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Abstract 

The main aim of this research work was to discuss the methods of identifying and control 

heat in underground mine environments. The research contains three main sections as 

follow: 

1. Selecting an appropriate heat stress index for underground mining application 

Methods: The aim of this research study was to discuss the challenges in identifying and 

selecting an appropriate heat stress index for thermal planning and management purposes 

in underground mines. A method was proposed coupled to a defined strategy for selecting 

and recommending heat stress indices to be used in underground metal mines in the US 

and worldwide based on a thermal comfort model.  

Results: The performance of current heat stress indices used in underground mines varies 

based on the climatic conditions and the level of activities. Therefore, by carefully selecting 

or establishing an appropriate heat stress index is of paramount importance to ensure the 

safety, health and increasing productivity of the underground workers. 

Conclusions: This method presents an important tool to assess and select the most 

appropriate index for certain climatic conditions in order to protect the underground 

workers from heat related illnesses. Although complex, the method presents results that are 

easy to interpret and understand than any of the currently available evaluation methods. 

2. Best practices in use of continuous climatic monitoring systems for assessment of 

underground mine climatic condition: 

Methods: Major heat sources in an underground metal mine in Nevada was quantified using 

over one year of climatic data collection in both primary and auxiliary ventilation systems. 
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Furthermore, auxiliary ventilation systems were examined in a development heading and 

a production area at our partner mine. Climatic models were developed and validated to 

simulate the climatic conditions based on intake airflow conditions and the heat load along 

the ducting system. Considerations were also given to the fact that arsenic concentrations 

may be present at the face. Different scenarios were studied to design and optimize the 

auxiliary ventilation systems in order to minimize the heat generated by multiple auxiliary 

fans and minimize arsenic concentration in the production workings. 

Results: The results show that the heat generated by different major heat sources can 

change throughout the mine as a function of surface temperature. Furthermore, current 

auxiliary ventilation design cannot maintain the comfort limits of the underground workers. 

In some cases, some type of cooling system must be utilized to retain the thermal comfort 

in production workings.  

Conclusions: In many instances, by simply adjusting or upgrading the auxiliary ventilation 

system in a problem area of a mine will effectively dilute the pollutants that are generated 

during production operations and provide adequate climatic conditions to the mine 

workers. This can be achieved through various methods such as: (1) extending the auxiliary 

duct towards the face, (2) installing an additional auxiliary fan to overcome the added 

pressure losses in the system, (3) changing the size of the fan, (4) switching from an 

“exhausting” arrangement to a “forcing” arrangement, and (5) installing an “overlap” 

auxiliary ventilation system. 

3. Quantifying the thermal damping effect in underground vertical openings using artificial 

neural network: 
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Method: A nonlinear autoregressive time series with external input (NARX) algorithm was 

used as a novel method to predict the dry-bulb temperature (Td) at the bottom of the shaft 

as a function of surface air temperature. Furthermore, an attempt was made to quantify 

typical “damping coefficient” for both production and ventilation shafts through simple 

linear regression models. 

Results: The performance of the model was examined using climatic data collected at two 

underground mines during summer and winter. Analyses demonstrated that the artificial 

neural network (ANN) model could accurately predict the temperature at the bottom of a 

shaft. Comparisons between the collected climatic data and the regression-based 

predictions show that a simple linear regression model provides an acceptable prediction 

of the Td at the bottom of intake shafts. The same approach can be used to predict the 

thermal damping effect on the wet-bulb temperature (Tw) at the bottom of production and 

ventilation shafts. 

Conclusions: A comparison between collected data and the climatic modeling 

demonstrates that the ventilation or climatic modeling software packages do not have the 

ability take into account the “thermal damping effect (TDE)” (also known as thermal 

flywheel effect) when modeling the thermal environment in deep and hot underground 

mines. The major difficulty in incorporating TDE comes from a large number of variables 

interacting with each other plus the time-dependent heat and mass transport processes that 

control the flow of strata heat into/from the mine airways. 
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Chapter 1 Introduction 

1.1. Background 

Mining in the USA remains one of the most hazardous industries, despite significant 

reductions in fatal injuries over the last century (Coleman & Kerkering, 2007; Saleh et al., 

2011; Jacklitsch et al., 2016). Occupational health hazards within the mining industry 

include physical (e.g. traumatic injuries, hearing loss), chemical (e.g. silica, diesel 

particular matter), biological, ergonomics, as well as psychological hazards (Donoghue, 

2004; Saleh et al., 2011). The effects of some of these hazards can be diagnosed 

immediately, while many will have long term effects on the health, safety, and the life 

quality of the mine workers (e.g. black-lung, and silicosis) (Donoghue, 2004; NIOSH, 

2000). 

As the increasingly mechanized underground mines in the US become deeper, the issue of 

heat becomes a significant problem. Hot and humid environments can seriously affect the 

performance, overall productivity and most importantly the ability of the underground 

workforce to perform work in a safe manner. Assessment of the thermal environment is 

becoming more important due to significant effects of excessive heat on safety and health 

of the underground miners. These effects on individuals can be from thermal discomfort to 

heat-related illnesses such as thermal stress, heat cramps, heat rash, and heat stroke (Brake 

& Bates, 2002; Sheer et al., 2001). The main sources of heat in underground metal mines 

include auto-compression as air descends through vertical openings, strata heat 

(geothermic gradient), machinery, mine water influx, explosive detonations, friction 

between falling rock, human metabolism, pipelines and oxidation (Brake & Bates, 2002; 

Kocsis & Hardcastle, 2010; Carpenter et al., 2015). In deep and hot mines, the removal of 
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this heat is a top priority for the mine operators as mine workers are at risk for heat-related 

illnesses and injuries (Donoghue, 2004). It is imperative that the underground mine 

climatic conditions remain safe for human presence, as mine workers actively work in this 

environment. The hot and humid environment also has a negative impact on the efficiency 

of the underground workforce which may result in production decline (Xiaojie et al., 2011). 

1.2. Significance of Heat Problems in Underground Mines 

There is well established mechanism which controls the temperature of a human body to 

maintain thermal equilibrium when exposed to heat stresses. However, if the heat stress 

exceeds a certain level, this mechanism is no longer able to fully remove the metabolic 

heat. In situations when the human body is unable to effectively promote heat transfer to 

the ambient surroundings, the risk of heat stress related illnesses and injuries can drastically 

increase (Donoghue, 2004; Xiang et al., 2014; Roghanchi et al., 2015). 

The magnitude of heat which is stored in the human body is given by the metabolic heat 

minus the algebraic sum of the heat flows between the human body and its immediate 

environment. Considering steady states, the heat storage (S) is often considered as zero in 

order to assure comfort for a worker. The thermal interaction of the human body with the 

environment can be written, as follows (ISO 7933, 2005): 

S = M - (C + R + B + E + K + W) (W/m2)                                                                 Eq. 1.1 

The human body is basically a biological “heat engine” of low mechanical efficiency. 

Within the human body, through chemical reactions, nutrients combine with oxygen to 

produce: (1) metabolic heat, and (2) mechanical work. The mechanical work output is 

seldom more than 20% of the total metabolic energy even for vigorous activities, and it is 
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taken into account when work is performed against gravity. The metabolic energy, which 

is proportional to the oxygen consumption can be defined as: 

Metabolic energy = Metabolic heat + Work performed against gravity 

If the human body is to remain in thermal equilibrium, then the metabolic heat (M) must 

be transferred to the surrounding environment at the same rate. Heat transfer from the 

human body to the ambient surroundings can occur through a combination of various 

heat transfer processes such as: (1) respiratory heat exchange, (2) convection, (3) 

radiation, and Evaporation. At “thermal equilibrium”, the rate of heat storage is basically 

zero (Shapiro & Epstein, 1984; King, 2004; Epstein & Moran, 2006). Physical fitness, 

hydration state, gender, anthropometric data, age, history of heat illnesses, 

acclimatization, drug use, alcohol consumption, hypertension, and body size are some of 

the important parameters that affect the individual response to heat exposure (ACGIH, 

2014; Jacklitsch et al., 2016). Table 1.1 shows different comfort sensations based on the 

total heat stored in the human body. 

Table 1.1. Five thermal effect zones associated with thermal comfort and sensation (Fanger, 1970) 

Thermal Sensation Zone of Thermal Effect Comfort Sensation Total Heat Storage (S) 

Very hot (1) In-compensable heat zone Very uncomfortable 𝑆 ≫ 0 

Hot (2) Sweat evaporation compensable 

zone 

Uncomfortable 𝑆 ≈ 0 

Warm Slightly 

uncomfortable 

Slightly warm  

(3) Vasomotor compensable zone 

 

Comfortable 

 

𝑆 = 0 Neutral 

Slightly cool 

Cool (4) Shivering compensable zone Slightly 

uncomfortable 
𝑆 ≈ 0 

Cold Uncomfortable 

Very Cold (5) In-compensable cold zone Very uncomfortable 𝑆 ≪ 0 
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Physical fitness, hydration state, gender, anthropometric data, age, history of heat illness, 

acclimatization, drug use (prescription and narcotic), alcohol consumption, hypertension, 

and body size are of the relevant parameters that affect the individual response to heat 

exposure (NIOSH, 2000; ACGIH, 2014). 

1.3. Objectives 

The main goals of this research work were as follow:  

1. Assessment of the presence of issues as well as safety and health concerns in deep and 

hot mines in the US 

Task 1. Literature review of heat issues in underground mines, identifying the 

problem areas, and methods of control heat in underground environment 

2. Challenges in identifying appropriate heat stress indices to be used in underground 

mine 

Task 1. Understanding human thermal balance and comfort limit 

Task 2. Comparison between heat stress indices based on Pierce Two-node model 

Task 3. Development of new selection criteria for mine planning phase and 

operation phase 

Task 4. Recommend heat stress indices for thermal comfort assessment of 

underground workers based on various metabolic rate 

3. Optimizing auxiliary ventilation system to improve the climatic condition in 

development and production workings 

Task 1. Best practices for design and use of climatic monitoring systems in hot US 

mines 

Task 2. Identifying the optimum airflow velocity for thermal comfort 

Task 3. Application of mean skin temperature as a heat stress index 
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Task 4. Case studies in optimizing auxiliary ventilation system to reduce heat load 

in developments and production workings 

4. Identifying and quantifying the thermal damping effect in underground vertical 

openings 

Task 1. Identifying the thermal damping effect based on over a year of data 

collection at two underground gold mines in Nevada 

Task 2. Quantifying the thermal damping effect using artificial neural network 

model 

Task 3. Developing the thermal damping coefficients for production and ventilation 

shafts  

1.4. Dissertation structure 

This dissertation is organized in seven chapters as follow: 

Chapter 1. Introduction 

Chapter 2. Controlling Heat Induced Health and Safety Problems in Underground Mines: 

This chapter aimed to discuss major heat-related issues and provide an overview of various 

mine ventilation and cooling systems, which can be employed to overcome high levels of 

heat and humidity in underground mines. In this chapter, the effects of heat exposure on 

the health, safety, and productivity of the mine workers are also highlighted. 

Chapter 3. Challenges in Selecting an Appropriate Heat Stress Index to Protect the Workers 

in Hot and Humid Underground Mines: This chapter discussed the challenges in 

identifying and selecting an appropriate heat stress index for thermal planning and 

management purposes in underground mines. A method is proposed coupled to a defined 

strategy for selecting and recommending heat stress indices to be used in underground 

metal mines in the US and worldwide based on a thermal comfort model.  
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Chapter 4. Evaluation of the Atmospheric and Underground Environmental Conditions by 

Means of Continuous Climatic Monitoring Systems – Lessons Learned: This chapter aimed 

to highlight the lessons learned from the climatic monitoring programs, which were 

conducted over two years at two underground metal mines in Nevada. The monitoring 

program for both primary and auxiliary ventilation systems was discussed. The practices 

and challenges in using continuous climatic monitoring systems in deep and hot metal 

mines were highlighted. 

Chapter 5 & 6. Improving the climatic conditions in development and production workings 

of hot underground mines by re-designing the auxiliary ventilation system - Case study # 

1 & # 2: In these chapters, auxiliary ventilation systems in a development and a production 

area were re-designed to minimize the heat load at these locations. Different scenarios were 

studied to find the optimum ventilation system along with a cooling system to maintain the 

thermal comfort at the development and production areas.  

Chapter 7. Quantifying the Thermal Damping Effect in Underground Vertical Shafts using 

the Nonlinear Autoregressive with External Input (NARX) Algorithm: The objective of 

this chapter was to quantify the thermal damping effect in vertical underground airways. A 

nonlinear autoregressive time series with external input (NARX) algorithm was used as a 

novel method to predict the dry-bulb temperature (Td) at the bottom of the shaft as a 

function of surface air temperature. The performance of the model was examined using 

climatic data collected at two underground mines during summer and winter.  

Chapter 8. Conclusions and future works. 
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Chapter 2 - Controlling Heat Induced Health and Safety 

Problems in Underground Mines 

 

2.1. Introduction 

Among the mining hazards, exposure to heat and humidity can significantly affect the 

safety, health, and the productivity of the mine workers particularly in deep and hot 

underground mines (Roghanchi et al., 2015). Short-term acute heat exposures can cause a 

rise in the core temperature of the human body, which can result in a heat-related illness or 

a combination of heat-related illnesses. Adverse long-term chronic heat exposures can 

generate serious occupational heat-related illnesses such as cardiovascular diseases, mental 

health problems, and chronic kidney diseases. High core body temperatures coupled with 

dehydration can also generate negative behavioral effects such as physical fatigue, 

irritability, lethargy, impaired judgment, loss of dexterity, and loss of concentration 

(Zhang, 2003; Zhang et al., 2010; Xiang et al., 2014). 

2.3. Heat Sources in Underground Mines 

The rising demand for minerals has driven the underground mines to extract ore reserves 

from increasingly deeper levels, and also steered the mines to increase the level of 

mechanization year after year. As a result, the underground mine environment has become 

more extreme, as temperature and humidity levels continued to rise due to an increase in 

the size and number of diesel engine powered mining equipment and other sources of heat. 

The major heat sources in underground mines are: (1) strata heat (geothermal gradient), (2) 

auto-compression, and (3) mining equipment. 
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2.3.1. Strata heat 

The main difficulty in quantifying the heat that is transferred from the strata (or vice versa) 

to the mine air is the large number of ventilation, geological and mine design variables, 

which are often interacting with each other to control the flow of heat from strata. These 

parameters include the length and geometry of the mine openings, the depth below surface, 

wetness of the mine openings, roughness of the airways, volume of air, the virgin rock 

temperature, inlet air parameters, the thermal properties of the rock formations, etc. When 

cool air passes through a horizontal airway, its temperature usually increases. This is 

caused by the natural geothermal heat being conducted through the rock formations 

towards the airway, then passing through the boundary layers of the mine air close to the 

rock surface. The envelope of the rock immediately surrounding the newly driven airway 

will rapidly cool at first, and there will accordingly be a relative high rate of initial heat 

release into the mine air. This will decline in time and as the rock surface gradually cools 

approaching an equilibrium state when its temperature equals that of the air (McPherson, 

2009). 

Despite the fact that the air temperature along the main airways rises and falls as a function 

of the surface climate, the temperature in the main returns can remain relatively constant. 

This is because cool air will promote heat flow from the rock formations. As the 

temperature of the air approaches the natural temperature of the rock, such heat transfer 

will gradually diminish. Furthermore, when the ventilating air leaves a highly mechanized 

production area, its temperature can be greater than the local strata temperature. In this 

case, heat will be transferred from the ventilating air into the rock formations. The air will 
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start cooling until an equilibrium state is again formed, when the temperature of the mine 

air equals that of the strata. 

2.3.2. Auto-compression 

When air descends through a vertical opening (e.g. shaft) some of its potential energy is 

converted into enthalpy, which produces an increase in pressure, internal energy and as a 

result, temperature (Danko, 2013). The rise in air temperature as air descends a vertical 

airway is independent of any frictional effects. The heat added from strata to the ventilating 

air can be positive or negative, but the increase in temperature due to an elevation 

difference is certain for any vertical airway. The effects of auto-compression are also 

independent of the amount of air. In deep mines, as a result of auto-compression, the intake 

air leaving the bottom of the shaft may already be at temperatures that necessitates some 

form of cooling (kocsis and Hardcastle, 2010). Despite the fact that there may be a 

significant rise in air temperature along intake airways, the most noticeable increases may 

occur in the production workings. This is because, firstly, the newly exposed and warm 

surface of the broken ore/rock will transfer its heat to the ventilating air and, secondly, the 

diesel engine powered mining equipment that is concentrated in the production area can 

generate a considerable amount of heat (Roghanchi et al., 2017). 

2.3.3. Mining equipment 

Increasing mechanization made the mining equipment to join the strata and auto-

compression as an added major source of heat in underground mines. Production 

equipment and service vehicles as well as well as transformers and fans are all devices that 

convert an input power, via a useful effect into heat. For any given mining equipment, the 

total heat produced is simply the rate at which power is supplied, less any work done 
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against gravity (Danko, 2013). The internal combustion engines of diesel equipment have 

an overall efficiency of only one-third of that achieved by electrical units. Hence, diesels 

will produce approximately three times as much heat as electrical equipment for the same 

mechanical work output. One-third of this heat is generated by the diesel equipment 

radiator and its body, one-third appears as heat in the exhaust gases. The remaining heat is 

generated by the frictional processes as the machine performs its tasks (Sunkpal, 2015). A 

significant difference between diesel and electrical equipment is that diesels produce part 

of their heat output in the form of latent heat. Each liter of diesel fuel is consumed produces 

approximately 1.1 liter of water in the exhaust gases (Sunkpal, 2015). This may be 

multiplied several times due to the evaporation of water from the cooling systems and 

where water is employed in emission control systems. 

2.4. The Effect of Heat Exposure on the Underground Worker’s State of 

Health, Safety, and Productivity 

Performing work in a hot and humid environment can alter the thermoregulation process 

of a mine worker, which can induce a heat related illness or a combination of heat related 

illnesses. Table 1.2 summarizes the heat related illnesses, causes, symptoms, as well as the 

required treatment to re-establish thermal balance. Heat stroke and heat exhaustion are two 

of the most frequent illnesses that are caused by work performed in a sub-standard 

environment. Heat stroke is a serious illnesses, which carries a high risk of fatality if the 

worker is not immediately treated and the climatic conditions are not corrected. Heat 

exhaustion, which preludes heat stroke, is caused when the thermoregulation system of a 

mine worker is unable to transfer the metabolic heat generated through various activities 

to the ambient surroundings at the rate at which is produced. To prevent these conditions, 
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the wet-bulb temperature of the working area is recommended to be reduced to below 29°C 

in order to reduce the risk of heat exhaustion and heat stroke (Donoghue, 2004). 

Brake and Bates (2002) provide a list and highlight the major factors that can influence 

heat stress levels among the mine workers in hot and humid environments in order to 

decrease the risk of heat exhaustion as well as heat stroke. Among these factors, 

cardiovascular fitness is absolutely essential in promoting good circulation by which 

oxygen from the lungs is delivered to the vital organs. Acclimatization, hydration, the level 

of activity (e.g. metabolic rate), and the type of clothing worn are also important factors to 

promote and manage heat exchange between the mine workers and the ambient 

surroundings. 

The consequences of exposure to heat and humidity has an accumulating growth effect on 

the health and safety of mine workers. The longer the workers are exposed to heat, the 

more their core body temperature tends to increase away from an acquired comfort level 

(Handcock, 1999). In this state, heat storage in the body accumulates over time and the 

heat stress level increases. This can make heat a silent and dangerous health hazard, as its 

effects are often not exposed until life threatening health conditions develop. The ability of 

the human body to adjust to changing climatic conditions is the cause of this imminent 

danger. In this case, an immediate effect can be physical fatigue, impaired judgment, and 

disinterest in the assigned tasks. In the case of vigorous physical work, the rise of body 

temperature is much more rapid and begins at a much lower heat load level, which will 

cause the workers to encounter the dangerous effects of heat within shorter exposure times. 

Figure 2.1 shows the effects of heat stress as a function of exposure time. 
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Another noticeable effect of high temperature and humidity conditions is reluctance and/or 

inability of a mine worker to perform active muscular work. This often begins as a mere 

inertness, supplemented by sleepiness. This effect may initially be resisted and passed off 

as a genuine condition of fatigue, which can ultimately lead into heat exhaustion and heat 

stroke (Haldane, 1905). Several studies have shown that a worker is much less efficient in 

a warm and humid climate, due to the fact that in such conditions the natural tendency of 

its nervous system is to become less active and for muscular work to diminish (Britain & 

Samuel, 1907). 

 

Figure 2.1. Illustration of the effects of heat stress over time 

  

2.5. Assessing the thermal comfort in deep underground mines 

An evaluation of “thermal comfort” must start with the recognition that comfort is basically 

a state of mind (Fanger, 1970). The estimation of comfort requires a scientific model to 

establish a correlation between one or more climatic factors and determine the resulting 

comfort sensation that would be experienced by an individual in a specific environment. 

As various individuals has shown unreliable results during different thermoregulation tests, 

such an association is rather difficult to be determined experimentally. Consequently, most-
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Table 2.1. Heat-related illnesses in underground mines (Brake & Bates, 2002; Donoghue 2004; Jacklitsch et al., 2016) 

Heat Illness Cause Symptoms Treatment 

 

Heat rash 

An individual develops heat rash when his/her pores 

become obstructed and sweat cannot escape. The 

cause of heat rash is often friction on the surface of 

the skin. 

The rash may appear as blisters or red 

lumps. Heat rash may cause itchiness. 

It is usually developed in the parts of 

the body that rub together such as 

neck, upper chest, and in elbow 

creases. 

Heat rash usually goes away on its own. 

Lightweight clothing may help to decrease the 

itchiness. 

 

Heat syncope 

Refers to a fainting episode that occurs when an 

individual in a hot and humid environment doesn’t 

have adequate blood flow to the brain, causing the 

person to lose consciousness. This can occur when an 

individual is standing in a hot environment for a long 

period time without any movement 

Dizziness, lightheadedness, 

weakness, loss of consciousness, pale 

or sweaty skin, weak pulse. 

The affected individual shall sit or lie down in a 

cool place. Elevating the legs above the level of 

the heart may help to promote blood flow to the 

heart. Rehydration with water or a sport beverage 

helps to alleviate the symptoms. 

 

Heat cramps 

Heat cramps are painful, brief muscle cramps. 

Muscles may spasm or jerk involuntarily. The 

mechanism of heat cramps is unknown, but they can 

be caused by dehydration or lack of adequate 

electrolytes in the diet. 

Heat cramps and symptoms are 

painful muscle spasms usually 

involving the legs, chest or the 

abdomen. 

Heat cramps usually go away on their own. 

Resting in a cool place and drinking cold water or 

sport drinks helps to control the severity of the 

symptom. 

 

Heat 

exhaustion 

Heat exhaustion is a condition whose symptoms may 

include heavy sweating and a rapid pulse, a clear 

result that the human body is being overheated. 

Heavy sweating, paleness, muscle 

cramps, tiredness, weakness, 

dizziness, headache, nausea, 

vomiting, and fainting. 

Activity must stop immediately. Heat exhaustion 

can be self-treated. Decreasing the body 

temperature is crucial to treat the heat exhaustion. 

Resting in a cool place and drinking cold fluids 

may help. Prompt medical attention is necessary 

if the symptoms do not go away within an hour. 

 

Heat stroke 

Heat stroke is the most serious heat related illness, 

which occurs when the core temperature of the human 

body rises above 40˚C. At this temperature the 

thermoregulation functions of the human body can be 

seriously damaged. It can also generate irreversible 

damage to the brain and other vital internal organs. 

Confusion, altered mental status, 

slurred speech, loss of consciousness, 

profuse sweating, and seizures. 

 

Heat stroke is a very serious illness, which carries 

a high risk of fatality within the underground 

environment when the worker is not quickly 

treated and the climatic conditions are not 

immediately corrected. 
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thermal models are developed to take into account behavioral responses from a large 

number of individuals that are exposed to various climatic conditions. 

Thermal comfort models can be categorized into “physiological” and “psychological” 

models (Cheng et al., 2011). A physiological thermal model involves the self-regulatory 

function of the human body to varied thermal environments. These self-regulatory 

processes include vasoconstriction, shivering, vasodilation, sweating, etc. Physiological 

thermal models range from the simplest “one-node” models to the complex “three-

dimensional” finite element models. Examples of “one-node” thermal models are: the one-

node model (Givoni & Goldman, 1971), the two-node model (Gagge et al., 1971), the two-

node model with transient response (Jones, 1992; Fiala et al., 1999). A psychological 

thermal model can predict both local and whole-body thermal sensations. Examples of 

psychological thermal models are: the whole-body thermal state model (Dear et al., 1993), 

transient models, non-uniform models, uniform models (Arens et al., 2006; Zhang et al., 

2010), the transient thermal sensation model (Fiala et al., 2010), etc. 

The International Standards Organization (ISO) has formed an integrated series of 

international standards to assess the human response to various thermal environments. For 

example, for a hot and humid environment a three-tier approach can be applied, which 

involves: (1) a simple thermal index such as WBGT, that can be used for monitoring and 

control (Parson, 2006), (2) a rational index such as SWreq, which involves an assessment 

of the heat exchange process between a worker and the environment (ISO 7933, 2005), and 

(3) a standard for physiological measurement, which can be used to establish a monitoring 

system for the workers (Parson, 2006). This method of evaluation and interpretation 

calculates the thermal balance of the human body from the parameters of the thermal 
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environment such as: ta, tr, Pa,va which are estimated according to ISO 7726. The physical 

characteristics of the workers exposed to these conditions such as the metabolic rate (M) 

is estimated on the basis of ISO 8996 (2004). Furthermore, the thermal characteristics of 

the workers clothing are estimated on the basis of ISO 9920 (2009). 

In this study, a “thermal model” was developed to assess the effect of the net heat load and 

humidity on the health and safety of the mine workers coupled with climatic and 

physiological parameters such as airflow, temperature, humidity, work intensity, and 

clothing. Simulations performed on the thermal model mirrored the stress conditions which 

can be experienced by a mine worker as a function of ambient conditions, clothing, and 

various metabolic rates. Many heat stress publications (ISO 7933, 2005; ISO 8996, 2004; 

NIOSH, 2010; Jacklitsch et al., 2016) use the fundamental principle which implies that an 

increase in work rate should be compensated by a reduction in environmental heat load 

(Graveling et al., 1988). The limit setting criteria for this thermal model was also derived 

from this principle. 

The metabolic rate, the level of humidity, the dry-bulb temperature and the type of clothing 

are all key parameters which can confirm thermal equilibrium, or determine the net heat 

that will be stored in the human body. Metabolic rates of 200 W/m2, 250 W/m2, and 300 

W/m2 were considered for this study, which represent light, moderate, and vigorous levels 

of activity. Input parameters can also characterize physical work which involves sustained 

hand-and-arm movement, arm-and-trunk work, and intense arm-and-trunk work, ISO 8996 

(2004). Throughout the climatic and thermoregulation simulations the airflow velocity, and 

type of clothing was kept constant at 1.5 m/s, and a coefficient of heat transfer of 0.6. The 

air temperatures used in the thermal model ranged from 20˚C through to 36˚C, since these 
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are normally observed values in many underground mines. The output results of the model 

which are maximum evaporation rate, required evaporation rate and required sweat rate are 

interpreted base on the state of acclimatization of the subject. There is an alarm and a 

danger criteria for the predicted sweat rate and the duration of exposure. Two stress criteria 

of a) maximum skin wetness (wmax), b) max sweat rate (SWmax) and a criteria of strain max 

water loss in the form of maximum tolerable exposure time (TLV) form the basis for the 

interpretation of the values. When the predicted values are below the maximum values 

sufficient sweat can be evaporated to maintain thermal equilibrium. The environmental 

conditions been considered for this analysis are severe and will involve excessive water 

loss from the body of the subjects. A comprehensive analysis of the development and 

implementation of this model is found in (Sunkpal, 2015). 

The output results generated from the model runs, which include the maximum evaporation 

rate, the required evaporation rate, and the required sweat rate have been determined 

according to a non-acclimatized mine worker. A distress signal was also imbedded in the 

thermal model based upon a risk criteria, which took into account the predicted sweat rate, 

the skin wetness, and the work duration (e.g. duration of exposure) of the mine worker. 

Three stress criteria such as: (a) the maximum sweat rate (SWmax), (b) duration of exposure, 

and (c) maximum skin wetness (wmax), established the basis for work comfort, data analysis 

and interpretation. It was assumed that when the predicted values were below the maximum 

permissible stress values, sufficient sweat was evaporated from the skin and/or the clothing 

surface of a mine worker in order to maintain thermal equilibrium. The output results 

generated by means of climatic and thermoregulation simulations are presented in Figure 

1.2 (a, b, c), Figure 1.3 (a, b, c), and Figure 1.4 (a, b, c). 
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   (a)     (b) 

 
(c) 

Figure 2.2 (a, b, c). Maximum allowable levels of relative humidity (RH) as a function of temperature (t) 

and maximum sweat rate (SWmax) for: (a) M = 200 W/m2; (b) M = 250 W/m2; and (c) M = 300 W/m2 

Figure 1.2 (a, b, c) shows the maximum levels of RH, which are permitted in a production 

area of an underground operation for temperatures ranging from 20˚C through to 36˚C. The 

RH levels are also a function of the limiting sweat rates (SWmax) produced by a mine 

worker, which performs manual work at increasing levels that correspond to metabolic 

rates of 200 W/m2, 250 W/m2, and 300 W/m2. The maximum sweat rate produced by an 

un-acclimatized mine worker (SWmax) varies from 840 (grams/hour) to 1,080 (grams/hour), 

and 1,330 (grams/hour) for metabolic rates of 200 W/m2, 250 W/m2, and 300 W/m2, 

respectively. 

The thermal model considers that fresh air is delivered to the production area at a constant 

velocity of 1.5 m/s, and the clothing worn by the mine worker has a coefficient of heat 
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transfer of 0.6. Figure 2(a) shows that for a low level activity, which corresponds to a 

metabolic rate Ml = 200 W/m2, and for ambient temperature t = 30˚C, the maximum 

allowable RH in the production area is 90%. Figure 2(b) shows that for the same climatic 

conditions but for a medium level of activity, which corresponds to a metabolic rate Mm = 

250 W/m2, the RH in the production area should not exceed 80%. Figure 2(c) shows that 

for the same climatic conditions, but for a metabolic rate Mv = 300 W/m2, the RH in the 

production area should not exceed 68%.  

    
   (a)             (b) 

 
(c) 

Figure 2.3 (a, b, c). Maximum exposure limits (e.g. work duration) as a function of temperature (t), and 

relative humidity (RH) for: (a) M = 200 W/m2; (b) M = 250 W/m2; and (c) M = 300 W/m2   

Figure 1.4 (a, b, c) shows the maximum allowable exposure times (e.g. work duration) of 

a mine worker in the production area, who performs manual work at levels that correspond 

to metabolic rates of 200 W/m2, 250 W/m2, and 300 W/m2. The maximum allowable 
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exposure times are also a function of the dry-bulb temperature, which varies from 20˚C 

through to 36˚C, as well as RH, which varies from 50% through to 100%. The maximum 

allowable exposure time was determined by means of simulation techniques performed on 

the thermal model, which considers that fresh air is delivered to the production area at a 

constant velocity of 1.5 m/s, and the type of clothing of the mine worker has a heat transfer 

coefficient of 0.6. Figure 3(a) shows that for a low level of activity, which corresponds to 

a metabolic rate of Ml = 200 W/m2, for an ambient temperature t = 30˚C, and for RH = 

80%, the maximum allowable exposure time of a mine worker is 5.0 hours. The allowable 

exposure time reflects continuous manual work performed at a constant metabolic rate. 

Furthermore, for the same ambient conditions, if the metabolic rate of the mine worker 

increases to 250 W/m2 and 300 W/m2, the maximum allowable exposure time needs to 

decrease to 2.8 hours, and 1 hour, respectively. Based on the above mentioned ambient 

conditions and work duration limits, a mine worker will have the ability to maintain thermal 

equilibrium. If the temperature and/or the RH in the production area further increases, the 

permitted work duration needs to decrease according to the graphs shown in Figure 3 (a. 

b, c).  

Figure 4 (a, b, c) shows the maximum levels of RH, which are permitted in the production 

area for temperatures that vary from 20˚C through to 36˚C. In this case the RH levels are a 

function of the maximum skin wetness (wmax) of an un-acclimatized mine worker, which 

performs manual work at levels that correspond to metabolic rates of 200 W/m2, 250 W/m2, 

and 300 W/m2. The skin wetness (w), which can vary from zero to a maximum value of 

0.85 was determined according to research work published by Fanger in 1970. The thermal 
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model also considers that fresh air is delivered to the production area at a constant velocity 

of 1.5 m/s, and the clothing worn by the mine worker has a heat transfer coefficient of 0.6. 

Figure 4(a) shows that for manual activity, which corresponds to a metabolic rate Ml = 200 

W/m2, and for an ambient temperature t = 30˚C, the maximum allowable RH in the 

production area is 87%. Figure 4(b) shows that for the same climatic conditions but for a 

higher level of activity which corresponds to a metabolic rate Mm = 250 W/m2, the RH in 

the production area should not exceed 74%. Furthermore, Figure 4(c) shows that for the 

same climatic conditions, but for a metabolic rate Mv = 300 W/m2, the RH in the production 

area should not exceed 63%. 

    
(a)                    (b) 

 
(c) 

Figure 2.4 (a, b, c). Maximum allowable levels of relative humidity (RH), as a function of temperature (t) 

and maximum skin wetness (wmax = 1) for: (a) M = 200 W/m2; (b) M = 250 W/m2; and (c) M = 300 W/m2 
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The above results determined by means of simulation techniques, which are presented in 

Figure 1.2 (a, b, c), Figure 1.3 (a, b, c) and Figure 1.4 (a, b, c) show that the climatic 

parameters of an underground environment as well as the thermoregulation parameters of 

a mine worker took into account the limiting physiological parameters such as the 

maximum sweat rate (SWmax), the maximum skin wetness (wmax) and the maximum 

exposure time (hours). The simulation results emphasize the fact that an accurate thermal 

model has the ability to either quantify the maximum allowable climatic parameters in an 

underground work area such as temperature (t) and relative humidity (RH), or for a given 

work environment and predetermined metabolic rates (M) to determine the maximum 

exposure times (e.g. work duration) for the mine workers. The allowable exposure time 

represent the maximum time a worker can continue to perform tasks in order to maintain 

thermal equilibrium. 

2.6. Method of Controlling Heat 

Deciding between different heat mitigation techniques can drastically change the operating 

cost of an underground mine. Considering the list of energy demanding activities, 

ventilation is identified as one of the top contributors. Ventilation costs make up to 40% of 

the total electricity usage, and up to 60% of underground operating costs (Karacan, 2007; 

Kurnia et al., 2014). Because every mine is unique, it is essential to monitor the climatic 

conditions in the mine to understand where the heat is coming from, in order to identify 

and design the most appropriate method of cooling. In the majority of cases the airflow 

itself is sufficient to remove the heat that is produced during the mining processes. In deep 

metal mines, the heat removal, which is usually the dominant environmental problem, may 

necessitate the use of some level of refrigeration.  
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2.6.1. Acclimatization 

Several studies have summarized the parameters which are important to the 

thermoregulation process of the human body, such as physical fitness, acclimatization, 

hydration state, hypertension, gender, and age. Furthermore, other parameters may include 

factors such as previous heat-related illnesses, difficulty to acclimatize or re-acclimatize to 

the heat and humid conditions, hypertension, body size, drug use, and alcohol use 

(Havenith, 1985; Kenny et al., 2009). A properly designed and applied heat acclimatization 

program will increase the ability of the mine personnel to work in hot and humid 

environments, while decreasing the risk of heat-related illnesses. For a healthy worker, 

acclimatization to a hot and humid environment can be usually attained in 7 to 14 days 

(DOD 1980, 2003; NEHC, 2007; ACGIH, 2014).  

2.6.2. Identifying and applying a heat stress index 

Heat stress indices have several safety and health applications in the mining industry. 

Among these applications setting exposure limits or threshold limit values, is probably the 

most important application of a heat stress index (Lee, 1985). A heat stress index integrates 

personal, physiological, and thermal parameters into a single number for a “quantitative” 

assessment of exposing mine workers to heat stress (McPherson, 1962; Graveling, 1988; 

Epstein & Moran, 2006). Heat stress indices can be grouped into: (1) rational indices, 

which are based on calculations involving the heat balance equation; (2) empirical indices, 

based on objective and subjective heat strain assessments; and (3) direct indices, which 

involve direct measurements of environmental parameters such as dry-bulb temperature, 

wet-bulb temperature, wet-bulb-globe temperature, relative humidity, airflow velocity, etc. 

(Graveling, 1988; Brake & Bates, 2002; Epstein & Moran, 2006). 
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A heat stress index, which is anticipated to be used for a specific work area, should satisfy 

the following criteria before being established as a standard for industrial use (Webber et 

al., 2003): (a) be applicable to and accurate within the range of conditions for which it will 

be used, (b) take cognizance of all relevant parameters of heat stress, (c) be applicable 

through simple measurements and calculations, (d) apply valid weighting to all factors 

considered, in direct relation to their contribution to total physiological strain, (e) provide 

a practical foundation in order to develop regulatory standards. 

2.6.3. Re-designing the ventilation system 

Designing or re-designing the primary and/or the auxiliary ventilation systems to provide 

adequate air volumes to the production workings should be explored before any level of 

refrigeration is considered. For example, under certain conditions and based upon the 

mining method employed, a localized “exhausting” auxiliary ventilation system can be re-

designed into a “forcing” system. The higher velocity airstream emerging from a forcing 

duct can provide cooler air at the face of a dead-end development heading, having also 

taken into account the heat generated by the auxiliary fan. Another advantage of a forcing 

auxiliary ventilation system is that flexible fabric ducts can be used due to positive pressure 

along the ducting system. The main disadvantage of a forcing auxiliary systems is that 

pollutants added to the ventilating air at the face will affect the entire length of the drift, as 

the return air passes back along it.  

The advantages of both forcing and exhausting auxiliary ventilation systems can be 

combined when an “overlap” system is used. A push-pull overlap ventilation system can 

provide adequate airflow velocities at the face of a production stope, while the 

contaminated air is immediately directed into the ducting system. The problem with an 
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overlap auxiliary system is that it requires a relatively large cross-sectional area where two 

ducting systems can be installed. For this study, the use of an overlap ventilation system 

wasn’t feasible due to small cross-sectional areas in the production and development 

workings. An efficient ventilation system which has the ability to deliver appropriate air 

volumes to the production workings can be an effective method to control heat and 

humidity in underground mines. 

2.6.4. Cooling systems and strategies 

The main objective of mine ventilation system is to provide comfort to the mine workers 

and machinery by supplying an adequate amount of fresh air to remove the pollutants 

generated during development and production operations. However, the ability of 

ventilation systems to provide acceptable climatic conditions can decrease as a function of 

mining depth, the geothermal gradient and the level of mechanization. In deep and hot 

mines, the removal of heat is a top priority for the mine operators, as mine workers can be 

exposed to heat-related illnesses and injuries. Despite the fact that many underground 

mines in the US may not have a history of severe heat problems mine-wide, there might be 

localized areas (e.g. production workings, development headings) where the temperature 

and humidity values are continually exceeding the allowable limits. Selecting the most 

suitable method of cooling depends on the magnitude of heat which needs to be removed, 

the makeup of the combined heat load (e.g. auto-compression, strata, mining equipment, 

blasting), the employed extraction method(s), the location of problem areas, and economic 

considerations.  
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Table 2.2. Current cooling strategies and application to the mining industry (Ramsden et al., 2007; Mackay 

et al., 2010; Kamyar et al., 2016; Al Sayed, 2016). 

Cooling Method Strategy Details 

Micro-climate 

cooling systems 

These cooling systems serve the 

purpose of cooling the area directly 

around the worker. Examples of this 

include air-conditioned cabs and 

cooling garments. 

(a) located where the miners work and travel, 

(b) maximum positional efficiency, (c) low 

capital investment, (d) mobile, (e) workers are 

not always in air conditioned cabs, (f) current 

cooling garments are not optimal for use in 

underground mines. 

Spot cooling 

systems 

These small, mobile units are 

placed in problem areas to mitigate 

heat or to supplement the central 

cooling system when necessary. 

(a) located in areas away from main airways, 

(b) low cooling capacity, (c) high positional 

efficiency, (d) low capital investment, (e) 

mobile, (f) must reject heat into a return 

airway. 

Surface bulk 

cooling systems 

The intake shaft draws air through a 

spray chamber known as bulk air 

cooler (BAC) to chill the air. A 

dedicated fridge shaft may be used 

entirely for ultra-cold air. 

(a) located on the surface, (b) largest cooling 

capacity, (c) lowest positional efficiency, (d) 

can dissipate heat directly to the atmosphere, 

(e) limited by the depth of the mine 

Underground 

bulk 

cooling systems 

Utilize a BAC or cooling-coil 

coolers to chill the main intake air. 

Secondary underground BACs may 

be set up along the main intake. 

(a) located underground in main airways, (b) 

large cooling capacity, (c) low positional 

efficiency, (d) limited by space underground, 

(e) must reject heat into a return airway or 

through return waterlines to the surface 

2.7. Discussions 

In many instances, by simply adjusting or upgrading the auxiliary ventilation system in a 

problem area of a mine will effectively dilute the pollutants that are generated during 

production operations and provide adequate climatic conditions to the mine workers. This 

can be achieved through various methods such as: (1) extending the auxiliary duct towards 

the face, (2) installing an additional auxiliary fan to overcome the added pressure losses in 

the system, (3) changing the size of the fan, (4) switching from an “exhausting” 

arrangement to a “forcing” arrangement, and (5) installing an “overlap” auxiliary 

ventilation system. If the required air volumes in the active areas are more than the primary 

ventilation system is able to provide, other measures may need to be considered in order to 

increase airflow delivery. This may include the installation of a ventilation-on-demand 



26 

 

 

 

(VOD) control system, adding booster fans to improve airflow distribution in localized 

areas, and/or upgrading the surface fans. 

In hot and humid underground mines, the heat index used for comfort evaluation must be 

carefully selected. This heat index shall provide protection for the mine workers as much 

as possible. The primary objective in selecting a heat stress index is simplicity. It is more 

likely that the environmental engineers and the mine personnel will accept and employ a 

thermal index which has been presented in a format that can be well understood and easily 

applied. On the other hand, a simple thermal index may limit its relevance to a very specific 

case or a localized area. However, the necessity to apply numerous modifications to simple 

indices in order to adjust them for various work conditions, can negate the apparent 

advantage of a thermal index to be directly used to protect the mine workers. 

When miners are working directly in the hot mine environment, they must stay hydrated, 

take breaks, and wear the proper attire. It is important to stay hydrated as dehydration not 

only reduces work output but also puts the mine worker at risk for heat related injuries 

(Brake, 2001). If a mine worker is performing moderate work for less than two hours during 

a shift, it is recommended that they drink 1 cup (6 ounces) of water every 15 to 20 minutes. 

If a mine worker is performing strenuous work and/or is performing moderate work for 

more than 2 hours then they should take breaks and drink hydrating fluids containing 

electrolytes throughout the shift (Jacklitsch et al., 2016). Short, intermittent breaks are 

recommended over a single, long break during a shift as work-rest cycles are better for 

reducing fatigue. If at all possible, these breaks should be conducted in a cooler area. 

There are a number of available cooling systems and strategies, which vary as a function 

of cooling capability, cost, mobility, and efficiency. No cooling system is necessarily better 
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than another, as the various mine specific conditions may require a cooling method, which 

is unique to a particular operation. The majority of the most widespread cooling methods 

as well as some less common cooling systems are basically applicable to the hot and humid 

underground mines in USA. How these systems are applied will vary on a case by case 

basis for each mine based on a variety of factors such as: the combined heat load of the 

mine, geographic location, mining depth, employed mining method(s), material handling 

system, level of mechanization, diesel equipment fleet, and economic constraints. An 

underground mine’s cooling strategy should be planned and designed by taking into 

account that an underground operation is a “dynamic” system, as the mine continually 

deepens and new adjacent orebodies are being developed. Cooling units can be upgraded 

and different combinations of cooling systems can be utilized. This is important not only 

for the safety and health of the U.S. mine workers, but also for the sustainability of the U.S. 

mining industry. 

Clothing and personal protective equipment (PPE) can significantly reduce the heat 

exchange processes, as they insulate the human body and reduce the available skin surface 

area much needed to promote evaporative cooling. Other industries have begun using 

cooling garments which utilize air cooling, water circulation, and gas expansion systems 

in an effort to cool the workers. However, recent research has concluded that the currently 

available cooling garments aren’t yet fully compatible to be used in hot and humid 

underground mines. For this reason, whenever possible mine workers should avoid wearing 

multiple layers and should wear clothing made of materials which promote heat exchange 

and moisture transfer between the human body and the ambient surroundings. While mine 

workers should follow these practices, the environmental engineers are responsible to 
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establish safe policies and protocols to be followed in order to prevent heat-related injuries 

in underground mines. 
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Chapter 3 Selecting an Appropriate Heat Stress Index to 

Protect the Workers in Hot and Humid Underground Mines 

 

3.1. Introduction 

Hot and humid environments can negatively impact the performance, overall productivity 

and most importantly the ability of the underground workforce to perform work in a safe 

manner (Brakes & Bates, 2002). Evaluations of the underground thermal environment are 

becoming more important due to the proliferations of health and safety problems related to 

adverse climatic conditions in underground miners (Carpenter et al., 2015). These health 

and safety problems are normally in the form of thermal discomfort, heat-related illnesses 

such as thermal stress, heat cramps, heat rash, heat stroke, etc. (Donoghue, 2004). 

A heat stress index integrates personal, physiological, and thermal environment parameters 

into a single number for a “quantitative” assessment of exposing mine workers to heat 

stress (McPherson, 1962; Graveling et al., 1988). Heat stress indices can be grouped into: 

(1) rational indices, which are based on calculations involving the heat balance equation; 

(2) empirical indices, based on objective and subjective strain assessments; and (3) direct 

indices, which involve direct measurements of environmental parameters such as dry-bulb 

temperature, wet-bulb temperature, relative humidity and airflow velocity (Brake and Bate, 

2002; Epstein & Moran, 2006; Jacklitsch et al., 2016).  

Since 1905 over 160 heat stress indices have been proposed for various thermal 

environments (Freitas & Grigorieva, 2015). Figure 3.1 shows the cumulative number of 

heat stress indices that were proposed from 1905 to 2012. The graph reveals two important 

facts about heat stress indices. Firstly, there has been no single index that can be used as a 
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“universal index” (mentioned by Belding, 1970; Gagge & Nishi, 1976; Brake & Bates, 

2002; Epstein & Moran, 2006). A universal index would be an index that includes a range 

of comfort limits based on different metabolic rates. Secondly, a large number of heat stress 

indices may bring confusion in choosing the appropriate one for a specific industry or work 

environment. The large number of available heat stress indices and the lack of a defined 

procedure to determine which index to be used for a particular climate has rendered comfort 

and environmental engineers to rely on guesswork in choosing an index for work climate 

evaluation. Many of the underground mines in the US and world-wide can select an index 

while they are unaware of its limitations (Observation of the authors from several 

underground gold mines in Nevada). This is partly occurring due to the fact that measuring 

and collecting a large amount of physical and human-related parameters and subjecting 

them to complex climatic modeling is not simple and practical.  

 

Figure 3.1. Cumulative number of heat stress indices from 1905 to 2012 

It has been agreed that an ideal heat index is needed to accurately assess the climatic 

conditions on a regular basis and protect the workers in hot and humid conditions. 

Furthermore, this index would need to be user friendly and computationally 

straightforward for the environmental practitioners (Jacklitsch et al., 2016). This research 
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study posed the question of which index can be recommended for a particular climate and 

work condition? In this paper, a method is used to compare a thermal comfort model with 

some of the most widely used heat indices in underground mines. The method is applied 

to predict the “comfort zone” and to recommend an index based on its performance as close 

as possible to the “comfort zone”.  The comparative analysis uses comfort data including 

air temperature, airflow velocity, humidity, and estimated physiological parameters such 

as clothing and activity rates.  

3.2. Thermal Comfort 

Humans are comfortable within a very small range of core body temperatures. Biochemical 

processes in the human body will not function if the temperature becomes too low or too 

high. At high temperatures, enzymes lose their activity and at low temperatures there is 

inadequate energy to continue metabolic processes (Niash, 2015). Humans can tolerate 

extreme core temperatures below 35°C or above 41°C for only brief periods of time (Niosh, 

2015). There are mechanisms by which the body can regulate its core temperature both at 

rest and during activity, and in both hot and cold or humid environments, along with health 

risks that are associated with physical activity in the aforesaid environments (King, 2004). 

Through its intricate temperature regulation, the human body is able to reach a state of 

thermal equilibrium with the surrounding environment when the variation of internal 

energy, at the body core level is equal to zero (Fanger, 1970). 

Assessment of “thermal comfort” must start with the appreciation that comfort is a state of 

mind. It is extremely difficult to classify the many factors which affect thermal comfort. 

The interaction between the physical demand imposed upon an individual, his/her 

physiological status and his/her psychological attitudes must be considered in interaction 
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with social customs, tangible perceptions and the likes (Goldman, 1970). Since thermal 

comfort is rather subjective and restrictive, it is better to define a comfort zone within which 

most workers will be comfortable. This necessitates the need to define a “zone” in which 

most of the workers will consider comfortable, the so called “comfort zone”. This comfort 

zone will be ascribed using the climatic and physiological parameters of the mine 

environment and some existing thermal comfort models. 

3.2.1. Thermal Comfort Zone: 

Thermal comfort is the condition of mind which expresses satisfaction with the thermal 

environment (ASHRAE, 2007, 2009). Based on ASHRAE definition, the “thermal comfort 

zone” is the condition that satisfies 80% of sedentary persons within the environment. 

According to Fanger (1970), three parameters need to be satisfied for a person to be 

considered in the thermal comfort zone. These parameters are: (1) the worker’s sweat rate 

needs to be within comfort limits; (2) the worker is in heat balance; (3) the worker’s mean 

skin temperature is within comfort limits. There are six main factors (air temperature, 

relative humidity, radiant temperature, air velocity, metabolic rate, and clothing) affecting 

the thermal comfort, which can be perceived as both environmental and personal (Fanger, 

1970; Brake & Bates, 2002; Donoghue, 2004). These are briefly described, as follows: 

3.2.1.1. Air Temperature: is defined as the temperature of the ambient air surrounding the 

occupant that defines the net heat flow between the human body and its environment. 

Temperature is the most significant component to the experience of comfort in an 

environment. When the surrounding dry and wet bulb temperatures are high, this process 

becomes more difficult and we may overheat or feel warm. When surrounding 
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temperatures are low, the rate of heat loss becomes more rapid, and we may feel 

uncomfortably cold (Boduch and Fincher, 2010). 

3.2.1.2. Mean Radiant Temperature: can be defined as the temperature of a uniform 

enclosure whereby a small black sphere at the test point would have the same radiation 

transfer as it does with the real environment (Boduch and Fincher, 2010). In practice, heat 

transfer from radiation is assumed to be negligible in underground mines. Therefore, mean 

radiant temperature is considered to be equal to ambient air temperature. 

3.2.1.3. Airflow Velocity: is the average speed (with respect to location and time) of the air 

to which the body is exposed. Airflow velocity distribution is a key factor influencing heat 

and mass transfer. Airflow velocity affects both convective and evaporative heat transfer 

coefficients, and thus influences thermal comfort conditions (McIntyre, 1978). The 

reaction of a person to air movement is likely to be a complicated phenomenon as it 

depends on the climatic parameters including temperature, humidity, clothing worn, 

metabolic rate, and resulting skin temperature (McIntyre, 1978). The designed airflow 

velocities along working faces of underground mines tend to range from 0.3 and 4.0 m/s 

(McPherson, 1984; Mousset-Jones, 1986). 

3.2.1.4. Relative Humidity: is the ratio between the actual amount of water vapor in the air 

and the maximum amount of water vapor that the air can hold at that air temperature. While 

temperature is the most important factor in generating a phenomenological sense of thermal 

comfort, relative humidity plays a critical role in conjunction with the dry-bulb and wet-

bulb temperatures to provide a sense of comfort/discomfort. High levels of relative 

humidity can work against the evaporative cooling effects of sweating and leave the body 

prone to over-heating. When relative humidity gets too high, discomfort develops, either 
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due to the feeling of the moisture itself (ASHRAE, 2005) which is unable to evaporate from 

the skin, or due to increased friction between skin and clothing with skin moisture 

(ASHRAE, 2005). 

3.2.1.5. Worker’s Clothing: which is usually described as the thermal resistance or 

insulation level between the human body and its environment, with the clothing insulation 

typically quantified in terms of its “Clo” values (1 Clo = 0.155 m2/W insulation value). 

3.2.1.6. Worker’s Metabolic Rate: is the energy released per unit time by the oxidation 

processes in the human body and is dependent on the amount of muscular activity. 

Metabolic rate varies according to the intensity of activity performed. Metabolic rate is also 

proportional to the body weight, body surface area, health, sex, age, amount of clothing, 

and surrounding thermal and atmospheric conditions (Auliciems & Szokolay, 2007). 

According to the American Society of Heating, Refrigerating and Air-Conditioning 

Engineers (ASHRAE), the interrelationship between these factors determines the climatic 

conditions acceptable to a majority of the occupants within a working environment 

(ASHRAE, 2005). ASHRAE’s definition of comfort zone is rather complex, however it can 

be altered through some estimations to a zone which strictly depends on comfort 

parameters. 

3.3. Heat Stress Indices 

The idea of the thermal index goes back to 18th century (McPherson, 1962). Without 

considering the dry-bulb temperature, perhaps the first published heat stress index was the 

wet-bulb temperature proposed by Haldane (1905). Since then a large number of heat stress 

indices have been proposed. Many of the earlier indices only included four environmental 
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factors, such as: Effective Temperature (ET), Equivalent Temperature (Eeq), Operative 

Temperature (OpT), and Wet-bulb Globe Temperature (WBGT). Later, new indices took 

into account clothing and the metabolic rate as behavioral parameters. Heat stress indices 

have been employed in different engineering applications. Presently, no one single index 

has gained universal acceptance. Belding (1970) and Gagge and Nishi (1976) pointed that 

having a unique valid system for rating heat stress is not possible since the interaction 

between the climatic parameters is complicated. Many of the current indices were 

developed for a specific use. Each heat stress index has special advantages that makes it 

more suitable for a particular work environment. Despite extensive research work (see 

Table 3.1), it is currently not possible to quantitatively compare the available heat indices 

using a valid method. Therefore, it is the user’s responsibility to examine each index and 

select the one that best suits the defined thermal climate and protects the mine workers.  

Table 3.1. A literature review on heat stress indices comparison methods 

Comparison Method Author(s) 

Experiment  

Acclimatized and/or un-acclimatized men and/or women 

Range of work and/or resting conditions 

Wide range of climatic conditions  

Different environmental and behavioral parameters  

MacPherson (1960) 

Klemm & Hall (1972) 

Ljunberg et al. (1979) 

Pulket et al. (1980) 

Morris & Graveling (1986) 

Mairiaux & Malchaire (1995) 

Comparison between Direct Indices 

Summary of indices and their correlation to thermal comfort  

Epstein & Moran (2006) 

Comparison between Temperature - Humidity Indices 

Comparison between rational methods and temperature-humidity 

indices 

Alfano et al. (2011) 

Data Analysis 

Large or small climatic databases as input parameters of climatic 

condition 

Assumed data 

Beshir & Ramsey (1988) 

Blazejczyk et al. (2012) 

Rational Method 

Concept of limiting metabolic rate 

Energy balance equation 

Brake & Bates (2002) 

Zuhairy & Sayigh (1993) 
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Heat stress indices have several safety and health applications in the mining industry and 

other businesses. Among these applications the following are mentioned: 

 Setting exposure limits or threshold limit values: Perhaps, the most important 

application of a heat stress index is to define the maximum exposure time or safety 

limits (Lee, 1958). 

 Defining the comfort limits: Another important application of a heat stress index is to 

define the comfort zone, which is applicable in the interest area (e.g. office, work area).  

 Determining the optimum control measures: Heat stress indices can be used to 

evaluate and select the measures and available options of controlling heat such as air 

movement, air conditioning, work/break protocols, etc.  

 Past exposures evaluation: Heat stress indices can be also used to assess past 

exposures to heat in underground mines. For this purpose, more comprehensive indices 

can give better results.  

 Evaluation of safe work: An index can be a good indication of the limits of safe work. 

Particularly, in sport, military and mining industry settings, use of an appropriate index 

can help prevent heat and cold related illnesses. 

 Climate zone classifications: Heat stress indices can be used to determine climate 

zones. These classifications are important to assure a safe and comfortable work 

environment. 

There are some general limitations that should be taken into account for many of the heat 

stress indices, as follows: 
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 Many of the indices do not include a wide range of climatic conditions. These indices 

may be precise for a climatic condition (e.g. warm environment), but inappropriate for 

others. A good example is the scale of the “Equivalent Temperature Index”, which does 

not extend beyond 24 ˚C. Therefore, an engineer may have to consider and work with 

more than one heat stress index if the work environment changes.  

 Inbuilt errors exist in some of these indices. Several indices (e.g. direct indices) are 

developed based on algebraic or statistical models. There is some degree of error when 

these mathematical methods are applied. An example is the error of the “effective 

temperature index” scale in wind speed at high temperature (Alfano et al., 2011).  

 Important factors such as acclimatization cannot be included (McPherson, 1962; Budd, 

2008). For a given level of heat stress, heat strain experienced by an acclimatized 

individual is different from an un-acclimatized person. Many of the indices do not 

distinguish between acclimatized and un-acclimatized subjects in their application. 

 Brake & Bates (2002) states that most heat stress indices were developed for externally 

paced work. Increasing degree of mechanization of heavy tasks and new regulations 

result in informed workers that support self-pacing in thermally stressed climates. 

 Averaging methods are not always physiologically valid. Many of the indices are 

developed based on thermal stress of the workers and averaging of large experimental 

data. Though, the reaction of the individuals to heat load can be modified by age, 

gender, etc. Furthermore, the response of a group of self-paced and acclimatized 

workers to heat will largely differ from a group of un-acclimatized and less experienced 

workers.  
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 The validity and reliability of many indices are questionable. For example, the 

Discomfort Index (DI) was developed as a simplified version of WBGT (Alfano, 2011). 

In the WBGT index, globe temperature (GT) measures the combined effect of radiant 

heat, air temperature, and air speed. The DI does not take into account the air speed by 

replacing GT with ambient temperature, which may cause significant errors in 

evaluating some climatic conditions.  

 The primary purpose of evaluating the climatic conditions is to assess the work 

environment and re-design the control system (e.g. ventilation, cooling, work/break 

protocols) in order to meet safety, health and comfort indicators for the mine workers 

(McPherson, 1962). None of the indices can take into account all the comfort 

determining factors and their interrelation. Consequently, the work environment should 

be assessed regularly irrespective of how comprehensive is the index. 

3.4. Comparison between the Heat Stress Indices based on Pierce Two-

Node Model 

The National Institute for Occupational Safety and Health (NIOSH) published a revised 

recommendation standard in 2016 titled: “Occupational Exposure to Heat and Hot 

Environments”, and proposed a selection criteria along with heat stress indices to be used 

in hot and humid environments. It recommends several heat stress indices including direct 

indices (e.g. dry-bulb temperature and wet-bulb temperature), rational indices (e.g. 

operative temperature, skin wetness, and Belding-Hatch heat stress index), and empirical 

indices (e.g. the effective temperature, wet-bulb globe temperature, wet-globe temperature, 

and universal thermal climate index) (Jacklitsch et al., 2016). 
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It is not practical to review and compare all the available indices based on the above 

mentioned methods. Generally, we know that to measure and collect a large number of 

physiological and human-related factors is not simple and practical in the underground 

mines. To investigate the validity of a heat index for use under realistic underground 

mining conditions, a climatic model based on the mine climate data, including air tempera-

ture, relative humidity, airflow velocity, and the physiological parameters of the miners in 

the form of metabolic rate and clothing was developed and proposed for mine climate 

assessments. The radiant temperature was assumed to be equal to the air temperature in the 

algorithm of the model since the radiation heat transfer is negligible compared to 

convective and conductive heat transfers.  

For this research study, the Pierce Two-Node model was selected, as its algorithm was 

straightforward and easy to understand as a computer application for thermal comfort 

assessments, specifically, for mining engineering applications. Other models of thermal 

comfort (e.g. Fanger, 1970) are also worth considering. 

The Pierce Two-Node model was developed at the John B. Pierce Foundation at Yale 

University. The model has been continually expanding since its first publication in 1970 

(Gagge et al., 1971). The most recent version of the model appeared in the 1986 ASHRAE 

Transactions (Gagge et al., 1976). In the Pierce Two-Node model solution, the human body 

is modeled as two concentric cylinders, where the inner cylinder represents the core of the 

human body, and the thin outer cylinder represents the skin shell (Doherty & Arens, 1988). 

The skin and core temperatures were calculated as a function of time by solving the heat 

balance at the core and skin nodes.  
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The rate of heat stored by the body (S) is given as the rate of metabolic heat production 

(M) minus the heat energy lost to the environment through the skin and respiratory tract, 

and the mechanical energy lost due to work as shown in equation 3.1: 

M – W – Qsk - F ± C ± R = S (W/m2)                                                                                  Eq. 3.1  

A simple expanded version of equation 3.1 is presented in equation 3.2, as follows: 

𝑀[(1 − 𝜂) − 0.0173(𝑃𝑠𝑎𝑡 − 𝑃𝑎) − 0.0014(34 − 𝑡𝑎)] − 16.7(0.06 +

0.94𝑊𝑟𝑠𝑤)ℎ𝑐(𝑃𝑠𝑘 − 𝑃𝑎)𝐹𝑝𝑐𝑙 − ℎ(𝑡𝑠𝑘 − 𝑡𝑎)𝐹𝑐𝑙 = 𝛥𝑠                                                                                                 

Eq. 2.2  

𝑡𝑠𝑘𝑖𝑛 = 30 + 0.138 𝑡𝑎 + 0.254 𝑃𝑎  - 0.57 𝑉𝑎 + 0.0128 M - 0.553 Rcl                Eq. 3.3 

𝐹𝑝𝑐𝑙 = 1/(1 + 0.344 𝐼𝑐𝑙                                           Eq. 3.4 

ℎ𝑐 = 0.608𝑃0.6𝑣𝑎
0.6         Eq. 3.5 

ℎ𝑟 = 4.61(1 + (𝑡𝑎 + 𝑡𝑠𝑘) 546⁄ )3                      Eq. 3.7 

ℎ = ℎ𝑐 + ℎ𝑟          Eq. 3.8 

𝐹𝑐𝑙 = 1 (1 + 0.155ℎ𝑐𝐼𝑐𝑙)⁄                                                     Eq. 3.9 

3.5. Results 

Several heat stress indices mostly used for work comfort evaluation in mines were studied. 

The only exclusion criteria applied in selecting an index was that the index equation be 

unambiguously stated in the publication and that the required inputs are among our 

measured and estimated ventilation and climatic parameters such as relative humidity, air 

temperature, airflow velocity, barometric pressure, metabolic rate and clothing. Indices 

with input parameters which formed variants of the measured parameters were also 
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considered. Heat stress indices, mostly applied in underground mines, were calculated 

using the publications listed in Table 3.2.  

Table 3.2. Heat index algorithms that have been used in this study. 

No. Index Formula Reference 

1 𝐷𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 𝐼𝑛𝑑𝑒𝑥 (𝐷𝐼) = 0.4 × 𝑡𝑤 + 0.4 × 𝑡𝑎 + 8.3 Thom (1959) 

2 𝐷𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 𝐼𝑛𝑑𝑒𝑥 (𝐷𝐼) = 0.5 × 𝑡𝑤 + 0.5 × 𝑡𝑎 Sohar et al. (1962) 

3 𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐷𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 𝐼𝑛𝑑𝑒𝑥 (𝑀𝐷𝐼) = 0.75 × 𝑡𝑤 + 0.3 × 𝑡𝑎 Moran et al. (1999) 

4 𝐷𝑖𝑠𝑐𝑜𝑚𝑓𝑜𝑟𝑡 𝐼𝑛𝑑𝑒𝑥 (𝐷𝐼)
= 𝑡𝑎 − (0.55 − 0.0055 ∗ 𝑅𝐻) × (𝑡𝑎 − 14.5) 

Kyle W.J., (1994) 

5 𝑇ℎ𝑒𝑟𝑚𝑜ℎ𝑦𝑔𝑟𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝐼𝑛𝑑𝑒𝑥 (𝑇𝐻𝐼)
= 0.55 × 𝑡𝑤 + 0.2 × 𝑡𝑑𝑒𝑤 + 5.3 

Schoen  (2005) 

6 𝐻𝑢𝑚𝑖𝑑𝑒𝑥 = 𝑡𝑎 + (5/9) × (𝑒 − 10) Masterson and 

Richardson (1979) 

7 𝑊𝑒𝑡 𝑏𝑢𝑙𝑏 𝑔𝑙𝑜𝑏𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝑊𝐵𝐺𝑇) = 0.7 × 𝑡𝑤 + 0.3 × 𝑡𝑎 Yaglou and Minard 

(1957) 

8 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝐸𝑇)

= 𝑡𝑎 − 0.4 × (𝑡𝑎 − 10) × (1 − (
𝑅𝐻

100
)) 

 

Houghton & Yaglou 

(1923) 

9 𝑁𝑒𝑤 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝑁𝐸𝑇) =
37−(37−𝑡𝑎)

(0.68−0.0014×𝑅𝐻)
+

(1/(1.76 × 1.4 × 𝑣0.75 − 0.29 × 𝑡𝑎 × (1 − 0.01 × 𝑅𝐻)))  

Gagge et al. (1971) 

10 
𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛 𝐼𝑛𝑑𝑒𝑥 (𝑇𝑆𝐼) =

1

3
× 𝑡𝑤 + 3/4 × 𝑡𝑎 − 2 × 𝑣0.5 

Lee (1956, 1958) 

The method evaluated each heat stress index to determine whether it conforms to the 

ascribed comfort zone in the Pierce Two-Node model. The modeling results of several 

cases for varying activity rates of 100, 150, 200, 250, 300 (W/m2), and airflow velocity 

from 0.1 m/s to 1.5 m/s, relative humidity from 0% to 100%, skin wetness of 0.5 to 1, 

efficiency of 5% to 15%, and air temperature from 0˚C  to 50˚C were studied. A non-

acclimated worker is assumed to wear coverall and the underground environment was 

assumed to be a uniform environment (Ta = Tr). Based on this criteria, an “appropriate” 

index or set of indices were selected to be used in the prevailing mine climate and 
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physiological conditions (see Table 3.3). Any heat index algorithm can be used with any 

preferred activity and airflow velocity rate, in order to be assessed for acceptability.  

Table 3.3. Recommended heat stress indices for comfort assessment based on various metabolic rates 

Metabolic rate 

(W/m2) 

Appropriate heat stress index 

100 ET, NET, TSI, WBGT, Humidex, THI, DI (1962), DI (1959), DI (1990), DI 

(1959), THI, DI (1968), DI (1998), DI (1963) 

150 NET (RH<80), TSI (30<RH<70), ET, WBGT, Humidex, THI (RH>50), DI 

(1959), DI (1998), DI (1963), DI (1959) (RH<60) 

200 Humidex, DI (1959), NET (RH<50), TSI (20<RH<40), ET (RH<50), WBGT 

(RH<80), THI (RH<50), 

250 Humidex, DI (1959), NET (RH < 50), TSI (20 < RH <40), ET (RH < 50), 

WBGT (RH < 70), DI (1959) 

300 Humidex (RH < 50), DI (1963) (RH < 50), DI (1959) 

Figure 3.2 and 3.3 give visual valuations of how each particular heat stress index is 

performing relative to the generated comfort zone and provide a clear indication on the 

ability of the index to protect the mine workers. Contour plots depicted in Figures 3.2 

demonstrate that, in uniform environments (Ta = Tr), with airflow velocity of 1.5 m/s and 

for an activity rate of 200 W/m2, the “discomfort” index, in general deviates from the 

comfort zone. Furthermore, the “effective temperature” index does not perform very well 

relative to the comfort zone. However, the “humidex” heat index tends to perform quite 

well especially at higher humidity rates, which are typical of deep and hot underground 

mines. In terms of index performance relative to the comfort zone under these climatic and 

physiological conditions, The result of the simulation shows that the “wet bulb globe 

temperature” (WBGT) index seems to perform better than the other three indices and will 

therefore be an ideal candidate to be selected for assessing the comfort of the mine workers 

at metabolic rate of 200 W/m2. Furthermore, the graphs show that the heat stress indices 

tend to be noisier relative to the comfort zone compared to the results obtained in the first 
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case. This obviously reflects the heavy impact of an increased metabolic rate (e.g. work 

intensity) on the comfort of mine workers. At the metabolic rate of 250 W/m2, however, 

all of the above indices failed to predict the comfort zone, particularly at high relative 

humidity, which is the case in most of underground operations (Figure 3.3). 

        

   

Figure 3.2. Convergence between selected heat stress indices (yellow) and comfort zone (blue), (M=200 

W/m2, V=1.5 m/s, Wrse = 0.7, Clothing: coverall). 
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Figure 3.3. Convergence between selected heat stress indices (yellow) and comfort zone (blue), (M=250 

W/m2, V=1.5 m/s, Wrse = 0.7, Clothing: coverall). 

3.6. Recommended Selection Criteria 

The problem with NIOSH (Jacklitsch et al., 2016) selection criteria is that no existing index 

meets all the requirements proposed by NIOSH. On the one hand, direct and empirical 

indices have relatively simple measurement and calculation procedures. They however, as 

shown in this study, do not incorporate the physiological comfort parameters for evaluating 

total strain. This is because many of these indices are developed using statistical and simple 

mathematical methods and are not based on the energy balance equation. Conversely, 

rational indices may be more comprehensive and accurate compared to other types of 

indices. However, the measurement and calculation procedures are complex and difficult 

to comprehend. Consequently, many of the underground mines in the US and world-wide 

may select an index while they are unaware of its limitations. 

In extreme hot and humid conditions often faced by mine workers, the heat index used for 

comfort evaluation must be carefully selected. It should provide protection for the mine 

workers as much as possible. In order to optimize this selection process, it is recommended 

that index selection be classified based on two phases of mining, namely: (a) Planning 

and Design Phase; and (b) Operational Phase. This is essential since a well assessed 
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thermal condition in the planning and design phase will minimize the burden of managing 

heat stress in the operational phase. Furthermore, through this approach a more complex 

and complete analysis can be carried out in the planning and design phase as opposed to 

the operational phase, where it is essential that the index to be specifically selected for the 

local conditions and should not be complicated. In view of this premise the following 

factors are suggested to be considered when selecting an index based on the two discussed 

phases: 

(a) Planning and Design Phase 

 The index should be applicable for the purposes of underground mine climatic 

guidelines; 

 The accuracy of the heat stress index must be proven by means of previous applications, 

or use; 

 The purpose of using a heat stress index is to evaluate comfort limits, safe work limits, 

and/or to determine the optimum control method; 

 All major factors contributing to the heat load during mining activities should be 

included in the work comfort assessment; 

 The included factors should have a valid weight in relation to the total heat strain; 

 Interpretation of the results should be straight-forward.  

(b) Operational Phase 

 The index should be applicable for the purposes of underground mine climatic 

guidelines; 
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 The purpose of using a heat stress index is to set exposure limits or threshold limit values 

under a wide range of environmental conditions; 

 All the contributing factor should be measurable or reasonably assumed; 

 The measurements, measuring instruments and protocols, and interpretation of the 

collected data and results should not interfere with worker’s performance; 

 Measurements and calculations should be simple; 

 Interpretation of the index should be straight-forward. 

3.7. Discussion  

Which heat index is the most appropriate? The relationship between the comfort zone and 

the heat indices is simple and easy to comprehend. An almost superimposed relationship 

defines an “ideal” index for the conditions that describe the comfort zone and index. The 

primary appeal of heat indices should be simplicity (McPherson, 1992). It is more likely 

that mine ventilation engineers and the mining crew in general will approve a thermal index 

due, in part, to the fact that the index can be presented in a format that they can understand 

and apply. That is, if the index is simple. Unfortunately, simple outputs also limit the 

appropriateness of the value to a specific or special case. The necessity of using numerous 

modifications to simple indices in order to adjust for various conditions, to a large extent, 

negates the apparent advantage of indices (Roghanchi & Kocsis, 2017). 

The comfort model used measured and estimated comfort parameters and compared output 

data generated from model runs with the measured ventilation and climatic parameters such 

as airflow velocity and activity rates. The computer algorithm for this model is based on 

the numerical solution of the heat balance equation and the heat transfer coefficients 
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recommended by the Pierce Two-Node model. Furthermore, the environment engineers 

are provided a tool to assess, identify and recommend a simple but appropriate index to be 

applied underground through the use of this simulation method described in this paper. The 

model run results depicted various responses of heat indices to different climate and 

physiological conditions. The results can be used to propose various suitable heat indices 

for work comfort evaluation. The method though complicated, provides an avenue for 

simple indices to be evaluated based on a comprehensive set of comfort parameters instead 

of their conventional reliance on the climate and mostly on two parameters only, the air 

temperature and humidity.  

In conclusion, although there are many heat stress indices, there has never been a well-

defined method or process to select an appropriate index for a particular underground 

climate. This has limited mine environmental engineers to select a heat stress index/indices 

based largely on intuition and guesswork. This method presents an important tool to assess 

and select the most appropriate index for certain climatic conditions in order to protect the 

underground workers from heat related illnesses. Although complex, the method presents 

results that are easy to interpret and understand than any of the currently available 

evaluation methods. It also gives the added advantage that simple indices can be assessed 

based on physiological comfort parameters. However, more research work is needed to 

further enhance the method and validate the climatic model to accurately assess the climatic 

conditions and select the most appropriate and safe index that will protect the mine 

workers.  
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Chapter 4 Evaluation of the Atmospheric and Underground 

Environmental Conditions by Means of Continuous Climatic 

Monitoring Systems – Lessons Learned 
 

4.1. Measurement of heat stress in underground mines 

Heat stress is the net heat load to which a workers is exposed from the combined 

contributions of environmental and physiological parameters which results in heat storage 

in the body (Jacklitsch et al., 2016). Heat stress may be assessed by measuring the climatic 

and physical factors of the environment and then evaluating their effects on the human 

body via an appropriate heat stress index.  

Metabolism in humans is accompanied by heat generation, with the core body temperature 

remaining a constant at about 36.9°C (37 ± 1°C) and in contact with surrounding climate 

temperature; mine workers have sensations expressed as either warm or cold. When 

workers are subjected to ambient temperatures greater than the threshold limits, it causes 

physiological effects expressed in the following forms: loss of attentiveness to other 

people’s activities, taking regular rests or breaks, a longing to hurriedly complete the task, 

irritability, reduced concentration and reduction in sensitivity (Navarro Torres & Raghu, 

2011).  

In underground mines, there are many sources of heat which cause the increase of 

temperature of air during its travel through mine airways. The mines intake air temperature 

gradually increases due to the depth and the length of air travel through the underground 

opening. One of the main sources of heat in underground mines is the strata temperature. 

Other sources of heat to the air in the underground atmosphere are air auto-compression, 
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machinery emission, explosive detonation, human metabolism and mine water thermal 

influx. The detail definition of major heat sources was presented in Chapter 2 (Section 2.3). 

Heat is usually the dominant environmental problem in deep metal mines. Classifying and 

analyzing the heat sources in a mine allow for calculation of the total heat load. Stationary 

and moving heat sources are also necessary in understanding and modeling the heat and 

humidity transport. The potential heat sources in an underground mine are:  

Table 4.1. Heat sources in underground mines 

Heat Sources Level of Significance Nevada’s Precious metal mines 

Auto-compression Low to high  Moderate  

Strata heat  Low to very high  High (geothermal activity) 

Underground water Low to moderate Low 

Machinery Low to very high High (highly mechanized mine) 

Human metabolism Negligible to low Negligible (highly mechanized) 

Oxidation Negligible to low Negligible  

Blasting Negligible to low Negligible 

Rock movement Low to moderate Negligible 

Pipelines Negligible to moderate Negligible 

 

To understand and model heat and humidity transport, all major heat sources in an 

underground mine need to be identified and quantified. There can be a considerable 

difference in the spectrum of the heat and mine power source distributions between 

different mines due to many factors such as depth, mechanization, power sources, 

geothermal activity and rock thermal properties.   
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4.2. Measurement of Important Environmental Parameters in 

Underground Mines 

4.2.1. Air Temperature 

Ambient air temperature (air temperature/ dry-bulb temperature) defined as the 

temperature of the ambient air surrounding the worker that defines the net heat flow 

between the human body and its environment. The air temperature is the most significant 

component to the feel of comfort in a work environment. When the surrounding dry is high, 

this process becomes more difficult and a worker may overheat or feel warm. When the 

surrounding temperature is low, the rate of heat loss becomes more rapid, and the worker 

may feel uncomfortably cold (Boduch and Fincher, 2010).  

Several types of instrument are available to measure the ambient temperature whether as a 

single or continuous measurements. These instrument are equipped with different types of 

thermometer available including liquid-in-glass thermometers, thermocouples, and 

resistance thermometer. Regardless of the instrument type, following considerations 

should be taken to account: 

1. The thermometer must be within the range of the temperature to be measured. 

2. The thermometer must be stabilized before taking any measurements. Particularly, 

if the instrument is stored in a case or pocket. 

3. The measurement must be taken in contact or close to the area of thermal interest.  

4. Radiant condition must be considered. Measurement must be taken away from fans, 

compressors, pumps, mine vehicles, mine equipment, or any other heat source 

where the surface temperature is different from the air temperature.  
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5. It is recommended to take several measurements at a same location in several time 

steps in order to avoid any unusual temperature reading due to release of some 

gasses from the rib or back, oxidation, idling of equipment close to the unit, 

groundwater and more. 

4.1.2. Relative humidity 

Humidity, amount of water vapor within a given space, is usually measured as relative 

humidity, the ratio between the actual amount of water vapor in the air and the maximum 

amount of water vapor that the air can hold at that air temperature and barometric pressure. 

While temperature is the most important factor in generating a phenomenological sense of 

thermal comfort, relative humidity plays a critical role as a result of the dry-bulb and wet-

bulb temperatures to provide a sense of comfort/discomfort. High levels of relative 

humidity can work against the evaporative cooling effects of sweating and leave the body 

prone to over-heating. When relative humidity gets too high, discomfort develops, either 

due to the feeling of the moisture itself (ASHRAE, 2005) which is unable to evaporate from 

the skin, or due to increased friction between skin and clothing with skin moisture 

(ASHRAE, 2005). 

Relative humidity can also be measured using several commercial instruments in the form 

of water vapor pressure, wet-bulb temperature, relative humidity, due point temperature 

and etc. Most of the hand held instrument also measure relative humidity. When measuring 

the relative humidity it is important to: 

1. Calibrate the instrument before any measurements. The actual relative humidity can 

be significantly different from a measurement using uncalibrated instrument.  
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2. Take several measurements at a same location to insure that the measurement is not 

influenced by unusual activities.  

3. If humidity is measured in a form other than relative humidity, three psychrometric 

parameters are needed to calculate the relative humidity. Therefore, it is a much 

easier to measure relative humidity if possible.  

4. When a continuous measurement method is used, the measurements should be used 

with caution if the relative humidity is higher than 80%.  

4.1.3. Air velocity 

Airflow Velocity: is the average speed (with respect to location and time) of the air to 

which the worker’s body is exposed. Airflow velocity distribution is a key factor 

influencing heat and mass transfer. Airflow velocity affects both the convective and 

evaporative heat transfer coefficients, and thus influences thermal comfort conditions 

(McIntyre, 1978). The reaction of a worker to air movement is likely to be a complicated 

phenomenon as it depends on the climatic parameters including temperature, humidity, 

clothing, metabolic rate, and resulting skin temperature (McIntyre, 1978). The designed 

airflow velocities along working faces of underground mines tend to range from 1.0 to 3.0 

m/s (McPherson, 1984; Mousset-Jones, 1986). 

There are several instruments that can be used to measure the relative air velocity in an 

airway including van anemometer, thermoanemometers, pitot-tube and hand-held 

instruments. Several methods can also be used to measure the air velocity including fixed 

point measurement, smoked tube, Pitot-static tube, fixed point traverse, and moving 

traverse. It is usually recommended to take the average of at least three measurements with 

5% difference as the relative air velocity.  
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4.1.5. Barometric pressure 

Barometric pressure is the pressure exerted by the weight of air. Barometric pressure is 

elevated in deep underground mines and reduced at high altitude mines (Donoghue, 2004). 

Increased barometric pressures in deep mines increase air temperatures, increase 

convective heat exchange and reduce sweat evaporation rates (Gagge & Gonzalez, 1996). 

Correct measurement of barometric pressure directly impacts upon the calculation of wet-

bulb temperature (Hardcastle & Butler, 2008). 

4.1.6. Metabolic rate 

Worker’s Metabolic Rate: is the energy released per unit time by the oxidation processes 

in the human body and is dependent on the amount of muscular activity. Metabolic rate 

varies according to the intensity of activity performed. Metabolic rate is also proportional 

to the body weight, body surface area, health, sex, age, amount and type of clothing, fitness, 

acclimatization, and surrounding thermal and atmospheric conditions (Auliciems & 

Szokolay, 2007). Metabolic rate can be measured directly or estimated using less accurate 

(but much more practical) methods on the basis of tables of energy expenditure or task 

analysis tables (Table 4.1). 

Table 4.1. Estimate of metabolic rate for activity (ISO 7243, 1989) 

Rating Activity Metabolic Rate 

0 Resting M ≤ 65 W/m2 

1 Low metabolic rate 65 < M ≤ 130 W/m2 

2 Moderate metabolic rate 130 < M ≤ 200 W/m2 

3 High metabolic rate 200 < M ≤ 260 W/m2 

4 Very high metabolic rate M > 260 W/m2 
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4.2. Continuous Monitoring Systems for Assessment of Climatic 

Conditions in Underground Mines 

There are many options for the measurement and monitoring of dry bulb temperature (Td), 

barometric pressure (PB) and relative humidity (RH) on the market. The monitoring 

systems can be categorized into three groups: hand-held climatic instruments, continuous 

monitoring systems, and real-time monitoring systems. Table 4.1 shows a comparison 

between these types of monitoring systems. 

The intent of climatic modeling in Nevada's underground mines is to identify and quantify 

the heat generated from the various sources in underground mines and to design and modify 

current airflow delivery systems. Because of this, the monitoring system selection is 

limited by the necessity of having one durable unit to measure the climatic parameters on 

a continuous time interval with the capability of storing and downloading the climatic data. 

Data storage is necessary because of the need to record data while there is no activity in 

the area and during the various phases of the mining cycle (e.g. drilling, explosive loading, 

blasting and mucking). The continuous monitoring units that were used throughout this 

research project were the “ACR Smart-Reader Plus 4” multi-channel data loggers (Table 

4.2). These units continuously monitor and record dry-bulb temperature (Td), relative 

humidity (RH) and barometric pressure (PB). From these parameters, the wet-bulb (Tw) 

temperature can also be calculated. These small devices can typically be installed at 

strategic locations to collect climatic data repeatedly. The recorded data can then be used 

to assess the underground climatic conditions and determine the combined heat load of the 

mine. This unit was capable of recording data at intervals specified by the user and had a 

128 KB storage capacity (records up to 87,000 readings).  
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Table 4.2. Comparison between different types of climatic monitoring systems 

Configurations Hand-held monitoring instruments Continuous 

monitoring systems 

Real-time 

monitoring 

systems  

Accuracy 

(Temperature sensor) 

VISALA ±0.2 ˚C ±0.2 ˚C ±1 ˚C 

Kestrel ±0.1 ˚C 

Sensor VAISALA Platinum RTD Thermistor Loop fiber  

Kestrel Thermistor 

Storage and 

download capability 

VISALA Up to 30 readings 128 Kb up to 87000 

readings – include 

software with MS 

excel file format 

Real time 

monitoring 
Kestrel Storage only 

Size and flexibility VAISALA Hand-held Small (107 mm x 

74 mm x 22 mm) 

Dimensions of 

390 mm x 344 

mm x 85 mm with 

the length up to 

20 km 

Kestrel Hand-held 

Power supply VAISALA AA battery Built-in battery for 

10 years 

115 or 230 VAC, 

50-60Hz; max 

300W 
Kestrel AAA battery 

Application VAISALA Spot 

measurement 

Continuous 

measurement, 

pressure survey, 

dynamic modeling 

Real-time 

monitoring, fire 

detection  
Kestrel Spot 

measurement 

Cost  VAISALA Under 1000 $ Under 1000 $ Over 1000 $ 

Kestrel Under 500 $ 

 

 

 

Table 4.3. ACR smart-reader 4 multi-channel data logger specification 

Smart reader plus 4 specifications 

Temperature Temp. range: -40 ˚C to 70 ˚C 

Accuracy: ±0.2 ˚C 

Resolution: 0.07 ˚C 

Pressure Pressure range: 0 to 200 kPa 

absolute 

Accuracy: ±0.5% at 25 ˚C  

Resolution: 0.1 kPa 

Relative Humidity RH range: 10% to 90% 

Accuracy: up to 5% (measured at 

room temperature) 
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4.2.1. Advantages of Using Continuous Data Logger Type Monitoring Systems  

1.  The monitoring units are lightweight, small and can be installed at different locations 

in underground mine workings without interfering with operations (Figure 4.1).  

2.  The monitoring units include built-in batteries and do not require any external power 

source. 

3.  The monitoring units are low maintenance, and the calibration procedure is straight 

forward. 

4.  Recording and downloading the data is simple and quick. Downloading the data on a 

mobile computer can be done at the location that the unit is placed.  

5.  These units are inexpensive compared to the real-time monitoring systems and are 

fairly accurate for common climatic and ventilation surveys.  

6.  The units can be placed at key locations that other monitoring equipment cannot be 

placed. For example, the unit can be placed near the face of a production stope to 

capture the change in temperature and humidity during any phase of the mining cycle.  

7.  The units can measure climatic parameters inside the auxiliary ducts. The external 

probe is fairly small and can be inserted into the duct without significant damage to the 

ducting system. 
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Figure 4.1. The monitoring units can be installed at different locations without interfering with 

development and production operations 

4.2.2. Applications of Continuous Climatic Monitoring Systems  

4.2.2.1 Climatic monitoring and climatic control 

Climatic data measurements are usually used to evaluate the thermal condition of an 

underground mine, to both identify and quantify the heat generated from main sources and 

to pinpoint the optimum heat control method for the problem areas. As the temperature, 

pressure and relative humidity fluctuate considerably during the day and night, continuous 

monitoring of different parts of a mine will be critical to understand and control heat 

problems in the mine accurately. A continuous monitoring system is required to identify 

the heat sources underground, as there are transient heat exchange processes between the 

ventilating air and surrounding environments. Figure 4.2 shows an example of temperature 

trends as a result of heat generated by equipment during mucking. The measured climatic 

data showed that it could be up to 24 hours for a development heading to reach equilibrium 

with the surrounding environment (no activity temperature).  

4.2.2.2. Auxiliary climatic control 

Even if the real-time monitoring method has an advantage over the logging type monitoring 

systems in primary ventilation systems, they cannot be used to assess the climate provided 

by auxiliary ventilation systems (e.g. in the production stopes). This is because auxiliary 
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ventilation systems are temporary and they are frequently extended and moved. Utilizing 

real-time monitors would prove challenging as they are not easily accessible, they have a 

greater chance of being damaged (particularly because of equipment movement and 

blasting) and they are certainly not economical. These shortcomings are highly unfavorable 

to use real-time monitoring systems to assess the climatic conditions where auxiliary 

ventilation systems are employed. On the other hand, all the advantages of the data logger 

type monitoring units make them very suitable for use in the development and production 

workings. Figure 4.3 and 4.4 shows the monitoring layout in a development heading. 

 

Figure 4.2. An example of dry-bulb temperature change during mucking and hauling operations 

 

Figure 4.3. Typical layout of Data logger locations in a development heading 
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Figure 4.4. Data loggers installed at different locations in auxiliary ventilation system with minimal 

damage to the ventilation ducts 

4.2.2.3. Barometry based pressure survey 

Generally, two methods are used to determine barometric pressure differentials in 

underground mines. The Roving method can be performed by one person and the use of a 

surface barometer which records a stationary surface/atmospheric barometric pressure. The 

Roving method assumes that the barometric pressure in the mine and on the surface 

fluctuate concurrently. This limitation can be eliminated using the leapfrogging method 

when a barometric pressure survey is conducted simultaneously at two varying locations 

underground (Loomis, 2004).  

Both methods can be performed using continuous monitoring methods described in this 

paper. The most important advantage of using these types of monitoring systems is that 

there will be no requirement to have a team of one or two persons as the monitoring units 

continually log the data for the desired period of time. The second advantage of this method 

is that the pressure survey can be done in a safe manner and at a relatively lower cost, as it 

does not interfere with underground activities. With this method, the effect of any unusual 

activity (e.g. an open ventilation door) can be identified during the pressure survey.  
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4.2.2.4. Transient Heat Exchange Processes and Irregularities in Climatic Conditions  

It is imperative that irregularities are incorporated into the measured data so that any 

unusual activities and rapid changes can be taken into account in ventilation system design. 

There are unknown sharp temperature fluctuations and data irregularities at different 

locations of an underground mine (Figure 4.6). The temperature fluctuations can be due to 

the release of gasses from the rib or back, oxidation, idling of equipment close to the unit, 

groundwater, etc. The fluctuation of temperature and other environmental parameters 

cannot be predicted using theoretical solutions and modeling. Dynamic heat exchange 

processes between the rock and ventilated air, like when an auxiliary fan is turned on and 

off, cannot be calculated using the standard climatic software. This information is critical 

particularly in cases where the environmental parameters are close to their threshold limit 

values (TLV). Continuous monitoring systems are the most suitable tools to identify and 

quantify these occurrences in an underground mine. 

 

Figure 4.5. Sharp temperature fluctuation caused by unknown activities in the ramp before the auxiliary fan 

Temperature damping is caused by the heat capacity of the rock mass that stores and then 

releases heat which then affects the temperature of the ventilating air. The way exterior air 

temperatures and heat flows affect an interior environment is also referred to as the 
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“thermal damping effect.” For example, at the top of the shaft during summertime, the 

temperature on the surface fluctuates widely, from a high temperature of 33 ˚C during a 

sunny midday to a low temperature of 19 ˚C in the middle of the night. However, the 

bottom of the shaft will experience a much smaller temperature fluctuation. The shaft wall 

acts as an energy reducing mechanism and reduces the amplitude of the temperature wave 

(Danko, 2013). 

During day time, the dry bulb temperature (Td) of the air in the intake shaft, heated by auto-

compression, develops higher values than the Virgin Rock Temperature (VRT) of the 

surrounding rock at some locations. Consequently, sensible heat is transferred from the 

intake air into the surrounding rock, thus cooling the air. At night, however, there is a 

greater potential for the heat to flow from the surrounding rock formations into the 

ventilating air, increasing the air temperature. We recognize this phenomenon as the 

“thermal damping effect” (see Figure 4.6). 

 

Figure 4.6. Thermal damping effect in an intake shaft 

 

 

Damping effect 

Time Lag 

Damping effect 

Time lag 
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4.2.3. Challenges in Using Logging Type Monitoring Systems  

1.  For extreme climatic situations, particularly when the relative humidity is more than 

85% to 90%, these types of monitoring systems fail to record the climatic parameters 

properly (see Figure 4.7). In particular, locations with high relative humidity (e.g. 

exhaust shafts) can take up to several hours for the monitoring units to recover.  

2.  These units are typically not built for extreme environmental conditions such as those 

in underground mines. Each must be cleaned on a regular basis (every two weeks) to 

remove the dust and other contaminants from the units in order to obtain accurate 

readings.  

3.  These units cannot be installed in hard to reach locations (e.g. close to booster fans) as 

they need to be accessible for data downloading and cleaning on a regular basis.  

4.  It is recommended to test and validate the accuracy of the units periodically as they may 

fail to record climatic data. In several circumstances, the units failed to record any data 

for a period of one month. 

5.  The size of the units can be a challenge because they can be damaged by mining 

equipment or mining operations (shotcrete, water seepage) without being noticed by the 

mine workers.  

6.  The logged data should be compared with a more accurate handheld instrument as dust 

and contaminants may cover the sensors and consequently can compromise the accuracy 

of the units. Relative humidity readings should be specifically examined. 
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7.  The collected data must be verified with the operation schedules and mining cycles at 

the underground mine. There are always enormous fluctuations that need be removed 

from the data, particularly for thermal and management purposes.  

8.  The meaning of the vast amount of data is usually difficult to process and analyze.  

9.  The mine is never truly at steady state, and the measurements may be delayed such as 

during rapid and hazardous changes. In these cases, real-time monitoring systems are 

recommended. 

 

Figure 4.7. Failure of the monitoring unit when relative humidity (RH) readings exceed 90% 

4.3. Climatic Monitoring Plan using Continuous Climatic Monitoring 

System  

To assess the atmospheric and underground environmental conditions at one of our partner 

mines in Nevada, multi-channel climatic monitoring units were installed along vertical and 

horizontal airways from surface to the lowest production level. The climatic data collection 

program focused on monitoring both primary and auxiliary ventilation systems in order to: 

1) determine the heat load and temperature changes due to auto-compression and 

geothermic gradient; 2) identify and quantify the damping effect (DE) and the thermal 
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flywheel effect (TFE), particularly in the intake shaft; 3) gather adequate data for 

development and calibration of steady state and dynamic ventilation-thermal (V-T-H) 

models; 4) quantify the heat generated by the primary and auxiliary fans, mining equipment 

and strata; 5) develop a best practice ventilation and climatic monitoring program for our 

partner mines in Nevada. 

During this project, twelve multi-channel data loggers were used. Several hand-held 

instruments (e.g. VISALA, Kestrel, FLUKE, anemometer, barometer, etc.) were utilized 

to examine the accuracy of the data loggers and perform ventilation and climatic spot 

measurements throughout the mine. Equipment activities were also obtained from the mine 

in electronic format, in which equipment locations and the type of work were indicated at 

one-minute intervals. The activities were sorted by location and time so that they would 

correspond to the climatic data obtained. This was used to find periods of time that 

corresponded to the mining cycles. Table 2 demonstrates the monitoring program for the 

primary and auxiliary ventilation systems at the mine.  

4.4. Calculation of Major Heat Sources in Underground Mines – A Case 

Study 

Surface air sent down to the underground workings, through either natural or manmade 

ventilation, will experience a compression. This means that although the volume of air 

has been reduced, the amount of heat remains the same resulting in hotter air 

(McPherson, 2009). 

To calculate the heat added to the ventilating air, the steady flow energy equation gives 

(McPherson, 2009) : 
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∆𝐻 = 𝑔. ∆𝑍 + 𝛥𝑞                   Eq. 4.1 

where ΔH is the change of enthalpy (J/kg), g is gravitational acceleration (g= 9.81 m/s2), 

ΔZ is the depth of the opening, and Δq is the heat added from surroundings (J/kg). The 

change in enthalpy as a result of autocompression can then be calculated as follow 

(McPherson, 2009): 

∆𝐻 = 𝑔. ∆𝑍          Eq. 4.2 

The temperature raise caused by autocompression is determined as (McPherson, 2009): 

∆𝑇 = 0.0071(∆𝑧) − 2428.7 ∆𝑥  (℃)       Eq. 4.3 

 

where ΔT is the temperature raise (˚C) and Δx is the change of the moisture content 

(kg/kg dry air). To calculate the temperature raise based on the climatic data, the vertical 

shaft was modeled in Climsim. The same opening was modeled as a horizontal opening 

in order to capture the temperature raise from the strata heat (Δq). The difference is the 

temperature raise as a result of autocompression (see Table 4.5 as an example). 

Table 4.2. Calculation of temperature raise caused by autocompression 

Location 
Vertical opening ΔTd (˚C) 

 
Horizontal opening 

ΔTd (˚C) 
Difference 

T
d
 T

w
 BP T

d
 T

w
 BP ΔTd (˚C) 

Top 22.71 10.48 84.116 
4.22 22.71 10.48 84.116 

-1.11 5.33 
Bottom 26.93 13.08 89.136 21.6 10.4 83.65 

Top 20.73 9.04 84.253  
4.29 

20.73 9.04 84.253  
-1.04 

 
5.33 Bottom 25.02 11.73 89.317 19.69 8.97 83.783 

Top 20.03 8.73 84.323  
4.33 

20.03 8.73 84.323  
-1 

 
5.33 Bottom 24.36 11.44 89.403 19.03 8.66 83.851 

Top 22.22 9.6 84.323  
4.2 

22.22 9.6 84.323  
-1.13 

 
5.33 Bottom 26.42 12.25 89.366 21.09 9.52 83.855 

Top 28.99 11.95 84.323  
3.76 

28.99 11.95 84.323  
-1.58 

 
5.34 Bottom 32.75 14.45 89.255 27.41 11.86 83.865 
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Calculating the heat load from mining equipment based on in-situ data can be conducted 

with two main methods: 1. Equipment activity surveys at production areas and 

throughout the mine site; 2. Mapping equipment activity based on the dispatch data. In 

this study, dispatch equipment activity data was used to quantify the heat load coming 

from equipment. Table 4.5 shows an example of equipment activity mapping at a 

development.  

 

 

Figure 4.8. Equipment activity data based on the dispatch data at a development heading 

The advantage of this method is that the heat generated by each equipment can be 

estimated at different time/location (see Table 4.6). The average temperature change by 

mining equipment can also be estimated. Figure 4.9 shows an example of the average 

temperature at the face and the return when there is an activity in the development.  
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Figure 4.9. An example of equipment activity at the development and the average temperature change at 

the face and the return 

 

 

 

Table 4.3. Temperature changes for each equipment activity and the average changes during a 24 hours 

period 

Date Activity Td (˚C) Tw (˚C) 

9/18/2015 
Bolting 1.38 -0.11 

Average Activity 1.23 -0.22 

9/19/2015 

Bolting/Moving 5.34 0.37 
Driller moving 0.11 -1.05 

Mucking 4.80 1.53 
Bolting/Moving 1.73 0.38 

Powder truck -0.01 -0.57 
Mucking 2.11 0.80 

Average Activity 1.96 0.47 

9/20/2015 

Bolting 1.24 1.95 
Powder truck 0.35 0.71 

Mucking 4.02 -0.23 
Bolting 0.15 -0.23 

Average Activity 2.04 0.82 

9/21/2015 

Mucking 3.07 2.79 
Mucking 3.22 2.79 

Average Activity 3.12 1.62 
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Figure 4.10 and 4.11 show the average dry-bulb temperature raise during fourteen days of 

data collection at the development face and the return. The heat flux can then be 

calculated from using the conductivity and convention coefficient of the air for each 

airway.  

 

Figure 4.10. Dry-bulb temperature increase with equipment activity at the development 

 

 

Figure 4.11. Dry-bulb temperature increase with equipment activity at the development 

Heat emission from the strata depends on the type of rock, the exploitation method depth, 

and geometry of the airways. However, the amount of heat transmitted decreases over time, 

the working faces being where the greatest transmission takes place. The heat coming from 

strata can be calculated using theoretical solutions (heat flux from conduction and 

convection heat transfers). For accurate and detailed planning, a mine climatic simulation 

package can be employed. Heat from strata can be obtained using empirical methods based 
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on other similar mines. For example, Whillier (1981) exposed an equation method that 

defines two expressions depending on the time since an airway was opened: 

𝑞 = 3.35 𝐿 𝑘0.854(𝑉𝑅𝑇 − 𝑇𝑑.𝑎𝑣𝑔)        Eq. 4.4 

𝑞 = 6 𝑘 (𝐿 + (4 × 𝐷𝐹𝐴))(𝑉𝑅𝑇 − 𝑇𝑑.𝑎𝑣𝑔)      Eq. 4.5 

where q is the heat flow from strata (W), L is the length of the tunnel (m), k is the thermal 

conductivity of the rock (W/m˚C), VRT is the virgin rock temperature (˚C), DFA is the 

daily face advance (m), and Td.avg is the average dry-bulb temperature. 

There are several other sources that add heat load to the ventilation system. Note that there 

was no information about the influx of underground water and backfilling. Calculations 

regarding the total heat load of the mine indicate that the contribution of this heat source is 

negligible. Heat generated by backfilling equipment were considered in the equipment heat 

load. The heat load profile of the mine site is shown in Figure 4.12 with the surface 

temperature is 16.3 ˚C. A heat load profile was also develop for the surface air temperature 

of 28.5 ˚C (Figure 4.13). The contribution of different major heat sources to the total heat 

load of the mine is presented in Table 4.7. A comparison between the heat load profiles 

shows that the heat exchanges in underground mine is dynamic. Therefore, the heat load 

profile of the mine should also be at a dynamic state. Furthermore, the surface temperature 

can drastically change the heat exchanges throughout the mine.  Though often ignored, the 

temperature of the surface air can have a significant impact on the air temperature 

underground. The surface air temperature can influence the temperature of air flow in the 
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atmosphere of underground openings during particular seasons of the year and depend on 

the altitude of the mine. 

 

Figure 4.12. Quantifying major heat sources in our partner mine, td (surface) = 16.32 ˚C 

 

 

Figure 4.13. Quantifying major heat sources in our partner mine, td (surface) = 28.5 ˚C 
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Table 4.4. Contribution of different major heat sources to the total heat load of the mine  

 

Air Heat content 21.44 kJ/kg 

Total Heat capacity 10376.40 kW 

td (surface) = 16.32 ˚C td (surface) = 28.5 ˚C 

Heat source Heat load (kW) Heat load (kW) 

Auto-compression 3257.75 3257.75 

Strata Heat 2651.2 1252.9 

Equipment 4312.25 4312.25 

Other Sources (Including 

backfill) 
756.25 609.7 

 

4.5. Discussion 

Though the chosen monitoring units hold many advantages, they are useless for data 

collection without a well-designed monitoring program. Choosing the right unit for 

measurements of the required parameters, identification of critical locations to be 

monitored and the timing of monitoring are critical when these type of monitoring units 

are used. For example, if the distance between two units in the primary ventilation system 

is too large, there will be several occurrences that cannot be captured and the collected data 

will be rendered useless. It is important to install the monitoring units at the top and bottom 

of the intake shaft during each period of climatic and activity monitoring in order to have 

a robust understanding of the intake climatic condition. 

Calculation of the heat make up in an underground mine is important to establish the total 

airflow requirement for metal/non-metal underground mines. The main objective of an 

efficient underground ventilation system is to supply oxygen to workers, to remove and 

dilute pollutants generated by mining processes (dust, heat, gasses) and to ultimately 

provide a suitable thermal environment for workers and machinery. Mine intake air 



72 

 

 

 

temperature gradually increases due to the depth and the length of air travel through 

underground openings. The main cause of heat transfer to the ventilating air underground 

is due to the increase of strata temperature with respect to depth, which is known as the 

“geothermic gradient.” The geothermal flow of heat emanating from the core of the earth 

can be much higher in regions of anomalous geothermal activity. Furthermore, with 

increasing depth through a succession of various rock formations, the geothermal step, 

which is the inverse of the geothermic gradient, can also vary according to the thermal 

conductivity and diffusivity of the rock formations. Other sources of heat that can transfer 

to the ventilating air includes air auto-compression, mining equipment (diesel, electrical), 

explosive detonation, human metabolism and influx of thermal water. 

To understand and model heat and humidity transport, all major heat sources in an 

underground mine need to be identified and quantified. There can be a considerable 

difference in the spectrum of the heat and mine power source distributions between 

different mines due to many factors such as depth, mechanization, power sources, 

geothermal activity and rock thermal properties (Kocsis & Hardcastle, 2010). Figure 4.14 

shows an example of the heat load profiles in three mines in Canada, Australia, and 

precious metal mine in Nevada. As shown in this figure the contribution of each heat load 

changes from mine to mine. Understanding the major heat source that has the highest 

contribution to the total heat load of the mine is also important to in order to select the 

optimum heat control method. For example, in the case that heat generated by 

autocompression is high, the design of the shaft should in a way that promote the heat 

transfer to the surrounding environment. On the other hand, when heat coming from the 

strata is high, localized cooling system can be applied to control the heat load in working 
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areas. The main airways can also be isolated so that the heat transfer from the rock to the 

ventilating air is minimized. Diesel equipment can be replaced with electrical equipment 

in the case that heat generated by mining equipment is significant. Apart from the electrical 

engines’’ higher energy efficiency, less consumption of diesel would mean a drop in 

temperature and pollutants concentration.  

a    

b    

C  

 

Figure 4.14. Comparison of heat load profile in different regions; (a) Canada (Kocsis & Hardcastle, 2010); 

(b) Australia (Brake, 2002), and USA  
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Table 4.5. Summary of the monitoring program at the mine 

 Primary system (mine-wide) Auxiliary system (work areas) Intake shaft 

 

 

 

Locations 

Zone 1: At the top and bottom of the 

intake and exhaust shafts  

Zone 2: From the bottom of the intake 

shaft to the lowest production area 

Zone 3: From the lowest production 

area to the bottom of the exhaust shaft 

Location 1: A dead-end development heading 

with an auxiliary fan  

Location 2: A production area with multiple 

production faces with a single fan 

Location 3: A production area with 

single/multiple production faces with a single 

or multiple fans 

At the top and bottom of the intake 

and exhaust shafts 

 

 

Purpose 

1. To quantify the heat load from auto-

compression, strata heat, groundwater 

and geothermal gradient 

2. Develop and calibrate a dynamic 

ventilation-thermal-humidity (V-T-H) 

model 

1. To quantify the heat load from equipment 

associated with backfilling, blasting and 

auxiliary equipment  

2. To optimize auxiliary ventilation systems to 

mitigate heat transfer to the mine air 

1. To identify and quantify the 

thermal damping effect 

2. To understand the transient heat 

exchange processes between the 

mine air and the surrounding 

environment 

 

 

 

 

Monitoring 

Plan 

Twelve ACR units were installed 

throughout the primary systems in the 

direction of airflow to record climatic 

data at one-minute intervals for two 

weeks 

Spot measurements for 

ventilation/climatic parameters and 

surface rock temperature were 

performed to validate the continuous 

measurements 

Ventilation surveys were performed to 

measure air volumes and the barometric 

pressure at the locations of ACRs 

ACR units were installed at top and bottom of 

the shaft to capture the intake air quality 

ACR units installed before/after the auxiliary 

fan, inside/outside the duct, near the face and 

along the return drift to record climatic data at 

one-minute intervals for two weeks 

Spot measurements for ventilation/climatic 

parameters and surface rock temperature were 

performed to validate the continuous 

measurements 

Ventilation surveys to measure air volumes 

and barometric pressures at the locations of 

the ACRs 

ACR units were installed at top and 

bottom of the shaft to record climatic 

data at one-minute intervals for a 

month 

Record any rain, snow, outside 

temperature, barometric pressure and 

unusual activities that affect the 

intake air temperature 
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Chapter 5 - Improving the climatic conditions in development 

and production workings of hot underground mines by re-

designing the auxiliary ventilation system - Case study # 1 

 

5.1. Skin temperature as an index for evaluation of mine climatic 

condition 

The skin, by means of function, is the body’s thermostat. The body’s heat exchange 

mechanism involves sensible heat transfer at the skin surface (via convection and 

radiation), latent heat transfer (via moisture evaporating and diffusing through the skin), 

and through sweat evaporation on the skin surface (Arens & Zhang, 2006). The human skin 

regulates the body temperature by means of the actions of blood circulation through the 

vessels and by the process of sweating and evaporation. If the body is subjected to heat 

waves in hot climates, the mechanism of sweating is activated due to increased blood flow 

to the vessels. This process cools the body off as the sweat evaporates from the skin. The 

work of Bulcao et al. (2000) revealed the significance of skin temperature in evaluating 

thermal comfort in humans. The human body controls the skin temperature to balance the 

heat gain and heat loss. This makes the use of skin temperature a considerable potential as 

an index to determine thermal sensation and comfort. Thermal equilibrium in the human 

body is achieved through a balance between metabolic heat production and heat loss from 

the body. Heat storage in the body will result in an increase in the average body 

temperature, which is a weighted average of the core temperature and mean skin 

temperature (Mehnert , et al., 2000).  
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5.1.1. Skin temperature as a heat stress index 

Skin temperature depends on the air temperature and the time spent in that environment. 

Such climate factors such as airflow velocity and humidity cause changes in skin 

temperature. The normal temperature of the human skin is about 33°C. The flow of energy 

to and from the skin determines our sense of hot and cold. Heat flows from higher to lower 

temperature, so the human skin will not drop below that of surrounding air, regardless of 

the airflow. If a person was to be in a hot environment and his/her skin temperature was 

cooler than the air, his/her skin temperature would rise. The opposite would happen in a 

cold room and warm skin temperature. The person's temperature would decrease. Humans 

fight variations in air temperature by becoming warm or cold. When warm, they sweat. 

When cold, they get chill (Elert, 2015). 

Among the environmental parameters that determines thermal comfort, mostly air 

temperature, humidity, radiation and airflow velocity are often measured and combined 

into indices which will indicate, whether the climatic conditions at any time will produce 

satisfaction for its occupants (Roghanchi et al 2015). In extreme hot climates all parameters 

are important, nonetheless only temperature and humidity have been combined into most 

commonly used indices (Driscoll, 1992). Also, these indices conspicuously avoid 

including the physiological parameters of comfort in their prediction. The problem in 

combining these parameters and expressing them as a single reliable indicator of comfort 

is the reason for dangerous omissions. Another problem is related to the use of indices 

which, seemingly integrate these elements together, but often give an indicator very close 

to the actual ambient air temperature (Driscoll, 1992), thereby introducing an element of 

erroneous impression that the air temperature can assess thermal comfort. 
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The inadequacies discussed above are avoided by using rational indices, of which, the skin 

temperature can be significant in playing the role of an index or a physiological input for 

comfort models. These indices often involve the six generally accepted comfort parameters 

in predicting thermal safety in extreme hot climates (Roghanchi et al 2015). 

5.1.2. Mean skin temperature calculation 

Having established the significant role of skin temperature for comfort assessment in warm 

environments, it is important to define a method to accurately predict its numerical value. 

Several heat stress indices use either a fixed mean skin temperature or a prediction model, 

which incorporates some or all physical factors of the thermal environment as well as the 

clothing insulation and the metabolic rate (Kocsis & Hardcastle, 2010). A fixed value is 

easy to use, however, in conditions with dynamic exposure to heat, this can result in over-

estimations or under-estimations resulting in errors in the heat balance analysis (Sunkpal, 

2015).  

Direct measurement of skin temperature is often not practically feasible (Mairiaux et al., 

1987). A lot of the methods available for predicting skin temperature have inherent 

limitations. Some are developed for resting subjects, while others are formulated based on 

insufficient data, or lack of comprehensiveness. For underground mining purposes, a 

predictor must involve a working subject and be able to predict with accuracy and precision 

over a wide range of environmental conditions (Mairiaux et al., 1987). 

The estimation of mean skin temperature can be achieved using the equation 5.1 proposed 

by Mairiaux et al. (1987) as follows:  

𝑡𝑠𝑘𝑖𝑛 = 30 + 0.138 𝑡𝑎 + 0.254 𝑃𝑎 - 0.57 𝑉𝑎 + 0.0128 M - 0.553 Rcl     (°C)             Eq. 5.1 
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There appears to be no compromise among comfort/environmental researchers regarding 

the effect of the metabolic rate on the skin temperature. Fanger’s thermal comfort model 

was developed based on the proposition that skin temperature decreases with increasing 

metabolic rate (Fanger, 1970). Some researchers reported a direct relation trend in results 

between skin temperature and activity rates (Adams, 1977). Others found the metabolic 

rate to have no effect on the skin temperature (Missenard, 1973). From the equation 

adopted for this study, it is apparent that the effect of the metabolic rate on the mean skin 

temperature, though minor compared to the contributions of the other comfort parameters, 

cannot be ignored. 

5.2. Sensitivity Analysis of the Effect of Airflow Velocity on Thermal 

Comfort in Underground Mines 

Ambient airflow velocity is acknowledged as one of the critical parameters to improve the 

thermal comfort of the mine workers, and it has been considered in all known comfort 

standards. Usually, minimum and maximum airflow velocity limits are determined and 

mandated in underground mines where mine personnel work and travel. To dilute most 

pollutants, a common minimum airflow velocity for airways where personnel work and 

travel is 0.3 m/s (MacPherson, 2009). However, in production workings, airflow velocities 

usually vary from 1 m/s to 3 m/s. The recommended maximum airflow velocity in the 

production areas is 4 m/s. Above airflow velocity of 4 m/s, significant discomfort can be 

experienced by the underground workers because of the impact of large dust particulars 

that are carried by the airflow (Houghton & Yaglou, 1923; Nevins, 1971; Fanger & 

Pedersen, 1977; McIntyre, 1979; Christensen et al., 1984; Fanger & Christensen, 1986; 

Berglund & Fobelets, 1987; Zhou, 1999; Toftum, 2002; Griefahn et al.,1997). Particularly 
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in underground metal and non-metal mines, where high airflow velocity may generate dust 

dispersion, which causes serious health hazards (Kurnia et al., 2014; Donoghoue, 2004; 

MacPherson, 2009; Hartman et al., 2012). 

For decades air movement has been used as a strategy in hot and humid environments by 

mine ventilation and comfort engineers to increase the rate of the cooling of the occupants. 

For example, Humphreys (1970) developed an empirical equation to estimate the relative 

comfort temperature based on constant airflow velocity of 0.1 m/s and above. Mclntyre 

(1979) found 28 °C to be the highest comfortable temperature at 1.4 m/s for male occupants 

and 1 m/s for female occupants. Rohles et al., (1983) found pleasant levels beyond what 

had been previously considered reasonable (up to 1 m/s at 29.5 °C). Spain (1984) found 

that an airflow velocity of 0.25 m/s provided comfort for air temperatures up to 27.8 °C, 

while 1 m/s provided comfort up to 29.4 °C. Holm and Engelbrecht (2005) uphold that air 

movement at temperatures below 37 °C cools the body while it begins to heat it at 

temperatures above 37 °C. Candido et al., (2010) found that the minimally acceptable 

airflow velocity for Brazil’s hot and humid climatic zone needs to be at least 0.4 m/s for 

26 °C, reaching 0.9 m/s for operative temperatures up to 30 °C. As observed by Fountain 

and Arens (1993), the focus of most mine ventilation practitioners is often to deliver the 

required air volumes to the production workings. This is often done to the disadvantage of 

achieving the required airflow velocity for thermal comfort. However, apart from air 

quality, what is also desired at the work-face by miners is comfort, safety, and satisfaction 

with their working environment. 

A method was developed and adopted in the form of a “comfort model” to predict the 

optimum airflow velocity required to maintain heat comfort for the underground workforce 
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at different activity levels (e.g. metabolic rates). A detailed calculations and model 

development can be found in Roghanhci et al., (2017). This study analyzed the effect of air 

velocity with air temperature on the thermal comfort of miners. The technique included the 

use of a two stress criteria of maximum skin wetness and maximum sweat rate, and the 

strain criteria of maximum dehydration. In this study, airflow velocities of 1 m/s and 2 m/s, 

which will guarantee thermal comfort, were determined by means of climatic modeling 

and simulation exercises. Based on the pattern of the results, the authors recommend an 

optimal airflow velocity of 1.5 m/s throughout production workings. 

5.3. Climatic data collection layout 

The mine being studied is located in central/western Nevada. The existing primary 

ventilation system is of exhaust type, with a booster fan located at the bottom of the 

ventilation shaft. The auxiliary ventilation systems are designed based on a “forcing” type 

setup, with the auxiliary fans sized to deliver the required fresh air to the face.  

Fresh air is usually picked up from the ramp and delivered to the face along a flexible fabric 

duct under the assistance of a 100 hp auxiliary fan. The development heading is normally 

advanced with conventional drilling and blasting. Broken rock is removed using 3 and 6 

yard3 LHDs and 20 and 30 ton haul trucks. During the mine climate and equipment activity 

monitoring program, the 6 yard3 LHDs and the 30-ton haul trucks were used.  

The locations for the monitoring units were selected based on critical model development 

needs. A dead-end development heading in an underground mine ventilated by means of a 

“forcing” type auxiliary system was selected for our climatic study. The ACR monitoring 

units were installed as follows: (1) before the auxiliary duct in the main airway, (2) after 
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the auxiliary fan inside the fabric duct, (3) at the end of the duct, (4) at the working face, 

(5) along the drift in the return airway, and (6) at the main return.  

An ACR monitoring unit was placed at each of these locations and they were set to record 

climatic parameters at one-minute interval. The unit in the main airway was used to 

establish an input baseline of temperature, pressure, and relative humidity. The unit after 

the auxiliary fan located inside the auxiliary duct was used to determine the heat added by 

the fan. The unit at the end of the duct showed the conditions of the fresh air before being 

delivered to the working face, so that the changes that occurred due to equipment activity 

and heat transferred to the mine air from the broken ore/rock could be determined. The 

ACR unit at the working face was removed during blasting and re-installed in the 

advancing heading to capture both strata heat and activity at the face. This unit was 

approximately 15 m away from the working face. The unit placed along the drift in the 

return air captured the combined heat and moisture added at the working face, as well as 

from passing equipment. The final unit in the main return captured the combined heat and 

moisture added to the return air throughout the system being modelled.  

5.3.1 Climatic model development 

A climatic model was developed to simulate the heat loads and the climatic conditions at 

the face and along the return drifts. The model was developed based on the intake 

ventilation and climatic parameters, the heat load from the auxiliary fans along the duct, 

and throughout the development. Various heat load zones were identified within the 

auxiliary ducting system and throughout the development heading. The climatic model for 

the current design is categorized into six zones to simulate the system, as follows: 

Zone 1: auxiliary duct before fan 



82 

 

 

 

Zone 2: auxiliary duct with fan  

Zone 3: auxiliary duct from fan to end of the duct 

Zone 4: end of the duct to the face 

Zone 5: development face to end of the duct (return) 

Zone 6: end of the duct to end of return airway 

In the current auxiliary ventilation system, air is forced to the development face by means 

of a 100 hp auxiliary fan through a flexible fabric duct. Approximately 23 m3/s of fresh air 

with an average dry-bulb temperatures (Td) of 32.17 ˚C and wet-bulb temperature (Tw) of 

28.52 ˚C passes through the auxiliary duct. The dry-bulb temperature of the air in the duct 

after the auxiliary fan reaches values from 34.15 ˚C to 36.89 ˚C. When there is no 

equipment activity, hot air losses heat to the surrounding rock. Table 5.1 shows the climatic 

parameters of the mine throughout the development, which were than used for model 

development and simulation purposes. 

Table 5.1. Measured data at the development 

ACR Location 
Dry-bulb 

Temperature (˚C) 

Wet-bulb 

Temperature (˚C) 

Barometric Pressure 

(kPa) 

Auxiliary duct before 

the fan 
32.17 28.52 90.762 

Auxiliary duct after the 

fan 
35.11 -- 92.769 

Approx. 15 m away 

from the face 
33.99 33.99 90.528 

At the development 

return 
33.92 29.50 90.597 

The climatic model was calibrated against the collected data. Table 5.2 shows the results 

from the climatic model runs compared to measured data. As shown in Table 5.2, the dry-

bulb and wet-bulb temperatures at the interest points are in good agreement with the 
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collected data from the mine. However, the predicted wet-bulb temperature is quite lower 

compared to the measured values at the development face. The ACR unit at the face was 

unable to accurately record all variations in relative humidity during the mining cycles, as 

the unit recorded 100% relative humidity for values above 90% humidity. For such 

situations the wet-bulb temperature generated from model runs were compared to the wet-

bulb temperature values that were measured manually. Figure 5.1 shows an example of 

dry-bulb temperature and relative humidity recorded by the ACR unit at the face.  

 

Figure 5.1. An example of recorded relative humidity at the face. Relative humidity stays at 100% for 

approximately 9 hrs. 

Table 5.2. Comparison between measured data and climatic model results 

Location Dry-bulb Temperature (˚C) Wet-bulb Temperature (˚C) 

Measurement Climatic 

model 

Measurement Climatic 

model 

Auxiliary duct before the fan 32.17 32.17 28.52 28.52 

Auxiliary duct after the fan 35.11 35.83 -- 29.55 

App. 15 m away from the face 33.99 34.69 33.99 29.41 

At the development return 33.92 34.37 29.50 29.39 

Different scenarios were simulated to identify and develop an improved auxiliary 

ventilation system where work can be performed for various activity levels. The wet-bulb 

temperature changes were plotted to illustrate the effect of various re-design strategies for 

auxiliary ventilation system. Maximum skin temperatures at face and along the return 
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airway were also compared with the maximum allowable skin temperature for different 

metabolic rates. 

5.3.2. Case study 1 - Auxiliary ventilation system with no equipment activity 

In the first case scenario, no active equipment was operating in the development area. This 

will be a phase of the mining cycle where geological surveys or borehole mapping is 

conducted at the face. Based on the equipment activity data, more than 40% of the time of 

monitoring the area was inactive. The results of heat modeling show that work at the face 

can be performed at low to moderate levels of metabolic rate (M<300 W/m2). Furthermore, 

the working area is not safe for higher levels of metabolic rate (M>300 W/m2). In order to 

maintain a safe working area, different scenarios were considered and examined which 

looked at re-designing the auxiliary ventilation system at this location. These scenarios 

included: 

1. Use of a “forcing” system with: 

a) Increasing airflow velocity at the face from 0.5 m/s to 1 m/s 

b) Increasing airflow velocity at the face from 0.5 m/s to 1.5 m/s 

2. Use of an “exhausting” system with: 

a) Current condition assuming that the airflow velocity at the face is 0.5 m/s 

b) Increasing the airflow velocity at the face from 0.5 m/s to 1.5 m/s 

Climatic simulations showed that changing the auxiliary ventilation system from a 

“forcing” setup to an “exhausting” setup doesn’t significantly affect heat removal at the 

face. This can be explained by considering the heat exchange between the ventilated air 

and surrounding rock. With a “forcing” auxiliary ventilation system, the heat from high air 
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temperatures goes into the surrounding rock, while with and “exhausting” setup heat is 

transferred to the ventilating air as a result of lower air temperatures than the surrounding 

rock temperature. Furthermore, the results generated through climatic simulations and 

presented in Table 5.3 demonstrate that increasing the airflow velocity in a “forcing” setup 

(e.g. scenario 1-b) is sufficient to mitigate the heat load from the dead-end development 

for metabolic rates ranging from 200 W/m2 to 350 W/m2. Figure 5.2 and Figure 5.3 

illustrate the effects of re-designing the auxiliary ventilation system based on the wet-bulb 

temperature throughout the development heading. 

Table 5.3. Comparison between the skin temperature limit and maximum skin temperatures 

Auxiliary system Metabolic rate 

(w/m2) 

Skin temperature 

limit 

(˚C) 

Maximum skin temperature (˚C) 

Face Return 

Current ventilation  

system 

200 34.98 33.34 33.24 

250 34.38 34.12 33.92 

300 33.52 34.10 34.64 

350 32.29 34.88 35.53 

1 m/s air    velocity at 

the face 

200 34.98 32.73 32.69 

250 34.38 33.25 33.21 

300 33.52 33.78 33.76 

350 32.29 34.46 34.40 

1.5 m/s air velocity at 

the face 

200 34.98 30.88 30.67 

250 34.38 31.50 31.25 

300 33.52 32.11 31.82 

350 32.29 32.25 31.98 

 

Exhaust system 

200 34.98 33.05 33.09 

250 34.38 33.60 33.62 

300 33.52 34.39 34.42 

350 32.29 35.16 35.19 

Exhaust system with 

1.5 m/s velocity at the 

face 

200 34.98 31.98 31.99 

250 34.38 32.62 32.65 

300 33.52 33.10 33.11 

350 32.29 33.51 33.53 
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Figure 5.2. The effect of air velocity on the wet-bulb temperature for forcing auxiliary systems 

 

 
Figure 5.3. The effect of air velocity on the wet-bulb temperature for exhausting auxiliary systems 

 

5.3.3. Case study 2 - Auxiliary ventilation system with an active drilling equipment 

For climatic modeling purposes, a 75 kW CAT electric Jumbo Drill was considered to be 

operating at 5 m from the development face. The climatic model was calibrated against the 

collected climatic data. The results generated through climatic simulations showed that 

with the current auxiliary ventilation system, the underground climatic condition will only 

allow low activity levels with metabolic rates less than 250 W/m2. Different scenarios were 

examined to improve the efficiency of the auxiliary ventilation system in order to mitigate 
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the heat load when the Jumbo Drill is active at the face. These scenarios included the use 

of a “forcing” system with: 

a) Increasing the airflow velocity at the face from 0.5 m/s to 1 m/s 

b) Increasing airflow velocity at the face from 0.5 m/s to 1.5 m/s 

c) Placing a 200 kW spot cooling system  at approximately 15 meters away from the 

face with 1.5 m/s airflow velocity 

d) Placing a 250 kW spot cooling system at approximately 15 meters away from the 

face with 1.5 m/s airflow velocity 

Figure 5.4 shows the changes in wet-bulb temperature for the airflow delivery scenarios 

mentioned above. As shown in Table 4, for high activity rates (M>300 W/m2), a spot 

cooling system is required to remove the heat load at the face. To maintain a safe working 

area throughout the development heading, a 250 kW spot cooling system is required. 

Climatic simulations show that a cooling system is needed when the temperature of the 

temperature of the fresh air is more than the comfort limit temperature (tw=28 ˚C). It can 

be assumed that same ventilation system delivers sufficient air volumes when the bolter is 

active at the face. 
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Figure 5.4. Wet bulb temperature changes based on different scenarios when the drill is active 

 

4.3.3. Case study 3: Auxiliary ventilation system with an active LHD and haul 

truck: 

LHDs and haulage trucks produce the largest amount heat in dead-end development 

headings. At this mine, 3 to 6 yard3 LHDs are usually utilized for moving fragmented rock 

and ore along the development headings and production areas. LHDs are also used to move 

the fragmented ore from the draw-points to the ore/rock pass if the hauling distance is 

appropriate. For longer distances (when the fragmented ore/rock needs to be taken to the 

ore/rock pass at a significant distance from the draw-pint), haulage trucks are used. Figure 

5.5 shows the change in dry-bulb temperature (Td) at the development face and at the 

development return.  

Table 5.4. Comparison between allowed skin temperature limits and maximum skin temperatures for 

drilling operations 

Auxiliary system Metabolic rate 

(w/m2) 

Skin temperature 

limit (˚C) 

Maximum skin temperature 

(˚C) 

Face Return 

Current ventilation 

system 

200 34.98 33.37 33.72 

250 34.38 34.83 34.44 

300 33.52 35.60 35.15 

350 32.29 36.34 35.84 

1.5 m/s air velocity at 

the face 

200 34.98 30.90 31.82 

250 34.38 31.50 32.40 

300 33.52 32.10 32.88 

350 32.29 32.67 33.31 

200 kW with 1.5 m/s 

air velocity at the face 

200 34.98 29.51 31.1 

250 34.38 30.21 31.41 

300 33.52 31.69 32.00 

350 32.29 31.54 32.56 

250 kW with 1.5 m/s 

air velocity at the face 

200 34.98 29.26 30.58 

250 34.38 29.96 31.19 

300 33.52 30.65 31.78 

350 32.29 31.30 32.28 
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Figure 5.5. Example of dry-bulb temperature variation during mucking and haulage activities 

For modeling purposes, a 6 yard3 LHD is considered to be operating at 5 m away from the 

face (zone 4). A 30-ton haul truck is simulated as a linear heat source along the 

development heading (zone 6). This simulation does not take into account the time that is 

needed for the air to travel from a point to another point and the temperature changes 

generated by the haul truck when idling of waiting to be loaded by the LHD. However, 

comparisons between model simulation results and measured ventilation and climatic 

parameters show relatively good agreements. The results generated through model 

simulations (see Table 5.6) indicate that the current ventilation system cannot deliver 

sufficient air volumes to the face of the dead-end development heading for even low 

activity levels. Figure 5.6 illustrates the effects of re-designing the auxiliary ventilation 

system based on the wet-bulb temperature throughout the development. 
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Figure 5.6. Wet-bulb temperature changes based on different scenarios for mucking and hauling 

 

Table 5.5. Comparison between allowed skin temperature limits and maximum skin temperatures during 

mucking 

Auxiliary system Metabolic rate 

(w/m2) 

Skin temperature 

limit (˚C) 

Maximum skin temperature (˚C) 

Face Return 

Current ventilation 

system 

200 34.98 35.91 35.94 

250 34.38 36.65 36.61 

300 33.52 37.38 37.28 

350 32.29 37.94 37.80 

200 kW with 1.5 

m/s air velocity at 

the face 

200 34.98 30.06 30.62 

250 34.38 30.72 31.23 

300 33.52 31.37 31.82 

350 32.29 32.58 33.39 

250 kW with 1.5 

m/s air velocity at 

the face 

200 34.98 29.83 30.41 

250 34.38 30.50 31.01 

300 33.52 31.16 31.61 

350 32.29 31.79 32.18 

 

5.4. Conclusions 

This case study aimed to evaluate heat load and its distribution in a dead-end development 

heading at one of our partner mine in Nevada. Climatic monitoring units were installed at 

the entrance of a development heading, inside the auxiliary ducting system, at the 

development face and along the return drift to measure and record the dry-bulb 

temperature, relative humidity and barometric pressure. Numerical models for three case 

studies were developed and calibrated against the collected data to evaluate the heat load 

in the development heading. Comparison between maximum skin temperatures and 

allowable skin temperatures indicate that a 0.5 m/s airflow velocity at the face does not 
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deliver sufficient fresh air in order to mitigate the heat load at the face and maintain 

adequate climatic conditions during the mining cycles. Furthermore, the results show that 

spot cooling systems may be required if the mine workers are performing heavy work at 

high metabolic rates. Climatic simulation showed that re-designing the auxiliary 

ventilation system from a “forcing” arrangement to an “exhausting” arrangement would 

not reduce the dry-bulb and wet-bulb temperatures at the face of development headings, 

even when there is no activity.  
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Chapter 6 - Improving the climatic conditions in development 

and production workings of hot underground mines by re-

designing the auxiliary ventilation system - Case study # 2 

 

6.1. Auxiliary Ventilation Systems in Underground Metal Mines 

Auxiliary ventilation systems are used to supply fresh air to the working areas and 

development headings. In metal mines, the auxiliary system includes auxiliary fan(s) and 

a ducting system. The auxiliary system should not have any impact on the primary 

ventilation system and the distribution of airflows throughout the main ventilation network. 

The choice between forcing or exhausting systems depends on the pollutants at the face 

such as dust, gasses and heat. 

6.1.1. Forcing auxiliary ventilation system 

Forcing auxiliary ventilation systems, also known as pushing systems, deliver fresh air to 

the face of production headings without intake air contamination from external sources. 

Use of forcing ventilation systems also provides cooler air to the immediate face 

(Carpenter et al., 2015). Air leakage from the duct is not completely wasted because it aids 

in reducing the contamination along the return airways. Another advantage of a forcing 

system is that flexible ducting can be used due to positive pressure along the ducting 

system.  The main disadvantage of using forcing auxiliary ventilation systems is that 

pollutants added to the air at the face will affect the entire length of the drift as the return 

air passes back along it. Furthermore, high velocity air flow at the face may create dust 

control problems.  
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6.1.2. Exhausting auxiliary ventilation system 

The main advantage of using exhausting ventilation systems, also known as pulling 

systems, is that the pollutants, blasting gases and dust within the immediate vicinity of the 

face can be immediately drawn into the duct while allowing fresh air to flow through the 

length of the drift. The contaminated air routes will extend from the face to the ducting 

system and will not affect the return airways. Dust filters can also be used to capture dust 

from the contaminated air before exiting the auxiliary duct. The main disadvantage of 

exhausting auxiliary ventilation systems is that the end of the duct needs to be maintained 

close to the face in order to avoid uncontrolled recirculation at the face. Another 

disadvantage is that the fresh air traveling through the heading to the face can draw heat 

from the surrounding rock formations and other sources. Consequently, the intake air at 

the face will be likely hotter compared to forcing auxiliary ventilation systems. In addition, 

exhausting ventilation systems require rigid, non-collapsible ducts. This means higher 

capital costs in the short term. 

6.2. Assessment of the climatic conditions along the production headings 

The mine being studied is located in Northern Nevada. The current primary ventilation 

system is an exhaust type system with a booster fan located at the bottom of the exhaust 

shaft. The auxiliary ventilation consists of forcing type systems with auxiliary fans ranging 

from 50 to 150 hp as a function of ducting length and air volume requirements.  

A typical auxiliary system consists of fresh air being drawn from the ramp and delivered 

to the face through flexible fabric ducts under the assistance of a 100 hp auxiliary fans. The 

production headings are normally advanced with conventional drilling and blasting. 

Broken rock is removed using 3 and 6 cubic yards LHDs and 20 and 30-ton haul trucks. 
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During the climatic and equipment activity monitoring program the 6 cubic yard LHD and 

the 30-ton haul truck were used. 

The locations where the ACR monitoring units were installed were as follows: on the rib 

of the ramp or access drift before the auxiliary fan, inside the duct after the auxiliary fan, 

at the working face, along the heading to capture the climatic parameters of the return air 

and at the combined return drift in case of multiple production faces. A monitoring unit 

was placed at each of these locations and each were set to record the climatic parameters 

every minute. The unit installed in the main airway was used to establish an input baseline 

of temperature, pressure and relative humidity. The unit installed after the fan in the 

auxiliary duct was used to establish the heat added by the fan. The unit at the working face 

was removed during blasting and re-installed in the advancing heading to capture both 

strata heat and activity at the face. This unit was installed approximately 15 m away from 

the working face. The units placed along the drift in the return air captured the combined 

heat and moisture added at the working faces, as well as by the passing equipment. The 

final unit in the main return gave the total moisture and heat added to the system being 

modelled.  

A climatic model was developed to simulate the individual heat loads and the climatic 

conditions at the production faces using VentsimTM software. The model was developed 

based on the intake airflow conditions, the heat load throughout the auxiliary ducting 

system and along the production faces. In the current auxiliary ventilation system, air is 

delivered to the production headings using a 100 hp auxiliary fan through a flexible fabric 

duct. Approximately 32 m3/s of intake air with an average dry-bulb temperatures (Td) of 

29.5 ˚C and wet-bulb temperature (Tw) of 25.6 ˚C passes through the auxiliary duct. Table 
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1 shows the characteristics of the intake air throughout the production area used for climatic 

simulation purposes. 

Table 6.1. Climatic data at the production area when there is no equipment activity (median) 

Locations V (m/s) Td (˚C) Tw (˚C) BP 

(kPa) 

Before the auxiliary fan at the main airway  29.5 25.6 91.010 

After the auxiliary fan inside the duct 2.15 33.8 - - 

APH # 1 0.3 31.69 28.51 90.697 

APH # 2 0.2 31.29 31.29 90.941 

APH # 3 0 31.42 26.1 91.045 

Main Return 0.5 32.56 26.78 90.804 

The climatic model was calibrated against the collected data (Table 6.2). As shown in the 

Table 2, dry-bulb and wet-bulb temperatures at the interest points support the collected 

data from the mine. However, the predicted wet-bulb temperatures are quite lower 

compared to the measured wet-bulb temperatures at the development face. The ACR unit 

at the face was not able to record the correct relative humidity since the humidity at this 

location exceeded the unit’s capability. The ACR unit recorded 100% for humidity above 

85%-90%. Figure 6.1 shows an example of the recorded data by the ACR unit at the 

production face.  

Figure 6.2 shows the contribution of main heat sources in the production area. The total 

heat added to the system is approximately 82.3 kW in which the auxiliary fan has the 

highest contribution to the total heat load of the system. Note that there was no information 

about the influx of underground water. Calculations regarding the total heat load of the 

mine indicate that the contribution of this heat source is negligible. 
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Table 6.2. Simulation results of climatic parameters from the calibrated Ventsim model 

Locations V (m/s) Td (˚C) Tw (˚C) BP (kPa) 

Before the auxiliary fan at the main airway 2.2 29.4 25.6 91.0 

After the auxiliary fan inside the duct -- 32.9 26.2 92.1 

APH # 1 0.3 31.3 26.1 90.9 

APH # 2 0.2 31.3 26.0 90.9 

APH # 3 0.1 31.3 26.1 91.0 

Main Return 0.6 31.3 26.1 90.9 

 

 

Figure 6.1. An example of measured relative humidity values at the face. Relative humidity stays at 100% 

for approximately 9 hours 

 

Figure 6.2. . Heat load profile in the production area when there is no activity (total heat load of 82.3 kW) 
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6.3. Modeling Results 

Several other pertinent scenarios have been studied in order to develop optimized auxiliary 

ventilation systems at this location of the mine. The scenarios included different mining 

operations as well as no activity time frames (geological surveys or borehole mapping), 

drilling operations (75 kW CAT electrical jumbo drill) and mucking operations (3 cubic 

yards LHD and 30 ton haulage truck). For all scenarios, wet-bulb temperature and WBGT 

were recorded and compared when forcing or exhausting systems are employed. 

Furthermore, spot cooling systems were placed at different locations in production 

headings in order to decrease the temperatures in the immediate areas of the production 

faces. For each scenario it was assumed that a notable concentration of arsenic was present 

at the active heading. 

For example, it was assumed that a 3 yard3 LHD is active at the APH #2 production 

heading. Considerations were also given to the fact that arsenic concentrations may be 

present at the APH # 2 face. Different cases were simulated to examine both forcing and 

exhausting auxiliary ventilation systems to determine the optimum auxiliary ventilation 

arrangement where work can be comfortably performed. Table 6.3 shows the results of the 

simulations for both forcing and exhausting systems. For each scenario, environmental and 

climatic parameters were recorded at each face of a production working and at the returns. 

The results of the climatic simulations demonstrate that employing an exhausting auxiliary 

ventilation system is advantageous in order to decrease the air temperature in the working 

areas and the return airways. When a forcing system is used, the heat generated by the 

auxiliary fan(s) affects the whole production area and the return airways. Furthermore, the 

energy added by a larger auxiliary fan (150 hp) increases the air temperature at the 
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immediate face which results in hotter air compared to an exhausting system. Use of 

multiple intake fans (150 hp & 50 hp) decreases the heat load at the face significantly. 

However, a comparison between this scenario and a single 150 hp exhausting system 

reveals that exhausting system delivers the same atmospheric condition. Therefore, use of 

an exhausting system may be more economical. 

Another advantage of using an exhausting system is that spot cooling systems can be placed 

at locations relatively far from the working face without interfering with the work cycles. 

When a forcing system is used, spot cooling system must be placed either in the intake 

airways before the auxiliary fan or close to the immediate face of the dead-end heading or 

production face. The problem with placing a spot cooling system before the auxiliary fan 

is that the cooled intake air will draw an increased amount of heat from the surrounding 

rock formations and will be heated by the auxiliary fan. Spot cooling system near the face 

of a production working will interfere with the mining cycle and may not be economically 

feasible.  

The use of exhausting auxiliary ventilation systems is definitely beneficial if a contaminant 

such as arsenic dust is present at the immediate face. Table 6.4 shows the results of various 

auxiliary ventilation simulation scenarios where 100 units of arsenic dust concentrations 

were present at the face. Dynamic simulations of contaminant dilution demonstrate that 

although the initial concentration of arsenic dust might increase at the stope and along the 

main return, the reduction and clearance time of the contaminant is faster at higher air 

volumes. 
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Table 6.3. Results of different simulation scenarios using Ventsim Model 

Location V 

(m/s) 

Q 

(m3/s) 

Td 

(˚C) 

Tw(˚C) WBGT 

(˚C) 

V 

(m/s) 

Q 

(m3/s) 

Td 

(˚C) 

Tw(˚C) WBGT 

(˚C) 

 Pushing Auxiliary System Exhausting Auxiliary System 

  75 hp auxiliary fan (32 m3/s) – No activity 75 hp auxiliary fan (32 m3/s) – No activity 

APH 1 0.3 15.1 30.7 25.9 27.6 0.3 15.2 29.4 25.7 26.8 

APH 2 0.2 7.9 32.5 26.6 29.2 0.2 8 32.9 26.9 28.7 

APH 3 0.1 5.7 30.6 26 27.6 0.1 5.7 29.8 25.9 27 

Return 

APH 2/3 

0.4 14.1 33.9 27.1 29.1 0.3 14.2 29.4 25.7 26.8 

Return 0.7 30.6 32.1 26.5 28.3 0.7 30.4 29.4 25.7 26.8  
150 hp auxiliary fan (41 m3/s) 150 hp auxiliary fan (41 m3/s) 

APH 1 0.4 15.1 32.3 28.1 27.6 0.4 19.8 29.4 25.7 26.8 

APH 2 0.3 7.9 33.5 29.4 29.2 0.2 10 32.1 26.7 28.3 

APH 3 0.2 5.7 32.3 28.1 27.6 0.2 7.2 29.7 25.8 27 

Return 

APH 2/3 

0.5 14.1 34.3 29.2 29.1 0.4 17.8 29.4 25.7 26.8 

Return 0.9 30.6 33 28.6 28.3 0.9 38.5 29.4 25.7 26.8  
150 hp auxiliary fan (41 m3/s) and 50 hp 

auxiliary fan (28 m3/s) before APH 2 intake 

75 hp auxiliary fan (32 m3/s) – Block APH # 1 

and APH # 3 ducting system 

APH 1 0.3 11.2 31.9 26.2 27.9 - - - - - 

APH 2 0.3 15.7 33.9 26.8 28.5 0.6 26.8 30.4 26.1 27.3 

APH 3 0.3 11.4 33.1 26.5 28.5 
 

- - - - 

Return 

APH 2/3 

0.6 27.9 34.3 27 29.2 0.6 27.7 29.4 25.7 26.8 

Return 0.9 39.2 33.4 26.8 28.8 0.7 29.7 29.4 25.7 26.8  
75 hp auxiliary fan (32 m3/s) – Block APH # 1 

and APH # 3 ducting system 

Intake with 150 hp auxiliary fan (41 m3/s) - 

Block APH # 1 and APH # 3 ducting system 

APH 1 - - - - - - - - - - 

APH 2 0.6 26.7 32.7 26.5 28.3 0.7 33.5 30.1 26 27.2 

APH 3 - - - - - - - - - - 

Return 

APH 2/3 

0.6 27.8 33.9 26.6 29 0.8 34.7 29.4 25.7 26.8 

Return 0.7 30.3 33.6 26.8 28.9 0.8 37.2 29.4 25.7 26.8  
150 hp auxiliary fan (41 m3/s) - Block APH # 1 

and APH # 3 ducting system 

150 hp auxiliary fan (41 m3/s) - Block APH # 1 

and APH # 3 ducting system – 100 kW spot 

cooling system before the APH # 2 intake 

APH 1 - - - - - - - - - - 

APH 2 0.8 33.9 35.1 26.9 29.2 0.7 33.5 27.7 25.4 26 

APH 3 - 
 

- - - - - - - - 

Return 

APH 2/3 

0.8 35.3 35.6 27.2 29.1 0.8 34.7 26.9 25.1 25.6 

Return 0.8 38.5 35.2 27.2 28.3 0.8 37.2 26.9 25.4 25.8 

 150 hp auxiliary fan (41 m3/s) - Block APH # 1 

and APH # 3 ducting system 

150 hp auxiliary fan (41 m3/s) - Block APH # 1 

and APH # 3 ducting system – 100 kW spot 

cooling system before the APH # 2 intake 

APH 1 - - - - - - - - - - 

APH 2 0.8 33.9 35.1 26.9 29.2 0.7 33.5 27.7 25.4 26 

APH 3 -  - - - - - - - - 

Return 

APH 2/3 

0.8 35.3 35.6 27.2 29.1 0.8 34.7 26.9 25.1 25.6 

Return 0.8 38.5 35.2 27.2 28.3 0.8 37.2 26.9 25.4 25.8 
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Table 6.4. Results of different simulation scenarios using Ventsim Model 

Location Forcing system Exhausting system 

Dilution time (min) Dilution time (min) 

 75 hp auxiliary fan (32 m3/s) 75 hp auxiliary fan (32 m3/s) 

APH 2 48 48 

APH 2 return 45 0 

APH 2 & 3 return 42 0 

Return 36 37 

 150 hp auxiliary fan (41 m3/s) 150 hp auxiliary fan (41 m3/s) 

APH 2 32 28 

APH 2 return 31 0 

APH 2 & 3 return 29 0 

Return 26 25 

 150 hp auxiliary fan (41 m3/s) - Block 

APH # 1 and APH # 3 ducting system 

150 hp auxiliary fan (41 m3/s) - Block 

APH # 1 and APH # 3 ducting system 

APH 2 9 7 

APH 2 return 7 0 

APH 2 & 3 return 7 0 

Return 6 6 

 

6.4. Conclusions 

In this study, climatic models were developed and calibrated using measured climatic data. 

Considerations were also given to the fact that arsenic dust concentrations may be present 

at the face. The results of the simulation model demonstrate that exhausting systems 

provide relatively cooler air when there are multiple auxiliary fans serving multiple dead-

end headings or production workings. Forcing systems provide increased airflow velocities 

at the face compared to exhausting systems. It is one of the advantages of using a forcing 

system especially when a higher air flow is required at the face to assist in turbulent mixing 

of gasses (e.g. methane) that may be emitted from the fragmented ore or newly exposed 

surfaces. Furthermore, when there is a notable arsenic concentration or dust at the face, an 

exhausting system is preferred as the contaminated air is drawn directly into the ducting 

system. Air and dust filters can also be included within the exhausting system to reduce the 

arsenic and dust concentration. However, the additional pressure drop across the filter and 

the cost of changing the air filter must be taken into account. Increasing the air flow at the 



101 

 

 

 

production heading decreases the heat load and decrease the dilution time of arsenic dust 

concentration at the working faces.  

When a spot cooling system is required, an exhausting system has an advantage over a 

forcing system. When forcing system is used, spot cooling systems must be placed either 

in the intake airways before the auxiliary fan or close to the immediate face of the dead-

end heading. However, there will be more flexibility in placing spot cooling systems when 

an exhausting ventilation system is used. The advantages of both forcing and exhausting 

systems can be merged when an overlap ventilation system is used. A push-pull ventilation 

system provides adequate air velocity at the face of production headings and the 

contaminated air will be directed into the ducting system. The problem with an overlap 

ventilation system is that it requires a large cross sectional area where two ducting systems 

can be installed. For this case study the use of an overlap ventilation system is not feasible 

because of the cross-sectional area of the drift.  
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Chapter 7 Quantifying the Thermal Damping Effect in 

Underground Vertical Shafts using the Nonlinear 

Autoregressive with External Input (NARX) Algorithm 

7.1. Introduction 

Climatic models are usually developed and used to predict the climatic conditions in future 

underground mines and determine whether a mine’s ventilation system (primary/auxiliary) 

can provide adequate thermal conditions in the development and production workings. 

Climatic models can also be developed and used for existing underground mines to 

quantify the heat generated by various heat sources, and to assess what cooling strategy 

would be the most cost-effective method to control the thermal environment. For existing 

operations, ventilation and climatic data collection are essential to validate the ventilation 

and climatic models, which can then be used to understand transient heat transport 

processes along vertical and horizontal airways, determine the heat profile of the mine and 

to prepare short-term and long-term airflow delivery plans. To design and manage an 

underground ventilation system with respect to safety and cost, it is important to 

incorporate time-dependent heat exchange processes in the system, so that any unusual 

activities and rapid changes can be taken into account. For future underground operations, 

there are several key elements which need to be captured and incorporated into the climatic 

model to accurately predict temperature and humidity levels. These key elements include 

the thermal damping effect, the dynamic heat exchange processes between the ventilating 

air and the surrounding rock, and equipment activity profiles throughout localized 

production and development areas and mine-wide. 
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With the exception of one mine ventilation software that is under development and testing 

(Danko, 2013), no other ventilation or climatic modeling software packages have the 

ability take into account the “thermal damping effect (TDE)” (also known as thermal 

flywheel effect) when modeling the thermal environment in deep and hot underground 

mines. The major difficulty in incorporating TDE comes from a large number of variables 

interacting with each other plus the time-dependent heat and mass transport processes that 

control the flow of strata heat into/from the mine airways. Stroh (1979) introduced the TDE 

in the mine ventilation literature as a phenomenon that was observed in several shaft 

surveys, and he defined the thermal damping “… as a value which varies from mine to 

mine.” Danko et al., (1988) developed analytical solutions to take into account the 

temperature damping based on the transient thermal mass transport processes, which are 

presently incorporated into a mine ventilations simulator. Brake (2002) reported a 

descriptive explanation of TDE (as low and high) for the intake airways in two 

underground mines in Australia. Brake (2008) defined TDE as a function of the travel time 

and contact distance for air traveling in the intake airways. McPherson (2009) mentioned 

that because of significant surface temperature variations during daytime and nighttime, it 

is common for the walls and the surrounding rock to absorb heat during the day and to emit 

heat during the night. Describing thermal damping, he noted“… the phenomenon continues 

along the intake airways and tends to dampen out the effects of the surface temperature 

variation as the air travels down vertical airways into an underground mine.” Kocsis & 

Hardcastle (2010) observed TDE experimentally during climatic data collection in deep 

underground mines in Canada. Their study showed that during summer and winter there is 

a change in the phase angle of the periodic and harmonic air temperature variations. A 
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recent study also verified this phase shift and its effect on the temperature of the mine air 

through climatic simulations performed on a ventilation-thermal-humidity model (Danko, 

2013). 

7.2. The Thermal Damping Effect (TDE) 

Heat is transferred to the mine air from a variety of sources including auto-compression, 

strata, mining equipment, explosives, and more. In many cases, the airflow itself is 

sufficient to remove the heat which has been transferred to the mine air along vertical and 

horizontal airways and during the mining processes (Roghanchi et al., 2015). In deep metal 

mines, however, the heat removal as the dominant environmental problem, may necessitate 

the use of some method of cooling (e.g. mine-wide, localized). When cool air passes 

through a horizontal airway, its temperature usually increases. This is caused by the natural 

geothermal heat being conducted through the rock towards the airway. The geothermal 

heat will then pass into the mine air through the boundary layers that exist in the air close 

to the rock surface (Carpenter et al., 2015). The envelope of rock close to the newly driven 

airway will rapidly cool at first, and there will accordingly be a relatively high rate of initial 

heat release into the mine air. This will decline in time, and the rock surface will gradually 

cool and approach an equilibrium state when its temperature equals that of the air 

(Roghanchi et al., 2016). Furthermore, if the airway is wet, then the increase in the dry-

bulb temperature is less noticeable, or it may even fall. This is a result of the cooling effect 

of evaporation. Heat may still emanate from the strata. However, much of this heat is 

utilized to transfer the water molecules into the mine air in the form of water vapor. The 

heat content of the air-water mixture will rise due to the internal energy of the added water 

vapor (McPherson, 1993). 
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When air descends an intake shaft, its lining and the surrounding strata will emit heat during 

the night when the incoming air is cool and, on the contrary, absorb heat during the day if 

the air temperature becomes greater than that of the strata temperature. The depth of the 

intake shaft where heat flow reverses varies by season (to some extent even daily), firstly 

due to the initial starting conditions of the air (Td, Tw, BP), and secondly, due to the rock 

surface temperature and its geothermal gradient. The change of the phase angle of the 

periodic, harmonic and temperature variation is known to be the thermal damping effect. 

Figure 7.1 and Figure 7.2 illustrate the thermal damping effect in a production shaft. Figure 

2, for example, shows that during summertime, the temperature at the top of the shaft varies 

widely, from a high value of 33 ˚C during a sunny midday to a low value of 19 ˚C in the 

middle of the night, which represents a temperature difference of ΔTd-surface = 19 ˚C. 

However, at the bottom of the shaft, the amplitude of the air temperature variation is much 

smaller and varies from 29.5 ˚C to 25.5 ˚C, which represents a temperature difference of 

ΔTd-bottom = 4 ˚C. Measured climatic parameters indicate that the lining of the shaft and the 

surrounding rock act as an energy reducing mechanism, which reduces the amplitude of 

the temperature wave. Furthermore, during the daytime, at some depth down the intake 

shaft, the air temperature in the intake shaft, which is also heated by auto-compression, 

develops higher values than that of the virgin rock temperature (VRT) of the surrounding 

rock. Consequently, sensible heat is transferred from the intake air into the rock, actually 

cooling the air. However, during the night, as the temperature of the air on surface cools, 

there is a greater potential for the heat to flow from the rock into the mine air. 
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Figure 7.1. Heat exchanges in a vertical opening during day and night as a function of ambient temperature 

and virgin rock temperature. 

 

Figure 7.2. Dry-bulb damping in an intake shaft during a 24 hours period. 

There are many conventional mine ventilation and climatic simulation programs available 

to conduct heat studies and predict the climatic conditions in future underground mines. 

Most relevant transport processes for heat and humidity can be modeled with any of these 

software packages. However, short-time variations such as hourly or daily and more 

importantly seasonal temperature changes can induce significant modeling errors if the 

strata heat does not follow a true instantaneous heat flux model.  As shown in Figure 7.2, 

the daily temperature variation at the bottom of the intake shaft can be much less than at 
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the top of the intake shaft, which is a function of many factors including the contact time 

between the mine air and the lining of the shaft and travel distance. It is important to 

accurately predict the temperature and the humidity levels at the bottom of the intake 

airways for future underground mines because a well design ventilation system may be 

sufficient to provide adequate climatic conditions. However, climatic modeling errors that 

are induced by ignoring the thermal damping effect can indicate that a refrigeration system 

is needed to provide adequate work conditions. In some cases, the additional capital and 

operating costs related to the cooling system could indicate that otherwise, a viable 

underground operation would be unfeasible. 

To evaluate the accuracy of the standard ventilation software, the intake shafts at our 

partner mines were modeled using ClimsimTM and VentsimTM programs. A comparison 

between measured climatic values at the bottom of an intake shaft and parameters 

generated through the use of ventilation and climatic models is shown in Figure 7.3. This 

figure indicates that current, commercially available mine ventilation software do not take 

into account the thermal damping along the vertical shaft. Therefore, the models predict 

same diurnal temperature variations without considering the thermal damping at the bottom 

of the intake shaft as for the top of the intake shaft. One software package with its time-

dependent solution may have the ability to simulate the thermal flywheel effect and the 

associated time lag (Danko, 2013). However, this program is under development and 

testing, and it not yet commercially available. 
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Figure 7.3. Comparison between measured air temperatures (e.g. DATA) at the bottom of an intake shaft 

and predicted air temperatures by ventilation and climatic simulation programs. 

The thermal damping effect on the mine air depends on many ventilation, climatic and 

geotechnical parameters including the air temperature of the surface, air volume, contact 

distance, wall wetness, the virgin rock temperature, the thermal properties of the rock, etc. 

For instance, it has been observed that the thermal damping effect along an intake decline 

is much higher than the thermal damping effect of a similar amount of air that travels to 

the same production level through a vertical airway. Longer the intake, the tempearture 

damping is higher. This is why the air temperature underground at some point, which is 

located at some distance from the collar if the intake shaft is not affected by daily air 

temperature variation on the surface (See Figure 7.4). The most important environmental, 

physical and dynamic parameters that affect temperature damping in underground mines 

are summarized in Table 7.1. 
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Table 7.1. Critical parameters that influence temperature damping in underground vertical openings 

Environmental Parameters Physical Parameters Dynamic Parameters 

Surface temperature 

Intake relative humidity 

Barometric pressure 

Groundwater 

Air density  

Size of opening 

Shape of opening 

Wall roughness 

Wall wetness 

Disturbance objects 

Air quantity 

Travel time 

Contact distance 

 

Figure 7.4. The thermal damping effect depends on the travel time and airflow-wall contact distance - For 

an airway located at a long distance from the collar of the intake shaft, daily temperature variations are 

negligible. 

7.2. Quantifying the Thermal Damping Effect using NARX 

7.2.1. Climatic Data Collection at Underground Mines 

Climatic and ventilation parameters were collected at two underground mines in Nevada. 

The primary ventilation system in both mines is of exhaust type, with the primary fans 

located at the top of the exhaust shaft. The selection criteria for the climatic monitoring 

units focused on data storage and their capability to continually measure and record 

climatic and ventilation parameters. Other requirements included: (1) the monitoring units 

should be lightweight and easy to instal and should not interfere with the mining 

operations; (2) the monitoring units should include built-in batteries with no external power 

source requirements; (3) the monitoring units should require minimum maintenance, and 

the calibration procedure to be straight forward; (4) recording and downloading the 

climatic data must be straightforward and quick; (5) the units should be fairly accurate for 

climatic and ventilation surveys. 
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The “ACR Smart-Reader Plus” multi-channel monitoring units (See Figure 7.5) were 

selected to monitor and record the climatic parameters in the production stopes, dead-end 

development headings and throughout the mine. The units continually measured and 

recorded Td, RH, and BP. From these parameters, Tw was then calculated. The monitoring 

units were capable of recording these values at various time intervals specified by the user, 

and each unit had a storage capacity of 128 KB. The climatic parameters were downloaded 

on a mobile computer as shown in Figure 5. The collected climatic and ventilation data 

was used to validate the climatic models. 

    

Figure 7.5. The climatic data recorded by the monitoring units was downloaded on a laptop. 

At two underground precious metal mines in Nevada, two production shafts and one 

ventilation shaft (intake) were selected for climatic data collection. The climatic 

monitoring units were programmed to collect Td, RH and BP readings at two-minute 

intervals for a 4-week time frame. Table 7.2 summarizes the geometrical elements of the 

production and ventilation shafts and their intake air volumes. One monitoring unit was 

installed on the surface to measure and record the climatic conditions during daytime and 

nighttime. The following unit was installed just below the collar of the production/ 

ventilation shaft to capture any heat added to the mine air around the collar of the shaft and 

to eliminate the effect of radiation. Monitoring units were also installed at the bottom of 
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the production and ventilation shafts. Table 7.3 presents the locations where the units were 

installed and the climatic monitoring plan. It should be mentioned that no cooling system 

was employed at these tow underground mines. 

Table 7.2. The geometrical elements of the production and ventilation shafts 

 Type of shaft 
Shaft diameter 

(m) 

Shaft area 

(m2) 

Shaft depth 

(m) 

Quantity 

(m3/s) 

Shaft #1 
Production 

shaft 
7.3 41.85 580 205 

Shaft #2 
Production 

shaft 
6.7 35.26 579 241 

Shaft #3 
Ventilation 

shaft 
6.1 29.22 503 223 

 

Table 7.3. Climatic monitoring plan at two underground precious metal mines in Nevada 

Intake Shafts (production/ventilation) 

Locations On surface, and at the top and bottom of the production/ventilation  shafts 

Purpose To identify and quantify the thermal damping effect 

To understand the transient heat exchange processes between the mine air and 

the surrounding rock 

Monitoring plan The ACR units were installed at the top and at the bottom of the shafts to record 

climatic data at two-minute intervals for four weeks at a time. The unit on 

surface was set to record the surface climate and any unusual activities that can 

affect the temperature of the intake air 

7.2.2. The Nonlinear Autoregressive with External Input (NARX) Algorithm 

An artificial neural network (ANN) is an interconnected group of nodes, where each node 

represents an artificial neuron, and an arrow represents a connection from the output of one 

neuron to the input of another. Artificial neural networks can be considered as a form of 

machine learning, in which the system learns to recognize an output variable based on a 

series of input variables (Hang et al., 2014; Majidi et al., 2015). Data is processed through 

a number of interconnected neurons which form synaptic connections from the input nodes 

through a hidden layer before converging on the output neurons. Each input and hidden 

neuron consist of statistical weights which are capable of adapting the exact parameters 

that are modified by an algorithm over the course of network training procedures (Kriesel, 
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2007; Khodabandelu and Fadali, 2016). These weights essentially form the synaptic 

connections among neurons, which will activate during network construction. This form 

of computation is capable of operating in parallel units, much like the human nervous 

system. The ANNs are capable of nonlinear modeling and can, therefore, provide a useful 

alternative approach to a number of both theoretical and real-world problems (e.g. Ticknor, 

2013; Ruiz et al., 2016; Doucoure et al., 206; Ding et al., 2016). 

In this study, artificial neural network modeling was used as a time series predicting tool 

to estimate the temperatures at the bottom of the production and ventilations shafts by 

taking into account the thermal damping effect as a function of the surface temperature. 

The NARX algorithm is a class of discrete-time and non-linear system that can be 

presented as Eq. 1. The topology of an NARX network is shown in Figure 7.6. 

𝑦(𝑛 + 1) = 𝑓[𝑦(𝑛), … , (𝑦(𝑛 − 𝑑𝑦 + 1); 𝑥(𝑛 − 𝑘), 𝑥(𝑢 − 𝑘 + 1), … , 𝑥(𝑛 − 𝑑𝑢 − 𝑘 +

1)]                 Eq. 7.1 

Where: x(n) and y(n) donate, respectively, are the input and output of the model at discrete-

time step “n,” while dx ≥ 1, dy ≥ 1, and dy ≥ dx, are the input memory and output memory 

orders, respectively. The parameter k (k ≥ 0) is a delay term, known as the process dead-

time (Ding et al., 2016).Considering k = 0, the NARX model can be simplified as:  

𝑦(𝑛 + 1) = 𝑓[𝑦(𝑛), … , (𝑦(𝑛 − 𝑑𝑦 + 1); 𝑥(𝑛), 𝑥(𝑢), … , 𝑥(𝑛 − 𝑑𝑢 + 1)]                 Eq. 7.2 
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Figure 7.6. Topology of the NARX model (Z-1 is the unit time delay) 

 

The most common learning rule for the NARX network is the Levenberg-Marquardt 

backpropagation procedure (LMBP) (Marquardt, 1963; Hagan & Menhaj, 1994; Alwakeel 

& Shaaban, 2010; Hong et al., 2014). This training function is often the fastest 

backpropagation-type algorithm. The LMBP algorithm was designed to approximate the 

second-order derivative with no need to compute the Hessian matrix, therefore increasing 

the training speed. However, this training function is not powerful in forecasting values for 

small and “noisy” datasets such as the datasets of daily temperature fluctuations in 

underground mines. The Bayesian regularized artificial neural networks are more robust 

than standard back-propagation networks and can reduce or eliminate the need for lengthy 

cross-validation procedures (Hong et al., 2014). The Bayesian regularization is a 

mathematical process that converts a nonlinear regression into a well-posed statistical 

problem in the manner of a ridge regression. This algorithm typically takes more time but 
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can result in good generalization for noisy data sets (Hong et al., 2014). The Bayesian 

regularization adds a term to this equation (Forsee & Hagan, 1997): 

F = βED + αEw                               Eq. 7.3 

where: F is the objective function, ED is the sum of squared errors, Ew is the sum of the 

square of the network weights, and α and β are objective function parameters (MacKay, 

1992). In the Bayesian network, the weights are considered as random variables, and thus 

their density function is written according to the Baye’s rules (Forsee & Hagan, 1997), as 

follows: 

𝑃(𝑤 |𝐷, 𝛼, 𝐵, 𝑀) =  
𝑃(𝐷|𝑤,𝛽,𝑀) 𝑃(𝑤|𝛼,𝑀)

𝑃(𝐷|𝛼,𝛽,𝑀)
                                Eq. 7.4 

Where: w is the vector of network weights, D represents the data vector, and M is the neural 

network model being used. Forsee & Hagan (1997) assumed that the noise in the data was 

Gaussian, and with this assumption, they were able to determine the probability density 

function for the weights. Forsee & Hagan (1997) proposed a Gauss-Newton approximation 

to the Hessian matrix, which is possible if the Levenburg–Marquardt training algorithm is 

used to locate minimum values. This technique reduces the potential for arriving at local 

minima, thus increasing the generalizability of the network. 

The novelty of this technique is the probabilistic nature of the network weights in relation 

to the given dataset and model framework. As a neural network grows through additional 

hidden layer neurons, the potential for overfitting increases dramatically, and the need for 

a validation set to determine a stopping point becomes crucial. In the Bayesian regularized 

networks, overly complex models are penalized, as unnecessary linkage weights are 

effectively driven to zero. The network will calculate and train on the non-trivial weights, 
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also known as the effective number of parameters, which will converge to a constant as the 

network grows (Burden & Winkler, 2008). The mean square error (MSE) is then used to 

calculate the performance of the NARX model, as follows: 

𝑆𝑆𝐸 = ∑ (𝑦�̂� − 𝑦𝑖)
2𝑛

𝑖=1                            Eq. 7.5 

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛
                               Eq. 7.6 

7.3. The Performance of the NARX Model when Predicting the Thermal 

Damping Effect in Vertical Shafts 

Data selection was carried out by a preliminary pre-processing algorithm, which 

considered all ventilation and climatic parameters which were collected during a 3-month 

period on the surface, along the production shafts (intake), as well as parameters collected 

during a 2-month period along the ventilation shaft (intake). There are several unknown 

sharp temperature fluctuations, which should be removed from the climatic data, as shown 

in Figure 7.7. The “smoothed out” graph was obtained using the exponential smoothing 

approach, which is provided in equation 7.7:  

𝑦(𝑡) = 𝛼𝑥(𝑡) + (1 − 𝛼) 𝑦(𝑡 − 1)            Eq. 7.7 

Where: α is the smoothing factor (0 < α < 1), and t is the time step (t > 0). 

The climatic data that is influenced by natural occurrences such as rain/snow should also 

be detected and be treated so that the model performance is not influenced by unusual 

temperature changes. Furthermore, a subsequent step was also performed to separate data 

into a “training” dataset and a “test” dataset. For each intake shaft, an ANN model was 

developed and tested based on processed datasets. The data is not normalized because 
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firstly, both input and output are in the same units and secondly, the actual values were 

needed to identify the damping ratio in the vertical production and ventilation shafts. 

Figure 8 illustrates the performance of the NARX model for Shaft #1. A set of data was 

selected, which consists of dry-bulb temperatures collated at the top and bottom of Shaft 

#1 during a 24-hour time frame. The performance of the NARX model for the production 

and ventilation shafts is provided in Table 7.4 and Figure 7.8. As shown in Table 7.4, the 

model can successfully predict the temperature at the bottom of the intake shaft, which was 

diminished by the effect of thermal damping. The same procedure was applied for Shaft 

#2 (production) and Shaft #3 (ventilation) to predict the dampened temperatures at their 

bottom. 

 

Figure 7.7. Smoothed out data to eliminate unknown sharp temperature fluctuations within the database. 
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Figure 7.8. NARX performance in Shaft #1 (R2 = 0.99; MSE = 0.923) 

 

Table 7.4. The performance of NARX model for the production and ventilation shafts 

Shaft Number Type of shaft R2 MSE 

Shaft #1 Production shaft 0.99 0.129 

Shaft #2 Production shaft 0.99 0.217 

Shaft #3 Ventilation shaft 0.97 0.276 

The ANN models based on NARX can be applied to any numerical method based 

ventilation and climatic modeling software to predict the thermal damping effect in vertical 

airways. The NARX network provides an appropriate prediction accuracy, while the 

complexity of the system is reduced through exogenous data. Despite the fact that the ANN 

model based on the NARX algorithm is powerful and successful in forecasting diminished 

temperature values in vertical airways, it may not be practical to apply this method to 

predict the temperature at the bottom of the production and ventilation shafts due to the 

complexity of modeling work. Consequently, the time series model was simplified to a 

conventional time series model in an attempt to determine simple damping ratios for the 

intake shafts. 

A nonlinear input-output time series equation can be written as: 
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𝑦(𝑛) = 𝑓[𝑥(𝑛), … , 𝑥(𝑛 − 𝑑𝑢 + 1)]                             Eq. 7.8 

Where: f (.) can be approximated using a neural network. 

These nonlinear input-output time series can be simplified to a “linear regression” model 

as shown in Equation 7.9, and even further to a simple linear regression, as shown in 

Equation 7.10: 

𝑦(𝑛) = 𝑓[𝑥(𝑛) +  … +  𝑥(𝑛 − 𝑑𝑢 + 1)] = 𝑎1𝑥(𝑛) + … + 𝑎𝑛𝑥(𝑛 − 𝑑𝑢 + 1)] + 𝑏               Eq. 7.9 

𝑦(𝑛) = 𝑓[𝑥(𝑛)] =  𝑏 +  𝑎𝑥𝑛                                                                                                             

𝑎 = 𝑓[𝑄, 𝑇𝐷𝐸, 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛, 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 ℎ𝑒𝑎𝑡]; 

 𝑏 = 𝑓[𝐴𝑢𝑡𝑜𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛, 𝑉𝑅𝑇, 𝑑𝑒𝑝𝑡ℎ, 𝑠𝑡𝑟𝑎𝑡𝑎 ℎ𝑒𝑎𝑡]                                                    Eq. 7.10 

Table 7.5 shows these simple linear regression equations, which were developed for the 

production and ventilation shafts at two underground mines. The constant value “b” for 

each intake shaft is different due to the heat added to the system, which can vary as a 

function of depth and the virgin rock temperature profile of each mine (e.g. geothermal 

step). However, because the production shafts have comparable geometrical elements (e.g. 

diameter) and the intake air volume descending the production shafts is also comparable, 

the values of the damping coefficient “a” are very close (e.g. 0.29 versus 0.31). 

The damping coefficient “a” for the ventilation shaft has a relatively different value as for 

the production shafts, because the ventilation shaft is not equipped with a hoisting system, 

and it is clear of steel frames that support the guiding systems for the cage and skips, as 

these objects are also acting as a heat sink medium. Above all, the substantial benefit of 

these “simple linear regression” equations presented in Table 7.5 is that for similar airways 
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such as production shafts or ventilation shafts, simple equations can be developed, which 

can be used to determine the temperature at the bottom of vertical airways at an acceptable 

level of accuracy. Furthermore, these damping coefficients could be used by ventilation 

and climatic modeling software, thus eliminating the need to code and incorporate 

complicated transient heat and mass transport algorithms to quantify the thermal damping 

effect along vertical airways. 

Table 7.5. Simple linear regression equations to predict the dry-bulb temperature at the bottom of intake 

shafts. 

Shaft Number Equation R2 MSE 

Shaft # 1 (Production) TB = 20.68 + 0.29 x TS 0.78 1.12 

Shaft # 2 (Production) TB = 25.47 + 0.31 x TS 0.81 0.98 

Shaft # 3 (Ventilation) TB = 21.59 + 0.40 x TS 0.73 1.58 

TB: dry-bulb temperature at the bottom of the shaft, TS = dry-bulb temperature on surface 

Table 7.6 and Figure 7.9 illustrate an example of error calculations when predicting the 

dampened temperatures at the bottom of production Shaft #1, based on various forecasting 

methods such as NARX, nonlinear time series, and simple linear regression models. As 

shown in Table 7.5, NARX has the most accurate prediction with R2 = 0.99. By decreasing 

the complexity of the model to a simple linear regression, the model prediction accuracy 

decreases to R2 = 0.81, with minimum and maximum temperature errors of -1.5 ˚C and 1.9 

˚C, respectively. While these errors are noticeable compared to the NARX model, these 

simple linear regression models have a much better performance in predicting the thermal 

damping effect than any of the currently available ventilation and climatic simulation 

programs, with the most advanced of them returning minimum and maximum errors of 2.5 

˚C to 6.6 ˚C, respectively. Furthermore, field observations in large and deep metal mines 

have shown that when the thermal damping effect is not taken into account, the difference 
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between simulated and measured temperature values at the bottom of intake airways can 

vary from 6 ˚C to 10 ˚C (Kocsis & Hardcastle, 2010). These simple linear regression 

equations derived from the NARX algorithm can be used to estimate the damping effect 

along vertical intake airways, thus minimizing the errors when predicting the climatic 

conditions at the bottom of intake airways for future underground mines. 

Table 7.6. Comparison of different time series prediction models performance for the shaft #1. 

Time series method R2 MSE 
Error (˚C) 

Average Maximum Minimum 

NARX 0.99 0.123 -0.01 0.58 -0.54 

Nonlinear time series 0.97 0.712 0.04 1.34 -1.39 

Simple linear regression 0.81 0.986 0.08 1.93 -1.58 

 

 

Figure 7.9. Comparison of error estimations based on NARX, nonlinear time series, and simple linear 

regression 
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7.4. Conclusions 

An artificial neural network (ANN) based on nonlinear autoregressive time series 

algorithm with external input (NARX) was used as a novel method to predict Td at the 

bottom of the production and ventilation shafts. The performance of the ANN model based 

on NARX model was excellent in predicting the temperatures at the bottom of the intake 

shafts. However, due to the complexity of the modeling work, the input-output time series 

model was simplified to a linear regression model, which can be easily used to predict the 

temperature at the bottom of the intake shaft at an acceptable level of accuracy. The 

substantial benefits of these simple linear regression equations presented in Table 7.5, can 

be used in conjunction with commercially available mine ventilation or climatic simulation 

programs to predict more realistic temperature values by taking into account the thermal 

damping effect in vertical airways. Furthermore, the damping coefficients (a and b) for the 

production and ventilation shafts could be easily implemented into ventilation and climatic 

modeling programs, thus eliminating the need to incorporate complicated time-dependent 

heat and mass transport algorithms in order to quantify the thermal damping effect in 

vertical airways. A future related study should look at the development of a general model, 

which would take into account the characteristics of the intake airways and the rock thermal 

properties at various underground operations such as shaft diameter, depth, lining material, 

virgin rock temperature and air volume. The same approach presented in this paper can 

also be used to predict the thermal damping effect on the wet-bulb temperature (Tw) at the 

bottom of production and ventilation shafts. 
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Chapter 8 Conclusions 

 

8.1. Objectives 

Heat is a hazard that may underestimated in most mining operations. This is mostly because 

people are unaware of its effects due to less education or lack of it thereof and its salient 

consequences. Heat stress in the underground environment is influenced by numerous 

factors including virgin rock temperature, geothermal gradient and mining equipment. The 

significance of mine workers to maintain relative body comfort in deep hot underground 

mines is of paramount importance. This is because productivity, health, safety and the 

overall performance of the mines largely depend on it. When the underground working 

places become excessively hot, the volume of a mine’s intake air, its temperature and 

humidity can be altered in order to improve the underground climatic conditions.  

Nevada’s underground precious metal mines are becoming gradually deeper while 

employing large diesel powered mining equipment to increase the production rates. The 

ability of ventilation systems to assure appropriate climatic conditions for the underground 

workers will decrease as a function of increasing mining depth and an ever rising level of 

mechanization. Most of Nevada’s underground metal mines are not considered to be hot 

mines due to the fact these mines do not have an extensive spread-out heat problem. 

However, there are several localized areas where temperature and humidity can exceed the 

threshold limit values during development and production operations. Consequently, heat 

may rather be considered a contaminant, which must be reduced by means of redesigning 

the mines’ ventilation system, and as a last resort by employing localized spot cooling 

systems. The main focuses of this research work were to 1. Develop a new methodology 
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to select appropriate heat stress indices for underground mining application 2. Develop 

recommendation regarding best practices for design and use of climatic monitoring systems 

in hot US mines; 3. Identify and quantify the thermal damping effect in underground 

openings using artificial neural network. 

8.2. Research Results 

 Selecting an appropriate heat stress index for underground mines 

A method was proposed coupled to a defined strategy for selecting and recommending heat 

stress indices to be used in underground metal mines in the US and worldwide based on a 

thermal comfort model. The performance of current heat stress indices used in underground 

mines varies based on the climatic conditions and the level of activities. Therefore, by 

carefully selecting or establishing an appropriate heat stress index is of paramount 

importance to ensure the safety, health and increasing productivity of the underground 

workers. This method presents an important tool to assess and select the most appropriate 

index for certain climatic conditions in order to protect the underground workers from heat-

related illnesses. Although complex, the method presents results that are easy to interpret 

and understand than any of the currently available evaluation methods. 

 Best practices for design and use of climatic monitoring systems in hot US mines 

Employing the most effective underground climatic monitoring systems depend mainly on 

the purpose of climatic monitoring, the magnitude of the heat load to be removed, 

monitoring locations and costs. The process of developing a monitoring program includes 

determination of required parameters to be measured, selection of monitoring units, 

identification of key locations to be monitored and the timing of monitoring. However, the 
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challenges are numerous: the key locations are not always accessible, the mine is never 

truly at steady state, there are always unknown temperature fluctuations during the 

monitoring phase, and the measurements can be delayed due to rapid changes, to list a few. 

The lessons learned from the climatic monitoring programs, which were conducted over 

one year at two underground metal mines in Nevada, were discussed. The practices and 

challenges in using continuous climatic monitoring systems in deep and hot metal mines 

was highlighted. Heat generated by various heat sources were quantified and a heat load 

profile was developed for our partner mine in Nevada. The importance of use of continuous 

climatic monitoring systems were demonstrated based on variability of contribution of heat 

generation by major sources as a function of surface temperature. Auxiliary ventilation 

systems in our partner mines were modified in order to maintain the comfort limits for 

underground workers.  

 Quantify the thermal damping effect in underground vertical openings 

There are several occurrences that cannot be captured when simple spot units are being 

used for climatic monitoring purposes. This includes the thermal damping effect, dynamic 

heat exchanges between the ventilating air and surrounding environments and unknown 

sharp increases in temperature during production cycles. These elements are particularly 

important to predict the underground climatic conditions within newly located orebodies 

and in future mines. As air falls down the intake shaft, its lining and the strata will emit 

heat during the night when the incoming air is cool and, on the contrary, will absorb heat 

during the day when the temperature of the air becomes greater than of the strata. This 

cyclic phenomenon, also known as the “thermal damping effect.” will continue throughout 

the year reducing the effect of surface air temperature variation. An artificial neural 
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network (ANN) based on nonlinear autoregressive time series algorithm with external input 

(NARX) was used as a novel method to predict Td at the bottom of the production and 

ventilation shafts. The performance of the ANN model based on NARX model was 

excellent in predicting the temperatures at the bottom of the intake shafts. However, due to 

the complexity of the modeling work, the input-output time series model was simplified to 

a linear regression model, which can be easily used to predict the temperature at the bottom 

of the intake shaft at an acceptable level of accuracy. 

8.3. Research recommendations 

 Employing the most effective underground climatic monitoring systems depend mainly 

on the purpose of climatic monitoring, the magnitude of the heat load to be removed, 

monitoring locations and costs. 

 In hot and humid underground mines, the heat index used for comfort evaluation must 

be carefully selected. This heat index shall provide protection for the mine workers as 

much as possible. The primary objective in selecting a heat stress index is simplicity. It 

is more likely that mine ventilation engineers and the mining crew in general will 

approve a thermal index due, in part, to the fact that the index can be presented in a 

format that they can understand and apply. That is, if the index is simple. 

 On the other hand, a simple thermal index may limit its relevance to a very specific case 

or a localized area. However, the necessity to apply numerous modifications to simple 

indices in order to adjust them for various work conditions, can negate the apparent 

advantage of a thermal index to be directly used to protect the mine workers. 

 Airflow velocities of 1 m/s and 2 m/s, which will guarantee thermal comfort, were 

determined by means of climatic modeling and simulation exercises. Based on the 
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pattern of the results, the authors recommend an optimal airflow velocity of 1.5 m/s 

throughout production workings. 

 In general, forcing auxiliary ventilation system has must be considered over exhausting 

ventilation system because 1. Fresh air is delivered to the working face where workers 

are present, 2. Forcing systems provide increased airflow velocities at the face compared 

to exhausting systems, 3. It is one of the advantages of using a forcing system especially 

when a higher air flow is required at the face, 4. Another advantage of a forcing system 

is that flexible ducting can be used due to positive pressure along the ducting system.   

 When there is a notable gas concentration or dust at the face, an exhausting system is 

preferred as the contaminated air is drawn directly into the ducting system. Air and dust 

filters can also be included within the exhausting system to reduce the arsenic and dust 

concentration. However, the additional pressure drop across the filter and the cost of 

changing the air filter must be taken into account. Increasing the air flow at the 

production heading decreases the heat load and decrease the dilution time of arsenic dust 

concentration at the working faces. 

 When a spot cooling system is required, an exhausting system has an advantage over a 

forcing system. When forcing system is used, spot cooling systems must be placed either 

in the intake airways before the auxiliary fan or close to the immediate face of the dead-

end heading. However, there will be more flexibility in placing spot cooling systems 

when an exhausting ventilation system is used. 

 Assessments of climatic conditions showed that the underground mine environment is 

a rather complex system. The mine is never at steady state and there are always transient 

heat exchanges between the ventilating air and surrounding environments. There are 
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several important occurrences, which cannot be captured when simple spot measuring 

units are used for climatic monitoring purposes. This includes the thermal damping 

effect, dynamic heat exchanges between the ventilating air and surrounding 

environments and unknown sharp increases in air temperature during monitoring 

phases. It is therefore critical to incorporate time and phase changes throughout the 

mine. 

 This study shows that hourly, daily and monthly temperature changes at surface itself 

can produce significant modelling errors. The difference between simulated and 

measured climatic parameters is the result of the dynamic time delay of temperature 

spikes along pathways of the ventilating air due to the thermal damping effect. The 

presence of different heat sources throughout a mine changes the system completely. 

 It is critical to incorporate irregularities into the measured data, so that any unusual 

activities and rapid changes can be taken into account when designing primary and 

auxiliary ventilation systems. There are unknown sharp temperature fluctuation and data 

irregularities at different locations of an underground mine. The temperature 

fluctuations can be due to inflow of gasses from the rib or back, ore oxidation, auxiliary 

fans, mining equipment, groundwater and more. 

 Dynamic heat exchange between the rock and the mine air, similar to the case when an 

auxiliary fan is turned on and off, cannot be calculated by means of standard modeling 

software. The accuracy in predicting the climatic conditions in future underground 

mines is critical, particularly in cases when the environmental parameters are close to 

their threshold limit values (TLV). 
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 There are many conventional mine ventilation and climatic simulation programs 

available to conduct heat studies and predict the climatic conditions in future 

underground mines. Most relevant transport processes for heat and humidity can be 

modeled with any of these software packages. However, short-time variations such as 

hourly or daily and more importantly seasonal temperature changes can induce 

significant modeling errors if the strata heat does not follow a true instantaneous heat 

flux model.   

8.4. Future Research Works 

While much is known about the heat balance of the human body and its tolerance to the 

hot and humid environment, many questions still remain. The effect of heat on worker 

health, safety, and productivity is extremely complex. The behavioral parameters can be a 

very critical rule on the reaction of human body to heat exposure. On the top of that, with 

respect to heat, underground mine environment is complex since the mine is never in steady 

state. The challenges in climatic monitoring are numerous: the key locations are not always 

accessible, the mine is never truly at steady state, there are always unknown temperature 

fluctuations during the monitoring phase, and the measurements can be delayed due to 

rapid changes, to list a few. Future work on heat issues in underground mines may include: 

 Development of dynamic heat load profile in underground mines 

 Development of the thermal management policy for underground mines 

 Study the effect of behavioral parameters on the human body response to heat 

exposure 

 Application of Ventilation on Demand (VOD) control system to decrease the heat load 

in underground environment 
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 Development of a general model to quantify the thermal damping effect, which would 

take into account the characteristics of the intake airways and the rock thermal 

properties at various underground operations such as shaft diameter, depth, lining 

material, virgin rock temperature and air volume. 
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