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Professor Darko R. Koračin, Ph. D. 

Atmospheric Sciences 

 

Probabilistic ensemble forecasting has become an essential tool to numerical weather 

prediction. With the chaotic nature of the atmosphere, decisions made by operational 

meteorologists are made with imperfect weather models.  These deterministic numerical weather 

forecasts can be complemented with the use of regional ensemble predictions incorporating 

enhanced probabilistic, statistical analysis tools.  The challenge is providing better statistical 

information using ensemble probabilistic information forecasts of mesoscale frontal features to 

better characterize frontal precipitation fields, intensity, and direction of movement.   

The purpose of this study was aimed at drawing attention to certain probabilistic 

distribution patterns for specific mesoscale circulations when physical parameterizations and/or 

initial conditions are varied for specific ensemble forecast members. A statistical sensitivity 

error-trend analysis of multi-model (MM5, COAMPS, and WRF) ensemble prediction system 

(EPS) was conducted to provide insight into how inherent changes to model parameterizations, 
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i.e. PBL, convection, radiation, and microphysics can manifest intrinsic variability to ensemble 

predictability. Most studies in ensemble prediction used a single model in an ensemble mode, 

using variations in model initial conditions as the basis to produce simulation ensemble members 

and in most cases the total ensemble members were limited to 6-10. A total of 153 ensemble 

members with a horizontal resolution of 36 km were evaluated for this study using three state of 

the art regional-mesoscale models.  Its focus was directed towards the use of a multi-model EPS 

to measure the statistical sensitivity of a sequence of three winter-time fronts observed over 

western Nevada during the period of 12-27 December 2008.  The corresponding analysis and 

evaluation underscored a process through which 500 hPa thermal field dataset temperature 

differences, as it applied to rank data calculated for the three cold frontal systems observed over 

the period of the 15 day simulation, can also be applied to ensemble model spread and error trend 

analysis. This study enabled the extension of the forecast simulation period to two weeks, which 

is the assumed predictability limit for atmospheric simulations. Therefore, it became apparent 

that the use of statistical rank data error trends and ensemble model spread can improve  

predictability of certain aspects of frontal activity based on COAMPS smaller (high a priori 

forecast accuracy) ensemble simulation spread as compared to MM5 and WRF larger (low a 

priori forecast accuracy) ensemble spread. 
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Introduction: 

 
 

 Deterministic chaos or just “chaos” theory has been well known for decades and is well 

researched and documented.  Ensemble prediction is relatively new, however, and is based on 

the scientific concept of non-linear dynamic systems. Taking into consideration the primary 

assumption when referring to chaos, unstable system have finite predictability – chaos – and 

stable systems are infinitely predictable. Also, chaos in not random, but is generated by physical 

instabilities.  In Kalnay (2003), it was emphasized the ensemble forecasting approach should 

replicate in the initial perturbations the statistical uncertainty in the initial conditions. Ideally the 

leading eigenvectors of the analysis error covariance should be the initial perturbations. The 

ensemble forecasting approach should reflect model imperfections and our uncertainty about 

these model deficiencies.  Keep in mind, predictability is closely related to the Lyapunov-

exponent spectrum. Lyapunov exponents are the average rates of exponential divergence or 

convergence of nearby orbits.  The spectrum of Lyapunov exponents provides a quantitative 

measure of the sensitivity of a nonlinear system to initial conditions. It is the most useful 

dynamical diagnostic for chaotic systems.  An example is the divergence of neighboring chaotic 

trajectories exponentially in time.  The estimation of Lynapunov exponents and predictability is 

usually related to the growth of small initial errors.  Figure 1 can illustrate how each physical 

process  when started with different initial conditions, like that done for ensemble forecasts, can 

actually favor certain patterns, regions, or regimes.  This is what determines the difference 

between a “Good” ensemble and a “Bad” ensemble forecast. 

 

One of the earliest pioneers of chaos theory, Edward Lorenz, showed that numerical  
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simulations of the atmosphere were subject to what he referred to as “sensitive dependence on 

initial conditions.”  From his initial discovery, Lorenz showed that the atmosphere can exhibit 

what appears to be chaotic behavior, including a high degree of sensitivity to the initial 

conditions from which a forecast starts.  His discovery that the degree of numerical precision in 

the initial conditions applied to a numerical weather prediction (NWP) model affected the 

resulting forecast significantly after only a few days of forecast time (Lorenz 1963).  The varying  

results obtained when NWP models run with identical initial conditions, but selecting differing 

model dynamics and parameterizations, demonstrated categorical evidence of the degree to 

which mathematical chaos heavily influenced nonlinear dynamical systems like Earth’s 

atmosphere.   

 

Lorenz (1987)  posed a question: “Among the many question which have inspired 

considerable debate among meteorologists, or in particular for one that attracted some prominent 

Figure 1: This figure illustrates the components of ensemble forecasts. Three points are 
emphasized: 1. An ensemble starts from initial perturbations to the analysis. 2. In a good 
ensemble ”truth” looks like a member of the ensemble.  3. The initial perturbations should 
reflect the analysis “errors of the day.” This is what determines the difference between a 
“Good” ensemble and a “Bad” ensemble forecast. © E. Kalnay, Lectrure 3, Alghero, May 
2008, “Bred vectors: theory and application in operational forecasting.” 



3 
 

 

mathematicians – should the weather be treated as a deterministic or a stochastic process for the 

purpose of making the best attainable weather forecasts?”  From this question, two different 

objective methods evolved into what is known as modern state-of-the-art numerical weather 

prediction.  The latter one attempts to establish formulas which minimize the expected mean-

square error in probabilistic prediction using parameterized physical processes, past weather 

observations applied in the data assimilation step, and perturbed initial conditions.  The former 

method, however, attempts to predict future atmospheric states by the integration of a 

deterministic system of differential equations representing the governing physical laws of 

atmospheric circulation using observed atmospheric variables as initial conditions.  Lorenz’s 

fortuitous research and its unexpected outcomes showed that even the smallest of errors in this 

particular Earth system (and others like it) mattered a great deal. 

Ensemble prediction was the next logical step to develop a process by which to 

consolidate a stochastic approach to probabilistic prediction.  By producing future states of the 

atmosphere through the use of a stochastic distribution of all possible outcomes and relying upon 

the “best” guess.  This concept is based on the standard deviation of predicted states developed 

from a spread of forecast outcomes over a range of varying physical parameterizations modelled 

at both the regional and global numerical regimes.  It took increased computational power, 

developed in the last decade of the 20th century, to allow investigation into possible applications 

of chaos theory to operational forecasting.  The work of Tracton and Kalnay 1993, Toth and 

Kalnay 1993, and others resulted in the development of an advanced suite of ensemble 

forecasting techniques. These techniques utilize the chaotic nature of the atmosphere and the 

large, massively parallel computing environments now available during recent times to produce 

NWP model forecasts that estimate the relative predictability of specific weather outcomes, both 
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in the short (60 hours or less) and medium (3-15 day) ranges. 

Stochastic processes, or as occasionally referred to as random processes, are used to 

represent over time the evolution of some random value or system.  This concept is sometimes 

referred to as the probabilistic counterpart to a deterministic system.  In practical problems, 

however, the physical laws governing the motions and progression of the atmosphere must use 

initial data that are not entirely known with absolute certainty.   Conversely, conventional 

deterministic forecasts use the governing equations to describe the predicted growth of a single 

initial state that is regarded as the “true initial state”.  The concept underling stochastic dynamic 

estimations is to permit the deterministic governing equations to operate on the probabilistic 

statistics describing the uncertainty about the initial state of the atmosphere.  The probabilistic 

approach produces, as regional or global forecasts, probability distributions representing 

uncertainty about the future state of the atmosphere.  Since current operational NWP models are 

imperfect and their incompleteness add to forecast uncertainty.   

To think globally when referring to ensemble predictive systems, one could easily be 

distracted from the essential qualities of any stochastic process in calculating and assessing the 

probability that certain physical processes will be accurately predicted.  Although the approach 

used in this study differs from the approach demonstrated by Froude (2010) to analyze, assess, 

and calculate trajectories of mid-latitude cyclones, it is the intent of this research to utilize basic 

stochastic principals to analyze statistically the predictability of frontal features observed during 

the period of the EPS simulation used during the period of 12-27 December 2008.  

 Up to the present time, regional ensemble forecasts were applied to severe weather 

events.  This study extended the forecast experiment to a sequence of three winter frontal 

systems.  In addition, in previous studies the number of ensemble members was limited to 6-10, 
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but for this study the number was extended to a total of 153 ensemble members. This study   

Also, three state-of-the-art regional/mesoscale models were used to complete the ensemble 

simulation while various studies in the literature generally include only a single model in an 

ensemble mode. The forecast period was extended to 2 weeks which is assumed as a 

predictability limit for atmospheric simulations when normally, other ensemble forecasts covered 

only periods of 3-7 days.  There was emphasis placed on model initial conditions with 

consideration organized toward the use of variations in physics parameterization options (PBL, 

microphysics, radiation, and convection) as methodology for generating ensemble members for 

three models. 

The first section outlines information regarding the multi-model prediction system as a 

NWP predictability tool as well as a discussion of the various forecast centers using ensemble 

predictive systems operationally.  Section 2 covers a discussion of the ensemble multi-model 

system employed and methods used in this study, to include abbreviated model microphysics 

code located in this study’s appendix.  The third section discusses analysis of the synoptic 

situation covering the forecast period.  Section four will discuss initial perturbation analysis of 

the COAMPS, MM5, and WRF model outputs used to create the 51 run ensemble probabilistic 

forecast set for each model.  Lastly, a summary and conclusion will finalize this study. 

 

1.  The Multi-model Prediction System  

 
1.1  Ensemble Prediction Systems:  Using NWP Models as a Predictability Tool 
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Numerical model sensitivity is a function of model design, those physical processes most 

influenced by the air-land-sea interface, and the initial conditions applied to simulated 

atmospheric conditions within the Earth system.  For regional and mesoscale models, boundary 

conditions need to be known for the entire simulation period.  Forecast uncertainty is heavily 

influenced by the non-linear dynamical behavior or aperiodicity in model mnemonic processes.  

Modifying ensemble forecast physical parameterizations slightly alters how the model simulates 

actual meteorological phenomenon at the synoptic and mesoscale domains.  Different 

approximations, therefore, of the actual state of the atmosphere are calculated which further adds 

to forecast uncertainty and ambiguity.     

A perfect or “near” perfect NWP model is well beyond the reach of the current level of 

science and available technology.  In the future, when ensemble model predictions can run in a 

perfect or “near” perfect computational environment, they will likely continue to be subjected to 

numerical breakdown due to errors in initial conditions applied at the beginning stages of the 

model run.  The current state of terrestrial observation and assimilation systems will widen the 

NWP forecast gap further until better technologies are available to enhance observations 

includinf rapidly developing remote sensing capabilities. 

An ensemble prediction system (EPS) calculates a trio of statistical outcomes based on a 

varying suite of initial conditions and/or multi-model ensemble parameterization system.  These 

outcomes include the following three results: 

• Ascertaining a range of possible forecast outcomes. 

• Estimating the probability for any individual forecast outcome 

• Calculating the most likely forecast outcomes within an acceptable margin of error. 
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Using an uncertainty and bias intrinsic within the initial conditions, these measures can be used 

as a basis for calculations of forecast outcomes of each member within the EPS. 

Today’s operational forecast centers use some form of EPS to generate a range of 

possible forecast probability outcomes as a means to improve medium and long range forecast 

accuracy and reduce error within the operational forecast array.  Whether it is the use of the 

model imperfections in the structure and dynamics of the forecast model system or the 

uncertainty inherent in the initial conditions of a multi-model system, these ensemble prediction 

processes are used as a gauge to measure the chaotic behavior and determine the predictability of 

ensemble forecast outcomes.  

 The atmosphere is considered an aperiodic process within the Earth system.  In terms of a 

fluid system undergoing steady forcings, it is much less predictable for moderately unstable 

systems.  The predictability of mesoscale motions in the troposphere is, therefore, confined by 

the rapid multi-scale transfer of energy from the large scale synoptic systems into mesoscale as 

well as microscale regimes.  In contrast, inevitable errors or uncertainties in initial conditions in 

the small scale of motion will propagate toward larger scales and will reach the mesoscale sooner 

than the large scale, thereby rendering the mesoscale less predictable.  Thus, predictability of 

mesoscale events are also sensitive to initial condition inputs to the various operational 

mesoscale numerical prediction models.  The predictability of mesoscale phenomena that does 

not exist at the start of a numerical simulation is less influenced by the accuracy of the initial 

conditions used in the mesoscale numerical prediction system.  Under these circumstances, the 

mesoscale circulations are normally forced by surface inhomogeneities (thermal and orographic) 

and internal adjustments.  Note that there are processes developed on small scales (local 

circulations, convection) that are upscaled to larger scales. 
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It is noteworthy to mention that larger-scale flow patterns, mesoscale instabilities, and 

multiple spatial and (or) temporal scale energy transfers are from either the larger scale to the 

microscale or the interaction of cloud physical or dynamical processes.  If a mesoscale feature, 

already exists at the beginning of the numerical predictive process, then it is necessary to include 

the observed and analyzed motions as well as thermodynamic variables in the initial conditions 

to construct the most accurate numerical model prediction.  Previous investigations suggest that 

the accuracy of the numerical prediction processes must rely more on observational data during 

the data assimilation-initialization step and less on the model dynamical system representation.  

This is an important consideration since it takes time for the model in the “spin-up” process to 

gain the necessary initial knowledge to accurately represent mesoscale motions during the period 

of the first 120 hours of the forecast run. 

 Due to the need to resolve complex atmospheric processes on smaller scales than the 

global models, regional and mesoscale models generally have larger numbers of physical 

parameterization options (Stensrud 2007).  This means that a large number of various option 

combinations have to be considered to cover a wide spectrum of model trajectories that would 

provide a sufficient probability density functions (PDFs) of atmospheric parameters.  Since high-

resolution mesoscale and regional scale simulations are computationally expensive, it is valuable 

to consider cost-effective methods that can be used for operational forecasting.  Additionally,  

there are a large number of community accepted regional and mesoscale models that have 

similarities and differences in the model structure, numerical methods, and physical 

parameterizations.  Consequently, it is important to examine the use of various models in 

constructing more reliable PDF, that is, the use of multi-model ensembles. 
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 During the period 12 through 17 December 2008, output products from the following 

numerical models were analyzed to provide insight into how the relative precision ensemble 

forecast products can resemble actual mesoscale meteorological features when physical 

parameterizations are varied for each ensemble forecast run.  For this analysis, ensemble output 

products derived from the Weather and Research Forecasting (WRF) model (Skamarock et al., 

2008), Fifth-Generation Penn State/NCAR Mesoscale Model (MM5; Grell et al. 1994), and the 

U.S, Navy's Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS; Hodur 1997; 

Hodur et al. 2002; were compared with the associated 500 hPa level analysis for the same time 

period.  This implementation was adopted to assess which physical parameterization utilized for 

each ensemble run most closely compared physically to the actual mesocale-synoptic 

atmospheric conditions. 

 

1.2 Discussion of the multi-model Ensemble Prediction System (EPS) 

 

 The improvement in skill of numerical weather prediction over the last 40 years is due to 

four factors:  

• The increased power of supercomputers, allowing much finer numerical resolution and 

fewer approximations in the operational atmospheric models. 

• The improved model structure, numerical schemes, and representation of small-scale 

physical processes (high-resolution topography and vegetation, clouds, precipitation, 

turbulent transfers of heat, moisture, momentum, and radiation) within the models. 

• The use of more accurate methods of data assimilation, which result in improved initial 

conditions for the models. 
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• The increased availability of data, especially satellite and aircraft data over the oceans 

and the Southern Hemisphere. 

 

In the United States, research on numerical ensemble weather prediction takes place in 

the national laboratories such as the National Centers for Environmental Prediction, the National 

Oceanic and Atmospheric Administration (NOAA), the National Aeronautics and Space 

Administration (NASA), the National Center for Atmospheric Research (NCAR), and in 

universities and centers such as the Desert Research Institute, Oklahoma State University, Penn 

State University, and University of Washington.  The NCEP ensemble, the Global Ensemble 

Forecasting System, uses a technique known as vector breeding.  Toth and Kalnay (1997) 

explained that the initial perturbations to the control analysis should adequately sample the space 

of possible analysis errors for efficient ensemble forecasting.  It was shown that the analysis 

cycle is like a breeding cycle and acts as a nonlinear perturbation model upon the evolution of 

the real atmosphere.  Surface and upper observations are used to “scale down” at regular 

intervals the perturbations carried forward in the first-guess forecasts.  The result is growing 

model errors associated with the evolving state of the atmosphere which developed within the 

analysis cycle and then dominated subsequent forecast error growth.  The bred vectors provide 

estimates of fastest sustainable growth and thus represent probable growing analysis errors. It is 

a simple and powerful method to find the growth and shape of the model instabilities which 

dominate these forecast errors (Kalnay 2008). 

 In Europe, the primary numerical modeling center is located in the United Kingdom, at 

the European Centre for Medium-Range Weather Forecasts (ECMWF).  The EPS maintained by 

ECMWF utilizes singular vectors to simulate the initial probability density functions used to 
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calculate probabilistic forecast.  The singular vector method (Buizza and Palmer 1995) are the 

perturbations that, under dynamics linearized about a basic flow state, grow most rapidly over a 

given time interval and in a given measure of amplitude, or vector norm.  As applied to forecast 

error growth and ensemble forecasting, these nonlinear optimal perturbations show the greatest 

linear growth in total energy over the extra-tropical northern and southern hemisphere over a 48 

hour period following the analysis time.  The principal objectives of the Centre include but are 

not limited to: 

• Operation of global models and data-assimilation systems for the dynamics, 

thermodynamics and composition of the atmosphere and interacting parts of the Earth-

system, development 

• Quality control of forecast models through scientific research and operations. 

• Model output collection, processing, and storage 

Other numerical centers, such as the Chinese Meteorological Administration (CMA), 

assist in the centralization of ensemble model forecast data archives which are used to enable 

extensive data sharing and research with other international partners.  The THORPEX Interactive 

Grand Global Ensemble (TIGGE) is research program, with a key component of THORPEX 

being that it is a program chartered to accelerate advancements in the accuracy of 1-day to 2 

week ensemble weather predictions.  Under this program, CMA is designated as a TIGGE 

archive center.  After agreement amongst research partners was reached in 2005 with regards to 

research data requirements and archive planning, active archive collection commenced in 

October 2006. 

 The Meteorological Service of Canada (MSC) is a division of Environment Canada 

conductd research on a System Simulation Approach to ensemble prediction. From Houtekamer 
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et al. (1996), this approach produced error statistics from a representative ensemble of forecast.  

The ensemble is generated by simulating the the process of error growth where for different 

ensemble members the uncertain elements of the forecasts are perturbed in different ways. In 

order  to perturb the ensemble and initiate the necessary error growth, different model options for 

the parameterizations of horizontal diffusion, deep convection, radiation, gravity wave drag, and 

terrain were used.  This ensemble scheme, which mathematically described a Monte Carlo 

method, attempted to produce a set of representative error fields at the initial time of a forecast.  

At the time, the MSC was the first agency to propose using this numerical scheme to 

simultaneously perform medium-range ensemble forecast and a number of model validations.                                                                                   

 
2 Methods 

 

2.1 COAMPS Overview 

 

In the late 1980s, NRL director and expert modeler John Hovermal provided a code for a 

non-hydrostatic model and Richard Hodur began modifying and using athis code as the starting 

point for predicting air-sea interaction in the Arctic.  The model came to be called Coupled 

Ocean/Atmosphere Mesoscale Prediction System (COAMPS).  Initially, the COAMPS 

development and testing was limited to studies of idealized simulations of arctic leads, tropical 

cyclones, and lake-effect snowstorms.  By 1993, COAMPS incorporated a real-data capability 

into the atmospheric model part.  This modeling system eventually transitioned to operations at 

Fleet Numerical Meteorology and Oceanography Center (FNMOC) and replaced NORAPS.  

Although COAMPS was originally developed for Navy use, interested domestic and 

international institutions are now able to register and obtain the model code.  Details on the 
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COAMPS structure are found in Hodur (1997) and Hodur et al. (2002).  

 

During the early 1990s, a next generation mesoscale modeling capability beyond the U.S. 

Navy’s Operational Regional Atmospheric Prediction System (NORAPS, circa 1982) led to 

development of a non-hydrostatic atmospheric model coupled to an ocean model – COAMPS.  

The atmospheric component of COAMPS can be used or real-data or for idealized applications.  

For the real-data applications, the COAMPS analysis can use either global fields from the Navy 

Global Environmental Model (NAVGEM) or the most recent COAMPS forecast - the now 

decommissioned Navy Operational Global Atmospheric Prediction System (NOGAPS) as the 

first-guess.  Observations from aircraft, radiosondes, ships, and satellites are blended with the 

first-guess fields to generate the current analysis.  For idealized experiments, the initial fields are 

specified using an analytic function and/or empirical data (such as a single sounding) to study the 

atmosphere in a more controlled and simplified setting.  The atmospheric model uses nested 

grids to achieve high resolution for a given area and it contains these parameterizations for: 

Sub-grid scale turbulence mixing, convective parameterization, radiation, and 

microphysics.
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The COAMPS atmospheric system consists of two major components:  analysis and 

forecast.  Figure 2 illustrates the general flow of the COAMPS driver programs 

coamps_analysis.f and oamps_forecast.f.  The COAMPS analysis executable is run first to 

prepare the initial and boundary files used in the forecast model.  The COAMPS forecast 

Figure 2: Flow chart of the COAMPS driver programs coamps_analysis.f and 
oamps_forecast.f. The model domain specifications are read in through the gridnl namelist 
and the pointers and array space are setup in subroutines mema.f and memm.f before calling 
the main analysis and forecast subroutines coama.f and coamm.f. 
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executable performs time integration of the model numerics and physics.  It then outputs 

prognostic and diagnostic fields in pressure, sigma, or height coordinates.  Options for running  

the analysis and forecast are specified through several Fortran namelists.  Examples of mesoscale 

phenomena to which COAMPS has been applied include mountain waves, land-sea breezes, 

terrain-induced circulations, tropical cyclones, mesoscale convective systems, coastal rain-bands, 

and frontal systems. The COAMPS model domain typically covers a limited area over the Earth.  

The model horizontal grid resolution may range from a few hundred kilometers (synoptic scale) 

to approximately 100 meters.  The actual dimensions applied depend on the scale of phenomena  

that the user is interested in simulating.  The model dimensions can be set to produce any 

rectilinear pattern.  In addition, it can be rotated to align with any surface feature, such as the 

terrain or a coastline.  COAMPS can be run with any number of nested grids, with the 

requirement that the horizontal grid resolution in any mesh be one-third that of the next coarser 

mesh. 

 

Following is a summary of the physical processes in COAMPS that are modeled at each 

time step in the forecast cycle.  The model domain specifications are read in through the gridnl 

namelist and the pointers and array space are setup in subroutines mema.f and memm.f before 

calling the time step at individual grid points: 

a) The total diabatic heating per time step 

1. From (resolvable) scales 

2. From (sub-grid) scales 

b) The total  moisture/day per time step 

1. From (resolvable) scales 
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2. From (sub-grid) scales 

c) The total acceleration/deceleration per time step 

1. From (resolvable) scales 

2. From (sub-grid) scales 

 

The above steps are executed slightly differently and according to whether the system undergoes 

a warm or cold startup.  The execution of atmospheric and ocean forecasts are used in model 

initialization for a warm system start whereas this step is not required for cold system starts as 

illustrated in figure 3. 

Figure 3:  Schematic showing the implementation of the air–ocean coupled ensemble system for a 
cold start and a warm start model initiation. © Naval Research Laboratory (NRL) 
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2.1.1  COAMPS  Model Physics Options 
 

 Numerical schemes developed by Rutlege and Hobs (1983) are the currently used method 

to predict single-moment bulk mixing-ratios.  The COAMPS scheme is based on research 

compiled by Lin et al. (1983) for the bulk configured microphysical model, which incorporated 

single-moment predictions of mixing ratio for five microphysical variables:  water vapor, pristine 

ice, snow, rain, and cloud water.  Size distribution calculations (Marshall and Palmer et al 1948), 

autoconversion (Kessler et al 1967), and nucleation of pristine ice (Fletcher et al 1962) are used 

as primary assumptions with within the numerical scheme matrices.  Rain and snow terminal 

velocity fields are computed numerically while all other domain parameters are treated as scalar 

tracers. 

 

 After model dynamical variables are calculated and scalar value prediction variables for 

advection, diffusion, and moisture mixing process have been refreshed through the data 

assimilation process, the bulk scheme is initialized.  Various microphysical driver subroutines 

compiled through Fortran algorithms perform the necessary updates.  DXMESO parameter, for 

instance is written in as a namelist variable where below a given resolution in kilometers the 

cumulus parameterization scheme is turned off and above the predicted value the advection of 
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Figure 4:  Direct Interactions of physical parameterizations processed within the MM5 model 

 

rain-snow calculation is turned off as well.  

 

2.2 MM5 (Weather Research & Forecasting Model) overview 

 

From the late 1960s into the 1970s, Richard Anthes developed a 3-layer hurricane model 

as a basis for a general mesoscale model.  This then evolved from Mesoscale Model 0 (MM0) 

into Mesoscale Model 3 (MM3).   The formulation for model development stemmed mainly 

from Anthes and Warner (1978).  By the 1980s, PSU and NCAR developed an updated version 

Mesoscale Model 4 (MM4).  The PSU/NCAR mesoscale model was developed as a limited-area, 

nonhydrostatic or hydrostatic (Version 2 only), terrain-following sigma-coordinate domain 
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structure designed to simulate or predict mesoscale and regional-scale atmospheric circulation.  

The support initially came from the Regional Acid Deposition Modeling Project (Anthes et al. 

1987).  A community model with annual workshops and tutorials evolved into a fourth version, 

MM4.  A non-hydrostatic Mesoscale Model 5 (MM5) was released in the early 90s with many 

advanced characteristics including multiple nesting, four-dimensional data assimilation, and 

improved numeric, and physics parameterizations.  It was supported by several auxiliary 

programs and continued to be developed as a community mesoscale model.  Today, it is 

continuously being improved by contributions from users at several universities and government 

laboratories.  More information can be obtained at the web site 

(http://www.mmm.ucar.edu/mm5/mm5v3.html).  MM5 was being developed and supported until 

2004 with the last version being 3.7.  Subsequently, other than at the research level, there has 

been limited operational development.  Details on the MM5 structure are shown by Grell et al. 

(1995) 

The Fifth-Generation NCAR/PSU Mesoscale Model (MM5) was the latest in a series that 

developed from a mesoscale model used by Anthes at Penn State in the early 70s that was later 

documented by Anthes and Warner (1978).  Since that time, it has undergone many changes 

designed to broaden its usage, including: 

 

• multiple-nest capability 

•  nonhydrostatic dynamics, which allows the model to be used at a few-kilometer scale, 

•  multitasking capability on shared- and distributed-memory machines 

• four-dimensional data-assimilation capability 

• enhanced suite of physical parameterizations.  
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Figure 5: MM5 Modeling System operational Flow Chart. © University Corporation for 
Atmospheric Research (UCAR) 

 

Terrestrial and isobaric meteorological data are horizontally interpolated (programs 

TERRAIN and REGRID) from a latitude-longitude mesh to a variable high-resolution domain on  
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Mercator, Lambert conformal, or polar stereographic projection.  Since the interpolation does not 

provide mesoscale detail, the interpolated data may be enhanced (program RAWINS or little_r) 

with observations from the standard network of surface and rawinsonde stations using either a 

successive-scan Cressman technique or multiquadric scheme.  Program INTERPF performs the 

vertical interpolation from pressure levels to the sigma coordinate system of MM5.  Sigma 

surfaces near the ground closely follow the terrain and the higher-level sigma surfaces tend to 

approximate isobaric surfaces.  Due to the variability of the vertical and horizontal resolution and 

domain size, the modeling package programs employ parameterized dimensions requiring a 

variable amount of core memory.  Some peripheral storage devices are also used.  Since MM5 is 

a regional/mesoscale model, it requires both an initial condition and a lateral boundary condition 

to run.  To produce lateral boundary condition for a model run, gridded data is needed to cover 

the entire time period that the model is integrated.  

 

2.3 WRF (Weather Research and Forecasting) model overview 

 

 In 1996, NCAR and NCEP initiated the development of the next generation weather 

research and forecasting model.  Together with contributors from various universities and 

military scientific institutions, a beta release of the Weather and Research Forecasting (WRF) 

model was released in 2000.  It has been undergoing continued rapid development so that today 

it is one of the most commonly used regional and mesoscale models worldwide (http://www.wrf-

model.org <http://www.wrf-model.org/>).  With respect to weather and climate forecasting, a 

primary motivation for WRF model development was a need to increase communication and 

links between the research, application, and education communities.  There are two versions of 

the WRF Model with the same architecture but different core codes: ARW (Advanced Research 
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WRF) at NCAR and NMM (Non-Hydrostatic Mesoscale Model) at NCEP which is based on the 

Eta Model’s code (Mesinger, 2005; Janjić; 1994; Black, 1994).  The WRF model is a next-

generation mesoscale numerical weather prediction system designed to serve both operational 

forecasting and atmospheric research purposes.  It features multiple dynamical cores, 3-

dimensional variational (3D-Var) and 4-dimensional variational (4D-Var) data assimilation 

systems, as well as software architecture allowing for computational parallelism and system 

managed extensibility programming.  WRF has been used in a broad spectrum of applications 

across scales ranging from meters to thousands of kilometers and is suitable for execution on 

multi-processor computers.  Such applications include research and operational numerical 

weather prediction (NWP), data assimilation, and model parameterizations research, 

downscaling climate simulations, driving air quality models, atmosphere-ocean coupling, and 

idealized simulations (e.g., boundary-layer eddies, convection, baroclinic waves).  Details on the 

WRF structure are shown by Skamarock et al. (2005; 2008).  The ARW version was used in the 

development of the 153-member series used in this study. 

 The Weather Research and Forecasting model–based variational data assimilation system 

(WRFVar) has been extended from three- to four-dimensional variational data assimilation 

(WRF 4D-Var) to meet the increasing demand for improving initial model states in multi-scale 

numerical simulations and forecasts.  The initial goals of this development included improved 

operational applications and expanded support to the research community.  It was shown to 

implicitly evolve the background error covariance and to produce a flow-dependent nature to the 

analysis increments.  Preliminary results from real-data 4D-Var experiments in a quasi-

operational setting were presented and the potential of WRF 4D-Var in research and operational 

applications was demonstrated.  To impose a dynamic balance on the assimilation of real data to 
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the model interface, WRF 4D-Var uses the WRF model as a functional constraint.  Development 

of model verification highlighted its capacity to implicitly evolve the background error 

covariance and to produce simulations which enhance the flow-dependent nature of the analysis 

process increments.  It is believed that a wider distribution of the system to the research 

community will further develop model physics and enhance numerical boundary processes.  

Testing under different weather conditions and model configurations will encourage even greater 

capabilities of newer versions (Xiang-Yu Huang et al. 2009).  In order to better support the 

research community, improved operational applications and expanded technical support have 

been at the forefront of this research initiative. 

 
The effort to develop WRF has been a collaborative partnership, principally among the 

National Center for Atmospheric Research, the National Oceanic and Atmospheric 

Administration (the National Centers for Environmental Prediction (NCEP) and the Forecast 

Systems Laboratory (FSL), the Air Force Weather Agency (AFWA), the Naval Research 

Laboratory, Oklahoma University, and the Federal Aviation Administration (FAA).  WRF allows 

researchers the ability to conduct simulations reflecting either real data or idealized 

configurations.  WRF provides operational forecasting a model that is flexible and efficient 

computationally while offering the advances in physics, numerics, and data assimilation 

contributed by the research community.  WRF is currently in operational use at NCEP and the 

U.S. Air Force Weather Service (AFWA-JAAWIN).  The WRF Model Users Page 

(http://www2.mmm.ucar.edu/wrf/users/) provides information on the WRF effort and  its 

organization, references to projects and forecasting involving WRF, and links to the WRF users' 

page, real-time applications, and WRF-related events. 
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The continuity equation for air, the species continuity equation, the thermodynamic 

energy equation, the three momentum equations, and the equation of state are referred to as the 

equations of atmospheric dynamics.  Removing the species continuity equation for the above list 

and replacing the full vertical momentum equations yields the primitive equations.  These 

equations represent the basic form of the Eulerian equations of fluid motion.  A variety of 

atmospheric motions can be understood by looking at simplified forms of the primitive 

equations.  Geostrophic wind, surface wind, the gradient wind, the surface wind around high-

pressure and low-pressure centers, and atmospheric waves are modeled and studied. 

 The development of the Weather Research and Forecasting (WRF) modeling system is a 

multiagency effort intended to provide a next-generation mesoscale forecast model and data 

assimilation system that will advance both the understanding and prediction of mesoscale 

weather and accelerate the transfer of research advances into operations.  The model is being 

developed as a collaborative effort among the NCAR Mesoscale and Microscale Meteorology 

Department of Defense’s Air Force Weather Agency (AFWA), the Naval Research Laboratory 

(NRL), the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma, 

and the Federal Aviation Administration (FAA), along with the participation of a number of 

university scientists. 

 

The WRF model is designed to be a flexible, state-of-the-art, portable code that is 

efficient in a massively parallel computing environment.  A modular single-source code is 

maintained that can be configured for both research and operations.  It offers numerous physics 

options, thus tapping into the experience of the broad modeling community.  Advanced data 
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assimilation systems are being developed and tested in tandem with the model.  WRF is 

maintained and supported as a community model to facilitate wider use, particularly for research 

and teaching, in the university community.  It is suitable for use in a broad spectrum of 

applications across scales ranging from meters to thousands of kilometers. Such applications 

Figure 6:   WRF-ARW Modeling System operational Flow Chart. © University Corporation for 
Atmospheric Research (UCAR). 
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Figure 8:  The above image displays the surface 
extent of the 108 km resolution course domain.  

Figure 7:  The above image displays the 
horizontal area of the 36 km resolution inner 
domain. 

include research and operational numerical 

weather prediction (NWP), data assimilation 

and parameterized-physics research, 

downscaling climate simulations, driving air 

quality models, atmosphere-ocean coupling, 

and idealized simulations (e.g. boundary-layer 

eddies, convection, baroclinic waves).   Closer 

ties will be promoted between these 

communitieswith WRF as a common 

numerical tool in many research Unisersities 

and operational forecast centers, In addition, 

research advances will have a direct path to 

operationsal forecast centers. 

The principal components of the WRF 

system are depicted in Figure 6.  The WRF 

Software Framework (WSF) provides the 

infrastructure that accommodates multiple 

dynamics solvers, physics packages that plug into the solvers through a standard physics 

interface, programs for initialization, and the WRF variational data assimilation (WRF-Var) 

system.  The WRF Software Framework  (WSF) provides the infrastructure that 

accommodates multiple dynamics solvers, physics packages that plug into the solvers through a 

standard physics interface, programs for initialization, and the WRF variational data assimilation 

(WRF-Var) system. At present, there are two dynamics solvers in the WSF: the Advanced 
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Research WRF (ARW) solver (originally referred to as the Eulerian mass or “em” solver) 

developed primarily at NCAR and the NMM (Nonhydrostatic Mesoscale Model) solver 

developed at NCEP.  While there are multiple solvers, and while not all physics are available to 

both solvers, the WSF is common to all components. 

 

2.4 Model parameterization options 
 

 Due to the need to resolve complex atmospheric processes on smaller scales than the 

global models, regional and mesoscale models generally have a larger number of physical 

parameterization options (Stensrud 2007).  This means that a substantial number of various 

option combinations have to be considered to cover a wide spectrum of model trajectories that 

would provide a sufficient probability density functions (PDFs) of atmospheric parameters.  

Since high-resolution mesoscale and regional scale simulations are computationally expensive, it 

is valuable to consider cost-effective methods that can be used for operational forecasting.  

Additionally, there are many community accepted regional and mesoscale models that have 

similarities and differences in the model structure, numerical methods, and physical 

parameterizations.  Consequently, it is important to examine the use of various models in 

constructing more reliable PDF.  This will entail the use of multi-model ensembles.   

 

The following analysis utilizes output data from a 153 ensemble member multi-model 

(MM5, COAMPS, WRF) medium-range regional ensemble forecasting experiment that was 

conducted for a period of fifteen days.  The study focused on the relative efficiency of varying 

physical parameterizations (PBL scheme, microphysics, radiation algorithms, and cumulus 
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 parameterizations) and model setup 

parameters.  Figure 7 and Figure 8 show 

the inner nested domain at 36 km 

resolution used for the ensemble members 

and coarse domain coverage at the 108 km 

grid resolution, respectively.  

3.0 Synoptic Situation for the period 
of 12-27 December 2008 

 

  

The period selected for the 

forecasting experiment was from 0000 

UTC on 12 December 2008 to 0000 UTC 

on 27 December 2008.  Initially, a 

thorough review of the North American 

synoptic situation during December 2008 

indicated the existence of a relatively 

stable five-wave pattern around the 

northern hemisphere decreasing to a four-

wave late in the ensemble series.  Insofar 

as the weather over the western USA and 

Canada is concerned, it is noteworthy that 

the region over the North Pacific Ocean 

was characterized by an exceptionally 

a 

b 

c 

Figure 9a,b,c:  The infrared satellite image depicts 
relative low pressure centers and associated 
fronts/troughs over the western United Sates for figure 
9a) 1200Z, 13 December 2008, figure 9b) 1200Z, 22 
December 2008, and figure 9c) 1200Z, 26 December 
2008 



29 
 

 

long baroclinic wave with troughs over the Kamchatka Peninsula in the Russian Far East, 

western U.S./Canada, and an elongated low-amplitude ridge over the intervening Pacific oceanic 

region. 

During the forecasting period, three weather systems impacted the western U.S.  These 

systems bore similar structures where short wave disturbances formed over Alaska (just east of 

the ridge line) and amplified as they moved southeast.  These disturbances exhibited significant 

baroclinicity where 500 hPa temperature gradients of 20°C/5 degrees latitude were in evidence 

as the disturbances moved through California.  The associated cold fronts passed Oakland, 

California (OAK) and Reno, Nevada (REV) on 13-14 December, 22-23 December, and 25-26 

December 2008.  Figures 9a, 9b, and 9c highlight the GOES West Composite Infrared imager 

overlaid with GFS geopotential heights 5250m and 5500m at 500 hPa during the three frontal 

passages analyzed for this study.  Between the passages of these fronts, the western United States 

was typified by a persistent cut-off low pressure center that weakened prior to the passage of the 

second synoptic system. 

 

 National Weather Service forecasts prior to actual frontal passage outlined all the 

ingredients indicative of a damaging high wind event across much of western Nevada to include 

the eastern slopes of the Sierra Nevada Mountains.  Those ingredients, as outlined by the NWS 

discussion, included evidence of a strong vertical shear profile following frontal passage, 

presence of a tropopause fold in the mid-high levels, and an increasing 700mb/250mb wind flow 

over their forecast area.  These conditions, associated with the second cold front appearing 

during the ensemble forecast period, contributed to a measured peak wind in excess of 62.6 m/s 

over Virginia peak during the period of 18-19 Dec 2008.  This location is also the location of the 
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NWS Reno WRS-88D Doppler weather radar.  During the passage of the third cold front, 

complete radar dome failure occurred when wind speeds were in excess of 42.5 m/s over the 

same area during the period of 24-25 December.  Both cold frontal events produced significant 

snowfall totals and high winds across widespread areas of western Nevada. 

 

4. Discussion and  analysis 

 

4.1 Ensemble Model Parameterization Analysis 

 

In Koracin 2014, a large number of ensemble members is ranked by a specific statistical 

parameter of success.  This fundamental approach highlights the advantage of using a ranking 

methodology to measure the success with respect to different parameters that can then cede to 

summed (averaged) overall ranking and ultimately be used as a combined effect of success.  The 

root mean square error (RMSE) was considered one of the important statistical parameters for 

the entire period with the lowest RMSE having the highest rank 1 (most successful) and 

subsequently the lower the RMSE the higher is the rank number for the variable being evaluated. 

The first parameter used as an example to illustrate this method was the predicted and observed 

temperature at 500 hPa using Reno, Nevada (KREV) rawinsonde data during the period of 12 to 

27 December 2008.  This data was used as the representative observation for the regional area of 

Western Nevada.  In addition, the degree of success or failure in the prediction of the frontal 

passages is quantitatively determined through a ranking system that finds the difference between 

the observed characteristics and structure of the front with the forecasted structure. The features 

of the front that are quantitatively measured with respect to radiosonde data include the 

following: 1) magnitude of the temperature drop, 2) duration of the temperature drop, and 3) the 
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onset of the temperature drop. The quantitative measure was in terms of the absolute value of the 

differences. It has been revealed (Buizza et al. (2005) that, due to the use of parameterized 

physical processes within the ensemble model structure, the addition of a stochastic perturbation 

to the tendency would complement the representation of the unavoidable random errors 

associated with the parameterizations of sub-grid scale physical processes.  The amplitude of 

random errors becomes proportional to the parameterized tendency of errors occurring in the 

EPS framework.  Several diagnostics were described and applied both to single deterministic and 

ensemble integrations with model results from a set of output products generated from 

deterministic integrations suggesting a number of probable representative parameterizations.  

Analysis of ensemble products supported the conclusion that stochastic physics increased the 

ensemble spread and improved ensemble predictive performance. 

  When the ensemble mean error is compared with the ensemble spread, and the spread is 

calculated as the difference of the individual ensemble members and the ensemble mean, the 

ensemble mean error is expected to be at least equal to the ensemble spread in order for an EPS 

to remain statistically reliable.   

Analysis of the top ten frontal rank data along with RMSE and Bias, showed some 

similarities but also marked differences in model physical parameterizations.  Although the 

simulations are notable for their similarities, the differences must be noted which outline other 

intrinsic processes forcing variability with regards to  model accuracy and precision.  If we look 

strictly at the physical parameterizations having the highest ranking number without placing 

emphasis on the actual model run number, it is hoped that more insight can be applied to model 

processes.  For the Planetary Boundary Layer (PBL), COAMPS and WRF with reference to 

RMSE and frontal ranking calculations highlighted a nearly concurrent use of physical 
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parameterizations at the top ten ranking for those two ensemble members.  MM5 PBL 

parameterizations, however, showed marked differences in the use of certain parameterizations 

occurring within the top-ten ranking when taking into consideration both RMSE and Frontal 

ranking counts. 

4.1.1 COAMPS parameterization performance 

 

Only two PBL parameterizations were used to characterize this specific physical process 

in the COAMPS model:  the “standard” Mellor-Yamada (Mellor and Yamada 1982) and the 

modified MY versions.  Some of the conclusions are as follows. 

• The modified MY version does stand out at the top of the list for both RMSE and Frontal 

ranks. 

• The cumulus (dxmeso) and the ice nucleation parameterizations show a similar trend 

when compared between the two ranks. 

• The autoconversion factor does favor 0.004 inputs for the RMSE rank whereas there is an 

even distribution of process input values highlighted from computed rank values for the 

frontal rank analysis. 

 

4.1.2 MM5 parameterization performance 

 

Of the three ensemble members, MM5 displays the widest variety of physical 

parameterizations amongst the four physics option groups.   
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• For the PBL parameterization, Eta M-Y was the dominate option ranked in the top-five of 

the RMSE rank while Burk-Thompson option appeared twice among the options noted 

for the frontal rank method.  

• When ranked using the RMSE statistical method, the Reisner 2 micro-physical 

parameterization appeared as the dominate process, appearing four times in the top-five 

for that particular model group.  This same ensemble model parameterization was 

identified by the frontal rank analysis as one of the preferred numerical process for 

liquid-water.  

• The Kain-Fritsch cumulus parameterization appeared in the top two spots when 

considering its relative error characterizations within the top-five physical 

parameterizations. 

• The radiation parameterizations showed the widest variety of options identified as 

important ensemble mechanisms in the model parameterization performance. 

• As a result of both the RMSE and frontal rank analysis, only the Simple cloud 

parameterization was identified as the dominate physics option for accuracy and 

precision. 

4.1.3 WRF parameterization performance 
 
  The WRF was more consistent with regards to physics options appearing when applying 

RMSE and frontal rank analysis. 

• Mellor-Yamada-Janjić PBL and YSU (new MRF) PBL option appear equally within the  

rank data. 
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• The WRF microphysics Lin et al. (1983) (MM5:GSFC) was the predominate 

parameterization, occurring at the top two spots within that model field for the RMSE 

ranking top-5 for the frontal ranking.  

• The Eta microphysics and the Thompson method equally dominated the top five 

rankswithin that field category. 

• The cumulus parameterization used to calculate cumulus properties in WRF favored the 

Kain-Fritsch method and the Betts-Miller methods as the featured method as determined 

by both RMSE and frontal ranking analysis.  The Kain-Fritsch method, as calculated 

from the frontal rank analysis process, and the Betts-Miller method appear as the 

dominate cumulus parameterization as indicated from the RMSE error ranking. 

• Within the WRF radiation parameterizations, the WRF radiation showed the largest  

divergence from a mean value and this condition was most  pronounced using the RMSE 

rank calculation.  The Dudhia/RRTM option was predominate with regard to radiation 

parameterization as identified through frontal rank calculations. 
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Figure 10: NARR isothem re-analysis at 500 hPa for times 2 and 5 days into the ensemble 
forecast. Included in this figure are the ensemble member isotherm “Spaghetti” plots for 
COAMPS, MM5 and WRF.  For comparative analysis, the isotherm contour heights at 248⁰K  

( blue contour) and  258⁰K (green contour) for the 500 hPa  level  are included for the forecast 
lead times of 2 and 5 days. 

Figure 11:  NARR isothem re-analysis at 500 hPa for times 10 and 15 days into the ensemble 
forecast. Included in this figure are the ensemble member isotherm “Spaghetti” plots for 
COAMPS, MM5 and WRF.  For comparative analysis, the isotherm contour heights at 248⁰K ( 
blue contour) and  258⁰K (green contour) for the 500 hPa  level  are included for the forecast 
lead times of 10 and 15 days. 
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4.2 Analysis Discussion 

 

Remembering the following empirical rules consistent to popular investigation, number 8 

“Never take anything for granted” and rule number 39   “There is no such thing as coincidence,” 

© NCIS – CBS, an analysis and subjective model comparison was conducted of the 153 

ensemble forecast plots with the associated North American Regional Re-analysis (NARR) for 

the period when a third frontal system was predicted to pass through the western contiguous 

United States  Steps in the analysis are as follows. 

In order to evaluate frontal ranking for this study, three parameters specific to this frontal 

ranking analysis were considered and separately ranked.   These included temperature decrease 

across the boundary (delta-T), the duration of the temperature drop, and the time-phase 

difference of the cold frontal passage calculated for each of the forecast model outputs of the 

ensemble members used in this research.  Ensemble forecast model output for each model run 

was then compared with representative radiosonde observation data for each of the three 

parameters used in this analysis.  For all members in the ensemble forecast group, each front was 

evaluated separately for rank based on each of these three characteristics.  A front rank total was 

then created by ranking the summation of all analyzed fronts for each ensemble forecast 

member.  Table column arguments corresponding to formula terms included in the rank value 

formulas are included above formulas for clarity.  Figures 12 through 14 illustrate this method as 

they apply to each step in the frontal rank summing process.  The best rank value is assigned to 

the lowest calculated value for the model predicted ΔT500 hPa value and error.  A front rank was 

calculated according to the below formula with N equal to the number of frontal systems being 

evaluated. 
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1. Subjective comparison (stochastic 

analysis) was employed to 

evaluate RMSE and BIAS 

computations based on 500 hPa 

temperature data calculated from 

the multi-model 153 member 

ensemble predictions.  This also 

included temperature rise/falls, 

time interval of  

temperature decrease/increase, 

and phase change computation over successive temperature changes from forecasted frontal 

passages forecasted over the range of ensemble simulations. 

 
2. Focus was directed towards evaluation of total front rank data for the all analyzed cold fronts 

with the ensemble model stochastic rank calculations (RMSE, BIAS, RMSE+BIAS) rank 

data was made for each model:  COAMPS, MM5, and WRF.  Calculated ensemble rank data 

was first evaluated for the top-five rank data, but was expanded to the top-ten cold-front #3 

rank data to better clarify the relative distribution of the top-ten simulation “hits” amongst 

statistical information calculated from the 3 ensemble members. 

3. A more in-depth analysis was performed focusing on the top-ten ensemble member 

simulations with respect to their corresponding physical parameterizations. 

Could computational resources cause variations in ensemble prediction output products?  

A comparative analysis using NARR and ensemble forecast outputs for the ensemble members 

COAMPS, MM5, and WRF was used  to evaluate the relative accuracy  of these three ensemble 

Figure 12: Temperature radial diagram showing ∆T for 
the 51 COAMPS ensemble simulations for 500hPa 
temperature data and KREV observational data. 
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members to upper air analysis at the 500 hPa level.  Comparing each WRF output yielded at least 

one forecast output plot which closely represented the NARR analysis towards the end of the 

forecast model run.  But this particular occurrence is consistent for an outlier  in the probability 

density function (PDF).  This particular function is used for density of a continuous random 

variable that describes the relative likelihood for a random variable to take on a given value or 

outcome 

 Research has been conducted by Koračin et al. (2014) to assess the value of the 

different modes of model verification included but was not limited to ranking forecast 

predictability based on observed and forecast temperature data at the 500 hPa geopotential level.  

The method defines three main parameters for the evaluation of the frontal passages.  The 

parameters are: temperature drop in degrees Celcius over the period of the frontal passage, time 

duration in hours of the temperature decrease, and time-phase differences between observed and 

forecast 500 hPa temperature data were computed and ranked for the 153 ensemble simulations 

completed during the 15-day forecast period for the multi-model ensemble run. 
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Figure 14:  Time-series diagram showing phase-shift 
calculation  for 500hPa  trough axis shift and observed 
shift from KREV observation data over the period of 
the ensemble simulation. 

Figure 13:  Time-series diagram showing ∆t for 
duration of 500hPa temperature decrease and KREV 
observational data. 

The preceding frontal rank data, 

including the root mean square error 

(RMSE) and  BIAS, was used to 

evaluate the multi- model 

predictability for the EPS as a whole 

with statistical rank calculations used 

to evaluate the frontal contributions to 

ensemble predictibility.  

 

Statistical BIAS and RMSE are 

important statistical tools at the 

disposal of ensemble numerical 

modelers to make determinations of 

skill and precision of ensemble 

numerical products.  These 

verification tools enable researchers to 

study how certain physical 

parameterizations affect probabilistic 

forecasts over a range of mass and 

thermal gradients and fluxes. 

 

 The Frontal and Total-Model ranking calculations as displayed in table 2 and table 3, 

utilize three components; delta-T, delta-t, and time phase shift, analyzed to describe the frontal 
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characteristics over the range of ensemble model runs and displayed in figures 12 through 14.  

Another input value is Root Mean Square Error (RMSE) and statistical BIAS data rank data.  

This statistical based rank data is derived from the absolute value of the difference between 500 

hPa temperature radiosonde observations and model data.  The 500 hPa temperature advection 

calculations describe the magnitude of the delta-T values for the period of the ensemble forecast. 

 

   The RMSE is a commonly occurring mean for field forecasts.  It operate on the gridded 

forecast and observed fields by specially averaging the individual squared difference between the 

two values temporally over the domain of model runs initialized for each member of the 

ensemble forecast. 

 

Equations 1 and 2 were used to calculate the RMSE and BIAS for this study, 

respectively. 
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Where N is the total number of forecast (f
nx ) /observation ( o

nx ) pairs over a given space-

time interval, and the superscripts f  and o represent the forecast and observed 500 hPa 

temperature values respectively. RMSE also has the advantage of preserving the units of the 

format variables used in the models provided and is easily interpretable as a typical error 
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magnitude for any analysis completed. In order to evaluate frontal ranking for this study, 

three parameters specific to this frontal ranking analysis were considered and separately ranked.   

These included temperature decrease across the boundary (delta-T), the duration of the 

temperature drop, and the time-phase difference of the cold frontal passage calculated for each of 

the forecast model outputs of the ensemble members used in this research.  Ensemble forecast 

model output for each model run was then compared with representative radiosonde observation 

data for each of the three parameters used in this analysis.  For all members in the ensemble 

forecast group, each front was evaluated separately for rank based on each of these three 

characteristics.  A front rank total was then created by ranking the summation of all analyzed 

fronts for each ensemble forecast member.  Table 1 contains formulas used to calculate the 

temperature change between observed and modeled data for 500hPa over KREV during passage 

of associated 500 hPa upper trough. The temperature values were then used as the basis input 

values for the rank value formulas.  The best rank value is assigned to the lowest calculated value 

for the model predicted ∆T500 values and error.  A front rank was calculated according to the 

below formula with N equal to the number of frontal systems being evaluated.  

 

 Frontal ranking for all frontal systems evaluated during the period of the ensemble model   

runs   was calculated in order to assess the relative predictability of certain ensemble simulations.  

This assessment was applied to the frontal analysis within the period with which the ensemble 

forecast plots were evaluated at their maximum ensemble spread. It was the intent of this 

analytical approach to observe whether individual model simulations among the ensemble 

members actually predicted the regional mesoscale phenomenon as displayed with the associated 

North American Regional Reanalysis (NARR) plot.    Over the spectrum of the ranking data,  
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Table 1(a) The following formulas were used to calculate the temperature decrease between 
observed and modeled data for 500 hPa over KREV during passage of associated 500hPa upper 
trough. (b) This formula was used to calculate the duration of  forecast Temp500hPa decrease 
during period of passage of 500 hPa upper trough over KREV. (c) The final formula was used to 
calculate the phase shift of the 500 hPa trough axis when compared to observed radiosonde data 
over KREV. 

(a) Dtemp Dtemp(RAOB – model data) ABS(Dtemp) 

OBS500 – FCST500 = ∆TEMP500 = [∆TEMP500]abs 

(b) Dtime Dtime( RAOB – model data ) ABS(Dtime)) 

DTimeobs - DTimefcst = [ΔTime]abs 

(c) Shift dShift ( RAOB – model data ) ABS(dShift ) 

Shiftobs – Shift500 = [ΔShift500]abs 

 

calculations for the three forecast fronts simulated by the EPS models, the top ten front 

rankingvalues were compared with calculated   RMSE,    BIAS, and RMSE+BIAS to create a  

comparison scale for all EPS simulations.  The selected EPS simulation having the most 

representative ensemble forecast plots could then be compared to an associated NARR output 

plots. 

 

 Introduced earlier within this section was a discussion of the ensemble model spread at 

the 10-day and 15-days stage of the multi-model simulations.  This property of multi-model 

ensembles at this stage of the model simulations was previously highlighted by Figure 10 and 11, 

illustrating the considerable model simulation spread that developed as a result of non-linear 
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Figure 15: The three panel radial 
plots for the ensemble forecast 
temperature difference for each of 
the three cold fronts identified 
during the period of the ensemble 
simulation. This panel shows 
notable variations in 500 hPa 
temperature as nonlinear processes 
begin to affect model output 
towards the finish of the ensemble 
simulation. 

dynamical processes embedded in 

the model simulation cycle.  In 

Figure 15, each temperature 

profile plotted and included in the 

radial diagrams for the 51 

ensemble model simulations 

plotted a continual increase in 

temperature variability as the 

model simulation process 

progressed forward into the later 

phases of the ensemble run.  Here, 

the three panel temperature radial 

diagrams profiled how non-linear 

processes reduced the symmetry of 

the temperature contours featured 

for each of the three frontal 

passages.  Towards the last 72 



44 
 

 

Figure 16:  The three panel radial plots 
for COAMPS forecast temperature flux 
for each of the three cold fronts 
identified during the period of the 
ensemble simulation. By passage of the 
third cold front, little or no temperature 
change is apparent towards the finals 
stages of the model simulations. 

hours of the ensemble model run, during the approximate period of the passage of the third cold 

front, ∆T values no longer approach or 

cross over the observed ∆T values 

showing a large temperature 

differences towards the end of the 

ensemble simulation.   

 

 Analysis of a comparison of 

frontal rank data to statistical RMSE, 

BIAS, and RMSE+BIAS calculated 

from observed and predicted 500 hPa 

temperature variations for all three 

models featured in the multi-model 

EPS are presented in this research.  

 

Referring to the three panel 

display, Figure 16, the radial 

temperature profile for the first cold 

front illustrates the thermal gradient 
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and cold air advection which is characteristic of a cold frontal passage.  The 500 hPa temperature 

predictions for the 51 model simulations originating from the COAMPS ensemble member 

shows a relatively usual temperature decrease consistent with the initial period of the forecast 

simulation.  Progressing from cold front 1 to cold front 2, frontal temperature gradient profile 

values at 500 hPa begin to vary greatly with 51% of the ensemble simulations continuing to 

show a horizontal thermal gradient to colder temperature values for that particular model 

simulation.  By the time the third cold front moves through western Nevada, the COAMPS 

modeled forecast temperatures for the 500 hPa level showed a considerably weakened thermal 

gradient inconsistent with what was forecasted for the first cold front.  Instead the model 

predictions show weak or no cold air advection as compared to the first cold front influencing the 

model output.  Figure 16 also  illustrates how the COAMPS model almost completely missed the 

third cold front.  The triangular area marked in blue highlights the observed 500 hPa temperature 

decreases associated with both the cold front and upper trough passages.  A modeled thermal 

gradient for the third observed cold front is practically nonexistent over the range of the 

simulation runs.  Does this show a possible discrepancy within the model parameterizations used 

in the COAMPS model itself or can this be used as evidence for . the use of multi-model 

ensemble prediction systems to accurately ascertain the probabilistic outcomes within the 

mesoscale regime? 

 

 Numerical models often focus on a limited special domain in order to achieve high 

resolution for a reasonable calculation time, or a feasible physical size.  Such limitations in the 

size of the model domain imply that the mechanical and thermal evolution of the area located 

outside the model domain need to be taken into account through boundary conditions.  This 
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implies that a modification of the boundary conditions changes the assumptions that are made 

(a)  
Rank 
Count run COAMPS Front1 

rank run MM5  Front1 
rank run WRF  Front1 

rank 
1 run7 10 run19 5 run24 4 
2 run12 11 run24 5 run5 6 
3 run13 12 run21 7 run16 6 

4 run5 13 run22 15 run26 6 
5 run23 14 run27 15 run40 6 

6 run22 15 run17 16 run1 11 
7 run15 16 run4 18 run8 11 
8 run4 17 run31 18 run31 11 

9 run32 18 run20 19 run34 11 
10 run50 19 run39 19 run10 17 
(b)  

Rank 
Count run COAMPS Front2 

rank run MM5  Front2 
rank run WRF  Front2 

rank 
1 run30 14 run26 5 run14 13 
2 run36 15 run36 7 run5 14 
3 run37 16 run8 8 run9 15 
4 run43 17 run35 10 run17 18 
5 run21 19 run10 12 run31 20 
6 run16 22 run30 19 run51 21 
7 run3 23 run5 20 run1 23 
8 run48 28 run11 26 run47 23 
9 run42 31 run31 26 run13 24 

10 run49 32 run3 27 run34 24 
(c)  

Rank 
Count run COAMPS Front3 

rank run MM5  Front3 
rank run WRF  Front3 

rank 
1 run36 7 run18 15 run42 22 
2 run26 11 run37 22 run37 26 
3 run20 22 run19 25 run38 28 
4 run23 25 run22 25 run27 29 
5 run14 26 run27 25 run39 32 
6 run9 27 run16 28 run28 33 
7 run10 28 run21 31 run29 34 
8 run47 30 run9 32 run16 39 
9 run2 31 run12 36 run50 41 

10 run25 32 run25 37 run32 43 

Table 2: The top-ten front rank data for each ensemble member and associated (a): Front 1, (b): 
Front , and (c): Front 3 is included below to include the representative simulation run used to select 
BIAS,RMSE and BIAS+RMSE rank values for error-trend analysis. 
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concerning the thermal and mechanical state of the region outside the model domain.  In other 

words, without control of lateral boundary conditions at the end of a data assimilation window, 

observations close to the lateral boundaries that influence the initial conditions or information 

related to phenomena observed well inside an inner domain during this latter part of the data 

assimilation period may be lost and worsen the subsequent forecast inside the domain.  This may 

be the case with regards to the Navy's Operational Global Atmospheric Prediction System 

(NOGAPS) coarse model data at the data assimilation period consequently affecting Coupled  

Ocean/Atmosphere Mesoscale Prediction System (COAMPS) forecast outputs during the period 

of the simulation run 

 

4.3 Probabilistic analysis of  frontal rank data with statistical measures 

 

 Frontal rank data for all three cold fronts calculated earlier was applied to BIAS, RMSE, 

and RMSE+BIAS derived from 500 hPa ∆T values generated from  the 153  simulation multi- 

model  ensemble forecast run.    The results  from  this analysis showed error trends which  

concurred with the ensemble spreading displayed from the 500 hPa geopotential and temperature 

spaghetti plot results, Figures 10 and 11,  for the 2, 5, 10, and 15 day lead times for the ensemble 

simulation runs conducted for the period of 12-27 December 2008. (Koracin et al. 2014).  Tables 

2 and 3 are included in this section to clarify the selection of the top-ten frontal rank data from 

calculated tabular data for the BIAS, RMSE, and RMSE+BIAS and then plotted in yellow to 

highlight statistical data error trends.  

Table  3: The top-ten Total-Model rank data for each ensemble member and associated front is 
included above to include the representative simulation run used to select BIAS,RMSE and 
BIAS+RMSE rank values for error-trend analysis. 
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Figures 17 through 34 are arranged according to the representative cold front and 

ensemble member.  The blue block arrows overlaid onto the representative BIAS, RMSE, and 

BIAS+RMSE data displays indicate the error trends analyzed subjectively according to the 

general density of the frontal and Total-Model Top-Ten rank inputs from Table 2 and Table 3, 

The top-ten tabular data is highlighted in yellow for each plotted statistical rank data annotated 

for each error-trend   The density of yellow highlighted bars concentrated in either a left or right 

side of the statistical rank display indicates the direction of the decreasing or increasing error 

Rank 
Count

total 
front1

RUN
COAMPS 

Front1 
rank

total 
front1

RUN
MM5  

Front1 rank
total 

front1
RUN

WRF  
Front1 rank

Total-
Model 
Front1

1 4 run5 13 11 run5 24 2 run5 6 17
2 16 run24 27 1 run24 5 1 run24 4 18
3 14 run31 25 7 run31 18 6 run31 11 27
4 8 run4 17 7 run4 18 14 run4 24 29
5 6 run22 15 4 run22 15 27 run22 40 37
6 1 run7 10 11 run7 24 27 run7 40 39
7 20 run26 36 17 run26 37 2 run26 6 39
8 24 run40 40 13 run40 28 2 run40 6 39
9 9 run32 18 21 run32 42 14 run32 24 44

10 22 run17 38 6 run17 16 21 run17 32 49

Rank 
Count

total 
front2

RUN
COAMPS 

Front2 
rank

total 
front2

RUN
MM5 

Front2 rank
total 

front2
RUN

WRF Front2 
rank

Total-
Model 
Front2

1 2 run36 15 2 run36 7 17 run36 34 21
2 1 run30 14 6 run30 19 17 run30 34 24
3 15 run17 42 10 run17 27 4 run17 18 29
4 12 run8 39 3 run8 8 15 run8 31 30
5 23 run5 61 7 run5 20 2 run5 14 32
6 13 run26 40 1 run26 5 20 run26 43 34
7 27 run31 64 8 run31 26 5 run31 20 40
8 11 run9 35 32 run9 84 3 run9 15 46
9 20 run1 58 20 run1 52 7 run1 23 47

10 7 run3 23 10 run3 27 34 run3 78 51

Rank 
Count

total 
front3

RUN
COAMPS 

Front3 
rank

total 
front3

RUN
MM5  

Front3 rank
total 

front3
RUN

WRF  
Front3 rank

Total-
Model 
Front3

1 13 run19 36 3 run19 25 16 run19 51 32
2 14 run22 37 3 run22 25 15 run22 48 32
3 25 run27 57 3 run27 25 4 run27 29 32
4 33 run37 75 2 run37 22 2 run37 26 37
5 3 run20 22 24 run20 61 11 run20 44 38
6 23 run39 56 10 run39 37 5 run39 32 38
7 30 run16 70 6 run16 28 8 run16 39 44
8 4 run23 25 18 run23 58 23 run23 65 45
9 10 run25 32 10 run25 37 26 run25 70 46

10 23 run28 56 17 run28 56 6 run28 33 46
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values.  Left directed arrows indicate trends toward approximate decreasing error; right directed 

arrows are set in the direction of approximate increasing error, and block arrows pointing in both 

directions indicate an approximate neutral condition that exists over the range of simulations vs. 

BIAS, RMSE, and RMSE+BIAS statistical error values.  Neutral results in this study refer to the 

observed error-trend results equally distributed across the range of BIAS, RMSE, and BIAS + 

RMSE error rank diagrams for each of the ensemble members.  Therefore, an error-trend result 

arrow pointing towards the left sides of the diagram indicate a lower error-trend while arrows 

directed to the right indicate an increasing error-trend for that representative classification 

diagram. 

From the data presented in Figures 17 through 21, simulations selected from the top ten 

frontal rank data generally lead to lower error values for BIAS, RMSE, and RMSE+BIAS.  This 

trend is consistent with minimal ensemble spread as exhibited from the day-2 and day-5 

spaghetti plots in figure 10.   Individual model analysis for both Front and Total-Model plots for 

Front 1 showed a neutral trend condition for the COAMPS model while the MM5 and WRF 

models trended towards values indicating lower error for BIAS, RMSE, and BIAS+RMSE.  

Therefore, from the above analysis, MM5 and WRF error trend comparisons for front 1 illustrate 

an ability to verify probabilistically with general confidence that the multi-model ensemble is 

performing generally good with regards to characterizing 500 hPa temperature forecasts.  This is 

in contrast to the COAMPS model which showed ambiguous but neutral results for Front 1 with 

error trends not directed either in less or greater eroor when compared to its associated partner 

ensemble members.  Still, MM5 displayed the best performance with error trends direct towards 

less error for Front  and Total-Model Front 1 analysis plots.   
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 Error trends derived from Figures 23 through 28 and frontal rank data selected from the 

top ten frontal rank data for the front 2 generally trended toward lower error values for BIAS, 

RMSE, and RMSE+BIAS for all three ensemble members. It is interesting that this trend occurs 

during the period of the day-10 ensemble spaghetti plot, Figure 11, where model ensemble 

spread increases initially.  By this time, the passage of the cold front 2 is also taking place during 

this initial period of the day-10 500hPa temperature spaghetti plot.  Upon further examination, 

the MM5 model exclusively trends toward lower error trend values for both Front and Total-

Model for this second front.  This is in contrast to its performance for cold front 1 for the Front 1 

error trend for BIAS, RMSE, and BIAS+RMSE.  The WRF and COAMPS models mostly 

continued a trend toward decreasing error for Front 2,  but the COAMPS remained generally 

neutral for Front 2 Total-Model with the error trend distributed evenly  over the rank values for 

BIAS, RMSE, and BIAS+RMSE. 

 

 

Now looking closer at figures 23 through 28, the MM5 and  WRF model Total-Model 

analysis for front 2 showed the best performance for error trends toward lesser error similar to 

the MM5 Total-Model model  analyzed for front 1. This trend towards reduced error was evident 

for all three statistical arguments; BIAS, RMSE, and BIAS+RMSE.  The COAMPS model  

 Values for BIAS, RMSE, and BIAS+RMSE, a neutral condition is apparent upon direct 

evaluation of RMSE error for both models.  MM5 performance is counter intuitive to com- 

parisons for the cold front 2 tendencies. This further amplifies a sense of confidence with regard 

to the ensemble performance characteristics when using the associated day 10 spaghetti plots 

illustrated in Figure 11. 
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Total-Model analysis for front 2 continued to display an error trend  similar to the front 1 

analysis displaying no definite trend in either  direction as related to less or greater  rank values. 

The top-ten front 2 rank inputs included model run error "hits" evenly distributed over the range 

of statistical error ranks.  It is remarkable that a direct comparison of the MM5 and WRF 

ensemble spaghetti plots for 500 hPa temperature and height, the trend analysis for this dataset 

showed little correlation. Synoptic features displayed on the day 10, 22 December spaghetti plots 

for the COAMPS model, however, showed increased trough structure.  Something that was not 

readily apparent from direct observations of MM5 and WFR outputs 

  



 

 

 

  

Figure 17: Ensemble 
Front 1 Top Ten rank 
data highlighted in 
yellow used for sel- 
ections of associated 
BIAS rank data.  
COAMPS and MM5 
displayed evenly distri-
buted error-trend. Bias 
trends for the WRF 
model indicated a pro- 
bability  of   decreased 

ensemble error when 
considering front 1 
characteristics. 
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Figure 18: Ensemble 
Total-Model Top Ten 
rank data for Front 1 
highlighted in yellow 
used for selections of 
associated BIAS rank 
data. COAMPS and 
WRF displayed evenly 
distributed error-trend. 
Bias trends for the 
MM5 model indicated 
a probability  of   
decreased ensemble 
error relative to front 1. 
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Figure 19: Ensemble 
Front 1 Top Ten rank 
data highlighted in 
yellow used for 
selections of associated 
RMSE rank data.  
COAMPS, MM5, and 
WRF RMSE error- 
trend indicated a  pro- 
bability  of   decreased 
ensemble error asso-
ciated with front 1. 
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  Figure 20: Ensemble 
Total-Model Top Ten 
rank data for Front 1 
highlighted in yellow 
used for selections of 
associated RMSE rank 
data. COAMPS and 
WRF displayed an 
evenly distributed 
error- trend. RMSE 
trends for the MM5 
model indicated a 
probability  of   de-
creased ensemble error 
associated with front 1. 
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  Figure 21: Ensemble 
Front 1 Top Ten rank 
data highlighted in 
yellow used for 
selections of associated 
BIAS+RMSE rank 
data. COAMPS and 
MM5 displayed an 
evenly distributed 
error-trend. Bias+ 
RMSE  trends for the 
WRF model indicated 
a probability  of  de- 
creased ensemble error 
associated with front 1. 
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  Figure 22: Ensemble 
Total-Model Top Ten 
rank data for Front 1 
highlighted in yellow 
used for selections of 
associated BIAS+ 
RMSE rank data. 
COAMPS and WRF 
displayed an evenly 
distributed error- trend. 
BIAS+RMSE error-
trends for the MM5 
model indicated a 
probability of   de-
creased ensemble error 
associated with front 1. 
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  Figure 23: Ensemble 
Front 2 Top Ten rank 
data highlighted in 
yellow used for 
selections of associated 
BIAS rank data. All 
ensemble members 
displayed BIAS error 
trend results indicating 
a probability of   de- 
creased ensemble error 
relative to front 2. 
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  Figure 24: Ensemble 
Total-Model Top Ten 
rank data for Front 2 
highlighted in yellow 
used for selections of 
associated BIAS rank 
data. COAMPS dis-
played an evenly 
distributed error- trend. 
BIAS error-trends for 
the MM5 and WRF 
models indicated a 
probability of   de-
creased ensemble error 
associated with front 2. 
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Figure 25: Ensemble 
Front 2 Top Ten rank 
data highlighted in 
yellow used for 
selections of associated 
RMSE rank data.  
COAMPS and WRF 
displayed an evenly 
distributed error-trend. 
RMSE error-trends for 
the MM5 model 
indicated a probability 
of decreased ensemble 
error associated with 
front 2. 
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  Figure 26: Ensemble 
Total-Model Top Ten 
rank data for Front 2 
highlighted in yellow 
used for selections of 
associated RMSE rank 
data. COAMPS dis- 
played an evenly 
distributed error- trend. 
RMSE error-trends for 
the MM5 and WRF 
models indicated a 
probability of   de-
creased ensemble error 
associated with front 2. 
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Figure 27: Ensemble 
Front 2 Top Ten rank 
data highlighted in 
yellow used for 
selections of associated 
BIAS+RMSE rank 
data. COAMPS and 
WRF indicated a 
probability of   de-
creased ensemble error 
associated with front 2 
when considering 
BIAS+RMSE rank 
data. Error-trends for 
the MM5 model 
displayed an evenly 
distributed error-trend 
for BIAS+RMSE rank 
data associated with 
front 2. 

 
62 

 

 

 



 

  Figure 28: Ensemble 
Total-Model Top Ten 
rank data for Front 2 
highlighted in yellow 
used for selections of 
associated BIAS+ 
RMSE rank data. 
RMSE error-trends for 
the MM5 and WRF 
models indicated a 
probability of   de-
creased ensemble error 
associated with front 2. 
COAMPS displayed an 
evenly distributed 
error-trend comparison 
with BIAS+RMSE 
rank data. 
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  Figure 29: Ensemble 
Front 3 Top Ten rank 
data highlighted in 
yellow used for 
selections of associated 
BIAS rank data. All 
ensemble members 
displayed BIAS error- 
trend results indicating 
a probability of   in- 
creased ensemble error 
relative to BIAS rank 
data for front 3. 

 
64 

 

 

 



 

  Figure 30: Ensemble 
Total-Model Top Ten 
rank data for Front 3 
highlighted in yellow 
used for selections of 
associated BIAS rank 
data.  WRF displayed 
an evenly distributed 
error-trend when com-
pared to BIAS error 
rank data. But BIAS 
error-trends for the 
COAMPS and MM5 
models indicated a 
probability of   in-
creased ensemble error 
associated with front 3. 
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  Figure 31: Ensemble 
Front 3 Top Ten rank 
data highlighted in 
yellow used for 
selections of associated 
RMSE rank data. All 
ensemble members 
displayed RMSE error- 
trend results indicating 
a probability of   in- 
creased ensemble error 
relative to RMSE rank 
data for front 3. 
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Figure 32: Ensemble 
Total-Model Top Ten 
rank data for Front 3 
highlighted in yellow 
used for selections of 
associated RMSE rank 
data. WRF displayed 
an evenly distributed 
error-trend when com-
pared to RMSE error 
rank data. But RMSE 
error-trends for the 
COAMPS and MM5 
models indicated a 
probability of   in-
creased ensemble error 
associated with front 3. 
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  Figure 33: Ensemble 
Front 3 Top Ten rank 
data highlighted in 
yellow used for 
selections of associated 
BIAS+RMSE rank 
data. All ensemble 
members displayed 
BIAS+RMSE error- 
trend results indicating 
a probability of   in- 
creased ensemble error 
relative to BIAS+ 
RMSE rank data for 
front 3. 
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BIAS Figure 34: Ensemble 
Total-Model Top Ten 
rank data for Front 3 
highlighted in yellow 
used for selections of 
associated BIAS+ 
RMSE rank data. All 
ensemble members dis-
played BIAS+RMSE 
error-trend results in-
dicating a probability 
of   increased ensemble 
error relative to BIAS+ 
RMSE rank data for 
front 3. 
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 Analysis of trend performance, figures 29, 31, and 33 for the cold front 3 showed an error 

trend in an opposing direction as compared to the analysis of the previous two cold fronts. 

Consequently, selection from statistical measures from the frontal top ten rank analyses for the 

cold front 3 generally exhibited an error trend toward increased ensemble model error.  When 

considering error trend plots for the Front 3 alone, 100% of the error trend plots indicate 

increased model error with trend values directed toward increase error. On visual examination of 

day 15 spaghetti plots, Figure 11,  associated with cold front 3, little symmetry remained both 

spatially and temporally late in the forecast simulation during the 36 hour period from 0000Z, 25 

December through 1200Z, 26 December 2008.  This trend, furthermore,  correlates well with 

maximum ensemble spread as illustrated in Figure 11.  This trend analysis illustrated strong 

nonlinear processes beginning to play an active role in the ensemble probabilistic forecast 

process.    

 

 Looking at the final error trend analysis for Front 3 as shown in Figures 30, 32, and 34, 

the Total-Model Top-Ten plots showed error analysis distributed generally in a direction towards 

increased statistical error. The COAMPS and MM5 Total-Model error trend analysis is directed 

towards higher statistical error with Total-Model Top Ten plots lighted in the region of increased 

error for all three statistical measures.  This error trend again correlates with the associated 

15days - 27 December spaghetti plot diagrams, Figure 11, where ensemble spread is at its 

maximum extent.  Error trend analysis applied to Bias, RMSE, and BIAS+RMSE statistical error 

ranking showed a top-ten total model rank data distribution towards higher error with the 

exception of the WRF model. The WRF Total-Model error trend analysis showed no definite 

top-ten total model run rank distribution across the range of statistical BIAS and RMSE ranks.  
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This is in contrast to the other ensemble members with trend results exhibiting ambiguous results  

where comparison data approximately spread evenly across the range of rank data for BIAS and 

RMSE..  Again, this error trend correlates to the increased ensemble spreading evident at the 15 

days-27 December spaghetti plot diagram displayed in figure 11.  

 

 In the preceding eighteen figures, an error trend analysis technique was used to evaluate 

the ensemble model error as it relates to the frontal ranking for each of the three fronts observed 

during the period of the ensemble simulation. The error trends applied to the total model data 

ranking for each front displayed an associated with ensemble model error.  For the first two 

fronts observed during the 12 – 27 December 2008 simulation, trends point towards less error 

rates and reduced ensemble spread as shown on the 2 days-14 December spaghetti plot, Figure 

10.  For front 3 ( Figure 29 through Figure 34), however, the trend analysis generally favored 

increasing error spread for the 10 days-22 December and 15 days-27 December spaghetti plots as 

seen in Figures 10 and Figure 11. 

 

 Can it be said implicitly that, with a direct subjective comparison of basic statistical 

measures; BIAS, RMSE, and BIAS+RMSE, with mesoscale frontal ranking data over the range 

of finite ensemble simulation statistically emulate the varied distribution that would be expected 

for a PDF distribution using standard statistical analysis tools?  
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5.0 Summary and conclusion: 

 

  For all datasets used in this study, a total of 153 ensemble members using COAMPS, 

MM5, and WRF were produced at the inner domain set at a horizontal resolution of 36 km.  All 

models exhibited statistically reasonable expectations in the use for the multi-model EPS and 

standard statistics (RMSE and BIAS).  Previous research, Koračin et al. (2014), using this 

stochastic predictive approach confirmed that this multi-model ensemble combination clearly 

improved the accuracy of the forecast compared to each model when evaluated separately for all 

considered parameters.  In addition, this research  determined that all models showed error 

growth significantly of greater magnitude and occurring sooner than the standard error growth 

formula.   According to Koračin el al. (2014), during the later stage of the forecast period (lead 

time of ten days and more), all models showed enhanced spread as evident in the corresponding 

time-series and spaghetti plot diagrams.  Also in Koračin el al. (2014), the spaghetti diagram for 

COAMPS showed considerable ensemble error spreading prior to the MM5 and WRF ensemble 

members during the same forecast period.  Following precursor analysis of ensemble simulation 

results,   non-linear and chaotic behavior increased during the final five-day period when 

compared to the first five days of the ensemble forecast period.  This non-linear dynamical 

evolution towards the completion of the model simulation further highlighted the need to 

incorporate those statistical tools necessary to gain insight into the evaluation and assignment of 

error growth correlations during the development of these deterministic processes. 

 

 In Grimit eo al.(2006), it has been shown in prior research that by measuring the 

ensemble spread -- error relationship with a probabilistic approach, the stochastic ensemble 

spread-error distribution was characterized by increasing scatter as the ensemble spread grew 
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larger. Also, Grimit et al. (2006) emphasized the the relationship between ensemble spread and 

deterministic forecast accuracy has been used as a measure of the success of using ensemble 

prediction systems as a means to enhance numerical prediction over medium and long-range 

forecast periods.  Ensemble prediction will continue to be the next logical step in the 

development of a numerical process to consolidate the stochastic and probabilistic approaches 

toward more accurate numerical weather prediction.  The calculation of the magnitude of 

ensemble model error through the use of a statistical distribution of all possible outcomes, i.e.,  

trend analysis, can incorporation improved variety of physical parameterizations embedded in 

the regional and /or global EPS, the resultant  mean “best guess” , which is then analyzed and 

further developed from the subsequent measurement of the numerical ensemble spread will lead 

to enhancements in the ensemble forecast prediction process.  Ensemble model predictions rely 

heavily upon an accurate variety of physical parameterizations embedded in regional and global 

EPS to accomplish the computation of a precise ensemble mean.  Ensemble error trend analysis 

can be an effective means to analyze the process efficiency of the physical parameterizations 

included in a particular multi-model ensemble prediction system. Once the efficiency of the 

physical parameterizations has been established, the focus can be directed towards determining 

how well the process achieves the predictability of certain mesoscale meteorological feature, in 

this case three cold fronts within the context of the Meso-(alpha) range occurring over the period 

of the simulations. 

 

  Although the basis of this research is simple in execution, can techniques commonly 

applied within the context of statistical analysis add validity in assessing probabilistic prediction 

outcomes? Using predictive -- observation measurements and then employing simple statistical 
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tools like BIAS and RMSE, as well as variations of both, can be used as a means to further 

evaluate and mitigate ensemble model error.  This approach has shown that it can be another 

analysis instrument to evaluate both synoptic and mesoscale probabilistic tendencies. It remains, 

however, dependent upon the fidelity of the model forecast and observation temperature and 

height datasets available.  The sensitivity to calculate with precision the error trends based solely 

on statistical ranking displayed the greatest correlation when the third front appeared at the end 

of the forecast run. At this point, ensemble model spread advanced to its largest extent by day 15 

of the model run.   With reference to ensemble forecast prediction verification, the use of basic 

statistical measures presented beforehand may be able to specify the specific physical 

parameterizations that have the greatest influence upon multi-model for error covariance and 

predictability.  This, in turn, will enable the use of model rank output as a means to balance 

forecast predictability.  In research to come, these model physical processes can be retooled to 

make possible the assignment of a predictability factor to certain mesoscale frontal features; such 

as, temperature flux, surface and upper level dynamics, and precipitable water. 
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Appendix A 

 
Ensemble Physical Parameterizations 
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Table 1A.  Ensemble  simulation set  of physical parameterizations for MM5. 
 
Experiment MM5 (PBL) MM5 (microphysics) MM5 (Cumulus) MM5 (Radiation)

Control Eta M-Y Reisner 2 Kain-Fritsch RRTM (FRAD=4)

1 Eta M-Y Reisner 2 Grell CCM2 (FRAD=2)

2 Eta M-Y Simple ice (Dudhia) Grell Dudhia (FRAD=2)

3 Eta M-Y Goddard (GFSC) Grell Dudhia (FRAD=2)

4 Eta M-Y Reisner 2 Betts-Miller CCM2 (FRAD=2)

5 Eta M-Y Reisner 2 Grell Dudhia (FRAD=2)

6 Eta M-Y Schultz Betts-Miller Dudhia (FRAD=2)

7 Eta M-Y Simple ice (Dudhia) Grell CCM2 (FRAD=2)

8 Eta M-Y Goddard (GFSC) Betts-Miller Dudhia (FRAD=2)

9 Eta M-Y Reisner (no graupel) Kain-Fritsch Simple cloud (FRAD=1)

10 Eta M-Y Reisner 2 Betts-Miller RRTM (FRAD=4)

11 Eta M-Y Simple ice (Dudhia) Betts-Miller Dudhia (FRAD=2)

12 Eta M-Y Simple ice (Dudhia) Betts-Miller CCM2 (FRAD=2)

13 Gayno-Seaman Schultz Betts-Miller CCM2 (FRAD=2)

14 Gayno-Seaman Goddard (GFSC) Betts-Miller CCM2 (FRAD=2)

15 Gayno-Seaman Reisner 2 Grell Dudhia (FRAD=2)

16 Blackadar Schultz Kain-Fritsch RRTM (FRAD=4)

17 Gayno-Seaman Reisner 2 Betts-Miller CCM2 (FRAD=2)

18 Blackadar Simple ice (Dudhia) Grell Dudhia (FRAD=2)

19 Gayno-Seaman Goddard (GFSC) Grell Simple cloud (FRAD=1)

20 Gayno-Seaman Schultz Kain-Fritsch Dudhia (FRAD=2)

21 Gayno-Seaman Simple ice (Dudhia) Grell CCM2 (FRAD=2)

22 Gayno-Seaman Goddard (GFSC) Kain-Fritsch Simple cloud (FRAD=1)

23 Gayno-Seaman Simple ice (Dudhia) Kain-Fritsch RRTM (FRAD=4)

24 Gayno-Seaman Goddard (GFSC) Grell Dudhia (FRAD=2)

25 Gayno-Seaman Goddard (GFSC) Kain-Fritsch CCM2 (FRAD=2)

26 Gayno-Seaman Goddard (GFSC) Betts-Miller RRTM (FRAD=4)

27 Gayno-Seaman Simple ice (Dudhia) Kain-Fritsch Simple cloud (FRAD=1)

28 Blackadar Schultz Kain-Fritsch CCM2 (FRAD=2)

29 Gayno-Seaman Reisner 2 Kain-Fritsch Simple cloud (FRAD=1)

30 Burk-Thompson Reisner 2 Betts-Miller Simple cloud (FRAD=1)

31 Burk-Thompson Simple ice (Dudhia) Betts-Miller Simple cloud (FRAD=1)

32 Burk-Thompson Reisner 2 Kain-Fritsch Dudhia (FRAD=2)

33 Burk-Thompson Reisner 2 Betts-Miller RRTM (FRAD=4)

34 Burk-Thompson Simple ice (Dudhia) Betts-Miller RRTM (FRAD=4)

35 Burk-Thompson Reisner 2 Betts-Miller Dudhia (FRAD=2)

36 Burk-Thompson Goddard (GFSC) Grell CCM2 (FRAD=2)

37 Burk-Thompson Simple ice (Dudhia) Betts-Miller CCM2 (FRAD=2)

38 Burk-Thompson Schultz Betts-Miller Dudhia (FRAD=2)

39 Burk-Thompson Reisner 2 Kain-Fritsch Simple cloud (FRAD=1)

40 Burk-Thompson Goddard (GFSC) Kain-Fritsch Simple cloud (FRAD=1)

41 MRF Reisner 2 Kain-Fritsch Dudhia (FRAD=2)

42 MRF Simple ice (Dudhia) Betts-Miller Dudhia (FRAD=2)

43 MRF Reisner 2 Grell CCM2 (FRAD=2)

44 MRF Reisner 2 Kain-Fritsch RRTM (FRAD=4)

45 MRF Schultz Grell CCM2 (FRAD=2)

46 MRF Schultz Betts-Miller RRTM (FRAD=4)

47 MRF Simple ice (Dudhia) Kain-Fritsch RRTM (FRAD=4)

48 MRF Goddard (GFSC) Betts-Miller RRTM (FRAD=4)

49 MRF Simple ice (Dudhia) Grell CCM2 (FRAD=2)

50 MRF Simple ice (Dudhia) Grell Dudhia (FRAD=2)  
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Table 2A.  Ensemble  simulation set  of physical parameterizations for WRF. 
 
Experiment WRF (PBL) WRF (Microphysics) WRF (Cumulus) WRF (Radiation)

Control Mellor-Yamada-Jan Thompson Kain-Fritsch Dudhia/RRTM

1 Mellor-Yamada-Jan Goddard microphysics Betts-Miller GFDL/GFDL

2 Mellor-Yamada-Jan Goddard microphysics Kain-Fritsch GFDL/GFDL

3 Mellor-Yamada-Jan Lin Kain-Fritsch Goddard/RRTM

4 Mellor-Yamada-Jan ETA microphysics Kain-Fritsch GFDL/GFDL

5 Mellor-Yamada-Jan ETA microphysics Betts-Miller CAM/CAM

6 Mellor-Yamada-Jan ETA microphysics Kain-Fritsch CAM/CAM

7 Mellor-Yamada-Jan Thompson Betts-Miller Dudhia/RRTM

8 Mellor-Yamada-Jan Goddard microphysics Grell-Devenyi GFDL/GFDL

9 Mellor-Yamada-Jan Goddard microphysics Betts-Miller CAM/CAM

10 Mellor-Yamada-Jan Thompson Betts-Miller CAM/CAM

11 Mellor-Yamada-Jan Thompson Betts-Miller Goddard/RRTM

12 Mellor-Yamada-Jan Lin Grell-Devenyi Goddard/RRTM

13 Mellor-Yamada-Jan Lin Betts-Miller GFDL/GFDL

14 Mellor-Yamada-Jan Goddard microphysics Betts-Miller GFDL/RRTM

15 Mellor-Yamada-Jan Lin et al. Kain-Fritsch Dudhia/GFDL

16 Mellor-Yamada-Jan ETA microphysics Kain-Fritsch Dudhia/CAM

17 Mellor-Yamada-Jan WRF-single mom (6) Betts-Miller Goddard/RRTM

18 Mellor-Yamada-Jan WRF-single mom (3) Kain-Fritsch Dudhia/RRTM

19 Mellor-Yamada-Jan Morrison Kain-Fritsch Goddard/RRTM

20 Mellor-Yamada-Jan Morrison Betts-Miller Goddard/RRTM

21 Mellor-Yamada-Jan Morrison Grell-Devenyi Goddard/RRTM

22 YSU (new MRF) ETA microphysics Kain-Fritsch GFDL/GFDL

23 YSU (new MRF) Lin Betts-Miller GFDL/GFDL

24 YSU (new MRF) Goddard microphysics Betts-Miller Goddard/RRTM

25 YSU (new MRF) Lin Kain-Fritsch CAM/CAM

26 YSU (new MRF) Lin Betts-Miller CAM/CAM

27 YSU (new MRF) Goddard microphysics Betts-Miller Dudhia/RRTM

28 YSU (new MRF) Thompson Grell-Devenyi GFDL/GFDL

29 YSU (new MRF) ETA microphysics Betts-Miller Goddard/RRTM

30 YSU (new MRF) ETA microphysics Kain-Fritsch CAM/CAM

31 YSU (new MRF) Morrison Kain-Fritsch Goddard/RRTM

32 YSU (new MRF) WRF-single mom (6) Kain-Fritsch Goddard/RRTM

33 YSU (new MRF) WRF-single mom (3) Betts-Miller Dudhia/RRTM

34 YSU (new MRF) WRF-single mom (6) Betts-Miller CAM/CAM

35 Pleim-Xiu ETA microphysics Betts-Miller Goddard/RRTM

36 Pleim-Xiu Lin Betts-Miller Goddard/RRTM

37 Pleim-Xiu ETA microphysics Grell-Devenyi GFDL/GFDL

38 Pleim-Xiu Goddard microphysics Grell-Devenyi Dudhia/RRTM

39 Pleim-Xiu Lin Kain-Fritsch GFDL/GFDL

40 Pleim-Xiu Thompson Kain-Fritsch GFDL/GFDL

41 Pleim-Xiu Goddard microphysics Grell-Devenyi CAM/CAM

42 Pleim-Xiu Goddard microphysics Kain-Fritsch CAM/CAM

43 Pleim-Xiu WRF-single mom (6) Kain-Fritsch Goddard/RRTM

44 Pleim-Xiu Morrison Kain-Fritsch Goddard/RRTM

45 Pleim-Xiu Lin et al. Kain-Fritsch CAM/CAM

46 Pleim-Xiu Goddard microphysics Betts-Miller Dudhia/RRTM

47 Pleim-Xiu Lin Betts-Miller Dudhia/RRTM

48 Pleim-Xiu Lin Grell-Devenyi Dudhia/RRTM

49 Pleim-Xiu Goddard microphysics Grell-Devenyi Dudhia/RRTM

50 Pleim-Xiu Lin Kain-Fritsch GFDL/GFDL  
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Table 3A.  Ensemble  simulation set  of physical parameterizations for COAMPS. 
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Table 1B.  Front 1: Ensemble ranking with respect to physical parameterizations for 
COAMPS. 
 

counter Run TOTAL rank PBL dxmeso* Ice nucleation Autoconversion factor

1 run1 35 Mellor-Yamada(MY) 50000 Cooper and Haines (1986) 0.0004

2 run2 52 Mellor-Yamada 10000 Cooper and Haines (1986) 0.0004

3 run3 54 Mellor-Yamada 150000 Cooper and Haines (1986) 0.0004

4 run4 15 Mellor-Yamada 150000 Cooper and Haines (1986) 0.0004

5 run5 11 Mellor-Yamada 50000 Cooper and Haines (1986) 0.0004

6 run6 27 Mellor-Yamada 10000 Cooper and Haines (1986) 0.0004

7 run7 8 Mellor-Yamada 150000 Fletcher (1962) 0.0004

8 run8 28 Mellor-Yamada 50000 Fletcher (1962) 0.0004

9 run9 50 Mellor-Yamada 10000 Fletcher (1962) 0.0004

10 run10 49 Mellor-Yamada 10000 Fletcher (1962) 0.001 default

11 run11 29 Mellor-Yamada 50000 Fletcher (1962) 0.001 default

12 run12 9 Mellor-Yamada 150000 Fletcher (1962) 0.001 default

13 run13 10 Mellor-Yamada 50000 Cooper and Haines (1986) 0.001 default

14 run14 24 Mellor-Yamada 10000 Cooper and Haines (1986) 0.001 default

15 run15 14 Mellor-Yamada 150000 Cooper and Haines (1986) 0.001 default

16 run16 33 Mellor-Yamada 150000 Cooper and Haines (1986) 0.001 default

17 run17 36 Mellor-Yamada 50000 Cooper and Haines (1986) 0.001 default

18 run18 53 Mellor-Yamada 10000 Cooper and Haines (1986) 0.001 default

19 run19 54 Mellor-Yamada 10000 Cooper and Haines (1986) 0.002

20 run20 43 Mellor-Yamada 50000 Cooper and Haines (1986) 0.002

21 run21 30 Mellor-Yamada 150000 Cooper and Haines (1986) 0.002

22 run22 13 Mellor-Yamada 150000 Cooper and Haines (1986) 0.002

23 run23 12 Mellor-Yamada 50000 Cooper and Haines (1986) 0.002

24 run24 25 Mellor-Yamada 10000 Cooper and Haines (1986) 0.002

25 run25 52 Mellor-Yamada 10000 Fletcher (1962) 0.002

26 run26 34 Mellor-Yamada 50000 Fletcher (1962) 0.002

27 run27 7 Mellor-Yamada 150000 Fletcher (1962) 0.002

28 run28 54 Modified MY version 10000 Cooper and Haines (1986) 0.0004

29 run29 46 Modified MY version 50000 Cooper and Haines (1986) 0.0004

30 run30 19 Modified MY version 150000 Cooper and Haines (1986) 0.0004

31 run31 23 Modified MY version 150000 Cooper and Haines (1986) 0.0004

32 run32 16 Modified MY version 50000 Cooper and Haines (1986) 0.0004

33 run33 40 Modified MY version 10000 Cooper and Haines (1986) 0.0004

34 run34 47 Modified MY version 10000 Fletcher (1962) 0.0004

35 run35 37 Modified MY version 50000 Fletcher (1962) 0.0004

36 run36 33 Modified MY version 150000 Fletcher (1962) 0.0004

37 run37 32 Modified MY version 150000 Fletcher (1962) 0.001 default

38 run38 41 Modified MY version 50000 Fletcher (1962) 0.001 default

39 run39 44 Modified MY version 10000 Fletcher (1962) 0.001 default

40 run40 38 Modified MY version 10000 Cooper and Haines (1986) 0.001 default

41 run41 18 Modified MY version 50000 Cooper and Haines (1986) 0.001 default

42 run42 21 Modified MY version 150000 Cooper and Haines (1986) 0.001 default

43 run43 23 Modified MY version 150000 Cooper and Haines (1986) 0.001 default

44 run44 45 Modified MY version 50000 Cooper and Haines (1986) 0.001 default

45 run45 51 Modified MY version 10000 Cooper and Haines (1986) 0.001 default

46 run46 48 Modified MY version 10000 Cooper and Haines (1986) 0.002

47 run47 42 Modified MY version 50000 Cooper and Haines (1986) 0.002

48 run48 27 Modified MY version 150000 Cooper and Haines (1986) 0.002

49 run49 20 Modified MY version 150000 Cooper and Haines (1986) 0.002

50 run50 17 Modified MY version 50000 Cooper and Haines (1986) 0.002

51 run51 39 Modified MY version 10000 Cooper and Haines (1986) 0.002

COAMPS Front 1
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Table 2B.  Front 1: Ensemble ranking with respect to physical parameterizations for MM5. 
 

counter Run TOTAL rank MM5 (PBL) MM5 (Microphysics) MM5 (Cumulus) MM5 (Radiation)

1 run1 26 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

2 run2 25 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

3 run3 33 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

4 run4 8 Eta M-Y (IBLTYP=4) Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

5 run5 11 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

6 run6 27 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

7 run7 11 Eta M-Y (IBLTYP=4) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

8 run8 23 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

9 run9 16 Eta M-Y (IBLTYP=4) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

10 run10 15 Eta M-Y (IBLTYP=4) Reisner  (no graupel) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

11 run11 16 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS = 7) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

12 run12 17 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

13 run13 22 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

14 run14 14 Gayno-Seaman (IBLTYP=6) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

15 run15 11 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

16 run16 19 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

17 run17 7 Blackadar Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

18 run18 23 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

19 run19 5 Blackadar Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

20 run20 11 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Simple cloud (FRAD=1)

21 run21 6 Gayno-Seaman (IBLTYP=6) Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)

22 run22 10 Gayno-Seaman (IBLTYP=6) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

23 run23 21 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

24 run24 5 Gayno-Seaman (IBLTYP=6) Simple ice (Dudhia) (IMPHYS=4) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

25 run25 23 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

26 run26 16 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) CCM2 (FRAD=3)

27 run27 10 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

28 run28 19 Gayno-Seaman (IBLTYP=6) Simple ice (Dudhia) (IMPHYS=4) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

29 run29 17 Blackadar Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) CCM2 (FRAD=3)

30 run30 15 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

31 run31 8 Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) Simple cloud (FRAD=1)

32 run32 10Burk-Thompson (IBLTYP=3,ISOIL=0)Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) Simple cloud (FRAD=1)

33 run33 23Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)

34 run34 10Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

35 run35 15Burk-Thompson (IBLTYP=3,ISOIL=0)Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

36 run36 14Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

37 run37 18Burk-Thompson (IBLTYP=3,ISOIL=0)Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

38 run38 23Burk-Thompson (IBLTYP=3,ISOIL=0)Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

39 run39 11Burk-Thompson (IBLTYP=3,ISOIL=0) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

40 run40 12Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

41 run41 26Burk-Thompson (IBLTYP=3,ISOIL=0)Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

42 run42 35 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)

43 run43 9 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

44 run44 28 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

45 run45 34 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

46 run46 31 MRF (IBLTYP=5) Schultz (IMPHYS=8) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

47 run47 24 MRF (IBLTYP=5) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

48 run48 23 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

49 run49 31 MRF (IBLTYP=5) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

50 run50 28 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

51 run51 13 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

MM5 Front 1
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Table 3B.  Front 1: Ensemble ranking with respect to physical parameterizations for WRF. 
 

counter Run TOTAL rank WRF (PBL) WRF (Microphysics) WRF (Cumulus) WRF (Radiation)

1 run1 7 Mellor-Yamada-Jan Thompson (MM5 : Reisner 2) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/RRTM

2 run2 12 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) GFDL/GFDL (Not in MM5)

3 run3 23 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

4 run4 10 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

5 run5 6 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

6 run6 13 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Betts-Miller (MM5: Betts-Miller) CAM/CAM

7 run7 16 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

8 run8 7 Mellor-Yamada-Jan Thompson (MM5 : Reisner 2) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

9 run9 12 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) GFDL/GFDL

10 run10 8 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) CAM/CAM

11 run11 10 Mellor-Yamada-Jan Thompson (MM5 : Reisner 2) Betts-Miller (MM5: Betts-Miller) CAM/CAM

12 run12 17 Mellor-Yamada-Jan Thompson (MM5 : Reisner 2) Betts-Miller (MM5: Betts-Miller) Goodard/RRTM

13 run13 17 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Goddard/RRTM

14 run14 13 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) GFDL/GFDL

15 run15 11 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) GFDL/RRTM

16 run16 6 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/GFDL

17 run17 13 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/CAM

18 run18 13 Mellor-Yamada-Jan WRF-single mom (6) (MM5: Reisner 1) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

19 run19 8 Mellor-Yamada-Jan WRF-single mom (3) (MM5: simple ice) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/RRTM

20 run20 18 Mellor-Yamada-Jan Morrison (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

21 run21 8 Mellor-Yamada-Jan Morrison (Not in MM5) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

22 run22 16 Mellor-Yamada-Jan Morrison (Not in MM5) Grell-Devenyi (MM5: Grell scheme) Goddard/RRTM

23 run23 15 YSU (new MRF) Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

24 run24 4 YSU (new MRF) Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) GFDL/GFDL

25 run25 9 YSU (new MRF) Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

26 run26 6 YSU (new MRF) Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

27 run27 16 YSU (new MRF) Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) CAM/CAM

28 run28 18 YSU (new MRF) Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

29 run29 11 YSU (new MRF) Thompson (MM5 : Reisner 2) Grell-Devenyi (MM5: Grell scheme) GFDL/GFDL

30 run30 6 YSU (new MRF) Eta microphysics (Not in MM5) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

31 run31 7 YSU (new MRF) Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

32 run32 11 YSU (new MRF) Morrison (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

33 run33 15 YSU (new MRF) WRF-single mom(6) (MM5: Reisner 1) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

34 run34 7 YSU (new MRF) WRF-single mom(3) (MM5: Simple ice) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

35 run35 9 YSU (new MRF) WRF-single mom(6) (MM5: Reisner 1) Betts-Miller (MM5: Betts-Miller) CAM/CAM

36 run36 8 Pleim-Xiu Eta microphysics (Not in MM5) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

37 run37 15 Pleim-Xiu Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

38 run38 20 Pleim-Xiu Eta microphysics (Not in MM5) Grell-Devenyi (MM5: Grell scheme) GFDL/GFDL

39 run39 22 Pleim-Xiu Goddard microphysics (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Dudhia/RRTM

40 run40 6 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

41 run41 19 Pleim-Xiu Thompson (MM5 : Reisner 2) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

42 run42 16 Pleim-Xiu Goddard microphysics (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) CAM/CAM

43 run43 9 Pleim-Xiu Goddard microphysics (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

44 run44 11 Pleim-Xiu WRF-single mom(6) (MM5: Reisner 1) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

45 run45 10 Pleim-Xiu Morrison (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

46 run46 18 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

47 run47 16 Pleim-Xiu Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

48 run48 20 Pleim-Xiu Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

49 run49 12 Pleim-Xiu Lin et al. (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Dudhia/RRTM

50 run50 7 Pleim-Xiu Goddard microphysics (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Dudhia/RRTM

51 run51 21 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

WRF Front 1
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Table 4B. Front 2: Ensemble ranking with respect to physical parameterizations for 
COAMPS. 
 

counter Run TOTAL rank PBL dxmeso* Ice nucleation Autoconversion factor

1 run1 47 Mellor-Yamada(MY) 50000 Cooper and Haines (1986) 0.0004

2 run2 51 Mellor-Yamada 10000 Cooper and Haines (1986) 0.0004

3 run3 14 Mellor-Yamada 150000 Cooper and Haines (1986) 0.0004

4 run4 49 Mellor-Yamada 150000 Cooper and Haines (1986) 0.0004

5 run5 31 Mellor-Yamada 50000 Cooper and Haines (1986) 0.0004

6 run6 41 Mellor-Yamada 10000 Cooper and Haines (1986) 0.0004

7 run7 47 Mellor-Yamada 150000 Fletcher (1962) 0.0004

8 run8 17 Mellor-Yamada 50000 Fletcher (1962) 0.0004

9 run9 15 Mellor-Yamada 10000 Fletcher (1962) 0.0004

10 run10 47 Mellor-Yamada 10000 Fletcher (1962) 0.001 default

11 run11 50 Mellor-Yamada 50000 Fletcher (1962) 0.001 default

12 run12 38 Mellor-Yamada 150000 Fletcher (1962) 0.001 default

13 run13 33 Mellor-Yamada 50000 Cooper and Haines (1986) 0.001 default

14 run14 36 Mellor-Yamada 10000 Cooper and Haines (1986) 0.001 default

15 run15 39 Mellor-Yamada 150000 Cooper and Haines (1986) 0.001 default

16 run16 13 Mellor-Yamada 150000 Cooper and Haines (1986) 0.001 default

17 run17 22 Mellor-Yamada 50000 Cooper and Haines (1986) 0.001 default

18 run18 29 Mellor-Yamada 10000 Cooper and Haines (1986) 0.001 default

19 run19 43 Mellor-Yamada 10000 Cooper and Haines (1986) 0.002

20 run20 41 Mellor-Yamada 50000 Cooper and Haines (1986) 0.002

21 run21 10 Mellor-Yamada 150000 Cooper and Haines (1986) 0.002

22 run22 55 Mellor-Yamada 150000 Cooper and Haines (1986) 0.002

23 run23 52 Mellor-Yamada 50000 Cooper and Haines (1986) 0.002

24 run24 53 Mellor-Yamada 10000 Cooper and Haines (1986) 0.002

25 run25 19 Mellor-Yamada 10000 Fletcher (1962) 0.002

26 run26 18 Mellor-Yamada 50000 Fletcher (1962) 0.002

27 run27 53 Mellor-Yamada 150000 Fletcher (1962) 0.002

28 run28 34 Modified MY version 10000 Cooper and Haines (1986) 0.0004

29 run29 31 Modified MY version 50000 Cooper and Haines (1986) 0.0004

30 run30 5 Modified MY version 150000 Cooper and Haines (1986) 0.0004

31 run31 43 Modified MY version 150000 Cooper and Haines (1986) 0.0004

32 run32 26 Modified MY version 50000 Cooper and Haines (1986) 0.0004

33 run33 38 Modified MY version 10000 Cooper and Haines (1986) 0.0004

34 run34 29 Modified MY version 10000 Fletcher (1962) 0.0004

35 run35 23 Modified MY version 50000 Fletcher (1962) 0.0004

36 run36 6 Modified MY version 150000 Fletcher (1962) 0.0004

37 run37 7 Modified MY version 150000 Fletcher (1962) 0.001 default

38 run38 27 Modified MY version 50000 Fletcher (1962) 0.001 default

39 run39 43 Modified MY version 10000 Fletcher (1962) 0.001 default

40 run40 37 Modified MY version 10000 Cooper and Haines (1986) 0.001 default

41 run41 30 Modified MY version 50000 Cooper and Haines (1986) 0.001 default

42 run42 12 Modified MY version 150000 Cooper and Haines (1986) 0.001 default

43 run43 8 Modified MY version 150000 Cooper and Haines (1986) 0.001 default

44 run44 35 Modified MY version 50000 Cooper and Haines (1986) 0.001 default

45 run45 28 Modified MY version 10000 Cooper and Haines (1986) 0.001 default

46 run46 38 Modified MY version 10000 Cooper and Haines (1986) 0.002

47 run47 40 Modified MY version 50000 Cooper and Haines (1986) 0.002

48 run48 9 Modified MY version 150000 Cooper and Haines (1986) 0.002

49 run49 13 Modified MY version 150000 Cooper and Haines (1986) 0.002

50 run50 22 Modified MY version 50000 Cooper and Haines (1986) 0.002

51 run51 23 Modified MY version 10000 Cooper and Haines (1986) 0.002
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Table 5B.  Front 2: Ensemble ranking with respect to physical parameterizations for MM5. 
 

counter Run TOTAL rank MM5 (PBL) MM5 (Microphysics) MM5 (Cumulus) MM5 (Radiation)

1 run1 34 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

2 run2 27 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

3 run3 13 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

4 run4 14 Eta M-Y (IBLTYP=4) Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

5 run5 19 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

6 run6 19 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

7 run7 33 Eta M-Y (IBLTYP=4) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

8 run8 7 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

9 run9 38 Eta M-Y (IBLTYP=4) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

10 run10 11 Eta M-Y (IBLTYP=4) Reisner  (no graupel) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

11 run11 9 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS = 7) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

12 run12 42 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

13 run13 31 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

14 run14 8 Gayno-Seaman (IBLTYP=6) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

15 run15 35 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

16 run16 33 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

17 run17 14 Blackadar Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

18 run18 44 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

19 run19 47 Blackadar Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

20 run20 42 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Simple cloud (FRAD=1)

21 run21 40 Gayno-Seaman (IBLTYP=6) Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)

22 run22 37 Gayno-Seaman (IBLTYP=6) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

23 run23 32 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

24 run24 36 Gayno-Seaman (IBLTYP=6) Simple ice (Dudhia) (IMPHYS=4) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

25 run25 39 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

26 run26 4 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) CCM2 (FRAD=3)

27 run27 37 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

28 run28 34 Gayno-Seaman (IBLTYP=6) Simple ice (Dudhia) (IMPHYS=4) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

29 run29 24 Blackadar Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) CCM2 (FRAD=3)

30 run30 19 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

31 run31 24Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) Simple cloud (FRAD=1)

32 run32 46Burk-Thompson (IBLTYP=3,ISOIL=0)Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) Simple cloud (FRAD=1)

33 run33 11Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)

34 run34 27Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

35 run35 9 Burk-Thompson (IBLTYP=3,ISOIL=0)Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

36 run36 6 Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

37 run37 28Burk-Thompson (IBLTYP=3,ISOIL=0)Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

38 run38 21Burk-Thompson (IBLTYP=3,ISOIL=0)Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

39 run39 34Burk-Thompson (IBLTYP=3,ISOIL=0) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

40 run40 18Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

41 run41 44Burk-Thompson (IBLTYP=3,ISOIL=0)Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

42 run42 42 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)

43 run43 20 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

44 run44 18 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

45 run45 23 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

46 run46 35 MRF (IBLTYP=5) Schultz (IMPHYS=8) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

47 run47 29 MRF (IBLTYP=5) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

48 run48 40 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

49 run49 42 MRF (IBLTYP=5) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

50 run50 43 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

51 run51 47 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
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Table 6B.  Front 2: Ensemble ranking with respect to physical parameterizations for WRF. 
 

counter Run TOTAL rank WRF (PBL) WRF (Microphysics) WRF (Cumulus) WRF (Radiation)

1 run1 22 Mellor-Yamada-Jan Thompson (MM5 : Reisner 2) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/RRTM

2 run2 7 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) GFDL/GFDL (Not in MM5)

3 run3 42 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

4 run4 8 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

5 run5 4 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

6 run6 13 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Betts-Miller (MM5: Betts-Miller) CAM/CAM

7 run7 14 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

8 run8 30 Mellor-Yamada-Jan Thompson (MM5 : Reisner 2) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

9 run9 5 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) GFDL/GFDL

10 run10 21 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) CAM/CAM

11 run11 38 Mellor-Yamada-Jan Thompson (MM5 : Reisner 2) Betts-Miller (MM5: Betts-Miller) CAM/CAM

12 run12 19 Mellor-Yamada-Jan Thompson (MM5 : Reisner 2) Betts-Miller (MM5: Betts-Miller) Goodard/RRTM

13 run13 24 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Goddard/RRTM

14 run14 5 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) GFDL/GFDL

15 run15 22 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) GFDL/RRTM

16 run16 23 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/GFDL

17 run17 8 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/CAM

18 run18 16 Mellor-Yamada-Jan WRF-single mom (6) (MM5: Reisner 1) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

19 run19 31 Mellor-Yamada-Jan WRF-single mom (3) (MM5: simple ice) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/RRTM

20 run20 52 Mellor-Yamada-Jan Morrison (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

21 run21 27 Mellor-Yamada-Jan Morrison (Not in MM5) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

22 run22 47 Mellor-Yamada-Jan Morrison (Not in MM5) Grell-Devenyi (MM5: Grell scheme) Goddard/RRTM

23 run23 39 YSU (new MRF) Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

24 run24 26 YSU (new MRF) Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) GFDL/GFDL

25 run25 43 YSU (new MRF) Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

26 run26 22 YSU (new MRF) Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

27 run27 34 YSU (new MRF) Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) CAM/CAM

28 run28 38 YSU (new MRF) Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

29 run29 39 YSU (new MRF) Thompson (MM5 : Reisner 2) Grell-Devenyi (MM5: Grell scheme) GFDL/GFDL

30 run30 23 YSU (new MRF) Eta microphysics (Not in MM5) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

31 run31 10 YSU (new MRF) Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

32 run32 28 YSU (new MRF) Morrison (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

33 run33 31 YSU (new MRF) WRF-single mom(6) (MM5: Reisner 1) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

34 run34 15 YSU (new MRF) WRF-single mom(3) (MM5: Simple ice) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

35 run35 30 YSU (new MRF) WRF-single mom(6) (MM5: Reisner 1) Betts-Miller (MM5: Betts-Miller) CAM/CAM

36 run36 13 Pleim-Xiu Eta microphysics (Not in MM5) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

37 run37 31 Pleim-Xiu Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

38 run38 40 Pleim-Xiu Eta microphysics (Not in MM5) Grell-Devenyi (MM5: Grell scheme) GFDL/GFDL

39 run39 47 Pleim-Xiu Goddard microphysics (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Dudhia/RRTM

40 run40 33 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

41 run41 44 Pleim-Xiu Thompson (MM5 : Reisner 2) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

42 run42 48 Pleim-Xiu Goddard microphysics (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) CAM/CAM

43 run43 51 Pleim-Xiu Goddard microphysics (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

44 run44 48 Pleim-Xiu WRF-single mom(6) (MM5: Reisner 1) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

45 run45 50 Pleim-Xiu Morrison (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

46 run46 38 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

47 run47 14 Pleim-Xiu Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

48 run48 49 Pleim-Xiu Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

49 run49 43 Pleim-Xiu Lin et al. (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Dudhia/RRTM

50 run50 37 Pleim-Xiu Goddard microphysics (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Dudhia/RRTM

51 run51 9 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

WRF Front 2
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Table 7B.  Front 3: Ensemble ranking with respect to physical parameterizations for 
COAMPS. 
 

counter Run TOTAL rank PBL dxmeso* Ice nucleation Autoconversion factor

1 run26 8 Mellor-Yamada 50000 Fletcher (1962) 0.002

2 run36 9 Modified MY version 150000 Fletcher (1962) 0.0004

3 run9 10 Mellor-Yamada 10000 Fletcher (1962) 0.0004

4 run18 10 Mellor-Yamada 10000 Cooper and Haines (1986) 0.001 default

5 run10 11 Mellor-Yamada 10000 Fletcher (1962) 0.001 default

6 run11 13 Mellor-Yamada 50000 Fletcher (1962) 0.001 default

7 run2 14 Mellor-Yamada 10000 Cooper and Haines (1986) 0.0004

8 run25 15 Mellor-Yamada 10000 Fletcher (1962) 0.002

9 run39 16 Modified MY version 10000 Fletcher (1962) 0.001 default

10 run8 17 Mellor-Yamada 50000 Fletcher (1962) 0.0004

11 run17 18 Mellor-Yamada 50000 Cooper and Haines (1986) 0.001 default

12 run14 19 Mellor-Yamada 10000 Cooper and Haines (1986) 0.001 default

13 run23 19 Mellor-Yamada 50000 Cooper and Haines (1986) 0.002

14 run13 21 Mellor-Yamada 50000 Cooper and Haines (1986) 0.001 default

15 run19 21 Mellor-Yamada 10000 Cooper and Haines (1986) 0.002

16 run20 21 Mellor-Yamada 50000 Cooper and Haines (1986) 0.002

17 run6 24 Mellor-Yamada 10000 Cooper and Haines (1986) 0.0004

18 run1 25 Mellor-Yamada(MY) 50000 Cooper and Haines (1986) 0.0004

19 run24 25 Mellor-Yamada 10000 Cooper and Haines (1986) 0.002

20 run16 26 Mellor-Yamada 150000 Cooper and Haines (1986) 0.001 default

21 run45 27 Modified MY version 10000 Cooper and Haines (1986) 0.001 default

22 run47 27 Modified MY version 50000 Cooper and Haines (1986) 0.002

23 run22 28 Mellor-Yamada 150000 Cooper and Haines (1986) 0.002

24 run21 29 Mellor-Yamada 150000 Cooper and Haines (1986) 0.002

25 run37 31 Modified MY version 150000 Fletcher (1962) 0.001 default

26 run38 33 Modified MY version 50000 Fletcher (1962) 0.001 default

27 run43 33 Modified MY version 150000 Cooper and Haines (1986) 0.001 default

28 run46 33 Modified MY version 10000 Cooper and Haines (1986) 0.002

29 run3 35 Mellor-Yamada 150000 Cooper and Haines (1986) 0.0004

30 run5 36 Mellor-Yamada 50000 Cooper and Haines (1986) 0.0004

31 run27 37 Mellor-Yamada 150000 Fletcher (1962) 0.002

32 run40 38 Modified MY version 10000 Cooper and Haines (1986) 0.001 default

33 run28 39 Modified MY version 10000 Cooper and Haines (1986) 0.0004

34 run34 42 Modified MY version 10000 Fletcher (1962) 0.0004

35 run33 43 Modified MY version 10000 Cooper and Haines (1986) 0.0004

36 run41 43 Modified MY version 50000 Cooper and Haines (1986) 0.001 default

37 run44 46 Modified MY version 50000 Cooper and Haines (1986) 0.001 default

38 run51 46 Modified MY version 10000 Cooper and Haines (1986) 0.002

39 run29 47 Modified MY version 50000 Cooper and Haines (1986) 0.0004

40 run35 47 Modified MY version 50000 Fletcher (1962) 0.0004

41 run15 48 Mellor-Yamada 150000 Cooper and Haines (1986) 0.001 default

42 run4 50 Mellor-Yamada 150000 Cooper and Haines (1986) 0.0004

43 run30 50 Modified MY version 150000 Cooper and Haines (1986) 0.0004

44 run32 50 Modified MY version 50000 Cooper and Haines (1986) 0.0004

45 run50 51 Modified MY version 50000 Cooper and Haines (1986) 0.002

46 run42 52 Modified MY version 150000 Cooper and Haines (1986) 0.001 default

47 run48 52 Modified MY version 150000 Cooper and Haines (1986) 0.002

48 run31 53 Modified MY version 150000 Cooper and Haines (1986) 0.0004

49 run49 55 Modified MY version 150000 Cooper and Haines (1986) 0.002

50 run12 57 Mellor-Yamada 150000 Fletcher (1962) 0.001 default

51 run7 58 Mellor-Yamada 150000 Fletcher (1962) 0.0004

COAMPS Front 3

 



91 
 

 

Table 8B.  Front 3: Ensemble ranking with respect to physical parameterizations for MM5. 
 

Run TOTAL rank MM5 (PBL) MM5 (Microphysics) MM5 (Cumulus) MM5 (Radiation)

1 run39 7 Burk-Thompson (IBLTYP=3,ISOIL=0) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

2 run31 9 Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) Simple cloud (FRAD=1)

3 run19 10 Blackadar Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

4 run22 10 Gayno-Seaman (IBLTYP=6) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

5 run27 10 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

6 run45 10 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

7 run16 11 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

8 run18 12 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

9 run21 13 Gayno-Seaman (IBLTYP=6) Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)

10 run5 14 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

11 run9 14 Eta M-Y (IBLTYP=4) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

12 run37 14Burk-Thompson (IBLTYP=3,ISOIL=0)Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

13 run43 15 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

14 run1 16 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

15 run3 16 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

16 run34 16Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

17 run25 17 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

18 run44 17 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

19 run41 19Burk-Thompson (IBLTYP=3,ISOIL=0)Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

20 run28 20 Gayno-Seaman (IBLTYP=6) Simple ice (Dudhia) (IMPHYS=4) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

21 run49 21 MRF (IBLTYP=5) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

22 run12 22 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

23 run24 22 Gayno-Seaman (IBLTYP=6) Simple ice (Dudhia) (IMPHYS=4) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

24 run20 23 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Simple cloud (FRAD=1)

25 run48 23 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

26 run51 23 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

27 run2 24 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

28 run15 24 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

29 run47 24 MRF (IBLTYP=5) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

30 run17 26 Blackadar Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)

31 run23 27 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

32 run30 27 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

33 run38 27Burk-Thompson (IBLTYP=3,ISOIL=0)Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

34 run46 28 MRF (IBLTYP=5) Schultz (IMPHYS=8) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

35 run13 29 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

36 run14 29 Gayno-Seaman (IBLTYP=6) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)

37 run29 29 Blackadar Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) CCM2 (FRAD=3)

38 run32 30Burk-Thompson (IBLTYP=3,ISOIL=0)Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) Simple cloud (FRAD=1)

39 run50 30 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

40 run42 31 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)

41 run4 32 Eta M-Y (IBLTYP=4) Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

42 run8 32 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)

43 run36 32Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

44 run10 34 Eta M-Y (IBLTYP=4) Reisner  (no graupel) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

45 run26 35 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) CCM2 (FRAD=3)

46 run40 35Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Simple cloud (FRAD=1)

47 run11 37 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS = 7) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

48 run33 37Burk-Thompson (IBLTYP=3,ISOIL=0) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)

49 run35 37Burk-Thompson (IBLTYP=3,ISOIL=0)Simple ice (Dudhia) (IMPHYS=4) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)

50 run6 38 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)

51 run7 40 Eta M-Y (IBLTYP=4) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)

MM5 Front 3
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Table 9B.  Front 3: Ensemble ranking with respect to physical parameterizations for WRF.  
 

counter Run TOTAL rank WRF (PBL) WRF (Microphysics) WRF (Cumulus) WRF (Radiation)

1 run20 7 Mellor-Yamada-Jan Morrison (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

2 run38 7 Pleim-Xiu Eta microphysics (Not in MM5) Grell-Devenyi (MM5: Grell scheme) GFDL/GFDL

3 run42 8 Pleim-Xiu Goddard microphysics (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) CAM/CAM

4 run13 9 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Goddard/RRTM

5 run39 10 Pleim-Xiu Goddard microphysics (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Dudhia/RRTM

6 run45 10 Pleim-Xiu Morrison (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

7 run28 11 YSU (new MRF) Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

8 run29 12 YSU (new MRF) Thompson (MM5 : Reisner 2) Grell-Devenyi (MM5: Grell scheme) GFDL/GFDL

9 run22 14 Mellor-Yamada-Jan Morrison (Not in MM5) Grell-Devenyi (MM5: Grell scheme) Goddard/RRTM

10 run27 14 YSU (new MRF) Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) CAM/CAM

11 run50 14 Pleim-Xiu Goddard microphysics (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Dudhia/RRTM

12 run37 16 Pleim-Xiu Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

13 run26 17 YSU (new MRF) Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

14 run40 17 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

15 run41 17 Pleim-Xiu Thompson (MM5 : Reisner 2) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

16 run32 18 YSU (new MRF) Morrison (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

17 run16 19 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/GFDL

18 run25 20 YSU (new MRF) Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

19 run30 20 YSU (new MRF) Eta microphysics (Not in MM5) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

20 run49 20 Pleim-Xiu Lin et al. (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Dudhia/RRTM

21 run17 21 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/CAM

22 run21 21 Mellor-Yamada-Jan Morrison (Not in MM5) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

23 run35 21 YSU (new MRF) WRF-single mom(6) (MM5: Reisner 1) Betts-Miller (MM5: Betts-Miller) CAM/CAM

24 run19 23 Mellor-Yamada-Jan WRF-single mom (3) (MM5: simple ice) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/RRTM

25 run23 23 YSU (new MRF) Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

26 run18 24 Mellor-Yamada-Jan WRF-single mom (6) (MM5: Reisner 1) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

27 run24 24 YSU (new MRF) Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) GFDL/GFDL

28 run44 24 Pleim-Xiu WRF-single mom(6) (MM5: Reisner 1) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

29 run48 25 Pleim-Xiu Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

30 run14 27 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) GFDL/GFDL

31 run33 27 YSU (new MRF) WRF-single mom(6) (MM5: Reisner 1) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

32 run36 27 Pleim-Xiu Eta microphysics (Not in MM5) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM

33 run47 27 Pleim-Xiu Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

34 run31 29 YSU (new MRF) Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

35 run3 30 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

36 run9 30 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) GFDL/GFDL

37 run10 30 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) CAM/CAM

38 run4 31 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM

39 run5 31 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

40 run6 31 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Betts-Miller (MM5: Betts-Miller) CAM/CAM

41 run7 31 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

42 run8 31 Mellor-Yamada-Jan Thompson (MM5 : Reisner 2) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

43 run11 31 Mellor-Yamada-Jan Thompson (MM5 : Reisner 2) Betts-Miller (MM5: Betts-Miller) CAM/CAM

44 run12 31 Mellor-Yamada-Jan Thompson (MM5 : Reisner 2) Betts-Miller (MM5: Betts-Miller) Goodard/RRTM

45 run15 31 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) GFDL/RRTM

46 run34 31 YSU (new MRF) WRF-single mom(3) (MM5: Simple ice) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM

47 run43 31 Pleim-Xiu Goddard microphysics (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

48 run46 31 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM

49 run51 31 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL

50 run1 32 Mellor-Yamada-Jan Thompson (MM5 : Reisner 2) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/RRTM

51 run2 32 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) GFDL/GFDL (Not in MM5)

WRF Front 3
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Appendix C 

 
Ensemble Model Physics Option Lists 
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C.1  COAMPS Model Physics Options  
 

• Resolvable-scale microphysics schemes:  
 

o autoconversion parameter (Rutledge and Hobbs 1983, Lin et al. 1983, Kessler, 
1969)  

 
                  Note:  No conversion unless cloud water mixing ratio .> auto-conv 

ice nucleation processes (Fletcher 1962; Cooper and Haines 1996).  
 

• Cumulus parameterization schemes:  
 

o Kain-Fritsch cumulus scheme (Kain and Fritsch 1993; Kain 2004)  
 

• Planetary boundary layer process parameterization  
 

o Mellor-Yamada (MY) level 2.5 and 3 models (Mellor and Yamada, 1974, 1982; 
Burk and Thompson 1989; Janjić 2001) with a prognostic equation for turbulence 
kinetic energy  

o MY modified to allow the PBL to operate in saturated conditions (Ballard et al., 
1991; Shafran et al. 2000)  

 
• Atmospheric radiation schemes () 

 
o longwave and shortwave ( Harshvardhan 1987, Fu-Liou 1992,1993) 
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Table 1C. COAMPS Model Glossary of Symbols and Units 
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Table 1C. COAMPS Model Glossary of Symbols and Units 
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Table 1C. COAMPS Model Glossary of Symbols and Units 
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C.2  MM5 Model Physics Options  
 
Precipitation physics  
 
Cumulus parameterization schemes:  
 Anthes-Kuo  
 Grell  
 Kain-Fritsch  
 New Kain-Fritsch (including shallow convection physics)  
 Betts-Miller  
 Arakawa-Schubert  
 
Resolvable-scale microphysics schemes:  
 Removal of supersaturation  
 Hsie's warm rain scheme  
 Dudhia's simple ice scheme  
 Reisner's mixed-phase scheme  
 Reisner's mixed-phase scheme with graupel  
 NASA/Goddard microphysics with hail/graupel  
 Schultz mixed-phase scheme with graupel  
 
Planetary boundary layer process parameterization  
o Bulk formula  
o Blackadar scheme  
o Burk-Thompson (Mellor-Yamada 1.5-order/level-2.5 scheme)  
o Eta TKE scheme (Janjic, 1990, 1994)  
o MRF scheme (Hong and Pan 1996)  
o Gayno-Seaman scheme (Gayno 1994) 
  
Surface layer process parameterization  
o fluxes of momentum, sensible and latent heat  
o ground temperature prediction using energy balance equation  
o variable land use catagories (defaults are 13, 16 and 24)  
o 5-layer soil model  
o OSU land-surface model (V3.1 - V3.5)  
o Noah land-surface model (since V3.6)  
o Pleim-Xiu land-surface model (V3 only)  
 
Atmospheric radiation schemes  
o Simple cooling  
o Dudhia's long- and short-wave radiation scheme  
o NCAR/CCM2 radiation scheme  
o RRTM long-wave radiation scheme (Mlawer et al., 1997) (V3 oCumulus and shallow 
 
convection parameterization, 
o Kain-Fritsch with shallow convection, 
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o Betts-Miller-Janjic, 
o Grell-Devenyi ensemble scheme, 
o New Grell 3D ensemble scheme, 
o Grell-Freitas ensemble scheme (v3.5), 
o Tiedtke, 
o New SAS (Simplied Arakawa-Schubert) from GFS, 
o Old SAS (from GFS too), 
o Zhang-McFarlane, 
o University of Washington shallow convection, 
o GRIMS shallow convection (v3.5), 
 
Planetary boundary layer process parameterization  
o Yonsei University (S. Korea) with improved stable BL  
o Mellor-Yamada-Janjic 
o Asymmetric Convective Model (ACM2)  
o Quasi-normal scale elimination/Eddy diffusivity/ mass flux (QNSE-EDMF) (v3.4) 
o Level 2.5 and 3 Mellor-Yamada Nakanishi Niino (MYNN) PBL 
o Bougeault-Lacarrere PBL 
o University of Washington TKE PBL 
o Total energy - mass flux (TEMF) scheme 
o Grenier-Bretherton-McCaa TKE PBL (v3.5) 
o MRF 
 
Surface layer process parameterization  
o similarity theory MM5 - may be run with a 1-D ocean mixed layer model  
o Eta or MYJ 
o PX  
o QNSE  
o MYNN 
o TEMF  
o Revised MM5 scheme (v3.4)  
 
land-surface process parameterization 
o slab soil model (5-layer thermal diffusion) 
o Unified Noah land-surface model 
o Urban canopy model (works with Noah LSM) 
o  Multi-layer building environment parameterization (BEP, works with Noah, and requires 
o BouLac and MYJ PBL) 
o Building energy model (BEM, works with Noah and requires BouLac and MYJ PBL) 
o RUC LSM 
o PX LSM 
o Noah-MP (v3.4) 
o SSiB (v3.4)  
o CLM4 (v3.5)  
 use of fractional sea-ice  
 WRF-Hydro (v3.5) 
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Atmospheric radiation schemes  
 
longwave radiation 
o RRTM 
o CAM 
o RRTMG 
o Goddard  
o Fu-Liou-Gu  
 
shortwave radiation 
o simple MM5 scheme, with Zaengl radiation/topography (slope and shadowing) effects 
o Goddard (old) 
o CAM 
o  RRTMG 
o Goddard 
o Fu-Liou-Gu  
 
ocean physics 
o single-column mixed layer ocean model  
o  3D Price-Weller-Pinkel (PWP) ocean model 
 
sub-grid turbulence 
o constant K diffusion  
o 2-D Smagorinsky  
o predicted TKE 
o nonlinear backscatter and anisotropy (NBA) turbulence option for LES (new in V3.2) 
 
land-use categories determine surface properties 
SST, greenness fraction, seaice and albedo update during long simulations  
analysis nudging, 3-D and surface (new in V3.1) 
observation nudging (new in V2.2) 
spectral nudging using gridded analyses (new in V3.1)  
 
 
 
 
 
 
 
 
 
 
 
 
 


