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ABSTRACT:

Sensitivity Analysis of Probabilistic Multi-model
Ensemble Forecasts of Wintertime Fronts over Negiern Nevada

Amanda K. Young

Chair of the Supervisory Committee:
Professor Darko R. Koém, Ph. D.
Atmospheric Sciences

Probabilistic ensemble forecasting has become aangal tool to numerical weather
prediction. With the chaotic nature of the atmosphedecisions made by operational
meteorologists are made with imperfect weather nsodéhese deterministic numerical weather
forecasts can be complemented with the use of magiensemble predictions incorporating
enhanced probabilistic, statistical analysis toolEhe challenge is providing better statistical
information using ensemble probabilistic informatifmrecasts of mesoscale frontal features to

better characterize frontal precipitation fieldgensity, and direction of movement.

The purpose of this study was aimed at drawingnatte to certain probabilistic
distribution patterns for specific mesoscale ciatiohs when physical parameterizations and/or
initial conditions are varied for specific ensemlitgecast members. A statistical sensitivity
error-trend analysis of multi-model (MM5, COAMP31daWRF) ensemble prediction system

(EPS) was conducted to provide insight into howeneht changes to model parameterizations,



i.e. PBL, convection, radiation, and microphysies enanifest intrinsic variability to ensemble
predictability. Most studies in ensemble predictissed a single model in an ensemble mode,
using variations in model initial conditions as theesis to produce simulation ensemble members
and in most cases the total ensemble members weited to 6-10. A total of 153 ensemble
members with a horizontal resolution of 36 km wevaluated for this study using three state of
the art regional-mesoscale models. Its focus wastéd towards the use of a multi-model EPS
to measure the statistical sensitivity of a seqeeoicthree winter-time fronts observed over
western Nevada during the period of 12-27 Decer20@8. The corresponding analysis and
evaluation underscored a process through which #28 thermal field dataset temperature
differences, as it applied to rank data calculdtedhe three cold frontal systems observed over
the period of the 15 day simulation, can also h@ieg to ensemble model spread and error trend
analysis. This study enabled the extension of dhechst simulation period to two weeks, which
is the assumed predictability limit for atmosphesimulations. Therefore, it became apparent
that the use of statistical rank data error treadd ensemble model spread can improve
predictability of certain aspects of frontal adiywvbased on COAMPS smaller (high a priori
forecast accuracy) ensemble simulation spread apaed to MM5 and WRF larger (low a

priori forecast accuracy) ensemble spread.
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Introduction:

Deterministic chaos or just “chaos” theory hasrbeell known for decades and is well
researched and documented. Ensemble predicticelatvely new, however, and is based on
the scientific concept of non-linear dynamic systemaking into consideration the primary
assumption when referring to chaos, unstable sys$iave finite predictability — chaos — and
stable systems are infinitely predictable. Alscaahin not random, but is generated by physical
instabilities. In Kalnay (2003), it was emphasizbée ensemble forecasting approach should
replicate in the initial perturbations the statiatiuncertainty in the initial conditions. Ideatlye
leading eigenvectors of the analysis error covagashould be the initial perturbations. The
ensemble forecasting approach should reflect modpérfections and our uncertainty about
these model deficiencies. Keep in mind, predittsbis closely related to the Lyapunov-
exponent spectrum. Lyapunov exponents are the geeraes of exponential divergence or
convergence of nearby orbits. The spectrum of upap exponents provides a quantitative
measure of the sensitivity of a nonlinear systemnitial conditions. It is the most useful
dynamical diagnostic for chaotic systems. An exangpthe divergence of neighboring chaotic
trajectories exponentially in time. The estimatairLynapunov exponents and predictability is
usually related to the growth of small initial ego Figure 1 can illustrate how each physical
process when started with different initial corafis, like that done for ensemble forecasts, can
actually favor certain patterns, regions, or re@merhis is what determines the difference

between a “Good” ensemble and a “Bad” ensembleémite

One of the earliest pioneers of chaos theory, Edwarenz, showed that numerical
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Figure 1: This figure illustrates the components esfsemble forecasts. Three points
emphasized: 1. An ensemble starts from initial ypbdtions to the analysis. 2. In a g

ensemble’ truth” looks like a member of the ensemble. 3. The injiizrturbations shou
reflect the analysis “errors of the day. This is what determines the difference betwe

“Good’ ensemble and a“Bad’ ensemble forecast. ®. Kalnay, Lectrure 3, Alghero, M
2008, “Bred vectors: theory and application in operatidoegcasting.

simulations of the atmosphere were subject to Wieateferred to as “sensitive dependence on
initial conditions.” From his initial discovery,drenz showed that the atmosphere can exhibit
what appears to be chaotic behavior, including gh hilegree of sensitivity to the initial
conditions from which a forecast starts. His disry that the degree of numerical precision in
the initial conditions applied to a numerical wesattprediction (NWP) model affected the
resulting forecast significantly after only a feayd of forecast time (Lorenz 1963). The varying
results obtained when NWP models run with identicaial conditions, but selecting differing
model dynamics and parameterizations, demonstredgelorical evidence of the degree to
which mathematical chaos heavily influenced nominelynamical systems like Earth’s

atmosphere.

Lorenz (1987) posed a question: “Among the mangstjan which have inspired

considerable debate among meteorologists, or incpkar for one that attracted some prominent



mathematicians — should the weather be treateddaseaministic or a stochastic process for the
purpose of making the best attainable weather &te®” From this question, two different
objective methods evolved into what is known as enodstate-of-the-art numerical weather
prediction. The latter one attempts to establmimfilas which minimize the expected mean-
square error in probabilistic prediction using paeterized physical processes, past weather
observations applied in the data assimilation saepl, perturbed initial conditions. The former
method, however, attempts to predict future atmesphstates by the integration of a
deterministic system of differential equations esmnting the governing physical laws of
atmospheric circulation using observed atmospheaitables as initial conditions. Lorenz’s
fortuitous research and its unexpected outcomewesthdhat even the smallest of errors in this
particular Earth system (and others like it) maitiea great deal.

Ensemble prediction was the next logical step teebigp a process by which to
consolidate a stochastic approach to probabilmtcliction. By producing future states of the
atmosphere through the use of a stochastic disimibof all possible outcomes and relying upon
the “best” guess. This concept is based on thedatd deviation of predicted states developed
from a spread of forecast outcomes over a ranganyfng physical parameterizations modelled
at both the regional and global numerical regimds.took increased computational power,
developed in the last decade of the 20th centargllow investigation into possible applications
of chaos theory to operational forecasting. Thekwaf Tracton and Kalnay 1993, Toth and
Kalnay 1993, and others resulted in the developnwnan advanced suite of ensemble
forecasting techniques. These techniques utilizectimotic nature of the atmosphere and the
large, massively parallel computing environment® wailable during recent times to produce

NWP model forecasts that estimate the relativeiptaaility of specific weather outcomes, both



in the short (60 hours or less) and medium (3-15 danges.

Stochastic processes, or as occasionally refeoealstrandom processes, are used to
represent over time the evolution of some randolaevar system. This concept is sometimes
referred to as the probabilistic counterpart toesedninistic system. In practical problems,
however, the physical laws governing the motiond progression of the atmosphere must use
initial data that are not entirely known with ahsel certainty. = Conversely, conventional
deterministic forecasts use the governing equatiorgescribe the predicted growth of a single
initial state that is regarded as the “true inig&dte”. The concept underling stochastic dynamic
estimations is to permit the deterministic govegnaquations to operate on the probabilistic
statistics describing the uncertainty about th&ahstate of the atmosphere. The probabilistic
approach produces, as regional or global forecgstsbability distributions representing
uncertainty about the future state of the atmosph&ince current operational NWP models are
imperfect and their incompleteness add to foregasertainty.

To think globally when referring to ensemble prégie systems, one could easily be
distracted from the essential qualities of any lsagtic process in calculating and assessing the
probability that certain physical processes willdoeurately predicted. Although the approach
used in this study differs from the approach dertrated by Froude (2010) to analyze, assess,
and calculate trajectories of mid-latitude cyclgness the intent of this research to utilize lzasi
stochastic principals to analyze statistically pinedictability of frontal features observed during
the period of the EPS simulation used during threodeof 12-27 December 2008.

Up to the present time, regional ensemble forecasre applied to severe weather
events. This study extended the forecast expetirtiera sequence of three winter frontal

systems. In addition, in previous studies the nemdb ensemble members was limited to 6-10,



but for this study the number was extended to al tof 153 ensemble members. This study
Also, three state-of-the-art regional/mesoscale atsodvere used to complete the ensemble
simulation while various studies in the literatgenerally include only a single model in an
ensemble mode. The forecast period was extende@ teeeks which is assumed as a
predictability limit for atmospheric simulations @ normally, other ensemble forecasts covered
only periods of 3-7 days. There was emphasis glame model initial conditions with
consideration organized toward the use of variationphysics parameterization options (PBL,
microphysics, radiation, and convection) as metlaofor generating ensemble members for
three models.

The first section outlines information regarding tmulti-model prediction system as a
NWP predictability tool as well as a discussiontlod various forecast centers using ensemble
predictive systems operationally. Section 2 cowemdiscussion of the ensemble multi-model
system employed and methods used in this studinclade abbreviated model microphysics

code located in this stutly appendix. The third section discusses analyisithe synoptic

situation covering the forecast period. Sectionr fill discuss initial perturbation analysis of
the COAMPS, MM5, and WRF model outputs used toterda 51 run ensemble probabilistic

forecast set for each model. Lastly, a summarycandlusion will finalize this study.

1. The Multi-model Prediction System

1.1 Ensemble Prediction Systems: Using NWP Modeds a Predictability Tool



Numerical model sensitivity is a function of modelsign, those physical processes most
influenced by the air-land-sea interface, and thdial conditions applied to simulated
atmospheric conditions within the Earth systemr fégional and mesoscale models, boundary
conditions need to be known for the entire simalatperiod. Forecast uncertainty is heavily
influenced by the non-linear dynamical behaviomaperiodicity in model mnemonic processes.
Modifying ensemble forecast physical parametemzetislightly alters how the model simulates
actual meteorological phenomenon at the synoptid amesoscale domains. Different
approximations, therefore, of the actual stathefadtmosphere are calculated which further adds
to forecast uncertainty and ambiguity.

A perfect or “near” perfect NWP model is well beyotihe reach of the current level of
science and available technology. In the futureenvensemble model predictions can run in a
perfect or “near” perfect computational environmehey will likely continue to be subjected to
numerical breakdown due to errors in initial cormis applied at the beginning stages of the
model run. The current state of terrestrial obsgon and assimilation systems will widen the
NWP forecast gap further until better technologaes available to enhance observations
includinf rapidly developing remote sensing captbs.

An ensemble prediction system (EPS) calculate®afrstatistical outcomes based on a
varying suite of initial conditions and/or multi-uhel ensemble parameterization system. These
outcomes include the following three results:

e Ascertaining a range of possible forecast outcomes.
e Estimating the probability for any individual fosst outcome

e Calculating the most likely forecast outcomes withn acceptable margin of error.



Using an uncertainty and bias intrinsic within theial conditions, these measures can be used
as a basis for calculations of forecast outcome=aoh member within the EPS.

Today’s operational forecast centers use some fofnEPS to generate a range of
possible forecast probability outcomes as a meansprove medium and long range forecast
accuracy and reduce error within the operationegdast array. Whether it is the use of the
model imperfections in the structure and dynamifsth® forecast model system or the
uncertainty inherent in the initial conditions ofraulti-model system, these ensemble prediction
processes are used as a gauge to measure the de@vior and determine the predictability of
ensemble forecast outcomes.

The atmosphere is considered an aperiodic progdss the Earth system. In terms of a
fluid system undergoing steady forcings, it is muebs predictable for moderately unstable
systems. The predictability of mesoscale motianthe troposphere is, therefore, confined by
the rapid multi-scale transfer of energy from thegé scale synoptic systems into mesoscale as
well as microscale regimes. In contrast, ineveadarors or uncertainties in initial conditions in
the small scale of motion will propagate towardy&arscales and will reach the mesoscale sooner
than the large scale, thereby rendering the meosess predictable. Thus, predictability of
mesoscale events are also sensitive to initial itiondinputs to the various operational
mesoscale numerical prediction modelBhe predictability of mesoscale phenomena that does
not exist at the start of a numerical simulatiodeiss influenced by the accuracy of the initial
conditions used in the mesoscale numerical presictystem. Under these circumstances, the
mesoscale circulations are normally forced by serfiahomogeneities (thermal and orographic)
and internal adjustments. Note that there are gss®s developed on small scales (local

circulations, convection) that are upscaled todasgales.



It is noteworthy to mention that larger-scale flpatterns, mesoscale instabilities, and
multiple spatial and (or) temporal scale energydfars are from either the larger scale to the
microscale or the interaction of cloud physicaldgnamical processes. If a mesoscale feature,
already exists at the beginning of the numericatlfmtive process, then it is necessary to include
the observed and analyzed motions as well as tllgmaonic variables in the initial conditions
to construct the most accurate numerical modeligiied. Previous investigations suggest that
the accuracy of the numerical prediction processest rely more on observational data during
the data assimilation-initialization step and lessthe model dynamical system representation.
This is an important consideration since it takegetfor the model in the “spin-up” process to
gain the necessary initial knowledge to accurateyesent mesoscale motions during the period
of the first 120 hours of the forecast run.

Due to the need to resolve complex atmosphericgases on smaller scales than the
global models, regional and mesoscale models géndrave larger numbers of physical
parameterization options (Stensrud 2007). Thisnwidhat a large number of various option
combinations have to be considered to cover a wmetrum of model trajectories that would
provide a sufficient probability density functio(®DFs) of atmospheric parameters. Since high-
resolution mesoscale and regional scale simulaboasomputationally expensive, it is valuable
to consider cost-effective methods that can be dsedperational forecasting. Additionally,
there are a large number of community acceptedomaiand mesoscale models that have
similarities and differences in the model structumumerical methods, and physical
parameterizations. Consequently, it is importantekamine the use of various models in

constructing more reliable PDF, that is, the usmolti-model ensembles.



During the period 12 through 17 December 2008, wufpoducts from the following
numerical models were analyzed to provide insigi ihow the relative precision ensemble
forecast products can resemble actual mesoscaleomé&igical features when physical
parameterizations are varied for each ensembledstaun. For this analysis, ensemble output
products derived from the Weather and Researchckstiag (WRF) model (Skamarock et al.,
2008), Fifth-Generation Penn State/NCAR Mesoscateléll (MM5; Grell et al. 1994), and the
U.S, Navy's Coupled Ocean/Atmosphere Mesoscaldd@mdSystem (COAMPS; Hodur 1997,
Hodur et al. 2002; were compared with the assatia@ hPa level analysis for the same time
period. This implementation was adopted to asadssh physical parameterization utilized for
each ensemble run most closely compared physicalythe actual mesocale-synoptic

atmospheric conditions.

1.2 Discussion of the multi-model Ensemble Predicin System (EPS)

The improvement in skill of numerical weather pe&idn over the last 40 years is due to
four factors:

e The increased power of supercomputers, allowinghfurer numerical resolution and
fewer approximations in the operational atmosphmaclels.

e The improved model structure, numerical schemed, rapresentation of small-scale
physical processes (high-resolution topography waedetation, clouds, precipitation,
turbulent transfers of heat, moisture, momenturd,radiation) within the models.

e The use of more accurate methods of data assiamilatvhich result in improved initial

conditions for the models.
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e The increased availability of data, especially litdeand aircraft data over the oceans

and the Southern Hemisphere.

In the United States, research on numerical ensgembhther prediction takes place in
the national laboratories such as the National &srior Environmental Prediction, the National
Oceanic and Atmospheric Administration (NOAA), thidational Aeronautics and Space
Administration (NASA), the National Center for Atspheric Research (NCAR), and in
universities and centers such as the Desert Résa@stitute, Oklahoma State University, Penn
State University, and University of Washington. eTRCEP ensemble, the Global Ensemble
Forecasting System, uses a technique known asrvboteding. Toth and Kalnay (1997)
explained that the initial perturbations to thetecolhanalysis should adequately sample the space
of possible analysis errors for efficient ensemfolecasting. It was shown that the analysis
cycle is like a breeding cycle and acts as a nealirperturbation model upon the evolution of
the real atmosphere. Surface and upper obsergatom used to “scale down” at regular
intervals the perturbations carried forward in fhst-guess forecasts. The result is growing
model errors associated with the evolving stat¢hefatmosphere which developed within the
analysis cycle and then dominated subsequent &treceor growth. The bred vectors provide
estimates of fastest sustainable growth and thugsent probable growing analysis errors. It is
a simple and powerful method to find the growth ahépe of the model instabilities which
dominate these forecast errors (Kalnay 2008).

In Europe, the primary numerical modeling cengelocated in the United Kingdom, at
the European Centre for Medium-Range Weather Fete(BRCMWF). The EPS maintained by

ECMWE utilizes singular vectors to simulate thetiati probability density functions used to
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calculate probabilistic forecast. The singularteeenethod (Buizza and Palmer 1995) are the
perturbations that, under dynamics linearized aladosic flow state, grow most rapidly over a
given time interval and in a given measure of atag®, or vector norm. As applied to forecast
error growth and ensemble forecastitiggse nonlinear optimal perturbations show thetgsta
linear growth in total energy over the extra-tr@binorthern and southern hemisphere over a 48
hour period following the analysis time. The pipat objectives of the Centre include but are
not limited to:
e Operation of global models and data-assimilatiorstesys for the dynamics,
thermodynamics and composition of the atmosphedeiateracting parts of the Earth-
system, development
e Quality control of forecast models through scigatiesearch and operations.
¢ Model output collection, processing, and storage
Other numerical centers, such as the Chinese Matgpcal Administration (CMA),
assist in the centralization of ensemble modeldase dataarchives which are used to enable
extensive data sharing and research with othemiatenal partners. The THORPEX Interactive
Grand Global Ensemble (TIGGE) is research prognaith a key component of THORPEX
being that it is a program chartered to acceleagtgancements in the accuracy of 1-day to 2
week ensemble weather predictions. Under this rarog CMA is designated as a TIGGE
archive center. After agreement amongst reseaadingrs was reached in 2005 with regards to
research data requirements and archive planningyeaarchive collection commenced in
October 2006.

The Meteorological Service of Canada (MSC) is astim of Environment Canada

conductd research on a System Simulation Approa@nsemble prediction. From Houtekamer
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et al. (1996), this approach produced error stegistom a representative ensemble of forecast.
The ensemble is generated by simulating the theegsoof error growth where for different
ensemble members the uncertain elements of theadsti®e are perturbed in different ways. In
order to perturb the ensemble and initiate thessary error growth, different model options for
the parameterizations of horizontal diffusion, deepvection, radiation, gravity wave drag, and
terrain were used. This ensemble scheme, whicthensdtically described a Monte Carlo
method, attempted to produce a set of represeatatior fields at the initial time of a forecast.
At the time, the MSC was the first agency to pr@passing this numerical scheme to

simultaneously perform medium-range ensemble fetearad a number of modedlidations.

2 Methods

2.1 COAMPS Overview

In the late 1980s, NRL director and expert modétgm Hovermal provided a code for a
non-hydrostatic model and Richard Hodur began nyodifand using athis code as the starting
point for predicting air-sea interaction in the #i¢c The model came to be called Coupled
Ocean/Atmosphere Mesoscale Prediction System (COEMP Initially, the COAMPS
development and testing was limited to studiesdeflized simulations of arctic leads, tropical
cyclones, and lake-effect snowstorms. By 1993, G/PA incorporated a real-data capability
into the atmospheric model part. This modelingeyseventually transitioned to operations at
Fleet Numerical Meteorology and Oceanography Ce(f&MOC) and replaced NORAPS.
Although COAMPS was originally developed for Navysey interested domestic and

international institutions are now able to registed obtain the model code. Details on the
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COAMPS structure are found in Hodur (1997) and Hatwal. (2002).

During the early 1990s, a next generation mesosualieling capability beyond the U.S.
Navy’'s Operational Regional Atmospheric Predicti®pstem (NORAPS, circa 1982) led to
development of a non-hydrostatic atmospheric modepled to an ocean model — COAMPS.
The atmospheric component of COAMPS can be usedatidata or for idealized applications.
For the real-data applications, the COAMPS analgais use either global fields from the Navy
Global Environmental Model (NAVGEM) or the most ee¢ COAMPS forecast - the now
decommissioned Navy Operational Global Atmospherediction System (NOGAPS) as the
first-guess. Observations from aircraft, radiosmdships, and satellites are blended with the
first-guess fields to generate the current analyBisr idealized experiments, the initial fields ar
specified using an analytic function and/or empiritata (such as a single sounding) to study the
atmosphere in a more controlled and simplifiedirsgtt The atmospheric model uses nested
grids to achieve high resolution for a given aned i contains these parameterizations for:
Sub-grid scale turbulence mixing, convective patenmation, radiation, and

microphysics.
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Userinput
gridnl namelist

= model domain parameters
Setup Parameters

Analysis rray space
mema.f
pointers and allocate memo

Perform the analysis
coama.f
main analysis routine

Userinput

gridnl namelist

Setup Parameters [l model domain parameters

Forecast array space

memm.f
set pointers and allocate memory

Perform the forecast

coamm.f
main analysis routine

Figure 2: Flow chart of the COAMPS driver prograntdamps_analysis.f a
oamps_forecast.fThe model domain specifications are read in thinothe gridnl nameli

and the pointers and array space are setup in @if@e mema.f and memm.f before cal
the main analysis and forecast subroutines coaand.toamm.f.

The COAMPS atmospheric system consists of two megomponents: analysis and
forecast. Figure 2 illustrates the general flow tife COAMPS driver programs
coamps_analysis.f and oamps_forecast.f. The COAMPR&ysis executable is run first to

prepare the initial and boundary files used in theecast model. The COAMPS forecast
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executable performs time integration of the modemarics and physics. It then outputs
prognostic and diagnostic fields in pressure, sigmnaeight coordinates. Options for running

the analysis and forecast are specified througlraetortran namelists. Examples of mesoscale
phenomena to which COAMPS has been applied inciadantain waves, land-sea breezes,
terrain-induced circulations, tropical cyclones sagcale convective systems, coastal rain-bands,
and frontal system3he COAMPS model domain typically covers a limisgéa over the Earth.
The model horizontal grid resolution may range frarfew hundred kilometers (synoptic scale)
to approximately 100 meters. The actual dimensapmdied depend on the scale of phenomena
that the user is interested in simulating. The ehatimensions can be set to produce any
rectilinear pattern. In addition, it can be rothte align with any surface feature, such as the
terrain or a coastline. COAMPS can be run with amwynber of nested grids, with the
requirement that the horizontal grid resolutioraity mesh be one-third that of the next coarser

mesh.

Following is a summary of the physical processe€@AMPS that are modeled at each
time step in the forecast cycle. The model donsgiecifications are read in through the gridnl
namelist and the pointers and array space are getsybroutines mema.f and memm.f before
calling the time step at individual grid points:

a) The total diabatic heating per time step
1. From (resolvable) scales
2. From (sub-grid) scales

b) The total moisture/day per time step

1. From (resolvable) scales
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2. From (sub-grid) scales
c) The total acceleration/deceleration per time step
1. From (resolvable) scales

2. From (sub-grid) scales

a) COLD START b) WARM START
= Analysis e Analysis 1. Control
m | gNCOM Cut Out | ii!!i gNCOM Cut Out member

| Ooean G, BC 2. 8KG _| 1. Control Ocean BC & BKG Oﬂly
NCODA : o 4
member BEORN 41
| Atmosphere BC
only NAVDAS
2. 2.
E.............................. copy bbb e . E.... copy ...................... ;
INOGAPS | Al : INOGAPS ) e i Atmos
8_ members: | |: = B membersi| ET
i B | | :
& e, 8@
i W 4. Two-way |: B 5. Two-
. )| cowpled | [ [ B D) way Ocean
= . - COAMPS — e Coupted 3 Atmos &
tmosphere Forecast | 4. Atmosphere COAMPS | oceanic
SE BC @ Forecast |
5. Post-processing 6. Post-processing

Figure 3: Schematic showing the implementatiothefair-ocean coupled ensemble system for a
cold start and a warm start model initiation. © BlaResearch Laboratory (NRL)

The above steps are executed slightly differently according to whether the system undergoes
a warm or cold startup. The execution of atmodphend ocean forecasts are used in model
initialization for a warm system start whereas ttisp is not required for cold system starts as

illustrated in figure 3.
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2.1.1 COAMPS Model Physics Options

Numerical schemes developed by Rutlege and Hol&3}1#e the currently used method
to predict single-moment bulk mixing-ratios. Th&®A&MPS scheme is based on research
compiled by Lin et al. (1983) for the bulk configdr microphysical model, which incorporated
single-moment predictions of mixing ratio for fim@crophysical variables: water vapor, pristine
ice, snow, rain, and cloud water. Size distributtalculations (Marshall and Palmer et al 1948),
autoconversion (Kessler et al 1967), and nucleatfopristine ice (Fletcher et al 1962) are used
as primary assumptions with within the numericdlesne matrices. Rain and snow terminal
velocity fields are computed numerically while ather domain parameters are treated as scalar

tracers.

After model dynamical variables are calculated acalar value prediction variables for
advection, diffusion, and moisture mixing procesavéh been refreshed through the data
assimilation process, the bulk scheme is initiglize/arious microphysical driver subroutines
compiled through Fortran algorithms perform theessary updates. DXMESO parameter, for
instance is written in as a namelist variable wHeglbow a given resolution in kilometers the

cumulus parameterization scheme is turned off dmVve the predicted value the advection of
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Figure 4: Direct Interactions of physical parametgions processed within the MM5 model

rain-snow calculation is turned off as well.

2.2 MM5 (Weather Research & Forecasting Model) ovetiew

From the late 1960s into the 1970s, Richard Antle&lbped a 3-layer hurricane model
as a basis for a general mesoscale model. Thisethelved from Mesoscale Model 0 (MMO)
into Mesoscale Model 3 (MM3). The formulation forodel development stemmed mainly
from Anthes and Warner (1978). By the 1980s, PS8 MCAR developed an updated version
Mesoscale Model 4 (MM4). The PSU/NCAR mesoscaldehwas developed as a limited-area,

nonhydrostatic or hydrostatic (Version 2 only), réan-following sigma-coordinate domain
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structure designed to simulate or predict mesosmadkregional-scale atmospheric circulation.
The support initially came from the Regional Aci@@®sition Modeling Project (Anthes et al.
1987). A community model with annual workshops &mdrials evolved into a fourth version,
MM4. A non-hydrostatic Mesoscale Model 5 (MM5) wadeased in the early 90s with many
advanced characteristics including multiple nestifigyir-dimensional data assimilation, and
improved numeric, and physics parameterizations$. wds supported by several auxiliary
programs and continued to be developed as a conmynomesoscale model. Today, it is
continuously being improved by contributions frosets at several universities and government
laboratories. More information can be obtained athe web site
(http://lwww.mmm.ucar.edu/mm5/mmb5v3.html). MM5 wasing developed and supported until
2004 with the last version being 3.7. Subsequentlyer than at the research level, there has
been limited operational development. Details loen MM5 structure are shown by Grell et al.

(1995)

The Fifth-Generation NCAR/PSU Mesoscale Model (MM&)s the latest in a series that
developed from a mesoscale model used by AnthBermat State in the early 70s that was later
documented by Anthes and Warner (1978). Sincetthed, it has undergone many changes

designed to broaden its usage, including:

multiple-nest capability

nonhydrostatic dynamics, which allows the modddeaised at a few-kilometer scale,

multitasking capability on shared- and distributeemory machines

four-dimensional data-assimilation capability

enhanced suite of physical parameterizations.
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The MM5 Modeling System Flow Chart

Additional Capability — Main Programs Data Sets
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Figure 5: MM5 Modeling System operational Flow Gha® University Corporation for
Atmospheric Research (UCAR)

Terrestrial and isobaric meteorological data areizbatally interpolated (programs

TERRAIN and REGRID) from a latitude-longitude mesla variable high-resolution domain on
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Mercator, Lambert conformal, or polar stereograghajection. Since the interpolation does not
provide mesoscale detail, the interpolated data beagnhanced (program RAWINS or little_r)
with observations from the standard network of atefand rawinsonde stations using either a
successive-scan Cressman technique or multiquadneme. Program INTERPF performs the
vertical interpolation from pressure levels to #igma coordinate system of MM5. Sigma
surfaces near the ground closely follow the teremd the higher-level sigma surfaces tend to
approximate isobaric surfaces. Due to the vaitgtof the vertical and horizontal resolution and
domain size, the modeling package programs empéanpeterized dimensions requiring a
variable amount of core memory. Some peripheoaibhge devices are also used. Since MM5 is
a regional/mesoscale model, it requires both draimondition and a lateral boundary condition
to run. To produce lateral boundary conditiondomodel run, gridded data is needed to cover

the entire time period that the model is integrated

2.3  WRF (Weather Research and Forecasting) model exview

In 1996, NCAR and NCEP initiated the developmehth@ next generation weather
research and forecasting model. Together with ritmriors from various universities and
military scientific institutions, a beta releasetbé Weather and Research Forecasting (WRF)
model was released in 2000. It has been undergmintinued rapid development so that today
it is one of the most commonly used regional andaseale models worldwide (http://www.wrf-
model.org <http://www.wrf-model.org/>). With respeto weather and climate forecasting, a
primary motivation for WRF model development waseed to increase communication and
links between the research, application, and edutabmmunities. There are two versions of

the WRF Model with the same architecture but défercore codes: ARW (Advanced Research
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WRF) at NCAR and NMM (Non-Hydrostatic Mesoscale Mcat NCEP which is based on the
Eta Model's code (Mesinger, 2005; Jénji994; Black, 1994). The WRF model is a next-
generation mesoscale numerical weather predictystesn designed to serve both operational
forecasting and atmospheric research purposes.features multiple dynamical cores, 3-
dimensional variational (3D-Var) and 4-dimensionariational (4D-Var) data assimilation
systems, as well as software architecture allowiorgcomputational parallelism and system
managed extensibility programming. WRF has bead uis a broad spectrum of applications
across scales ranging from meters to thousandslarhéters and is suitable for execution on
multi-processor computers. Such applications bheluesearch and operational numerical
weather prediction (NWP), data assimilation, and deho parameterizations research,
downscaling climate simulations, driving air qualihodels, atmosphere-ocean coupling, and
idealized simulations (e.g., boundary-layer eddiesivection, baroclinic waves). Details on the
WRF structure are shown by Skamarock et al. (22088). The ARW version was used in the
development of the 153-member series used in tindy/s

The Weather Research and Forecasting model-basidianal data assimilation system
(WRFVar) has been extended from three- to four-dsienal variational data assimilation
(WRF 4D-Var) to meet the increasing demand for orprg initial model states in multi-scale
numerical simulations and forecasts. The initiaéalg of this development included improved
operational applications and expanded support ¢orédsearch community. It was shown to
implicitly evolve the background error covarianceldo produce a flow-dependent nature to the
analysis increments. Preliminary results from -gsth 4D-Var experiments in a quasi-
operational setting were presented and the potaiftMRF 4D-Var in research and operational

applications was demonstrated. To impose a dynhailance on the assimilation of real data to
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the model interface, WRF 4D-Var uses the WRF made functional constraint. Development
of model verification highlighted its capacity tonplicitly evolve the background error

covariance and to produce simulations which enhémedlow-dependent nature of the analysis
process increments. It is believed that a widestrithution of the system to the research
community will further develop model physics andhance numerical boundary processes.
Testing under different weather conditions and rhodgfigurations will encourage even greater
capabilities of newer versions (Xiang-Yu Huang kt2©€09). In order to better support the
research community, improved operational applicatiand expanded technical support have

been at the forefront of this research initiative.

The effort to develop WRF has been a collaborgpagnership, principally among the
National Center for Atmospheric Research, the Natio Oceanic and Atmospheric
Administration (the National Centers for EnvironrtegnPrediction (NCEP) and the Forecast
Systems Laboratory (FSL), the Air Force Weather noye (AFWA), the Naval Research
Laboratory, Oklahoma University, and the Federabfien Administration (FAA). WRF allows
researchers the ability to conduct simulations ectihg either real data or idealized
configurations. WRF provides operational forecagta model that is flexible and efficient
computationally while offering the advances in pbgs numerics, and data assimilation
contributed by the research community. WRF isentty in operational use at NCEP and the
U.S. Air Force Weather Service (AFWA-JAAWIN). Th&RF Model Users Page
(http://lwww2.mmm.ucar.edu/wrf/users/) provides mfation on the WRF effort and its
organization, references to projects and forecgstivolving WRF, and links to the WRF users'

page, real-time applications, and WRF-related event
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The continuity equation for air, the species cantin equation, the thermodynamic
energy equation, the three momentum equationsirendquation of state are referred to as the
equations of atmospheric dynamics. Removing tleeisp continuity equation for the above list
and replacing the full vertical momentum equatigmslds the primitive equations. These
equations represent the basic form of the Euleegunations of fluid motion. A variety of
atmospheric motions can be understood by lookingsiatplified forms of the primitive
equations. Geostrophic wind, surface wind, thedigra wind, the surface wind around high-
pressure and low-pressure centers, and atmospha&vies are modeled and studied.

The development of the Weather Research and FineggdWRF) modeling system is a
multiagency effort intended to provide a next-gatien mesoscale forecast model and data
assimilation system that will advance both the usta®ding and prediction of mesoscale
weather and accelerate the transfer of researcanads into operations. The model is being
developed as a collaborative effort among the NOW&soscale and Microscale Meteorology
Department of Defense’s Air Force Weather Agencif\(#d), the Naval Research Laboratory
(NRL), the Center for Analysis and Prediction obr&ts (CAPS) at the University of Oklahoma,
and the Federal Aviation Administration (FAA), atpmvith the participation of a number of

university scientists.

The WRF model is designed to be a flexible, stét#re-art, portable code that is
efficient in a massively parallel computing envimoent. A modular single-source code is
maintained that can be configured for both researzhoperations. It offers numerous physics

options, thus tapping into the experience of tleabmodeling communityAdvanced data
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Figure 6: WRF-ARW Modeling System operationalIiGhart. © University Corporation for
Atmospheric Research (UCAR).

assimilation systems are being developed and tastedndem with the model. WRF is
maintained and supported as a community modelcibtéde wider use, particularly for research
and teaching, in the university community. It isitable for use in a broad spectrum of

applications across scales ranging from meterdidosands of kilometers. Such applications
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dynamics solvers, physics packages that plug iht dolvers through a standard physics
interface, programs for initialization, and the WR&riational data assimilation (WRF-Var)
system. The WRF Software Framework (WSF) providee infrastructure that
accommodates multiple dynamics solvers, physickguges that plug into the solvers through a
standard physics interface, programs for initidgima and the WRF variational data assimilation

(WRF-Var) system. At present, there are two dynansolvers in the WSF: the Advanced
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Research WRF (ARW) solver (originally referred te the Eulerian mass or “em” solver)
developed primarily at NCAR and the NMM (Nonhydaigt Mesoscale Model) solver
developed at NCEP. While there are multiple salvand while not all physics are available to

both solvers, the WSF is common to all components.

2.4  Model parameterization options

Due to the need to resolve complex atmosphericgases on smaller scales than the
global models, regional and mesoscale models giyndrave a larger number of physical
parameterization options (Stensrud 2007). Thisnmmdhat a substantial number of various
option combinations have to be considered to caveide spectrum of model trajectories that
would provide a sufficient probability density furmns (PDFs) of atmospheric parameters.
Since high-resolution mesoscale and regional stalalations are computationally expensive, it
is valuable to consider cost-effective methods et be used for operational forecasting.
Additionally, there are many community acceptediaegl and mesoscale models that have
similarities and differences in the model structumeumerical methods, and physical
parameterizations. Consequently, it is importantekamine the use of various models in

constructing more reliable PDF. This will ent&iétuse of multi-model ensembles.

The following analysis utilizes output data fromla3 ensemble member multi-model
(MM5, COAMPS, WRF) medium-range regional ensemldeedasting experiment that was
conducted for a period of fifteen days. The sttmbhused on the relative efficiency of varying

physical parameterizations (PBL scheme, micropBysadiation algorithms, and cumulus
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long baroclinic wave with troughs over the KamclaafReninsula in the Russian Far East,
western U.S./Canada, and an elongated low-amplifdde over the intervening Pacific oceanic
region.

During the forecasting period, three weather systenpacted the western U.S. These
systems bore similar structures where short waseidiances formed over Alaska (just east of
the ridge line) and amplified as they moved sowhedhese disturbances exhibited significant
baroclinicity where 500 hPa temperature gradieft308C/5 degrees latitude were in evidence
as the disturbances moved through California. @&bksociated cold fronts passed Oakland,
California (OAK) and Reno, Nevada (REV) on 13-14cBmber, 22-23 December, and 25-26
December 2008. Figures 9a, 9b, and 9c highlightGIOES West Composite Infrared imager
overlaid with GFS geopotential heights 5250m an@08% at 500 hPa during the three frontal
passages analyzed for this study. Between thages®f these fronts, the western United States
was typified by a persistent cut-off low pressueater that weakened prior to the passage of the

second synoptic system.

National Weather Service forecasts prior to actinahtal passage outlined all the
ingredients indicative of a damaging high wind evaross much of western Nevada to include
the eastern slopes of the Sierra Nevada Mountalimse ingredients, as outlined by the NWS
discussion, included evidence of a strong vertsiadéar profile following frontal passage,
presence of a tropopause fold in the mid-high Evahd an increasing 700mb/250mb wind flow
over their forecast area. These conditions, aasmtiwith the second cold front appearing
during the ensemble forecast period, contributea moeasured peak wind in excess of 62.6 m/s

over Virginia peak during the period of 18-19 D&9. This location is also the location of the
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NWS Reno WRS-88D Doppler weather radar. During passage of the third cold front,
complete radar dome failure occurred when wind dperere in excess of 42.5 m/s over the
same area during the period of 24-25 Decemberh Bold frontal events produced significant

snowfall totals and high winds across widespreadsof western Nevada.

4, Discussion and analysis

4.1  Ensemble Model Parameterization Analysis

In Koracin 2014, a large number of ensemble memiseranked by a specific statistical
parameter of success. This fundamental approagfiigints the advantage of using a ranking
methodology to measure the success with respetiffevent parameters that can then cede to
summed (averaged) overall ranking and ultimatelysed as a combined effect of success. The
root mean square error (RMSE) was considered orieeoimportant statistical parameters for
the entire period with the lowest RMSE having thghbst rank 1 (most successful) and
subsequently the lower the RMSE the higher is déim& number for the variable being evaluated.
The first parameter used as an example to illesttdis method was the predicted and observed
temperature at 500 hPa using Reno, Nevada (KREMpsande data during the period of 12 to
27 December 2008. This data was used as the espadise observation for the regional area of
Western Nevada. In addition, the degree of sucoedailure in the prediction of the frontal
passages is quantitatively determined through kimgrsystem that finds the difference between
the observed characteristics and structure ofritv@ fvith the forecasted structure. The features
of the front that are quantitatively measured widspect to radiosonde data include the

following: 1) magnitude of the temperature dropgdgjyation of the temperature drop, and 3) the
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onset of the temperature drop. The quantitativesoneawas in terms of the absolute value of the
differences. It has been revealed (Buizza et &l0%2 that, due to the use of parameterized
physical processes within the ensemble model streicthe addition of a stochastic perturbation
to the tendency would complement the representatibrthe unavoidable random errors

associated with the parameterizations of sub-gralesphysical processes. The amplitude of
random errors becomes proportional to the parametketendency of errors occurring in the

EPS framework. Several diagnostics were desciineldapplied both to single deterministic and
ensemble integrations with model results from a sktoutput products generated from

deterministic integrations suggesting a number @bable representative parameterizations.
Analysis of ensemble products supported the coimiuthat stochastic physics increased the

ensemble spread and improved ensemble predictiferpmance.

When the ensemble mean error is compared witkerisemble spread, and the spread is
calculated as the difference of the individual emsie members and the ensemble mean, the
ensemble mean error is expected to be at least tmtiee ensemble spread in order for an EPS

to remain statistically reliable.

Analysis of the top ten frontal rank data alonghwRMSE and Bias, showed some
similarities but also marked differences in modélgcal parameterizations. Although the
simulations are notable for their similarities, th&erences must be noted which outline other
intrinsic processes forcing variability with regardb model accuracy and precision. If we look
strictly at the physical parameterizations havihg thighest ranking number without placing
emphasis on the actual model run number, it is thdpat more insight can be applied to model
processes. For the Planetary Boundary Layer (PBOAMPS and WRF with reference to

RMSE and frontal ranking calculations highlighted naarly concurrent use of physical
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parameterizations at the top ten ranking for thbse ensemble members. MM5 PBL
parameterizations, however, showed marked diff@®nc the use of certain parameterizations
occurring within the top-ten ranking when takindoirconsideration both RMSE and Frontal

ranking counts.

4.1.1 COAMPS parameterization performance

Only two PBL parameterizations were used to charas this specific physical process
in the COAMPS model: the“standard Mellor-Yamada (Mellor and Yamada 1982) and the

modified MY versions. Some of the conclusionsasdollows.

* The modified MY version does stand out at the tbine list for both RMSE and Frontal
ranks.

* The cumulus (dxmeso) and the ice nucleation parnaations show a similar trend
when compared between the two ranks.

* The autoconversion factor does favor 0.004 inputshfe RMSE rank whereas there is an
even distribution of process input values highkghtrom computed rank values for the

frontal rank analysis.

4.1.2 MM5 parameterization performance

Of the three ensemble members, MM5 displays theestidvariety of physical

parameterizations amongst the four physics options.
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For the PBL parameterization, Eta M-Y was the dataroption ranked in the top-five of
the RMSE rank while Burk-Thompson option appeasedd among the options noted

for the frontal rank method.

When ranked using the RMSE statistical method, Reisner 2 micro-physical

parameterization appeared as the dominate proappsaring four times in the top-five
for that particular model group. This same ensenrnlodel parameterization was
identified by the frontal rank analysis as one loé fpreferred numerical process for

liquid-water.

The Kain-Fritsch cumulus parameterization appearedthe top two spots when
considering its relative error characterizations thmi the top-five physical

parameterizations.

The radiation parameterizations showed the widestety of options identified as

important ensemble mechanisms in the model paraixation performance.

As a result of both the RMSE and frontal rank asialy only the Simple cloud
parameterization was identified as the dominatesig8y option for accuracy and
precision.

WRF parameterization performance

The WRF was more consistent with regards to gkysptions appearing when applying

RMSE and frontal rank analysis.

Mellor-Yamada-Jangi PBL and YSU (new MRF) PBL option appear equallyw the

rank data.
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The WRF microphysics Lin et al. (1983) (MM5:GSFC)asv the predominate
parameterization, occurring at the top two spotthiwithat model field for the RMSE
ranking top-5 for the frontal ranking.

The Eta microphysics and the Thompson method eguitiminated the top five
rankswithin that field category.

The cumulus parameterization used to calculate tusmproperties in WRF favored the
Kain-Fritsch method and the Betts-Miller methodgles featured method as determined
by both RMSE and frontal ranking analysis. TherKaritsch method, as calculated
from the frontal rank analysis process, and thetsBdiller method appear as the
dominate cumulus parameterization as indicated tt@RMSE error ranking.

Within the WRF radiation parameterizations, the WR#iation showed the largest
divergence from a mean value and this condition mvast pronounced using the RMSE
rank calculation. The Dudhia/RRTM option was pmadwate with regard to radiation

parameterization as identified through frontal raalculations.
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Figure 10: NARR isothem ranalysis at 500 hPa for times 2 and 5 days intoetigembl

forecast. Included in this figure are the ensemblmber isotherm “Spaghetti
COAMPS, MM5 and WRF. For comparative analysis,isisgherm contour heights at 248

plots fol

( blue contour) and 288 (green contour) for the 500 hPa level are idehlifor the foreca

lead times of 2 and 5

days.
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Figure 11: NARR isothem ranalysis at 500 hPa for times 10 and 15 days hoehsemb

forecast. Included in this figure are the ensemhbkmber isotherm “Spaghetti

plots fol

COAMPS, MM5 and WRF. For comparative analysis,ifiétherm contour heights at 248(
blue contour) and 23& (green contour) for the 500 hPa level are idehl for the foreca
lead times of 10 and 15 days.
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4.2  Analysis Discussion

Remembering the following empirical rules consisterpopular investigation, number 8
“Never take anything for granted” and rule numb@r 3There is no such thing as coincidence,”

© NCIS — CBS, an analysis and subjective model @mpn was conducted of the 153

In order to evaluate frontal ranking for this stuttyee parameters specific to this frontal
ranking analysis were considered and separatekedan These included temperature decrease
across the boundary (delta-T), the duration of theperature drop, and the time-phase
difference of the cold frontal passage calculatmdefach of the forecast model outputs of the
ensemble members used in this research. Enseneleast model output for each model run
was then compared with representative radiosondeereétion data for each of the three
parameters used in this analysis. For all membeise ensemble forecast group, each front was
evaluated separately for rank based on each oé tinese characteristics. A front rank total was
then created by ranking the summation of all aredyfronts for each ensemble forecast
member. Table column arguments corresponding @ terms included in the rank value
formulas are included above formulas for clarifigures 12 through 14 illustrate this method as
they apply to each step in the frontal rank sumnpraress. The best rank value is assigned to
the lowest calculated value for the model predict@@oo hpavalue and error. A front rank was
calculated according to the below formula with Nu@gto the number of frontal systems being

evaluated.

ensemble forecast plots with the associated Norttedcan Regional Re-analysis (NARR) for
the period when a third frontal system was predidte pass through the western contiguous

United States Steps in the analysis are as follows
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time interval of Figure 12 Temperature radial diagram showing for

the 51 COAMPS ensemble simulations for 50(
temperature  decrease/increastemperature data and KREV observational data.

and phase change computation over successive tetupechanges from forecasted frontal

passages forecasted over the range of ensembl&sons.

2. Focus was directed towards evaluation of totaltfrank data for the all analyzed cold fronts
with the ensemble model stochastic rank calculati®MSE, BIAS, RMSE+BIAS) rank
data was made for each model: COAMPS, MM5, and WR&Iculated ensemble rank data
was first evaluated for the top-five rank data, Wwas expanded to the top-ten cold-front #3
rank data to better clarify the relative distrilomtiof the top-ten simulation “hits” amongst
statistical information calculated from the 3 enbymembers.

3. A more in-depth analysis was performed focusing tha top-ten ensemble member

simulations with respect to their correspondinggitgl parameterizations.

Could computational resources cause variationsg@mble prediction output products?
A comparative analysis using NARR and ensemblectsieoutputs for the ensemble members

COAMPS, MM5, and WRF was used to evaluate thdivelaccuracy of these three ensemble
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members to upper air analysis at the 500 hPa l&veiparing each WRF output yielded at least
one forecast output plot which closely representedNARR analysis towards the end of the
forecast model run. But this particular occurrersceonsistent for an outlier in the probability
density function (PDF). This particular functios used for density of a continuous random
variable that describes the relative likelihood #orandom variable to take on a given value or
outcome

Research has been conducted by Kiarat al. (2014) to assess the value of the
different modes of model verification included bwas not limited to ranking forecast
predictability based on observed and forecast teatyes data at the 500 hPa geopotential level.
The method defines three main parameters for tlauation of the frontal passages. The
parameters are: temperature drop in degrees Cealearsthe period of the frontal passage, time
duration in hours of the temperature decreasetiarephase differences between observed and
forecast 500 hPa temperature data were computedaakdd for the 153 ensemble simulations

completed during the 15-day forecast period fonth#ti-model ensemble run.
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shift from KREV observation data over the period of
the ensemble simulation.

The Frontal and Total-Model ranking calculatiorssdisplayed in table 2 and table 3

utilize three components; delta-T, delta-t, andetipinase shift, analyzed to describe the frontal
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characteristics over the range of ensemble modw and displayed in figures 12 through 14.
Another input value is Root Mean Square Error (RM&8Ed statistical BIAS data rank data.

This statistical based rank data is derived fromdhsolute value of the difference between 500
hPa temperature radiosonde observations and matkel d’he 500 hPa temperature advection

calculations describe the magnitude of the deltallies for the period of the ensemble forecast.

The RMSE is a commonly occurring mean for filelcecasts. It operate on the gridded
forecast and observed fields by specially averathiegndividual squared difference between the
two values temporally over the domain of model rumsalized for each member of the

ensemble forecast.

Equations 1 and 2 were used to calculate the RMS8& RBIAS for this study,

respectively.

bias = %Z (an - x,?) 0

f 0] 2
rmse= *Z Xn — Xy (2)

Where N is the total number of forecasf () /observation &°) pairs over a given space-

time interval, and the superscripts f and o regmmedhe forecast and observed 500 hPa
temperature values respectively. RMSE also hasativantage of preserving the units of the

format variables used in the models provided aneasily interpretable as a typical error
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magnitude for any analysis completed. In order to evaluate frontal ranking for this stud
three parameters specific to this frontal rankinglgsis were considered and separately ranked.
These included temperature decrease across thedd&urfidelta-T), the duration of the
temperature drop, and the time-phase different¢keotold frontal passage calculated for each of
the forecast model outputs of the ensemble memissd in this research. Ensemble forecast
model output for each model run was then compaiiéd representative radiosonde observation
data for each of the three parameters used inatiysis. For all members in the ensemble
forecast group, each front was evaluated separdtdelyank based on each of these three
characteristics. A front rank total was then aedaby ranking the summation of all analyzed
fronts for each ensemble forecast member. Tabt®rtains formulas used to calculate the
temperature change between observed and modelkedod&00hPa over KREV during passage
of associated 500 hPa upper trough. The temperatioes were then used as the basis input
values for the rank value formulas. The best rallde is assigned to the lowest calculated value
for the model predictedTsoo values and error. A front rank was calculatedoetiog to the

below formula with N equal to the number of frorggbtems being evaluated.

Frontal ranking for all frontal systems evaluatiedling the period of the ensemble model
runs was calculated in order to assess thevelptedictability of certain ensemble simulations.
This assessment was applied to the frontal analysisn the period with which the ensemble
forecast plots were evaluated at their maximum rabse spread. It was the intent of this
analytical approach to observe whether individualdel simulations among the ensemble
members actually predicted the regional mesosdaagmenon as displayed with the associated

North American Regional Reanalysis (NARR) ploDver the spectrum of the ranking data,
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Table 1(a) The following formulas were used to ghlte the temperature decrease between
observed and modeled data for 500 hPa over KREWglyrassage of associated 500hPa upper
trough. (b) This formula was used to calculate dheation of forecast Temp500hPa decrease
during period of passage of 500 hPa upper trough BKREV. (c) The final formula was used to
calculate the phase shift of the 500 hPa trough w&kien compared to observed radiosonde data
over KREV.

(a) Dtemp Dtemp(RAOB — model data) ABS(Dtemp)

OBS500 — FCST500 ATEMPS500 = ATEMP500]abs

(b) Dtime Dtime( RAOB- model data) | ABS(Dtime))

DTimeyps- DTimaest = [ A Time]aps

(c) Shift dShift (RAOB- model data ) | ABS(dShift )

Shiftops— Shiftsoo = [ A Shift500]abs

calculations for the three forecast fronts simulatey the EPS models, the top ten front
rankingvalues were compared with calculated RMSHIAS, and RMSE+BIAS to create a

comparison scale for all EPS simulations. The csete EPS simulation having the most
representative ensemble forecast plots could tleenompared to an associated NARR output

plots.

Introduced earlier within this section was a dsstan of the ensemble model spread at
the 10-day and 15-days stage of the multi-modeukitions. This property of multi-model
ensembles at this stage of the model simulatiorsspraviously highlighted by Figure 10 and 11,

illustrating the considerable model simulation spre¢hat developed as a result of non-linear
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dynamical processes embedded in
the model simulation cycle. In

Figure 15, each temperature

profile plotted and included in the

radial diagrams for the 51

ensemble model simulations

plotted a continual increase in

temperature variability as the

model simulation process

progressed forward into the later
phases of the ensemble run. Here,
the three panel temperature radial
diagrams profiled how non-linear
processes reduced the symmetry of
the temperature contours featured

for each of the three frontal

passages. Towards the last 72

Figure 15 The three panel rad
plots for the ensemble forec
temperature difference for each
the three cold fronts identifi
during the period of the enselab
simulation. This panel sho
notable variations in 500 h
temperature as nonlinear proce:
begin to affect model outg
towards the finish of the ensem
simulation.
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hours of the ensemble model run, during the apprate period of the passage of the third cold

front, AT values no longer approach COANPS

Frontal
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(cold front #1)

=13 Dec 00Z

cross over the observedT values

-m~13 Dec 122

showing a large  temperaturg R

differences towards the end of th

ensemble simulation.

Analysis of a comparison of

frontal rank data to statistical RMSE
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BIAS, and RMSE+BIAS calculated

from observed and predicted 500 hR
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temperature variations for all thre
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EPS are presented in this research.

Referring to the three pane

display, Figure 16, the radia COAMPS
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temperature profile for the first cold
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front illustrates the thermal gradient
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Figure 16 The three panel radial pl
for COAMPS forecastemperature flu
for each of the three cold frol
identified during the period of t
ensemble simulation. By passage o'
third cold front, little or no temperatt
change is apparent towards the fi
stages of the model simulations.
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and cold air advection which is characteristic ab&l frontal passage. The 500 hPa temperature
predictions for the 51 model simulations origingtiirom the COAMPS ensemble member
shows a relatively usual temperature decrease stensiwith the initial period of the forecast
simulation. Progressing from cold front 1 to céddnt 2, frontal temperature gradient profile
values at 500 hPa begin to vary greatly with 51%hef ensemble simulations continuing to
show a horizontal thermal gradient to colder terapge values for that particular model
simulation. By the time the third cold front movésough western Nevada, the COAMPS
modeled forecast temperatures for the 500 hPa Ehalied a considerably weakened thermal
gradient inconsistent with what was forecasted tfar first cold front. Instead the model
predictions show weak or no cold air advection@smared to the first cold front influencing the
model output. Figure 16 also illustrates how@@AMPS model almost completely missed the
third cold front. The triangular area marked indhighlights the observed 500 hPa temperature
decreases associated with both the cold front @perutrough passages. A modeled thermal
gradient for the third observed cold front is pi@dty nonexistent over the range of the
simulation runs. Does this show a possible disanep within the model parameterizations used
in the COAMPS model itself or can this be used asglemce for . the use of multi-model
ensemble prediction systems to accurately ascettanprobabilistic outcomes within the

mesoscale regime?

Numerical models often focus on a limited specdatmain in order to achieve high
resolution for a reasonable calculation time, deasible physical size. Such limitations in the
size of the model domain imply that the mechanaal thermal evolution of the area located

outside the model domain need to be taken intouatdbrough boundary conditions. This
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(@)

Rank un COAMPS Frontl un MM5 Frontl un WRF Frontl
Count rank rank rank
1 run7 10 runl9 5 run24 4
2 runl2 11 run24 5 runb 6
3 runl3 12 run21 7 runleé 6
4 runs 13 run22 15 run26 6
5 run23 14 run27 15 run40 6
6 run22 15 runl7 16 runl 11
7 runls 16 run4 18 run8 11
8 run4 17 run31 18 run3l 11
9 run32 18 run20 19 run34 11
10 run50 19 run39 19 runlo 17

(b)

Rank un COAMPS Front2 un MM5 Front2 un WRF Front2

Count rank rank rank
1 run30 14 run26 5 runl4 13
2 run36 15 run36 7 runb 14
3 run37 16 run8 8 run9 15
4 run43 17 run35 10 runl? 18
5 run2l 19 runlo 12 run31 20
6 runlé 22 run30 19 run51 21
7 run3 23 runs 20 runl 23
8 run4s8 28 runll 26 run47 23
9 run4z2 31 run31 26 runl3 24
10 run49 32 run3 27 run34 24
(c)

Rank un COAMPS Front3 un MM5 Front3 un WRF Front3

Count rank rank rank
1 run36 7 runl8 15 run4?2 22
2 run26 11 run37 22 run37 26
3 run20 22 runlo 25 run38 28
4 run23 25 run22 25 run27 29
5 runl4 26 run27 25 run39 32
6 run9 27 runle 28 run28 33
7 runlo 28 run2l1 31 run29 34
8 run4’7 30 run9 32 runlé 39
9 run2 31 runl2 36 runs0 41
10 run25 32 run25 37 run32 43

implies that a modification of the boundary cormh changes the assumptions that are made

Table 2: The top-ten front rank data for each efdermember and associated (a): Front 1, (b):
Front , and (c): Front 3 is included below to imtduthe representative simulation run used to select
BIAS,RMSE and BIAS+RMSE rank values for error-trearhlysis.
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concerning the thermal and mechanical state ofég@n outside the model domain. In other
words, without control of lateral boundary condisoat the end of a data assimilation window,
observations close to the lateral boundaries thifuance the initial conditions or information
related to phenomena observed well inside an idoenain during this latter part of the data
assimilation period may be lost and worsen the esuosnt forecast inside the domain. This may
be the case with regards to the Navy's Operati@labal Atmospheric Prediction System
(NOGAPS) coarse model data at the data assimilggoiod consequently affecting Coupled
Ocean/Atmosphere Mesoscale Prediction System (COEMérecast outputs during the period

of the simulation run

4.3  Probabilistic analysis of frontal rank data wth statistical measures

Frontal rank data for all three cold fronts caddat earlier was applied to BIAS, RMSE,
and RMSE+BIAS derived from 500 hR”AA values generated from the 153 simulation multi-
model ensemble forecast run. The results ftbre analysis showed error trends which
concurred with the ensemble spreading displayad ttee 500 hPa geopotential and temperature
spaghetti plot results, Figures 10 and 11, forzh®, 10, and 15 day lead times for the ensemble
simulation runs conducted for the period of 12-Z2¢t&nber 2008. (Koracin et al. 2014). Tables
2 and 3 are included in this section to clarify sedection of the top-ten frontal rank data from
calculated tabular data for the BIAS, RMSE, and EMBIAS and then plotted in yellow to
highlight statistical data error trends.

Table 3: The top-ten Total-Model rank data forreaosemble member and associated front is

included above to include the representative sitiurdarun used to select BIAS,RMSE and
BIAS+RMSE rank values for error-trend analysis.
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Rank total RUN CFOr AOI;]AES total | oo MM5 total RUN WRF I\-I;Iztdaelx-l
Count | frontl frontl Frontlrank| frontl Frontl rank
rank Frontl
1 4 runb 13 11 runb 24 2 runb 6 17
2 16 run24 27 1 run24 5 1 run24 4 18
3 14 run31l 25 7 run3l 18 6 run3l 11 27
4 8 run4 17 7 run4 18 14 run4 24 29
5 6 run22 15 4 run22 15 27 run22 40 37
6 1 runv 10 11 runv 24 27 runv 40 39
7 20 run26 36 17 run26 37 2 run26 6 39
8 24 run40 40 13 run40 28 2 run40 6 39
9 9 run32 18 21 run32 42 14 run32 24 44
10 22 runl?7 38 6 runl? 16 21 runl? 32 49
Rank total COAMPS | al MM5 total WRF Front2 Vi
Count | front2 RUN Front2 front2 RUN Front2 rank| front2 RUN rank e
rank Front2
1 2 run36 15 2 run36 7 17 run36 34 21
2 1 run30 14 6 run30 19 17 run30 34 24
3 15 runl? 42 10 runl7 27 4 runl7 18 29
4 12 run8 39 3 run8 8 15 run8 31 30
5 23 runb 61 7 runb 20 2 runb 14 32
6 13 run26 40 1 run26 5 20 run26 43 34
7 27 run31 64 8 run31 26 5 run31 20 40
8 11 run9 35 32 run9 84 3 run9 15 46
9 20 runl 58 20 runl 52 7 runl 23 47
10 7 run3 23 10 run3 27 34 run3 78 51
Rank total RUN CI(:)r g?qﬂtzs total RUN MM5 total RUN WRF I\-I/-I(())tdacla-l
Count | front3 front3 Front3rank| front3 Front3 rank
rank Front3
1 13 runl9 36 3 runl9 25 16 runl9 51 32
2 14 run22 37 3 run22 25 15 run22 48 32
3 25 run27 57 3 run27 25 4 run27 29 32
4 33 run37 75 2 run37 22 2 run37 26 37
5 3 run20 22 24 run20 61 11 run20 44 38
6 23 run39 56 10 run39 37 5 run39 32 38
7 30 runle 70 6 runle 28 8 runle 39 44
8 4 run23 25 18 run23 58 23 run23 65 45
9 10 run25 32 10 run25 37 26 run25 70 46
10 23 run28 56 17 run28 56 6 run28 33 46

Figures 17 through 34 are arranged according to répeesentative cold front and
ensemble member. The blue block arrows overlaid tme representative BIAS, RMSE, and
BIAS+RMSE data displays indicate the error trendslyed subjectively according to the
general density of the frontal and Total-Model Tign rank inputs from Table 2 and Table 3,
The top-ten tabular data is highlighted in yellaw €ach plotted statistical rank data annotated
for each error-trend The density of yellow highlied bars concentrated in either a left or right

side of the statistical rank display indicates tlection of the decreasing or increasing error
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values. Left directed arrows indicate trends talapproximate decreasing error; right directed
arrows are set in the direction of approximateaasig error, and block arrows pointing in both
directions indicate an approximate neutral conditiwat exists over the range of simulations vs.
BIAS, RMSE, and RMSE+BIAS statistical error valudseutral results in this study refer to the
observed error-trend results equally distributesbss the range of BIAS, RMSE, and BIAS +
RMSE error rank diagrams for each of the ensemi@mbers. Therefore, an error-trend result
arrow pointing towards the left sides of the diagrindicate a lower error-trend while arrows
directed to the right indicate an increasing etrend for that representative classification
diagram.

From the data presented in Figures 17 throughi@ylations selected from the top ten
frontal rank data generally lead to lower erromesl for BIAS, RMSE, and RMSE+BIAS. This
trend is consistent with minimal ensemble spreadedsibited from the day-2 and day-5
spaghetti plots in figure 10. Individual modebgrsis for both Front and Total-Model plots for
Front 1 showed a neutral trend condition for theABAPS model while the MM5 and WRF
models trended towards values indicating lower refoo BIAS, RMSE, and BIAS+RMSE.
Therefore, from the above analysis, MM5 and WRBramend comparisons for front 1 illustrate
an ability to verify probabilistically with generaonfidence that the multi-model ensemble is
performing generally good with regards to charazitegy 500 hPa temperature forecasts. This is
in contrast to the COAMPS model which showed amtigubut neutral results for Front 1 with
error trends not directed either in less or greateor when compared to its associated partner
ensemble members. Still, MM5 displayed the bedbpmance with error trends direct towards

less error for Front and Total-Model Front 1 as@yplots.
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Error trends derived from Figures 23 through 28 fontal rank data selected from the
top ten frontal rank data for the front 2 generatdnded toward lower error values for BIAS,
RMSE, and RMSE+BIAS for all three ensemble memblétis.interesting that this trend occurs
during the period of the day-10 ensemble spagipdtti Figure 11, where model ensemble
spread increases initially. By this time, the pagsof the cold front 2 is also taking place during
this initial period of the day-10 500hPa tempemtspaghetti plot. Upon further examination,
the MM5 model exclusively trends toward lower ertand values for both Front and Total-
Model for this second front. This is in contrasits performance for cold front 1 for the Front 1
error trend for BIAS, RMSE, and BIAS+RMSE. The WRRd COAMPS models mostly
continued a trend toward decreasing error for F&yntbut the COAMPS remained generally
neutral for Front 2 Total-Model with the error tcedistributed evenly over the rank values for

BIAS, RMSE, and BIAS+RMSE.

Values for BIAS, RMSE, and BIAS+RMSE, a neutrahdition is apparent upon direct
evaluation of RMSE error for both models. MM5 penfiance is counter intuitive to com-
parisons for the cold front 2 tendencies. Thishfertamplifies a sense of confidence with regard
to the ensemble performance characteristics whieig tise associated day 10 spaghetti plots

illustrated in Figure 11.

Now looking closer at figures 23 through 28, the Bllind WRF model Total-Model
analysis for front 2 showed the best performanceesfoor trends toward lesser error similar to
the MM5 Total-Model model analyzed for front 1.iFtrend towards reduced error was evident

for all three statistical arguments; BIAS, RMSEdaRIAS+RMSE. The COAMPS model
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Total-Model analysis for front 2 continued to deplan error trend similar to the front 1
analysis displaying no definite trend in eitheredtion as related to less or greater rank values.
The top-ten front 2 rank inputs included model euror "hits" evenly distributed over the range
of statistical error ranks. It is remarkable tlatirect comparison of the MM5 and WRF
ensemble spaghetti plots for 500 hPa temperatutehamght, the trend analysis for this dataset
showed little correlation. Synoptic features digplhon the day 10, 22 December spaghetti plots
for the COAMPS model, however, showed increasedgtiostructure. Something that was not

readily apparent from direct observations of MM8 &4FR outputs
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Figure 17: Ensembld
Front 1 Top Ten ranK
data highlighted in
yellow used for sel-
ections of associate
BIAS rank data.
COAMPS and MM5
displayed evenly distri-

buted error-trend. Bia$

trends for the WRH
model indicated a pro
bability of decreased

ensemble error whe
considering front 1
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Figure 18: Ensemblg¢
Total-Model Top Ten
rank data for Front 1]
highlighted in yellow
used for selections of
associated BIAS rank
data. COAMPS and
WREF displayed evenly
distributed error-trend
Bias trends for thd
MM5 model indicated
a probability of

decreased ensemble

error relative to front 1.
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Figure 19: Ensembld
Front 1 Top Ten rank
data highlighted in
yellow used for
selections of associate
RMSE rank datal
COAMPS, MMS5, and
WRF RMSE error-
trend indicated a pro
bability of decrease
ensemble error assq
ciated with front 1.
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Figure 20: Ensembld
Total-Model Top Ten
rank data for Front 1]
highlighted in yellow
used for selections of
associated RMSE ran
data. COAMPS and
WRF displayed an
evenly distributed
error- trend. RMSE
trends for the MM5
model indicated 4
probability  of de-

A

creased ensemble errpr

associated with front 1
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Figure 21: Ensemblg
Front 1 Top Ten ranK
data highlighted in
yellow used for
selections of associate
BIAS+RMSE rank
data. COAMPS ang
MM5 displayed an
evenly distributed
error-trend. Bias+H
RMSE trends for thq
WRF model indicated
a probability of de-
creased ensemble err
associated with front 1
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Figure 22: Ensembl
Total-Model Top Ten
rank data for Front
highlighted in yellow
used for selections of
associated BIASH
RMSE rank datal
COAMPS and WRH
displayed an evenly
distributed error- trend
BIAS+RMSE error-
trends for the MM5
model indicated 4§
probability of de-
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Figure 23: Ensembld
Front 2 Top Ten rank
data highlighted in
yellow used for
selections of associate
BIAS rank data. All
ensemble member
displayed BIAS erron
trend results indicating
a probability of de-
creased ensemble err
relative to front 2.
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Figure 24: Ensembl
Total-Model Top Ten
rank data for Front

highlighted in yellow
used for selections

associated BIAS rank
data. COAMPS dis-
played an evenly
distributed error- trend
BIAS error-trends for
the MM5 and WRF
models indicated @
probability of de-
creased ensemble errpr
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Figure 25: Ensembld
Front 2 Top Ten rank
data highlighted in
yellow used for
selections of associated
RMSE rank datal
COAMPS and WRH
displayed an evenly
distributed error-trend
RMSE error-trends fof
the MM5 model
indicated a probability
of decreased ensembje
error associated with
front 2.
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Figure 26: Ensembld
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Figure 28: Ensemblg
Total-Model Top Ten
rank data for Front 2J
highlighted in yellow
used for selections of
associated BIASH
RMSE rank datal
RMSE error-trends fof
the MM5 and WRF
models indicated 4
probability of de-

creased ensemble errgr

associated with front 2
COAMPS displayed an
evenly distributed
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Figure 29: Ensemblg
Front 3 Top Ten ranK
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data highlighted in COAMPS
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Figure 30: Ensemblg
Total-Model Top Ten
rank data for Front 3
highlighted in yellow
used for selections of
associated BIAS rank
data. WRF displayeq
an evenly distributed
error-trend when com
pared to BIAS errof
rank data. But BIAS
error-trends  for thg
COAMPS and MM5
models indicated 4
probability of in-
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Figure 31: Ensemblg
Front 3 Top Ten ranH
data highlighted in
yellow used for
selections of associate
RMSE rank data. All
ensemble member
displayed RMSE error
trend results indicating
a probability of in-
creased ensemble err
relative to RMSE ranK
data for front 3.
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Figure 32: Ensembld
Total-Model Top Ten
rank data for Front 3
highlighted in yellow
used for selections of
associated RMSE rank
data. WRF displayed
an evenly distributed
error-trend when com
pared to RMSE erro
rank data. But RMSH
error-trends for theg
COAMPS and MM5
models indicated 4
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Figure 34: Ensembld
Total-Model Top Ten
rank data for Front 3
highlighted in yellow
used for selections of
associated BIASH
RMSE rank data. All
ensemble members dij
played BIAS+RMSE
error-trend results in
dicating a probability]
of increased ensemble
error relative to BIAS+
RMSE rank data fof
front 3.
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Analysis of trend performance, figures 29, 31, 88dor the cold front 3 showed an error
trend in an opposing direction as compared to tmyais of the previous two cold fronts.
Consequently, selection from statistical measuras fthe frontal top ten rank analyses for the
cold front 3 generally exhibited an error trend &t increased ensemble model error. When
considering error trend plots for the Front 3 alo®80% of the error trend plots indicate
increased model error with trend values direct&hatd increase error. On visual examination of
day 15 spaghetti plots, Figure 11, associated wotd front 3, little symmetry remained both
spatially and temporally late in the forecast satioh during the 36 hour period from 0000Z, 25
December through 1200Z, 26 December 2008. Thidfreurthermore, correlates well with
maximum ensemble spread as illustrated in Figure This trend analysis illustrated strong
nonlinear processes beginning to play an active mlthe ensemble probabilistic forecast

process.

Looking at the final error trend analysis for Rr@as shown in Figures 30, 32, and 34,
the Total-Model Top-Ten plots showed error analgéssributed generally in a direction towards
increased statistical error. The COAMPS and MM5aF®Model error trend analysis is directed
towards higher statistical error with Total-Modedpl Ten plots lighted in the region of increased
error for all three statistical measures. Thioetrend again correlates with the associated
15days - 27 December spaghetti plot diagrams, Eidur, where ensemble spread is at its
maximum extent. Error trend analysis applied tasBRMSE, and BIAS+RMSE statistical error
ranking showed a top-ten total model rank dataridigion towards higher error with the
exception of the WRF model. The WRF Total-Modeloertrend analysis showed no definite

top-ten total model run rank distribution across thnge of statistical BIAS and RMSE ranks.
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This is in contrast to the other ensemble membétstvend results exhibiting ambiguous results
where comparison data approximately spread evembsa the range of rank data for BIAS and
RMSE.. Again, this error trend correlates to theréased ensemble spreading evident at the 15

days-27 December spaghetti plot diagram displaydidjure 11.

In the preceding eighteen figures, an error tramalysis technique was used to evaluate
the ensemble model error as it relates to the dtaanking for each of the three fronts observed
during the period of the ensemble simulation. Ttreretrends applied to the total model data
ranking for each front displayed an associated witkemble model error. For the first two
fronts observed during the 12 — 27 December 200&ilstion, trends point towards less error
rates and reduced ensemble spread as shown ondidnes2l4 December spaghetti plot, Figure
10. For front 3 ( Figure 29 through Figure 34)weweer, the trend analysis generally favored
increasing error spread for the 10 days-22 Decemherl5 days-27 December spaghetti plots as

seen in Figures 10 and Figure 11.

Can it be said implicitly that, with a direct sabjive comparison of basic statistical
measures; BIAS, RMSE, and BIAS+RMSE, with mesostraletal ranking data over the range
of finite ensemble simulation statistically emul#éte varied distribution that would be expected

for a PDF distribution using standard statisticalgisis tools?
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5.0 Summary and conclusion:

For all datasets used in this study, a totals¥ énsemble members using COAMPS,
MM5, and WRF were produced at the inner domairasathorizontal resolution of 36 km. All
models exhibited statistically reasonable expemtatin the use for the multi-model EPS and
standard statistics (RMSE and BIAS). Previousaede Kor&in et al. (2014), using this
stochastic predictive approach confirmed that igti-model ensemble combination clearly
improved the accuracy of the forecast comparecth enodel when evaluated separately for all
considered parameters. In addition, this reseaetermined that all models showed error
growth significantly of greater magnitude and ocitg sooner than the standard error growth
formula. According to Koran el al. (2014), during the later stage of theetarst period (lead
time of ten days and more), all models showed erdthapread as evident in the corresponding
time-series and spaghetti plot diagrams. Alsoanakin el al. (2014), the spaghetti diagram for
COAMPS showed considerable ensemble error spregdiogto the MM5 and WRF ensemble
members during the same forecast period. Follownegursor analysis of ensemble simulation
results, non-linear and chaotic behavior incréakeing the final five-day period when
compared to the first five days of the ensembledast period. This non-linear dynamical
evolution towards the completion of the model siamtioh further highlighted the need to
incorporate those statistical tools necessary ito igaight into the evaluation and assignment of

error growth correlations during the developmertheke deterministic processes.

In Grimit eo al.(2006), it has been shown in priesearch that by measuring the
ensemble spread -- error relationship with a prdiséib approach, the stochastic ensemble

spread-error distribution was characterized bydasmng scatter as the ensemble spread grew
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larger. Also, Grimit et al. (2006) emphasized the telationship between ensemble spread and
deterministic forecast accuracy has been usedrasaaure of the success of using ensemble
prediction systems as a means to enhance numpreddittion over medium and long-range
forecast periods. Ensemble prediction will congina be the next logical step in the
development of a numerical process to consolidedestochastic and probabilistic approaches
toward more accurate numerical weather predictibme calculation of the magnitude of
ensemble model error through the use of a stalsdistribution of all possible outcomes, i.e.,
trend analysis, can incorporation improved var@tphysical parameterizations embedded in
the regional and /or global EPS, the resultant mibast guess; which is then analyzed and
further developed from the subsequent measurenié¢né mumerical ensemble spread will lead
to enhancements in the ensemble forecast predistamess. Ensemble model predictions rely
heavily upon an accurate variety of physical patenwmations embedded in regional and global
EPS to accomplish the computation of a precisereblgemean. Ensemble error trend analysis
can be an effective means to analyze the procésgrty of the physical parameterizations
included in a particular multi-model ensemble pcadn system. Once the efficiency of the
physical parameterizations has been establishedptius can be directed towards determining
how well the process achieves the predictabilitgertain mesoscale meteorological feature, in
this case three cold fronts within the contexthaf Meso-(alpha) range occurring over the period

of the simulations.

Although the basis of this research is simplexacution, can techniques commonly
applied within the context of statistical analysdg validity in assessing probabilistic prediction

outcomes? Using predictive -- observation measungrand then employing simple statistical
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tools like BIAS and RMSE, as well as variationdoth, can be used as a means to further
evaluate and mitigate ensemble model error. Tppsaach has shown that it can be another
analysis instrument to evaluate both synoptic ardascale probabilistic tendencies. It remains,
however, dependent upon the fidelity of the modetd¢ast and observation temperature and
height datasets available. The sensitivity toudate with precision the error trends based solely
on statistical ranking displayed the greatest ¢aticn when the third front appeared at the end
of the forecast run. At this point, ensemble mageead advanced to its largest extent by day 15
of the model run. With reference to ensembledase prediction verification, the use of basic
statistical measures presented beforehand maylé¢ocatpecify the specific physical
parameterizations that have the greatest influepo@ multi-model for error covariance and
predictability. This, in turn, will enable the usemodel rank output as a means to balance
forecast predictability. In research to come, ¢he®del physical processes can be retooled to
make possible the assignment of a predictabilityoiato certain mesoscale frontal features; such

as, temperature flux, surface and upper level dyegrand precipitable water.
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Table 1A. Ensemble simulation set of physical pameterizations for MM5.

Control
1
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Experiment MMS5 (PBL)

Eta M-Y

Eta M-Y

Eta M-Y

Eta M-Y

Eta M-Y

Eta M-Y

Eta M-Y

Eta M-Y

Eta M-Y

Eta M-Y

Eta M-Y

Eta M-Y

Eta M-Y
Gayno-Seaman
Gayno-Seaman
Gayno-Seaman
Blackadar
Gayno-Seaman
Blackadar
Gayno-Seaman
Gayno-Seaman
Gayno-Seaman
Gayno-Seaman
Gayno-Seaman
Gayno-Seaman
Gayno-Seaman
Gayno-Seaman
Gayno-Seaman
Blackadar
Gayno-Seaman
Burk-Thompson
Burk-Thompson
Burk-Thompson
Burk-Thompson
Burk-Thompson
Burk-Thompson
Burk-Thompson
Burk-Thompson
Burk-Thompson
Burk-Thompson
Burk-Thompson
MRF

MRF

MRF

MRF

MRF

MRF

MRF

MRF

MRF

MRF

MM5 (microphysics)
Reisner 2

Reisner 2

Simple ice (Dudhia)
Goddard (GFSC)
Reisner 2

Reisner 2

Schultz

Simple ice (Dudhia)
Goddard (GFSC)
Reisner (no graupel)
Reisner 2

Simple ice (Dudhia)
Simple ice (Dudhia)
Schultz

Goddard (GFSC)
Reisner 2

Schultz

Reisner 2

Simple ice (Dudhia)
Goddard (GFSC)
Schultz

Simple ice (Dudhia)
Goddard (GFSC)
Simple ice (Dudhia)
Goddard (GFSC)
Goddard (GFSC)
Goddard (GFSC)
Simple ice (Dudhia)
Schultz

Reisner 2

Reisner 2

Simple ice (Dudhia)
Reisner 2

Reisner 2

Simple ice (Dudhia)
Reisner 2

Goddard (GFSC)
Simple ice (Dudhia)
Schultz

Reisner 2

Goddard (GFSC)
Reisner 2

Simple ice (Dudhia)
Reisner 2

Reisner 2

Schultz

Schultz

Simple ice (Dudhia)
Goddard (GFSC)
Simple ice (Dudhia)
Simple ice (Dudhia)

MM5 (Cumulus)
Kain-Fritsch
Grell

Grell

Grell
Betts-Miller
Grell
Betts-Miller
Grell
Betts-Miller
Kain-Fritsch
Betts-Miller
Betts-Miller
Betts-Miller
Betts-Miller
Betts-Miller
Grell
Kain-Fritsch
Betts-Miller
Grell

Grell
Kain-Fritsch
Grell
Kain-Fritsch
Kain-Fritsch
Grell
Kain-Fritsch
Betts-Miller
Kain-Fritsch
Kain-Fritsch
Kain-Fritsch
Betts-Miller
Betts-Miller
Kain-Fritsch
Betts-Miller
Betts-Miller
Betts-Miller
Grell
Betts-Miller
Betts-Miller
Kain-Fritsch
Kain-Fritsch
Kain-Fritsch
Betts-Miller
Grell
Kain-Fritsch
Grell
Betts-Miller
Kain-Fritsch
Betts-Miller
Grell

Grell

MMS5 (Radiation)
RRTM (FRAD=4)
CCM2 (FRAD=2)
Dudhia (FRAD=2)
Dudhia (FRAD=2)
CCM2 (FRAD=2)
Dudhia (FRAD=2)
Dudhia (FRAD=2)
CCM2 (FRAD=2)
Dudhia (FRAD=2)
Simple cloud (FRA
RRTM (FRAD=4)
Dudhia (FRAD=2)
CCM2 (FRAD=2)
CCM2 (FRAD=2)
CCM2 (FRAD=2)
Dudhia (FRAD=2)
RRTM (FRAD=4)
CCM2 (FRAD=2)
Dudhia (FRAD=2)
Simple cloud (FRA
Dudhia (FRAD=2)
CCM2 (FRAD=2)
Simple cloud (FRA
RRTM (FRAD=4)
Dudhia (FRAD=2)
CCM2 (FRAD=2)
RRTM (FRAD=4)
Simple cloud (FRA
CCM2 (FRAD=2)
Simple cloud (FRA
Simple cloud (FRA
Simple cloud (FRA
Dudhia (FRAD=2)
RRTM (FRAD=4)
RRTM (FRAD=4)
Dudhia (FRAD=2)
CCM2 (FRAD=2)
CCM2 (FRAD=2)
Dudhia (FRAD=2)
Simple cloud (FRA
Simple cloud (FRA
Dudhia (FRAD=2)
Dudhia (FRAD=2)
CCM2 (FRAD=2)
RRTM (FRAD=4)
CCM2 (FRAD=2)
RRTM (FRAD=4)
RRTM (FRAD=4)
RRTM (FRAD=4)
CCM2 (FRAD=2)
Dudhia (FRAD=2)
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Table 2A. Ensemble simulation set of physical pameterizations for WRF.

Control
1

O 00N~ WN

Experiment WRF (PBL)

Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
Mellor-Yamada-Jan
YSU (new MRF)
YSU (hew MRF)
YSU (new MRF)
YSU (new MRF)
YSU (hew MRF)
YSU (new MRF)
YSU (new MRF)
YSU (hew MRF)
YSU (new MRF)
YSU (hew MRF)
YSU (hew MRF)
YSU (new MRF)
YSU (hew MRF)
Pleim-Xiu
Pleim-Xiu
Pleim-Xiu
Pleim-Xiu
Pleim-Xiu
Pleim-Xiu
Pleim-Xiu
Pleim-Xiu
Pleim-Xiu
Pleim-Xiu
Pleim-Xiu
Pleim-Xiu
Pleim-Xiu
Pleim-Xiu
Pleim-Xiu
Pleim-Xiu

WRF (Microphysics)
Thompson

Goddard microphysics
Goddard microphysics
Lin

ETA microphysics

ETA microphysics

ETA microphysics
Thompson

Goddard microphysics
Goddard microphysics
Thompson

Thompson

Lin

Lin

Goddard microphysics
Lin et al.

ETA microphysics
WRF-single mom (6)
WRF-single mom (3)
Morrison

Morrison

Morrison

ETA microphysics

Lin

Goddard microphysics
Lin

Lin

Goddard microphysics
Thompson

ETA microphysics

ETA microphysics
Morrison

WRF-single mom (6)
WRF-single mom (3)
WRF-single mom (6)
ETA microphysics

Lin

ETA microphysics
Goddard microphysics
Lin

Thompson

Goddard microphysics
Goddard microphysics
WRF-single mom (6)
Morrison

Lin et al.

Goddard microphysics
Lin

Lin

Goddard microphysics
Lin

WRF (Cumulus)
Kain-Fritsch
Betts-Miller
Kain-Fritsch
Kain-Fritsch
Kain-Fritsch
Betts-Miller
Kain-Fritsch
Betts-Miller
Grell-Devenyi
Betts-Miller
Betts-Miller
Betts-Miller
Grell-Devenyi
Betts-Miller
Betts-Miller
Kain-Fritsch
Kain-Fritsch
Betts-Miller
Kain-Fritsch
Kain-Fritsch
Betts-Miller
Grell-Devenyi
Kain-Fritsch
Betts-Miller
Betts-Miller
Kain-Fritsch
Betts-Miller
Betts-Miller
Grell-Devenyi
Betts-Miller
Kain-Fritsch
Kain-Fritsch
Kain-Fritsch
Betts-Miller
Betts-Miller
Betts-Miller
Betts-Miller
Grell-Devenyi
Grell-Devenyi
Kain-Fritsch
Kain-Fritsch
Grell-Devenyi
Kain-Fritsch
Kain-Fritsch
Kain-Fritsch
Kain-Fritsch
Betts-Miller
Betts-Miller
Grell-Devenyi
Grell-Devenyi
Kain-Fritsch

WREF (Radiation)
Dudhia/RRTM
GFDL/GFDL
GFDL/GFDL
Goddard/RRTM
GFDL/GFDL
CAM/CAM
CAM/CAM
Dudhia/RRTM
GFDL/GFDL
CAM/CAM
CAM/CAM
Goddard/RRTM
Goddard/RRTM
GFDL/GFDL
GFDL/RRTM
Dudhia/GFDL
Dudhia/CAM
Goddard/RRTM
Dudhia/RRTM
Goddard/RRTM
Goddard/RRTM
Goddard/RRTM
GFDL/GFDL
GFDL/GFDL
Goddard/RRTM
CAM/CAM
CAM/CAM
Dudhia/RRTM
GFDL/GFDL
Goddard/RRTM
CAM/CAM
Goddard/RRTM
Goddard/RRTM
Dudhia/RRTM
CAM/CAM
Goddard/RRTM
Goddard/RRTM
GFDL/GFDL
Dudhia/RRTM
GFDL/GFDL
GFDL/GFDL
CAM/CAM
CAM/CAM
Goddard/RRTM
Goddard/RRTM
CAM/CAM
Dudhia/RRTM
Dudhia/RRTM
Dudhia/RRTM
Dudhia/RRTM
GFDL/GFDL
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Table 3A. Ensemble simulation set of physical pameterizations for COAMPS.

z
°

W N O O A WN =

51

PBL
Mellor-Yamada (MY)
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Mellor-Yamada
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version
Modified MY version

dxmesc*®
50000
10000
150000
150000
50000
10000
150000
50000
10000
10000
50000
150000
50000
10000
150000
150000
50000
10000
10000
50000
150000
150000
50000
10000
10000
50000
150000
10000
50000
150000
150000
50000
10000
10000
50000
150000
150000
50000
10000
10000
50000
150000
150000
50000
10000
10000
50000
150000
150000
50000
10000

Ice nucleation
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)

Fleftcher (1962)
Fletcher (1962)
Fletcher (1962)
Fletcher (1962)
Fletcher (1962)
Fleftcher (1962)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Fletcher (1962)
Fletcher (1962)
Fletcher (1962)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Fletcher (1962)
Fletcher (1962)
Fletcher (1962)
Fletcher (1962)
Fletcher (1962)
Fletcher (1962)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)
Cooper and Haines (1986)

Cumulus scheme = Kain-Fritsch parameterization (Kain and Fritsch 1993)
dxmeso=horizontal grid resolution (in m) below which cumulus scheme is turned off*
Microphysics = Rutledge and Hobbs (1994) and Schmidt (2001)

Autoconversion factor used in the conversion of cloud water to drizzle/rain processes.

Radiation scheme follows Harshavardhan et al. (1987).
PBL scheme = Mellor-Yamada level 2.5 model (used in COAMPS 3) and modified version in COAMPS 4.

Autoconversion factor
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004

0.001 default
0.001 default
0.001 default
0.001 default
0.001 default
0.001 default
0.001 default
0.001 default
0.001 default
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.002
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004
0.0004
0.001 default
0.001 default
0.001 default
0.001 default
0.001 default
0.001 default
0.001 default
0.001 default
0.001 default
0.002
0.002
0.002
0.002
0.002
0.002
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Table 1B. Front 1: Ensemble ranking with respecta physical parameterizations for

COAMPS.
COAMPS Front 1
counter Run TOTAL rank PBL dxmeso* Ice nucleation Autoconversion factor
1 runl 35 Mellor-Yamada(MY) 50000 Cooper and Haines (1986) 0.0004
2 run2 52 Mellor-Yamada 10000 Cooper and Haines (1986) 0.0004
3 run3 54 Mellor-Yamada 150000 Cooper and Haines (1986) 0.0004
4 rund 15 Mellor-Yamada 150000 Cooper and Haines (1986) 0.0004
5 run5 11 Mellor-Yamada 50000 Cooper and Haines (1986) 0.0004
6 runé 27 Mellor-Yamada 10000 Cooper and Haines (1986) 0.0004
7 run7 8 Mellor-Yamada 150000 Fletcher (1962) 0.0004
8 run8 28 Mellor-Yamada 50000 Fletcher (1962) 0.0004
9 run9 50 Mellor-Yamada 10000 Fletcher (1962) 0.0004
10 runl0 49 Mellor-Yamada 10000 Fletcher (1962) 0.001 default
11 runll 29 Mellor-Yamada 50000 Fletcher (1962) 0.001 default
12 runl2 9 Mellor-Yamada 150000 Fletcher (1962) 0.001 default
13 runl3 10 Mellor-Yamada 50000 Cooper and Haines (1986) 0.001 default
14 runl4d 24 Mellor-Yamada 10000 Cooper and Haines (1986) 0.001 default
15 runl5s 14 Mellor-Yamada 150000 Cooper and Haines (1986) 0.001 default
16 runlé 33 Mellor-Yamada 150000 Cooper and Haines (1986) 0.001 default
17 runl7 36 Mellor-Yamada 50000 Cooper and Haines (1986) 0.001 default
18 runls 53 Mellor-Yamada 10000 Cooper and Haines (1986) 0.001 default
19 runl9 54 Mellor-Yamada 10000 Cooper and Haines (1986) 0.002
20 run20 43 Mellor-Yamada 50000 Cooper and Haines (1986) 0.002
21 run2l 30 Mellor-Yamada 150000 Cooper and Haines (1986) 0.002
22 run22 13 Mellor-Yamada 150000 Cooper and Haines (1986) 0.002
23 run23 12 Mellor-Yamada 50000 Cooper and Haines (1986) 0.002
24 run24 25 Mellor-Yamada 10000 Cooper and Haines (1986) 0.002
25 run25 52 Mellor-Yamada 10000 Fletcher (1962) 0.002
26 run26 34 Mellor-Yamada 50000 Fletcher (1962) 0.002
27 run27 7 Mellor-Yamada 150000 Fletcher (1962) 0.002
28 run28 54 Modified MY version 10000 Cooper and Haines (1986) 0.0004
29 run29 46 Modified MY version 50000 Cooper and Haines (1986) 0.0004
30 run30 19 Modified MY version 150000 Cooper and Haines (1986) 0.0004
31 run31l 23 Modified MY version 150000 Cooper and Haines (1986) 0.0004
32 run32 16 Modified MY version 50000 Cooper and Haines (1986) 0.0004
33 run33 40 Modified MY version 10000 Cooper and Haines (1986) 0.0004
34 run34 47 Modified MY version 10000 Fletcher (1962) 0.0004
35 run35 37 Modified MY version 50000 Fletcher (1962) 0.0004
36 run36 33 Modified MY version 150000 Fletcher (1962) 0.0004
37 run37 32 Modified MY version 150000 Fletcher (1962) 0.001 default
38 run38 41 Modified MY version 50000 Fletcher (1962) 0.001 default
39 run39 44 Modified MY version 10000 Fletcher (1962) 0.001 default
40 run40 38 Modified MY version 10000 Cooper and Haines (1986) 0.001 default
41 run4l 18 Modified MY wversion 50000 Cooper and Haines (1986) 0.001 default
42 run42 21 Modified MY wversion 150000 Cooper and Haines (1986) 0.001 default
43 run43 23 Modified MY version 150000 Cooper and Haines (1986) 0.001 default
44 run44 45 Modified MY version 50000 Cooper and Haines (1986) 0.001 default
45 run45s 51 Modified MY wversion 10000 Cooper and Haines (1986) 0.001 default
46 run46é 48 Modified MY wversion 10000 Cooper and Haines (1986) 0.002
47 rund?7 42 Modified MY version 50000 Cooper and Haines (1986) 0.002
48 run48 27 Modified MY version 150000 Cooper and Haines (1986) 0.002
49 run49 20 Modified MY version 150000 Cooper and Haines (1986) 0.002
50 run50 17 Modified MY version 50000 Cooper and Haines (1986) 0.002
51 run51 39 Modified MY version 10000 Cooper and Haines (1986) 0.002
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Table 2B. Front 1: Ensemble ranking with respecta physical parameterizations for MM5.

MMS Front 1

counter Run TOTAL rank MMS (PBL) MMS (Microphysics) MMS (Cumulus) MMS5 (Radiation)
1 runl 26 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
2 run2 25 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
3 run3 33 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
4 rund 8 Eta M-Y (IBLTYP=4) Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
5 run5 11 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
6 runé 27 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
7 run? 11 Eta M-Y (IBLTYP=4) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
8 run8 23 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
9 run9 16 Eta M-Y (IBLTYP=4) Goddard (GFSC) (IMPHYS=6) | Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
10 runl0 15 Eta M-Y (IBLTYP=4) Reisner (no graupel) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
11 runll 16 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS =7) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
12 runi2 17 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) | Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
13 runi3 22 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) | Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
14 runi4 14 | Gayno-Seaman (IBLTYP=6) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
15 runl5 11 Gayno-Seaman (IBLTYP=6) | Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
16 runl6é 19 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
17 runl7 7 Blackadar Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
18 runl8 23 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
19 runl9 5 Blackadar Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
20 run20 11 Gayno-Seaman (IBLTYP=6) | Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Simple cloud (FRAD=1)
21 run21 6 Gayno-Seaman (IBLTYP=6) Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)
22 run22 10 Gayno-Seaman (IBLTYP=6) | Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
23 run23 21 Gayno-Seaman (IBLTYP=6)| Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
24 run24 5 Gayno-Seaman (IBLTYP=6) | Simple ice (Dudhia) (IMPHYS=4) | Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
25 run2s 23 |Gayno-Seaman (IBLTYP=6)| Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
26 run26 16 Gayno-Seaman (IBLTYP=6) | Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) CCM2 (FRAD=3)
27 run27 10 Gayno-Seaman (IBLTYP=6) | Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
28 run28 19 Gayno-Seaman (IBLTYP=6) [ Simple ice (Dudhia) (IMPHYS=4) | Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
29 run29 17 Blackadar Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) CCM2 (FRAD=3)
30 run30 15 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
31 run31 8 -Thompson (IBLTYP=3,ISOI Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) | Simple cloud (FRAD=1)
32 run32 10 -Thompson (IBLTYP=3,ISOI| Simple ice (Dudhia) (IMPHYS=4) [ Betts-Miller (ICUPA=7,ISHALLO=0) | Simple cloud (FRAD=1)
33 run33 23 -Thompson (IBLTYP=3,ISOI Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)
34 run34 10 -Thompson (IBLTYP=3,ISOI Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
35 run3s 15  k-Thompson (IBLTYP=3,1S0I| Simple ice (Dudhia) (IMPHYS=4) | Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
36 run36 14 -Thompson (IBLTYP=3,ISOI Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
37 run37 18  k-Thompson (IBLTYP=3,ISOI| Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
38 run38 23 -Thompson (IBLTYP=3,1SOI| Simple ice (Dudhia) (IMPHYS=4) | Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
39 run39 11 -Thompson (IBLTYP=3,ISOI Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
40 run40 12 -Thompson (IBLTYP=3,ISOI Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
41 run4l 26 -Thompson (IBLTYP=3,I1SOI| Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
42 run42 35 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)
43 run43 9 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) | Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
a4 rund4 28 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
45 run45 34 MREF (IBLTYP=5) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
46 rund6 31 MRF (IBLTYP=5) Schultz (IMPHYS=8) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
47 runa7 24 MRF (IBLTYP=5) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
48 run4s 23 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) | Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
49 run49 31 MRF (IBLTYP=5) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
50 run50 28 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
51 run51 13 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
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Ensemble ranking with respectd physical parameterizations for WRF.

WRF Front 1

counter Run TOTAL rank| WREF (PBL) WREF (Microphysics) WRF (Cumulus) WREF (Radiation)
1 runl 7 Mellor-Yamada-Jan Thompson (MMS5 : Reisner 2) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/RRTM
2 run2 12 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) |GFDL/GFDL (Not in MM5)
3 run3 23 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL
4 rund 10 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Kain-Fritsch (MMS5: Kain-Fritsch) Goddard/RRTM
5 run5 6 Mellor-Yamada-Jan Eta microphysics (Notin MM5) Kain-Fritsch (MMS5: Kain-Fritsch) GFDL/GFDL
6 runé 13 Mellor-Yamada-Jan Eta microphysics (Notin MM5) Betts-Miller (MMS5: Betts-Miller) CAM/CAM
7 run7 16 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MMS5: Kain-Fritsch) CAM/CAM
8 run8 7 Mellor-Yamada-Jan Thompson (MMS5 : Reisner 2) Betts-Miller (MMS5: Betts-Miller) Dudhia/RRTM
9 run9 12 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) | Grell-Devenyi (MM5: Grell scheme) GFDL/GFDL
10 runl0 8 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) CAM/CAM
11 runll 10 Mellor-Yamada-Jan Thompson (MMS5 : Reisner 2) Betts-Miller (MMS5: Betts-Miller) CAM/CAM
12 runl2 17 Mellor-Yamada-Jan Thompson (MMS5 : Reisner 2) Betts-Miller (MMS5: Betts-Miller) Goodard/RRTM
13 runi3 17 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Goddard/RRTM
14 runl4 13 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) GFDL/GFDL
15 runl5s 11 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) GFDL/RRTM
16 runlé 6 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/GFDL
17 runl?7 13 Mellor-Yamada-Jan Eta microphysics (Notin MM5) Kain-Fritsch (MMS5: Kain-Fritsch) Dudhia/CAM
18 runl8 13 Mellor-Yamada-Jan | WRF-single mom (6) (MMS5: Reisner 1) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
19 runl9 8 Mellor-Yamada-Jan | WRF-single mom (3) (MMS5: simple ice) | Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/RRTM
20 run20 18 Mellor-Yamada-Jan Morrison (Not in MM5) Kain-Fritsch (MMS5: Kain-Fritsch) Goddard/RRTM
21 run21l 8 Mellor-Yamada-Jan Morrison (Not in MM5) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
22 run22 16 Mellor-Yamada-Jan Morrison (Not in MM5) Grell-Devenyi (MM5: Grell scheme) Goddard/RRTM
23 run23 15 YSU (new MRF) Eta microphysics (Notin MM5) Kain-Fritsch (MMS5: Kain-Fritsch) GFDL/GFDL
24 run24 4 YSU (new MRF) Lin et al. (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) GFDL/GFDL
25 run25 9 YSU (new MRF) Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM
26 run26 6 YSU (new MRF) Lin et al. (MMS5: GSFC) Kain-Fritsch (MMS5: Kain-Fritsch) CAM/CAM
27 run27 16 YSU (new MRF) Lin et al. (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) CAM/CAM
28 run28 18 YSU (new MRF) Goddard microphysics (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) Dudhia/RRTM
29 run29 11 YSU (new MRF) Thompson (MMS5 : Reisner 2) Grell-Devenyi (MM5: Grell scheme) GFDL/GFDL
30 run30 6 YSU (new MRF) Eta microphysics (Not in MIM5) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
31 run31 7 YSU (new MRF) Eta microphysics (Not in MM5) Kain-Fritsch (MMS5: Kain-Fritsch) CAM/CAM
32 run32 11 YSU (new MRF) Morrison (Not in MM5) Kain-Fritsch (MMS5: Kain-Fritsch) Goddard/RRTM
33 run33 15 YSU (new MRF) WREF-single mom(6) (MM5: Reisner 1) Kain-Fritsch (MMS5: Kain-Fritsch) Goddard/RRTM
34 run34 7 YSU (new MRF) WRF-single mom(3) (MMS5: Simple ice) | Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM
35 run35 9 YSU (new MRF) WRF-single mom(6) (MMS5: Reisner 1) Betts-Miller (MM5: Betts-Miller) CAM/CAM
36 run36 8 Pleim-Xiu Eta microphysics (Not in MM5) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
37 run37 15 Pleim-Xiu Lin et al. (MMS5: GSFC) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
38 run38 20 Pleim-Xiu Eta microphysics (Notin MM5) Grell-Devenyi (MM5: Grell scheme) GFDL/GFDL
39 run39 22 Pleim-Xiu Goddard microphysics (MM5: GSFC) |Grell-Devenyi (MM5: Grell scheme) Dudhia/RRTM
40 run40 6 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MMS5: Kain-Fritsch) GFDL/GFDL
41 run4l 19 Pleim-Xiu Thompson (MMS5 : Reisner 2) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL
42 run42 16 Pleim-Xiu Goddard microphysics (MM5: GSFC) |Grell-Devenyi (MM5: Grell scheme) CAM/CAM
43 run43 9 Pleim-Xiu Goddard microphysics (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM
44 run44 11 Pleim-Xiu WRF-single mom(6) (MM5: Reisner 1) Kain-Fritsch (MMS5: Kain-Fritsch) Goddard/RRTM
45 run45s 10 Pleim-Xiu Morrison (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM
46 run46 18 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MMS5: Kain-Fritsch) CAM/CAM
47 run47 16 Pleim-Xiu Goddard microphysics (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) Dudhia/RRTM
48 run4g8 20 Pleim-Xiu Lin et al. (MMS5: GSFC) Betts-Miller (MMS5: Betts-Miller) Dudhia/RRTM
49 run49 12 Pleim-Xiu Lin et al. (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Dudhia/RRTM
50 run50 7 Pleim-Xiu Goddard microphysics (MM5: GSFC) |Grell-Devenyi (MM5: Grell scheme) Dudhia/RRTM
51 run51 21 Pleim-Xiu Lin et al. (MMS5: GSFC) Kain-Fritsch (MMS5: Kain-Fritsch) GFDL/GFDL
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Table 4B. Front 2: Ensemble ranking with respect tgphysical parameterizations for

COAMPS.
COAMPS Front 2
counter Run TOTAL rank PBL dxmeso* Ice nucleation Autoconwersion factor
1 runil 47 Mellor-Yamada(MY) 50000 Cooper and Haines (1986) 0.0004
2 run2 51 Mellor-Yamada 10000 Cooper and Haines (1986) 0.0004
3 run3 14 Mellor-Yamada 150000 Cooper and Haines (1986) 0.0004
4 rund 49 Mellor-Yamada 150000 Cooper and Haines (1986) 0.0004
5 run5 31 Mellor-Yamada 50000 Cooper and Haines (1986) 0.0004
6 runé 41 Mellor-Yamada 10000 Cooper and Haines (1986) 0.0004
7 run? 47 Mellor-Yamada 150000 Fletcher (1962) 0.0004
8 run8 17 Mellor-Yamada 50000 Fletcher (1962) 0.0004
9 run9 15 Mellor-Yamada 10000 Fletcher (1962) 0.0004
10 runl0 47 Mellor-Yamada 10000 Fletcher (1962) 0.001 default
11 runll 50 Mellor-Yamada 50000 Fletcher (1962) 0.001 default
12 runl2 38 Mellor-Yamada 150000 Fletcher (1962) 0.001 default
13 runl3 33 Mellor-Yamada 50000 Cooper and Haines (1986) 0.001 default
14 runld 36 Mellor-Yamada 10000 Cooper and Haines (1986) 0.001 default
15 runl5 39 Mellor-Yamada 150000 Cooper and Haines (1986) 0.001 default
16 runlé 13 Mellor-Yamada 150000 Cooper and Haines (1986) 0.001 default
17 runl?7 22 Mellor-Yamada 50000 Cooper and Haines (1986) 0.001 default
18 runls 29 Mellor-Yamada 10000 Cooper and Haines (1986) 0.001 default
19 runl9 43 Mellor-Yamada 10000 Cooper and Haines (1986) 0.002
20 run20 41 Mellor-Yamada 50000 Cooper and Haines (1986) 0.002
21 run21 10 Mellor-Yamada 150000 Cooper and Haines (1986) 0.002
22 run22 55 Mellor-Yamada 150000 Cooper and Haines (1986) 0.002
23 run23 52 Mellor-Yamada 50000 Cooper and Haines (1986) 0.002
24 run24 53 Mellor-Yamada 10000 Cooper and Haines (1986) 0.002
25 run25 19 Mellor-Yamada 10000 Fletcher (1962) 0.002
26 run26 18 Mellor-Yamada 50000 Fletcher (1962) 0.002
27 run27 53 Mellor-Yamada 150000 Fletcher (1962) 0.002
28 run28 34 Modified MY ersion 10000 Cooper and Haines (1986) 0.0004
29 run29 31 Modified MY wersion 50000 Cooper and Haines (1986) 0.0004
30 run30 5 Modified MY ersion 150000 Cooper and Haines (1986) 0.0004
31 run31 43 Modified MY ersion 150000 Cooper and Haines (1986) 0.0004
32 run32 26 Modified MY wersion 50000 Cooper and Haines (1986) 0.0004
33 run33 38 Modified MY ersion 10000 Cooper and Haines (1986) 0.0004
34 run34 29 Modified MY ‘ersion 10000 Fletcher (1962) 0.0004
35 run35 23 Modified MY ersion 50000 Fletcher (1962) 0.0004
36 run36 6 Modified MY ersion 150000 Fletcher (1962) 0.0004
37 run37 7 Modified MY wersion 150000 Fletcher (1962) 0.001 default
38 run38 27 Modified MY ersion 50000 Fletcher (1962) 0.001 default
39 run39 43 Modified MY wersion 10000 Fletcher (1962) 0.001 default
40 run40 37 Modified MY wersion 10000 Cooper and Haines (1986) 0.001 default
41 run4l 30 Modified MY wersion 50000 Cooper and Haines (1986) 0.001 default
42 run42 12 Modified MY wersion 150000 Cooper and Haines (1986) 0.001 default
43 run43 8 Modified MY version 150000 Cooper and Haines (1986) 0.001 default
44 run44d 35 Modified MY wersion 50000 Cooper and Haines (1986) 0.001 default
45 run4s 28 Modified MY wersion 10000 Cooper and Haines (1986) 0.001 default
46 run46 38 Modified MY wersion 10000 Cooper and Haines (1986) 0.002
47 rund? 40 Modified MY wersion 50000 Cooper and Haines (1986) 0.002
48 run48 9 Modified MY version 150000 Cooper and Haines (1986) 0.002
49 run49 13 Modified MY wersion 150000 Cooper and Haines (1986) 0.002
50 run50 22 Modified MY ersion 50000 Cooper and Haines (1986) 0.002
51 run51 23 Modified MY wersion 10000 Cooper and Haines (1986) 0.002
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Table 5B. Front 2: Ensemble ranking with respectd physical parameterizations for MM5.

MMS5 Front 2

counter Run TOTAL rank MMS5 (PBL) MMS5 (Microphysics) MMS5 (Cumulus) MMS5 (Radiation)
1 runi 34 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
2 run2 27 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
3 run3 13 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
4 run4 14 Eta M-Y (IBLTYP=4) Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
5 runs 19 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
6 run6 19 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
7 run7 33 Eta M-Y (IBLTYP=4) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
8 run8 7 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
9 run9 38 Eta M-Y (IBLTYP=4) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
10 runl0 11 Eta M-Y (IBLTYP=4) Reisner (no graupel) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
11 runll 9 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS = 7) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
12 run12 42 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) | Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
13 runi3 31 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) [ Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
14 runl4 8 Gayno-Seaman (IBLTYP=6) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
15 runls 35 Gayno-Seaman (IBLTYP=6)| Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
16 runlé 33 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
17 runl?7 14 Blackadar Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
18 runl8 44 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
19 runl9 47 Blackadar Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
20 run20 42 Gayno-Seaman (IBLTYP=6)| Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Simple cloud (FRAD=1)
21 run2l 40 Gayno-Seaman (IBLTYP=6) Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)
22 run22 37 |Gayno-Seaman (IBLTYP=6) | Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
23 run23 32 Gayno-Seaman (IBLTYP=6)| Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
24 run24 36 Gayno-Seaman (IBLTYP=6) [ Simple ice (Dudhia) (IMPHYS=4) | Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
25 run25 39 Gayno-Seaman (IBLTYP=6)| Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
26 run26 4 Gayno-Seaman (IBLTYP=6)| Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) CCM2 (FRAD=3)
27 run27 37 Gayno-Seaman (IBLTYP=6)| Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
28 run28 34 Gayno-Seaman (IBLTYP=6) [ Simple ice (Dudhia) (IMPHYS=4) | Kain-Fritsch (ICUPA=8,ISHALLO=0) [ Simple cloud (FRAD=1)
29 run29 24 Blackadar Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) CCM2 (FRAD=3)
30 run30 19 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
31 run31l 24 -Thompson (IBLTYP=3,I1SOI Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) | Simple cloud (FRAD=1)
32 run32 46 -Thompson (IBLTYP=3,1SOI| Simple ice (Dudhia) (IMPHYS=4) [ Betts-Miller (ICUPA=7,ISHALLO=0) | Simple cloud (FRAD=1)
33 run33 11 -Thompson (IBLTYP=3,ISOI Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)
34 run34 27 -Thompson (IBLTYP=3,I1SOI Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
35 run35 9 -Thompson (IBLTYP=3,1SOI| Simple ice (Dudhia) (IMPHYS=4) | Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
36 run36 6 -Thompson (IBLTYP=3,1SOI Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
37 run37 28 -Thompson (IBLTYP=3,ISOIl| Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
38 run38 21 -Thompson (IBLTYP=3,I1SOIl| Simple ice (Dudhia) (IMPHYS=4) | Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
39 run39 34 k-Thompson (IBLTYP=3,ISOI Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
40 run40 18 -Thompson (IBLTYP=3,I1SOI Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
41 run4l 44 -Thompson (IBLTYP=3,I1SOI] Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
42 run42 42 MREF (IBLTYP=5) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)
43 run43 20 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) [ Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
44 run44 18 MREF (IBLTYP=5) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
45 run4s 23 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
46 run46 35 MRF (IBLTYP=5) Schultz (IMPHYS=8) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
47 run47 29 MRF (IBLTYP=5) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
48 run4s 40 MREF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) [ Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
49 run49 42 MREF (IBLTYP=5) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
50 run50 43 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
51 run51 47 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
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Table 6B. Front 2: Ensemble ranking with respectd physical parameterizations for WRF.

WRF Front 2

counter Run TOTAL rank| WREF (PBL) WRF (Microphysics) WRF (Cumulus) WRF (Radiation)
1 runl 22 Mellor-Yamada-Jan Thompson (MMS5 : Reisner 2) Kain-Fritsch (MMS5: Kain-Fritsch) Dudhia/RRTM
2 run2 7 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) |GFDL/GFDL (Notin MM5)
3 run3 42 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Kain-Fritsch (MMS5: Kain-Fritsch) GFDL/GFDL
4 run4 8 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM
5 run5 4 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MMS5: Kain-Fritsch) GFDL/GFDL
6 runé 13 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Betts-Miller (MM5: Betts-Miller) CAM/CAM
7 run7 14 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MMS5: Kain-Fritsch) CAM/CAM
8 run8 30 Mellor-Yamada-Jan Thompson (MMS5 : Reisner 2) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM
9 run9 5 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) |Grell-Devenyi (MMS5: Grell scheme) GFDL/GFDL
10 runl0 21 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) CAM/CAM
11 runll 38 Mellor-Yamada-Jan Thompson (MM5 : Reisner 2) Betts-Miller (MM5: Betts-Miller) CAM/CAM
12 runl2 19 Mellor-Yamada-Jan Thompson (MM5 : Reisner 2) Betts-Miller (MM5: Betts-Miller) Goodard/RRTM
13 runl3 24 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Grell-Devenyi (MMS5: Grell scheme) Goddard/RRTM
14 runl4 5 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) GFDL/GFDL
15 runl5 22 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) GFDL/RRTM
16 runl6 23 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Kain-Fritsch (MMS5: Kain-Fritsch) Dudhia/GFDL
17 runl7 8 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MMS5: Kain-Fritsch) Dudhia/CAM
18 runl8 16 Mellor-Yamada-Jan | WRF-single mom (6) (MM5: Reisner 1) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
19 runl9 31 Mellor-Yamada-Jan | WRF-single mom (3) (MM5: simple ice) | Kain-Fritsch (MMS5: Kain-Fritsch) Dudhia/RRTM
20 run20 52 Mellor-Yamada-Jan Morrison (Not in MMS5) Kain-Fritsch (MMS5: Kain-Fritsch) Goddard/RRTM
21 run21 27 Mellor-Yamada-Jan Morrison (Not in MMS5) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM
22 run22 47 Mellor-Yamada-Jan Morrison (Not in MMS5) Grell-Devenyi (MMS5: Grell scheme) Goddard/RRTM
23 run23 39 YSU (new MRF) Eta microphysics (Not in MM5) Kain-Fritsch (MMS5: Kain-Fritsch) GFDL/GFDL
24 run24 26 YSU (new MRF) Lin et al. (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) GFDL/GFDL
25 run25 43 YSU (new MRF) Goddard microphysics (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
26 run26 22 YSU (new MRF) Lin et al. (MM5: GSFC) Kain-Fritsch (MMS5: Kain-Fritsch) CAM/CAM
27 run27 34 YSU (new MRF) Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) CAM/CAM
28 run28 38 YSU (new MRF) Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM
29 run29 39 YSU (new MRF) Thompson (MM5 : Reisner 2) Grell-Devenyi (MM5: Grell scheme) GFDL/GFDL
30 run30 23 YSU (new MRF) Eta microphysics (Not in MM5) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
31 run31 10 YSU (new MRF) Eta microphysics (Not in MM5) Kain-Fritsch (MMS5: Kain-Fritsch) CAM/CAM
32 run32 28 YSU (new MRF) Morrison (Not in MMS5) Kain-Fritsch (MMS5: Kain-Fritsch) Goddard/RRTM
33 run33 31 YSU (new MRF) WRF-single mom(6) (MM5: Reisner 1) Kain-Fritsch (MMS5: Kain-Fritsch) Goddard/RRTM
34 run34 15 YSU (new MRF) WRF-single mom(3) (MMS5: Simple ice) | Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM
35 run35 30 YSU (new MRF) WRF-single mom(6) (MM5: Reisner 1) Betts-Miller (MM5: Betts-Miller) CAM/CAM
36 run36 13 Pleim-Xiu Eta microphysics (Not in MM5) Betts-Miller (MM5: Betts-Miller) Goddard/RRTM
37 run37 31 Pleim-Xiu Lin et al. (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
38 run38 40 Pleim-Xiu Eta microphysics (Not in MM5) Grell-Devenyi (MMS5: Grell scheme) GFDL/GFDL
39 run39 47 Pleim-Xiu Goddard microphysics (MM5: GSFC) |Grell-Devenyi (MMS5: Grell scheme) Dudhia/RRTM
40 run40 33 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MMS5: Kain-Fritsch) GFDL/GFDL
41 run4l 44 Pleim-Xiu Thompson (MMS5 : Reisner 2) Kain-Fritsch (MMS5: Kain-Fritsch) GFDL/GFDL
42 run42 48 Pleim-Xiu Goddard microphysics (MM5: GSFC) |Grell-Devenyi (MMS5: Grell scheme) CAM/CAM
43 run43 51 Pleim-Xiu Goddard microphysics (MM5: GSFC) Kain-Fritsch (MMS5: Kain-Fritsch) CAM/CAM
44 run44 48 Pleim-Xiu WRF-single mom(6) (MM5: Reisner 1) Kain-Fritsch (MMS5: Kain-Fritsch) Goddard/RRTM
45 run45 50 Pleim-Xiu Morrison (Not in MMS5) Kain-Fritsch (MMS5: Kain-Fritsch) Goddard/RRTM
46 run46 38 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MMS5: Kain-Fritsch) CAM/CAM
47 rund7 14 Pleim-Xiu Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM
48 run48 49 Pleim-Xiu Lin et al. (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM
49 run49 43 Pleim-Xiu Lin et al. (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Dudhia/RRTM
50 run50 37 Pleim-Xiu Goddard microphysics (MM5: GSFC) | Grell-Devenyi (MMS5: Grell scheme) Dudhia/RRTM
51 run51 9 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MMS5: Kain-Fritsch) GFDL/GFDL
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Table 7B. Front 3: Ensemble ranking with respecta physical parameterizations for

COAMPS.
COAMPS Front 3
counter Run TOTAL rank PBL dxmeso* Ice nucleation Autoconwersion factor
1 run26 8 Mellor-Yamada 50000 Fletcher (1962) 0.002
2 run36 9 Modified MY ‘ersion 150000 Fletcher (1962) 0.0004
3 run9 10 Mellor-Yamada 10000 Fletcher (1962) 0.0004
a4 runl8 10 Mellor-Yamada 10000 Cooper and Haines (1986) 0.001 default
5 runl0 11 Mellor-Yamada 10000 Fletcher (1962) 0.001 default
6 runll 13 Mellor-Yamada 50000 Fletcher (1962) 0.001 default
7 run2 14 Mellor-Yamada 10000 Cooper and Haines (1986) 0.0004
8 run25 15 Mellor-Yamada 10000 Fletcher (1962) 0.002
9 run39 16 Modified MY wersion 10000 Fletcher (1962) 0.001 default
10 run8 17 Mellor-Yamada 50000 Fletcher (1962) 0.0004
11 runl?7 18 Mellor-Yamada 50000 Cooper and Haines (1986) 0.001 default
12 runld 19 Mellor-Yamada 10000 Cooper and Haines (1986) 0.001 default
13 run23 19 Mellor-Yamada 50000 Cooper and Haines (1986) 0.002
14 runi3 21 Mellor-Yamada 50000 Cooper and Haines (1986) 0.001 default
15 runl9 21 Mellor-Yamada 10000 Cooper and Haines (1986) 0.002
16 run20 21 Mellor-Yamada 50000 Cooper and Haines (1986) 0.002
17 runé 24 Mellor-Yamada 10000 Cooper and Haines (1986) 0.0004
18 runl 25 Mellor-Yamada(MY) 50000 Cooper and Haines (1986) 0.0004
19 run24 25 Mellor-Yamada 10000 Cooper and Haines (1986) 0.002
20 runlé 26 Mellor-Yamada 150000 Cooper and Haines (1986) 0.001 default
21 run45 27 Modified MY wersion 10000 Cooper and Haines (1986) 0.001 default
22 rund? 27 Modified MY wersion 50000 Cooper and Haines (1986) 0.002
23 run22 28 Mellor-Yamada 150000 Cooper and Haines (1986) 0.002
24 run2l 29 Mellor-Yamada 150000 Cooper and Haines (1986) 0.002
25 run37 31 Modified MY wersion 150000 Fletcher (1962) 0.001 default
26 run38 33 Modified MY wersion 50000 Fletcher (1962) 0.001 default
27 run43 33 Modified MY wersion 150000 Cooper and Haines (1986) 0.001 default
28 run46é 33 Modified MY version 10000 Cooper and Haines (1986) 0.002
29 run3 35 Mellor-Yamada 150000 Cooper and Haines (1986) 0.0004
30 run5 36 Mellor-Yamada 50000 Cooper and Haines (1986) 0.0004
31 run27 37 Mellor-Yamada 150000 Fletcher (1962) 0.002
32 run40 38 Modified MY wersion 10000 Cooper and Haines (1986) 0.001 default
33 run28 39 Modified MY wersion 10000 Cooper and Haines (1986) 0.0004
34 run34 42 Modified MY wersion 10000 Fletcher (1962) 0.0004
35 run33 43 Modified MY wersion 10000 Cooper and Haines (1986) 0.0004
36 run4i 43 Modified MY wersion 50000 Cooper and Haines (1986) 0.001 default
37 run44d 46 Modified MY wersion 50000 Cooper and Haines (1986) 0.001 default
38 run51 46 Modified MY wersion 10000 Cooper and Haines (1986) 0.002
39 run29 47 Modified MY wersion 50000 Cooper and Haines (1986) 0.0004
40 run35 47 Modified MY ersion 50000 Fletcher (1962) 0.0004
41 runis 48 Mellor-Yamada 150000 Cooper and Haines (1986) 0.001 default
42 rund 50 Mellor-Yamada 150000 Cooper and Haines (1986) 0.0004
43 run30 50 Modified MY wersion 150000 Cooper and Haines (1986) 0.0004
44 run32 50 Modified MY wersion 50000 Cooper and Haines (1986) 0.0004
45 run50 51 Modified MY wersion 50000 Cooper and Haines (1986) 0.002
46 run42 52 Modified MY wersion 150000 Cooper and Haines (1986) 0.001 default
47 run48 52 Modified MY wersion 150000 Cooper and Haines (1986) 0.002
48 run31 53 Modified MY wersion 150000 Cooper and Haines (1986) 0.0004
49 run49 55 Modified MY wersion 150000 Cooper and Haines (1986) 0.002
50 runl2 57 Mellor-Yamada 150000 Fletcher (1962) 0.001 default
51 run? 58 Mellor-Yamada 150000 Fletcher (1962) 0.0004
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Table 8B. Front 3: Ensemble ranking with respectd physical parameterizations for MM5.

MMS5 Front 3

Run TOTAL rank| MMS5 (PBL) MM5 (Microphysics) MM5 (Cumulus) MMS5 (Radiation)
1 run39 7 -Thompson (IBLTYP=3,1S0OI Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
2 run31 9 -Thompson (IBLTYP=3,1SOI Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) | Simple cloud (FRAD=1)
3 runl9 10 Blackadar Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
4 run22 10 Gayno-Seaman (IBLTYP=6) | Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
5 run27 10  |Gayno-Seaman (IBLTYP=6)| Goddard (GFSC) (IMPHYS=6) | Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
6 run45 10 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
7 runl6 11 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
8 runl8 12 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
9 run21 13 Gayno-Seaman (IBLTYP=6) Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)
10 run5 14 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
11 run9 14 Eta M-Y (IBLTYP=4) Goddard (GFSC) (IMPHYS=6) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
12 run37 14 -Thompson (IBLTYP=3,I1SOI| Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
13 run43 15 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) | Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
14 runl 16 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
15 run3 16 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
16 run34 16 -Thompson (IBLTYP=3,1SOI Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
17 run25 17 | Gayno-Seaman (IBLTYP=6)| Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
18 run44 17 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
19 run4l 19 -Thompson (IBLTYP=3,1SOI| Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
20 run28 20 Gayno-Seaman (IBLTYP=6) | Simple ice (Dudhia) (IMPHYS=4) | Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
21 run49 21 MRF (IBLTYP=5) Goddard (GFSC) (IMPHYS=6) | Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
22 runl2 22 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) | Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
23 run24 22 Gayno-Seaman (IBLTYP=6) | Simple ice (Dudhia) (IMPHYS=4) | Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
24 run20 23 Gayno-Seaman (IBLTYP=6)| Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Simple cloud (FRAD=1)
25 run48 23 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) | Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
26 run51 23 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
27 run2 24 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
28 runis 24 | Gayno-Seaman (IBLTYP=6)| Goddard (GFSC) (IMPHYS=6) | Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
29 run47 24 MRF (IBLTYP=5) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
30 runl? 26 Blackadar Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) RRTM (FRAD=4)
31 run23 27 Gayno-Seaman (IBLTYP=6)| Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
32 run30 27 Gayno-Seaman (IBLTYP=6) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
33 run38 27 -Thompson (IBLTYP=3,1SOI| Simple ice (Dudhia) (IMPHYS=4) | Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
34 run46 28 MRF (IBLTYP=5) Schultz (IMPHYS=8) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
35 runl3 29 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) | Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
36 runl4 29 Gayno-Seaman (IBLTYP=6) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) CCM2 (FRAD=3)
37 run29 29 Blackadar Schultz (IMPHYS=8) Kain-Fritsch (ICUPA=8,ISHALLO=0) CCM2 (FRAD=3)
38 run32 30 -Thompson (IBLTYP=3,1SOI| Simple ice (Dudhia) (IMPHYS=4) | Betts-Miller (ICUPA=7,ISHALLO=0) | Simple cloud (FRAD=1)
39 run50 30 MRF (IBLTYP=5) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
40 run42 31 MRF (IBLTYP=5) Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)
41 run4 32 Eta M-Y (IBLTYP=4) Goddard (GFSC) (IMPHYS=6) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
42 rung 32 Eta M-Y (IBLTYP=4) Simple ice (Dudhia) (IMPHYS=4) Grell (ICUPA=3,ISHALLO=1) CCM2 (FRAD=3)
43 run36 32 -Thompson (IBLTYP=3,1SOI Reisner 2 (IMPHYS=7) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)
44 runl0 34 Eta M-Y (IBLTYP=4) Reisner (no graupel) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
45 run26 35 Gayno-Seaman (IBLTYP=6) Goddard (GFSC) (IMPHYS=6) Kain-Fritsch (ICUPA=8,ISHALLO=0) CCM2 (FRAD=3)
46 run40 35 -Thompson (IBLTYP=3,1SOI Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) | Simple cloud (FRAD=1)
47 runll 37 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS =7) Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
48 run33 37 -Thompson (IBLTYP=3,1SOI Reisner 2 (IMPHYS=7) Kain-Fritsch (ICUPA=8,ISHALLO=0) Dudhia (FRAD=2)
49 run3s 37 k-Thompson (IBLTYP=3,1SOI| Simple ice (Dudhia) (IMPHYS=4) | Betts-Miller (ICUPA=7,ISHALLO=0) RRTM (FRAD=4)
50 runé 38 Eta M-Y (IBLTYP=4) Reisner 2 (IMPHYS=7) Grell (ICUPA=3,ISHALLO=1) Dudhia (FRAD=2)
51 run? 40 Eta M-Y (IBLTYP=4) Schultz (IMPHYS=8) Betts-Miller (ICUPA=7,ISHALLO=0) Dudhia (FRAD=2)




Table 9B. Front 3:
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Ensemble ranking with respectd physical parameterizations for WRF.

WRF Front 3

counter Run TOTAL rank WRF (PBL) WRF (Microphysics) WRF (Cumulus) WREF (Radiation)
1 run20 7 Mellor-Yamada-Jan Morrison (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM
2 run38 7 Pleim-Xiu Eta microphysics (Not in MM5) Grell-Devenyi (MMS5: Grell scheme) GFDL/GFDL
3 run42 8 Pleim-Xiu Goddard microphysics (MM5: GSFC) [Grell-Devenyi (MMS5: Grell scheme) CAM/CAM
4 runl3 9 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Goddard/RRTM
5 run39 10 Pleim-Xiu Goddard microphysics (MM5: GSFC) |Grell-Devenyi (MMS5: Grell scheme) Dudhia/RRTM
6 run45 10 Pleim-Xiu Morrison (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM
7 run28 11 YSU (new MRF) Goddard microphysics (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) Dudhia/RRTM
8 run29 12 YSU (new MRF) Thompson (MMS5 : Reisner 2) Grell-Devenyi (MMS5: Grell scheme) GFDL/GFDL
9 run22 14 Mellor-Yamada-Jan Morrison (Not in MMS5) Grell-Devenyi (MMS5: Grell scheme) Goddard/RRTM
10 run27 14 YSU (new MRF) Lin et al. (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) CAM/CAM
11 run50 14 Pleim-Xiu Goddard microphysics (MM5: GSFC) |Grell-Devenyi (MMS5: Grell scheme) Dudhia/RRTM
12 run37 16 Pleim-Xiu Lin et al. (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
13 run26 17 YSU (new MRF) Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM
14 run40 17 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL
15 run4l 17 Pleim-Xiu Thompson (MMS5 : Reisner 2) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL
16 run32 18 YSU (new MRF) Morrison (Not in MMS5) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM
17 runlé 19 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) Dudhia/GFDL
18 run25 20 YSU (new MRF) Goddard microphysics (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
19 run30 20 YSU (new MRF) Eta microphysics (Not in MM5) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
20 run49 20 Pleim-Xiu Lin et al. (MM5: GSFC) Grell-Devenyi (MM5: Grell scheme) Dudhia/RRTM
21 runl7 21 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MMS5: Kain-Fritsch) Dudhia/CAM
22 run2l 21 Mellor-Yamada-Jan Morrison (Not in MMS5) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
23 run35 21 YSU (new MRF) WRF-single mom(6) (MM5: Reisner 1) Betts-Miller (MMS5: Betts-Miller) CAM/CAM
24 runl9 23 Mellor-Yamada-Jan | WRF-single mom (3) (MMS5: simple ice) | Kain-Fritsch (MMS5: Kain-Fritsch) Dudhia/RRTM
25 run23 23 YSU (new MRF) Eta microphysics (Not in MIM5) Kain-Fritsch (MMS5: Kain-Fritsch) GFDL/GFDL
26 runl8 24 Mellor-Yamada-Jan | WRF-single mom (6) (MM5: Reisner 1) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
27 run24 24 YSU (new MRF) Lin et al. (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) GFDL/GFDL
28 run44 24 Pleim-Xiu WRF-single mom(6) (MM5: Reisner 1) Kain-Fritsch (MMS5: Kain-Fritsch) Goddard/RRTM
29 run48 25 Pleim-Xiu Lin et al. (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) Dudhia/RRTM
30 runl4 27 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) GFDL/GFDL
31 run33 27 YSU (new MRF) WREF-single mom(6) (MM5: Reisner 1) Kain-Fritsch (MMS5: Kain-Fritsch) Goddard/RRTM
32 run36 27 Pleim-Xiu Eta microphysics (Not in MM5) Betts-Miller (MMS5: Betts-Miller) Goddard/RRTM
33 rund7 27 Pleim-Xiu Goddard microphysics (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) Dudhia/RRTM
34 run31 29 YSU (new MRF) Eta microphysics (Not in MM5) Kain-Fritsch (MMS5: Kain-Fritsch) CAM/CAM
35 run3 30 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL
36 run9 30 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) |Grell-Devenyi (MMS5: Grell scheme) GFDL/GFDL
37 runl0 30 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) CAM/CAM
38 run4 31 Mellor-Yamada-Jan Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) Goddard/RRTM
39 run5 31 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MMS5: Kain-Fritsch) GFDL/GFDL
40 runé 31 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Betts-Miller (MMS5: Betts-Miller) CAM/CAM
41 run7 31 Mellor-Yamada-Jan Eta microphysics (Not in MM5) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM
42 run8g 31 Mellor-Yamada-Jan Thompson (MMS5 : Reisner 2) Betts-Miller (MMS5: Betts-Miller) Dudhia/RRTM
43 runll 31 Mellor-Yamada-Jan Thompson (MMS5 : Reisner 2) Betts-Miller (MMS5: Betts-Miller) CAM/CAM
44 runl2 31 Mellor-Yamada-Jan Thompson (MMS5 : Reisner 2) Betts-Miller (MMS5: Betts-Miller) Goodard/RRTM
45 runls 31 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MMS5: Betts-Miller) GFDL/RRTM
46 run34 31 YSU (new MRF) WREF-single mom(3) (MM5: Simple ice) | Betts-Miller (MM5: Betts-Miller) Dudhia/RRTM
47 run43 31 Pleim-Xiu Goddard microphysics (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM
48 run46 31 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) CAM/CAM
49 run51 31 Pleim-Xiu Lin et al. (MM5: GSFC) Kain-Fritsch (MM5: Kain-Fritsch) GFDL/GFDL
50 runl 32 Mellor-Yamada-Jan Thompson (MMS5 : Reisner 2) Kain-Fritsch (MMS5: Kain-Fritsch) Dudhia/RRTM
51 run2 32 Mellor-Yamada-Jan Goddard microphysics (MM5: GSFC) Betts-Miller (MM5: Betts-Miller) |GFDL/GFDL (Notin MM5)
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Ensemble Model Physics Option Lists
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C.1 COAMPS Model Physics Options
e Resolvable-scale microphysics schemes:

o autoconversion parameter (Rutledge and Hobbs 198%&t al. 1983, Kessler,
1969)

Note: No conversion unless clawader mixing ratio .> auto-conv
ice nucleation processes (Fletcher 1962; CoopeiHankes 1996).

e Cumulus parameterization schemes:
o Kain-Fritsch cumulus scheme (Kain and Fritsch 19¢8n 2004)
e Planetary boundary layer process parameterization
o Mellor-Yamada (MY) level 2.5 and 3 models (MellorceYamada, 1974, 1982;
Burk and Thompson 1989; Jang001) with a prognostic equation for turbulence
kinetic energy
o MY modified to allow the PBL to operate in satuchtonditions (Ballard et al.,
1991, Shafran et al. 2000)

e Atmospheric radiation schemes ()

o longwave and shortwave ( Harshvardhan 1987, Fu-L&8P,1993)



Table 1C. COAMPS Model Glossary of Symbols and Urst

Syvmbol Description Value SI Units
A Thermodynamic term in PREVP ms kgt
a Thermodynanuc term in PDEPI m s kgl
3 Constant in fallspeed relation for graupel 19.3 mi-#r gt
a Constant m M-Z relation 0.008 g m Y mm
a' Constant m linear fallspeed relation for rain 3x10° gl
a" Constant in fallspeed relation for snow 1.139 m g
3 Coefficient m polvnommal fallspeed relation for rain -0 267 ms"

a Coefficient in polynomial fallspeed relation for ran 5.15 x 103 gl
A Coefficient in polynomial fallspeed relation for rain -1.0225 % 108 m! s’
a Coefficient in polynomuial fallspeed relation for ramn 7.55 % 10’ m- s’
B' Thermodynamic term m s kg?!
B" Thermodynamic term m s ke?!
b Fallspeed exponent of graupel 037
b Fallspeed exponent for snow 011
b Constant m M-Z relation 0.605
C Capacitance of ice crystal F
[ Specific heat of air at constant pressure 1.005 = 104 JketK !
Ca Specific heat of liquid water at 0° C 4218 Je! K
Dy Diameter of hexagonal plate m
D, Imitial diameter of cloud ice crystals 12,9107 m
D Grauopel diameter m
Dy Raindrop diameter m
D: Snowflake diameter m
dB(Zz) 10 logy, (radar reflectivity factor for ram)
dB(Z.) 10 logy, (radar reflectivity factor for snow)
Eac Graupel/cloud water collection efficiency 1
Ea Graupel/cloud 1ce collection efficiency 0.1
Ecr Graupel/ rain collection efficiency 1
Ecs Graupel/snow collection effictency 0.1
Ezc Rain'cloud water collection efficiency 1
Em Ramn/cloud 1ce collection efficiency 1
Es- Snow/cloud water collection etficiency 1
Eq Snowicloud ice collection ethiciency 0.1
Esm Snow/rain collection efficiency 1
E. Average diameter of cloud ice crystals m
e Saturation vapor pressure for ice N m?
By Saturation vapor pressure for water N m?
F Ventilation factor for rain and graupel
F el Ventilation factor for snow
K, Thermal conductivity of air 243 x 10~ Jm' s K
L¢ Latent heat of fusion 334 % 10° T kg!
Le Latent heat of sublimation 2.5 x10° JTkg!
L. Latent heat of condensation 2.25x 109 J kgl
M. Average mass of cloud droplet 42100 kg
M1 Average mass of cloud ice particle 6x10-1 kg
M Average mass of cloud ice crystal kg

| Moy Maximum mass of cloud ice crystal 9.4 x 1010 kg
Ma Initial mass of cloud ice erystal 10" kg
Mg Mass of graupel per unit volume of air kg m?
Mg, Mass of rain per umt volume of air kg m?
Ms Mass of snow per unit volume of air ke m”
M Molecular weight of water 18.0160
Mmat Mass of melied snow kg
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Table 1C. COAMPS Model Glossary of Symbols and Urst

Symbol Description Value SI Units
M(D¢) Mass of graupel particle of diameter D ke
M(D;) Mass of raindrop of diameter Dy kg
M(D.) Mass of snowflake of diameter D¢ kg
NpedDg Number of concentration of graupel pariicles with m~

diameters berween D and D, +d D,

T N y' . - ot e = -3
NpedDy beut?:m %f;_ c:[:lltti:e[i)l:lu[cinﬁ :f raindrops with diameters m
NpsdDs Number of concentration of snowflakes with m”

diameters between Ds and Ds + d Ds
Noc Intercept value 1n graupel size distnibution 4 x 10° m>

Nop Intercept value i raindrop size distmbution 8 x 10° m>
Nis Intercept value in snowflake size distnbution 4 x 108 m™
n, Number concentration of cloud 1ce erystals m”

i, Number concentration of cloud water droplets m”
1n, Number concentration of 1ce nucler m-
11, Constant 1n expression for ice nucler concentration variable m*
p Pressure N m™
Ps Constant in empinical relation 10° Nm”
PCOND Condensation of water vapor ke m 5!
PCONV Conversion of cloud ice to snow kg m” s
PDEPI Depositional growth of cloud ice kg m 5!
PGACI Collection of cloud ice by graupel kgm? ¢!
PGACR Collection of ramn by graupel kgm? s’
PGACRM | Enhanced melting of graupel due to accretion of rain kg m 5!
PGACS Collection of snow by graupel kgm”s’!
PGACW Collection of cloud water by graupel kem™ s’
PGACWM | Enhanced melting of graupel due to accretion of cloud kg m™ s?
water
PGDEP ]-Jepusimmal srowth of graupel ko m sl
PGMLT Meltng of sraupel ks m? 5T
PGSHR Shedding of accreted water by graupel ke m- g
PIACE Collection of ram by cloud 1ce Lem 5!
PMLTEV Evaporation of melung snow kg m 5!
PMLTGE Evaporation of meltng graupel kg m~ s
PRACI Collection of cloud ice by ram kg m? 57!
PRACS Collection of snow by ram kgm? s’
PRACW Collection of cloud water by ramnwater kgm? 5!
PRAUT Autoconversion of cloud water kgm? s’
PREVP Evaporation of ramnwater kg m? 5!
PSACI Collection of cloud ice by snow kem™ s
PSACR Collection of rain by snow kgm 5!
PSACW Collection of cloud water by snow ke m gl
PSDEP Depositional srowth of snow kg m” 5!
PSFI Conversion of cloud 1ce to snow m the Bergeron ke m sl
process
PSFW Conversion of cloud water to snow in the Bergeron kg m™ s
process
PSMLT Melting of snow kg m” g’
PSMLTI Melting of cloud ice kgm?s!
PINT Initiation of cloud ice kgm? 5!
q Mixing ratio of cloud water kg kg™
q Muxing ratio of cloud ice kg kg!
Fimay Conversion of cloud ice to snow threshold kg kg
Ay Mixmg ratio threshold for PRAUT 7 % 107 ko kgl
q, Mixing ratio of ramwater kg kg
q. Mixing ratio of snow ko ko'l
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Table 1C. COAMPS Model Glossary of Symbols and Urst
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Symbol Description Value SI Units

| 9 Mmxmeg ratio of snow at top of feeder zone kg kg

q, Saturation mixing satio with respect to ice kg kg

0y Saturation muxing ratio with respect fo water kg kg™

Gy Miximng ratio of water vapor kg kg'!

R’ Universal gas constant 8.314 x 10° J kmol™ K

R, Reynolds number

R, Gas constant for water vapor 4.61 x 10- Jke' K

5 Saturation ratio with respect to water

S, Schmidt number 0.6

Se Source term for cloud water ke m” 5!

S Diabatic heating terms K ks m” st

51 Source term for cloud 1ce ke m™ s

5 Saturation ratio with respect to 1ice kem” s’

Sg Represents sources and sinks for ¢ ke m? 5!

Sg Source term for ramn kg m? 5!

S« Source term for snow kg m?s*

Sy Source term for water vapor kg m” s*

i | Temperature K

Ta Reference temperature 273.16 K

t Time 5

u Honzontal windspeed ms”

v Mass-weighted fallspeed of precipitation m s

Vi Mass-weighted fallspeed for rain ms’

V(D) Fallspeed of ramdrop of diameter Dy ms?

V Mass-weighted fallspeed for snow m st

V(D:) Fallspeed of snowllake for diameter D ms!

W Vertical air velocity ms*

X Honizontal distance m

Z Equivalent radar reflectrvity factor mm® m*

z Vertical distance m

o Rate coefficient for autoconversion 0.001 5"

p Constant 1n 1ce crystal concentration 0.6 deg™

I Gamma function

I Dry adiabatic lapse rate 9.8 x 107 Km'

£5 Permuttivaty of free space 8.854 x 107" CN'mr

P Aur density ke m”

Py Density of water 10° kem”

Ps Density of snow 100 (Type 1) kem”

200 (Type 2) kg m”

An Slope of ramndrop size distnibution m"

X Slope of snow size distnbution m

X Diffusivity of water vapor m air 226 %107 m's"

i Dynamic viscosity of air 1.718 x 107 kgm™s”

il Time mcrement 10 5

Ay Honizontal spatial increment 4000 m

A, Vertical spanial increment 200 m
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C.2 MM5 Model Physics Options

Precipitation physics

Cumulus parameterization schemes:

0

[ I B O R O O B

Anthes-Kuo

Grell

Kain-Fritsch

New Kain-Fritsch (including shallow convection jgigs)
Betts-Miller

Arakawa-Schubert

Resolvable-scale microphysics schemes:

N O O B A

Removal of supersaturation

Hsie's warm rain scheme

Dudhia's simple ice scheme

Reisner's mixed-phase scheme

Reisner's mixed-phase scheme with graupel
NASA/Goddard microphysics with hail/graupel
Schultz mixed-phase scheme with graupel

Planetary boundary layer process parameterization

O 0O O0OO0OO0Oo

Bulk formula

Blackadar scheme

Burk-Thompson (Mellor-Yamada 1.5-order/level-2cheme)
Eta TKE scheme (Janjic, 1990, 1994)

MRF scheme (Hong and Pan 1996)

Gayno-Seaman scheme (Gayno 1994)

Surface layer process parameterization

O 0O O0OO0OO0OO0Oo

fluxes of momentum, sensible and latent heat

ground temperature prediction using energy bal@&gtiation
variable land use catagories (defaults are 1antic24)
5-layer soil model

OSU land-surface model (V3.1 - V3.5)

Noah land-surface model (since V3.6)

Pleim-Xiu land-surface model (V3 only)

Atmospheric radiation schemes

0]

0]
0]
0]

Simple cooling

Dudhia's long- and short-wave radiation scheme

NCAR/CCM2 radiation scheme

RRTM long-wave radiation scheme (Mlawer et @97) (V3 oCumulus and shallow

convection parameterization,

0]

Kain-Fritsch with shallow convection,



O 0000000 O0Oo
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Betts-Miller-Janijic,

Grell-Devenyi ensemble scheme,

New Grell 3D ensemble scheme,

Grell-Freitas ensemble scheme (v3.5),

Tiedtke,

New SAS (Simplied Arakawa-Schubert) from GFS,
Old SAS (from GFS too),

Zhang-McFarlane,

University of Washington shallow convection,
GRIMS shallow convection (v3.5),

Planetary boundary layer process parameterization

O 0000000 O0O0o

Yonsei University (S. Korea) with improved staBle

Mellor-Yamada-Janjic

Asymmetric Convective Model (ACM2)

Quasi-normal scale elimination/Eddy diffusivitgass flux (QNSE-EDMF) (v3.4)
Level 2.5 and 3 Mellor-Yamada Nakanishi Niino (MNX) PBL
Bougeault-Lacarrere PBL

University of Washington TKE PBL

Total energy - mass flux (TEMF) scheme

Grenier-Bretherton-McCaa TKE PBL (v3.5)

MRF

Surface layer process parameterization

O O O0OO0OO0OO0Oo

similarity theory MM5 - may be run with a 1-D @emixed layer model
Eta or MYJ

PX

QNSE

MYNN

TEMF

Revised MM5 scheme (v3.4)

land-surface process parameterization

(11000000000 O0O0

slab soil model (5-layer thermal diffusion)
Unified Noah land-surface model
Urban canopy model (works with Noah LSM)
Multi-layer building environment parameterizatiBEP, works with Noah, and requires
BoulLac and MYJ PBL)
Building energy model (BEM, works with Noah ardjuires BouLac and MYJ PBL)
RUC LSM
PX LSM
Noah-MP (v3.4)
SSiB (v3.4)
CLM4 (v3.5)
use of fractional sea-ice
WRF-Hydro (v3.5)
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Atmospheric radiation schemes

longwave radiation

0]

o O OO

RRTM
CAM
RRTMG
Goddard
Fu-Liou-Gu

shortwave radiation

O 0O O0OO0OO0Oo

simple MM5 scheme, with Zaengl radiation/topodmafsiope and shadowing) effects
Goddard (old)

CAM

RRTMG

Goddard

Fu-Liou-Gu

ocean physics

0]
0]

single-column mixed layer ocean model
3D Price-Weller-Pinkel (PWP) ocean model

sub-grid turbulence

0]

0]
0]
0]

constant K diffusion

2-D Smagorinsky

predicted TKE

nonlinear backscatter and anisotropy (NBA) tuebak option for LES (new in V3.2)

land-use categories determine surface properties

SST, greenness fraction, seaice and albedo updateydong simulations
analysis nudging, 3-D and surface (new in V3.1)

observation nudging (new in V2.2)

spectral nudging using gridded analyses (new irl)V3.



