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Abstract 

Anomalous trichromats have reduced sensitivity to the L-M dimension of color space due 

to the reduced separation between the spectral sensitivities of their L and M cones. Despite 

this, previous work suggests that these observers may perceive the world to be much more 

colorful than their cone sensitivities would predict, potentially because of long-term 

adaptation that amplifies the weakened chromatic signals provided by the cones. Most of 

the evidence for this gain adjustment rests on subjective measures of color appearance or 

color salience. In the present study, we tested for neural correlates of color compensation 

by using fMRI to compare the cortical responses to chromatic stimuli in normal and 

anomalous observers. Thresholds were collected for a total of 7 anomalous trichromats (3 

deuteranomals and 4 protanomals), and 6 color normal controls. Initial results showed that 

chromatic thresholds for the L-M axis did not predict BOLD responses, indicating neural 

compensation in early visual areas. In an additional experiment, we used an attentionally 

demanding task to ensure that top-down influences were limited. We also collected 

retinotopic mapping in order to independently define early visual areas (V1, V2, V3, and 

hV4). In this case, the group-averaged BOLD responses to L-M stimuli were not 

significantly greater than responses predicted by threshold, but individual participants did 

show evidence of compensation. The same was true when responses were normalized to 

responses to S-axis stimuli. Our results thus provide evidence for compensatory 

amplification, but suggest that the degree of compensation varies across individuals.   
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Color perception in anomalous trichromats: Neuroimaging investigations of neural 

compensation for losses in spectral sensitivity 

Introduction 

A central issue in sensory neuroscience and perceptual psychology is how sensory 

systems are calibrated to represent information. Optical and neural properties of the 

visual system vary dramatically between observers, or within the same observer at 

different locations (e.g. central vs. peripheral viewing) or times (e.g. during development 

or aging). Yet observers tend to agree on their perceptual experiences more than their 

sensitivity differences might predict. For example, the lens of older observers is much 

yellower and thus screens the light reaching the retina very differently, yet the stimulus 

that appears white remains very stable as we age (Werner and Schefrin, 1993; Delahunt 

et al., 2004). Such results suggest that visual processes and representations are calibrated 

to compensate for the inherent sensitivity limits of the observer. For instance, the 

perception of white may correspond to the average spectrum we are exposed to, and thus 

remain similar for two observers exposed to the same world, even if their eyes filter the 

spectrum in different ways (Webster and Leonard, 2008). In this project my aim is to 

explore the nature and extent of these compensatory processes in observers with 

markedly different color sensitivity, by testing individuals with color deficiencies. 

Typical color perception in humans is trichromatic because it depends on sensing 

the light with three different types of cone photoreceptors (known as long-, middle-, and 

short-wave receptors (L, M, and S) according to the wavelengths they are most sensitive 

to). The signals in the cones are then compared in color-opponent channels that contrast 

the cone signals, e.g. to detect whether the L or M cone response was stronger.  However, 
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in approximately 7% of the Caucasian male population, the L or M cone is affected, 

creating a color deficiency (MacLeod and Hayhoe, 1974; Neitz and Neitz, 2000; Neitz 

and Neitz, 2011). This can lead to a complete loss of the cone type (dichromacy) or a 

change in spectral sensitivity such that the peak is shifted to near that of the other cone 

(anomalous trichromacy). Examples of the spectral sensitivities for anomalous 

trichromats are shown in Figure 1. The reduced separation between the cones leads to a 

smaller “difference” signal and thus reduced sensitivity to color (Nathans et al., 1986; 

Merbs and Nathans, 1992b, a; Asenjo et al., 1994).  

This reduction in sensitivity results in reduced performance in color vision tasks 

that should be well predicted by the spectral properties of the cones, yet the extent of 

individual deficits seems to vary greatly. Anomalous trichromats’ performance on color 

discrimination tasks can range from essentially dichromatic to nearing performance of 

trichromats (Deeb et al., 1992; Neitz et al., 1996; Sanocki et al., 1997; Crognale et al., 

1998; Shevell et al., 1998). Models attempting to explain the variation seen in anomalous 

trichromats have failed to account for all variations using genotype (Barbur et al., 2008), 

creating a need to find objective measures of anomalous trichromatic color responses. 

Crognale et al. have previously shown that chromatic visual evoked potentials acquired 

from participants with color vision deficiencies provided reasonable diagnostic criteria 

(Crognale et al., 1993), with more severe color deficiencies resulting in higher latencies, 

including differences among AT observers. More recently, Rabin et al. showed that cone-

specific VEPs produce accurate diagnoses of color vision deficiencies, including 

anomalous trichromats (Rabin et al., 2016).  
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Currently, it remains unclear to what extent the world “looks” less colorful to 

anomalous trichromats. Previous work investigating the color responses of anomalous 

trichromats at a perceptual level have indicated that it may be very different than normal 

trichromats. For example,  Müller et al. (Müller et al., 1991) used reaction times as a 

measure of color discriminability. Deuteranomalous observers were asked to judge 

whether two colors were the same or different, and the response times were used to scale 

the perceptual differences using a multidimensional scaling procedure. They found that 

the anomalous trichromats’ reconstructed color spaces were markedly different from 

color normal observers. Similarly, Regan and Mollon (Regan and Mollon, 1997) showed 

in a perceptual grouping task that the relative salience of stimuli varying along the 

affected color axis was reduced compared to color normal observers. 

Despite these deficits, many have theorized that anomalous trichromats may still 

have a richer color experience. First, the difference signals between the cones are very 

asymmetric even in normal trichromats. Specifically, the L and M cones are normally 

separated by only 30 nm compared to more than 100 nm between the peaks of the M and 

S cones. Thus if color percepts were determined by the magnitude of the cone inputs to 

the color opponent mechanisms then all observers should experience reds and greens as 

less salient. Yet perceptually the world appears to vary as much in red and green as blue 

and yellow, or bright and dark (McDermott and Webster, 2012). Second, in normal 

trichromats chromatic sensitivity is higher for L vs. M than S vs. LM signals or 

luminance signals, as if compensated for the reduction in the inherent differences 

(Chaparro et al., 1993; von der Twer and MacLeod, 2001). That is, the L vs. M signals, 

while inherently weaker, may be amplified in the post-receptoral channels. There is also a 
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strong theoretical rationale for these gain adjustments. Each neuron has a limited 

dynamic range of responses, and neurons are thought to be tuned to adjust this range so 

that it optimally represents the range of available inputs (von der Twer and MacLeod, 

2001; Webster, 2011). 

There are intriguing suggestions that these neural compensations also occur in 

anomalous trichromacy. Though Regan and Mollon found reduced salience to L-M 

stimuli in most anomalous observers, for some the L-M salience was nevertheless 

stronger than predicted by their cone sensitivities. More recently, Boehm et al. (Boehm et 

al., 2014) used multi-dimensional scaling to compare the perceptual distances between 

different colors for normal or color deficient observers. Performance on color screening 

tests predicted that the anomalous trichromats should rate colors varying along the L-M 

axis to be on average 4 times less distinct. However, the subjective judgments for the two 

groups instead appeared similar, and thus again very different from the settings predicted 

by their cone sensitivities. 

One mechanism that could account for these compensatory adjustments is sensory 

adaptation, in which neural signals adjust to the average and range of the ambient 

stimulation (Webster et al., 2010). If the contrast is too low, then a neuron may increase 

its sensitivity so that the range of outputs is maintained (MacLeod, 2002; Rieke and 

Rudd, 2009). Whether this affects sensitivity depends on whether the adaptation occurs 

before or after the sites at which noise limits performance. If the adaptation occurs before 

the noise, then it could in principle amplify only the signal, effectively discounting the 

cone sensitivity losses (Figure 2).   
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Alternatively, an adaptive adjustment at later stages might amplify both signal and 

noise, leading to increased responses to red and green even if the sensitivity to these 

colors remains poor. Both types of effects have been observed in anomalous trichromacy 

(MacLeod, 2002).  

However, most of the current evidence for surpathreshold color compensation in 

anomalous trichromats rests on subjective judgments of appearance (e.g. how similar two 

colors appear or their relative salience). Such judgments cannot readily discriminate 

between actual neural response gains vs. criterion effects (e.g. observers may simply be 

judging the colors relative to the range they are accustomed to seeing). Our goal was to 

evaluate color compensation by instead using objective measures of neural gains. 

fMRI has already proven to be a useful measure of chromatic responses and 

adaptive gain. Previous Chromatic responses are well characterized across different 

regions, and different chromatic angles have been shown to elicit distinct BOLD 

responses (Engel et al., 1997; Mullen et al., 2007; Wade et al., 2008; Kuriki et al., 2015; 

Mullen et al., 2015; Johnson and Mullen, 2016). fMRI has also been used to reveal 

potential long-term chromatic adaptation effects to the colors that are statistically more 

likely to appear in the natural environment, i.e. those colors that fall along the daylight 

axis of color space. (Goddard et al., 2010; Stringham et al., 2013; Mullen et al., 2015). 

Selective chromatic contrast adaptation has also been shown as early as V1 (Engel and 

Furmanski, 2001), indicating examination of chromatic responses in early visual regions 

using fMRI would likely give insight into the extent and location of chromatic gain in 

anomalous trichromats. However, surprisingly little is known about the neural responses 

to color in color deficient observers. In particular there have not been studies of the 
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magnitude of neural responses in these observers using modern the neuroimaging 

techniques of fMRI. 

In the present work, I examined both the mechanisms and sites of color 

compensation in anomalous trichromats using fMRI. These individuals provide an ideal 

“natural” experiment for understanding long-term plasticity and calibration in the human 

visual system, by comparing how cortical color responses are scaled between individuals 

who have a lifetime of exposure to similar visual worlds, but viewed through very 

different sensors. 

Methods 

Anomaloscope 

The color vision of all participants was assessed using standard color screening 

techniques, including an anomaloscope. We used a Heidelbert-Multi-Color Anomaloskop 

(OCULUS, inc., Wetzlar, Germany). Participants were asked to match a pure orange light 

of 589 nm (+/- 2 nm, half-width of 10 nm) with a mixture of red (666 nm) and green (549 

nm). The experimenter would select a mixture of red and green and ask the participants to 

attempt a match by only adjusting the brightness of the orange field. The experimenter 

would present different red-green mixtures until a participant’s match range was 

determined. The match range was then used to calculate the anomaly quotient, which was 

used as the diagnostic criterion with the following rules: an AQ of less than 0.7 is 

protanomalous, an AQ range of 0.7 to 1.4 is color normal, and an AQ of greater than 1.4 

is deuteranomalous, where 1 is an equal mixture of red and green, less than 1 is a higher 

proportion of red, and greater than 1 is a higher proportion of green. Dichromats are able 
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to match the orange test field to almost any red-green mixture by adjusting the brightness, 

and are thus easily differentiable from AT observers.  

Participants 

A total of 7 anomalous trichromats were recruited (3 deuteranomalous, 4 

protanomalous, all male), ages 19-42. Color-normal control participants were all UNR 

students, ages 24-38. There were a total of 5 AT participants in experiment 1, and 5 

controls (1 female). There were a total of 5 AT participants (3 repeated) in experiment 2 

(ages 22-42), and 7 controls. One control participant was excluded due to erratic patterns 

of activation, leaving a total of 6 controls in experiment 2 (2 female, ages 24-38). We 

also ran 1 protanopic participant (male, age 32) in the threshold experiment and the high-

attentional control task. Chromatic contrast detection thresholds were collected for all 

control and AT observers except 1 deuteranomalous participant.  

Stimuli 

Stimuli were presented on calibrated computer screens in testing rooms at UNR or 

the fMRI facility at Renown Health Hospital. Thresholds were collected using a SONY 

20SE monitor, with displays controlled by a Cambridge Research Systems (Kent, UK) 

Visual Stimulus Generator (VSG) board, which allowed for high color resolution. 

Retinotopic and fMRI stimuli were displayed on a 32 in. SensaVue (85 Hz refresh rate) 

monitor (Invivo, Inc. Gainesville, FL) situated behind the scanner bore and viewed 

through a head-mounted mirror. The monitor’s maximum visual field was 31 deg. by 19 

deg. Both monitors were calibrated with a Photo Research (Syracuse, NY) PR655 

spectroradiometer, with gun outputs linearized through lookup tables. Colors were 

adjusted to empirically equate their relative luminances for individual observers using the 
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minimum motion technique in order to reduce responses from potential luminance 

artifacts in the stimuli (Cavanagh et al., 1987). Participants were presented with 

counterphasing (1 Hz) radial sinewave gratings (0.28 c/deg., 14.5 deg field) defined by 

chromatic variations along the L/(L+M) or S/(L+M) cone opponent axes. The same 

stimuli were used in the scanner and during the threshold task (Mullen et al., 2007). 

Each chromatic direction was shown at 4 levels of chromatic contrast for a total of 

8 conditions (Figure 3). In experiment 1, the fixation was a black circle that randomly 

flickered at a jittered rate. In Experiment 2, the fixation was a series of numbers from 1 to 

9 that were either black or white. The rate of change was also jittered.  All stimuli were 

produced with the Psychophysics Toolbox (Brainard, 1997) for MATLAB (Mathworks 

Inc., Natick, MA). 

Threshold Procedure 

 Participants were first adapted to a neutral gray background for 1 minute, and then 

completed a minimum motion task to determine isoluminance. The minimum motion 

stimuli consisted of alternating achromatic and chromatic radial sinusoidal gratings that 

were offset in phase. Participants were instructed to adjust the gratings until the stimuli 

no longer appeared to radiate inward or outward. Stimulus luminance was adjusted 

individually for each observer. We then used a 2-alternative forced choice task to 

measure contrast detection thresholds for detecting the gratings. The grating was shown 

in one of two temporal intervals signaled by beeps, and participants pressed a button to 

indicate at which interval the grating appeared. Contrast was varied in two randomly 

interleaved staircases (2 up, 1 down). Each staircase terminated after 10 reversals. The 

average of the last 8 reversals across each staircase was taken as the participant’s 
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detection threshold. S/(L+M) and L/(L+M) contrast thresholds were collected during the 

same session, but across different runs. 

fMRI Procedure 

Scans were acquired on a Philips 3T Ingenia scanner using a 32-channel digital 

SENSE head coil (Philips Medical Systems, Best, Netherlands). Functional data for 

experiments 1 and 2 were obtained using T2*, echo Planar images (2 sec. TR, 180 

volumes, voxel size 2.75x2.75x3 mm3, 36 slices, 55 ms inter slice time, 0 mm gaps). We 

used a block design where a run consisted of 16 blocks of 14 sec. each, interleaved with 8 

sec. fixation-only gaps. Each stimulus type was presented twice per run, and the order 

was counterbalanced across runs. Each run took 360 sec. In experiment 1, all participants 

completed 8 runs. In experiment 2, participants completed 6 runs, reduced from 

experiment 1 to allow time for the collection of retinotopic mapping data. Anatomical 

scans occurred halfway through a session in order to reduce motion artifacts. Anatomical 

scans were collected using T1 weighted images (voxel size of 1x1x1 mm3, 30 sec 

transverse slices, 17 ms TE, 76o flip angle, and 220 x 220 mm2 field of view). Anatomical 

and functional runs were collected in a single session for 12 participants, while the 

remaining 2 participants completed functional runs across two sessions.  

Fixation Tasks 

In Experiment 1, participants completed a simple fixation task to ensure that they 

were responsive and fixating during the stimulus presentation. The black fixation circle 

flickered at random, jittered intervals, and the participants were instructed to make a 

response when a change occurred. In order to further test and control for attentional 
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effects on the BOLD contrast response, in experiment 2 a second set of scans was 

collected using a more demanding fixation task (Kay and Yeatman, 2017). The fixation 

for this task was a number that randomly switched from black to white at a jittered rate, 

while also changing to a random number from 1 to 9. Participants were assigned a 

random pair of number conjunctions and asked to press a button when either number 

appeared (ex. black nine or white 3) (Goddard et al., 2010).  

fMRI Data Preprocessing 

All fMRI data were analyzed using Brainvoyager version 20.4 / BVQX 3.4 (Brain 

Innovation, Maastricht, The Netherlands). Automated intensity inhomogeneity 

corrections were performed on anatomical scans. ACPC landmarks were then identified 

by hand, and each anatomical scan was converted into Talairach coordinate space. 

Functional scans were slice-time corrected to the first slice, and high-pass temporal 

filtering (GLM-Fourier) was set at 2 cycles. 3D motion correction was aligned to the first 

volume of the functional run that occurred closest to the anatomical scan (the reference 

run), and runs with large movement artifacts were excluded from the group analysis. The 

reference run was used to generate transformation coordinates for functional to 

anatomical co-registration. We performed GLMs for each run, using fixation as the 

baseline (Goebel et al., 2006).  

Retinotopic Mapping 

In order to draw the retinotopic-based regions-of-interest, we reconstructed 

anatomical scans into inflated surfaces. Cortex surfaces were generated using 

BrainVoyager’s advanced segmentation tool, which requires upsampling the anatomical 

data to 0.5x0.5.0.5 mm3 resolution. This enables more accurate representations of white 
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matter/gray matter and gray matter/ CSF boundaries. Cortex meshes were then 

reconstructed based on identified boundaries. Following mesh reconstruction, we then 

downsampled back to the original resolution. Each mesh was inflated and smoothed. This 

process is outlined in BrainVoyager’s QX User’s Guide, Version 2.8 (Copyright 2014, 

Rainer Goebel).  

Retinotopic mapping stimuli were flickering color and luminance checkerboard 

wedges (4 Hz), varying in polar angle, covering 45 deg. and spanning a total of 13.5 deg. 

of eccentricity. All participants completed at least two runs of retiniotopic mapping, one 

clockwise and one counter-clockwise (Swisher et al., 2007; Arcaro et al., 2009; Killebrew 

et al., 2015). Polar angle representations were obtained using BrainVoyager’s Linear 

Correlation tool, using either 0 deg. or 180 deg. as reference and a cross correlation lag of 

18. Two reference time course files were created for each polar angle run. The time 

courses were then projected onto an inflated, reconstructed surface. ROIs were defined 

using the reversals of activation, and drawn onto an inflated surface before being 

converted back into volume space. ROIs were identified using standard methods (Sereno 

et al., 1995; DeYoe et al., 1996; Engel et al., 1997; Press et al., 2001; Wade et al., 2002; 

Wandell et al., 2007; Arcaro et al., 2009). For reviews see (Wandell and Winawer, 2011) 

and (Silver and Kastner, 2009). An example of the drawn ROIs for one participant is 

shown in Figure 4.  
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Results 

Thresholds  

Thresholds were collected for 6 out of the 7 AT observers. Another AT observer’s 

threshold data was excluded due to erratic staircase functions. This observer was also not 

included in experiment 2. We also excluded 1 control participant’s data from both the 

thresholds and fMRI analysis, due to erratic BOLD responses. The contrast thresholds for 

6 control and 5 AT observers are shown in Figure 5. As expected, the L/(L+M) 

thresholds were significantly higher for AT than control participants (AT mean = 9.39, 

AT SD = 1.81, Control mean = 1.29, Control SD = 0.25, t(9) = 10.976, P<0.001), while 

the S/(L+M) thresholds were not significantly different (AT mean = 1.77, AT SD = 0.35, 

Control mean = 1.71, Control SD = 0.57, t(9) = 0.221, P = 0.830).  

Experiment 1: Simple Fixation  

Experiment 1 was designed as an exploratory pilot study to assess the relative 

BOLD responses in color normal and anomalous observers.  Scans were measured for a 

total of 10 participants (5 color normal, 2 deuteranomalous, and 3 protanomalous). For 

each participant, we performed a whole-brain GLM contrasting the responses to each 

chromatic grating relative to the interleaved gray field. Activation was limited to early 

visual areas, and the amount of activation was visually similar across groups. Two 

representative examples can be found in Figure 6. Retinotopic mapping was not 

performed for this initial set of data, so BOLD activation was sampled from an 

activation-based ROI in an early visual area. These results are shown in Figure 7, which 

compares the contrast response for normal and AT observers along the L-M and S axes. 

Symbols show the mean settings with standard errors for each group. 
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Fitting Contrast Response Function  

In order to characterize how the responses varied with contrast, we fitted each 

data set with a standard contrast response function (Boynton et al., 1999).   

𝑅(𝑐) = 𝑅𝑚𝑎𝑥 ∗
𝑐(𝑝+𝑞)

(𝑐𝑞 + 𝑐50
𝑞 )

 

Where R is the measured BOLD response, c is the stimulus contrast, and p and q 

are exponents controlling the nonlinearity. These were fixed at p = 0.33 and q = 1.55 

based on previous studies (Boynton et al,. 1999). We then varied Rmax (which controls 

the maximum response) and c50 (which controls the contrast at which the response 

reaches half the maximum) in order to find the values that provided a least-squares fit to 

the average responses for the control group.  The fitted function is shown by the dashed 

gray line in Figure 8, and provided a good approximation to the observed BOLD 

amplitude. 

To assess responses in the anomalous observers, the CRF function for the control 

participants was next rescaled by altering the effective contrast based on the threshold 

ratio for the anomalous trichromats (i.e. the function was re-evaluated with c reduced by 

the ratio of the normal to anomalous thresholds). If no compensation is occurring, the 

BOLD responses for the anomalous observers should follow the CRF adjusted for their 

threshold sensitivity (black dashed line, figure 8). Finally, we also fit the actual BOLD 

responses for the AT observers by varying the contrast scaling of the normals’ CRF. 

Specifically, we again used the same parameters for the normal CRF fits, but varied the 

effective stimulus contrast to find the least squares fit to the anomalous responses. This 

estimate is shown by the red dashed line in Figure 8. 
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Statistical Comparisons 

Based on this analysis, the effective L-M contrast for the AT observers was 44% 

of the controls for the BOLD responses, compared to 14% for the threshold ratios, a 3.1-

fold difference. This implies that the observers were – on average – showing greater 

responses to the L-M stimuli than their thresholds predicted, yet weaker responses than 

the control group, or in other words, partial compensation for their cone sensitivity losses.  

This effect was evaluated by a two-way repeated measures ANOVA, where stimulus 

contrast was within subject, and group (control, AT, or threshold predicted) was between 

subjects. Error terms were based on the variability in the BOLD responses or thresholds. 

There were significant main effects of contrast (F(1,12) = 48.56, P < 0.001), as well as 

group (F(2,12) = 13.234, P = 0.001). There was no interaction effect (F(2,12) = 1.915, P 

= 0.190). Pairwise comparisons between groups revealed significant differences between 

AT vs. control (95% CI, P = 0.025), and AT vs. threshold predictions (CI 95%, P = 

0.024) again suggesting that ATs showed partial but incomplete amplification of their L-

M cone signals.  

Experiment 2: High-Attentional Fixation 

The next experiment was designed to evaluate how the BOLD responses in 

normal and AT observers varied with visual area, and also incorporated the more 

demanding fixation task in order to further minimize attentional influences on the BOLD 

response.  Attention and task can strongly modulate the BOLD signal and alter the 

relationship between amplitude and contrast (Kay and Yeatman, 2017). The high-demand 

fixation task was therefore chosen to further isolate “bottom-up” processing in the color 

contrast responses. This experiment had a total of 12 participants (7 controls, 3 
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protanomalous, and 2 deuteranomalous). Five of the controls and 3 AT observers ran in 

both experiments, while the remaining participants were new. One control observer was 

excluded due to inconsistent BOLD activations across runs and possible motion artifacts, 

leaving a total of 11 participants (6 controls, 3 protanomalous, and 2 deuteranomalous). 

Runs with inconsistent or unusual activation were eliminated as well as runs where 

participants were either not responding or underperforming on the attention task. Using 

retinotopic mapping from independent scans, we performed a region-of-interest analysis 

for areas V1-V4. There was very little activation in areas V2d and V3d, so they are not 

included here. Figure 9 shows percent signal change averaged across participants. Error 

bars represent the standard error of the mean.  

Comparisons across Experiments 1 and 2 

 Anomalous observers PA-01, DA-04, and PA-05 participated in both experiment 

1 (low-attention fixation task), and experiment 2 (high-attention fixation task). In order to 

compare across these two tasks, functional runs were re-aligned with anatomical scans 

used for retinotopic mapping. Figure 10 shows the average BOLD responses for these 3 

AT observers in both the high-attention fixation task and the low-attention fixation task 

for areas V1, V2v, V3v, and V4. We performed repeated measures ANOVAs for each of 

these regions, where contrast and attention tasks were within subject variables. Results in 

V1 do not show a significant effect of task (F(1,2) = 0.068, P = 0.819). The same was 

true in area V2v (F(1,2) = 1.829, P = 0.309), V3v (F(1,2) = 0.778, P = 0.471), and V4 

(F(1,2) = 2.492, P = 0.255).  

 We repeated this analysis for control participants who ran in both studies. 

Following ROI analyses, 1 control subject’s data did not show consistent contrast 



16 

 

responses and was thus excluded. Another control, was excluded from experiment 2 for 

similar reasons. Thus only 3 controls were included in this analysis (Figure 10). In area 

V1 there was not a significant effect of attention (F(1,2) = 1.591, P = 0.334). The same 

was true in V2v (F(1,2) = 9.479, P = 0.091), V3v (F(1,2) = 6.052, P = 0.133), and V4 

(F(1,2) = 0.342, P = 0.618). These results indicate that top-down influences may not have 

differentially affect the BOLD responses of anomalous or control observers to chromatic 

stimuli in the two different fixation paradigms, though it should be noted that this 

conclusion is based on a small sample size.  

Fitting CRF 

We repeated the process from experiment 1 of fitting each data set with a CRF 

(Boynton et al., 1999), and scaling the controls’ CRF by the threshold ratio to produce 

threshold predicted data. Figure 11 shows the results from the contrast response fit for the 

L-M stimuli. The scaling factor that best fit the AT data was 32% in area V1, 34% in area 

V2v, 25% in area V3v, and 32% in area V4. Each of these represents an approximate 2-

fold change from the 14% scaling based on threshold predictions.  

Statistical Comparisons within ROIs 

ANOVA. We used the control data, the AT data, and the data derived from the 

threshold scaled CRF to run repeated measures ANOVAs, where one factor was group 

(control, AT, and threshold predicted data), and the other factor was contrast level (within 

subject). Like Experiment 1, this analysis again showed that BOLD responses were lower 

for ATs than controls in each visual area. However, unlike the preceding experiment, the 

differences between the observed and predicted AT responses in this case did not reach 

significance within any of the areas. The specific results were as follows.   
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The ANOVA for V1 resulted in a significant main effect for group (F(2, 13) = 

13.169, P = 0.001) and contrast (F(1,13) = 48.935, P < 0.001), with no significant 

interaction (F(2,13) = 1.103, P = 0.448). The pairwise comparison between the AT group 

and the control group was significant (CI 95%, P = 0.008), but the comparison between 

the AT and the threshold predictions was not significant (CI 95%, P = 0.09).  

In area V2v, there was a significant main effects of group (F(2,13) = 8.909, P = 

0.004), and contrast (F(1,13) = 26.652, P < 0.001), and no significant interaction (F(2,13) 

= 1.226, P = 0.325). Control vs. AT was significant in area V2v (CI 95%, P = 0.025), but 

AT vs. threshold predictions was not significant (CI 95%, P = 0.142). 

In area V3v, there was a significant effect of group (F(2,13) = 6.899, P = 0.009), 

and contrast (F(1,13) = 37.891, P < 0.001), with no interaction (F(2,13) = 1.3, P = 0.306). 

Control vs. AT was significant (CI 95%, P = 0.015), but AT vs. threshold was not 

significant (CI 95%, P = 0.561).  

In area V4 there was a main effect of group (F(2,13) = 9.068, P = 0.003), and 

contrast (F(20.554, P = 0.001), with no interaction (F(2,13) = 1.688, P = 0.233). AT vs. 

control was significant (CI 95%, P = 0.010), but AT vs threshold predictions was not 

significant (CI 95%, P = 0.326).  

Sign Test. As a second analysis, we also conducted a nonparametric sign test to 

determine whether the BOLD activations were larger than predicted by the thresholds for 

a significant proportion of times. For each region of interest, there were a total of 20 

comparisons. However, this test was again not significant when assessed for each 

individual area [V1 (P = 0.06), V2v (P = 0.41), V3v (P = 0.75), or V4 (P = 0.25)].  
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ROIs as Within Subject Comparison 

ANOVA. As an alternative analysis, we also included ROI as a within-subject 

variable and conducted a 3-way ANOVA. There was a significant effect of group 

(F(2,13) = 15.230, P < 0.001), ROI (F(1,13) = 4.960, P = 0.044), and contrast F(1,13) = 

41.883, P < 0.001). There was a significant interaction between ROI and contrast (F(1,13) 

= 16.983, P = 0.001), but not between contrast and group (F(2,13) = 1.146, P = 0.348), or 

ROI and group (F(2,13) = 2.520, P = 0.119). In pairwise comparisons AT vs. control was 

significant (95% CI, P = 0.003), but threshold prediction vs. AT was not (95% CI, P = 

0.134). 

Sign Test. We also repeated the sign test, this time collapsing across regions. 

There were a total of 80 comparisons (AT observed BOLD – threshold predicted). 51 

were positive, in this case suggesting that the observed BOLD responses were 

significantly larger than predicted (P = 0.01). Figure 13 shows responses from all subjects 

and ROIs plotted against the threshold predictions.  

Comparisons of S/(L+M) Responses 

Similar analyses were conducted to compare the responses of the control and AT 

groups for the S axis patterns. Figure 14 shows the mean BOLD responses for these 

S/(L+M) stimuli. We performed a repeated measures ANOVA comparing activation 

between the AT observers and the control participants, using ROI and contrast as within 

subject variables. There was not a significant effect of group (F(1,9) = 1.055, P = 0.331, 

95% CI, P = 0.331) or ROI (F(1,9) = 0.001, P = 0.982). There was an effect of contrast 

(F(1,9) = 32.55, P < 0.001). Thus as expected AT observers were as sensitive as controls 

and showed similar BOLD activations for the S-cone varying stimuli.  
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Data Normalized to S/(L+M) Responses  

A notable feature of both Experiments 1 and 2 was that the average BOLD 

responses of anomalous observers tended to be larger than in the control observers, 

though as noted above this difference was not statistically significant. Nevertheless, as a 

further comparison of the relative responses across observers,  we normalized the 

L/(L+M) responses where 0 is the response at baseline and 1 is the response at S/(L+M) 

contrast 80, making L-M responses relative to S activation. Figure 15 shows this data, 

and the formula used for normalization is shown here: 

𝑛𝑜𝑟𝑚𝑅 =
𝑅𝑐 − 𝑅0

 𝑅𝑆80 −  𝑅0
 

As in previous analyses, we used the normalized data to fit a CRF to the mean 

control data, and derived a threshold prediction by scaling this CRF using the threshold 

ratio of controls to AT observers. The threshold ratio was 15% (also scaled to S/(L+M) 

responses). We then scaled the CRF of control observers to fit the AT data, deriving 

scaling factors for each region of interest. The scaling factor of control to AT was 24% in 

area V1, 35% in area V2v, 32% in area V3v, and 26% in area V4.  

Statistical Comparisons within ROIs 

ANOVA. We used this data to run two-way ANOVAs for each ROI, again using 

the AT data, the control data, and data derived from the CRF scaled by the AT threshold 

ratio. Overall, normalizing reduced effect sizes and variability, and again did not reveal 

significant group differences between the observed BOLD responses for ATs and the 

threshold-predicted responses. 
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The ANOVA in V1 showed a significant main effect of group (F(2,13) = 20.679, 

P < 0.001) and contrast (F(1,13) = 39.742, P < 0.001). There was not a significant 

interaction (F(2,13) = 1.665, P = 0.227). There was a significant difference between 

control vs. AT (95% CI, sig. = 0.001), but no difference between AT and the threshold 

predictions (95% CI, sig. = 0.248).  

In area V2v, there was a main effect of group (F(2,13) = 7.798, P = 0.006), and 

contrast (F(2,13) = 23.190, P < 0.001), with no interaction (F(2,13) = 1.189, P = 0.335). 

AT vs. control was significantly different (95% CI, P = 0.020), and AT vs. threshold 

predictions was not (95% CI, P = 0.282).   

In area V3v, there was a main effect of group (F(2,13) = 4.072, P = 0.042), and 

contrast (F(1,13 = 17.364, P = 0.001), with no interaction (F(2,13) = 0.656, P = 0.535). 

Control vs. AT was not significant (95% CI, P = 0.067), and AT vs. threshold predictions 

was not (95% CI, P = 0.503).  

In area V4, there was not a main effect of group (F(2,13) = 3.387, P = 0.065), but 

there was an effect of contrast (F(1,13) = 17.176, P = 0.001), and no interaction (F(2,13) 

= 1.279, P = 0.311).  

Sign Test. We again also ran a sign test (AT data – threshold predictions) in each 

region of interest. There was a significant difference in area V1, (P = 0.01), but not in 

area V2v (P = 0.13), area V3v (P = 0.41), or area V4 (P = 0.41). 

ROIs as Within Subject Comparison 

ANOVA. We repeated the ANOVA by adding ROI as a within subject 

comparison. There was a significant effect of group (F(2,13) = 7.787, P = 0.007), ROI 

(F(1,13) = 26.033, P < 0.001), and contrast (F(1,13) = 27.658, P < 0.001), with a 
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significant interaction between ROI and contrast (F(1,13) = 7.558, P = 0.017), but not 

ROI and group (F(2,13) = 2.075, P = 0.165). In Pairwise comparisons there was a 

significant difference between AT observers and controls (CI 95%, P = 0.015), but not 

between AT observers and threshold predictions (CI 95%, P = 0.427).  

Sign Test. In a sign test for the normalized data collapsed across ROIs, a total of 

40 out of 80 comparisons were positive, P = 0.54.  

Comparisons of Scaling Factors.  

Paired t-test. As a still further assessment of compensation, we used data derived 

from scaling the CRF fit to the mean L/(L+M) activation of control participants to fit the 

AT observers. This scaling represents the magnitude of difference between the control 

and AT observers. We performed a paired-samples t-test in each ROI comparing the 

scaling derived from the BOLD signal, and the ratio of L-M threshold for controls vs. AT 

(mean = 0.14, SD = 0.02). There was not a significant difference between the AT scaling 

and the threshold ratio in V1 (mean = 0.40, SD = 0.30, t(4) = 1.844, P = 0.139), V2v 

(mean = 0.46, SD = 0.38, t(4) = 1.915, P = 0.128), V3v (mean = 0.41, SD = 0.37, t(4) = 

1.558, P = 0.194), or V4 (mean = 0.46, SD = 0.53, t(4) = 1.345, P = 0.250). We repeated 

this test, averaging across regions-of-interest (mean = 0.43, SD = 0.31, t(4) = -2.032, P = 

0.112).  

We repeated the paired t-test using the data normalized relative to S/(L+M) 

responses. Again, there was not a significant difference between the scaling of BOLD 

signal from control to AT observers, and the threshold ratios of controls to AT (mean = 

0.15, SD = 0.033) in area V1 (mean = 0.29, SD = 0.24, t(4) = 1.554, P = 0.195), V2v 

(mean = .58, SD = 0.61, t(4) = 1.080, P = 0.341), V3v (mean = .80, SD = 1.33, t(4) = 
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1.080, P = 0.341), V4 (mean = .64, SD = 0.90, t(4) = 1.167, P = 0.306), or when averaged 

across ROIs (mean = 0.58, SD = 0.75, t(4) = -1.241, P = 0.283).  

We also derived ratios of S/(L+M) vs. L/(L+M) for the all participants’ thresholds 

and the BOLD activation in each ROI. The BOLD ratios were derived from scaling the 

S/(L+M) CRF to fit the L/(L+M) data, providing a scaling factor of the relative activation 

of S to L-M. Figure 17 shows this data in log units. We performed t-tests on these ratios. 

There was a significant difference between the threshold ratios of control participants 

(mean = 1.35, SD = 0.46) and anomalous trichromats (mean = 0.19, SD = 0.04, t(9) = -

5.59, P < 0.001). The same t-test was performed for areas V1 (AT mean = 0.25, SD = 

0.07, control mean = 1.09, SD = 0.58, t(9) = -3.149, P = 0.012), V2v (AT mean = 0.54, 

SD = 0.29, control mean = 0.98, SD = 0.58, t(9) = -1.906, P = 0.089), V3v (AT mean = 

0.422, SD = 0.38, control mean = 0.82, SD = 0.49, t(9) = -1.466, P = 0.177), and V4 (AT 

mean = 0.45, SD = 0.43, control mean = 1.09, SD = 1.07, t(9) = -1.237, P = 0.247). There 

was a significant difference between the two groups at threshold and in area V1, but there 

was no significant difference in areas V2v, V3v, and V4. This indicates a larger 

difference between AT and control participants at threshold and in area V1, with groups 

becoming more similar in V2v, V3v, and V4.  

Basis for changes in the CRF 

In the preceding analyses we estimated the AT observer’s CRF by simply 

rescaling the effective contrast of the stimulus for the CRF fit to the mean of the color-

normal observers. However, the CRF could vary in different ways, and in particular could 

reflect a change in specific parameters of the function. For example, variations in Rmax 

represent a vertical rescaling of the response vs. contrast function, while variations in C50 
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reflect a horizontal rescaling. To assess which shift better described the relationship 

between the control and AT responses, we refit the AT responses but this time only 

varied the value of Rmax or C50 in the control CRF to determine which provided a better 

account of the individual AT responses. This was done for each individual and each 

visual area, as well as for the two different normalization criteria (i.e. normalizing the AT 

response relative to the control for L-M and S, or normalizing L-M relative to S). Across 

all conditions (5 observers x 4 visual areas times 2 normalized data sets), the average rms 

error in the fitted AT responses based on rescaling contrast (as we did previously) was 

0.147.  This was nearly identical to the fits obtained by varying Rmax (0.146) since this 

has very similar effects on the CRF. Alternatively, the rms error was reduced to 0.125 

when we instead varied only C50. To assess whether this difference was significant, we 

again used a sign test to evaluate how many of the 40 comparisons resulted in a better fit 

for C50 than Rmax. Excluding ties, this resulted in 26/32 cases where the fit was better for 

the parameter, a proportion that was highly significant (P = 0.0005). The SS error of the 

scaling fit vs. the rMax or c50 fits can be seen in Figure 18. These results are important in 

determining potential mechanisms that could underlie compensatory changes in AT 

individuals, with vertical rescaling associated with responses gain mechanisms, and 

horizonatal shifts associated with contrast gain.  

Individual Observers 

The comparisons thus far were based on mean differences between groups, and 

have low power because of the small sample sizes. In the next set of analyses we instead 

examined the results for individual observers to assess whether some might exhibit 

evidence for compensation.  
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Sign Tests. We first performed sign tests for each individual, this time collapsing 

across ROIs due to the visually consistent patterns across regions in individual 

participants. For each participant there were a total of 16 comparisons (4 contrasts x 4 

ROIs). We did this first for the responses to L/(L+M) contrast (Figure 12). For 3 subjects 

were there was not a significant difference between their BOLD responses and their 

threshold predicted data: PA-01 (P = 0.96), DA-02 (P = 0.77), and DA-04 (P = 0.11). 

However, for two subjects there was a significant effect: PA-03 (P < 0.01) and PA-05 (P 

< 0.01).   

We repeated this test using each individual’s S-normalized responses (Figure 16). 

Again there were 3 subjects with no significant effect: PA-01 (P = 0.99), DA-02 (0.99), 

and PA-05 (0.99). There were also 2 subjects with significant effects: PA-03 (P < 0.01) 

and DA-04 (P = 0.01).  

Notably, 1 subject who showed a significant effect of activation to L-M stimuli, 

no longer showed compensation after the data was normalized to his S-axis response 

(subject PA-05). Another subject did not show an effect of L-M activation, but had an 

effect following data normalization (subject DA-04). 

Dichromatic Observer 

As a control condition, we also tested one dichromatic (protanopic) participant in 

the fMRI paradigm of Experiment 2. PN-01’s data can be seen in Figure 19, where it is 

compared to the average responses for the anomalous trichromats. PN-01’s thresholds 

were 9.14 for the L/(L+M) stimuli and 2.02 for the S/(L+M). These are similar to the 

thresholds we obtained for some of the anomalous observers, though he was diagnosed as 

a protanope based on his anomaloscope settings, in which he accepted all red-green ratios 
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as matches. As expected, the M-cone based BOLD activation for this dichromatic 

observer was substantially weaker than for the ATs, yet surprisingly, his S responses 

were also lower. There were no regions where this participant showed a monotonic 

contrast response function for the L-M stimuli, and the magnitude of the response at the 

highest contrast (80) was no greater than the response to the lowest contrast (10). Thus 

we were unable to fit a reasonable CRF to his data. Overall then, PN-01’s data showed 

relatively little activation to the L/(L+M) stimuli. This provides evidence that our stimuli 

were specifically targeting the chromatic responses in the normal and anomalous 

observers, and thus were not driven simply by potential luminance artifacts in the 

gratings.  

Discussion 

To summarize, we examined evidence for cortical amplification of chromatic 

signals in anomalous trichromats in two different experiments comparing fMRI BOLD 

signals in normal and anomalous observers in early visual areas. The two experiments 

differed primarily in the attentional task and in the localization of the responses to 

different retinotopically defined areas. The first preliminary experiment indicated robust 

compensation for the L-M chromatic response, with the BOLD responses on average 3 

times higher than predicted by the anomalous subjects’ threshold sensitivity. The second 

experiment revealed weaker effects, with an average gain of 2 times the responses 

predicted by the thresholds. The weaker effects for the second condition provide more 

mixed evidence for the compensation hypothesis – with some of the analyses suggesting 

significant amplification while most failing to reach significance. Both experiments also 

clearly agreed in showing that the anomalous responses to the L-M stimuli were 
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significantly weaker than in the normal trichromats. If compensation does occur, these 

seem to strongly indicate that it is not complete, at least for the specific conditions and 

tasks we examined. Nevertheless the two experiments together are suggestive that the 

chromatic signals for the anomalous observers do show partial compensation for the 

weakened chromatic signals provided by their cones. 

It should be emphasized that there are two limitations to this analysis of the group 

differences. First, we were constrained to a very small sample size of roughly 5 observers 

per group, and this obviously limited the power of the group comparisons. Second, there 

were very large differences between the observers, suggesting simple group comparisons 

may not be appropriate. In particular it appeared that only some of the individuals 

showed significant compensation, and this was true for the two different assumptions we 

used for scaling their responses (relative to the controls or to their own S-axis contrast 

response). Analyses of the individual data suggest that out of our 5 AT participants, 2 

showed strong compensation, 2 showed no compensation, and 1 showed compensation in 

only some regions. These results were not significantly augmented by the addition of a 

high-attentional control, indicating that these effects are not due to top-down influences. 

Our results suggest that some but not all AT observers are compensating for their reduced 

sensitivity to chromatic variations through a gain mechanism that likely exists as early as 

V1.  

It is well recognized that anomalous trichromats are a heterogeneous population. 

For example, some ATs show biased anomaloscope matches yet very narrow matching 

ranges. These differences are also evident in the previous studies testing for 

compensation. In Regan & Mollon’s study (Regan and Mollon, 1997), out of 17 AT 
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participants, 2 showed patterns that were nearly identical to the color normal observers. 

However, unlike our data, the two that showed a great deal of compensation were 

deuteranomalous, and performed better on color vision tasks than most anomalous 

trichromats. The participants who showed compensation in our task were not predicted 

by their chromatic thresholds, and included a deuteranomalous and a protanomolous 

observer. This is consistent with results from Boehm et al. (Boehm et al., 2014), who 

showed that some participants with very poor sensitivity still showed evidence of 

compensation in a subjective measure of color appearance. Boehm et al. also showed 

that, though on average AT participants’ were much closer to color normals than their 

thresholds would predict, however 6 out of 14 AT observers fell below 2 standard 

deviations from the normal observers.   

The reasons for the differences between observers are not understood. It is 

possible that chromatic compensation only occurs in some anomalous trichromats, yet a 

further possibility is that some anomalous trichromats would show evidence of 

compensation to a more specialized set of stimuli. In a multidimensional scaling 

procedure, Bosten et al. used specialized stimuli that were differentiable to observers with 

red-green color deficits, but were metameric to color normal participants. The color 

spaces derived from the scaling values were truly two dimensional for AT observers, 

indicating that anomalous trichromats might be expanding color differences via neural 

gain, but this expansion isn’t necessarily evident using stimuli selected for color normal 

observers (Bosten et al., 2005).  

Many of the observers from the present study also participated in a behavioral 

suprathreshold contrast matching task as part of a separate study (Vanston et al., 2017). 
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In this task, observers were presented with two consecutive gratings, and responded in a 

forced choice task to indicate which had a higher contrast, using an achromatic grating as 

a reference and either an L-M or S grating as the test. Surprisingly, in this task the 

suprathreshold matches were on average predicted by chromatic thresholds. These results 

can be seen in Figure 20. In addition, subjects that showed compensation in their BOLD 

signals did not have correspondingly stronger L-M percepts in their suprathreshold 

contrast matches. A further result of Vanston et al. is that the AT observers required 

higher contrast of both the S and the L-M gratings in order to match the reference 

achromatic grating. This differs from our findings that AT observers had higher 

activation to the S-axis stimuli, indicating increased sensitivity compared to color normal 

observers. However, our study did not present participants with achromatic gratings. 

Based on previous work, it would be expected that responses to achromatic gratings 

would not differ significantly from chromatic gratings (Mullen et al., 2007; Mullen et al., 

2015), but this has not been examined in anomalous trichromats. In any case, the basis for 

these differences between the relative strength of chromatic signals we measured 

behaviorally and neurally remain uncertain. 

Our ROI results are consistent with previous work suggesting that there are strong 

chromatic responses in early visual regions (Johnson et al., 2001, 2004; Johnson and 

Mullen, 2016). As in Mullen et al. 2007, (Mullen et al., 2007), chromatic responses for 

L/(L+M) were similar to responses to S/(L+M) stimuli in areas V1-hV4. Additionally, in 

participants that showed strong compensation, there was compensation as early as V1, 

leaving open the possibility that compensation is occurring at some earlier, pre-cortical 

stage, including the retina or LGN. However, when comparing relative activation 
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between S responses and L-M responses, there was a significant difference across groups 

at area V1, and no significant difference in areas V2v, V3v, and V4. This might suggest 

that while individual observers who showed compensation were showing it as early as 

V1, the overall difference in relative activation across AT and control observers was 

more similar in later visual areas, consistent with later sites. Again, though, our analyses 

were mixed in that some group differences pointed to compensation while others did not. 

Lutze et al. has previously shown that achromatic contrast gain in trichromats and 

dichromats is equivalent in parvocellular pathway through LGN (Lutze et al., 2006). 

From this they argued that the geniculate gain was genetically determined and thus not 

affected by experience. However, their results could also be explained by assuming that 

trichromats and dichromats are exposed to the same range of achromatic signals, and thus 

under similar states of cortical adaptation to luminance contrast. This would allow the 

possibility that observers with different chromatic sensitivities could in fact adapt to 

adjust for these differences. 

Other work has also pointed to potentially later sites of compensation. In a very 

recent study, Rabin et al. (Rabin et al., 2017) observed patterns consistent with 

compensation in anomalous trichromats by measuring visual evoked potentials to cone-

isolating stimuli. They found that VEP amplitudes were very similar to VEPs of color 

normal participants, but only when the stimuli were viewed binocularly. Again the reason 

why compensation might require binocular mechanisms is obscure, but this could 

indicate that a more central mechanism with greater interocular transfer or weighting 

relative responses from different locations in the two eyes’ visual fields is necessary to 

see chromatic compensation. However, these results were not measured at multiple 
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contrast levels, which could indicate that his measure of compensation was indicative of a 

saturation of chromatic signal. In this regard we note again that our measurements were 

made with binocular viewing.  

The results of these studies are relevant not only to color but to understanding 

adaptation and neural calibration more generally, for the patterns and mechanisms of 

plasticity appear to be very similar across sensory levels and modalities. Testing these 

effects in color deficiencies are again an ideal context because these deficiencies are 

prevalent and provide a natural experiment for gauging how far and in what ways the 

visual system can overcome a sensitivity loss. The results will also have important 

clinical implications. Recent studies have demonstrated the potential of gene therapy for 

“curing” color blindness, by introducing a novel photopigment gene into dichromatic 

primates (Mancuso et al., 2009). These primates expressed the photopigment in their 

receptors and became trichromatic as assessed by color screening tests. Clinical trials of 

this gene therapy are planned to begin soon, but virtually nothing is known about how or 

how well individuals will adapt to the changes in their color vision. Future studies in this 

area will provide novel first steps in understanding and predicting the dynamics of 

adjustments for a change in color sensitivity. 
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Figures 

 
Figure 1. Example of shifted cones in anomalous trichromacy, from (M. Neitz & Neitz, 2000). A) 

The sensitivity spectra for each of the three cone types in a trichromat. B & C) The three cone 

types present in deuteranomalous and protanomalous individuals. 

 

 

 
Figure 2. A) An original color image. B) The image as seen by a protanomalous observer 

assuming adaptation only in the cones to match the average spectrum. C) The image assuming 

contrasts are rescaled by post-receptoral gain. Figure from (Webster et al., 2010). 
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Figure 3. fMRI stimuli, top two rows are the L/L(+M) gratings and the bottom two are the 

S/(L+M) gratings. Each was presented at 4 contrast levels, 80, 40, 20, and 10 in units of nominal 

multiples of threshold. These radial sine wave gratings were also used in collecting detection 

thresholds.  
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Figure 4. An example of ROIs for 1 observer (C-02) on an inflated brain. 

 

 

 

 

Figure 5. Raw threshold results for the two chromatic axes, represented in nominal multiples of 

threshold. The x-axis is subject number, with control participants in gray.  
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Figure 6. Whole brain GLM (contrast: all conditions greater than fixation), for two 

representative observers. C-03, control observer. DA-04, deuteranomalous observer. 

 

 

 

Figure 7. fMRI results from Exp. 1, Simple Fixation task. Shown here is all activity greater than 

baseline using a GLM from an activation-based ROI in early visual cortex, and averaged across 

observers. Error bars represent the standard error of the mean. 
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Figure 8. Solid lines are the BOLD responses from Exp. 1, simple fixation task. The dashed lines 

are CRFs fitted to the data. The black, dashed line is the CRF of the control data, scaled to the 

threshold ratio of control to AT. Red are the L/(L+M) data, and blue are the S/(L+M) data.    
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Figure 9. Continued on next page.  
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Figure 9. The mean responses at each contrast level in percent signal change for Exp. 2, the 

high-attentional fixation task. Each row is activation in a region of interest, combined across the 

left and right hemispheres (V1, V2v, V3v, and V4), column 1 shows response to L/(L+M)  stimuli, 

and column 2 shows activation to S/(L+M) stimuli.  

 



45 

 

 

 

Figure 10. Continued on next page.  
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Figure 10. The BOLD response to L-M stimuli for AT observers and controls, from Experiment 1 

(low attention) and Experiment 2 (high attention) to L/(L+M) stimuli. Only observers who 

participated in both experiments are included here. 
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Figure 11. Each plot shows the activation for a region of interest (V1-V4) for the L vs. M stimuli. 

The solid lines are the data, and the dashed lines are the fitted CRF functions. The gray is the 

control data, the red is the anomalous trichromat data, both averaged across observers. The 

black, dashed function is the CRF fitted to the control data, scaled using the threshold ratio of 

anomalous trichromats to controls.  
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Figure 12. Individual plots for each AT observer (row), and ROI (column). The AT observer's 

data is in red, and the control data is in gray. Solid lines represent the BOLD respones and 

dashed lines are the best fit CRF. The black line is the threshold prediction for each AT observer.  
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Figure 13. Responses for each individual and ROI plotted against threshold predictions derived 

from the threshold ratio. Data falling above the solid line indicate responses where data was 

greater than predicted by the thresholds. 



50 

 

 

Figure 14. Each plot shows the activation for a region of interest (V1-V4) for the S/(L+M) 

stimluli. The solid lines are the BOLD repsonses averaged across participants, and the dashed 

lines are the fitted CRF functions. The gray is the control data, the blue is the anomalous 

trichromat data, both average across observers.  
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Figure 15. Each plot shows results from a region of interest analysis (V1-V4) for the L/(L+M) 

data, normalized to the S/(L+M) data, where the response to S/(L+M) at contrast 80 is 1 and the 

baseline is 0. The solid lines are the actual data averaged across participants, and the dotted 

lines are the best fit CRF (green is AT, and gray is control). The black line was derived using the 

constants from the control data, scaled by the threshold ratio of AT to control. 
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Figure 16. The individual data, renormalized to each participants’ S/(L+M), contrast 80 

response. Rows are the individual data for each AT participant, columns are the regions of 

interest (V1-V4). “DA” indicates deuteranomalous and “PA” indicates protanomalous. 
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Figure 17. Threshold ratios (L/(L+M) vs. S/(L+M)) and scaled MRI activation ratios (L/(L+M) 

vs. S/(L+M)) for individual observers (x-axis). A ratio of 1 would indicate equal responses for the 

L-M and S axes.  
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Figure 18. SS error of the scaled fits from controls to AT observers, vs. the scaled fits derived 

from modulating either rMax (red) or c50 (blue). 
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Figure 19. Continued on next page.  
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Figure 19. Activation to chromatic contrast levels for one protanopic participant, as well as the 

mean activation across AT observers for areas V1, V2v, V3v, and V4. Absent bars indicate no 

significant activation above baseline. As in earlier graphs, the left column shows activation to the 

L/(L+M) stimuli, and the right column shows activation to the S/(L+M) stimuli.  
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Figure 20. Results from Vanston et al., 2017. Suprathreshold contrast matches were consistent 

with predictions based on AT thresholds.  

 


