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ABSTRACT

One of the challenges that people with visual impairments (VI) have to have to

confront daily, is navigating independently through foreign or unfamiliar spaces.

Navigating through unfamiliar spaces without assistance is very time consuming

and leads to lower mobility. Especially in the case of indoor environments where

the use of GPS is impossible, this task becomes even harder.

However, advancements in mobile and wearable computing pave the path to

new cheap assistive technologies that can make the lives of people with VI easier.

Wearable devices have great potential for assistive applications for users who are

blind as they typically feature a camera and support hands and eye free interac-

tion. Smart watches and heads up displays (HUDs), in combination with smart

phones, can provide a basis for development of advanced algorithms, capable of

providing inexpensive solutions for navigation in indoor spaces. New interfaces

are also introduced making the interaction between users who are blind and mo-

bile devices more intuitive.

This work presents a set of new systems and technologies created to help users

with VI navigate indoor environments. The first system presented is an indoor

navigation system for people with VI that operates by using sensors found in mo-

bile devices and virtual maps of the environment. The second system presented

helps users navigate large open spaces with minimum veering. Next a study is

conducted to determine the accuracy of pedometry based on different body place-

ments of the accelerometer sensors. Finally, a gesture detection system is intro-

duced that helps communication between the user and mobile devices by using

sensors in wearable devices.
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CHAPTER 1

INTRODUCTION

Humans tend to navigate by either using path integration or landmark based

navigation. Path integration is the process when an individual navigates relatively

to a starting position using proprioceptive data. The location is estimated based

on adding all the changes in position and orientation [2]. In this case a map of en-

vironment is not needed [51] as the individual keeps track of all the changes. With

landmark-based navigation, the users find their way around based on their rela-

tive position to specific landmarks. Landmark-based navigation requires a map

(either physical or mental) of the environment. It is also possible that humans use

both path integration and landmark-based navigation [50].

The process of creating a mental map of the environment to help with landmark-

based navigation is called cognitive mapping [38]. This process is heavily influ-

enced by vision, which is used to commit to memory landmarks and the layout

of the environment very fast [79, 33, 70]. However, since users with visual im-

pairments cannot depend on vision, they use other senses to create a cognitive

map. Touch is used to recognise the features in the environment (e.g. window,

door, wall) while hearing is used to identify landmarks that create sounds (e.g.

air-condition, water cooler). The process of cognitive mapping is similar with both

indoor and outdoor spaces.

The first part of this work introduces an indoor localization and navigation sys-

tem for people with visual impairments [6], called Navatar. This is a lightweight,

inexpensive system, utilizing sensors that can be found in smart phones. It op-

erates using virtual maps of the environment, thus deeming expensive physical

infrastructure unnecessary. Navatar utilizes probabilistic algorithms, commonly
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used in robotics, in order to calculate an estimation of the user’s location. This

helps compensate for the lack of GPS in indoor environments.

Three sets of experiments were performed in order to test Navatar’s success.

The reasoning for the first set of experiments was to test how feasible such a system

is. In these experiments, users were asked to follow a set of paths while holding

a smart phone. The data from the phone sensors were collected and analyzed in

order to determine if it is possible to localize users from cheap sensor data.

The second set of experiments were performed by using an online version of

the system. Users were asked to follow directions in order to reach a destination.

Navatar would dynamically guide the users to a destination by providing turn-

by-turn instructions. The localization and navigation accuracy was determined by

these experiments.

The final set of experiments were performed on actual users with visual im-

pairments. The process was similar to the previous experiments where users were

asked to follow a set of intstructions provided by the phone. This time, users par-

ticipated in a survey after using Navatar where they could express their opinion

about the usability and ease of use of the system.

During the implementation of Navatar, more portable devices started becom-

ing popular. Wearable devices have great potential for assistive applications for

users who are blind as they typically feature a camera and support hands and eye

free interaction.

Navatar provides accurate indoor navigation but it does not perform well in

the case of open space navigation. Due to lack of features that users can sense, it

is easy to veer off. In order to solve this problem, a new system was created to
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deal with this issue. The new system, named Headlock, uses the Google Glass’

camera to detect a landmark across the room and help users follow it. Headlock

uses sonification and Text-to-Speech to help users stay in path when they start to

veer off.

Another issue with indoor localization that had to be taken into consideration

was the accuracy of the pedometry used. Counting the users’ steps is very im-

portant for Navatar in order to more accurately estimate the position of the user.

Brajdic et al [13] showed that, based on the placement of the smart phone (e.g.

back pocket, bag), there can be considerable under-counting of the steps. Addi-

tionally, Navatar works by making sure that the phone is always held on hand by

the user. Moving the phone around, though, can result in reduced step detection

accuracy. For these reason, a user study was conducted to test the accuracy of

other placements on the body. Due to the recent popularity of wearable devices

(fitness trackers, smart watches, HUDs), many people carry additional accelerom-

eters that are always placed in specific places on the body. We conducted a set of

experiments in order to determine whether an accelerometer placed on the head

(e.g. Google Glass) can be as accurate as an accelerometer placed on the arm (e.g.

smart watch) and an accelerometer placed in the front pocket (e.g. smart phone).

1.1 Contribution

In prior research Navatar was developed, which allows for large-scale implemen-

tation, as it only uses 2D maps and relies on low-cost sensors available in smart

phones. Navatar achieves accurate localization by exploiting the unique sensing

capabilities fd blind users by having them confirm the presence of tactile land-

marks along the provided path.
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A limitation of this approach is that blind users are required to hold the phone

in their hands, which impedes their ability to detect landmarks. By porting Na-

vatar to Google GLass, we seek to improve the user interface experience.

This approach opens up new possibilities. Step detection can now move from

the phone to Glass. Since its position is always fixed, it can replace the phone,

thus freeing the users from carrying the phone in their hands. Additionally, this

helps with the issue of navigating through large open spaces. Navatar works bet-

ter when the user follows a wall. If the user is navigating through an open space,

it is harder for the system to provide an accurate localization estimation. Google

Glass provides a camera on the same level as the eyes, which can be used to track

a landmark across the room. This is implemented by using computer vision algo-

rithms to keep track of an object and by providing auditory cues that help users

avoid veering from the desired path.

1.2 Publications

The work presented in chapter 2 has resulted in the following publications:

1. Ilias Apostolopoulos, Navid Fallah, Eelke Folmer, and Kostas E Bekris. Fea-

sibility of interactive localization and navigation of people with visual im-

pairments. In 11th IEEE Intelligent Autonomous Systems (IAS-10), Ottawa,

CA, August 2010 2010.

2. Ilias Apostolopoulos, Navid Fallah, Eelke Folmer, and Kostas E Bekris. Inte-

grated online localization and navigation for people with visual impairments

using smart phones. ACM Transactions on Interactive Intelligent Systems
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(TiiS), 3(4):21, 2014.

3. Navid Fallah, Ilias Apostolopoulos, Kostas Bekris, and Eelke Folmer. The

user as a sensor: navigating users with visual impairments in indoor spaces

using tactile landmarks. In Proceedings of the 2012 ACM annual conference

on Human Factors in Computing Systems, CHI 12, pages 425-432, New York,

NY, USA, 2012. ACM. [23% acceptance rate]

4. Navid Fallah, Ilias Apostolopoulos, Kostas Bekris, and Eelke Folmer. ”Indoor

human navigation systems: A survey.” Interacting with Computers 25, no. 1

(2013): 21-33.

The work presented in chapter 3 has resulted in the following publications:

5. Alexander Fiannaca, Ilias Apostolopoulos, and Eelke Folmer. ”Headlock:

a wearable navigation aid that helps blind cane users traverse large open

spaces.” In Proceedings of the 16th international ACM SIGACCESS confer-

ence on Computers & accessibility, pp. 323-324. ACM, 2014. [26% acceptance

rate]

The work presented in chapter 4 has resulted in the following publications:

6. Ilias Apostolopoulos, Daniel Coming, and Eelke Folmer. ”Accuracy of Pe-

dometry Using a Head-mounted Display.” CHI 2015. (awaits approval)
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CHAPTER 2

NAVATAR

2.1 Description

Sighted people can navigate environments by primarily relying upon their visual

senses to find their way. Individuals with visual impairments (VI) have to rely

upon their compensatory senses (e.g., touch, sound) for way-finding, resulting in

reduced mobility [12]. Unfamiliar environments are especially challenging as it is

difficult to build a mental map of the surroundings using non-visual feedback [46].

To increase the mobility of individuals with VI various navigation systems have

been developed. There are many solutions for outdoor navigation systems [52, 68]

which depend on the Global Positioning System (GPS). Nevertheless, GPS signals

cannot be received in indoor environments. Existing indoor navigation systems

typically rely upon augmenting the physical infrastructure with identifiers such as

RFID tags [42, 9, 3].

While RFID tags might be cheap, a large amount of them is required to cover

a whole building. It is possible to install tags under carpets, but hallways or large

open spaces with concrete floors or tiles make such installation challenging. Other

solutions employ laser sensors [27, 26] or cameras [78]. While these methods have

led to sophisticated state estimation algorithms, they can be expensive, cumber-

some, and computationally demanding alternatives.
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Figure 2.1: A legally blind individual testing our system.

2.1.1 System Overview and Challenges

This work describes an inexpensive, computationally minimalistic solution that

does not require the augmentation of the physical infrastructure and depends on

cheap, light-weight sensors, such as an accelerometer and a compass, that are al-

ready available on popular devices, such as smart-phones. The goal is to create

a computationally lightweight navigation tool that can operate on an everyday

hand-held device. The proposed system is a high-level navigation solution and

not an obstacle avoidance approach, as people with VI can already accomplish

this with the use of a guiding cane or a guide dog. The method utilizes interaction

with the user through an audio/speech interface to provide directions using tac-

tile landmarks common to every building and easily recognizable by individuals

with VI, such as doors, hallway intersections, and floor transitions. The user con-
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firms the presence of the landmarks along the provided path by interacting with

a phone. This allows the system to track the user’s location by using the sensor

readings, knowledge of the indoor environment, and the user’s landmark confir-

mations.

The proposed system has to deal with uncertainty at multiple levels of its oper-

ation. Uncertainty arises from the behavior of the user, e.g., how quickly does the

person move, how accurately does one person turn when instructed to do so, how

good is the person at identifying landmarks. For instance, users cannot easily dis-

tinguish landmarks of the same type. When a user confirms a door, and there are

multiple doors close to each other, it is possible that the user did not confirm the

correct one. The system has to take into consideration the possibility that the user

confirmed an adjacent landmark of the same type. Furthermore, the system has to

deal with uncertainty due to the sensors, as portable devices usually make use of

low accuracy modules. An additional complexity is that the proposed system can

only utilize landmark observations infrequently, so as to keep the cognitive load

of the human user at an acceptable level. This is in contrast to localization solu-

tions in other domains, such as robotics, where the system can frequently gather

observations.

The approach described in this work takes into consideration the above sources

of uncertainty and provides an integration of localization and path planning prim-

itives. Different variations of filtering algorithms are considered and evaluated in

terms of their ability to adapt simultaneously the step length of the user as well

as provide an accurate localization estimate. To provide directions to the user, a

path is created from the start to goal using the A* algorithm. Then, incremental

directions are provided based on the location estimation of the user generated by
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the localization module. Experimental results show that this system is capable of

successfully locating and guiding the user to the desired destination when a path

with sufficiently identifiable landmarks is provided.

2.2 Related Work

Certain assistive devices focus on local hazard detection to provide obstacle avoid-

ance capabilities to users with VI [72, 82]. Navigation systems, however, must be

able to locate the user and provide directions to a user-specified destination. To

surpass this issue, alternative localization techniques have been developed:

A) Dead-Reckoning techniques integrate measurements of the human’s mo-

tion. Accelerometers [14] and radar measurements [80] have been used for this

purpose. The problem, though, is that without any external reference, the error in

dead-reckoning grows unbounded.

B) Beacon-based approaches augment the physical space with identifiers. Such

beacons could be retro-reflective digital signs detected by a camera [78], infrared

[68] or ultrasound identifiers [64]. A popular solution involves RFID tags [42, 9, 3].

Nevertheless, locating identifiers may be hard, as beacons may require line of sight

or close proximity to humans. Other beacons, such as wireless nodes [66, 45, 44],

suffer from multi-path effects or interference. Another drawback is the significant

time and cost spent installing and calibrating beacons.

C) Sensor-based solutions employ sensors, such as cameras [39], that can de-

tect pre-existing features of indoor spaces, such as walls or doors. For instance, a

multi-camera rig has been developed to estimate the six degrees of freedom (DOF)
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pose of people with VI [16]. A different camera system matches physical objects

with objects in a virtual representation of the space [28]. Nevertheless, cameras re-

quire good lighting conditions, and may impose a computational cost prohibitive

for portable devices. An alternative makes use of a 2D laser scanner [27, 26]. This

method achieves 3D pose estimation by integrating data from an inertial measure-

ment unit (IMU), the laser scanner, and knowledge of the 3D structure of the space.

While this setup has led to sophisticated algorithms for 3D pose estimation and

laser scanners that can robustly detect low-level features, it depends on relatively

expensive and heavy sensors, which might impede mobility of users with VI.

The proposed approach is also a sensor-based solution. It employs the user

as a sensor together with information from light-weight, affordable devices, such

as an accelerometer and a compass. These sensors are available on smart phones

and it is interesting to study the feasibility of using such popular devices to (i)

interact effectively with a user with VI; and (ii) run localization primitives in real-

time given their limited resources. Indoor localization using mobile devices has

been reported for robots [40]. Despite the fact that the current work has to deal

with a more challenging system, it is possible to achieve high accuracy. To achieve

this objective under the minimalistic and noisy nature of the available sensors, this

work utilizes probabilistic tools that have been shown to be effective in robotics

and evaluates their efficiency for different forms of direction provision.

Bayesian methods for localization work incrementally, where given the previ-

ous belief about the agent’s location, the new belief is computed using the latest

displacement and sensor reading. An important issue is how to represent and store

the belief distribution. One method is the Extended Kalman filter (EKF) [35, 74],

which assumes normal distributions. While Kalman filters provide a compact rep-
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resentation and return the optimum estimate under certain assumptions, a normal

distribution may not be a good model, especially for multi-modal distributions.

An alternative is to use particle filters [21, 77, 47, 65, 62, 76], which sample esti-

mates of the agent’s state. Particle filters are able to represent multi-modal distri-

butions at the expense of increased computation. Such distributions arise often in

the target application, such as when a door is confirmed, where the belief increases

in front of all of the doors in the vicinity of the last estimate. Thus, particle filters

appear as an appropriate solution. This work shows that it is possible to achieve a

sufficient real-time solution with particle filters.

The user’s step length changes dynamically and these changes have to be taken

into consideration during path execution. To achieve this, this project is building

upon work in multi-model state estimation [58, 59, 48, 73]. Multi-model estimation

is commonly used to calculate both the state and the model of the system when the

latter is changing.

2.3 Approach

2.3.1 High-level: Closed loop

Tactile landmarks, such as doors, hallway intersections, or floor transitions, play an

important role in the cognitive mapping of indoor spaces by users with VI [33, 79].

By incorporating the unique sensing capabilities of users with VI, the system aims

to provide guidance in spaces for which the user does not have a prior cognitive

map. The system assumes the availability of a 2D map with addressing informa-

tion (room numbers) and landmark locations. Then, it follows these steps:
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1. The user’s initial location is provided with some noise. The desired destina-

tion is also provided to the system.

2. Given landmarks identifiable by users with VI on the map, the system com-

putes the shortest path using the A* algorithm and identifies landmarks along

the path. The path is translated into a set of directions.

3. Then, incremental directions are automatically provided to the user to reach

the next identifiable landmark. The user presses the screen on the phone after

successfully executing each direction.

4. Directions are provided iteratively upon the confirmation of each landmark,

or automatically when the user is not following the appropriate path accord-

ing to the localization algorithm. The phone’s speech output interface is used

for the communication of the direction.

Figure 2.2: The communication between the components of the system.

Figure 2.2 lists a high-level overview of the four different components of the

system: (1) the cyber-representation component stores annotated models of in-

door environments; (2) the localization component estimates the location of the

user with VI; (3) the direction provision component generates directions towards a
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user specified destination; and (4) the interface component interacts with the user.

The focus of this work is primarily on the localization and direction provision com-

ponents.

The landmarks considered by the system are features that can be found in most

indoor environments: doors, hallway intersections, floor transitions, water coolers,

ramps, stairs, and elevators. These landmarks are easily recognizable from users

with VI by using touch and sound, thus limiting the need for additional physical

infrastructure.

2.3.2 Cyber-representation

Because of the limited processing power of portable devices, some of the most

computationally expensive operations were implemented during an offline pro-

cess. This procedure is used to create appropriate map information and integrate

additional data in order to be easily accessible in a timely manner during the ex-

ecution of the system. Maps can be easily augmented with landmark information

by a sighted user without the need for additional sensors. For instance, the map

can be created by overlaying an architectural blueprint. There are also options to

add landmarks on the map by selecting the appropriate type and draw it on the

map. This is an easy process and was used to create the maps for the experiments.

During the offline process, the following three steps are executed:

1. Given the map M and some accessible points {a1, . . . , an}, the offline process

finds the accessible spaces A = {A1, . . . , Am} (purple area in Fig. 2.3) of the

map by using an eight neighbor flooding algorithm. The accessible spaces A
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typically represent hallways and spaces where the user can navigate through.

In the experimental process for this work, only corridors where considered.

The accessible spaces A are represented as bitmaps with ones for accessible

points and zeros for inaccessible ones.

Figure 2.3: The accessible spaces map for the second floor of the engineering build-
ing. Purple indicates the accessible spaces, green indicates doors, and blue indi-
cates elevators and staircases.

2. The accessible spaces map MA is used in order to create a set of pre-stored

positions ri(li) in the vicinity of each landmark li in the accessible space (i.e.,

within the observation range of the landmark). The positions are randomly

sampled around each landmark li and assigned to this landmark in the map

data structure M.

3. A lower resolution map m (i.e., a mini-map version of MA) is created by di-

viding the accessible spaces map MA into non-overlapping tiles mpq where

each one has a size of one square meter. p represents the row the tile is on

and q represents the column. Only tiles mpq that overlap with accessible areas
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A are maintained. Each accessible tile mpq holds information for all types of

landmarks {L1, . . . , Lk} close to it (Fig. 2.4). For each landmark type L j, up to

five landmarks in the vicinity of a tile (up to 18m away in the experiments)

are stored in each mpq. Weights W = {w1, . . . ,wi} inversely proportional to the

distance of landmark li to the center of the tile mpq are also stored together

with each landmark. These weights are used during the online process when

the user confirms a landmark. The weights represent the probability of the

user to be close to any of these landmarks. When all accessible tiles mpq are

created, they are stored in the map data structure M.

Figure 2.4: Example of a tile storing information about the closest doors and hall-
way intersections.

By storing the specified offline information, the online process avoids search-

ing for landmarks when required to reset the states of the particles as this might

become computationally expensive. The proposed offline process may be compu-

tationally heavy for a smart phone but it can be executed on a desktop computer,

where it takes less than a second for environments considered in this work.
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2.3.3 Interface

The application provides directions through text to speech using the smartphone’s

speaker and the user confirms the execution of a direction (e.g., “Turn left”) by tap-

ping the screen. Because touch screens are notoriously inaccessible to users with

visual impairments a successful tap was indicated using a vibrotactile cue. Two

types of directions were tested in order to make the application more accessible,

landmark and metric-based. In landmark-based directions, the user is asked to

find and confirm a type of landmark, while in metric-based directions the user

is asked to walk a number of steps before proceeding to the next direction. Addi-

tionally, the distance that each direction covers was tested in order to find out what

kind of directions are faster to execute and guide the user more successfully to the

desired destination. In some settings, the user was asked to confirm a landmark

that was a few meters away, while in others, the instructions guided the user from

one hallway intersection to the next.

2.3.4 Localization

Consider a planar system moving among n static landmarks. The planar system

is a human with VI, and the landmarks correspond to tactile features of indoor

spaces. Let ξ = (xi, yi, θ) denote the state of the system and i represent the floor

the user is on. The map m of the world is available and stores a function, which

returns whether each point (xi, yi) is occupied by an obstacle or not. The map also

stores the n landmarks present in the world. The landmarks belong to k different

types {L1, . . . , Lk}, such as doors, hallway intersections or floor transitions (most

often k < n). Landmarks l j in the same class L j are indistinguishable to the human
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user.

The data dT = (o(0:T ), u(0:T − 1)) available to the system up to time T are tran-

sitions u(0:T − 1) and observations o(0:T ). A transition ut = (u f
t , u

θ
t ) at time t corre-

sponds to a motion where the agent acquires the global orientation uθt and moves

forward u f
t . This transition determines the kinematic transition model of the sys-

tem:

ξt+1 = (xi
t + u f

t · cos(uθt ), y
i
t + u f

t · sin(uθt ), u
θ
t ) (2.1)

In the case that the user changes floor then the transition is denoted as:

ξt+1 = (x j
t+1, y

j
t+1, u

θ
t ) (2.2)

where j represents the new floor and (x j
t+1, y

j
t+1) is the point from where the user

enters the floor.

In this application the translation is measured with an accelerometer and the

orientation with a compass. An observation o j
t of a landmark type L j from state

ξt = (xt, yt, θt) implies:

∃ l j ∈ L j : ||(xt, yt), l j|| < Robs. (2.3)

The above observation model specifies that a user can sense a landmark type L j in

one’s vicinity, only if such a landmark li ∈ L j is within a predefined observation

distance Robs from the current coordinates of the system (xt, yt).

The objective is to be able to incrementally estimate the user’s state ξT at time

T . The general Bayes filter computes a belief distribution BT = P(ξT |dT ) at time T

over ξT given the data dT . The computation requires:

a) an initialization B0,
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Table 2.1: Examples of model parameters

Transition Model Observation Model
Average Step Length Landmark Identification Accuracy
Step Detection Accuracy Distance from Landmark upon Confirmation
Turning Accuracy Confirmation Efficiency

b) a transition model P(ξ′|u, ξ), which describes the probability the user is at ξ′ if it

was at ξ and transitioned by u, and

c) the observation model P(o|ξ,m) which describes the likelihood of observing o

when the user is at ξ and given the map m. The map is assumed static and

correct in this work.

The input to these models corresponds to raw data from the accelerometer and

compass, which are then filtered to detect when the user has made a step and/or

changed direction. Table 2.1 provides examples of potential parameters that need

to be extracted from the accelerometer or the compass in order to build appropriate

transition and observation models. It is important for the models to be able to

adapt to different users. This is especially critical in this application, as different

users will also have different types and degrees of visual impairments. There is

also information provided by the user when a landmark is confirmed.

Then given a normalization factor η the belief distribution can be updated as

follows:

BT = η · P(oT |ξT ,m)
∫

P(ξT |uT−1, ξT−1) · BT−1 · dξT−1

The computational cost of integrating over all states renders the explicit computa-

tion of the above equation inefficient. Most online algorithms simplify the problem

by approximating the above equation. This work follows a Particle Filter approxi-

mation.
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Particle Filter It is possible to represent BT through a set of particles pi = (ξi,wi)

(i ∈ [1,N]). Each particle stores a state estimate ξi together with a weight wi, rep-

resenting the probability of ξi being the true state. As the number of particles

increases, the better the particle filter represents the belief distribution. In order

to update the particle filter given a new transition and an observation, this work

follows an approach similar to importance sampling [21]. At each time step T ,

given a particle population {p1
T , . . . , pP

T }, a transition uT and an observation oT+1, the

following steps are executed:

A. For each particle pi
T = (ξi

T ,w
i
T )

i. Sample the transition model P(ξi
T+1|uT , ξ

i
T ) to acquire: ξi

T+1.

ii. Sample the observation model to acquire the new weight

wi
T+1 = P(oT+1|ξT+1,m).

B. Sample a new population of particles pi given the weights wi
T+1

Transition Model The approach collects all the pedometer and compass read-

ings that have been produced during the last time step. During one iteration of the

algorithm, the pedometer typically returns that either zero or one step has been

executed. This value has to be translated into a distance estimate. If a step is taken,

the distance that was covered is the average step length that is calculated for the

user (Alg. 1). In case a step was not detected, some noise is introduced in order

to scatter the particles around the location estimation of the user. This happens

in order to improve the probability of having a good location estimation of the

user. Because the compass is highly erroneous due to potential metal structures

in buildings, the system does not use the raw compass readings. Instead it cat-

egorizes them into eight discrete directions based on which one is closer to the
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raw reading. The eight discrete directions are multiples of 45 degrees. The sys-

tem, also, takes into consideration the noise from the compass by introducing a

10% probability that the user is actually facing to one of the adjacent directions of

the one that the compass shows. This is implemented in line 11 of Alg. 1 with

PickDirection function.

Algorithm 1: Transition Model
Input: ξt particle state, ut transition, sl step length, stDev step standard

deviation
Output: ξt+1 new state

1: steps← u.steps
2: if steps > 0 then
3: dist ← 0
4: for i = 1 to steps do
5: dist ← dist + random() ∗ stDev + sl
6: else
7: dist ← random() ∗ stDev
8: if dist < 0 then
9: dist ← 0

10: ξt+1.θ = PickDirection(uθt .direction)
11: ξt+1.x = ξt.x + dist ∗ cos(ξt+1.θ)
12: ξt+1.y = ξt.y + dist ∗ sin(ξt+1.θ)
13: return ξt+1

Observation Model Initially, a check is performed regarding the validity of the

new state of the particle. In case that a particle has reached an inaccessible state,

like passing through a wall, a weight of zero is assigned in order to eliminate this

particle. After that, there are two cases for computing the weights wi
T+1 of the par-

ticles. If there was no landmark confirmation by the user during the last step, then

all particles keep their old weights. Otherwise, the system expects a specific type

of landmark to be in the vicinity of the user. If the user confirmed the presence of a

landmark of type L j, then the approach searches for every particle the closest land-

mark of this type and prunes all the particles that are not close to such a particle.



21

The particles are further pruned based on the direction of the landmark relative

to the user’s estimated orientation. The directions provided to the user specify in

which direction the landmark will be found (e.g., “a door on your right”). The par-

ticles that have the landmark on the wrong side of the wall based on the particle’s

estimated orientation get a zero weight (Alg. 2).

Figure 2.5: An example of pruning based on the direction of the landmark. The
upper left particle is pruned because, while there is a door close to it, it is not on
the right side.

Algorithm 2: Observation Model
Input: ξt+1 new state of particle, l landmark confirmed, MA accessible map
Output: wi+1 weight of particle

1: if MA.isValid(ξt+1) = FALS E then
2: return 0 {New state is inaccessible}
3: if l = 0 then
4: return 1 {No landmark confirmation on this transition, leave all

weights as they are}
5: closestLandmark ← MA.getClosestLandmark(ξt+1, l) {Find closest landmark

of type l closest to state ξt+1}
6: dist ← distance(closestLandmark, ξt+1)
7: landmarkDir ← direction(ξt+1, closestLandmark) {Returns left or right}
8: if landmarkDir = l.dir then
9: return 1 − dist/2

10: return 0 {The closest landmark is more than 2m away}

Sampling During the sampling process, every new particle is sampled from the

previous population according to the probability distribution defined by the weights
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of the particles. If at some point all particles die after a landmark confirmation, the

offline data are used to reset the particles. In this case, it is necessary to reset the

particles in the vicinity of landmarks of the type L j that was confirmed [4]. When a

specific particle pi needs to be resampled close to a landmark of type L j, the system

first checks the current location of pi. It will then find the corresponding tile mpq

in the lower resolution map m that pi is currently located in and retrieve the list

with the landmarks of type L j assigned to this tile. A landmark l j from the list is

randomly selected with a probability proportional to the weights W. The weights

W for each landmark from the list represent the probability that the user might ac-

tually be close to any of these landmarks instead of the particle’s location estimate.

The location estimate of the particle is replaced randomly by one of the positions

(from step 2 above) in the vicinity of the selected landmark l j (Alg. 3). If all the

particles died when there was no landmark confirmation, the particles backtrack

to their previous state.

Location Estimation After the sampling process is complete, a k-means algo-

rithm [24] is used in order to estimate the user’s current location over all particle

estimates. Based on the cluster with the highest concentration of particles. Thus,

particles that don’t have a correct step length estimation or particles that have been

isolated from the rest due to noise, are not taken into consideration. The k-means

algorithm (Alg. 4) classifies the particles pi into clusters C = {c1, ..., ck}. The number

of clusters k changes dynamically based on how concentrated the particles are. The

k-means algorithm starts with three clusters in the implementation accompanying

this work. After this initial classification, the algorithm checks the distances of the

centers of the clusters pairwise. If the centers of two clusters ci, c j(i , j) are closer

than a threshold δmin then the two merge into one cluster ci. On the other hand, if a
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Algorithm 3: Sampling
Input: p set of particles, l landmark confirmed, MA accessible map

1: w1 ← p1.w
2: for i = 2 to size(p) do
3: wi ← pi.w + wi−1

4: if wsize(p) = 0 then
5: if l > 0 then
6: for i = 1 to size(p) do
7: closestLandmark ← MA.getClosestLandmark(pi.ξt, l) {In case that all

particles die, they get replaced with the particles stored in the
closest landmark}

8: pi ← closestLandmark.particles[random()]
9: else

10: for i = 1 to size(p) do
11: pi.ξt ← pi.ξt−1 {In case that all particles die and there was no

landmark confirmation}
12: else
13: for i = 1 to size(p) do
14: selection← random()
15: j← 1
16: while selection < w j do
17: tmpParticle← p j

18: j← j + 1
19: pi ← tmpParticle

cluster’s radius gets bigger than a given threshold deltamax then the cluster ci splits

into two clusters ci, ck+1. Thus, if the particles are concentrated in one place, only

one cluster can be used, while if they are dispersed throughout the environment

more clusters are used. After classifying all the particles, the algorithm selects the

cluster ci with the highest accumulated weight and returns the center for this clus-

ter ci as a location estimate.
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Algorithm 4: K-Means Algorithm
Input: p set of particles
Output: C set of clusters, M set of clusters’ centers

1: K ← 3
2: converged ← 0
3: for i = 1 to K do
4: Mi ← random(p)
5: while converged , K do
6: for i = 1 to sizeO f (p) do
7: closestCluster ← getClosestCluster(pi)
8: closestCluster ← {closestCluster, pi}

9: converged ← 0
10: for i = 1 to K do
11: newMean← calculateCenter(Ci)
12: if radius(Ci) > dmax then
13: p∗ ← f indFurthestParticle(Ci)
14: Ci ← {Ci}\p∗

15: CK+1 ← {p∗}
16: C ← {C,CK+1}

17: K ← K + 1
18: closestCluster ← getClosestCluster(Ci)
19: if distance(Ci, closestCluster) < dmin then
20: Ci ← {Ci, closestCluster}
21: K ← K − 1
22: if distance(newMean,Mi) < convergethres then
23: converge← converge + 1
24: Mi ← newMean
25: return C,M

2.3.5 Adapting to Different Step Lengths

It is highly desirable for the localization process to be able to simultaneously esti-

mate the user’s step length as it computes a location estimate. This is important

since the step length is used for the transition model and might be different from

user to user, from path to path, or even within the same path.

To accomplish that, three different variations of particle filtering techniques

were implemented:
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A. A simple benchmark particle filter where the standard deviation for the noise

in the step length estimate was high enough so as to include all possible step

lengths for different users. This corresponds to the algorithm described in

the previous section.

B. A particle filter which includes a step length estimate as part of the particle’s

state, which is allowed to alter between consecutive steps. The standard de-

viation for how much the step length parameter changes between transitions

is set to a small value. The particles are initialized so that they cover all

possible step lengths for different users. In this case, each particle advances

based on the local estimate it keeps internally for the user’s step length. The

step length estimation is being updated so as to allow the approach to de-

tect changes in the user’s step length during the execution of a path. After a

landmark confirmation by the user, only the particles that estimate the user’s

location to be in the vicinity of such a landmark will survive. In this way,

only a subset of the user’s step length estimations survives. If all particles

die, they get resampled as described in section 2.3.4 under sampling. In this

case, the particles’ step length values are set again to the initial values.

C. A technique that utilizes ten particle filters, where the total number of particles

is equal to the approaches above. Each particle filter has a different mean

estimate for the step length and the standard deviation is somewhere in be-

tween the above two methods. The particles in each particle filter advance

based on the step length estimation of the particle filter they belong to. After

a landmark confirmation by the user, the particle filters with the correct step

length estimation will survive while the rest will be replaced with a variation

of the particle filters that survived. If all the particles of a filter die, they are

replaced with the particles of the most successful filter. This is the filter that
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has the highest sum of particles’ weights. The filter’s step length changes to

the step length of the most successful particle filter with a small Gaussian

noise added. If all particles die, they get resampled as described in section

2.3.4 under sampling. The particle filters’ step length values are set again to

the initial values (Alg. 5).

The objective with the last two alternatives is that the system will build an in-

creasingly more accurate estimation of the user’s step length. In particular, for the

third method, the particle filter with the highest sum of particle weights is cho-

sen at the beginning of the sampling process. This is computed by summing the

weights of all particles in each filter and choosing the filter with the maximum ac-

cumulated weight. Within each particle filter, the particles with the higher weights

are the ones sampled. In case that all particles in a particle filter die, the whole

particle filter copies the position estimates from the particle filter with the highest

weight. It also copies the mean of the step length distribution and alters it slightly

given a small standard deviation, in order to better estimate the user’s step length.

The exact parameters used for the experiments accompanying this work are pro-

vided in the experimental section.

2.3.6 Direction Provision

The A* algorithm is used for path planning purposes. A* is using the minimap

m, which is a grid representation of the environment, to plan the path. The path

can be planned based on different criteria, such as the shortest travel time or the

probability of success. Additional or alternative objectives can also be considered

for the path. In particular, the path should be easy to follow by a person with VI,
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Algorithm 5: Sampling 10 Particle Filters
Input: P set of particle filters, l landmark confirmed, MA accessible map,

stDev step standard deviation
1: bestWeight ← 0
2: bestPF ← ∅
3: for i = 1 to 10 do
4: Weightsi ← 0
5: for j = 1 to size(Pi) do
6: Weightsi ← Pi.p j.w + Weightsi

7: if Weightsi > bestWeight then
8: bestWeight = Weightsi

9: bestPF = Pi

10: for i = 1 to 10 do
11: if bestPF = ∅ then
12: for j = 1 to size(Pi) do
13: if l > 0 then
14: closestLandmark ← MA.getClosestLandmark(Pi.p j.ξt, l)
15: Pi.p j ← closestLandmark.particles[random()]
16: else
17: Pi.p j.ξt ← Pi.p j.ξt−1

18: else if Weightsi = 0 then
19: Pi = bestPF
20: Pi.step = bestPF.step + random() ∗ stDev
21: PFWeights1 ← Pi.p1.w
22: for j = 2 to size(Pi) do
23: PFWeights j ← Pi.p j.w + PFWeights j−1

24: for j = 1 to size(Pi) do
25: if Pi.p j.w = 0 then
26: selection← random()
27: k ← 1
28: while selection < PFWeightsk do
29: tmpParticle← Pi

j
30: k ← k + 1
31: Pi.p j ← tmpParticle



28

reduce localization uncertainty, and ensure the user’s safety.

After the shortest path is calculated, it is then translated into directions. Each

direction represents either a straight segment on the path or a turn. The closest

landmark to the end of a segment is chosen as the landmark to be found by the

user.

The number of landmarks and the frequency with which commands are pro-

vided can affect the performance and usability of the system. It might appear that

requiring the user to confirm all the landmarks along a path can result in a more

accurate localization. Nevertheless, an initial set of experiments indicated that the

uncertainty can be reduced by using more distinctive and unique landmarks, such

as hallway intersections rather than doors, which can easily be missed. Further-

more, planning a path that guides the user along walls and avoids open areas will

help the user to maintain one’s orientation and lower uncertainty. To ensure safety,

the path avoids obstacles or hazardous areas such as ramps with no handrail. The

landmarks specified in the directions must be safe to touch as the user will confirm

their existence using a cane or a hand.

In case the user didn’t follow the directions correctly and walked away from the

prespecified path, the system is able to detect this and issue new directions. The

system calculates the location estimate after every step and checks the distance

from the path. If the distance is longer than a threshold (two meters in the exper-

iments) then the system informs the user with audio feedback, calculates a new

path based on the latest location estimate and provides to the user a new direction.

Fig. 2.6 describes such a scenario. The user did not turn on the second hallway

intersection, but instead continued straight. After a few steps, the system detected

that the user was walking away from the path, informed him and provided new
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directions leading to the desired destination. The set of directions provided to the

user was:

• “Follow the wall to your right until you reach a hallway intersection”

• “Turn right”

• “Follow the wall to your left until you reach a hallway intersection”

• “Turn left”

Here the user fails to follow the direction and does not turn

• “Follow the wall to your right until you reach the second door”

The user keeps walking straight. After a few meters the phone detects that the user

is not on the path and provides new directions.

• “Off course. Recalculating the path”

• “Turn around”

• “Follow the wall to your right until you reach a hallway intersection”

• “Turn right”

• “Follow the wall to your right until you reach the second door”

• “You have reached your destination”

In the end, the user completed the path successfully.
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Figure 2.6: Example of path correction.

2.4 Experiments

Three major sets of experiments were executed in order to guide the development

of the proposed system. The first set of experiments was executed in order to

determine if it is feasible to implement such a navigation tool for a portable device

and what type of direction provision yielded the best results. After confirming that

it is feasible to implement such a system, many improvements were done on the

localization module. A second set of experiments was executed in order to find

out if it is possible to successfully localize and guide a user online and integrate

it with dynamic direction provision. In these experiments, different localization

techniques were tested in order to determine which one can adapt to the user’s

step length better. Finally, after determining that it is possible to successfully guide

a user with VI to a desired destination, a third set of experiments was performed

with the help of users with VI.
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2.4.1 Setup

The system was implemented as a Java application for the open-source Google An-

droid smart phone (ver. 1.6). A map of a buildings floor on the engineering build-

ing of the University of Nevada, Reno was created in the Keyhole Markup Lan-

guage (KML) using Google SketchUp. A 2D map is extracted from the 3D model

and loaded to the application (Fig. 2.9). The map was manually augmented with

the following landmarks: (i) three water coolers, (ii) one floor transition marked

by a metal strip, (iii) three hallway intersections, (iv) two hallway turns and (v) 72

doors. Prior to each study the users followed one path so that they would become

familiar with the phone and the direction provision process.

2.4.2 Feasibility Study and Evaluating Direction Provision

The purpose of these experiments was to determine the feasibility of guiding a

user with VI through an indoor environment using a minimalistic and interactive

sensing approach achievable on a smart phone.

Setup Five different paths were defined along the corridors of the building. For

each path, there are two alternatives for directions, with three levels of granularity

each, as specified in Sec. 2.3.3. Overall, six different ways to provide directions

were tested per path. During these experiments, the algorithm was not running on

the phone. Instead, the data were collected during the execution of a path and were

later processed offline. The directions provided to the user were fixed for each path

instead of providing commands based on the user’s location estimation. Finally,

the user’s step length was calculated before the experiments by executing a test
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path with prespecified length. The system calculated the user’s stride length by

dividing the distance of the path with the number steps the user took to complete

it.

Participants Ten volunteers were involved in the experimental session. Users

held the phone in their hand while holding a cane in their other (Fig. 2.1). One of

the volunteers was legally blind. This individual pointed out landmarks, such as

a metal strip on the floor, which sighted people typically ignore. Nine more vol-

unteers were involved that were sighted users and who were blindfolded during

the experiments. Some of the users had visited the building in the past and were

aware of its structure, while others didn’t. This discrepancy did not appear to con-

siderably influence the efficiency of users in reaching the desired destination. Each

user executed ten traversals, which corresponded to two traversals per path using

different types of directions.

Ground Truth To measure the true position of the user, an observer was record-

ing the users motion. This was achieved by placing markers on the floor every two

meters. Every time the user was crossing a marker, the observer was recording the

time on a second smart phone. To recreate the true path, the assumption was that

the user moves with constant speed between markers. Thus, the resolution of the

ground truth was two meters for this set of experiments.

Parameters The following table provides the parameters of the experimental pro-

cess. A relatively high standard deviation for the orientation parameter in the

transition model was chosen because of the unreliable nature of the compass. A

very small number of particles (20) was used to see if it possible to localize the
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user accurately and deal with the low processing power of the portable devices.

Recording the status of the application (e.g., saving all the measurements, land-

mark confirmations and the particle filter state) took three times longer than the

actual estimation by the particle filter.

Table 2.2: Parameters

Number of Particles P 20
Landmark radius Robs 1 meter

Standard Deviation in Orientation σθ 30o

Standard Deviation in Forward Motion σ f 0.2 meters
Maximum Number of Tries To Find a Collision Free Transition 5

Success Ratio of Direction Provision Table 2.3 provides the average distance be-

tween the destination and the actual position achieved by the user over all exper-

iments of the same type. This table shows that most of the paths were completed

successfully. In particular, in 84% of the experiments the distance between the de-

sired destination and the achieved position was less than 2 meters, which was the

resolution of the ground truth. In 92% of the experiments the error was less than

3.5 meters. It also turns out that landmark-based directions resulted in smaller er-

rors and higher success rates. Table 2.4 provides the average duration of a path

until completion. The users were able to complete paths quicker when they were

not asked to confirm a large number of landmarks, which was the expected result

(“No Max” case in direction provision).

Localization Accuracy Tables 2.5 and 2.6 provide the errors for dead reckoning

and the proposed particle filter based approach. Dead reckoning is the accumu-

lation of sensor input without any filtering. In particular it specifies the average

error in meters between the final true location of the user and the estimate by the
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Table 2.3: Average distance between destination and the user’s position upon com-
pletion (m).

Distance from Destination Path 1
(98.14m)

Path 2
(69.49m)

Path 3
(72.54m)

Path 4
(67.66m)

Path 5
(54.25m)

Landmark No Max 0.46 1.83 0 2.44 1.83
Landmark 9 Meters 0 1.22 0.46 2.19 1.83

Landmark 15 Meters 0.91 0.91 1.83 1.83 2.29
Metric No Max 2.74 0.61 0 2.29 1.83
Metric 9 Meters 3.05 2.74 1.22 0.91 1.22

Metric 15 Meters 4.57 0 0 2.74 1.83

Table 2.4: Average path duration (sec).

Path Duration Path 1
(98.14m)

Path 2
(69.49m)

Path 3
(72.54m)

Path 4
(67.66m)

Path 5
(54.25m)

Landmark No Max 155.75 123.67 135.67 119.67 111.25
Landmark 9 Meters 201.33 177.00 212.00 192.50 138.75

Landmark 15 Meters 265.00 155.25 156.50 226.67 110.50
Metric No Max 136.25 180.00 137.50 129.50 108.50
Metric 9 Meters 242.67 252.75 173.67 219.00 169.00

Metric 15 Meters 264.00 173.67 247.00 180.00 147.33

corresponding technique. The estimate from the particle filter corresponds to the

particle which was closest to the average state of all particles at the last iteration.

It is important to note that in most cases there were particles closer to the actual

position of the user than the “average” particle.

The comparison between the two tables shows that the particle filter approach

considerably reduces errors when compared against the integration of sensor read-

ings. The improvement ranges from a factor of ten to a factor of two for different

paths and types of direction provisions. This despite the very small number of par-

ticles employed in this initial set of experiments. The important point, however, is

the considerable effect that the direction provision process has on the efficiency of

the particle filtering algorithm. The average error in meters in the final location for
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the “Landmark 9 meters” approach is approx. 9.5 meters, while it goes down to 2.1

meters for the “Landmark 15 meters” approach, which also appears to be the best

solution to the problem. The errors were lower for paths that contained distinctive

landmarks such as hallways (in the order of 1.2-2.5m) and considerably higher for

paths that corresponded to long straight line paths where all the landmarks were

the same (doors). Figure 2.7 provides an error graph for a specific path/direction

provision combination for dead reckoning and the particle filter approach.

Figure 2.7: Graph comparison of dead reckoning with the particle filter approach

Table 2.5: Average error of dead reckoning in final location (m).

Dead-Reckoning Path 1
(72.54m)

Path 2
(69.49m)

Path 3
(98.14m)

Path 4
(67.66m)

Path 5
(54.25m)

Landmark No Max 10.83 25.53 20.79 9.82 13.79
Landmark 9 Meters 17.87 32.50 10.19 8.59 13.43

Landmark 15 Meters 16.29 26.89 26.81 13.12 8.89
Metric No Max 15.49 25.69 14.91 13.41 11.65
Metric 9 Meters 23.84 28.99 18.00 5.89 7.53

Metric 15 Meters 31.44 20.95 19.55 3.88 7.90

Note that the errors in tables 2.3, 2.5 and 2.6 are not comparable, since the first

corresponds to how close to the desired destination the user reached and the last
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Table 2.6: Average error of the proposed interactive localization process (m).

Interactive Localization Path 1
(72.54m)

Path 2
(69.49m)

Path 3
(98.14m)

Path 4
(67.66m)

Path 5
(54.25m)

Landmark No Max 1.32 15.51 18.80 1.14 5.31
Landmark 9 Meters 1.34 25.95 10.12 3.02 7.35

Landmark 15 Meters 3.03 4.02 5.47 3.63 2.33
Metric No Max 3.98 11.33 12.95 3.75 5.38
Metric 9 Meters 0.84 11.92 3.20 3.05 4.24

Metric 15 Meters 3.06 5.25 10.43 1.48 3.87

two tables correspond to localization accuracy. The directions did not depend on

the localization process and this explains why it was possible for the error in lo-

calization to be higher than the distance between the true user location and the

desired one.

Discussion This set of experiments indicated the feasibility of guiding a user

with VI through an indoor environment using a minimalistic and interactive sens-

ing approach achievable with a smart phone. The results suggest that the time to

execute a path and the accuracy is proportional to the number of directions pro-

vided to the user. The results also show that the best direction provision method is

Landmark No Max threshold as it yields good localization results and guides the

user to the desired destination faster than the other methods.

2.4.3 Online Operation with Integrated Localization and Direc-

tion Provision Modules

In this set of experiments, the system was executed online on a smart-phone. Ad-

ditionally, in order to address the issue of computational limitations on the phone,
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the new preprocessing step described in section 2.3.2 was utilized.

This implementation employed dynamic direction provision. The most suc-

cessful type of direction provision identified by the previous set of experiments

(infrequent confirmation of highly identifiable landmarks) was used. The direc-

tions were generated dynamically based on the latest location estimation. The dy-

namic direction provision is also able to correct the user’s path in case one doesn’t

follow the directions correctly.

This set of experiments allows to evaluate the different methods for estimating

user’s step length on the fly. Furthermore, the final location estimation process

utilizes the k-means approach.

Setup A new map of the first floor, in addition to the second floor map, of the

engineering building of University of Nevada, Reno was created (Figure 2.8). The

new map added the following landmarks: (i) 139 doors, (ii) 10 hallway intersections,

(iii) 3 water coolers, and (vii) one ramp. Additionally, two elevators and eight sets of

stairs were added to connect the two floors. For the experiments, ten paths were

tested from which two included multiple floors.

Eight volunteers participated in the experiments. Some of the participants had

visited the building before while others had not. The users were blindfolded and

used a white cane and the phone. Before the actual experiments the blindfolded

users executed a training path to familiarize themselves with the cane and the

inability to see.

A commercial robot localization system called Hagisonic StarGazer was used

to capture the ground truth. The product consists of (1) set of passive landmarks
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Figure 2.8: The map of the first floor

Figure 2.9: The map of the second floor

with unique ID mounted on the ceiling; (2) an infrared camera that outputs ID, dis-

tance, and angle of the closest landmark; and (3) an open source library to operate

the camera. A map of landmarks is created using software specifically developed

for this purpose. To use the system for human tracking, the camera and a battery

are installed on a belt that the user wears during experiments. The user carries a
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Figure 2.10: A sighted user, running experiments blindfolded wearing the ground
truth equipment

tablet (Fig. 2.10) that records the landmark information received from the camera

and calculates the user location from the map based on the relative landmark loca-

tion. The accuracy of the camera is 2cm when installed on a flat surface but costs

more than an order of magnitude compared to the proposed method and requires

carrying a heavy sensor; but the camera is sensitive to tilt and might result in in-

correct readings when installed on a belt. None of the participants felt the belt and

backpack impeded their mobility in any way. To reduce noise, the ground truth is

smoothed using an outlier detection algorithm.

As mentioned in Section 2.3.5, there were three different approaches evaluated

for their ability to estimate the user’s step length. The first approach has one par-

ticle filter that updates the position estimates given a Gaussian distribution for the

step length, which has a mean at 0.54 meters and a standard deviation of 0.08 me-

ters. The second approach has one particle filter where the step length is stored

together with the state estimate. Initially, the particles’ internal estimate of the step

length is distributed according to the same probability distribution as in the first

approach (mean: 0.54, st. dev. of 0.08 meters). Each particle advances based on the
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Table 2.7: Distance between ground truth and localization estimate upon comple-
tion (m).

Distance from Ground Truth Mean STDEV
Path 109-118 1.31 0.48
Path 118-129 4.25 8.27
Path 129-109 2.61 1.53
Path 206-260 1.11 0.38

Path 231A-208 1.23 0.78
Path 242A-231A 13.95 7.95
Path 251-240A 1.29 0.33
Path 260-131 4.05 3.04
Path 260-251 1.18 0.23
Path J1-206 2.16 1.09

local value it stores for the step length. In every step the length estimation changes

in order to be able to detect small changes in the stride of the user. A Gaussian

distribution is used again with a st. dev. of 0.007 meters in order to allow small

variations in the step length. The third alternative uses 10 particle filters. The step

length mean value starts at 0.37 meters for the first particle filter and is increased

by 0.06 meters for each consecutive particle filter. The standard deviation of these

distributions is 0.02 meters.

Results Table 2.7 provides the average distance between the ground truth and

the localization estimate when the path was completed. The path 242A-231A was

failing most of the times for many of the users, because it required the counting of

six doors in a row to reach the desired destination without a unique landmark con-

firmation in between. For this reason, the probability of the user reaching the goal

is decreased considerably as the particles are scattered. In order to deal with this

issue an alternative path was introduced as shown in Figure 2.11. Although this

path is longer, it might have higher probability of leading the user to the desired

destination because it has less, but more distinctive landmarks along the way. This
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Figure 2.11: Two different paths that lead to the same goal. The alternative path has
a higher success probability because it uses less, but more distinctive landmarks.

motivates the future development of a path planning process, which calculates

alternatives that don’t belong in the same homotopic class and take into consider-

ation the probability of each path to lead the user to the desired destination based

on the quality of the landmarks.

Fig. 2.12 shows the localization error during the progression of a path. In this

figure one can notice that, for some particle filters the localization error increases

during the execution of the path while for the ones that have a step length that

is close to the actual step length of the user the error remains low. After the first

confirmation of a landmark, though, the particle filters that have an incorrect step

length estimation are replaced with the ones that have a better estimation and the

error decreases. Nevertheless, one landmark confirmation is not always enough

to estimate an accurate value for the user’s step length. That is why after the first

landmark confirmation, the error starts growing again for some particle filters.

After the second confirmation, the particles converge to similar step lengths. When

the user reaches the goal all the values were close to 0.5-0.6 meters step length.



42

Figure 2.12: A graph showing the localization error during the execution of a path.
Each line represents a different estimation of the step length.

Table 2.8: Distance between location estimation and ground truth for three differ-
ent systems (m)

Distance from Destination Mean STDEV
1 PF with 1000 particles 2.31 2.30

1 PF with step length in state 1.02 1.12
10 PFs with 100 particles each 0.02 0.05

Adaptation to the User’s Step Length The three different variants of particle fil-

ters described in Section 2.3.5 were tested in order to conclude which one is more

suitable for adapting to the user’s step length. Table 2.8 holds the mean localiza-

tion error and standard deviation for the three different methods. In each case, six

experiments were executed by three different participants. The two methods that

do aim to estimate the user’s step length perform better than the straightforward

particle filter with large standard deviation. Overall the approach that utilizes

multiple particle filters calculates a better estimation of the user’s step length.
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Computational overhead Table 2.9 holds performance data obtained from pro-

filing. The system managed to run all the experiments smoothly without running

into issues due to the limited computational power of the phone. In this imple-

mentation it was possible to use 1000 particles because of the preprocessing step.

Success Ratio of Direction Provision Table 2.10 shows the average distance of

the ground truth (i.e., the true location of the user) from the desired destination.

The majority of the paths were completed successfully. In particular, in 76% of

the experiments the system guided the user to the desired destination within an

average distance of 1.5 meters. In 11% of the experiments the error the system

guided the user to a location adjacent to the desired destination (e.g., next door)

with an average distance of 2.75 meters.

These results suggest that the new improved system can successfully localize a

user in an indoor environment and adapt on the fly in the case that the user failed

to follow the directions successfully. They, also, suggest that the multiple particle

filter approach is better fit to localize the user with higher accuracy.

2.4.4 Experiments with users with VI

Though preliminary user studies were conducted with blindfolded participants,

this study specifically focused on users who were visually impaired.

Setup Six users were recruited (three female, average age 51.16, SD=17.66) to

participate in a user study. Participants were recruited through the local National

Federation of the Blind chapter. All participants were visually impaired (three
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Table 2.10: Distance between ground truth and destination (m)

Distance from Destination Mean STDEV
Path 109-118 1.17 0.5
Path 118-129 3.47 5.39
Path 129-109 1.78 0.95
Path 206-260 1.15 0.35

Path 231A-208 0.83 0.24
Path 242A-231A 4.08 2.92
Path 251-240A 0.51 0.25
Path 260-131 2.05 2.34
Path 260-251 0.74 0.32
Path J1-206 1.21 0.77

completely blind, two legal, one low vision) and used a cane for navigation. None

had any self-reported mobility or hearing impairments. One user did not own

a phone, four owned a cell phone and one owned a smart-phone. None of the

participants had been in the Engineering building prior to the user studies. For

the experiments, eleven paths were tested; and these paths were created so as to

have approximately equal lengths and minimize the amount of overlap between

them. Two paths involved transitions between floors. Specific characteristics of

each path, such as its length and number of landmarks present, can be found

in Table 2.11. Initially, ten paths were created but in a previous study one path

(242A-231A) was found to lead to large errors in location estimation as it involves

traveling a relatively large distance with only doors as landmarks (see Figure 2.9).

The original 242A-231A path was failing most of the times for many of the users,

because it required the counting of six doors in a row to reach the desired destina-

tion without a landmark confirmation in between. For this reason, the probability

of the user reaching the goal is decreased considerably as the particles are scat-

tered. In order to deal with this issue an alternative path was introduced as shown

in Figure 2.11. Although this path is longer, it has higher probability of leading
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the user to the desired destination. This is confirmed also from the error values

extracted from the experiments on this alternative path.

All users were right handed and navigated with the cane in their right hand.

Users were asked to hold the phone in their left hand but hold it relatively still as

to allow for detecting steps with higher accuracy.

User studies were conducted over a weekend with few students present in the

building to avoid interference. Hallways were cleared of any obstacles and all

doors to offices were closed. For each path, participants were led to the start loca-

tion upon which the observer would select the right path and activate the direction

provision. After the user study participants were interviewed using a question-

naire to collect qualitative experiences.

Results Table 2.11 shows the success rate, the average time and corresponding

standard deviation as well as and the average number of steps and the standard

deviation for each path. 85% of the paths were completed successfully. Though

the use of multiple particles in a previous study with blindfolded users [5] was

able to mitigate individual differences between step lengths, for some users with

visual impairments this turned out to be difficult to achieve. Table 2.12 lists the

distance between the target destination and the user’s position upon completion

of the path. There was no observation of users unable to confirm a landmark, but

system failures occur when the system thinks the user has arrived at their desti-

nation when they actually have not arrived yet. Paths were considered a success

when the user was able to navigate within 2.0 meter of the target location. A length

of 2.0 meter was chosen, as this is approximately the range that can be sensed us-

ing a cane held in the hand and to correct for actual user location as the user was
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Table 2.12: Distance between destination and the user’s position upon completion
(m).

Distance
from

Destination

User
1

User
2

User
3

User
4

User
5

User
6

Avg St.Dev.

Path
231A-208

1.36 0.58 0.48 0.38 0.83 0.99 0.77 0.37

Path 206-260 1.94 1.09 0.71 0.31 0.72 0.51 0.88 0.58
Path 260-251 1.85 1.04 1.68 0.23 0.33 10.11

F
2.54 3.77

Path
251-240A

0.76 0.55 0.54 0.55 0.24 0.33 0.50 0.19

Path
242A-231A

14.77
F

1.32 15.15
F

1.22 2.81
F

1.83 6.18 6.82

Path 260-131 4.00
F

0.46 4.97
F

0.96 2.78
F

1.48 2.44 1.78

Path 129-109 1.22 1.60 0.76 0.83 2.14
F

1.68 1.37 0.53

Path 109-118 0.90 0.69 0.83 0.86 4.89
F

1.55 1.62 1.63

Path 118-129 1.11 1.73 0.99 1.59 1.28 1.89 1.43 0.36
Path J1-206 1.25 1.84 0.67 1.21 0.77 1.30 1.17 0.42
Path 242A-
231A(Alt)

2.07
F

0.98 0.99 0.87 1.14 2.73
F

1.46 0.76

Success rate 0.91 1.00 0.82 1.00 0.64 0.91 0.73 0.82

wearing the camera on their back. Failures are indicated using an F in the table

2.12. For all paths and users an average error of 1.85 meter (SD=2.74) was found.

Paths that involve counting many doors, (e.g., 242A-231A, 260-131, 129-109)

have lower success rates and it seems users are scuttling more to detect the doors,

which makes it harder for the system to pick up steps. Similar to the earlier study,

path (242A-231A) has a low success rate (50%). The alternative path for (242A-

231A) on average took longer to complete (163 seconds) than the original (101

seconds) but has a significant higher success rate (83%) and a lower average er-

ror (6.18 versus 1.46 meter). This may indicate that planning longer paths that
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include more distinguishable landmarks may increase accuracy. The completion

rate for all paths improves from 85% to 88% and the average error reduces to 1.42

(SD=1.50) if results for the original path are excluded.

Non-directed interviews were used with open-ended question to collect quali-

tative experiences. None of the participants had used a navigation system before

but all users had previously experienced getting lost in outdoor as well as indoor

environments. Depending on the space all users engage in cognitive mapping

when this space is unfamiliar to them. Primarily tactile landmarks, such as doors

or windows are used in cognitive mapping, but one user noted using sounds as

well, such as the sound of a water cooler or an air conditioning unit. Cognitive

mapping was typically limited to smaller spaces such as rooms. None of the par-

ticipants said they had freely explored large indoor environments out of fear of

getting lost. Participants typically used a sighted guide when navigating in un-

familiar environments, which would help with working out a route. Three users

preferred routes with many landmarks but would avoid routes with too many

turns as that was found to be confusing.

A 5-point Likert scale was used to measure the usability of the system. All users

found that the directions were easy to follow (M=4.66, SD=0.58) and that Navatar

navigated them efficiently (M=4.66, SD=0.58). They also agreed this system could

minimize the chance that they would get lost in unfamiliar environments (M=4.66,

SD=0.58). Overall they liked using the system (M=4.66, SD=0.58). Despite Navatar

only being able to guide user 5 for five paths this user was still very positive about

the system. Upon further inquiry the user stated: “I have never used such a sys-

tem before and I think it could be really helpful, despite its current shortcomings”.

Suggestions for improvement included: (1) improve the accuracy; (2) being able to
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repeat directions; (3) offer Braille output; (4) not hold the phone in the hand but

in a pocket and (5) for directions involving stairs indicating whether one has to go

up or down. This last suggestion was caused by the system providing directions

dynamically so depending on the estimate of the user location the system would

direct “go down the stairs” but if the system’s estimate were beyond or on the stairs

this direction would be omitted. One user preferred to not hold the phone in the

hand because the user preferred to use this hand to protect their face. Repeating di-

rections was already implemented as directions are calculated dynamically based

on the system’s current estimate but was not conveyed to participants to keep the

study simple and to avoid false confirmations.

2.5 Discussion

This chapter presented a navigation system that can guide a user with VI through

an indoor environment using a minimalistic and interactive sensing approach achiev-

able with a smart phone. The sensors used in the experiments are inexpensive and

available on popular portable devices. Nevertheless, they are also highly erro-

neous. For instance, compass sensors, especially cheap ones, perform very poorly

in indoor environments due to metal structures and electro-magnetic noise. The

experiments presented in this section were performed in a building with such is-

sues. Despite this challenge, it was still possible to track multiple human users,

who did not have any visual feedback, with sufficient accuracy through the inter-

active localization process described.

This line of research opens the door to exciting new applications for artificial

intelligence methods in the area of human-centered and accessible systems. It is in-
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teresting to investigate how to automatically plan alternative paths that lead along

a larger number of distinguishable landmarks, such as hallway intersections. Such

planning under uncertainty tools may significantly boost chances of the user suc-

cessfully arriving at the destination and the localization estimate being more ac-

curate. Furthermore, it would be interesting to investigate whether it is possible

to develop more robust methods for automatically detecting changes in the user’s

speed during the execution of a path. Similarly, it is possible to make use of more

realistic models of human motion [7] instead of the unicycle-like system employed

in this work.

2D maps of an indoor environment, as used here, can be acquired from ar-

chitectural blueprints. Nevertheless, it may be more useful to use richer types of

representations. 3D virtual models can be employed to more accurately represent

indoor environments with multiple levels and features like low ceilings, ramps,

uneven floors and rails, which are impediments to people with VI. It is interesting

to investigate how to extract landmarks, such as doors or staircases, automatically

from the geometry of such models in order to utilize them in navigation and lo-

calization tools for individuals with VI. 3D models may be easier to annotate than

2D maps as annotators can more easily visualize the space. Crowdsourcing tools

could be utilized so that 3D models of popular environments can be dynamically

updated when they change so as to support tools such as the one described here.
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CHAPTER 3

HEADLOCK

3.1 Description

Vision, the human ability to sense the size, shape, movement, and orientation of

objects or people in space, plays a dominant role in spatial perception [20]. Spa-

tial perception is an essential skill for efficiently navigating spaces, i.e., navigat-

ing without running into obstacles or veering from an intended path. Navigating

spaces is quite a challenge for users who are blind as they largely have to rely

on their hands and ears for spatial perception. Spatial perception using the tactile

sense is significantly slower. Haptic modality is largely redundant when combined

with visual modality [61]. Where vision can identify objects at a distance, the sens-

ing range of the hands is limited by the length of a user’s arm. This range can

only be extended through the use of a cane, at the cost of only being able to per-

ceive depth information from a single point. Hands can distinguish shapes and

textures, such as Braille, but they cannot sense color, which is an important fea-

ture for recognizing objects [56], such as doors. Though a small number of blind

people are capable of echolocation by tapping their cane or making clicking noises

with their mouths, environments generally don’t contain many persistent sound

sources that can be used for spatial perception. Consequently, blind people often

rely on sighted people to describe spaces for them or to help them navigate spaces.

This dependency on others reduces their mobility [36].

Computer vision has been explored to offer various types of assistive percep-

tual functionality to blind users (see [54] for an overview). Because smartphones

feature cameras, various assistive navigation apps have been developed that can
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help read signs [71] or detect the presence and orientation of crosswalks [31]. Var-

ious smartphone based indoor navigation systems [18, 67] have been explored.

Though smartphones use is increasing among blind users [11], for navigation the

use of smartphones is subject to various challenges: (1) People who are blind may

find it challenging to aim a camera independently [32]; (2) existing apps only cor-

rectly identify objects that are up close but not far away [30]; and (3) because users

typically hold a cane in one hand, holding a smartphone in the other impedes their

ability to open doors, recognize landmarks and press buttons [18].

Once only the focus of academic research labs, wearable computing has gar-

nered significant public interest [23]. Of specific interest are Optical Head-mounted

Displays (OHMD), such as Google Glass [1]. Because OHMDs typically feature a

camera and support hands and eyes free interaction, it has been argued that this

platform has great potential for assistive applications for users who are blind [23].

This paper makes the following contributions:

1. We present HEADLOCK, a large open space navigation aid for a soon-to-be com-

mercially available OHMD (Google Glass).

2. We identify what type of audio feedback is most effective and usable to min-

imize veering; and

3. We report qualitative experiences of people who are blind using HEADLOCK.

3.2 Related work

Wearables. One of the earliest wearable navigation systems was that of Ertan et.
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al. (1998) [17], in which navigation directions in the form of haptic feedback are

conveyed through an array of vibrational motors sewn into a vest worn by a blind

user. This system requires installing infrared transceivers in a space for localiz-

ing the user. Hub et. al. (2003) [29] presents a system that provides navigational

instructions through a cane augmented with a stereo camera, a simple keypad,

and a speaker. This system relies on wireless local area network (WLAN) localiza-

tion, which takes advantage of the fact that many indoor locations already have

wireless access points. The augmented cane detects objects and retrieves informa-

tion regarding these objects from a 3D world model. Marston et. al. (2007) [57]

present a wearable navigation aid utilizing a GPS antenna and laptop to provide

navigational guidance through haptic and audio feedback. Ross and Blasch [69]

evaluated three different wearable interfaces for visually impaired users includ-

ing sonification, speech, and haptic feedback to minimize veering when crossing a

street. The interfaces were evaluated with 15 elderly visually impaired users and

no significant difference in accuracy was found, though the haptic tapping inter-

face was found to be most usable. Unfortunately, each of these approaches has a

reliance on either a priori knowledge in the form of maps or requires prohibitively

expensive instrumentation of environments with beacons [18]. Several wearable

systems require the user to carry expensive sensors and supporting computing

equipment in a backpack, which may impede their mobility, as blind users already

carry several assistive devices with them, such as a cane or a braille reader.

Smartphone Apps. Computer vision could be a better technology for devel-

oping assistive navigation aids because it is the natural technological parallel of

the human vision system which normally handles wayfinding (and thereby navi-

gation) problems [54]. Computer vision based approaches don’t rely on installed

beacons for localization, but instead take advantage of preexisting visual features
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in spaces for localization. In recent years, mobile devices such as smartphones

have advanced significantly in computational capabilities and available internal

sensors, such that smartphones are currently considered one of the biggest assis-

tive devices since the introduction of Braille [11]. Various apps are available that

offer functionality to recognize currency, faces, or street signs. A few apps offer

functionality related to navigation. The Crosswatch smartphone application [31]

identifies crosswalks from a camera phone image and conveys their location and

orientation using speech. A similar application performs real-time sign recogni-

tion [71] to locate signs and conveys what is on the sign using speech. Manduchi

(2012) [53] presents a mobile computer vision system designed to detect and guide

users towards artificial landmarks (i.e. fiducials). While this system requires the

installation of a set of artificial landmarks, Manduchi argues that this system may

detect natural landmarks, such as, elevator buttons or signs. This approach only

senses landmarks up to a maximum distance of 3.5 meters. VizWiz::LocateIt [10]

allows blind users to take a picture of a scene (e.g. a picture of a shelf of different

cereals in a grocery store) using their smartphone and then sends users feedback

guiding them towards a nearby target (e.g. a box of Wheaties on the shelf). This

approach employed both sonification and text-to-speech (TTS) interfaces to guide

users towards objects. User studies with blind users found the sonification and

TTS feedback useful for finding objects. Smartphone based approaches are subject

to a number of limitations. It is a challenge for blind people to aim a camera in-

dependently [32]. Smartphones have a limited field of view (FOV), which makes

it easy to miss objects that are close by [53]. If an object is not visible to the cam-

era and the user doesn’t have a notion where the object could be, searching for an

object may be a slow and cumbersome task [53]. For target finding using a smart-

phone a user study found that users would prefer wearing the camera over hold-
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ing the camera in their hand [53]. Assistive smartphone apps typically require their

users to hold the smartphone close to an object or person to avoid poorly focused

photos and having to solve hard image segmentation problems [10]. Though these

apps help understand what something is, they don’t convey where something is

[30]. Probably the most important limitation of current smartphones is that they

are unable to acquire depth information, which could be useful for recognizing

objects and landmarks during navigation.

Previous Work. The authors developed an indoor navigation system called

NAVATAR [18]. This system is minimal in terms of installation cost, such to enable

large scale implementation, as it only relies on an annotated 2D map and relies

on dead-reckoning localization using sensors available in smartphones. To im-

prove localization accuracy NAVATAR requires blind users to confirm the presence of

anticipated tactile landmarks along a provided path. This approach offloads the

computationally hard-to-solve problem of recognizing landmarks to a cognizant

agent, which seamlessly integrates with how blind users already navigate familiar

spaces. User studies with six blind users in a university environment found a lo-

calization accuracy of 1.85 m. GIST [37] is a wearable gestural interface that allows

blind individuals to sense color, distance and the presence of humans using dif-

ferent hand gestures, where spatial information is provided depending on where

the user’s arm is pointed. GIST uses a commercially available depth sensor (Kinect)

that the user wears on their chest with a small tablet carried in a backpack. Though

GIST is somewhat bulky in design, a user study with 8 blind users demonstrated

the feasibility of GIST to perform spatial interaction tasks, including discovering and

navigating towards objects and persons of interest.



57

3.3 Design of Headlock

When navigating a new space, blind people rely on their spatial image in work-

ing memory [43] to memorize salient tactile landmarks they encounter (i.e., doors,

hallway intersections, water coolers, stairs, floor transitions, etc.) and which helps

them build a cognitive map of the space [34]. This cognitive map is essential for

navigation as blind individuals rely on the identification of anticipated tactile land-

marks [75] along their path to determine their current location (e.g. follow the wall

on my right until there is a water-cooler). Williams et. al. (2013) [81] note that this

navigation can be challenging for blind users when in large open indoor spaces.

Within this context, our previous research [18, 37] identified two problems:

• Veering. Traversing large open spaces is a challenge for cane users, as either

there aren’t any tactile features to be followed or the distance between land-

marks is large, which cause users to veer from their intended path (see Fig

3.2:a).

• Handsfree. Because cane users already use one hand to hold a cane, it is

desirable to leave the other hand free to allow for identification of landmarks

(doors, elevators, railings) and to allow for interaction with the environment

(e.g., open doors, press a button, hold handrail).

To address these issues, we developed HEADLOCK, a navigation app for optical

head-mounted displays (OHMD). A benefit of using an OHMD is that the camera

is closely aligned with the user’s field of view (FOV), giving the user an accurate

indication of the direction in which the camera is aimed, which helps with ori-

entation. Users don’t have to carry heavy supporting computing equipment as
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Discovery Guidance End

select(L)

lost(L)

arrive(L)

Figure 3.1: Finite State Machine describing the different modes and transitions be-
tween modes with landmark L.

OHMDs are lightweight, and only have to be tethered to a smartphone. OHMDs

are non-obtrusive, which is important, as a recent study shows blind users prefer

“small, easily accessible, and discreet” forms of wearables [23].

Approach. HEADLOCK allows users to remotely sense the presence of a land-

mark, and then lock onto this landmark to efficiently navigate towards it while

minimizing veering. Similar to Manduchi [53], HEADLOCK distinguishes a discovery

and a guidance mode.

Discovery. Computer vision is employed to parse the video stream from the

OHMD’s camera allowing users to scan a space by moving their head horizontally

in order to detect salient landmarks (see Fig 3.2:b). Particular landmarks may have

a known size, which allows HEADLOCK to also acquire an estimate of the distance

to the landmark. Once the desired landmark has been found, the user instructs

HEADLOCK to lock onto this landmark, at which point HEADLOCK transitions to the

guidance phase (see Fig 3.1).

Guidance. The goal of the guidance mode is to provide feedback so that the

user navigates efficiently to the landmark. To detect veering, we track the position

of the landmark relative to the center of the camera’s FOV. When it diverges from

the center by a certain threshold, feedback is provided to indicate the direction and

magnitude of the error allowing the user to correct their course (see Fig 3.2:c). In
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Figure 3.2: (a) Without any tactile features to follow in an open space, cane users
may to veer from their intended path towards a landmark. (b) Users scan the space
for landmarks and select one as their target. (c) Audio feedback is provided to cor-
rect for veering during the user’s navigation towards the landmark. (d) Updated
distance information is provided while approaching the landmark.
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the case HEADLOCK loses visual track of the target landmark, we inform the user of

this event and indicate the direction in which the user should turn to bring the

landmark back into view. The discovery mode is automatically restarted, allowing

for a landmark to be relocated quickly (see Fig 3.1). To convey progress, distance

information is provided while the user navigates towards the landmark (see Fig

3.2:d). Upon reaching a landmark, the navigation task is considered complete and

feedback is provided accordingly.

Research. A challenge that needs to be investigated is what type of feedback

most efficiently allows a cane user to navigate to a landmark. Because OHMDs

are typically not capable of providing haptic feedback, we explore two different

types of audio feedback for efficiently guiding users towards a landmark: text-

to-speech (TTS) and sonification. TTS takes advantage of the intuitiveness and

rich vocabulary offered by human language, where sonification may be harder to

learn but can convey multidimensional data efficiently and has previously been

explored for guiding users towards objects [10].

3.4 Implementation

To understand what type of audio feedback is most effective and usable, we im-

plemented HEADLOCK for one specific type of landmark: doorways. Doorways are

typically used in the cognitive mapping of spaces by blind individuals [34] as

they often have various subtle but distinguishable tactile features (e.g. direction

it opens, type of door handle, sound it makes, etc.). Large open spaces often fea-

ture doorways, and a reasonable navigation scenario could include crossing large

open spaces with the end goal of finding a particular doorway (e.g crossing a foyer
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to find the elevator door). Since one of the objectives of HEADLOCK is to facilitate

navigation of unknown spaces, rather than navigating towards a particular door,

a doorway is a useful ubiquitous landmark that is present in many indoor spaces.

Doorways are also a useful landmarks for HEADLOCK as they are relatively easy to

detect due to their uniform color and shape (within the context of a single build-

ing).

Instrumentation. We use Google Glass [1] as our OHMD. Glass is a wearable

voice-controlled Android 4.0.3 device that resembles a pair of glasses and only

weighs 50 grams. Glass has various sensors including a camera (54.8◦ x 42.5◦ FOV),

a microphone, and 3-axis accelerometer among others. Users interact with Glass

using both natural language voice commands and the touchpad located on the

frame. Audio is either provided through a bone conduction transducer or through

an external headphone. The 5 megapixel camera on Glass is located on the right

side of the frame. A user wearing Google Glass has a natural understanding of the

direction in which the camera is aimed based on how their head is oriented.

Door Detection. HEADLOCK was implemented in Java using the Android Devel-

opment Toolkit targeting Android 4.0.3. The door detection algorithm is a simple

OpenCV-based blob detector which searches for blobs within the HSV color range

of the doors in our test building. The algorithm processes frames with a scaled-

down video resolution of 240x160 at 30 FPS providing HEADLOCK with bounding

boxes for all recognized doors. This decreased resolution is utilized in order to

achieve a reasonable performance on Glass without overheating the device. Pre-

liminary trials showed that doors could be accurately detected at this resolution

up to 12 meters away.
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Figure 3.3: Feedback is based on the position of the middle of the field of view (red
vertical line in this cropped image) relative to the nearest edge of the bounding
box surrounding the target landmark (green box). In this case, HEADLOCK would
indicate for the user to go left toward the blue target orientation.

3.4.1 Discovery

HEADLOCK provides feedback every 2,000 ms indicating whether or not a door has

been detected. In the sonification mode, we designed an audio icon consisting of

three high pitch beeps to indicate a door and three low pitch beeps if no door is

visible. In the TTS mode, the feedback consists of the TTS phrases “Door found” or

“No door found”. Upon receiving feedback indicating the presence of a door, users

select the door by tapping on the Google Glass touch pad.
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3.4.2 Guidance

Guidance output is generated using a veering metric (v) and a distance-to-landmark

metric (d). The veering metric simply measures the distance from the closest edge

of the tracked door to the middle of the field of view:

v(xl, xr) = max
(rx

2
− xr, xl −

rx

2

)
where xl and xr are the X coordinates of the left and right edges (respectively) of

the door’s bounding box, and rx is a constant representing the X resolution of the

input image (see Fig 3.3). The distance metric approximates the percentage of the

navigation task the user has completed:

d(xl, xr) = 0.67 log
(
100

(xr − xl) − wi

rx − wi
+ 4

)
− 0.27

where wi is a constant value set for each tracked door representing its width in pix-

els when first observed. This equation was determined experimentally to represent

a relative measure of the approximate distance traveled during the navigation task

based on the observed width of the door. This metric could easily be replaced with

a related true distance approximation rather than a relative distance approxima-

tion, but this would require a priori knowledge of the actual width of the observed

door. Since a goal of the HEADLOCK application is to limit the amount of required a

priori knowledge, a relative distance metric was chosen.

Sonification Feedback. Since the data being conveyed to the user is quantita-

tive data representing X (veering) and Z (progress) values, it is well suited to being

conveyed as an auditory graph [60]. For the auditory graph sonification scheme

employed by HEADLOCK, pulse delay (the length of the silent period between each
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beep) was chosen to indicate changes in X-axis veering data:

ps(xl, xr) =


200 + 800v(xl, xr) : xl > 0.5rx, xr < 0.5rx

0 : xl ≤ 0.5rx ≤ xr

When a user veers (first case), ps(xl, xr) varies the delay between beeps linearly

from 200 ms to 1000 ms with respect to v(xl, xr), indicating the magnitude of veering

to the user. When the user isn’t veering (second case), ps(xl, xr) returns a constant

value of zero (a continuous tone, no beeping). In auditory graphs, frequency is

often used as an analog for changes in Y-axis data [60]. In the case of HEADLOCK, this

corresponds with the Z-axis data:

f (xl, xr) =


1710 : xl > 0.5rx, xr < 0.5rx

130 + 920d(xl, xr) : xl ≤ 0.5rx ≤ xr

All pitches set by F(xl, xr) were chosen experimentally and verified to be within

the frequency range of human hearing [25]. When the user is veering off course

(first case), f (xl, xr) sets the output pitch to the constant value of 1710 Hz. Due to

the fact that a single high pitch beep is utilized for all veering feedback, users must

perceive the direction of their veering by listening to the change in pulse delay over

several time steps. In the case that the user is not veering (second case), f (xl, xr)

varies the pitch of the feedback tone linearly from 130 Hz to 1050 Hz with respect

to d(xl, xr). This frequency range is significantly lower than the frequency chosen

for veering feedback, making it easy for users to distinguish between veering and

non-veering feedback pitches.

TTS Feedback. The TTS feedback scheme can be described in terms of pulse

delay, pt(xl, xr), and a TTS readable version of the distance-to-landmark metric,
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dout(xl, xr). The only difference between pt(xl, xr) and ps(xl, xr) is in the second case:

pt(xl, xr) =


200 + 800v(xl, xr) : xl > 0.5rx, xr < 0.5rx

2000 : xl ≤ 0.5rx ≤ xr

The 2000 ms pulse delay in the second case reduces the feedback redundancy that

would be present if there were continuous TTS feedback similar to the continuous

sonification feedback described for the second case of ps(xl, xr). Note that, rather

than beeps, the system either generates the synthetic speech “Left” or “Right” in

the first case of pt(xl, xr), and “Straight” in the second case, indicating the direction

the user needs to move in order to proceed to the target landmark. In the second

case, the system also generates a speech version of the distance-to-landmark metric

dout(xl, xr) = 100 × d(xl, xr) indicating the users progress towards the door.

Error & Task Completion. In the case that the door moves outside of the cam-

era’s FOV, the user is provided with TTS feedback (during both TTS and sonifi-

cation modes) indicating the direction which they must turn in order to bring the

door back into the FOV, and the discovery phase is automatically restarted. The

navigation task is considered complete when the ratio of the perceived width of

the door (in pixels) to the X resolution of the image exceeds 70% (i.e. when the

door fills 70% of the field of view). This value was determined experimentally.

This assumes that the doorway is somewhat large and near the eye level of the

user upon completion of the guidance phase. Regardless of the feedback mode,

HEADLOCK plays the same “success” sound effect to signal to a user that they have

completed their navigation task.
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3.5 Evaluation

We performed a quantitative evaluation to determine what type of audio feedback

was most effective and a qualitative evaluation to assess the usability and utility

of HEADLOCK.

Participants. Eight blind participants were recruited from the local chapter of

the National Federation of the Blind (3 Female, average age 44.1, SD = 11.1). Five

participants were totally blind and three participants were legally blind with a

small amount of residual light perception. The legally blind participants wore a

blindfold during the user studies in order to ensure that their performance was

not unduly affected by their ability to perceive small amounts of light. None had

any self-reported impairments in mobility or hearing. All participants were right-

handed and used canes for navigation.

Instrumentation. HEADLOCK was implemented on Google Glass as previously

described. Ground truth to measure veering was gathered using a commercially

available beacon based localization system (Hagisonic StarGazer) that offers a lo-

calization accuracy of ±2 cm. The StarGazer camera was worn on a subject’s back

using a belt with supporting computing equipment (Windows Surface Tablet) in a

backpack. Experiments were performed in a large open space (a conference room

≈ 10 X 12 m) on the UNR campus that was instrumented with ceiling tags required

for the StarGazer system. The room had a single double door on the south wall

(see Fig 3.3). During the user study, the left door was covered with green paper to

ensure that HEADLOCK only recognized the right door.
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3.5.1 Procedure

The user study was organized into four parts:

1. An unaided navigation task without HEADLOCK.

2. A HEADLOCK tutorial.

3. Trials with the first and second feedback modes.

4. A survey eliciting qualitative feedback.

All participants were randomly divided into two groups (A and B). For group

A, the first feedback mode was sonification and the second was TTS, while group

B had TTS first and sonification second. This counterbalancing ensured that the re-

sults of the study were not biased towards one feedback mode due to interference

effects.

Unaided Navigation. To establish a baseline for comparison between navi-

gating with and without HEADLOCK, subjects first performed an unaided navigation

task. Subjects were taken into the conference room, positioned on one end of the

room, 10 meters from the door, and asked to locate the door on the other side

of the room. In a real-world scenario, it is unlikely that blind people who are

faced with the task of having to cross a large open space would initially be ori-

ented in the exact direction they needed to move unless they enlisted the aid of

a sighted individual. Therefore, subjects were positioned facing the correct side

of the room, but were not oriented in the exact direction to the target doorway.

Subjects used their cane for navigation. Qualitative observations of the manner in

which users accomplished this goal were recorded. Additionally, users were asked
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several open-ended questions regarding how they typically deal with similar nav-

igation scenarios.

Tutorial. The tutorial familiarizes users with Glass and the usage of HEADLOCK .

Prior to each trial with a specific feedback mode, users were instructed on how

the mode for that trial worked. Subjects were allowed to ask questions regard-

ing the operation of the HEADLOCK interface. After the tutorial, subjects could try

HEADLOCK until they felt comfortable using it.

Feedback Trials. To begin each trial, subjects were guided by a sighted observer

to five randomly selected points in the room before being guided to the starting

location on the north end of the room. The point of this process was to disorient

the subjects, ensuring that they did not start the discovery phase of HEADLOCK with

an a priori understanding of where the target doorway was located. Users started

in the same position as in the unaided navigation task, 10 meters away from the

door. The starting position was the same for all subjects and trials. They were

positioned facing either the east, or west side of the room (randomly selected),

while the target doorway was located on the south wall of the room, ensuring

that the user would have to scan the room in order to discover the doorway. The

HEADLOCK application was then started by the observer and the user was instructed

to discover the doorway and then follow the guidance to navigate to it. The time

required for the user to complete each phase was recorded. Each user completed

six trials (three trials starting with the user facing east and three with the user

facing west) for each of the two feedback modes.
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User Discovery (s) Guidance (s) Veering (◦)
# Son TTS Son TTS Son TTS
1 14.75 8.65 29.50 16.62 12.84 7.42
2 13.43 12.60 38.46 21.02 28.74 13.77
3 25.81 14.65 28.86 18.82 16.43 25.19
4 21.00 12.52 29.95 31.86 6.06 10.39
5 20.30 14.96 23.52 20.94 10.95 11.49
6 14.95 9.79 35.74 19.08 29.00 15.03
7 16.97 17.52 31.61 14.25 7.89 8.07
8 43.56 11.98 76.84* 60.29* 20.95 28.02

Mean 21.34 12.83 31.09 20.37 16.61 14.92
σ 9.86 2.86 4.87 5.60 8.89 7.69

Table 3.1: Feedback trial results values averaged across each user’s 6 sonification
trials and 6 TTS trials (* indicates outliers).

3.5.2 Results

Unaided Navigation. All subjects were observed to follow very similar strategies

to find the doorway located on the opposite side of the conference room. Each

user began their task by setting out in the general direction of the doorway, using

their canes to sense landmarks (e.g. walls). Several subjects veered significantly

and found the east wall first, while the remainder of the subjects veered less sig-

nificantly and found the south wall first. After finding a wall, all subjects followed

the wall until they detected the doorway with their cane. One subject commented

that wall following was her default strategy for finding a particular store in a mall.

Three subjects commented that when faced with situations such as this, they use

both sounds (e.g. echoes off of walls and sounds from air vents) and smells (e.g.

the scent of the food court in a mall) to help orient themselves in large open spaces.

Feedback Trials. Table 1 lists the average results for each user over the six tri-

als. In order to understand the efficiency of the sonification mode as compared to

the TTS mode, the average time required to complete the discovery and guidance
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phases for each mode was calculated for each user, and the averages were com-

pared using a one-way ANOVA. A Grubbs’ test found the average times for one

subject to be a statistically significant outlier for TTS (Z = 2.38,N = 8, p < .05) as

well as sonification (Z = 2.32,N = 8, p < .05). It is interesting to note that this

subject was the only subject to report no previous experience with mobile tech-

nologies, possibly explaining the user’s slower performance. It was found that

TTS required 12.83 s for discovery (39.9% faster than sonification) and 20.37 s for

guidance (34.5% faster than sonification). Both of these results were found to be

statistically significant (F1,14 = 5.496, p < 0.05 and F1,2 = 14.608, p < 0.005 respec-

tively). Next, since HEADLOCK was designed to prevent blind subjects from veering

during navigation, veering was analyzed across all subjects’ navigation paths for

each feedback mode. In order to measure veering, two gradients were defined

at every point along each user’s path: the vectors between the every point and

the points of the left and right sides of the doorway (labeled as vectors Ai and Bi

for point i in Figure 3.4 respectively). The current trajectory at every point of the

subjects’ navigation path was calculated as the vector between point i and point

i − 1 (labeled vector Ci,i−1 in Figure 3.4). These vectors were then used to calculate

the subjects’ degree of veering, Θ(i), at each point along their paths. If Ci,i−1 was

angled between Ai and Bi (∠AC < ∠AB and ∠BC < ∠AB), the section of the path

between point i and i − 1 did not exhibit veering (i.e. Θ(i) = 0). On the other hand,

if Ci,i−1 was angled outside of the region between Ai and Bi, then the degree of veer-

ing was accounted for as the angle between Ci,i−1 and the closest of either Ai or Bi

(i.e. Θ(i) = min(∠BC, ∠AC)). This measurement of veering was used to create a cost

function assigning a value to each path, representing the average veering which
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occurred along each path P:

Costveer(P) =

n∑
i=1

‖Ci,i−1‖ Θ(i)

n∑
i=1

‖Ci,i−1‖

Figure 3.4: The veering cost function sums the measure of veering at each point
along a user’s path weighted by the magnitude of Ci,i−1.

The cost of all paths were calculated and averaged for each feedback mode for

each user. These average cost values were compared between feedback modes

with a one-way ANOVA. No significant difference in veering was found between

feedback modes (F1,14 = 0.164, p > 0.05).

Qualitative Feedback. After the feedback trials, non-directed interviews with

open-ended questions were used to collect qualitative experiences as to under-

stand the usability of HEADLOCK and to identify areas for improvement. The us-
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ability and effectiveness of the app was evaluated using a 5-point Likert scale that

ranged from 1 (strongly disagree) to 5 (strongly agree). Users agreed that HEAD-

LOCK allowed them to navigate effectively to a doorway (M = 3.94, SD = 0.63).

Additionally, users expressed neutral feelings that the system would minimize the

chances they would become lost (M = 3.50, SD = 1.12) but users liked the sys-

tem overall (M = 4.00, SD = 0.83). With respect to the feedback modes, users

expressed neutral feelings about the sonification mode being easy to understand

(M = 3.75, SD = 1.48) in addition to neutral feelings about the sonification feed-

back being insufficient for navigating towards doorways (M = 2.50, SD = 1.58).

The TTS feedback was found to be easy to understand (M = 4.31, SD = 0.97) and

sufficient to navigate towards a doorway (M = 4.19, SD = 1.27). There was no

significant difference in rankings between feedback types (p > 0.05). Users agreed

that HEADLOCK would allow them to navigate large open spaces more independently

(M = 3.88, SD = 0.93).

In terms of general suggestions for improvement, two users suggested that

HEADLOCK should include obstacle detection as a feature. Two users suggested that

the pulse delay for TTS feedback should be adjustable to allow for users to receive

feedback more or less frequently based on personal taste. This was reflected in

another user who said that sonification feedback felt too precise and therefore said

the precision should be adjustable. Finally, two users commented that the physical

interface of Google Glass should be made more accessible by adding bumps to the

touchpad so that users can more easily determine where to tap the touchpad for

interactions.
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3.6 Discussion & Future work

Our study demonstrated the feasibility of HEADLOCK and allowed us to identify the

following research issues.

Feedback Tradeoffs. TTS allows for more efficient navigation to doors than

when using sonification though no significant difference in the degree of veering

was found. Subjects expressed a preference for TTS (non significant). From our

analysis it appears that the sonification feedback during veering often caused sub-

jects to pause in order to find the correct direction to the door. Using TTS, subjects

were observed to correct their course while continuing to navigate to the door lead-

ing to more efficient navigation with respect to time (see Figure 3.5). This could be

explained that the sonification feedback was harder to interpret and more difficult

to learn than using TTS. Several subjects indicated that they found following the

increasing pitch of sonification to be less obtrusive than receiving TTS distance up-

dates. Determining the direction in which to turn to correct for veering is easier

with TTS than with sonification, as users have to figure out the direction of veer-

ing error, where TTS immediately conveys this (e.g. “Left” vs. “Right”). Based on

these results, it seems feasible to explore a hybrid feedback approach where we

convey veering error using TTS and distance to the landmark using sonification.

Pitch could also be used in conjunction with TTS feedback to convey the magni-

tude of the veering error (e.g. a high pitch “Right” indicating a large turn to the

right). Future user studies will evaluate how this feedback will affect HEADLOCK ’s

efficiency.

Head-Mounted Displays. Subjects were very excited to use Glass. Several

subjects stated they found it hard to imagine that Glass was a fully functioning
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(a) Sonification (b) TTS

Figure 3.5: Example traces of paths for both feedback modes. The path is marked
as green when Θ(i) = 0, yellow when Θ(i) < 10, and red when Θ(i) > 10. The blue
lines represent the vectors A0 and B0 (see Figure 3.4).

wearable computer due to its light weight and small size. One minor accessibility

issue with the use of Glass was identified. Because all subjects used their cane in

their right hand for navigation, they had to temporarily place the cane in their left

hand to be able to select the landmark with their right hand using the touchpad.

To allow for more efficient interaction with Glass while navigating the touchpad

should be on the left side. Voice recognition could be used to enable hands-free

input, but we did not implement this as for this study we wanted our input to

be most robust as voice recognition may be difficult to use in noisy environments.
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No subjects expressed any difficulty in hearing the feedback from Glass’s bone

conduction speaker, which is good as this type of speaker can be used in noisy

environments.

Obstacle Detection. Two subjects expressed that obstacle detection should be

a feature of HEADLOCK . Due to the position and direction the camera is pointing it

may be difficult to implement ground level obstacle detection on an OHMD that

has the fidelity, accuracy and reliability of a cane. However, OHMDs may be better

suited for over-head obstacle detection due to the camera position, which would

address a current limitation of a cane.

Limitations. Our study was limited in that only doors were used as landmarks.

We did not evaluate whether OHMDs are a better platform than smartphones for

navigation aids. We did not evaluate the maximum distance at which a landmark

can be identified nor how distance affects a cane user’s ability to efficiently navi-

gate to a landmark. We plan to investigate these issues in future research.

Landmark Detection. Future work will focus on expanding the set of land-

marks that can be recognized, which could include signs, staircases or large win-

dows. The environment in which our user study was conducted only had single

door but HEADLOCK should allow its users to make a selection from multiple land-

marks that are visible. Hallways in airports or schools often feature pattern or

lines, which could also be detected and be used for following without cane users

having to follow a wall instead. We plan to merge the open space navigation ben-

efits of HEADLOCK with the high level indoor navigation features of NAVATAR [18].
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CHAPTER 4

PEDOMETRY

4.1 Description

Wearable computing has garnered significant public interest, with a number of sys-

tems currently available. Of specific interest are head-mounted displays (HMD),

such as Google Glass, which are no more obtrusive than wearing a pair of glasses.

HMDs are considered more socially transparent than smartphones, as they enable

their users to quickly access information without having to look away from a con-

versational partner. Wearables typically support eyes- and hands-free interaction,

allowing them to be used in active contexts, such as walking or running. Pedom-

etry, i.e, step counting, is used in various mobility related applications, such as

physical activity tracking [63] or infrastructure-free indoor navigation [18]. Pe-

dometry is implemented using wearable accelerometers, e.g., Fitbit, or using iner-

tial sensors, which have become ubiquitous in smartphones [13] and HMDs. Be-

cause wearables can be used in active contexts, they are an especially good fit for

pedometry-based applications. Several studies have found the accuracy of pedom-

etry to vary depending on where an inertial sensor is placed on the human body

[49, 13] with a higher accuracy achieved for inertial sensors placed closest to the

feet [19]. This paper investigates the accuracy of pedometry on HMDs for both

walking and running; something that has not been addressed by previous work.
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4.2 Related work

The accuracy of pedometry for various sensor placements has been investigated

in the following work. Foster et al. [19] compared the accuracy of a waist-worn

pedometer with two ankle-worn pedometers. Their results show that the latter

setup offers a significantly higher accuracy but does require wearing two pedome-

ters. Graser et al. [22] studied the accuracy of pedometers in various locations

on the waistline, including navel, thigh (front/back), side (right), and back. Their

study found no significant difference in accuracy between locations. A longitudi-

nal study by Ling et al. [49] explored three different placements (bra strap, waist,

shoe) for pedometers on women. Step counts from the bra strap- and shoe-placed

pedometers varied more than 10% from the waist step counts.

Though wearable pedometers are popular, they are not nearly as ubiquitous

as smartphones. Brajdic & Harle [13] evaluated the accuracy of pedometry us-

ing sensors available in smartphones. Their study varied the location at which

the smartphone was placed (front pant pocket, back pocket, backpack, handbag,

handheld). Various step counting algorithms are evaluated. Results found no sig-

nificant difference in step counting accuracy between positions, though with the

phone worn in the back pocket, the likelihood of undercounting steps increases,

due to extra oscillations caused by the relaxation of the gluteus maximus during

the walking cycle. A related study found smartphones to be more accurate for

energy expenditure prediction than wearable accelerometers [63]. Smartphones

feature barometers which can be appropriated to distinguish between walking up

or down stairs which generate different amounts of energy expenditure.

Specifically related to HMDs is the following work. Manohar et al. [55] demon-
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strates the feasibility of an earpiece with an internal accelerometer to accurately

classify various activities (sitting, standing, walking). Their study did not involve

pedometry nor were comparisons made with other locations on the body. Atallah

et al [8] evaluated different locations (ear, chest, arm, wrist, waist, knee and ankle)

of an accelerometer for classification of every day activities. These activities were

classified by their intensity: low (eating/reading), medium (walking/vacuuming)

and high level (running/cycling). Results showed that for low level activities, a

waist worn sensor yielded the the best performance. For medium level activities,

the chest and wrist locations performed best. For high level activities, wearing the

sensor at the ear yields the best performance, as this location can more accurately

sense the change in body posture compared to other positions. Pedometry was not

evaluated. Cinaz & Kenn [15] implement pedometry on a head-mounted device,

but no comparisons with other body locations are made.

4.3 Experimental Setup

For this experiment, we evaluate the accuracy of pedometry on a HMD with pe-

dometry on a smartphone. This choice is motivated by that wearable devices fea-

ture the same inertial sensors as smartphones. HMDs and smartphones are devices

that can run apps where wearable accelerometers only offer limited user interac-

tion. HMDs and smartphones are also heavier than wearable accelerometers. Our

experiments involve running in addition to walking as this is a common activity

for physical activity tracking and no studies exist that evaluate the accuracy of step

counting for running using smartphones. We vary the location of the smartphone.
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4.3.1 Instrumentation

We use Google Glass as our HMD. Google Glass is a wearable voice-controlled An-

droid device that resembles a pair of glasses. It displays information in the user’s

field of vision using a 640x360 prism projector. Glass has various sensors: a cam-

era, a microphone, 3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer,

ambient light, and proximity sensors. Users interact with Glass using natural lan-

guage voice commands or through the touchpad located on the frame. Audio is

provided through a bone conduction transducer or using an external headphone.

Glass weighs 50 grams and runs on the Android OS. For our smartphone we used

a Samsung I9300 Galaxy S III, as this phone features the same 3-axis accelerometer

(Invensense MPU6050) as Google Glass, minimizing differences in results due to

differences in hardware. This smartphone weights 133 grams and measures 137 x

71 x 9 mm and runs on Android OS. We developed a single Android 4.0.3 app to

collect acceleration data. The same app ran on the smartphone as well as on Glass

to mitigate any differences in performance due to differences in code or OS. When

the app is running, data collection starts as soon as the smartphone screen or the

Glass touchpad is tapped. The app creates a log file for each trial with each line

holding a sample and each sample containing a timestamp and the accelerations

for the X, Y, and Z axis. If the screen or touchpad is tapped again, data collection

stops. Experiments found that Glass records samples with a frequency of 200 Hz

and the smartphone at 100 Hz. In order to synchronize the traces prior to each trial,

each app sends a time request to a Network Time Protocol server at the beginning

of each trial. The response from the server is then used as the offset from the de-

vice’s native clock and is added to every timestamp we record from the sensor.

Experimental results showed such time requests have an accuracy of a few tens of
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milliseconds, which we deemed acceptable for our experiment.

4.3.2 Participants

We recruited 16 students (8 females and 8 males, average age 29.69, SD=7.14, aver-

age height 172cm, SD=9.85cm) to participate in our experiment. One subject was

left handed. None of subjects self-reported any non-correctable impairments in

perception or limitations in mobility.

4.3.3 Procedure

Subjects were equipped with a Google Glass device. For walking, subjects held

one smartphone in their dominant hand, and placed a second smartphone in their

right front pant pocket. These locations are the most common location to place a

smartphone. As a prior study already explored different smartphone locations for

pedometry [13], we limit our study to these two locations and they should yield the

same performance. Prior to equipping the subjects, an observer activated each app

to start the data collection, first starting the smartphones and then Glass. Subjects

were instructed not to touch the smartphone screens and Glass touchpad during

the trial. Subjects were then asked to walk 40 steps in a straight line. Experiments

were performed in an indoor environment that consisted of a long hallway that

was approximately eight feet wide with floors made out of linoleum tiles. This

environment was free of any obstacles and people. Once subjects completed 40

steps, the subject tapped the touchpad on the Glass device to end the trial and

then the observer stopped the data collection on the smartphones. To gather data
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on running, each subject wore Glass, attached one smartphone to the bicep of their

dominant arm using an armband, and placed a second smartphone in their right

front pant pocket. Subjects ran 30 steps and followed the same procedure as for

walking. 30 steps running was approximately the same distance as 40 steps walk-

ing. Data collection on the Glass is ended first then on the smartphones. Subjects

were asked to perform each walking and running trial three times. Subjects were

split into two groups with the first group first walking and then running and the

other group the other way around. Each trial was video recorded. Subjects were

instructed to verbally count out their steps. An observer also counted the number

of steps each subject took in each trail.

4.4 Results

After running the experiments, the raw acceleration data from all three devices

were gathered and analyzed. Each application execution represents a trace. Each

entry in a trace includes accelerations in the three major axes with their corre-

sponding timestamps. To analyze this data, the acceleration magnitude was cal-

culated for each entry. The data was then smoothed using a centered moving av-

erage. The traces were matched with each other and synchronized based on their

timestamps. As the Glass app was activated last and ended first, the start and end

timestamps on the Glass trace was used to trim the smartphone traces to avoid

picking up unintentional accelerations associated with touching and attaching the

smartphones. A video review verified the step count for each trial.
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4.4.1 Step counting algorithm

Brajdic & Harle [13] evaluated the performance of various step counting algo-

rithms on smartphones. The best results were found for windowed peak detection

WPD, hidden Markov model (HMM), and continuous wavelet transform (CWT)

algorithms (see [13] for references). Of these three techniques WPD is simplest to

implement. WPD first smooths the acceleration magnitude using a centered mov-

ing average window of size (MovAvg). WPD detects steps using a sliding window

of a fixed size (PeakDet) to detect a single peak. The algorithm finds the maximum

value in the window and then shifts the window. If, after the shift, a new max is

found, the previous peak is replaced if it is still present in the window. We use

WPD for our experiments, as a previous study [13] found WPD to offer the same

performance as more complex algorithms. WPD is computationally inexpensive

to perform and therefore optimizes battery life on mobile devices.

4.4.2 Error Extraction

The error in our experiments is defined as the absolute difference of the number of

steps calculated by the algorithm from the ground truth:

ei j(k) =
|stepsi j(k) − ̂stepsi j(k)|

stepsi j(k)
(4.1)

where i represents a specific position, k is the trial, ̂stepsi j(k) is the approxima-

tion of steps subject j took according to WPD, stepsi j is the ground truth obser-

vation for the number of steps subject j took, and ei j(k) is the error for user j for

a specific position i, for a specific trial k. Each subject performed three trials for

walking and running. The error for each trial is defined as:
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Subject Walk Run
hand head pocket arm head pocket

1 2.5 3.33 1.67 2.22 1.11 3.33
2 3.33 3.33 2.5 0 3.41 2.3
3 0.81 5.73 0 0 0 0
4 5 3.33 3.33 1.08 0 1.08
5 0.83 1.67 4.17 0 0 3.23
6 0 0 1.67 1.11 0 0
7 3.33 0 0 1.08 1.08 1.08
8 0.83 0 1.67 0 0 1.08
9 0 1.67 1.67 3.41 0 1.15

10 7.5 2.5 5 2.19 0 0
11 0 0.83 0.83 0 1.08 1.08
12 1.69 0.85 1.69 2.19 0 0
13 0 2.5 2.5 0 0 2.22
14 1.67 0 5 1.08 3.19 3.18
15 2.5 1.67 2.5 1.08 0 1.11
16 3.33 3.33 2.5 2.12 1.08 2.12

Average 2.08 1.92 2.29 1.1 0.68 1.4
St.Dev 2.02 1.59 1.46 1.04 1.09 1.13

Table 4.1: Step counting error (%) for individual subjects and positions

ei j =

n∑
k=1

ei j(k)

n
(4.2)

where ei j represents the average error for subject j at for position i, and n represents

the number of trials (n = 3).

4.4.3 Parameter Optimization

Because running and walking can be accurately classified [8], we use different pa-

rameter values for walking and running to optimize the performance of the WPD

algorithm. An analysis shows that step counting errors are either caused by: (1)

the selection of the window size (PeakDet); or (2) noise from the user (MovAvg). Too

much smoothing eliminates valid peaks and not enough smoothing causes errors
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(a) Walking: Head (b) Walking: Hand (c) Walking: Pocket

(d) Running: Head (e) Running: Arm (f) Running: Pocket

Figure 4.1: Sample traces of acceleration magnitudes for a walking and running
trial. The top traces are for walking with locations: a) head, b) hand, c) pocket. The
bottom traces are for running with locations: d) head, e) arm, f) pocket.

due to noise. We optimized WPD parameters, but improvement of the step detec-

tion algorithm was not an objective of this research. To determine the optimum

values for these parameters, an exhaustive search was performed of all reason-

able values to minimize the overall average step counting error for all users and

positions. Table 4.2 shows the selected values.

Experiment Parameter Values
Walking MovAvg = 280ms, PeakDet = 430ms
Running MovAvg = 175ms, PeakDet = 230ms

Table 4.2: Optimal WPD parameter values for walking and running

4.4.4 Accuracy Comparison

Table 4.1 lists the average step counting error over the three trials for running and

walking for the three different positions explored. For the walking trials, the head

position achieved the best results with an average error of 1.92% (SD=1.59%). Sim-

ilarly, for the running trials, the head position yielded the best results with an aver-

age error of 0.68% (SD=1.09%). A one-way ANOVA found no statistically signifi-
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cant difference in average step counting error rate between head, hand and pocket

for walking (F8,39 = .968, p = .475) nor running (F2,45 = .269, p = .765). For walking

and running, no significant difference between over, under and exactly counting

of steps was found. A one-way ANOVA found a significant difference in error rate

between walking and running for the head and pocket positions (F1,61 = 16.863,

p = .000). The hand and arm error rates were excluded from this analysis as these

positions cannot be directly compared.

4.5 Discussion and Future work

Our experiments found no significant difference in step counting accuracy be-

tween a HMD and smartphones worn in the user’s pant pocket or held in the

hand/arm. This result is contrary to what we expected, e.g., we anticipated step

counting to be worse for the head location as accelerations would be more damped,

since the head is more distant from the feet than the other locations we explored.

Our assumption was also corroborated by related studies [19, 49] that found the

accuracy of step-counting to improve the closer the sensor is located to the feet.

Figure 4.1 shows six traces of the observed acceleration for the three different lo-

cations for a running and walking trial. Though the amplitudes of the peaks for

the pocket location are slightly higher than for the head and hand locations, this

difference does not significantly affect the performance of the WPD algorithm.

The step counting error for running was significantly lower than for walking.

When running, the heel strikes the ground with a higher velocity than when walk-

ing, so the magnitude of the observed accelerations is larger. The amplitude and

frequency of the peaks are significantly higher for running than for walking. Some
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notable differences between traces for different locations of the accelerometer can

be observed. The head (Fig. 4.1a & 4.1d) and hand (Fig. 4.1b) traces resemble

smooth sinusoids. The arm (Fig. 4.1e) and pocket (Fig. 4.1c & 4.1f) traces look dif-

ferent and resemble unbalanced sinusoids with peaks that alternate in amplitude,

e.g. a high peak is followed by a low peak. Because the pocket and arm locations

are right above the leg, they pick up accelerations from a heel strike from one leg

more strongly than the other. Given these results it seems reasonable to assume

that the closer an accelerometer is placed to the sagittal plane, i.e., the vertical

plane dividing the body into a left and right half, the more balanced the sinusoid

of the acceleration signal will be. For running, the arm picks up additional accel-

erations from swinging the arms back and forth, which causes the amplitudes of

these peaks to be slightly higher than for the head location (see Fig.4.1e & 4.1d).

The Samsung smartphone weighs nearly three times as much as Glass. This

difference in mass could affect the ability to accurately pick up accelerations (with

heavier devices sensing accelerations more accurately). The larger distance from

the feet makes it harder for Glass to pick up accelerations and noise is more falsely

classified as a step. However, Glass is pretty firmly attached to the user’s head as

it rests on the nosebone where the skin is very thin. A human head also weighs ap-

proximately 8% of the total body weight and therefore this setup allows for detect-

ing step accelerations accurately. Though we did not use wearable accelerometers

like Fitbit for comparison, we do believe our results extend to ear worn accelerom-

eters such as available in Bluetooth headsets.

Wearable devices, such as a HMD or smartwatch, are typically tethered to a

smartphone for its mobile data feed. Future work could explore fusion of acceler-

ation information from both devices to create a more accurate pedometer, though
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this could be detrimental to battery life. More accurate step counting algorithms

could be developed that can exploit the asymmetrical shapes of the pocket and

arm location traces. Runners that strike the ground with their forefoot instead of

their heel, are less prone to develop knee injuries [41]. These types of strikes could

be classified according to their unique acceleration signatures. While running an

HMD could convey such information, as well as asymmetries in strikes between

feet, so a runner can adjust the way they run in real-time.
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CHAPTER 5

CONCLUSION

Advancements in mobile and wearable devices have paved the way to new,

exciting technologies that can help users with visual impairment in their every

day lives. This dissertation has presented two new systems that can help users

navigate in indoor spaces. The first one, Navatar, is able to localize users in a

building and provide them instructions in order to reach their destination. The

second one, Headlock, can help users navigate large open spaces with minimum

veering from the desired path. Additionally, a study have been conducted which

proves that heads up displays, like Google Glass, can be used to accurately count

the user’s steps.

This research provides an exciting new insight to the many possible ways mo-

bile and wearable devices can be used. This work sets the ground to many possible

applications that take advantage of the sensory input of wearable devices which

can lead to new and innovative ways of using our devices. This has the potential

to greatly help people with visual impairments with their every day lives.
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