative 1,4-diamination of dienes through a diaza-oxyallylic cation intermediate. 
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5.2 Toward an Oxidative Generation of Aza-Oxyallylic Cations 

 In order to explore the feasibility of our hypothesis, two substrates were synthesized, 2-

methoxy-N-(phenylmethoxy)acetamide 128 and 2-(N-phthalyl)-N-(phenylmethoxy)acetamide 130 

from the corresponding commercially available acid chlorides 127 and 129 respectively (Scheme 

5.2.1). Given that (diacetoxyiodo)benzene (DIB) was found to be the optimal oxidant for the 1,4-

diamination cases, we initially set out to screen bases using 2,2,3,3-tetrafluoro-1-propanol as the 

solvent.4 First studied was α-methoxy hydroxamate 128 and was dissolved in the solvent and 

diene followed by addition of the oxidant and base at 0 °C. Various bases were evaluated in their 

ability to affect the desired reactivity including triethylamine, 2,6-lutidine, cesium carbonate, 

sodium carbonate, diisopropylamine, potassium t-butoxide, and CHF2CF2CH2ONa, with the 

results being tabulated in Table 5.2.1 below. Amine bases such as triethylamine, 

diisopropylamine, and 2,6-lutidine gave undesired reactivity and resulted in either no reaction or 

solvolysis of the intermediate (entries 1-3). Sodium carbonate and cesium carbonate were both 

found to be ineffective, providing almost a quantitative recovery of the starting material (entries 4 

and 5). We were optimistic about the sodium salt of 2,2,3,3-tetrafluor-1-propanol being able to 

give at least a small amount of the desired cycloadduct given the success of the oxidative 1,4-

diamination reaction, however to our dismay this base too proved to fail and gave solvolysis of 
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Scheme 5.2.1. Synthesis of α-heteroatom-substituted amide starting materials. 
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the intermediate (entry 5). Interestingly, potassium t-butoxide appeared to have given the desired 

product in a trace amount as observed by crude 1H NMR (entry 6), however attempts to optimize 

the reaction to provide enough of the pure cycloadduct for characterization including slow 

addition of the substrate to the reaction mixture, changing the order of addition of reagents, and 

lowering of the temperature were all unproductive. Using potassium t-butoxide as the base and 

switching to the more bulkier hexafluoroisopropanol solvent was thought to be helpful, however 

no reaction was observed including no solvolysis and gave recovery of the starting material (entry 

7). 

 

 

Entry Solvent Base % Yield 

1 CHF2CF2CH2OH Et3N solvolysis 

2 CHF2CF2CH2OH (i-pr)2NH solvolysis 

3 CHF2CF2CH2OH 2,6-lutidine N.R. 

4 CHF2CF2CH2OH Na2CO3 N.R. 

5 CHF2CF2CH2OH Cs2CO3 N.R. 

6 CHF2CF2CH2OH CHF2CF2CH2ONa solvolysis 

7 CHF2CF2CH2OH t-BuOK tracea 

8 HFIP t-BuOK N.R. 

  aTrace amount of 131 detected by crude 1H NMR analysis. 

 

N
H

O
MeO OBn

Base (2.0 equiv.)
DIB (2.0 equiv.)

O
Solvent
(0.25 M) 0 °C

:

N
O OBn

MeO
O

131

Table 5.2.1. Solvent and Base Effects in the Oxidative Generation
of Alpha-Methoxy Substituted Aza-Oxyallylic Cations

128
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 Next studied was α-N-phthalyl hydroxamate 130 in a similar fashion, with 

hexafluoroisopropanol being chosen as the solvent in an effort to minimize competitive solvolysis 

products. Once again, triethylamine, diisopropylamine, and 2,6-lutidine gave no reaction and 

resulted in recovery of the starting material (entries 1-3, Table 5.2.2). Sodium carbonate and 

cesium carbonate were observed to be incompatible bases, giving decomposition of the reactant 

(entries 4 and 5). The sodium salt of 2,2,3,3-tetrafluor-1-propanol and potassium t-butoxide both 

appeared to have provided the desired cycloadduct 132, albeit once again in trace amounts as 

detected by crude 1H NMR analysis (entries 6 and 7). Optimization attempts to provide enough 

product for unambiguous characterization including temperature changes, order of reagent 

addition changes, and different solvents were all unfruitful. Initially, it appears that more 

promising results could be obtained with the α-N-phthalyl substrate. One hypothesis could be that 

the acidity of the α-protons is higher due to the electron withdrawing phthalimide group. 

However, an equally viable argument could be made that the resulting aza-oxyallylic cation 

intermediate is now being destabilized and not allowing for formation of the desired cycloadduct. 

Nonetheless, it appears that this project could have viable merit and continued work on this 

methodology could be worthwhile, especially in the context of target directed synthesis. 
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Entry Solvent Base % Yield 

1 HFIP Et3N N.R. 

2 HFIP (i-pr)2NH N.R. 

3 HFIP 2,6-lutidine N.R. 

4 HFIP Na2CO3 decomposition 

5 HFIP Cs2CO3 decomposition 

6 HFIP CHF2CF2CH2ONa tracea 

7 HFIP t-BuOK tracea 

8 CHF2CF2CH2OH CHF2CF2CH2ONa solvolysis 

9 CHF2CF2CH2OH t-BuOK solvolysis 

  aTrace amount of 132 detected by crude 1H NMR analysis. 

Base (2.0 equiv.)
DIB (2.0 equiv.)

O
Solvent
(0.25 M) 0 °C

:

Table 5.2.2. Solvent and Base Effects in the Oxidative Generation
of Alpha-N-Phthalyl Substituted Aza-Oxyallylic Cations

O

N
H

N

O

O

OBn

130

N
OBnO

O
N

O

O
132
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5.3 Experimental: 

All reactions were carried out under an atmosphere of nitrogen in oven-dried glassware 

with magnetic stirring, unless otherwise specified. All reagents and solvents were purchased from 

Sigma-Aldrich Chemical Company and used without any further purification. TLC information 

was recorded on Silicycle glass 60 F254 plates and developed by staining with KMnO4 or ceric 

ammonium molybdate. Purification of reaction products was carried out by flash chromatography 

using Silicycle Siliaflash® P60 (230-400 mesh). 1H-NMR spectra were measured on Varian 400 

(400 MHz) or Varian 500 (500 MHz) spectrometers and are reported in ppm (s = singlet, d = 

doublet, t = triplet, q = quartet, m = multiplet, br = broad; integration; coupling constant(s) in Hz 

using TMS as an internal standard (TMS at 0.00 ppm) in CDCl3, CD3CN, or CD3OD. 13C-NMR 

spectra were recorded on V400 or V500 spectrometers and reported in ppm using solvent as an 

internal standard (CDCl3 at 77.36 ppm), (CD3CN at 118.26 ppm) or (CD3OD at 49.86 ppm). 

Infrared (IR) spectra were recorded on a Nicolet 6700 FT-IR with a diamond ATR and data are 

reported as cm-1 (br = broad, st = strong). High-resolution mass spectra were obtained using an 

Agilent 6230 TOF LC/MS with an atmospheric pressure photo-ionization (APPI) or electrospray 

(ESI) source with purine and HP-0921 as internal calibrants. 

 

(±)-2-methoxy-N-(phenylmethoxy)acetamide (128): 

 

 To a stirred suspension of O-benzylhydroxylamine hydrochloride (46.1 mmol, 7.35 g) in 

dichloromethane (184 mL, 0.25 M) and triethylamine (92.2 mmol, 12.9 mL) in an ice bath at 0 °C 

was added methoxyacetyl chloride (46.1 mmol, 4.2 mL) dropwise, followed by removal of the ice 

bath and warming of the reaction mixture to room temperature for 1 hour. The solvent was 

Cl

O
MeO

H2N
O Ph

Et3N (2.0 equiv.)
DCM, 0 °C to R.T.

HCl
N
H

O
MeO O Ph
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removed under reduced pressure and the crude solid was purified by column chromatography (3:1 

to 2:1 hexanes:ethyl acetate) to afford 8.84 g of amide 124 as a white crystalline solid (45.3 

mmol, 94% yield). Rf = 0.3 (1:1 hexanes:ethyl acetate); M.P. = 41.4 – 42.8 °C; 1H NMR (500 

MHz, CDCl3): δ 8.83 (br s, 1H), 7.45 – 7.33 (m, 5H), 4.95 (s, 2H), 3.95 (s, 2H), and 3.33 (s, 3H); 

13C NMR (101 MHz, CDCl3): δ 166.67, 135.08, 129.13, 128.72, 128.54, 78.34, 71.44, and 59.34 

IR (neat) 3193 (br), 3060, 3031, 2995, 2945, 2919, 2875, 2830, 1661 (st), 1496, 1478, 1451, 

1360, 1269, 1230, 1198, 1110 (st), 1065, 1003, 986, 953, 909, 841, and 744 cm-1; HR-ESIMS 

requires for C10H13NO3 (M+H)+ 196.0968, found 196.0969. 

 

(±)-2-(N-phthalyl)-N-(phenylmethoxy)acetamide (130): 

 

 To a stirred suspension of O-benzylhydroxylamine hydrochloride (4.1 mmol, 650 mg) in 

dichloromethane (16 mL, 0.25 M) and triethylamine (8.2 mmol, 1.1 mL) in an ice bath at 0 °C 

was added phthalylglycyl chloride (4.1 mmol, 910.1 mg) in small portions, followed by removal 

of the ice bath and warming of the reaction mixture to room temperature for 1 hour. The solvent 

was removed under reduced pressure and the crude solid was purified by column chromatography 

(2:1 hexanes:ethyl acetate) to afford 602 mg of amide 130 as a white crystalline solid (1.9 mmol, 

50% yield). Rf = 0.2 (2:1 hexanes:ethyl acetate); M.P. = 167.0 – 168.1 °C; 1H NMR (500 MHz, 

CD3OD): δ 7.93 – 7.76 (m, 3H), 7.47 – 7.30 (m, 4H), 4.84 (s, 1H), 4.23 (s, 1H), and 3.29 (dd, J = 

2.9, 1.6 Hz, 2H); 13C (121 MHz, CD3OD): δ 167.66, 166.69, 135.32, 134.14, 132.01, 129.13, 

128.31, 128.09, 122.94, 77.73, and 37.56; IR (neat) 3152 (br), 3060, 2972, 2939, 2854, 1773, 

N

O

O

O
Cl H2N

O Ph

Et3N (2.0 equiv.)
DCM, 0 °C to R.T.

HCl

N

O

O

O
NH

O
Ph
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1682 (st), 1684 (st), 1613, 1493, 1463, 1451, 1413, 1389, 1360, 1319, 1248, 1233, 1192, 1113, 

1086, 1045, 1012, 971, 947, 897, 756, and 738 cm-1; HR-ESIMS requires for C17H14N2O4  
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Chapter 6: Conclusions and Future Work 

 

6.1 Conclusions and Future Work 

 Historically, the aza-oxyallylic cation intermediate was proposed in order to rationalize 

the selectivity behind the nucleophilic ring opening of α-lactams. Despite proposals of the aza-

oxyallylic cation’s involvement in a variety of processes, experimental and theoretical evidence 

had largely ruled out its existence. A key solvolysis experiment by Kikugawa coupled with our 

own theoretical investigations led us to believe that placement of an electron donating alkoxy 

group on the nitrogen atom could provide a necessary stabilization to the intermediate.1-3 Inspired 

by the large comprehensive body of work on [4+3] cycloadditions of oxyallylic cations, we 

demonstrated that α-halo hydroxamates react with cyclic dienes under basic conditions in 

fluorinated solvents, providing the first experimental evidence of an aza-oxyallylic cation. Most 

of the substrates in the aza-[4+3] cycloaddition demonstrated a selectivity for the endo 

diastereoisomer (≥19:1 endo:exo). The exception was α-chloro cycloadduct 66f, with the 

diastereoisomeric ratio being high at 40% conversion ((≥19:1 endo:exo); but equilibrated to a 2:1 

endo:exo ratio upon reaction completion. When the purified endo-adduct was re-subjected to the 

reaction conditions the product was observed to have isomerized to a 1:1 mixture of 

diastereoisomers. In light of this result, we believe that there is some sort of kinetic preference for 

the endo-cycloadduct, however additional investigations aimed at better understanding the exact 

nature of this selectivity could prove worthwhile. Our initial report focused on demonstrating the 

viability of our method toward constructing seven-membered heterocycles, with little exploration 

of the actual reaction mechanism. Another project that could stem from this work would include 

comprehensive mechanistic studies, specifically directed at determining if the reaction was more 

of a stepwise process or concerted. 



	   115 

 Recently, our methodology has found application in the field of polymer chemistry by 

Fishman and Kiessling, who utilized our heterocyclic scaffold 133 as a starting point to 

synthesize a new class of degradable polymers.4 Ring opening metathesis polymerization 

(ROMP) using Grubbs’ catalyst 134 was found to readily occur on monomer 133 in THF at room 

temperature. It was demonstrated that several poly-oxazinones 135 were stable over pH values 

from 4.6 to 9.1; however decomposition to β-hydroxy amide 136 and enal 137 readily occurred 

upon subjection to pH 2.5 or highly basic conditions. The flexibility of our method allows for the 

incorporation of a wide variety of side chains both at the C- and N-terminus, permitting extensive 

derivatization in this new class of degradable polymer. In a special case, Kiessling showed that an 

azide functional group is tolerant to the aza-[4+3] cycloaddition and could be used as a linker to 

glycosides via a click reaction with a propargylated sugar. Subsequent polymerization of this 

glycosidic monomer demonstrated that biomolecules could be incorporated into the degradable 

backbone, which could allow applications in a number of biomedical applications. Additional 

projects in this field could include applying our method toward the construction of a library of 

polymers for biological testing and application exploration. 
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Scheme 6.1.1. [3.2.1]-Aza-bicyclononenes as new monomers for the synthesis of a new class of 
biodegradable ROMP polymers. 

	  
 A six-membered piperidine analogue of balanol was synthesized in good yield and high 

diastereoselectivity, and although the desired target was not realized, we nonetheless 

demonstrated the feasibility of our approach if the ring contraction problem can be solved. Our 

method has the advantages of being diastereoselective and stems from commercially available 

starting materials, as well as the reactions being relatively simple and scalable for large amounts 

of material. On the other hand, it might be worthwhile to study the effect of shrinking the 

nitrogen-containing ring size and determine how this affects the biological activity. A seven-

membered iminosugar derivative was achieved in only five short synthetic steps from 

commercially available starting materials and through an aza-[4+3] cycloaddition reaction. The 

reactions are high yielding, diastereoselective, and have the capability of incorporating a wide 

variety of side chains at the three-position. Further extensions of this project could involve 

synthesizing a variety of analogues for biological testing and the construction of a library of 

compounds. 
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 A concise approach to the stereoselective synthesis of polyhydroxylated N-

alkoxypiperidines from common seven-membered azacyclic cores was developed. The strategy 

hinged on the rich functionality that is provided through aza-[4+3] cycloaddition reactions of 

putative aza-oxyallylic cation intermediates with furan. A chemoselective double reduction using 

alane provided the prefunctionalized azepines. Silver acetate promoted ring contraction and 

subsequent acetate hydrolysis with potassium carbonate provided a novel method for the 

construction of tetrahydropyridine cores in good yield and high diastereoselectivity. Finally, 

stereoselective catalytic dihydroxylation mediated by osmium tetroxide gave the final 

polyhydroxylated products in high yields. This method represents a versatile approach to 

tetrahydropyridine cores and iminosugar derivatives that is only five steps from furan and 1,1-

dichloroacetyl chloride. Other directions from this work are being focused on better 

understanding the ring contraction mechanism and elaborating the tetrahydropyridine scaffolds to 

other piperidine natural products of interest to our group. 

 Since our initial report, this new class of heterocycloaddition reactions has been applied 

to the selective 1,4-diamination of alkenes and the synthesis of polyheterocyclic scaffolds via an 

intramolecular aza-[4+3] cycloaddition.5-7 The advances described in this dissertation provide 

tremendous potential for organic synthesis and method development. The high degree of 

selectivity contained in the aza-[4+3] cycloaddition and the bold array of functionality provided 

in the resulting adducts presents adequate opportunities in target-directed synthesis, and has 

already found application toward the development of a new ROMP degradable polymer. Moving 

forward, it is expected that the development of new approaches to generating aza-oxyallylic 

cation intermediates will be realized, leading to heteroatomic analogs that delivers selective 1,4-

difunctionalization of dienes. Along with these new methods of generation, the ambivalent 

reactivity of this versatile intermediate can be taken advantage of in non-cycloaddition reactions. 

An increased understanding of the mechanistic pathway of these reactions will pave the way for 
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enantioselective reactions of aza-oxyallylic cations and enable researchers to take full advantage 

of their use in organic synthesis. 
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Appendix 
 
 

A.1 1H and 13C NMR Spectra 
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Figure A.1.1 1H NMR (500 MHz, CDCl3) spectrum of 60. 
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Figure A.1.2 13C NMR spectrum (126 MHz, CD3CN) of 60. 
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Figure A.1.3 1H NMR (500 MHz, CDCl3) spectrum of 62. 
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Figure A.1.4 13C NMR (126 MHz, CDCl3) of 62. 
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Figure A.1.5 1H NMR (400 MHz, CDCl3) spectrum of 63. 

63

N
O OH3C

H3C O

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5
f1 (ppm)

0

50

100

150

200

250

300

350

400

3
.2
7

3
.4
6

1
.0
3

1
.2
3

1
.2
0

0
.9
5

1
.0
6

1
.0
0

5
.1
5

1
.0
5

1
.4
9

4
.4
6

4
.4
7

4
.8
6

4
.8
9

4
.9
6

4
.9
9

5
.2
1

5
.2
1

6
.4
2

6
.4
3

6
.4
4

6
.4
4

6
.5
6

6
.5
6

6
.5
7

6
.5
7

7
.3
6

7
.3
7

7
.3
8

7
.4
3

7
.4
5



	   126 

 
 
 

 
 

Figure A.1.6 13C NMR (101 MHz, CDCl3) spectrum of 63. 
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Figure A.1.7 1H NMR (500 MHz, CDCl3) spectrum of 64. 
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Figure A.1.8 13C NMR (121 MHz, CDCl3) spectrum of 64. 
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Figure A.1.9 1H NMR (500 MHz, CDCl3) spectrum of 65b. 
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Figure A.1.10 13C NMR (126 MHz, CDCl3) spectrum of 65b. 
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Figure A.1.11 1H NMR (400 MHz, CDCl3) spectrum of 65c. 

N
H

O

Br

O

65c

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0
f1 (ppm)

-5

0

5

10

15

20

25

30

35

40

45

50

55

60

3
.4
4

2
.3
4

2
.3
0

1
.0
0

5
.2
3

1
.1
7

1
.0
0

1
.9
6

2
.0
3

4
.1
2

4
.9
3

7
.3
7

7
.3
9

7
.4
1

8
.9
2



	   132 

 
 
 

 
 

Figure A.1.12 13C NMR (126 MHz, CDCl3) spectrum of 65c. 
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Figure A.1.13 1H NMR (500 MHz, CDCl3) spectrum of 65d. 

N
H

O

Br

OH3C

CH3H3C

65d

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0
f1 (ppm)

-20

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

320

340

360

380

9
.0
4

1
.0
0

1
.9
6

5
.1
2

0
.9
3

1
.1
2

4
.0
5

4
.9
0

7
.3
4

7
.4
0

9
.5
9



	   134 

 
 
 

 
 

Figure A.1.14 13 C NMR (126 MHz, CDCl3) spectrum of 65d. 
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Figure A.1.15 1H NMR (500 MHz, CDCl3) spectrum of 65e. 
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Figure A.1.16 13C NMR (126 MHz, CDCl3) spectrum of 65e. 
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Figure A.1.17 1H NMR (500 MHz, CDCl3) spectrum of 65f. 
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Figure A.1.18 13C NMR (126 MHz, CDCl3) spectrum of 65f. 
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Figure A.1.19 1H NMR (400 MHz, CD3CN) spectrum of 65g. 
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Figure A.1.20 13C NMR (126 MHz, CD3CN) spectrum of 65g. 
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Figure A.1.21 1H NMR (500 MHz, CDCl3) spectrum of 65i/65l. 
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Figure A.1.22 13C NMR (126 MHz, CDCl3) spectrum of 65i/65l. 
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Figure A.1.23 1H NMR (400 MHz, CDCl3) spectrum of 66b. 
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Figure A.1.24 13C NMR (126 MHz, CDCl3) spectrum of 66b. 
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Figure A.1.25 1H NMR (500 MHz, CDCl3) spectrum of 66c. 
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Figure A.1.26 13C NMR (126 MHz, CDCl3) spectrum of 66c. 
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Figure A.1.27 1H NMR (400 MHz, CDCl3) spectrum of 66d. 
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Figure A.1.28 13C NMR (126 MHz, CDCl3) spectrum of 66d. 
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Figure A.1.29 1H NMR (500 MHz, CDCl3) spectrum of endo 66f. 
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Figure A.1.30 13C NMR (126 MHz, CDCl3) spectrum of endo 66f. 
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Figure A.1.31 1H NMR (500 MHz, CDCl3) spectrum of exo 66f. 
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Figure A.1.32 13C NMR (126 MHz, CDCl3) spectrum of exo 66f. 
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Figure A.1.33 1H NMR (500 MHz, CDCl3) spectrum of 66g. 
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Figure A.1.34 13C NMR (101 MHz, CDCl3) spectrum of 66g. 
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Figure A.1.35 1H NMR (400 MHz, CDCl3) spectrum of 66i. 
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Figure A.1.36 13C NMR (101 MHz, CDCl3) spectrum of 66i. 
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Figure A.1.37 1H NMR (400 MHz, CDCl3) spectrum of endo 66j. 
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Figure A.1.38 13C NMR (101 MHz, CDCl3) spectrum of endo 66j. 

N
O OEt

H

endo 66j

0102030405060708090100110120130140150160170180
f1 (ppm)

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

1
2
.1
3

2
1
.4
8

4
0
.6
6

4
2
.2
3

5
1
.3
9

6
4
.3
7

7
7
.0
6

1
2
8
.3
7

1
2
8
.5
3

1
2
9
.6
0

1
3
5
.9
2

1
3
6
.8
4

1
3
7
.0
4

1
7
1
.4
6



	   159 

 
 
 

 
 

Figure A.1.39 1H NMR (400 MHz, CDCl3) spectrum of exo 66j. 
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Figure A.1.40 13C NMR (101 MHz, CDCl3) spectrum of exo 66j. 
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Figure A.1.41 1H NMR (400 MHz, CDCl3) spectrum of endo 66k. 
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Figure A.1.42 13C NMR (101 MHz, CDCl3) spectrum of endo 66k. 
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Figure A.1.43 1H NMR (400 MHz, CDCl3) spectrum of 66l. 
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Figure A.1.44 13C NMR (101 MHz, CDCl3) spectrum of 66l. 
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Figure A.1.45 1H NMR (400 MHz, CDCl3) spectrum of methacryl amide. 
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Figure A.1.46 13C NMR (101 MHz, CDCl3) spectrum of methacrylamide. 
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Figure A.1.47 1H NMR (500 MHz, CDCl3) spectrum of 75. 
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Figure A.1.48 13C NMR (101 MHz, CDCl3) spectrum of 75. 
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Figure A.1.49 1H NMR (400 MHz, CD3OD) spectrum of 76. 
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Figure A.1.50 13C NMR (101 MHz, CD3OD) spectrum of 76. 
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Figure A.1.51 1H NMR (400 MHz, CDCl3) spectrum of 78. 
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Figure A.1.52 13C NMR (101 MHz, CDCl3) spectrum of 78. 
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Figure A.1.53 1H NMR (400 MHz, CDCl3) spectrum of 79. 
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Figure A.1.54 13C NMR (101 MHz, CDCl3) spectrum of 79. 
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Figure A.1.55 1H NMR (500 MHz, CDCl3) spectrum of 85. 
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Figure A.1.56 13C NMR (121 MHz, CDCl3) spectrum of 85. 
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Figure A.1.57 1H NMR (500 MHz, CDCl3) spectrum of 86. 
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Figure A.1.58 13C NMR (121 MHz, CDCl3) spectrum of 86. 
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Figure A.1.59 1H NMR (500 MHz, CDCl3) spectrum of 87. 
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Figure A.1.60 13C NMR (121 MHz, CDCl3) spectrum of 87. 
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Figure A.1.61 1H NMR (500 MHz, CDCl3) spectrum of 88. 

N
H

O O

88

HO

0.20.40.60.81.01.21.41.61.82.02.22.42.62.83.03.23.43.63.84.04.24.44.64.85.0
f1 (ppm)

-10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

2
.7
7

2
.5
3

2
.6
8

2
.6
4

1
.0
0

0
.9
4

1
.4
8

0
.9
5

0
.9
0

0
.8
1

0
.9
8

1
.0
1

1
.3
6

1
.4
9

2
.3
2

2
.3
5

2
.9
8

3
.0
1

3
.0
1

3
.0
3

3
.0
9

3
.1
1

3
.6
4

3
.6
5

4
.2
7

4
.2
8

4
.2
9

4
.2
9

4
.3
0

4
.3
0

4
.3
1

4
.3
2

4
.3
5

4
.3
5

4
.3
6

4
.3
7



	   182 

 
 
 

 
 

Figure A.1.62 13C NMR (121 MHz, CDCl3) spectrum of 88. 
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Figure A.1.63 1H NMR (400 MHz, CD3OD) spectrum of 89. 
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Figure A.1.64 13C NMR (101 MHz, CD3OD) spectrum of 89. 
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Figure A.1.65 1H NMR (500 MHz, CDCl3) spectrum of 90. 
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Figure A.1.66 13C NMR (121 MHz, CDCl3) spectrum of 90. 
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Figure A.1.67 1H NMR (500 MHz, CDCl3) spectrum of 91. 
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Figure A.1.68 13C NMR (101 MHz, CDCl3) spectrum of 91. 
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Figure A.1.69 1H NMR (500 MHz, CDCl3) spectrum of 92. 
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Figure A.1.70 13C NMR (121 MHz, CDCl3) spectrum of 92. 
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Figure A.1.71 1H NMR (500 MHz, CDCl3) spectrum of 93. 
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Figure A.1.72 13C NMR (121 MHz, CDCl3) spectrum of 93. 
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Figure A.1.73 1H NMR (400 MHz, CDCl3) spectrum of 94. 
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Figure A.1.74 13C NMR (101 MHz, CDCl3) spectrum of 94. 
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Figure A.1.75 1H NMR (500 MHz, CDCl3) spectrum of 95. 
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Figure A.1.76 13C NMR (121 MHz, CDCl3) spectrum of 95. 
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Figure A.1.77 1H NMR (500 MHz, CDCl3) spectrum of 96. 
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Figure A.1.78 13C NMR (121 MHz, CDCl3) spectrum of 96. 
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Figure A.1.79 1H NMR (500 MHz, CDCl3) spectrum of 97. 
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Figure A.1.80 13C NMR (121 MHz, CDCl3) spectrum of 97. 
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Figure A.1.81 1H NMR (400 MHz, CDCl3) spectrum of 98. 
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Figure A.1.82 13C NMR (101 MHz, CDCl3) spectrum of 98. 
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Figure A.1.83 1H NMR (500 MHz, CD3OD) spectrum of 100. 
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Figure A.1.84 13C NMR (121 MHz, CD3OD) spectrum of 100. 
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Figure A.1.85 1H NMR (500 MHz, CDCl3) spectrum of 104. 
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Figure A.1.86 13C NMR (121 MHz, CDCl3) spectrum of 104. 
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Figure A.1.87 1H NMR (500 MHz, CDCl3) spectrum of 105. 
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Figure A.1.88 13C NMR (121 MHz, CDCl3) spectrum of 105. 
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Figure A.1.89 1H NMR (500 MHz, CDCl3) spectrum of 106. 
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Figure A.1.90 13C NMR (121 MHz, CDCl3) spectrum of 106. 
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Figure A.1.91 1H NMR (500 MHz, CDCl3) spectrum of 108. 
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Figure A.1.92 13C NMR (121 MHz, CDCl3) spectrum of 108. 
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Figure A.1.93 1H NMR (500 MHz, CD3OD) spectrum of 110. 
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Figure A.1.94 13C NMR (121 MHz, CD3OD) spectrum of 110. 

110

N

HO

OOAc

0102030405060708090100110120130140150160170180190
f1 (ppm)

-5

0

5

10

15

20

25

30

35

40

45

50

55

60

65

1
9
.6
5

5
8
.2
2

5
9
.3
9

6
0
.7
0

6
8
.8
5

7
5
.5
2

1
2
4
.3
1

1
2
6
.5
4

1
7
0
.9
2



	   215 

 
 
 

 
 

Figure A.1.95 1H NMR (500 MHz, CDCl3) spectrum of 111. 
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Figure A.1.96 13C NMR (121 MHz, CDCl3) spectrum of 111. 
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Figure A.1.97 1H NMR (500 MHz, CDCl3) spectrum of 112. 
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Figure A.1.98 13C NMR (121 MHz, CDCl3) spectrum of 112. 
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Figure A.1.99 1H NMR (500 MHz, CD3OD) spectrum of 113. 
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Figure A.1.100 13C NMR (121 MHz, CD3OD) spectrum of 113. 
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Figure A.1.101 1H NMR (500 MHz, CD3OD) spectrum of 114. 
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Figure A.1.102 13C NMR (121 MHz, CD3OD) spectrum of 114. 
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Figure A.1.103 1H NMR (500 MHz, CD3OD) spectrum of 115. 
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Figure A.1.104 13C NMR (121 MHz, CD3OD) spectrum of 115. 
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Figure A.1.105 1H NMR (500 MHz, CD3OD) spectrum of 116. 
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Figure A.1.106 13C NMR (121 MHz, CD3OD) spectrum of 116. 
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Figure A.1.107 1H NMR (500 MHz, CD3OD) spectrum of 117. 
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Figure A.1.108 13C NMR (121 MHz, CD3OD) spectrum of 117. 
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Figure A.1.109 1H NMR (500 MHz, CD3OD) spectrum of 118. 
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Figure A.1.110 13C NMR (121 MHz, CD3OD) spectrum of 118. 
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Figure A.1.111 1H NMR (500 MHz, CD3OD) spectrum of 119. 
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Figure A.1.112 13C NMR (101 MHz, CD3OD) spectrum of 119. 
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Figure A.1.113 1H NMR (400 MHz, CD3OD) spectrum of 120. 
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Figure A.1.114 13C NMR (101 MHz, CD3OD) spectrum of 120. 
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Figure A.1.115 1H NMR (400 MHz, CD3OD) spectrum of 121. 
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Figure A.1.116 13C NMR (101 MHz, CD3OD) spectrum of 121. 
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Figure A.1.117 1H NMR (500 MHz, CD3OD) spectrum of 122. 
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Figure A.1.118 13C NMR (121 MHz, CD3OD) spectrum of 122. 
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Figure A.1.119 1H NMR (500 MHz, CDCl3) spectrum of 128. 
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Figure A.1.120 13C NMR (121 MHz, CDCl3) spectrum of 128. 
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Figure A.1.121 1H NMR (CD3OD) spectrum of 130. 
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Figure A.1.122 13C NMR (121 MHz, CD3OD) spectrum of 130. 
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Full Citation for reference 18: 
 
Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, 

M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, 

J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; 

Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; 

Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; 

Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. 

E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, 

K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; 

Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; 

Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; 

Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; 

Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, 

M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004. 

 
Example input file for geometry minimization: 
 
%nproc = 2 % 
 
chk = I81a.chk  
 
%mem = 2GB 
 
#n opt b3lyp/6-31G* scrf = (cpcm, solvent = methanol) 
 
 azaoxyallylcation dimethyl N-methoxy in methanol 
 
0 1 
C  -4.88003 0.59080  0.09215 
C  -3.42999 0.96634  0.11274 
C  -2.28202 0.01468  0.22341 
C  -3.10581 2.42744  0.09334 
O  -2.70002 -1.12595 -0.03955 
N  -1.10635 0.49900  0.52164 
O  -0.13333 -0.51633 0.61433 
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C  0.67457  -0.47389 -0.55096 
H  -5.07804 -0.44975 0.36244 
H  -5.29605 0.76899  -0.90482 
H  -5.43537 1.20852  0.80640 
H  -3.97375 3.02041  -0.21341 
H  -2.30051 2.64427  -0.61578 
H  -2.80286 2.76539  1.08923 
H  1.47902  -1.20579 -0.43945 
H  1.11964  0.51840  -0.67446 
H  0.08740  -0.73446 -1.43680 
 
RADII = UAKS 
 
 
Minimization of 57 in methanol 
 

 
 
Total energy: HF = -365.203694 
 
# of imaginary frequencies = 0 
 
C  1.242187 -1.447664  -1.090548 
C  0.858851 -0.470754 0.003783 
H  2.315419 -1.667339 -1.041859 
H  1.015903 -1.038748 -2.079348 
H  0.700982 -2.394891 -0.971560 
C  1.087579 -0.957327 1.425543 
H  0.514621 -1.872492 1.620938 
H  0.804667 -0.205336 2.169912 
H  2.148084 -1.192820 1.570807 
C  0.783499 1.005041 -0.201236 
N  -0.384732 0.368569 -0.276281 
C  -1.694176 0.509807 0.363537 
C  -2.718991 -0.453803 -0.228050 
H  -2.005195 1.550266 0.215570 
H  -1.592786 0.347895 1.446185 
H  -2.845839 -0.278068 -1.301261 
H  -3.688364 -0.317402 0.263722 
H  -2.409312 -1.494875 -0.084282 
O  1.297656 2.109004 -0.189129 
 
 
 

N

O

Et

H3C
H3C

57
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Minimization of 58 in methanol 
 

 
 
Total energy: HF = -401.0423649 
 
# of imaginary frequencies = 0 
 
O  1.588434 0.329171 0.309267 
N  0.445852 0.200193 -0.517917 
C  -0.607054 1.037141 -0.260671 
C  2.595168 -0.586460 -0.137260 
O  -0.864133 2.205941 -0.085492 
C  -0.912870 -0.384018 0.004522 
C  -1.036489 -0.732292 1.476619 
C  -1.554857 -1.338884 -0.976441 
H  3.447981 -0.411489 0.523435 
H  2.875855 -0.383357 -1.176313 
H  2.257351 -1.624665 -0.038985 
H  -2.089747 -0.697991 1.776208 
H  -0.472381 -0.042091 2.110054 
H  -0.666626 -1.749140 1.652835 
H  -2.640724 -1.349860 -0.824034 
H  -1.178294 -2.356619 -0.820480 
H  -1.352168 -1.039947 -2.008116 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N

O

O

H3C
H3C

58

CH3



	   247 

 
 
 
 
 
Minimization of 59 in methanol 
 

 
 
Total energy: HF = -401.0345846 
 
# of imaginary frequencies = 0 
 
C  -2.695911 -0.504180 0.120765 
C  -1.441931 0.273460 -0.002908 
C  -0.224850 -0.509983 -0.066285 
C  -1.535903 1.756588 -0.049620 
O  -0.209439 -1.762496 -0.055405 
N  0.848891 0.339251 -0.073002 
O  1.977297 -0.400046 -0.008639 
C  3.141014 0.437317 0.094486 
H  -2.530096 -1.392175 0.739067 
H  -2.954505 -0.893465 -0.881216 
H  -3.538843 0.093511 0.480436 
H  -2.278890 2.053797 -0.813006 
H  -0.578469 2.242337 -0.235723 
H  -1.953416 2.113319 0.914036 
H  3.988283 -0.249867 0.131122 
H  3.095480 1.036168 1.010481 
H  3.216119 1.094266 -0.781391 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N

O
H3C

CH3

O CH3

59
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Gas phase minimization of alpha-lactam 58: 
 

 
 
Total energy: HF = -401.0342371 
 
# of imaginary frequencies = 0 
 
O  1.571947 0.256103 0.366448 
N  0.448985 0.183909 -0.497929 
C  -0.595219 1.047510 -0.248904 
C  2.619482 -0.549870 -0.169263 
O  -0.854227 2.211207 -0.093927 
C  -0.914921 -0.378039 0.000856 
C  -1.053430 -0.739194 1.469026 
C  -1.568331 -1.314718 -0.991597 
H  3.454023 -0.428395 0.526268 
H  2.911357 -0.205648 -1.167563 
H  2.329200 -1.607184 -0.215983 
H  -2.106250 -0.686728 1.767145 
H  -0.478524 -0.065020 2.109070 
H  -0.702310 -1.763623 1.642181 
H  -2.655789 -1.312537 -0.850608 
H  -1.209128 -2.341162 -0.847177 
H  -1.352726 -1.009673 -2.018708 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N

O

O

H3C
H3C

58

CH3
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Minimization of aza-oxyallycation 59 in gas phase: 
 

 
 
Total energy: HF = -401.0189598 
 
# of imaginary frequencies = 0 
 
O  -1.977646 -0.395145 0.021437 
N  -0.843699 0.323074 -0.068762 
C  0.232680 -0.538518 -0.134537 
C  -3.111604 0.470252 0.147429 
O  0.238440 -1.775361 -0.195934 
C  1.425374 0.274638 0.016439 
C  2.672801 -0.485669 0.270198 
C  1.508138 1.752423 -0.136451 
H  -3.979989 -0.190058 0.172030 
H  -3.167494 1.147768 -0.710315 
H  -3.046420 1.049363 1.074245 
H  2.999455 -0.940704 -0.679718 
H  2.464878 -1.339770 0.924677 
H  3.486458 0.134881 0.655664 
H  2.175132 1.991500 -0.980887 
H  1.986477 2.198362 0.748253 
H  0.536712 2.212432 -0.305107 
 
 
 
 
 
 
 
 
 
 
 
 
 

N

O
H3C

CH3

O CH3

59



	   250 

 
 
 
 
 
 
 
 
Example input file for the relaxed potential energy surface scan: 
 
%nproc = 2 
 
%mem = 4 GB 
 
#N b3lyp/6-31G* opt = modredundant guess = always scrf = (cpcm, solvent = methanol) 
 
a relaxed PES scan 
 
0  1 
O  1.588434 0.329171 0.309267 
N  0.445852 0.200193 -0.517917 
C  -0.607054 1.037141 -0.260671 
C  2.595168 -0.586460 -0.137260 
O  -0.864133 2.205941 -0.085492 
C  -0.912870 -0.384018 0.004522 
C  -1.036489 -0.732292 1.476619 
C  -1.554857 -1.338884 -0.976441 
H  3.447981 -0.411489 0.523435 
H  2.875855 -0.383357 -1.176313 
H  2.257351 -1.624665 -0.038985 
H  -2.089747 -0.697991 1.776208 
H  -0.472381 -0.042091 2.110054 
H  -0.666626 -1.749140 1.652835 
H  -2.640724 -1.349860 -0.824034 
H  -1.178294 -2.356619 -0.820480 
H  -1.352168 -1.039947 -2.008116 
	  
26 + = 0.1 S 100.1 
 

Relaxed PES scan for 57 in methanol 
 

r[C(3)-N] Å Total E (Hartees) 
1.42624 -365.200017 
1.52624 -365.203694 
1.62624 -365.201345 
1.72624 -365.196079 
1.82624 -365.189784 
1.92624 -365.183503 
2.02624 -365.178094 
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2.12624 -365.173891 
2.22624 -365.170871 
2.32624 -365.168804 
2.42624 -365.165683 
2.52624 -365.159166 

  
 
 
 

Relaxed PES scan for 58 in methanol 
 

r[C(3)-N] Å Total E (Hartees) 
1.46856 -401.0399013 
1.56856 -401.0423652 
1.66856 -401.0408389 
1.76856 -401.0376628 
1.86856 -401.0345412 
1.96856 -401.0326107 
2.06856 -401.0323206 
2.16856 -401.0332170 
2.26856 -401.0345043 
2.36856 -401.0329454 
2.46856 -401.0274869 
2.28115 -401.0345850 

  
 
 

Relaxed PES scan for 59 in the gas phase 
 

r[C(3)-N] Å Total E (Hartees) 
1.46856 -401.0321450 
1.55718 -401.0342371 
1.56856 -401.0342100 
1.66856 -401.0321910 
1.76856 -401.0283450 
1.86856 -401.0241140 
1.96856 -401.0208240 
2.06856 -401.0191060 
2.16856 -401.0187300 
2.26856 -401.0189590 
2.27110 -401.0189600 
2.36856 -401.0173320 
2.46856 -401.0119070 

 



	   252 

Appendix 
 
 

A.3 X-Ray Crystallography Data 
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Figure A.3.1.	  Thermal ellipsoid plot of azepane 88 at 50% probability. Hydrogen atoms are 
represented as spheres of arbitrary radius. Grey = carbon, red = oxygen, blue = nitrogen. 
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Table A.3.1.  Crystal data and structure refinement for 88. 
 
Identification code  kb005_0m 
Empirical formula  C11H20NO3 
Formula weight  214.28 
Temperature  100(2) K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  P2(1)/c 
Unit cell dimensions a = 5.9830(4) Å α = 90°. 
 b = 11.0773(7) Å β = 98.9630(10)°. 
 c = 17.8208(11) Å γ = 90°. 
Volume 1166.66(13) Å3 
Z 4 
Density (calculated) 1.220 Mg/m3 
Absorption coefficient 0.088 mm-1 
F(000) 468 
Crystal size 0.27 x 0.14 x 0.02 mm3 
Theta range for data collection 2.17 to 29.14°. 
Index ranges -8<=h<=8, -15<=k<=15, -24<=l<=24 
Reflections collected 21780 
Independent reflections 3136 [R(int) = 0.0627] 
Completeness to theta = 29.14° 99.9 %  
Absorption correction sadabs 
Max. and min. transmission 0.9979 and 0.9771 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 3136 / 0 / 139 
Goodness-of-fit on F2 0.903 
Final R indices [I>2sigma(I)] R1 = 0.0557, wR2 = 0.1427 
R indices (all data) R1 = 0.0853, wR2 = 0.1638 
Largest diff. peak and hole 0.688 and -0.726 e.Å-3 
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Table A.3.2.   Bond lengths [Å] and angles [°] for  88. 
_____________________________________________________  
O(2)-C(7)  1.434(2) 
O(2)-C(3)  1.437(2) 
O(3)-C(4)  1.420(2) 
O(3)-H(3A)  0.8400 
O(1)-C(7)  1.424(2) 
O(1)-C(2)  1.430(2) 
N(1)-C(6)  1.460(2) 
N(1)-C(1)  1.465(2) 
N(1)-H(1A)  0.8800 
C(5)-C(10)  1.530(3) 
C(5)-C(11)  1.532(3) 
C(5)-C(6)  1.545(2) 
C(5)-C(4)  1.547(2) 
C(4)-C(3)  1.526(3) 
C(4)-H(4A)  1.0000 
C(1)-C(2)  1.522(3) 
C(1)-H(1B)  0.9900 
C(1)-H(1C)  0.9900 
C(11)-H(11A)  0.9800 
C(11)-H(11B)  0.9800 
C(11)-H(11C)  0.9800 
C(6)-H(6A)  0.9900 
C(6)-H(6B)  0.9900 
C(7)-C(8)  1.504(3) 
C(7)-C(9)  1.516(3) 
C(3)-C(2)  1.552(2) 
C(3)-H(3B)  1.0000 
C(9)-H(9A)  0.9800 
C(9)-H(9B)  0.9800 
C(9)-H(9C)  0.9800 
C(8)-H(8A)  0.9800 
C(8)-H(8B)  0.9800 
C(8)-H(8C)  0.9800 
C(2)-H(2A)  1.0000 
C(10)-H(10A)  0.9800 
C(10)-H(10B)  0.9800 
C(10)-H(10C)  0.9800 
 
C(7)-O(2)-C(3) 108.52(13) 
C(4)-O(3)-H(3A) 109.5 
C(7)-O(1)-C(2) 107.31(13) 
C(6)-N(1)-C(1) 115.92(14) 
C(6)-N(1)-H(1A) 122.0 
C(1)-N(1)-H(1A) 122.0 
C(10)-C(5)-C(11) 108.65(15) 
C(10)-C(5)-C(6) 110.37(15) 
C(11)-C(5)-C(6) 107.15(15) 
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C(10)-C(5)-C(4) 111.79(15) 
C(11)-C(5)-C(4) 107.28(14) 
C(6)-C(5)-C(4) 111.41(14) 
O(3)-C(4)-C(3) 111.36(14) 
O(3)-C(4)-C(5) 108.96(14) 
C(3)-C(4)-C(5) 114.77(14) 
O(3)-C(4)-H(4A) 107.1 
C(3)-C(4)-H(4A) 107.1 
C(5)-C(4)-H(4A) 107.1 
N(1)-C(1)-C(2) 116.02(15) 
N(1)-C(1)-H(1B) 108.3 
C(2)-C(1)-H(1B) 108.3 
N(1)-C(1)-H(1C) 108.3 
C(2)-C(1)-H(1C) 108.3 
H(1B)-C(1)-H(1C) 107.4 
C(5)-C(11)-H(11A) 109.5 
C(5)-C(11)-H(11B) 109.5 
H(11A)-C(11)-H(11B) 109.5 
C(5)-C(11)-H(11C) 109.5 
H(11A)-C(11)-H(11C) 109.5 
H(11B)-C(11)-H(11C) 109.5 
N(1)-C(6)-C(5) 118.35(15) 
N(1)-C(6)-H(6A) 107.7 
C(5)-C(6)-H(6A) 107.7 
N(1)-C(6)-H(6B) 107.7 
C(5)-C(6)-H(6B) 107.7 
H(6A)-C(6)-H(6B) 107.1 
O(1)-C(7)-O(2) 104.48(13) 
O(1)-C(7)-C(8) 108.73(15) 
O(2)-C(7)-C(8) 108.63(15) 
O(1)-C(7)-C(9) 110.89(15) 
O(2)-C(7)-C(9) 111.01(15) 
C(8)-C(7)-C(9) 112.74(16) 
O(2)-C(3)-C(4) 107.84(14) 
O(2)-C(3)-C(2) 104.07(14) 
C(4)-C(3)-C(2) 117.87(15) 
O(2)-C(3)-H(3B) 108.9 
C(4)-C(3)-H(3B) 108.9 
C(2)-C(3)-H(3B) 108.9 
C(7)-C(9)-H(9A) 109.5 
C(7)-C(9)-H(9B) 109.5 
H(9A)-C(9)-H(9B) 109.5 
C(7)-C(9)-H(9C) 109.5 
H(9A)-C(9)-H(9C) 109.5 
H(9B)-C(9)-H(9C) 109.5 
C(7)-C(8)-H(8A) 109.5 
C(7)-C(8)-H(8B) 109.5 
H(8A)-C(8)-H(8B) 109.5 
C(7)-C(8)-H(8C)                   109.5 
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H(8A)-C(8)-H(8C) 109.5 
H(8B)-C(8)-H(8C) 109.5 
O(1)-C(2)-C(1) 106.59(15) 
O(1)-C(2)-C(3) 104.21(13) 
C(1)-C(2)-C(3) 118.76(15) 
O(1)-C(2)-H(2A) 109.0 
C(1)-C(2)-H(2A) 109.0 
C(3)-C(2)-H(2A) 109.0 
C(5)-C(10)-H(10A) 109.5 
C(5)-C(10)-H(10B) 109.5 
H(10A)-C(10)-H(10B) 109.5 
C(5)-C(10)-H(10C) 109.5 
H(10A)-C(10)-H(10C) 109.5 
H(10B)-C(10)-H(10C) 109.5 
_____________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
  
#1 -x+1,-y+1,-z    #2 -x+1,-y+1,-z+1       
 
 Table A.3.3.   Hydrogen coordinates ( x 104) and isotropic  displacement parameters (Å2x 10 3) 
for 88. 
________________________________________________________________________________  
 x  y  z  U(eq) 
________________________________________________________________________________  
  
H(3A) 4889 1760 2061 26 
H(1A) 2610 -2132 2957 22 
H(4A) 2905 2246 2961 18 
H(1B) 2584 -1747 1700 22 
H(1C) 4276 -650 1939 22 
H(11A) 5425 769 4579 31 
H(11B) 4486 2041 4240 31 
H(11C) 6525 1394 3913 31 
H(6A) 5933 -489 3220 21 
H(6B) 4736 -1068 3872 21 
H(3B) -390 1137 2489 19 
H(9A) -3096 906 1133 35 
H(9B) -2900 879 248 35 
H(9C) -3079 2143 670 35 
H(8A) 2817 1981 466 36 
H(8B) 645 2833 270 36 
H(8C) 753 1577 -166 36 
H(2A) -544 -553 1831 20 
H(10A) 1524 68 4349 30 
H(10B) 175 -78 3505 30 
H(10C) 490 1231 3887 30 
________________________________________________________________________________  
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 Table A.3.4.  Torsion angles [°] for 88. 
________________________________________________________________  
C(10)-C(5)-C(4)-O(3) -169.92(14) 
C(11)-C(5)-C(4)-O(3) 71.07(17) 
C(6)-C(5)-C(4)-O(3) -45.91(19) 
C(10)-C(5)-C(4)-C(3) -44.3(2) 
C(11)-C(5)-C(4)-C(3) -163.29(15) 
C(6)-C(5)-C(4)-C(3) 79.72(18) 
C(6)-N(1)-C(1)-C(2) -82.2(2) 
C(1)-N(1)-C(6)-C(5) 66.2(2) 
C(10)-C(5)-C(6)-N(1) 62.7(2) 
C(11)-C(5)-C(6)-N(1) -179.15(15) 
C(4)-C(5)-C(6)-N(1) -62.1(2) 
C(2)-O(1)-C(7)-O(2) 34.85(18) 
C(2)-O(1)-C(7)-C(8) 150.69(15) 
C(2)-O(1)-C(7)-C(9) -84.82(18) 
C(3)-O(2)-C(7)-O(1) -29.83(18) 
C(3)-O(2)-C(7)-C(8) -145.74(15) 
C(3)-O(2)-C(7)-C(9) 89.75(17) 
C(7)-O(2)-C(3)-C(4) 139.51(14) 
C(7)-O(2)-C(3)-C(2) 13.58(18) 
O(3)-C(4)-C(3)-O(2) -61.77(17) 
C(5)-C(4)-C(3)-O(2) 173.86(13) 
O(3)-C(4)-C(3)-C(2) 55.6(2) 
C(5)-C(4)-C(3)-C(2) -68.8(2) 
C(7)-O(1)-C(2)-C(1) -152.34(15) 
C(7)-O(1)-C(2)-C(3) -25.95(18) 
N(1)-C(1)-C(2)-O(1) 176.82(14) 
N(1)-C(1)-C(2)-C(3) 59.7(2) 
O(2)-C(3)-C(2)-O(1) 7.42(18) 
C(4)-C(3)-C(2)-O(1) -111.91(17) 
O(2)-C(3)-C(2)-C(1) 125.78(17) 
C(4)-C(3)-C(2)-C(1) 6.4(2) 
________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
  
 #1 -x+1,-y+1,-z    #2 -x+1,-y+1,-z+1       
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Figure A.3.2. Thermal ellipsoid plot of diol 95 at 50% probability. Hydrogen atoms are 
represented as spheres of arbitrary radius. Grey = carbon, red = oxygen, blue = nitrogen. 
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Table A.3.5.  Crystal data and structure refinement for 95. 
Identification code  twin5 
Empirical formula  C2.50 H3.17 N0.17 O0.83 
Formula weight  48.89 
Temperature  100(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 9.064(3) Å a= 76.711(5)°. 
 b = 11.442(3) Å b= 85.166(5)°. 
 c = 14.671(4) Å g = 76.139(5)°. 
Volume 1437.0(7) Å3 
Z 24 
Density (calculated) 1.356 Mg/m3 
Absorption coefficient 0.102 mm-1 
F(000) 624 
Crystal size 0.55 x 0.16 x 0.07 mm3 
Theta range for data collection 1.43 to 25.00°. 
Index ranges -10<=h<=10, -13<=k<=13, 0<=l<=17 
Reflections collected 5147 
Independent reflections 5149 [R(int) = 0.069] 
Completeness to theta = 25.00° 99.6 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.9934 and 0.9464 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 5149 / 0 / 383 
Goodness-of-fit on F2 1.017 
Final R indices [I>2sigma(I)] R1 = 0.0617, wR2 = 0.1300 
R indices (all data) R1 = 0.1000, wR2 = 0.1434 
Largest diff. peak and hole 0.565 and -0.420 e.Å-3 
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Table A.3.6.   Bond lengths [Å] and angles [°] for  95. 
_____________________________________________________  
N(1)-C(1)  1.363(4) 
N(1)-O(5)  1.402(3) 
N(1)-C(6)  1.473(4) 
O(1)-C(1)  1.219(4) 
O(2)-C(6)  1.409(4) 
O(2)-C(3)  1.448(4) 
O(3)-C(4)  1.418(3) 
O(3)-H(3A)  0.8400 
O(4)-C(5)  1.421(3) 
O(4)-H(4A)  0.8400 
O(5)-C(9)  1.451(4) 
C(1)-C(2)  1.520(4) 
C(2)-C(3)  1.533(4) 
C(2)-C(7)  1.540(4) 
C(2)-H(2A)  1.0000 
C(3)-C(4)  1.538(4) 
C(3)-H(3B)  1.0000 
C(4)-C(5)  1.559(4) 
C(4)-H(4B)  1.0000 
C(5)-C(6)  1.530(4) 
C(5)-H(5A)  1.0000 
C(6)-H(6A)  1.0000 
C(7)-C(8)  1.512(5) 
C(7)-H(7A)  0.9900 
C(7)-H(7B)  0.9900 
C(8)-H(8A)  0.9800 
C(8)-H(8B)  0.9800 
C(8)-H(8C)  0.9800 
C(9)-C(10)  1.490(5) 
C(9)-H(9A)  0.9900 
C(9)-H(9B)  0.9900 
C(10)-C(11)  1.372(5) 
C(10)-C(15)  1.374(5) 
C(11)-C(12)  1.345(7) 
C(11)-H(11A)  0.9500 
C(12)-C(13)  1.314(8) 
C(12)-H(12A)  0.9500 
C(13)-C(14)  1.435(8) 
C(13)-H(13A)  0.9500 
C(14)-C(15)  1.423(6) 
C(14)-H(14A)  0.9500 
C(15)-H(15A)  0.9500 
N(2)-C(16)  1.348(4) 
N(2)-O(10)  1.409(3) 
N(2)-C(21)  1.468(4) 
O(6)-C(16)  1.231(3) 
O(7)-C(21)  1.404(3) 

O(7)-C(18)  1.448(3) 
O(8)-C(19)  1.424(3) 
O(8)-H(8D)  0.8400 
O(9)-C(20)  1.421(3) 
O(9)-H(9C)  0.8400 
O(10)-C(24)  1.462(4) 
C(16)-C(17)  1.530(4) 
C(17)-C(22)  1.529(4) 
C(17)-C(18)  1.528(4) 
C(17)-H(17A)  1.0000 
C(18)-C(19)  1.540(4) 
C(18)-H(18A)  1.0000 
C(19)-C(20)  1.551(4) 
C(19)-H(19A)  1.0000 
C(20)-C(21)  1.523(4) 
C(20)-H(20A)  1.0000 
C(21)-H(21A)  1.0000 
C(22)-C(23)  1.521(4) 
C(22)-H(22A)  0.9900 
C(22)-H(22B)  0.9900 
C(23)-H(23A)  0.9800 
C(23)-H(23B)  0.9800 
C(23)-H(23C)  0.9800 
C(24)-C(25)  1.497(4) 
C(24)-H(24A)  0.9900 
C(24)-H(24B)  0.9900 
C(25)-C(30)  1.384(4) 
C(25)-C(26)  1.388(5) 
C(26)-C(27)  1.387(5) 
C(26)-H(26A)  0.9500 
C(27)-C(28)  1.390(5) 
C(27)-H(27A)  0.9500 
C(28)-C(29)  1.372(5) 
C(28)-H(28A)  0.9500 
C(29)-C(30)  1.391(5) 
C(29)-H(29A)  0.9500 
C(30)-H(30A)  0.9500 
 
C(1)-N(1)-O(5) 117.3(2) 
C(1)-N(1)-C(6) 122.8(3) 
O(5)-N(1)-C(6) 112.4(2) 
C(6)-O(2)-C(3) 102.2(2) 
C(4)-O(3)-H(3A) 109.5 
C(5)-O(4)-H(4A) 109.5 
N(1)-O(5)-C(9) 108.9(2) 
O(1)-C(1)-N(1) 122.6(3) 
O(1)-C(1)-C(2) 123.8(3) 
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N(1)-C(1)-C(2) 113.4(3) 
C(1)-C(2)-C(3) 110.9(3) 
C(1)-C(2)-C(7) 111.7(3) 
C(3)-C(2)-C(7) 113.7(3) 
C(1)-C(2)-H(2A) 106.7 
C(3)-C(2)-H(2A) 106.7 
C(7)-C(2)-H(2A) 106.7 
O(2)-C(3)-C(2) 107.2(2) 
O(2)-C(3)-C(4) 104.9(2) 
C(2)-C(3)-C(4) 114.3(2) 
O(2)-C(3)-H(3B) 110.1 
C(2)-C(3)-H(3B) 110.1 
C(4)-C(3)-H(3B) 110.1 
O(3)-C(4)-C(3) 106.7(2) 
O(3)-C(4)-C(5) 113.2(2) 
C(3)-C(4)-C(5) 102.6(2) 
O(3)-C(4)-H(4B) 111.3 
C(3)-C(4)-H(4B) 111.3 
C(5)-C(4)-H(4B) 111.3 
O(4)-C(5)-C(6) 111.8(2) 
O(4)-C(5)-C(4) 113.5(2) 
C(6)-C(5)-C(4) 102.2(2) 
O(4)-C(5)-H(5A) 109.7 
C(6)-C(5)-H(5A) 109.7 
C(4)-C(5)-H(5A) 109.7 
O(2)-C(6)-N(1) 107.3(2) 
O(2)-C(6)-C(5) 104.5(2) 
N(1)-C(6)-C(5) 111.6(2) 
O(2)-C(6)-H(6A) 111.1 
N(1)-C(6)-H(6A) 111.1 
C(5)-C(6)-H(6A) 111.1 
C(8)-C(7)-C(2) 113.4(3) 
C(8)-C(7)-H(7A) 108.9 
C(2)-C(7)-H(7A) 108.9 
C(8)-C(7)-H(7B) 108.9 
C(2)-C(7)-H(7B) 108.9 
H(7A)-C(7)-H(7B) 107.7 
C(7)-C(8)-H(8A) 109.5 
C(7)-C(8)-H(8B) 109.5 
H(8A)-C(8)-H(8B) 109.5 
C(7)-C(8)-H(8C) 109.5 
H(8A)-C(8)-H(8C) 109.5 
H(8B)-C(8)-H(8C) 109.5 
O(5)-C(9)-C(10) 107.5(3) 
O(5)-C(9)-H(9A) 110.2 
C(10)-C(9)-H(9A) 110.2 
O(5)-C(9)-H(9B) 110.2 
C(10)-C(9)-H(9B) 110.2 
H(9A)-C(9)-H(9B) 108.5 

C(11)-C(10)-C(15) 120.6(4) 
C(11)-C(10)-C(9) 119.7(4) 
C(15)-C(10)-C(9) 119.7(3) 
C(12)-C(11)-C(10) 121.7(5) 
C(12)-C(11)-H(11A) 119.2 
C(10)-C(11)-H(11A) 119.2 
C(13)-C(12)-C(11) 120.5(5) 
C(13)-C(12)-H(12A) 119.7 
C(11)-C(12)-H(12A) 119.7 
C(12)-C(13)-C(14) 121.5(5) 
C(12)-C(13)-H(13A) 119.3 
C(14)-C(13)-H(13A) 119.3 
C(15)-C(14)-C(13) 117.4(4) 
C(15)-C(14)-H(14A) 121.3 
C(13)-C(14)-H(14A) 121.3 
C(10)-C(15)-C(14) 118.2(4) 
C(10)-C(15)-H(15A) 120.9 
C(14)-C(15)-H(15A) 120.9 
C(16)-N(2)-O(10) 117.4(2) 
C(16)-N(2)-C(21) 124.8(2) 
O(10)-N(2)-C(21) 112.4(2) 
C(21)-O(7)-C(18) 102.4(2) 
C(19)-O(8)-H(8D) 109.5 
C(20)-O(9)-H(9C) 109.5 
N(2)-O(10)-C(24) 109.7(2) 
O(6)-C(16)-N(2) 122.2(3) 
O(6)-C(16)-C(17) 123.0(3) 
N(2)-C(16)-C(17) 114.8(3) 
C(22)-C(17)-C(18) 114.8(2) 
C(22)-C(17)-C(16) 111.0(2) 
C(18)-C(17)-C(16) 108.7(2) 
C(22)-C(17)-H(17A) 107.3 
C(18)-C(17)-H(17A) 107.3 
C(16)-C(17)-H(17A) 107.3 
O(7)-C(18)-C(17) 106.2(2) 
O(7)-C(18)-C(19) 105.1(2) 
C(17)-C(18)-C(19) 112.8(2) 
O(7)-C(18)-H(18A) 110.8 
C(17)-C(18)-H(18A) 110.8 
C(19)-C(18)-H(18A) 110.8 
O(8)-C(19)-C(18) 114.5(2) 
O(8)-C(19)-C(20) 113.7(2) 
C(18)-C(19)-C(20) 103.5(2) 
O(8)-C(19)-H(19A) 108.3 
C(18)-C(19)-H(19A) 108.3 
C(20)-C(19)-H(19A) 108.3 
O(9)-C(20)-C(21) 107.0(2) 
O(9)-C(20)-C(19) 111.7(2) 
C(21)-C(20)-C(19) 100.0(2) 
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O(9)-C(20)-H(20A) 112.5 
C(21)-C(20)-H(20A) 112.5 
C(19)-C(20)-H(20A) 112.5 
O(7)-C(21)-N(2) 108.0(2) 
O(7)-C(21)-C(20) 103.5(2) 
N(2)-C(21)-C(20) 111.1(2) 
O(7)-C(21)-H(21A) 111.3 
N(2)-C(21)-H(21A) 111.3 
C(20)-C(21)-H(21A) 111.3 
C(23)-C(22)-C(17) 112.6(3) 
C(23)-C(22)-H(22A) 109.1 
C(17)-C(22)-H(22A) 109.1 
C(23)-C(22)-H(22B) 109.1 
C(17)-C(22)-H(22B) 109.1 
H(22A)-C(22)-H(22B) 107.8 
C(22)-C(23)-H(23A) 109.5 
C(22)-C(23)-H(23B) 109.5 
H(23A)-C(23)-H(23B) 109.5 
C(22)-C(23)-H(23C) 109.5 
H(23A)-C(23)-H(23C) 109.5 
H(23B)-C(23)-H(23C) 109.5 
O(10)-C(24)-C(25) 112.6(2) 
O(10)-C(24)-H(24A) 109.1 

C(25)-C(24)-H(24A) 109.1 
O(10)-C(24)-H(24B) 109.1 
C(25)-C(24)-H(24B) 109.1 
H(24A)-C(24)-H(24B) 107.8 
C(30)-C(25)-C(26) 118.9(3) 
C(30)-C(25)-C(24) 119.6(3) 
C(26)-C(25)-C(24) 121.5(3) 
C(27)-C(26)-C(25) 121.0(3) 
C(27)-C(26)-H(26A) 119.5 
C(25)-C(26)-H(26A) 119.5 
C(26)-C(27)-C(28) 119.4(3) 
C(26)-C(27)-H(27A) 120.3 
C(28)-C(27)-H(27A) 120.3 
C(29)-C(28)-C(27) 120.1(3) 
C(29)-C(28)-H(28A) 120.0 
C(27)-C(28)-H(28A) 120.0 
C(28)-C(29)-C(30) 120.2(3) 
C(28)-C(29)-H(29A) 119.9 
C(30)-C(29)-H(29A) 119.9 
C(25)-C(30)-C(29) 120.5(3) 
C(25)-C(30)-H(30A) 119.8 
C(29)-C(30)-H(30A) 119.8 

_____________________________________________________________  
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Table A.3.7.  Torsion angles [°] for 95. 
________________________________________________________________  
C(1)-N(1)-O(5)-C(9) 91.7(3) 
C(6)-N(1)-O(5)-C(9) -117.6(3) 
O(5)-N(1)-C(1)-O(1) -12.9(4) 
C(6)-N(1)-C(1)-O(1) -160.3(3) 
O(5)-N(1)-C(1)-C(2) 172.0(2) 
C(6)-N(1)-C(1)-C(2) 24.6(4) 
O(1)-C(1)-C(2)-C(3) 157.4(3) 
N(1)-C(1)-C(2)-C(3) -27.5(4) 
O(1)-C(1)-C(2)-C(7) 29.5(4) 
N(1)-C(1)-C(2)-C(7) -155.4(3) 
C(6)-O(2)-C(3)-C(2) -77.2(3) 
C(6)-O(2)-C(3)-C(4) 44.7(3) 
C(1)-C(2)-C(3)-O(2) 54.9(3) 
C(7)-C(2)-C(3)-O(2) -178.3(2) 
C(1)-C(2)-C(3)-C(4) -60.9(3) 
C(7)-C(2)-C(3)-C(4) 65.9(3) 
O(2)-C(3)-C(4)-O(3) 96.6(3) 
C(2)-C(3)-C(4)-O(3) -146.2(3) 
O(2)-C(3)-C(4)-C(5) -22.7(3) 
C(2)-C(3)-C(4)-C(5) 94.5(3) 
O(3)-C(4)-C(5)-O(4) 0.3(3) 
C(3)-C(4)-C(5)-O(4) 114.9(3) 
O(3)-C(4)-C(5)-C(6) -120.3(3) 
C(3)-C(4)-C(5)-C(6) -5.7(3) 
C(3)-O(2)-C(6)-N(1) 69.7(3) 
C(3)-O(2)-C(6)-C(5) -48.9(3) 
C(1)-N(1)-C(6)-O(2) -46.9(3) 
O(5)-N(1)-C(6)-O(2) 164.3(2) 
C(1)-N(1)-C(6)-C(5) 67.0(3) 
O(5)-N(1)-C(6)-C(5) -81.8(3) 
O(4)-C(5)-C(6)-O(2) -88.5(3) 
C(4)-C(5)-C(6)-O(2) 33.3(3) 
O(4)-C(5)-C(6)-N(1) 155.9(2) 
C(4)-C(5)-C(6)-N(1) -82.3(3) 
C(1)-C(2)-C(7)-C(8) -169.6(3) 
C(3)-C(2)-C(7)-C(8) 64.0(4) 
N(1)-O(5)-C(9)-C(10) -176.1(3) 
O(5)-C(9)-C(10)-C(11) -86.9(4) 
O(5)-C(9)-C(10)-C(15) 92.6(4) 
C(15)-C(10)-C(11)-C(12) 0.0(5) 
C(9)-C(10)-C(11)-C(12) 179.5(4) 
C(10)-C(11)-C(12)-C(13) -0.3(7) 
C(11)-C(12)-C(13)-C(14) 0.0(7) 
C(12)-C(13)-C(14)-C(15) 0.5(6) 
C(11)-C(10)-C(15)-C(14) 0.6(5) 
C(9)-C(10)-C(15)-C(14) -178.9(3) 
C(13)-C(14)-C(15)-C(10) -0.8(5) 

C(16)-N(2)-O(10)-C(24) 86.9(3) 
C(21)-N(2)-O(10)-C(24) -117.7(2) 
O(10)-N(2)-C(16)-O(6) -16.7(4) 
C(21)-N(2)-C(16)-O(6) -168.8(3) 
O(10)-N(2)-C(16)-C(17) 166.1(2) 
C(21)-N(2)-C(16)-C(17) 14.1(4) 
O(6)-C(16)-C(17)-C(22) 31.6(4) 
N(2)-C(16)-C(17)-C(22) -151.3(3) 
O(6)-C(16)-C(17)-C(18) 158.8(3) 
N(2)-C(16)-C(17)-C(18) -24.1(3) 
C(21)-O(7)-C(18)-C(17) -80.9(3) 
C(21)-O(7)-C(18)-C(19) 39.0(3) 
C(22)-C(17)-C(18)-O(7) -177.4(2) 
C(16)-C(17)-C(18)-O(7) 57.5(3) 
C(22)-C(17)-C(18)-C(19) 67.9(3) 
C(16)-C(17)-C(18)-C(19) -57.1(3) 
O(7)-C(18)-C(19)-O(8) 112.9(3) 
C(17)-C(18)-C(19)-O(8) -131.8(3) 
O(7)-C(18)-C(19)-C(20) -11.3(3) 
C(17)-C(18)-C(19)-C(20) 104.0(3) 
O(8)-C(19)-C(20)-O(9) -29.6(3) 
C(18)-C(19)-C(20)-O(9) 95.2(3) 
O(8)-C(19)-C(20)-C(21) -142.6(2) 
C(18)-C(19)-C(20)-C(21) -17.8(3) 
C(18)-O(7)-C(21)-N(2) 66.0(3) 
C(18)-O(7)-C(21)-C(20) -51.9(3) 
C(16)-N(2)-C(21)-O(7) -35.7(4) 
O(10)-N(2)-C(21)-O(7) 171.0(2) 
C(16)-N(2)-C(21)-C(20) 77.1(3) 
O(10)-N(2)-C(21)-C(20) -76.2(3) 
O(9)-C(20)-C(21)-O(7) -73.6(3) 
C(19)-C(20)-C(21)-O(7) 42.9(3) 
O(9)-C(20)-C(21)-N(2) 170.7(2) 
C(19)-C(20)-C(21)-N(2) -72.8(3) 
C(18)-C(17)-C(22)-C(23) 67.5(3) 
C(16)-C(17)-C(22)-C(23) -168.7(2) 
N(2)-O(10)-C(24)-C(25) 65.3(3) 
O(10)-C(24)-C(25)-C(30) -122.1(3) 
O(10)-C(24)-C(25)-C(26) 60.0(4) 
C(30)-C(25)-C(26)-C(27) -0.3(5) 
C(24)-C(25)-C(26)-C(27) 177.6(3) 
C(25)-C(26)-C(27)-C(28) -0.2(5) 
C(26)-C(27)-C(28)-C(29) 0.4(5) 
C(27)-C(28)-C(29)-C(30) -0.1(5) 
C(26)-C(25)-C(30)-C(29) 0.6(5) 
C(24)-C(25)-C(30)-C(29) -177.4(3) 
C(28)-C(29)-C(30)-C(25) -0.4(5)
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Table A.3.8.  Hydrogen bonds for 95  [Å and °]. 
____________________________________________________________________________  
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
____________________________________________________________________________  
 O(3)-H(3A)...O(9)#1 0.84 2.02 2.829(3) 160.2 
 O(4)-H(4A)...O(6)#2 0.84 1.97 2.771(3) 160.4 
 O(8)-H(8D)...O(4)#1 0.84 1.91 2.739(3) 169.1 
 O(9)-H(9C)...O(8)#3 0.84 1.88 2.706(3) 169.0 
____________________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
#1 -x+1,-y+2,-z+1    #2 -x,-y+2,-z+1    #3 -x+1,-y+2,-z+2       
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Figure A.3.3 Thermal ellipsoid plot of 97 at 50% probability. Hydrogen atoms are represented as 
spheres of arbitrary radius. Grey = carbon, red = oxygen, blue = nitrogen. 

N
HO O

O

O O

97



	   267 

Table A.3.9.  Crystal data and structure refinement for 97. 
 
Identification code  kb003 
Empirical formula  C36H50N2O10 
Formula weight  670.78 
Temperature  293(2) K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 10.5811(3) Å α = 95.6920(10)°. 
 b = 10.6861(4) Å β = 103.3680(10)°. 
 c = 17.8639(6) Å γ = 115.7510(10)°. 
Volume 1723.45(10) Å3 
Z 2 
Density (calculated) 1.293 Mg/m3 
Absorption coefficient 0.094 mm-1 
F(000) 720 
Crystal size 0.26 x 0.16 x 0.10 mm3 
Theta range for data collection 2.17 to 29.13°. 
Index ranges -14<=h<=14, -14<=k<=14, -24<=l<=24 
Reflections collected 39853 
Independent reflections 9290 [R(int) = 0.0347] 
Completeness to theta = 29.13° 99.9 %  
Absorption correction SADABS 
Max. and min. transmission 0.9905 and 0.9764 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 9290 / 0 / 439 
Goodness-of-fit on F2 1.016 
Final R indices [I>2sigma(I)] R1 = 0.0411, wR2 = 0.1019 
R indices (all data) R1 = 0.0594, wR2 = 0.1128 
Largest diff. peak and hole 0.369 and -0.225 e.Å-3 



	   268 

 Table A.3.10.   Bond lengths [Å] and angles [°] for 97. 
_____________________________________________________  
O(1)-C(9)  1.4225(13) 
O(1)-C(3)  1.4562(13) 
N(1)-O(5)  1.4511(12) 
N(1)-C(9)  1.4697(14) 
N(1)-C(1)  1.4717(14) 
C(1)-O(4)  1.4092(13) 
C(1)-C(2)  1.5367(15) 
C(1)-H(1A)  0.9800 
O(2)-C(4)  1.4243(13) 
O(2)-C(5)  1.4343(13) 
C(2)-C(3)  1.5259(15) 
C(2)-C(10)  1.5345(15) 
C(2)-H(2A)  0.9800 
O(3)-C(8)  1.4210(13) 
O(3)-C(5)  1.4331(13) 
C(3)-C(4)  1.5286(15) 
C(3)-H(3A)  0.9800 
O(4)-H(4A)  0.8200 
C(4)-C(8)  1.5468(15) 
C(4)-H(4B)  0.9800 
O(5)-C(12)  1.4424(14) 
C(5)-C(7)  1.5087(16) 
C(5)-C(6)  1.5155(17) 
C(6)-H(6A)  0.9600 
C(6)-H(6B)  0.9600 
C(6)-H(6C)  0.9600 
C(7)-H(7A)  0.9600 
C(7)-H(7B)  0.9600 
C(7)-H(7C)  0.9600 
C(8)-C(9)  1.5311(15) 
C(8)-H(8A)  0.9800 
C(9)-H(9A)  0.9800 
C(10)-C(11)  1.5238(17) 
C(10)-H(10A)  0.9700 
C(10)-H(10B)  0.9700 
C(11)-H(11A)  0.9600 
C(11)-H(11B)  0.9600 
C(11)-H(11C)  0.9600 
C(12)-C(13)  1.5058(16) 
C(12)-H(12A)  0.9700 
C(12)-H(12B)  0.9700 
C(13)-C(14)  1.3896(17) 
C(13)-C(18)  1.3919(17) 
C(14)-C(15)  1.3849(18) 
C(14)-H(14A)  0.9300 
C(15)-C(16)  1.383(2) 
C(15)-H(15A)  0.9300 

C(16)-C(17)  1.3824(19) 
C(16)-H(16A)  0.9300 
C(17)-C(18)  1.3949(17) 
C(17)-H(17A)  0.9300 
C(18)-H(18A)  0.9300 
N(2)-O(10)  1.4512(12) 
N(2)-C(27)  1.4702(15) 
N(2)-C(19)  1.4719(15) 
O(6)-C(27)  1.4225(13) 
O(6)-C(21)  1.4568(13) 
O(7)-C(22)  1.4263(13) 
O(7)-C(23)  1.4345(13) 
O(8)-C(26)  1.4220(14) 
O(8)-C(23)  1.4312(14) 
O(9)-C(19)  1.4079(14) 
O(9)-H(9B)  0.8200 
O(10)-C(30)  1.4382(14) 
C(19)-C(20)  1.5379(16) 
C(19)-H(19A)  0.9800 
C(20)-C(21)  1.5300(16) 
C(20)-C(28)  1.5355(15) 
C(20)-H(20A)  0.9800 
C(21)-C(22)  1.5261(16) 
C(21)-H(21A)  0.9800 
C(22)-C(26)  1.5488(15) 
C(22)-H(22A)  0.9800 
C(23)-C(24)  1.5075(17) 
C(23)-C(25)  1.5123(17) 
C(24)-H(24A)  0.9600 
C(24)-H(24B)  0.9600 
C(24)-H(24C)  0.9600 
C(25)-H(25A)  0.9600 
C(25)-H(25B)  0.9600 
C(25)-H(25C)  0.9600 
C(26)-C(27)  1.5289(16) 
C(26)-H(26A)  0.9800 
C(27)-H(27A)  0.9800 
C(28)-C(29)  1.5231(17) 
C(28)-H(28A)  0.9700 
C(28)-H(28B)  0.9700 
C(29)-H(29A)  0.9600 
C(29)-H(29B)  0.9600 
C(29)-H(29C)  0.9600 
C(30)-C(31)  1.5000(17) 
C(30)-H(30A)  0.9700 
C(30)-H(30B)  0.9700 
C(31)-C(36)  1.3911(17) 
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C(31)-C(32)  1.3930(17) 
C(32)-C(33)  1.3911(18) 
C(32)-H(32A)  0.9300 
C(33)-C(34)  1.387(2) 
C(33)-H(33A)  0.9300 
C(34)-C(35)  1.3836(19) 
C(34)-H(34A)  0.9300 
C(35)-C(36)  1.3835(19) 
C(35)-H(35A)  0.9300 
C(36)-H(36A)  0.9300 
 
C(9)-O(1)-C(3) 103.03(8) 
O(5)-N(1)-C(9) 105.04(8) 
O(5)-N(1)-C(1) 107.90(8) 
C(9)-N(1)-C(1) 113.58(9) 
O(4)-C(1)-N(1) 108.62(9) 
O(4)-C(1)-C(2) 111.66(9) 
N(1)-C(1)-C(2) 110.27(9) 
O(4)-C(1)-H(1A) 108.7 
N(1)-C(1)-H(1A) 108.7 
C(2)-C(1)-H(1A) 108.7 
C(4)-O(2)-C(5) 107.23(8) 
C(3)-C(2)-C(10) 114.44(9) 
C(3)-C(2)-C(1) 109.82(9) 
C(10)-C(2)-C(1) 110.28(9) 
C(3)-C(2)-H(2A) 107.3 
C(10)-C(2)-H(2A) 107.3 
C(1)-C(2)-H(2A) 107.3 
C(8)-O(3)-C(5) 107.17(8) 
O(1)-C(3)-C(2) 107.57(9) 
O(1)-C(3)-C(4) 102.96(8) 
C(2)-C(3)-C(4) 113.98(9) 
O(1)-C(3)-H(3A) 110.7 
C(2)-C(3)-H(3A) 110.7 
C(4)-C(3)-H(3A) 110.7 
C(1)-O(4)-H(4A) 109.5 
O(2)-C(4)-C(3) 109.79(9) 
O(2)-C(4)-C(8) 104.26(8) 
C(3)-C(4)-C(8) 103.72(9) 
O(2)-C(4)-H(4B) 112.8 
C(3)-C(4)-H(4B) 112.8 
C(8)-C(4)-H(4B) 112.8 
C(12)-O(5)-N(1) 108.25(8) 
O(3)-C(5)-O(2) 104.16(8) 
O(3)-C(5)-C(7) 108.08(9) 
O(2)-C(5)-C(7) 108.84(9) 
O(3)-C(5)-C(6) 111.18(9) 
O(2)-C(5)-C(6) 110.45(9) 
C(7)-C(5)-C(6) 113.66(10) 

C(5)-C(6)-H(6A) 109.5 
C(5)-C(6)-H(6B) 109.5 
H(6A)-C(6)-H(6B) 109.5 
C(5)-C(6)-H(6C) 109.5 
H(6A)-C(6)-H(6C) 109.5 
H(6B)-C(6)-H(6C) 109.5 
C(5)-C(7)-H(7A) 109.5 
C(5)-C(7)-H(7B) 109.5 
H(7A)-C(7)-H(7B) 109.5 
C(5)-C(7)-H(7C) 109.5 
H(7A)-C(7)-H(7C) 109.5 
H(7B)-C(7)-H(7C) 109.5 
O(3)-C(8)-C(9) 109.70(9) 
O(3)-C(8)-C(4) 104.85(8) 
C(9)-C(8)-C(4) 102.99(9) 
O(3)-C(8)-H(8A) 112.9 
C(9)-C(8)-H(8A) 112.9 
C(4)-C(8)-H(8A) 112.9 
O(1)-C(9)-N(1) 106.93(8) 
O(1)-C(9)-C(8) 104.25(9) 
N(1)-C(9)-C(8) 114.18(9) 
O(1)-C(9)-H(9A) 110.4 
N(1)-C(9)-H(9A) 110.4 
C(8)-C(9)-H(9A) 110.4 
C(11)-C(10)-C(2) 113.77(10) 
C(11)-C(10)-H(10A) 108.8 
C(2)-C(10)-H(10A) 108.8 
C(11)-C(10)-H(10B) 108.8 
C(2)-C(10)-H(10B) 108.8 
H(10A)-C(10)-H(10B) 107.7 
C(10)-C(11)-H(11A) 109.5 
C(10)-C(11)-H(11B) 109.5 
H(11A)-C(11)-H(11B) 109.5 
C(10)-C(11)-H(11C) 109.5 
H(11A)-C(11)-H(11C) 109.5 
H(11B)-C(11)-H(11C) 109.5 
O(5)-C(12)-C(13) 108.56(9) 
O(5)-C(12)-H(12A) 110.0 
C(13)-C(12)-H(12A) 110.0 
O(5)-C(12)-H(12B) 110.0 
C(13)-C(12)-H(12B) 110.0 
H(12A)-C(12)-H(12B) 108.4 
C(14)-C(13)-C(18) 119.08(11) 
C(14)-C(13)-C(12) 120.41(11) 
C(18)-C(13)-C(12) 120.47(11) 
C(15)-C(14)-C(13) 120.67(12) 
C(15)-C(14)-H(14A) 119.7 
C(13)-C(14)-H(14A) 119.7 
C(16)-C(15)-C(14) 119.99(12) 
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C(16)-C(15)-H(15A) 120.0 
C(14)-C(15)-H(15A) 120.0 
C(17)-C(16)-C(15) 120.09(12) 
C(17)-C(16)-H(16A) 120.0 
C(15)-C(16)-H(16A) 120.0 
C(16)-C(17)-C(18) 119.98(12) 
C(16)-C(17)-H(17A) 120.0 
C(18)-C(17)-H(17A) 120.0 
C(13)-C(18)-C(17) 120.16(11) 
C(13)-C(18)-H(18A) 119.9 
C(17)-C(18)-H(18A) 119.9 
O(10)-N(2)-C(27) 106.07(8) 
O(10)-N(2)-C(19) 105.46(8) 
C(27)-N(2)-C(19) 113.46(9) 
C(27)-O(6)-C(21) 102.76(8) 
C(22)-O(7)-C(23) 106.91(8) 
C(26)-O(8)-C(23) 107.08(8) 
C(19)-O(9)-H(9B) 109.5 
C(30)-O(10)-N(2) 108.79(8) 
O(9)-C(19)-N(2) 108.85(9) 
O(9)-C(19)-C(20) 112.29(9) 
N(2)-C(19)-C(20) 110.61(9) 
O(9)-C(19)-H(19A) 108.3 
N(2)-C(19)-H(19A) 108.3 
C(20)-C(19)-H(19A) 108.3 
C(21)-C(20)-C(28) 114.25(10) 
C(21)-C(20)-C(19) 109.96(9) 
C(28)-C(20)-C(19) 109.74(9) 
C(21)-C(20)-H(20A) 107.5 
C(28)-C(20)-H(20A) 107.5 
C(19)-C(20)-H(20A) 107.5 
O(6)-C(21)-C(22) 103.34(8) 
O(6)-C(21)-C(20) 107.46(9) 
C(22)-C(21)-C(20) 114.11(9) 
O(6)-C(21)-H(21A) 110.6 
C(22)-C(21)-H(21A) 110.6 
C(20)-C(21)-H(21A) 110.6 
O(7)-C(22)-C(21) 110.21(9) 
O(7)-C(22)-C(26) 104.19(9) 
C(21)-C(22)-C(26) 103.42(9) 
O(7)-C(22)-H(22A) 112.8 
C(21)-C(22)-H(22A) 112.8 
C(26)-C(22)-H(22A) 112.8 
O(8)-C(23)-O(7) 103.96(9) 
O(8)-C(23)-C(24) 108.42(10) 
O(7)-C(23)-C(24) 109.11(10) 
O(8)-C(23)-C(25) 111.04(10) 
O(7)-C(23)-C(25) 110.83(10) 
C(24)-C(23)-C(25) 113.06(11) 

C(23)-C(24)-H(24A) 109.5 
C(23)-C(24)-H(24B) 109.5 
H(24A)-C(24)-H(24B) 109.5 
C(23)-C(24)-H(24C) 109.5 
H(24A)-C(24)-H(24C) 109.5 
H(24B)-C(24)-H(24C) 109.5 
C(23)-C(25)-H(25A) 109.5 
C(23)-C(25)-H(25B) 109.5 
H(25A)-C(25)-H(25B) 109.5 
C(23)-C(25)-H(25C) 109.5 
H(25A)-C(25)-H(25C) 109.5 
H(25B)-C(25)-H(25C) 109.5 
O(8)-C(26)-C(27) 109.63(9) 
O(8)-C(26)-C(22) 104.63(9) 
C(27)-C(26)-C(22) 103.09(9) 
O(8)-C(26)-H(26A) 112.9 
C(27)-C(26)-H(26A) 112.9 
C(22)-C(26)-H(26A) 112.9 
O(6)-C(27)-N(2) 106.69(9) 
O(6)-C(27)-C(26) 104.57(9) 
N(2)-C(27)-C(26) 114.55(9) 
O(6)-C(27)-H(27A) 110.3 
N(2)-C(27)-H(27A) 110.3 
C(26)-C(27)-H(27A) 110.3 
C(29)-C(28)-C(20) 113.51(10) 
C(29)-C(28)-H(28A) 108.9 
C(20)-C(28)-H(28A) 108.9 
C(29)-C(28)-H(28B) 108.9 
C(20)-C(28)-H(28B) 108.9 
H(28A)-C(28)-H(28B) 107.7 
C(28)-C(29)-H(29A) 109.5 
C(28)-C(29)-H(29B) 109.5 
H(29A)-C(29)-H(29B) 109.5 
C(28)-C(29)-H(29C) 109.5 
H(29A)-C(29)-H(29C) 109.5 
H(29B)-C(29)-H(29C) 109.5 
O(10)-C(30)-C(31) 107.28(10) 
O(10)-C(30)-H(30A) 110.3 
C(31)-C(30)-H(30A) 110.3 
O(10)-C(30)-H(30B) 110.3 
C(31)-C(30)-H(30B) 110.3 
H(30A)-C(30)-H(30B) 108.5 
C(36)-C(31)-C(32) 119.09(11) 
C(36)-C(31)-C(30) 119.42(11) 
C(32)-C(31)-C(30) 121.49(12) 
C(33)-C(32)-C(31) 120.13(12) 
C(33)-C(32)-H(32A) 119.9 
C(31)-C(32)-H(32A) 119.9 
C(34)-C(33)-C(32) 120.16(12) 
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C(34)-C(33)-H(33A) 119.9 
C(32)-C(33)-H(33A) 119.9 
C(35)-C(34)-C(33) 119.81(12) 
C(35)-C(34)-H(34A) 120.1 
C(33)-C(34)-H(34A) 120.1 
C(34)-C(35)-C(36) 120.12(13) 

C(34)-C(35)-H(35A) 119.9 
C(36)-C(35)-H(35A) 119.9 
C(35)-C(36)-C(31) 120.67(11) 
C(35)-C(36)-H(36A) 119.7 
C(31)-C(36)-H(36A) 119.7

 
Table A.3.11.  Torsion angles [°] for 97. 
________________________________________________________________  
O(5)-N(1)-C(1)-O(4) -74.95(10) 
C(9)-N(1)-C(1)-O(4) 169.04(9) 
O(5)-N(1)-C(1)-C(2) 162.39(8) 
C(9)-N(1)-C(1)-C(2) 46.38(12) 
O(4)-C(1)-C(2)-C(3) -164.66(9) 
N(1)-C(1)-C(2)-C(3) -43.81(12) 
O(4)-C(1)-C(2)-C(10) 68.32(12) 
N(1)-C(1)-C(2)-C(10) -170.82(9) 
C(9)-O(1)-C(3)-C(2) -74.00(10) 
C(9)-O(1)-C(3)-C(4) 46.69(10) 
C(10)-C(2)-C(3)-O(1) -176.58(9) 
C(1)-C(2)-C(3)-O(1) 58.78(11) 
C(10)-C(2)-C(3)-C(4) 69.94(12) 
C(1)-C(2)-C(3)-C(4) -54.70(12) 
C(5)-O(2)-C(4)-C(3) -132.01(9) 
C(5)-O(2)-C(4)-C(8) -21.43(11) 
O(1)-C(3)-C(4)-O(2) 83.06(10) 
C(2)-C(3)-C(4)-O(2) -160.75(9) 
O(1)-C(3)-C(4)-C(8) -27.88(10) 
C(2)-C(3)-C(4)-C(8) 88.31(10) 
C(9)-N(1)-O(5)-C(12) -132.25(9) 
C(1)-N(1)-O(5)-C(12) 106.28(10) 
C(8)-O(3)-C(5)-O(2) -34.14(11) 
C(8)-O(3)-C(5)-C(7) -149.79(9) 
C(8)-O(3)-C(5)-C(6) 84.82(11) 
C(4)-O(2)-C(5)-O(3) 34.57(11) 
C(4)-O(2)-C(5)-C(7) 149.68(10) 
C(4)-O(2)-C(5)-C(6) -84.89(11) 
C(5)-O(3)-C(8)-C(9) 130.55(9) 
C(5)-O(3)-C(8)-C(4) 20.56(11) 
O(2)-C(4)-C(8)-O(3) 0.53(11) 
C(3)-C(4)-C(8)-O(3) 115.47(9) 
O(2)-C(4)-C(8)-C(9) -114.24(9) 
C(3)-C(4)-C(8)-C(9) 0.70(11) 
C(3)-O(1)-C(9)-N(1) 74.64(10) 
C(3)-O(1)-C(9)-C(8) -46.64(10) 
O(5)-N(1)-C(9)-O(1) 179.31(8) 
C(1)-N(1)-C(9)-O(1) -63.01(11) 
O(5)-N(1)-C(9)-C(8) -65.94(11) 
C(1)-N(1)-C(9)-C(8) 51.75(12) 

O(3)-C(8)-C(9)-O(1) -83.65(10) 
C(4)-C(8)-C(9)-O(1) 27.57(10) 
O(3)-C(8)-C(9)-N(1) 160.03(8) 
C(4)-C(8)-C(9)-N(1) -88.75(10) 
C(3)-C(2)-C(10)-C(11) 69.06(13) 
C(1)-C(2)-C(10)-C(11) -166.54(10) 
N(1)-O(5)-C(12)-C(13) 164.91(9) 
O(5)-C(12)-C(13)-C(14) -72.42(14) 
O(5)-C(12)-C(13)-C(18) 109.57(12) 
C(18)-C(13)-C(14)-C(15) 1.12(18) 
C(12)-C(13)-C(14)-C(15) -176.92(11) 
C(13)-C(14)-C(15)-C(16) 0.35(19) 
C(14)-C(15)-C(16)-C(17) -1.6(2) 
C(15)-C(16)-C(17)-C(18) 1.4(2) 
C(14)-C(13)-C(18)-C(17) -1.35(18) 
C(12)-C(13)-C(18)-C(17) 176.68(11) 
C(16)-C(17)-C(18)-C(13) 0.12(19) 
C(27)-N(2)-O(10)-C(30) 116.48(10) 
C(19)-N(2)-O(10)-C(30) -122.90(10) 
O(10)-N(2)-C(19)-O(9) 74.81(10) 
C(27)-N(2)-C(19)-O(9) -169.53(9) 
O(10)-N(2)-C(19)-C(20) -161.38(9) 
C(27)-N(2)-C(19)-C(20) -45.71(12) 
O(9)-C(19)-C(20)-C(21) 164.51(9) 
N(2)-C(19)-C(20)-C(21) 42.70(12) 
O(9)-C(19)-C(20)-C(28) -69.00(12) 
N(2)-C(19)-C(20)-C(28) 169.18(9) 
C(27)-O(6)-C(21)-C(22) -46.67(10) 
C(27)-O(6)-C(21)-C(20) 74.31(10) 
C(28)-C(20)-C(21)-O(6) 178.08(9) 
C(19)-C(20)-C(21)-O(6) -58.02(11) 
C(28)-C(20)-C(21)-C(22) -67.99(12) 
C(19)-C(20)-C(21)-C(22) 55.91(12) 
C(23)-O(7)-C(22)-C(21) 132.61(9) 
C(23)-O(7)-C(22)-C(26) 22.23(11) 
O(6)-C(21)-C(22)-O(7) -82.56(10) 
C(20)-C(21)-C(22)-O(7) 161.09(9) 
O(6)-C(21)-C(22)-C(26) 28.32(10) 
C(20)-C(21)-C(22)-C(26) -88.03(11) 
C(26)-O(8)-C(23)-O(7) 35.34(11) 
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C(26)-O(8)-C(23)-C(24) 151.34(10) 
C(26)-O(8)-C(23)-C(25) -83.89(11) 
C(22)-O(7)-C(23)-O(8) -35.79(11) 
C(22)-O(7)-C(23)-C(24) -151.30(10) 
C(22)-O(7)-C(23)-C(25) 83.58(11) 
C(23)-O(8)-C(26)-C(27) -131.16(9) 
C(23)-O(8)-C(26)-C(22) -21.18(11) 
O(7)-C(22)-C(26)-O(8) -0.68(11) 
C(21)-C(22)-C(26)-O(8) -115.94(9) 
O(7)-C(22)-C(26)-C(27) 113.98(9) 
C(21)-C(22)-C(26)-C(27) -1.28(11) 
C(21)-O(6)-C(27)-N(2) -75.62(10) 
C(21)-O(6)-C(27)-C(26) 46.12(10) 
O(10)-N(2)-C(27)-O(6) 178.63(8) 
C(19)-N(2)-C(27)-O(6) 63.33(11) 
O(10)-N(2)-C(27)-C(26) 63.44(11) 
C(19)-N(2)-C(27)-C(26) -51.86(12) 
O(8)-C(26)-C(27)-O(6) 83.98(10) 
C(22)-C(26)-C(27)-O(6) -27.01(11) 
O(8)-C(26)-C(27)-N(2) -159.60(9) 
C(22)-C(26)-C(27)-N(2) 89.41(10) 
C(21)-C(20)-C(28)-C(29) -62.96(14) 
C(19)-C(20)-C(28)-C(29) 173.02(10) 
N(2)-O(10)-C(30)-C(31) 162.52(10) 
O(10)-C(30)-C(31)-C(36) -76.15(14) 
O(10)-C(30)-C(31)-C(32) 103.07(13) 
C(36)-C(31)-C(32)-C(33) -0.51(18) 
C(30)-C(31)-C(32)-C(33) -179.74(11) 
C(31)-C(32)-C(33)-C(34) 0.97(19) 
C(32)-C(33)-C(34)-C(35) -0.3(2) 
C(33)-C(34)-C(35)-C(36) -0.8(2) 
C(34)-C(35)-C(36)-C(31) 1.26(19) 
C(32)-C(31)-C(36)-C(35) -0.60(18) 
C(30)-C(31)-C(36)-C(35) 178.64(11)
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Symmetry transformations used to generate equivalent atoms:  
 #1 -x+1,-y+1,-z    #2 -x+1,-y+1,-z+1       
 
 
 
Table A.3.12.  Hydrogen bonds for 97  [Å and °]. 
____________________________________________________________________________  
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
____________________________________________________________________________  
 O(4)-H(4A)...O(1)#1 0.82 2.16 2.9708(12) 172.1 
 O(9)-H(9B)...O(6)#2 0.82 2.16 2.9815(12) 179.6 
____________________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
#1 -x+1,-y+1,-z    #2 -x+1,-y+1,-z+1       
 
   	  



	  

	  

274 

 
 
 

Figure A.3.4. Thermal ellipsoid plot of azepine 108 at 50% probability. Hydrogen atoms are 
represented as spheres of arbitrary radius. Gray = carbon, red = oxygen, blue = nitrogen, green = 

chlorine. 
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Table A.3.13.  Crystal data and structure refinement for 108. 
CCDC no. 1028235 
Identification code  klb008_0m 
Empirical formula  C7 H7 Cl N O2 
Formula weight  172.59 
Temperature  100.15 K 
Wavelength  0.71073 Å 
Crystal system  Monoclinic 
Space group  C2/c 
Unit cell dimensions a = 24.849(3) Å α = 90°. 
 b = 4.7231(5) Å β = 103.467(2)°. 
 c = 14.8643(17) Å γ = 90°. 
Volume 1696.6(3) Å3 
Z 8 
Density (calculated) 1.351 Mg/m3 
Absorption coefficient 0.400 mm-1 
F(000) 712 
Crystal size 0.159 x 0.063 x 0.057 mm3 
Theta range for data collection 1.685 to 26.426°. 
Index ranges -30<=h<=30, -5<=k<=5, -18<=l<=18 
Reflections collected 12847 
Independent reflections 1736 [R(int) = 0.0616] 
Completeness to theta = 25.242° 100.0 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.7454 and 0.6525 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 1736 / 6 / 106 
Goodness-of-fit on F2 1.000 
Final R indices [I>2sigma(I)] R1 = 0.0562, wR2 = 0.1727 
R indices (all data) R1 = 0.0797, wR2 = 0.1969 
Extinction coefficient n/a 
Largest diff. peak and hole 0.894 and -0.478 e.Å-3 
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Table A.3.14. Bond lengths [Å] and angles [°] for 108. 
_____________________________________________________  
C(1)-C(2)  1.522(4) 
C(1)-N(1)  1.471(4) 
C(2)-C(3)  1.523(4) 
C(2)-Cl(1)  1.812(3) 
C(3)-C(4)  1.505(5) 
C(3)-O(1)  1.423(3) 
C(4)-C(5)  1.315(5) 
C(5)-C(6)  1.498(5) 
C(6)-N(1)  1.484(5) 
C(7)-O(2)  1.426(4) 
C(7)-O(2A)  1.598(13) 
N(1)-O(2)  1.423(4) 
N(1)-O(2A)  0.964(12) 
 
N(1)-C(1)-C(2) 112.3(3) 
C(1)-C(2)-Cl(1) 105.1(2) 
C(3)-C(2)-C(1) 114.8(3) 
C(3)-C(2)-Cl(1) 108.4(2) 
C(4)-C(3)-C(2) 111.1(2) 
O(1)-C(3)-C(2) 112.5(3) 
O(1)-C(3)-C(4) 106.4(2) 
C(5)-C(4)-C(3) 126.6(3) 
C(4)-C(5)-C(6) 125.1(3) 
N(1)-C(6)-C(5) 109.8(3) 
C(1)-N(1)-C(6) 111.4(3) 
O(2)-N(1)-C(1) 104.2(3) 
O(2)-N(1)-C(6) 106.6(3) 
O(2A)-N(1)-C(1) 130.0(8) 
O(2A)-N(1)-C(6) 117.8(8) 
C(7)-O(2)-N(1) 107.1(3) 
N(1)-O(2A)-C(7) 125.0(11)
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Table A.3.15. Torsion angles [°] for 108. 
________________________________________________________________  
C(1)-C(2)-C(3)-C(4) -71.9(3) 
C(1)-C(2)-C(3)-O(1) 169.0(3) 
C(1)-N(1)-O(2)-C(7) -136.7(3) 
C(1)-N(1)-O(2A)-C(7) 101.7(11) 
C(2)-C(1)-N(1)-C(6) -78.1(4) 
C(2)-C(1)-N(1)-O(2) 167.3(3) 
C(2)-C(1)-N(1)-O(2A) 90.8(10) 
C(2)-C(3)-C(4)-C(5) 56.7(4) 
C(3)-C(4)-C(5)-C(6) -2.2(6) 
C(4)-C(5)-C(6)-N(1) -59.3(5) 
C(5)-C(6)-N(1)-C(1) 83.6(4) 
C(5)-C(6)-N(1)-O(2) -163.4(3) 
C(5)-C(6)-N(1)-O(2A) -86.8(9) 
C(6)-N(1)-O(2)-C(7) 105.5(3) 
C(6)-N(1)-O(2A)-C(7) -89.9(11) 
N(1)-C(1)-C(2)-C(3) 72.1(4) 
N(1)-C(1)-C(2)-Cl(1) -169.0(2) 
O(1)-C(3)-C(4)-C(5) 179.4(3) 
O(2)-C(7)-O(2A)-N(1) -10.4(9) 
O(2)-N(1)-O(2A)-C(7) 9.2(8) 
O(2A)-C(7)-O(2)-N(1) 6.0(5) 
O(2A)-N(1)-O(2)-C(7) -8.8(8) 
Cl(1)-C(2)-C(3)-C(4) 171.0(2) 
Cl(1)-C(2)-C(3)-O(1) 51.9(3) 
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Figure A.3.5. Thermal ellipsoid plot of tetrahydropyridine 119 at 50% probability. Hydrogen 
atoms are represented as spheres of arbitrary radius. Gray = carbon, red = oxygen, blue = 

nitrogen. 
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Table A.3.16.  Crystal data and structure refinement for 119. 
CCDC no. 1028236 
Identification code  klb009_0m 
Empirical formula  C26 H34 N2 O6 
Formula weight  470.55 
Temperature  99.65 K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 9.9549(4) Å α = 106.4607(7)°. 
 b = 11.3328(5) Å β = 101.6175(7)°. 
 c = 11.8818(5) Å γ = 100.1738(7)°. 
Volume 1219.60(9) Å3 
Z 2 
Density (calculated) 1.281 Mg/m3 
Absorption coefficient 0.091 mm-1 
F(000) 504 
Crystal size 0.161 x 0.126 x 0.072 mm3 
Theta range for data collection 1.854 to 26.413°. 
Index ranges -12<=h<=12, -14<=k<=14, -14<=l<=14 
Reflections collected 23662 
Independent reflections 5015 [R(int) = 0.0515] 
Completeness to theta = 25.242° 100.0 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.7454 and 0.7196 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 5015 / 0 / 317 
Goodness-of-fit on F2 1.000 
Final R indices [I>2sigma(I)] R1 = 0.0367, wR2 = 0.0677 
R indices (all data) R1 = 0.0618, wR2 = 0.0727 
Extinction coefficient n/a 
Largest diff. peak and hole 0.209 and -0.188 e.Å-3 
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 Table A.3.17.   Bond lengths [Å] and angles [°] for 119. 
_____________________________________________________  
C(14)-C(15)  1.4928(18) 
C(14)-N(2)  1.4654(16) 
C(15)-C(16)  1.3203(18) 
C(16)-C(17)  1.4974(17) 
C(17)-C(18)  1.5323(17) 
C(17)-O(4)  1.4369(15) 
C(18)-C(19)  1.5120(17) 
C(18)-N(2)  1.4757(15) 
C(19)-O(5)  1.4286(14) 
C(20)-C(21)  1.4999(17) 
C(20)-O(6)  1.4366(14) 
C(21)-C(22)  1.3855(18) 
C(21)-C(26)  1.3837(18) 
C(22)-C(23)  1.3860(19) 
C(23)-C(24)  1.374(2) 
C(24)-C(25)  1.379(2) 
C(25)-C(26)  1.3821(18) 
N(2)-O(6)  1.4588(12) 
C(1)-C(2)  1.4917(19) 
C(1)-N(1)  1.4653(16) 
C(2)-C(3)  1.3216(19) 
C(3)-C(4)  1.4948(19) 
C(4)-C(5)  1.5294(18) 
C(4)-O(1)  1.4366(15) 
C(5)-C(6)  1.5135(18) 
C(5)-N(1)  1.4702(15) 
C(6)-O(2)  1.4267(15) 
C(7)-C(8)  1.5016(18) 
C(7)-O(3)  1.4305(15) 
C(8)-C(9)  1.3918(18) 
C(8)-C(13)  1.3875(17) 
C(9)-C(10)  1.3824(18) 
C(10)-C(11)  1.3852(18) 
C(11)-C(12)  1.3807(19) 
C(12)-C(13)  1.3851(18) 
N(1)-O(3)  1.4535(13) 
 
N(2)-C(14)-C(15) 110.45(11) 
C(16)-C(15)-C(14) 122.24(13) 
C(15)-C(16)-C(17) 122.23(12) 
C(16)-C(17)-C(18) 111.51(11) 
O(4)-C(17)-C(16) 110.43(10) 

O(4)-C(17)-C(18) 112.60(10) 
C(19)-C(18)-C(17) 112.10(10) 
N(2)-C(18)-C(17) 107.16(10) 
N(2)-C(18)-C(19) 111.69(10) 
O(5)-C(19)-C(18) 107.66(10) 
O(6)-C(20)-C(21) 106.61(10) 
C(22)-C(21)-C(20) 120.88(13) 
C(26)-C(21)-C(20) 120.31(12) 
C(26)-C(21)-C(22) 118.80(13) 
C(23)-C(22)-C(21) 120.32(14) 
C(24)-C(23)-C(22) 120.30(14) 
C(23)-C(24)-C(25) 119.86(14) 
C(24)-C(25)-C(26) 119.89(14) 
C(21)-C(26)-C(25) 120.82(14) 
C(14)-N(2)-C(18) 109.55(10) 
O(6)-N(2)-C(14) 103.67(9) 
O(6)-N(2)-C(18) 106.96(9) 
C(20)-O(6)-N(2) 107.97(8) 
N(1)-C(1)-C(2) 109.19(11) 
C(3)-C(2)-C(1) 122.54(14) 
C(2)-C(3)-C(4) 122.00(13) 
C(3)-C(4)-C(5) 111.16(11) 
O(1)-C(4)-C(3) 110.80(11) 
O(1)-C(4)-C(5) 111.44(11) 
C(6)-C(5)-C(4) 112.03(11) 
N(1)-C(5)-C(4) 105.42(10) 
N(1)-C(5)-C(6) 111.74(10) 
O(2)-C(6)-C(5) 108.65(11) 
O(3)-C(7)-C(8) 109.43(10) 
C(9)-C(8)-C(7) 121.74(12) 
C(13)-C(8)-C(7) 119.48(12) 
C(13)-C(8)-C(9) 118.64(12) 
C(10)-C(9)-C(8) 120.81(12) 
C(9)-C(10)-C(11) 119.99(13) 
C(12)-C(11)-C(10) 119.67(13) 
C(11)-C(12)-C(13) 120.28(13) 
C(12)-C(13)-C(8) 120.60(13) 
C(1)-N(1)-C(5) 110.04(10) 
O(3)-N(1)-C(1) 106.10(9) 
O(3)-N(1)-C(5) 108.29(9) 
C(7)-O(3)-N(1) 106.43(9) 
 

 
Table A.3.18.  Torsion angles [°] for 119. 
________________________________________________________________  
C(14)-C(15)-C(16)-C(17) 1.9(2) 
C(14)-N(2)-O(6)-C(20) -120.51(10) 
C(15)-C(14)-N(2)-C(18) -54.91(13) 
C(15)-C(14)-N(2)-O(6) -168.80(10) 

C(15)-C(16)-C(17)-C(18) 12.64(18) 
C(15)-C(16)-C(17)-O(4) -113.35(14) 
C(16)-C(17)-C(18)-C(19) -169.57(10) 
C(16)-C(17)-C(18)-N(2) -46.69(14) 
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C(17)-C(18)-C(19)-O(5) -62.84(13) 
C(17)-C(18)-N(2)-C(14) 69.77(12) 
C(17)-C(18)-N(2)-O(6) -178.49(9) 
C(18)-N(2)-O(6)-C(20) 123.76(10) 
C(19)-C(18)-N(2)-C(14) -167.10(10) 
C(19)-C(18)-N(2)-O(6) -55.36(12) 
C(20)-C(21)-C(22)-C(23) -177.60(12) 
C(20)-C(21)-C(26)-C(25) 177.77(12) 
C(21)-C(20)-O(6)-N(2) 174.53(9) 
C(21)-C(22)-C(23)-C(24) -0.3(2) 
C(22)-C(21)-C(26)-C(25) -0.69(19) 
C(22)-C(23)-C(24)-C(25) -0.5(2) 
C(23)-C(24)-C(25)-C(26) 0.7(2) 
C(24)-C(25)-C(26)-C(21) -0.1(2) 
C(26)-C(21)-C(22)-C(23) 0.86(19) 
N(2)-C(14)-C(15)-C(16) 18.79(18) 
N(2)-C(18)-C(19)-O(5) 176.88(10) 
O(4)-C(17)-C(18)-C(19) -44.78(14) 
O(4)-C(17)-C(18)-N(2) 78.09(13) 
O(6)-C(20)-C(21)-C(22) 91.95(14) 
O(6)-C(20)-C(21)-C(26) -86.48(14) 
C(1)-C(2)-C(3)-C(4) -1.7(2) 
C(1)-N(1)-O(3)-C(7) 112.31(11) 
C(2)-C(1)-N(1)-C(5) 55.71(14) 
C(2)-C(1)-N(1)-O(3) 172.64(10) 
C(2)-C(3)-C(4)-C(5) -14.86(19) 
C(2)-C(3)-C(4)-O(1) 109.64(15) 
C(3)-C(4)-C(5)-C(6) 171.02(11) 
C(3)-C(4)-C(5)-N(1) 49.28(14) 
C(4)-C(5)-C(6)-O(2) 58.70(14) 
C(4)-C(5)-N(1)-C(1) -72.46(12) 
C(4)-C(5)-N(1)-O(3) 171.98(9) 
C(5)-N(1)-O(3)-C(7) -129.59(11) 
C(6)-C(5)-N(1)-C(1) 165.61(11) 
C(6)-C(5)-N(1)-O(3) 50.05(13) 
C(7)-C(8)-C(9)-C(10) -175.87(13) 
C(7)-C(8)-C(13)-C(12) 175.27(13) 
C(8)-C(7)-O(3)-N(1) 171.39(10) 
C(8)-C(9)-C(10)-C(11) 0.6(2) 
C(9)-C(8)-C(13)-C(12) -0.5(2) 
C(9)-C(10)-C(11)-C(12) -0.3(2) 
C(10)-C(11)-C(12)-C(13) -0.4(2) 
C(11)-C(12)-C(13)-C(8) 0.8(2) 
C(13)-C(8)-C(9)-C(10) -0.2(2) 
N(1)-C(1)-C(2)-C(3) -17.85(19) 
N(1)-C(5)-C(6)-O(2) 176.75(10) 
O(1)-C(4)-C(5)-C(6) 46.89(15) 
O(1)-C(4)-C(5)-N(1) -74.86(13) 
O(3)-C(7)-C(8)-C(9) -45.44(18) 
O(3)-C(7)-C(8)-C(13) 138.89(12) 
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Table A.3.19.  Hydrogen bonds for 119 [Å and °]. 
____________________________________________________________________________  
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
____________________________________________________________________________  
 O(1)-H(1)...O(5)#1 0.84 1.97 2.7226(13) 148.4 
 O(2)-H(2A)...O(1)#2 0.84 1.87 2.6837(13) 164.4 
 O(4)-H(4)...O(2)#3 0.837(16) 1.950(16) 2.7199(14) 152.4(15) 
 O(5)-H(5)...O(4)#4 0.832(16) 1.896(17) 2.7070(14) 164.5(17) 
____________________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
#1 -x,-y+1,-z+1    #2 -x+1,-y+1,-z+2    #3 -x+1,-y+1,-z+1       
#4 -x,-y+1,-z       
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Figure A.3.6. Thermal ellipsoid plot of polyhydroxylated piperidine 121. Hydrogen atoms are 
represented as spheres of arbitrary radius. Gray = carbon, red = oxygen, blue = nitrogen. 
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Table A.3.20.  Crystal data and structure refinement for 121. 
CCDC no. 1028237 
Identification code  klb010_0m 
Empirical formula  C26 H38 N2 O10 
Formula weight  538.58 
Temperature  99.65 K 
Wavelength  0.71073 Å 
Crystal system  Triclinic 
Space group  P-1 
Unit cell dimensions a = 5.3906(3) Å α = 112.4571(11)°. 
 b = 15.9299(9) Å β = 97.7331(11)°. 
 c = 17.3564(10) Å γ = 99.3952(11)°. 
Volume 1326.85(13) Å3 
Z 2 
Density (calculated) 1.348 Mg/m3 
Absorption coefficient 0.104 mm-1 
F(000) 576 
Crystal size 0.401 x 0.191 x 0.176 mm3 
Theta range for data collection 1.300 to 30.593°. 
Index ranges -7<=h<=7, -22<=k<=22, -24<=l<=24 
Reflections collected 33786 
Independent reflections 8134 [R(int) = 0.0579] 
Completeness to theta = 25.242° 100.0 %  
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.7461 and 0.6922 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 8134 / 0 / 376 
Goodness-of-fit on F2 1.000 
Final R indices [I>2sigma(I)] R1 = 0.0467, wR2 = 0.1191 
R indices (all data) R1 = 0.0775, wR2 = 0.1352 
Extinction coefficient n/a 
Largest diff. peak and hole 0.406 and -0.296 e.Å-3 
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Table A.3.21.   Bond lengths [Å] and angles [°] for 121. 
_____________________________________________________  
C(1)-C(2)  1.5303(18) 
C(1)-N(1)  1.4736(17) 
C(2)-C(3)  1.5126(18) 
C(2)-O(1)  1.4354(15) 
C(3)-C(4)  1.5209(18) 
C(3)-O(2)  1.4243(15) 
C(4)-C(5)  1.5323(18) 
C(4)-O(3)  1.4182(15) 
C(5)-C(6)  1.5310(18) 
C(5)-N(1)  1.4813(16) 
C(6)-O(4)  1.4253(16) 
C(7)-C(8)  1.526(3) 
C(7)-C(8A)  1.489(3) 
C(7)-O(5)  1.4350(16) 
C(8)-C(9)  1.3900 
C(8)-C(13)  1.3900 
C(9)-C(10)  1.3900 
C(10)-C(11)  1.3900 
C(11)-C(12)  1.3900 
C(12)-C(13)  1.3900 
C(8A)-C(13A)  1.3900 
C(8A)-C(9A)  1.3900 
C(13A)-C(12A)  1.3900 
C(12A)-C(11A)  1.3900 
C(11A)-C(10A)  1.3900 
C(10A)-C(9A)  1.3900 
N(1)-O(5)  1.4575(13) 
C(14)-C(15)  1.5243(18) 
C(14)-N(2)  1.4716(17) 
C(15)-C(16)  1.5200(18) 
C(15)-O(6)  1.4251(15) 
C(16)-C(17)  1.5251(18) 
C(16)-O(7)  1.4257(16) 
C(17)-C(18)  1.5293(18) 
C(17)-O(8)  1.4270(16) 
C(18)-C(19)  1.5335(18) 
C(18)-N(2)  1.4695(16) 
C(19)-O(9)  1.4297(16) 
C(20)-C(21)  1.5095(17) 
C(20)-O(10)  1.4324(18) 
C(21)-C(22)  1.3900 
C(21)-C(26)  1.3900 
C(22)-C(23)  1.3900 
C(23)-C(24)  1.3900 
C(24)-C(25)  1.3900 
C(25)-C(26)  1.3900 
N(2)-O(10)  1.4540(14) 
 
N(1)-C(1)-C(2) 108.76(10) 

C(3)-C(2)-C(1) 110.44(10) 
O(1)-C(2)-C(1) 109.92(10) 
O(1)-C(2)-C(3) 108.33(10) 
C(2)-C(3)-C(4) 108.38(10) 
O(2)-C(3)-C(2) 110.20(11) 
O(2)-C(3)-C(4) 108.74(10) 
C(3)-C(4)-C(5) 111.04(11) 
O(3)-C(4)-C(3) 106.47(10) 
O(3)-C(4)-C(5) 111.66(11) 
C(6)-C(5)-C(4) 111.36(11) 
N(1)-C(5)-C(4) 108.96(10) 
N(1)-C(5)-C(6) 111.05(10) 
O(4)-C(6)-C(5) 109.98(10) 
O(5)-C(7)-C(8) 102.87(17) 
O(5)-C(7)-C(8A) 109.19(17) 
C(9)-C(8)-C(7) 120.0(3) 
C(9)-C(8)-C(13) 120.0 
C(13)-C(8)-C(7) 120.0(3) 
C(10)-C(9)-C(8) 120.0 
C(9)-C(10)-C(11) 120.0 
C(12)-C(11)-C(10) 120.0 
C(11)-C(12)-C(13) 120.0 
C(12)-C(13)-C(8) 120.0 
C(13A)-C(8A)-C(7) 120.5(3) 
C(13A)-C(8A)-C(9A) 120.0 
C(9A)-C(8A)-C(7) 119.2(3) 
C(8A)-C(13A)-C(12A) 120.0 
C(13A)-C(12A)-C(11A) 120.0 
C(12A)-C(11A)-C(10A) 120.0 
C(9A)-C(10A)-C(11A) 120.0 
C(10A)-C(9A)-C(8A) 120.0 
C(1)-N(1)-C(5) 109.79(10) 
O(5)-N(1)-C(1) 104.45(9) 
O(5)-N(1)-C(5) 104.98(9) 
C(7)-O(5)-N(1) 109.50(9) 
N(2)-C(14)-C(15) 108.50(11) 
C(14)-C(15)-C(16) 110.63(10) 
O(6)-C(15)-C(14) 109.53(11) 
O(6)-C(15)-C(16) 110.03(11) 
C(15)-C(16)-C(17) 109.70(11) 
O(7)-C(16)-C(15) 111.63(11) 
O(7)-C(16)-C(17) 107.61(10) 
C(16)-C(17)-C(18) 111.82(11) 
O(8)-C(17)-C(16) 110.06(10) 
O(8)-C(17)-C(18) 110.80(11) 
C(17)-C(18)-C(19) 111.04(11) 
N(2)-C(18)-C(17) 106.73(10) 
N(2)-C(18)-C(19) 110.37(11) 
O(9)-C(19)-C(18) 111.51(11) 
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O(10)-C(20)-C(21) 105.62(12) 
C(22)-C(21)-C(20) 119.39(9) 
C(22)-C(21)-C(26) 120.0 
C(26)-C(21)-C(20) 120.59(9) 
C(21)-C(22)-C(23) 120.0 
C(24)-C(23)-C(22) 120.0 
C(25)-C(24)-C(23) 120.0 
C(26)-C(25)-C(24) 120.0 

C(25)-C(26)-C(21) 120.0 
C(18)-N(2)-C(14) 110.65(10) 
O(10)-N(2)-C(14) 106.01(10) 
O(10)-N(2)-C(18) 104.87(9) 
C(20)-O(10)-N(2) 109.12(10) 
____________________________________
___

  
Table A.3.22.  Torsion angles [°] for 121. 
________________________________________________________________  
C(1)-C(2)-C(3)-C(4) 57.08(13) 
C(1)-C(2)-C(3)-O(2) -61.80(13) 
C(1)-N(1)-O(5)-C(7) 121.05(11) 
C(2)-C(1)-N(1)-C(5) 63.20(12) 
C(2)-C(1)-N(1)-O(5) 175.31(9) 
C(2)-C(3)-C(4)-C(5) -56.11(13) 
C(2)-C(3)-C(4)-O(3) 65.64(13) 
C(3)-C(4)-C(5)-C(6) -178.48(10) 
C(3)-C(4)-C(5)-N(1) 58.70(13) 
C(4)-C(5)-C(6)-O(4) 60.08(13) 
C(4)-C(5)-N(1)-C(1) -61.96(13) 
C(4)-C(5)-N(1)-O(5) -173.72(9) 
C(5)-N(1)-O(5)-C(7) -123.43(11) 
C(6)-C(5)-N(1)-C(1) 175.04(10) 
C(6)-C(5)-N(1)-O(5) 63.27(12) 
C(7)-C(8)-C(9)-C(10) -179.4(3) 
C(7)-C(8)-C(13)-C(12) 179.4(3) 
C(7)-C(8A)-C(13A)-C(12A) -173.6(3) 
C(7)-C(8A)-C(9A)-C(10A) 173.7(3) 
C(8)-C(7)-C(8A)-C(13A) 106(2) 
C(8)-C(7)-C(8A)-C(9A) -68(2) 
C(8)-C(7)-O(5)-N(1) 172.28(17) 
C(8)-C(9)-C(10)-C(11) 0.0 
C(9)-C(8)-C(13)-C(12) 0.0 
C(9)-C(10)-C(11)-C(12) 0.0 
C(10)-C(11)-C(12)-C(13) 0.0 
C(11)-C(12)-C(13)-C(8) 0.0 
C(13)-C(8)-C(9)-C(10) 0.0 
C(8A)-C(7)-C(8)-C(9) 83(2) 
C(8A)-C(7)-C(8)-C(13) -97(2) 
C(8A)-C(7)-O(5)-N(1) 172.99(17) 
C(8A)-C(13A)-C(12A)-C(11A) 0.0 
C(13A)-C(8A)-C(9A)-C(10A) 0.0 
C(13A)-C(12A)-C(11A)-C(10A) 0.0 
C(12A)-C(11A)-C(10A)-C(9A) 0.0 
C(11A)-C(10A)-C(9A)-C(8A) 0.0 
C(9A)-C(8A)-C(13A)-C(12A) 0.0 
N(1)-C(1)-C(2)-C(3) -61.18(13) 
N(1)-C(1)-C(2)-O(1) 179.34(9) 
N(1)-C(5)-C(6)-O(4) -178.31(10) 

O(1)-C(2)-C(3)-C(4) 177.51(9) 
O(1)-C(2)-C(3)-O(2) 58.64(13) 
O(2)-C(3)-C(4)-C(5) 63.69(13) 
O(2)-C(3)-C(4)-O(3) -174.56(10) 
O(3)-C(4)-C(5)-C(6) 62.85(13) 
O(3)-C(4)-C(5)-N(1) -59.97(13) 
O(5)-C(7)-C(8)-C(9) -103.4(3) 
O(5)-C(7)-C(8)-C(13) 77.2(3) 
O(5)-C(7)-C(8A)-C(13A) 99.8(3) 
O(5)-C(7)-C(8A)-C(9A) -73.8(3) 
C(14)-C(15)-C(16)-C(17) -52.96(14) 
C(14)-C(15)-C(16)-O(7) 66.23(13) 
C(14)-N(2)-O(10)-C(20) -105.72(12) 
C(15)-C(14)-N(2)-C(18) -65.77(13) 
C(15)-C(14)-N(2)-O(10) -178.93(10) 
C(15)-C(16)-C(17)-C(18) 54.02(14) 
C(15)-C(16)-C(17)-O(8) -69.58(13) 
C(16)-C(17)-C(18)-C(19) -179.34(10) 
C(16)-C(17)-C(18)-N(2) -59.00(13) 
C(17)-C(18)-C(19)-O(9) -52.84(15) 
C(17)-C(18)-N(2)-C(14) 65.06(13) 
C(17)-C(18)-N(2)-O(10) 178.94(10) 
C(18)-N(2)-O(10)-C(20) 137.16(12) 
C(19)-C(18)-N(2)-C(14) -174.18(11) 
C(19)-C(18)-N(2)-O(10) -60.29(13) 
C(20)-C(21)-C(22)-C(23) -178.32(12) 
C(20)-C(21)-C(26)-C(25) 178.30(12) 
C(21)-C(20)-O(10)-N(2) -172.96(10) 
C(21)-C(22)-C(23)-C(24) 0.0 
C(22)-C(21)-C(26)-C(25) 0.0 
C(22)-C(23)-C(24)-C(25) 0.0 
C(23)-C(24)-C(25)-C(26) 0.0 
C(24)-C(25)-C(26)-C(21) 0.0 
C(26)-C(21)-C(22)-C(23) 0.0 
N(2)-C(14)-C(15)-C(16) 58.47(14) 
N(2)-C(14)-C(15)-O(6) 179.93(10) 
N(2)-C(18)-C(19)-O(9) -171.00(11) 
O(6)-C(15)-C(16)-C(17) -174.12(10) 
O(6)-C(15)-C(16)-O(7) -54.93(13) 
O(7)-C(16)-C(17)-C(18) -67.61(13) 
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O(7)-C(16)-C(17)-O(8) 168.80(10) 
O(8)-C(17)-C(18)-C(19) -56.16(14) 
O(8)-C(17)-C(18)-N(2) 64.18(13) 
O(10)-C(20)-C(21)-C(22) 72.71(14) 
O(10)-C(20)-C(21)-C(26) -105.59(12) 
____________________________________
___
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Table A.3.23.  Hydrogen bonds for 121 [Å and °]. 
____________________________________________________________________________  
D-H...A d(D-H) d(H...A) d(D...A) <(DHA) 
____________________________________________________________________________  
 O(2)-H(2A)...O(8)#1 0.84 1.83 2.6499(13) 163.8 
 O(3)-H(3A)...O(4)#2 0.84 1.87 2.7132(13) 176.5 
 O(6)-H(6)...O(7)#3 0.84 2.06 2.8814(13) 165.8 
 O(7)-H(7)...O(1) 0.84 1.94 2.7666(13) 170.2 
 O(8)-H(8)...O(9)#3 0.84 2.01 2.7652(14) 148.7 
 O(9)-H(9B)...O(1)#1 0.84 2.12 2.9047(14) 154.4 
 O(4)-H(4A)...N(1)#4 0.82(2) 2.16(2) 2.9729(14) 171.5(19) 
____________________________________________________________________________  
Symmetry transformations used to generate equivalent atoms:  
#1 -x,-y+1,-z    #2 -x,-y+2,-z+1    #3 x+1,y,z       
#4 x-1,y,z       
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