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Abstract

It is necessary for a mobile robot to be able to efficiently plan a path from its

starting or current location to a desired goal location. This is a trivial task when the

environment is static. However, the operational environment of the robot is rarely

static, and it often has many moving obstacles. The robot may encounter one, or

many, of these unknown and unpredictable moving obstacles. The robot will need to

decide how to proceed when one of these obstacles is obstructing it’s path. A method

of dynamic replanning using RRT* is presented. The robot will modify it’s current

plan when an unknown random moving obstacle obstructs the path. In multi-robot

scenarios it is important to efficiently develop path planning solutions. A method

of node sharing is presented to quickly develop path plans for a multi-robot team.

Various experimental results show the effectiveness of the proposed methods.
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Chapter 1

Thesis Introduction, Contribution,

and Organization

1.1 Introduction

Path planning has been one of the most researched problems in the area of robotics.

The primary goal of any path planning algorithm is to provide a collision free path

from a start state to an end state within the configuration space of the robot. Prob-

abilistic planning algorithms, such as the Probabilistic Roadmap Method (PRM) [1]

and the Rapidly-exploring Random Tree (RRT) [2], provide a quick solution at the

expense of optimality. Since its introduction the RRT algorithm has been one of the

most popular probabilistic planning algorithms. The RRT is a fast, simple algorithm

that incrementally generates a tree in the configuration space until the goal is found.

The RRT has a significant limitation in finding an asymptotically optimal path,

and has been shown to never converge to an asymptotically optimal solution [3]

[4]. There is extensive research on the subject of improving the performance of the
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RRT. Simple improvements such as the Bi-Directional RRT and the Rapidly-exploring

Random Forest (RRF) improve the search coverage and speed at which a single-query

solution is found. The Anytime RRT [5] provides a significant improvement in cost-

based planning. The RRT* algorithm provides a significant improvement in the

optimality of the RRT and has been shown to provide an asymptotically sub-optimal

solution [3].

Since the introduction of the RRT* algorithm, research has expanded to discover

new ways to improve upon the algorithm. Research includes adding heuristics [6] [7]

or bounds [8] to the algorithm in order to maintain the convergence of the algorithm

but reduce the execution time. Additional research attempts to guide the algorithm

through intelligent sampling [9], or guided sampling through an artificial potential

field [10].

In many scenarios the operational environment is rarely static. The path from

a single query plan will often be obstructed during execution. For that reason the

topic of replanning is very important to robotic path planning. It is not feasible to

discard an entire search tree and start over. One method is to store waypoints and

regrow trees called the ERRT [11]. Another method (DRRT) is to place the root of

the tree at the goal location, so that only a small number of branches may be lost or

invalidated when replanning [12]. The Multipartite RRT maintains a set of subtrees

that may be pruned and reconnected, along with previous states to guide regrowth.

It is essentially a combination of DRRT and ERRT [13]. More recently the RRT*

algorithm has been incorporated into replanning. RRTX is an algorithm that uses

RRT* to continuously update the path during execution [14]. The RRTX is able to

compensate for instantaneous changes in the static environment which is outside the

scope of this work.

Research on multi-robot teams has increased in recent years. These multi-robot
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teams are accomplishing tasks from cooperative sensing [15, 16], formation control

[17–21] and target tracking and observation [22]. In a multi-robot scenario it may be

important for each robot on the team to quickly develop a path plan. If path plans

are found quickly then more time may be spent executing tasks, rather than planning

to execute tasks.

1.2 Motivation

The motivation of this thesis is to study robotic path planning in a complex 2-

Dimensional (2-D) environment with unknown random obstacles. This environment

is intended to be similar to real world scenarios. A static or predictable environment

is not representative to the real world. Often, the real world is unpredictable and

full of randomly moving obstacles. A robot moving within the real world will need

to be able to quickly develop a plan and modify that plan to avoid colliding with

the obstacles. Ideally the plan to avoid obstacles would maintain the optimality of a

single query path plan. Often more than one robot will be moving throughout the

environment. This work also studies a scenario where multiple robots share path

planning information. Though many algorithms exists; these scenarios are studied

using two popular robot path planning algorithms, the RRT and RRT*.

1.3 Contribution

The contribution of this work contains three parts. The first part is the comparison

of the RRT versus RRT* algorithms in a complex static 2D environment. The second

part is the method using the RRT* algorithm for replanning in a dynamic environment

with random, unpredictable moving obstacles. Finally, the third part is the use of
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RRT* for multiple robots to share information about the environment to efficiently

develop a path plan for each robot.

1.4 Organization

The organization of this thesis is as follows: Chapter 2 will provide background in-

formation on path planning and previous work on the RRT and RRT* algorithms.

Chapter 3 will present the environment setup, analysis and comparison results be-

tween the RRT and RRT* algorithms in the complex static environment. Chapter 4

will present the analysis and results of replanning using the RRT* algorithm. Chap-

ter 5 presents the analysis and results of using RRT* with multiple robots. Finally

Chapter 6 will present the conclusions and future work.
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Chapter 2

Background

2.1 Path Planning and Configuration Spaces

The objective of robotic path, or motion, planning is to find a collision free path

from a starting configuration to an ending configuration. Path planning algorithms

operate on the configuration space of the robot. The configuration space Q is the set

of all possible configurations of the robot. A configuration defines the state of the

robot. For a 2D planar robot that can rotote a configuration would be the robot’s

position and orientation. The configuration space will include both the obstacle space

and the free space. The obstacle space is the set of configurations of the robot where

a collision would occur in the real world. The free space is all configurations that

are not in the obstacle space. When defining the configuration space for the robot

the simplest method is to derive a transformation such that the robot’s configuration

is a single point within the space. This transform is also applied to the obstacles

in the space, the obstacles become regions in the configuration space based on the

transformation applied to the robot.
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When the robot moves from one configuration to another there is a cost associ-

ated with that movement. In a simple 2-Dimensional configuration space for a planar

robot, the cost to go from one location to another location can be measured in Eu-

clidean distance. The cost becomes more complex when the robot has more degrees

of freedom. For a 3-D rigid body that can rotate, the cost cannot be the Euclidean

distance. The cost to go must also account for the swept volume the robot occupies

when rotating about an axis. Cost is what determines the quality of a path in the

configuration space. If a path has very high cost, then the robot may be making too

many unnecessary movements in order to reach the goal location.

2.2 Decomposition and Roadmap Methods

There are many methods for path planning in simple configuration spaces. These

simple methods are built upon manipulation and simplification of the configuration

space. Once the configuration space has been simplified a robot may easily plan

from the start configuration to the goal configuration. One of the simplest ways to

represent the configuration space is an Occupancy Grid. The configuration space is

separated into cells, if a cell has an obstacle within it then the cell is considered part

of the obstacle space, otherwise it is part of the free space. The robot will move from

a start location to a goal location by traversing through the free cells as shown in

Fig. 2.1

Another decomposition method is to use a quad-tree to subdivide the free space.

If an object is within a grid, but does not cover the entire grid square, then the grid

is divided into four smaller grids until the object fills a subdivided grid square. A

sample quad-tree decomposition is shown below in Fig. 2.2. This method allows

the configuration space to be divided exactly on the borders of the obstacles. Grid
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Figure 2.1: The Cell Decomposition Method.

squares marked as obstacles in the quad-tree decomposition will fill an entire grid

square, unlike the Occupancy grid where even a small corner of an obstacle within a

grid square will cause the entire square to be marked as an obstacle.

The Trapezoidal Decomposition, shown in Fig. 2.3, is another method of subdi-

viding the free space of the configuration space. The decomposition involves sweeping

a line through the configuration space. When the line encounters a vertex, whether

an obstacle vertex or configuration space boundary vertex, a line is drawn from that

vertex to any boundary, obstacle or spatial, in both directions. This decomposi-

tion is exact and creates regions whose edges coincide with the obstacle, and spatial

boundary, edges and vertices.

Another style of path planning are the roadmap methods. These methods use

points in the configuration space to form a graph, or roadmap, for the robot to

follow. There are three important properties of roadmaps that must be followed:

Accessible, Connectable and Departable. First, the roadmap must be accessible. For

any starting location within the configuration space there must be a collision free path
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Figure 2.2: A Quadtree Decomposition method.

to the nearest vertex on the roadmap. Second, the roadmap must be connectable.

For any vertex on the roadmap there must be a collision free path to any other vertex

on the roadmap. Finally, the roadmap must be departable. For any goal location

there must be a collision free path from the nearest vertex on the roadmap to the

goal location. The visibility graph is a simple roadmap method where the vertices of

the obstacles in the configuration space become vertices in the roadmap. The edges

are formed by straight lines from each vertex to every other visible vertex, shown in

Fig. 2.4.
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Figure 2.3: The Trapezoidal Decomposition of a simple configuration space.
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Figure 2.4: A roadmap created using the Visibility Graph.

The start and goal locations are then added to the roadmap and edges are added

by straight lines to these locations from each visible vertex. One of the drawbacks with

this method is the inferior edges that are created. Edges will be created that intersect

an interior obstacle vertex rather than extend to the exterior obstacle vertices. These

edges can be removed to create an optimal visibility graph. Fig. 2.5 shows how these

interior edges may be removed.

Figure 2.5: A Visibility Graph where the dashed lines represent redundant interior
edges to be removed.
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A Voronoi Diagram is another effective way to create a roadmap in the config-

uration space. The Voronoi Diagram creates edges that are equidistant to a point,

or many points, in a region. Within the configuration space the diagram is created

around the obstacle vertices and edges. The vertices of the roadmap are the intersec-

tion points of the diagram and the edges of the roadmap follow the Voronoi diagram

edges between the obstacles. Fig. 2.6 is an example of the Generalized Voronoi Dia-

gram.

Figure 2.6: A Generalized Voronoi Diagram.

Using the Trapezoidal decomposition method a simple roadmap can be created.

The centroid of each region will be a vertex in the roadmap. This method is shown in

Fig. 2.7. Additional vertices are added at the midpoints of each edge of the region.

The edges of the roadmap are the lines that connect each centroid to the edge points

of the region.

These methods are easy to implement in simple, 2-Dimensional, configuration
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Figure 2.7: Roadmap construction using the Trapezoidal Decomposition of the con-
figuration space.

spaces. Each of these methods becomes prohibitive in more complex, higher dimen-

sion, configuration spaces. For example, in a simple 3D configuration space containing

a single cube obstacle with the start and goal locations on opposite sides of the cube,

the visibility graph would produce edges and vertices on the corners and edges of the

obstacle. However, that method will not produce the optimal path, except in rare

circumstances. In order to produce the optimal path the visibility graph would need

to create a graph edge from the start point to the edge of the obstacle itself. There

are an infinite number of possibilities regarding where to select the vertex along the

edge of the obstacle. It is impossible to generate a visibility graph to determine the

optimal path around the cube.



13

2.3 Probabilistic Planning

Early path planning algorithms such as Djikstra’s algorithm and A* use exhaustive

or heuristic based search methods to find the optimal path in the configuration space

of the robot. These are complete algorithms that are guaranteed to find an optimal

path from a start configuration to the goal configuration, if a path exists. These

methods are prohibitive in higher dimension configuration spaces. A complete algo-

rithm for finding the optimal path from a start configuration to a goal configuration

in three dimensions is NP-Hard. To overcome this difficulty certain concessions had

to be made on the algorithm. The first concession is the implicit definition of the

configuration space, instead of a complete representation. Under this definition the

only information provided about a specific configuration of the robot is whether it

is in the free space or in the obstacle space. The second concession is the complete-

ness of the algorithm. A complete algorithm, such as A* and Djikstra’s algorithm,

guarantees to return the optimal path or no path if none exists. This concession

led to probabilistic algorithms. An algorithm is considered probabilistically complete

if given enough time the algorithm will eventually find the solution. If no solution

exists, the algorithm will not return and provide no information.

2.4 The RRT

The Rapidly-exploring Random Tree (RRT) is a probabilistic path planning algorithm

that is designed to return a solution very fast. This algorithm builds a tree (T = (E,

V )) in the configuration space where the vertices, V , are randomly selected collision

free configurations within the configuration space of the robot. Each new vertex

creates only one edge, E, from itself to the nearest node, or parent node, within the

tree. Fig. 2.8 shows the RRT operate in a small simple 2-D configuration space. The
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starting location is in the lower left corner and the goal location is the upper right

corner. Each red line in the figure represents an edge in the tree, and each asterisk

symbol is a vertex within the tree.

Figure 2.8: A sample RRT showing the structure of the tree. The red lines represent
edges in the tree. Each node is marked by an asterisk. The best path found is marked
by the blue line.

The tree is initialized with one vertex at the starting location of the robot. Lines

1-2 of Algorithm 1 initialize the tree and insert the starting location into the tree. The

tree is formed by selecting random, collision free, samples in the configuration space

then attempting to grow the tree toward that location. The algorithm continues

to sample and add new vertices and edges to the tree until the maximum allowed

number of vertices is, or the goal is found depending on termination conditions of

the implementation. The blue line in Fig. 2.8 shows the best path found by the
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algorithm when the maximum number of nodes was reached. Line 4 in Algorithm 1

selects the random, collision free sample in the configuration space, qrand. Line 5 finds

the nearest neighbor already in the tree from which to grow. Line 6 is the Extend()

function, described in Algorithm 2, which determines if a new edge (branch) can be

added to the tree from the nearest node, qnear, to the new random node, qrand. The

extension length ∆q is a pre-determined value called the growth factor. The growth

factor can have a significant effect on the expansion of the tree. If the growth factor

is small then the tree will have many short branches. If the growth factor is large, or

non-existant, the tree can have long branches. There is a trade off in specifying the

growth factor. If the growth factor is too small then it will take many more nodes

to explore the configuration space and find the solution. If the growth factor is too

large, or non-existant, extending the tree will fail more often, causing the algorithm

to resample a new location. When attempting to grow the tree the new branch is

checked for collisions using the local planner. Line 1 of Algorithm 2 is a simplification

of the local planner. The local planner determines if the edge connecting qnear to qrand

is collision free. If this extension is collision free then a new vertex is created at the

end of the extension, qnew, and is added to the set of vertices, Line 3 in Algorithm

2. The parent of this new vertex will be the nearest node in the tree. The edge

connecting qnear to qrand, is added to the set of edges on Line 4 of Algorithm 2.
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Algorithm 1: T = (V,E)←RRT(qinit)

1 T ←InitializeTree()

2 T ←InsertNode(∅, qinit, T )

3 for k ← 1 to N do

4 qrand ←RandomSample(k)

5 qnear ←NearestNeighbor(qrand,T)

6 qnew ←Extend(qrand, qnear, ∆q)

7 end

Algorithm 2: qnew ←Extend(qrand, qnear, ∆q)

1 qnew = ||qnear − qrand||+ ∆q

2 if ObstacleFree(qnew) then

3 V = V ∪ {qnew}

4 E = E ∪ {qnear, qnew}

5 end

6 return qnew

When the RRT is selecting a random sample occasionally the goal location is

selected as the sample. This will force the tree to try to connect to the goal from

the node closest to the goal. Selecting the goal node as the new sample is based on

a pre-determined probability. It is possible for the tree to have found a node very

close to the goal but not connect to the goal due to this probability. Another option

is to attempt to connect to the goal after each successfully inserted node. Using this

method the algorithm tries to complete the path as quickly as possible. This method

is used in the algorithm shown in Fig. 2.8, and throughout all experiments. This

will also increase calls to the local planner to attempt to add a branch to the tree.
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Additional calls to the local planner will increase execution time.

Figure 2.9: A Sample RRT. The blue line represents the best path found and the
black line represents the first path found by the RRT.

The RRT explores the configuration space and finds a solution very fast. One of

the drawbacks to the RRT is that the algorithm will never converge to an asymptot-

ically sub-optimal solution. The Probabilistic Roadmap Method (PRM), which was

introduced two years prior to the RRT, is an asymptotically sub-optimal algorithm.

An algorithm is asymptotically sub-optimal when it improves the solution as the

execution of the algorithm progresses toward the true optimal solution. Probabilis-

tic algorithms are considered asymptotically sub-optimal because as the algorithm

improves the solution, the probability that the algorithm will continue to improve

approaches zero. The RRT can randomly find a better solution, it will never deliber-
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ately improve upon a solution it has already found. Fig. 2.9 shows how the RRT can

improve but does so randomly. In order to improve on the solution in a meaningful

way, a method of selecting a better path must be built into the algorithm. The RRT*

(RRT-Star) is a modification to the RRT that improves the solution and is able to

produce an asymptotically sub-optimal solution.

2.5 RRT*

The RRT* algorithm was first introduced in 2010 and provides a significant improve-

ment in the quality of the paths discovered in the configuration space of the robot.

The quality of the path is determined by the cost associated with moving from the

start location to the end location. Quality is not determined by the speed at which

any path is found. While RRT* does produce higher quality paths, the algorithm

does have a longer execution time. The longer execution time of RRT* is due to the

algorithm making many additional calls to the local planner in order to continuously

improve the discovered paths. RRT* operates in a very similar way as RRT. The

algorithm builds a tree using random samples from the configuration space of the

robot and connects new samples to the tree as they are discovered. There are two

primary differences between RRT and RRT*. The first difference is in the method

that new edges are added to the tree. The second difference is an added step to

change the tree in order to reduce path cost, using the newly added vertex. Each of

these differences contributes to the improvement of discovered paths over time and

is reason RRT* will converge to an asymptotically sub-optimal solution. Fig. 2.10

shows a sample RRT* in the same simple environment as the RRT above. The space

is similarly explored, however the structure of the tree is very different.

When a random vertex is added to the tree, the RRT will select the nearest
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Figure 2.10: A Sample RRT*. The blue line represents the best path found by RRT*.
The black line represents the first path found by RRT*.

neighbor as the parent for this new vertex and edge. RRT* will select the best

neighbor as the parent for the new vertex. Selecting the best neighbor requires extra

steps before adding a vertex to the tree. While finding the nearest neighbor, RRT*

considers all the nodes within a neighborhood of the random sample. RRT* will

then examine the cost associated with connecting to each of these nodes. The node

yielding the lowest cost to reach the random sample will be selected as the parent,

and the vertex and edge are added accordingly.
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Algorithm 3: T = (V,E)←RRT*(qinit)

1 T ←InitializeTree()

2 T ←InsertNode(∅, qinit, T )

3 for k ← 1 to N do

4 qrand ←RandomSample(k)

5 qnearest ←NearestNeighbor(qrand, Qnear,T )

6 qmin ←ChooseParent(qrand, Qnear, qnearest, ∆q)

7 T ←InsertNode(qmin, qrand, T )

8 T ←Rewire(T , Qnear, qmin, qrand)

9 end

The RRT* algorithm begins in the same way as the RRT. The tree is initialized

and the starting location is added to the tree, see Algorithm 3 lines 1-2. RRT*

also selects random samples in the same way as RRT. On line 5 of Algorithm 3

the algorithm selects the nearest neighbor to the random sample. The function also

selects the set of nodes, Qnear, in the tree that are in the neighborhood of the random

sample qrand. Line 6 of Algorithm 3 is the first major difference between RRT* and

the RRT. Instead of selecting the nearest neighbor as the parent of the random sample,

the ChooseParent() function will select the best parent from the neighborhood of

nodes.
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Algorithm 4: qmin ←ChooseParent(qrand, Qnear, qnearest, ∆q)

1 qmin ← qnearest

2 cmin ←Cost(qnearest) + c(qrand)

3 for qnear ∈ Qnear do

4 qpath ←Steer(qnear, qrand, ∆q)

5 if ObstacleFree(qpath) then

6 cnew ←Cost(qnear) + c(qpath)

7 if cnew < cmin then

8 cmin ← cnew

9 qmin ← qnear

10 end

11 end

12 end

13 return qmin

Algorithm 4 describes the ChooseParent() function. This function must keep

track of which node has the lowest total cost for reaching qrand. At line 1 of Algorithm

4 the nearest neighbor, qnearest, is considered the minimum cost neighbor, or qmin. On

line 2 the cost associated with reaching the new random sample qrand by using qnearest

as the parent is stored as the current best cost, or cmin. The algorithm then searches

the set of nodes in the neighborhood of qrand. The Steer() function on line 4 of

Algorithm 4 is a variation of the Extend() function from the RRT. The Steer()

function will extend the tree but will not add the node and edge to the tree. Instead

the Steer() function will return a path from the nearby node, qnear to the new random

node qrand. If this returned path is obstacle free then a cost comparison is done on

the new path, designated qpath. Line 6 of Algorithm 4 stores the new cost associated
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with going from the current nearby node qnear to qrand. If this cost is lower than the

current minimum cost, then the nearby node becomes the best neighbor, qmin and

this cost becomes the best cost cmin (lines 7-9 of Algorithm 4). If the cost is not

lower than the current minimum cost, then the next node in the neighborhood is

selected. When all nearby nodes have been examined the function returns the best

neighbor. The new random node is inserted into the tree using the best neighbor

from the ChooseParent() function as the parent node in the tree. The next step is

the second major difference between the RRT* and the RRT algorithms. Line 8 of

Algorithm 3 calls the Rewire() function.

Algorithm 5: T ←Rewire(T , Qnear, qmin, qrand)

1 for qnear ∈ Qnear do

2 qpath ←Steer(qrand, qnear)

3 if ObstacleFree(qpath) and Cost(qrand) + c(qpath) < Cost(qnear) then

4 T ←ReConnect(qrand, qnear, T )

5 end

6 end

7 return T

The Rewire() function, described in Algorithm 5, changes the tree structure based

on the newly inserted node qrand. This function again uses the nearby neighborhood

of nodes, Qnear, as candidates for rewiring. The Rewire() function again uses the

Steer() function to get the path, except this time the path will start from the new

node, qrand and go to the nearby node qnear. If this path is obstacle free and the total

cost of this path is lower than the current cost to reach qnear (line 3 of Algorithm 5).
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Then the new node qrand is a better parent than the current parent of qnear. The tree

is then rewired to remove the edge associated with the current parent of qnear, and

add an edge to make qrand the parent of qnear. This is done using the ReConnect()

function on line 4 of Algorithm 5.

The functions ChooseParent() and Rewire() change the structure of the search

tree when compared to the RRT algorithm. The tree generated by the RRT has

branches that move in all directions. The tree generated by the RRT* algorithm rarely

has branches that move back in the direction of the parent. The ChooseParent()

function ensures edges are created and always moving away from the start location.

The Rewire() function changes the internal structure of the tree to ensure internal

vertices do not add unnecessary steps on any discovered path. Fig. 2.11, below, is a

small tree intended to show how the branches of the tree only move away from the

parent node without child nodes that return in the direction of the grandparent node.

The ChooseParent() and Rewire() functions guarantee the paths discovered will be

asymptotically sub-optimal because these functions are always minimizing the costs

to reach each node within the tree.
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Figure 2.11: A sample RRT*. The blue line represents the best path found by RRT*.
The black line represents the first path found by RRT*.
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Chapter 3

Static Environment Experiments

3.1 The Environment

The environment for all of the experiments is a complex 2-D environment that will

also serve as the configuration space for the robot. The environment is complex due

to the number of obstacles. The environment also contains several narrow passages,

which can be difficult for sampling based planners to overcome. There are also several

sub-optimal paths where the algorithm may get stuck. For each experiment the path

cost is measured in Euclidean distance. The environment is also intended to mimic a

potential real world situation where there will be streets or sidewalks and open areas

such as parks and plazas. Fig. 3.1 shows the environment used. The green circle in

the upper left corner is the goal location and the blue circle near the bottom center

is the start location.
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Figure 3.1: The environment and configuration space for the robot.
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3.2 RRT Experiments

The static environment experiments begin with the RRT. The implementation of the

RRT does not use a growth factor, instead the RRT will attempt to connect directly to

the random sample. This means the RRT will aggressively explore the configuration

space. The RRT is also goal oriented, meaning after every new node is inserted into

the tree the algorithm will attempt to connect to the goal from the new node. These

two properties of the algorithm do increase execution time, however the trade off is

rapid and expansive space exploration. Since the environment has some areas with

long straight regions of obstacle free space; the absence of a growth factor allows the

algorithm to create branches reaching up to the full length of these regions.

The first experiment with the RRT was conducted using a maximum of 1000

nodes. Fig. 3.2 shows the result of this experiment. The tree has explored most of

the space and would connect to a goal location anywhere within the configuration

space. This indicates good coverage by the algorithm. The nodes within the tree are

emphasized in Fig. 3.2 to show their coverage. It is also easier to see where branches

overlap or where long winding branches make their way around the obstacles. In this

experiment the RRT found the goal location quickly, but was unable to find a better

path than the first path found. This path has a length of 115.973 units.

The second experiment with the RRT used a maximum of 2000 nodes. This tree

has explored all of the area and reached around every obstacle. Fig. 3.3 shows the re-

sult of the experiment. In this experiment the RRT was able to slightly improve upon

the first path it found. Even with the total nodes double from the first experiment

the RRT struggles to find better solutions. This experiment also has a longer path

length than the first experiment, 138.729 versus 115.973. There are several instances

where the paths backtrack, this is from the randomness of the RRT.
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Figure 3.2: RRT with 1000 nodes.
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Figure 3.3: RRT with 2000 nodes.



30

The third experiment using the RRT has a maximum of 5000 nodes. The tree

explored the entire configuration space and has branches around all of the obstacles,

similar to the second experiment. However, this time the RRT found a good path on

it’s first try and did not find any improvement to the path as the algorithm progressed.

Fig. 3.4 shows the result of the experiment. This time the path length was 117.278

units.

The fourth experiment using the RRT has a maximum of 10000 nodes. The

tree is dense as expected, however it is very inefficient. Fig. 3.5 shows the result of

this experiment. The tree has branches that reach around obstacles from the wrong

direction and block a more optimal path. The best path found in this experiment was

166.883, significantly higher cost than the RRT with a maximum of just 1000 nodes.

The final experiment using the RRT has a maximum of 20000 nodes. Once again

the tree is very dense, it would be difficult to find a point that is not within 1 unit

of a node. The paths found by the algorithm are very inefficient. The tree generated

this time is not better than any of the other experiments. The best path generated

was 135.450. Fig. 3.6 shows the results of the experiment.

Each of the RRT experiments contains an inefficient tree for reaching the goal.

While there are cases where the RRT has a decent path cost, there are often inefficient

branches. In the cases where the algorithm found a better path than the first; the

improvement was very close to the goal. In each experiment the RRT would find a

solution very quickly, within the first few hundred nodes. Since the additional nodes

provide very little improvement over the first path, these extra nodes are a waste of

time.
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Figure 3.4: RRT with 5000 nodes.
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Figure 3.5: RRT with 10000 nodes.
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Figure 3.6: RRT with 20000 nodes.
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3.3 RRT* Experiments

The RRT* experiments were conducted in the same way as the RRT experiments.

There is not a growth factor for extending the tree and the tree is goal oriented, it

will attempt to connect to the goal after each node is added to the tree. As with the

RRT experiments there are expected to be long branches. These branches are often

inefficient, the RRT* Rewire() function will remove these long inefficient branches as

the algorithm executes in favor of shorter, lower cost branches. The algorithm also has

a maximum number of nearest neighbors, this is configurable to the algorithm. This

implementation of RRT* has a maximum number of nearest neighbors equal to 1%

of the total number of nodes. Having the number of nearest neighbors as a function

of the total number of nodes maintains consistency throughout the experiments. If a

fixed number is used it may bias the results based on the total number of nodes. If the

number is too small, then too few neighbors may be examined when there are many

nodes nearby. If the number is too large then too many neighbors will be examined

when the total number of nodes is small.

The first experiment with RRT* is similar to the first with the RRT. Fig. 3.7

shows the results. The best path found has a cost of 110.210. This tree also has 1000

nodes and the nodes are emphasized to show the shape of the tree. In the RRT* tree

the branches tend to move out from a central node within an area of the configuration

space. This is from the selection of the best parent from the nearby nodes. There are

two paths plotted in Fig. 3.7. The black line is the first path found by the algorithm

and the blue line is the best path found.
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Figure 3.7: RRT* with 1000 nodes.
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The second experiment with RRT* contains 2000 nodes, similar to the second

experiment with the RRT. Fig. 3.8 shows the results of this experiment. This tree

also shows how branches are always spreading out from a central location. In this

simulation the tree found a path through the more open spaces of the configuration

space. The optimal path found in this experiment is clearly an improvement over the

first path found. However, the algorithm was not able to find the true optimal path.

The best path found in this experiment has a cost of 105.571

The third experiment with RRT* contains 5000 nodes. Fig. 3.9 shows the results

of this experiment. The path found in this experiment is better than the solutions

found in the previous two. The cost of the best path found was 103.960. This tree

again did not find the optimal path in the configuration space. The expected trend

is a small but steady improvement to the path as more nodes are added to the tree.

The fourth experiment with RRT* contains 10000 nodes. Fig. 3.10 shows the

tree and optimal path generated in this experiment. This tree finds the route for

the optimal path and generated a path along that route. This tree contains double

the number of nodes as the previous experiment. However, the improvement is not

a large step. The cost of the best path in this tree is 103.040, an improvement of

less than 1 unit. Doubling the number of nodes from 1000 to 2000 provided a larger

improvement in the optimal path length than doubling the nodes from 5000 to 10000.

The last experiment with RRT* contains 20000 nodes. Fig. 3.11 shows the results

of this experiment. As in the previous experiment this tree finds the route for the

optimal path. However, the path cost improvement over the previous experiment is

minimal. The cost of the best path in this experiment is 102.920.
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Figure 3.8: RRT* with 2000 nodes.
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Figure 3.9: RRT* with 5000 nodes.
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Figure 3.10: RRT* with 10000 nodes.



40

Figure 3.11: RRT* with 20000 nodes.
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3.4 Comparison Results

The above experiments show one simulation with a search tree of a particular size.

To be sure the optimal path numbers were consistent; both RRT and RRT* were run

100 times using a search tree size of 5000 nodes. During each run the search trees

will find many different paths and a best, or optimal, path. For each simulation run

the path costs are averaged and stored, similarly the optimal path cost for each run

is stored. Fig. 3.12 shows the average path cost over the 100 simulation runs.

Figure 3.12: Average Path Cost for 100 RRT and RRT* simulations.

The average path cost for the RRT* algorithm is very consistent, the average path

cost for the RRT is not. When examining the optimal path cost for each of the 100

simulations, shown in Fig. 3.13, the average path cost is very similar. This is good

for the RRT* algorithm, it is not for the RRT algorithm. These two figures show how

the RRT* algorithm will converge the discovered paths towards an optimal solution.

These figures also prove the randomness of the RRT. There is no convergence with
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the RRT paths. The average path cost is just as inconsistent as the cost of the best

path.

Figure 3.13: Optimal Path Cost for 100 RRT and RRT* simulations.

The experiments conducted demonstrate how the RRT* algorithm will converge

to an asymptotically sub-optimal solution, whereas the RRT algorithm will not. The

trade-off in reaching this asymptotically sub-optimal solution is the number of nodes

needed and the execution time to find the solution. Fig. 3.14 shows the execution

time required for each experiment. The blue line is the execution time of the RRT*

algorithm and the red line is the execution time of the RRT algorithm. The execution

time of RRT is nearly linear, when the number of nodes in the tree is doubled, the

execution time is approximately doubled as well. The execution time of RRT* is

exponential. The additional execution time comes from the many extra calls to the

local planner during the ChooseParent() and Rewire() functions. In the experiments

above there is very little improvement in the path when using 10000 nodes or 20000
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nodes. But, there is a significant increase in execution time. This is where the trade-

off exists in the RRT* algorithm. The path can be improved, but the cost will be

significant execution time and resources.

Figure 3.14: Run times of each experiment.

3.5 Summary

This chapter presented the static environment used for all simulations, the experi-

ments and results using the RRT algorithm and the RRT* algorithm. The exper-

iments using the RRT algorithm demonstrate that adding more nodes to the tree

does not improve the overal performance of the algorithm. The RRT rarely improves

upon the first solution it finds, and when that improvement does occur it is very

near the goal node and provides very little improvement to the overall solution. The

experiments using the RRT* algorithm demonstrate the algorithm’s ability to find an

asymptotically sub-optimal solution. As the number of nodes is increased the quality
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of the solution increases asymptotically toward the optimal path.
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Chapter 4

Dynamic Replanning

4.1 Introduction

A real world environment is not static, and often has many moving obstacles. These

obstacles are often unpredictable, which makes planning tasks to avoid them difficult.

When a moving obstacle is known and is following a known trajectory, the config-

uration space can be modified to account for this trajectory. When the obstacle is

unknown, the robot will need to be able to dynamically determine a course of ac-

tion in order to avoid a collision. In this chapter a method of dynamic replanning is

presented in order to avoid a random obstacle when it is detected by the robot.

4.2 Simulation Environment

For the following simulations the environment remains very similar to the static en-

vironment experiments in the previous chapter. The robot is given a configuration

space from which to build a tree using RRT* and determine the best path to reach the
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goal configuration from the start configuration. During the simulation a few random

moving obstacles are added to the environment, described in the next section. These

obstacles represent a region of the configuration space that would be a collision if the

robot were to enter.

4.2.1 Path Execution

After the initial planning process, the robot begins to execute the optimal path found

by the search tree. The robot selects the next node along the optimal path and sets

a velocity vector to follow the edge to that vertex, see lines 3 and 4 of Algorithm 6.

The robot position is updated based on the robot velocity vector. This process is

described in Algorithm 7 below. When the vertex is reached the robot changes the

velocity vector to move toward the next node, or destination. This process continues

until the robot reaches the goal node. If the robot encounters a random moving

obstacle that is obstructing the path a replan event occurs. This is described in the

following sections.
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Algorithm 6: ExecutePath()

1 SetObsDestination(numObs)

2 SetObsVelocities(numObs)

3 SetRobotDestination()

4 SetRobotVelocity()

5 while robotLocation! = GOAL do

6 UpdateObsLocation(numObs)

7 UpdateRobotLocation()

8 if Replan then

9 DoReplan()

10 end

11 end

4.3 Random Moving Obstacles

The random moving obstacles force the robot to dynamically plan around the obsta-

cle using RRT*. In order for the moving obstacles to move about the environment,

a graph is created to provide the paths. The edges of the graph provide the paths

between the static obstacles, and the vertices of the graph are intersections of the

paths. Upon initialization of the simulation the obstacles are placed at random ver-

tices. The vertices are chosen such that the robot will have a chance to move before

encountering a random obstacle. When the simulation begins the moving obstacles

choose a random adjacent vertex and begins moving toward that vertex, see lines 1

and 2 of Algorithm 6. When the vertex is reached a new random vertex is chosen

and the obstacle moves in the new direction, line 6 of Algorithm 6.
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4.3.1 Random Obstacle Detection

Robots operating in a real world scenario will have sensors, such as a LIDAR, to

detect both static and dynamic obstacles. Sensors are not included in this simulation.

Instead a detection range is placed on the robot. The simulation controls whether

or not a moving obstacle is within the detection range of the robot. When the

positions of both the moving obstacles and the robot are updated by the simulation,

the simulation determines if a moving obstacle is within the detection range of the

robot (lines 7 and 8 of Algorithm 7). If a moving obstacle is within range the Steer()

function is used to determine if any static obstacles are blocking the robot’s line of

sight to the moving obstacle.
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Algorithm 7: UpdateRobotLocation()

1 robotLocation← robotLocation + robotV elocity

2 if robotLocation == robotDestination then

3 robotDestination←GetNextPathLocation()

4 SetRobotVelocity()

5 end

6 while obsIndex < numObs do

7 obsDistance←GetDistance(robotLocation, ObsLocation(obsIndex))

8 if obsDistance < robotRange then

9 obspath ←Steer(robotLocation, obsLocation)

10 if ObstacleFree(obspath) then

11 if IsPathBlocked(obsIndex) then

12 Replan←TRUE

13 end

14 SetObsVisible(obsIndex)

15 end

16 end

17 end

The obstacle must be observed for a minimum of two time steps in order to

determine the direction the obstacle is moving. Once the direction is observed the

robot can determine if the moving obstacle is blocking the path or not, line 11 of

Algorithm 7. If the robot decides the path is blocked, the replanning event begins.
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4.4 Path Replanning

Path replanning begins with the determination of whether or not the moving obstacle

is blocking the path, described in the next section. Algorithm 8, below, lists all the

steps executed during the replanning process. The next step is to find the location

along the optimal path that is beyond the obstacle. Next, the tree generated by RRT*

is modified and expanded in order to find a path around the obstacle. Finally, the

best path around the obstacle is chosen and the execution of this sub-path begins.

Each of these steps is described in the following sub-sections.

Algorithm 8: T ←DoReplan()

1 InvalidateNodes()

2 GetReplanGoalLocation()

3 SetReplanSamplingLimits()

4 Rewire(T , Qall, NULL, qrobot)

5 RRT*(qrobot)

6 SetReplanPath()

4.4.1 Path Obstruction

The method for determining if the moving obstacle is blocking the path is a series of

trigonometric functions using a direction vector from the robot to the moving obstacle

and a comparison between the robot velocity vector and the moving obstacle velocity

vector. Since the configuration space is 2-Dimensional, the inverse tangent can be

used to find the angles of the vectors. To obtain the direction vector to the moving
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obstacle the equation is:

angledirection = atan((Yobs − Yrobot), (Xobs −Xrobot)). (4.1)

Where (Xrobot, Yrobot) is the position of the robot and (Xobs, Yobs) is the position of the

obstacle. This will return an angle in degrees over the range (−180, 180). Similarly

the angle of the robot’s velocity vector can be obtained using the following equation:

angleVrobot
= atan(Vj, Vi). (4.2)

Where Vi and Vj are the X and Y components of the robot velocity vector. Using the

angles from (4.1) and (4.2) the difference can be taken to see if they are similar. If the

absolute value of the difference between the two angles is less than some threshold,

then the robot is moving toward the moving obstacle. Note, the angle difference is

normalized to be in the range(−180, 180) before the absolute value is taken. This is

done for all angle comparisons:

|angledirection − angleVrobot
| < anglethresh. (4.3)

If the robot is moving in the direction of the random obstacle the velocity vectors

are examined. Substituting the obstacle velocity into (4.2) above the angle of the

obstacle velocity can be obtained. Next, the differences between the velocity vectors

is found:

angleVdiff
= |angleVrobot

− angleVobs
|. (4.4)

There are three possibilities from this point. If the angle difference between the veloc-

ity vectors is less than the angle threshold, then the robot and the obstacle are moving
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in a similar direction. Second, if the angle difference between the velocity vectors is

greather than 180 − anglethresh, then the robot and the obstacle are approximately

moving toward each other. Last, if the angle difference falls outside of these ranges

the moving obstacle and the robot are moving in different directions.

For the first case: The robot will simply follow the obstacle, until the obstacle

changes direction, or the path takes the robot away from the obstacle. The robot will

then choose from one of the other conditions. For the second case: The robot quickly

activates a replan event to get out of the way. The random obstacle may move out

of the way on its own, but there is no way of predicting that will occur. Finally, if

the robot and the obstacle are moving in different directions, the robot ignores the

obstacle unless it gets too close. This third condition catches the event that the robot

moves out from a corner and a random obstacle is detected very close by. This event

is best summed up with the following example: When two people approach a hallway

intersection they will run into each other if they continue on their current course, it

is only when they see each other that they can adjust to avoid a collision.

4.4.2 Establish Replanning Goal Location

The second step during the path replanning event, line 2 in Algorithm 8, is to find

a location that will navigate the robot around the random obstacle. The first step in

this process is to invalidate any node within the tree that is currently in a collision

state with the moving obstacle. The only exception is the goal location of the optimal

path. After this step an assumption had to be made to simplify and speed up the rest

of the replanning process. The assumption is that the robot is currently following

the best path in order to reach the goal location and should return to this path after

the moving obstacle is avoided. Using this assumption the nodes along the optimal

path are examined. If a node is in a collision state with the obstacle, the nodes
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immediately following are candidates to be the replan goal location. The node on the

current path that is immediately following the node that is closest to the obstacle,

without colliding, will be the replan goal location.

4.4.3 Search Tree Modification

The third step in the path replanning process is to modify the original search tree in

order to find a way around the moving obstacle. First a node is added to the tree

at the robot’s current location. Then every node is rewired such that the robot’s

current location becomes the parent of that node, if there is a collision free path

between them. Using the distance to the replan goal node as a metric, a sampling

area is established, line 3 in Algorithm 8. New nodes are then sampled within this

area and added to the tree using RRT*. Since there are already many nodes in the

tree only a small number will need to be added. However, the number of nearest

neighbors used during the ChooseParent() function and the Rewire() function is

increased. This increase allows each new node to direct the existing tree toward the

replan goal location.

4.4.4 Sub-path Selection and Execution

When the search tree modification is complete the best path to the replan goal location

is found. Then using the same method as before; the next node along the path is

chosen and the velocity vectors are set to move the robot toward that location. When

the robot reaches the replan goal location, the execution of the original optimal path

resumes. If the robot encounters another moving obstacle and determines the path is

obstructed again. The replanning is repeated, however the replan goal location will

always be a node on the original optimal path.
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4.5 Results

The method described above provides the robot a useful way to avoid a random

mobile obstacle while executing an optimal path from one location to another. The

simulation results shown below demonstrate the robot’s ability to plan a path around

the moving obstacle and reach the goal. Using RRT* during the replanning step

allows an efficient path to be found to avoid the moving obstacle and continue on

the original optimal path. Since the obstacles move randomly, it is possible for the

robot to execute the optimal path and never be obstucted by a moving obstacle. Only

examples where the robot did encounter these obstacles are shown.

The first simulation example has a search tree containing 2000 nodes. Although

the path is suboptimal, the robot will assume the path is the optimal path. Fig. 4.1

shows the search tree and the optimal path found, similar to the figures in the previous

chapter. The moving obstacles are placed randomly within the configuration space,

at the beginning of the simulation.
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Figure 4.1: Search tree from the first simulation. The blue line is the optimal path
found by the search tree. The black line was the first path found.
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When executing this path the robot encounters two random obstacles near the

center of the configuration space. These obstacles are off the path and moving away

when first observed by the robot. However, one obstacle moves back across the path

and obstructs the robot. The robot triggers a replanning event at this time. A

second obstacle is nearby and can be seen by the robot and must be considered when

replanning. Fig. 4.2 is an image from the path execution showing when the robot

started a replan event. Following the replanning steps in Algorithm 8, the robot will

select a goal location, then modify the search tree to avoid the obstruction.

The next step in the replanning process is to modify the current search tree.

This modification changes the original search tree from one that branches out from

the starting location, to one that branches out from the robot’s current location.

Fig. 4.3 shows the full modified search tree. When comparing the original search tree

to the modified one, the original branches that lead out from the start location still

exist. However, there is now a disconnect from those branches to the branches formed

during the replanning modifications. There is an empty region within Fig. 4.3. This

region is where the random moving obstacles can be seen by the robot. The abscence

of branches within this area shows the robot has considered this space as obstacle

space, rather than free space.

When the robot reaches the replanning goal location the original path can resume.

In this simulation the robot avoided the obstacle, reached the original planned path

and resumed executing that path until it reached the goal. Fig. 4.4 shows the com-

pleted path. The magenta line shows the actual path followed by the robot. The

sections in blue are from the original path. These sections were skipped due to a

replanning event. Additionally, Fig. 4.4 shows the final positions of the random ob-

stacles. Even though one of the obstacles overlaps the path, it was not obstructed

when the robot executed that section.
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Figure 4.2: A random obstacle, represented by the red square, has blocked the path.
The robot must replan to avoid the obstacle.
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Figure 4.3: The modified search tree.
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Figure 4.4: The conclusion of the simulation. The magenta line represents the actual
path followed by the robot. The blue line in the center are the unexecuted portions
of the optimal path.
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The second simulation example has a tree similar to the first. There is one minor

difference from the first simulation. In the first simulation the moving obstacle initial

positions were randomized. In this simulation the random obstacle initial positions

were selected in a manner to increase the probability the moving obstacles would

block the path. In this simimulation a random obstacle blocked the path three times,

causing the robot to replan around the obstacle. Fig. 4.5 shows the initial plan and

optimal path found by the robot. Fig. 4.6 shows the configuration space with the

random obstacles placed in their initial positions. With the random obstacles placed

in these positions the likelihood of one of them to obstruct the robot is very high.

The results of this simulation were very good. The robot was obstructed three

times during the execution of the path and successfully planned around the moving

obstacle each time. Fig. 4.7 shows the final positions of moving obstacles and the path

followed by the robot. The blue sections shown in the figure are portions of the optimal

path that were unable to execute due to obstruction by a random moving obstacle.

Following the magenta line shows the robot successfully planned and executed a path

around those moving obstacles.

The third simulation has a search tree with a maximum of 5000 nodes. The

obstacle initial positions were selected in order to increase the probability the moving

obstacles would block the path. Fig. 4.8 shows the initial plan and the optimal

path found by the robot. The robot encountered a moving obstacle very early in

the execution of the path. With the additional nodes in the search tree, the robot is

able to quickly find a path around the obstacle. Fig. 4.9 shows the modified search

tree after the robot found a path around the obstacle. The robot then executes the

path to avoid the obstacle and resumes the original path. Fig. 4.10 shows the final

positions of the moving obstacles and the path followed by the robot.
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Figure 4.5: Search tree from the second simulation.



62

Figure 4.6: The configuration space with the random obstacles, represented by the
red squares, in their initial positions.
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Figure 4.7: The conclusion of the second simulation showing the executed path. The
magenta line represents the actual path followed by the robot. The blue line in the
center are the unexecuted portions of the optimal path.
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Figure 4.8: Search tree from the third simulation.
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Figure 4.9: The modified search tree from the third simulation.
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Figure 4.10: The conclusion of the third simulation showing the executed path. The
magenta line represents the actual path followed by the robot. The blue lines represent
unexecuted portions of the optimal path.



67

4.6 Summary

The replanning method described above is an effective way for a robot to plan a path

around a random moving obstacle that has blocked the path. This method reuses

as much of the existing search tree as possible in order to minimize the cost to plan

around the obstacle. The Rewire() function from the RRT* algorithm facilitates the

reuse of the existing tree to quickly find a replanning solution.
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Chapter 5

Multi-Robot Path Planning using

RRT*

5.1 Introduction

In some scenarios the use of multiple robots will accomplish a task far more efficiently

than a single robot. A task may be to obtain sensor readings, or search a building

for people. In these scenarios, each robot will have a starting position and a goal

position. With each robot operating in the same environment, the ability to share

path planning and search tree information is valuable. The following chapter presents

a method of information sharing in which nodes within each robot’s search tree are

shared among nearby robots in order to obtain path planning results more efficiently.
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5.2 Node Description

The nodes, or vertices, used in a RRT search tree must maintain more information

than position. Each must store which node is the parent within the tree. The node

must also maintain it’s cost in order to determine an optimal path. When using

RRT* the nodes may also manage a list of nodes within it’s neighborhood. The list

of nearby nodes is used for rewiring in order to reduce cost when new nodes are added

to the tree.

5.3 Multi-robot RRT*

The extension of RRT* to be used by multiple robots is at it’s core the single robot

version of RRT*. The difference is a few extra steps during the construction of the

search tree. The search is paused in order to share nodes between other robots in

communication range. Algorithm 9, below, describes the method for using RRT*

with multiple robots. The primary functions in the algorithm are the same as the

RRT* functions descibed in Algorithm 3 in Chapter 2. The algorithm will continue to

add nodes until the maximum number is reached, line 3 of Algorithm 9. Adding nodes

to the tree using RRT* is broken up into steps. Each robot will add a predetermined

number of nodes to their own trees using the same method as RRT*, see lines 4-10

of Algorithm 9. The next step is to share the newly added nodes with each robot in

communication range. When this is complete the nodes received from other robots

are added to the tree. The total number of nodes is then updated and the process

continues until the maximum number of nodes is reached.
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Algorithm 9: T ←MultiRobotRRT*()

1 T ←InitializeTree()

2 T ←InsertNode(∅, qinit, T )

3 for k ← 1 to N do

4 for l← 1 to M do

5 qrand ←RandomSample(k)

6 qnearest ←NearestNeighbor(qrand, Qnear, T )

7 qmin ←ChooseParent(qrand, Qnear, qnearest, ∆q)

8 T ←InsertNode(qmin, qrand, T )

9 T ←Rewire(T , Qnear, qmin, qrand)

10 end

11 ShareNodes(T , k, M)

12 AddSharedNodes(T , Qshared)

13 k ←M + ||Qshared||

14 end

5.4 Node Sharing

Node sharing will only be executed with robots that are in communication range of

each other. In the results below the communication is controlled by the simulation.

The nodes are copied from one robot to a buffer of nodes to be used by the neighboring

robot. These nodes are not immediately inserted into the search tree. The robot will

wait until all nodes from neighboring robots are transferred before adding them to

the tree.
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5.5 Adding Shared Nodes using RRT*

The next step is to add the nodes received from neighboring robots to the search

tree. First, the entire buffer of shared nodes is appended to the search tree list of

nodes. Each of these nodes does not have a parent node and is given a large initial

cost. The large cost is used to determine which nodes have a valid connection to the

search tree, and which do not. Next, beginning with the first shared node, each node

is added to the tree using RRT*. Algorithm 10 describes the process for connecting

the shared nodes to the tree.

Algorithm 10: AddSharedNodes(T , Qshared)

1 for qnode ∈ Qshared do

2 qnearest ←NearestNeighbor(qnode, Qnear, T )

3 qmin ←ChooseParent(qnode, Qnear, qnearest, ∆q)

4 T ←Rewire(T , Qnear, qmin, qnode)

5 end

First, the node finds all the nodes within it’s neighborhood, line 2 of Algorithm

10. Next, the node selects the best parent using the ChooseParent() function, line

3 of Algorithm 10. Once the node is connected to a parent node within the tree the

Rewire() function is called, line 4 of Algorithm 10. As described above, the Rewire()

function changes the parent of a nearby node if the cost to reach that node is lower

than it’s current cost. In this case, there may be several nodes in the neighborhood

that are not yet connected to the search tree. Rewire() will connect these nodes by

giving them a parent and a cost. In some cases a shared node will be rewired and be

connected to the best possible parent. When all the shared nodes are added to the
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robot’s search tree the total number of nodes is updated (line 13 of Algorithm 9)

and the algorithm continues.

5.6 Results

The results for The Multi-Robot Path Planning method described were gathered in

the same manner as the static RRT and RRT* comparison results. In the experiments

below there is a 3 robot configuration and a 4 robot configuration. There are also two

different communication patterns. The first communication pattern is an all-to-all

communication pattern where each robot communicates will all other robots. The

second communication pattern is restricted to neighboring robots only. For example,

in the three robot scenario one robot has two neighbors whereas two robots only have

one neighbor. Each robot will build a search tree to satisfy a single-query path plan

from it’s own start and goal location. In the following scenarios the robots will add

100 nodes to their search tree before sharing those 100 nodes with the other robots.

5.6.1 Scenario 1

In the first multi-robot scenario there are three robots with an all-to-all communica-

tion pattern, shown in Fig. 5.1a The robots are allowed a maximum of 1500 nodes in

the search tree. Each robot will reach the maximum of 1500 nodes at the same time.

Since the robots have perfect communication with each other the nodes within each

search tree will be identical. The path costs and parent nodes will be specific to the

individual robot. Fig. 5.2 shows the search trees for each robot.
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(a) All-to-all communication pattern (b) Neighbor only communication pattern

Figure 5.1: 3 Robot Communication Patterns.
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(a) Search tree for robot 1 (b) Search tree for robot 2

(c) Search tree for robot 3

Figure 5.2: Mulit-Robot planning results from the first scenario.
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5.6.2 Scenario 2

The second mulit-robot scenario has three robots that may only communicate with

neighboring robots, shown in Fig. 5.1b. The center robot, or robot 2, in this scenario

completes a 1500 node search tree faster than the other two robots because it is

receiving nodes from two neighbors instead of just one. In order for the other two

robots to reach the maximum of 1500 nodes they must spend extra time adding nodes

using RRT* without receiving any new nodes from a neighbor. Fig. 5.3 shows the

search tree for each robot. The optimal paths found by each robot are slightly worse

than in Scenario 1. Table 5.1 shows the path costs for each three robot scenario.

Robot 2 has the same start and goal locations as the static environment experiments

in Chapter 3. The optimal path found in both scenario 1 and 2 have a similar cost

to the static RRT* experiment using 2000 nodes.

Multi-Robot Path Costs
Robot 1 Robot 2 Robot 3

Scenario 1 112.847 105.185 107.233
Scenario 2 116.652 106.911 108.558

Table 5.1: Path Costs of 3 Robot Scenarios.
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(a) Search tree for robot 1 (b) Search tree for robot 2

(c) Search tree for robot 3

Figure 5.3: Mulit-Robot planning results from the second scenario.
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(a) All-to-all communication pattern (b) Neighbor only communication pattern

Figure 5.4: 4 Robot Communication Patterns.

5.6.3 Scenario 3

The third scenario has four robots with an all-to-all communication pattern, shown

in Fig. 5.4a. In this scenario the robot will add 100 nodes to the tree, then add the

300 nodes received from the neighboring robots. The maximum number of nodes for

this scenario was increased to 1600 in order to complete the node sharing process. If

the maximum was still 1500, the last 100 shared nodes would not be added to the

tree. Fig. 5.5 shows the search tree results.
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(a) Search tree for robot 1 (b) Search tree for robot 2

(c) Search tree for robot 3 (d) Search tree for robot 4

Figure 5.5: Mulit-Robot planning results from the third scenario.
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5.6.4 Scenario 4

The fourth scenario has 4 robots that are only allowed to communicate with their

immediate neighbors, shown in Fig. 5.4b. The communication scheme can be thought

of as a square, where each robot occupies a corner. The edges of the square represent

the communication links. If the robots numbers are counted clockwise around the

square, robot 1 will communicate with robot 2 and robot 4. In this scenario each

node sharing step will produce 300 nodes for the tree. The maximum number of

nodes allowed is 1500 to complete the node sharing process. Fig. 5.6 shows the

search tree results for this scenario.

The overall path quality was better in the third scenario. This was expected since

each tree contains 100 more nodes than the fourth scenario. Table 5.2 shows the

path length results from scenarios 3 and 4. Although the trees in scenario 3 are larger

the paths found in scenario 4 are still comparable. Similar to scenarios 1 and 2, the

optimal path found for robot 2 is similar, or better than, the RRT* static environment

experiments using a search tree of 2000 nodes. Experiments indicate sharing node

information from multiple robots yields equivalent or better paths with fewer total

nodes in an individual search tree.

Multi-Robot Path Costs
Robot 1 Robot 2 Robot 3 Robot 4

Scenario 3 114.254 104.860 106.800 104.864
Scenario 4 117.664 104.877 112.519 113.257

Table 5.2: Path Costs of 4 Robot Scenarios.
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(a) Search tree for robot 1 (b) Search tree for robot 2

(c) Search tree for robot 3 (d) Search tree for robot 4

Figure 5.6: Mulit-Robot planning results from the fourth scenario.
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5.6.5 Multi-Robot Timing Results

In addition to comparing the quality of the paths found, the execution time to build

the search tree was also investigated. In the scenarios above each individual robot

will build a search tree containing the maximum number of nodes. The other option

to build these search trees is to have each robot build it’s own individual search tree.

Table ?? shows the average execution time over 10 runs for each method of building a

search tree for three robots. The time to build these search trees in scenario 1, where

each robot has perfect communication with the other two robots performed the best.

The improvement over building 3 individual search trees is about 10%. Even scenario

2 performed better than building 3 separate search trees. In scenario 2 robot 2 will

complete a 1500 node search tree faster than it’s neighbors because it is receiving

nodes from both neighbors. When robot 2 reaches the maximum of 1500 nodes it

will stop discovering new nodes and therefore stop sharing nodes with neighboring

robots. The other two robots will need to spend extra time completing their search

trees without receiving nodes from their neighbor. The extra time spent completing

the search trees is why scenario 2 has a lower time performance than scenario 1.

3 Robot Execution Times
3 Robot Scenario Average Time (10 Simulations)

3 Individual RRT* search trees 1274.8 sec
Multi-robot Scenario 1 1144.3 sec
Multi-robot Scenario 2 1207.8 sec

Table 5.3: Execution Times of 3 robot scenarios

The timing results for the 4 robot scenarios are similar to the 3 robot scenarios.

Scenarios 3 and 4 execution times are compared to building 4 individual search trees.

Table ?? shows the average execution time over 10 runs for these scenarios. The
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timing for each of the multi-robot node sharing experiments is better than building

a search tree individually for each robot. Scenario 3 does have search trees with

100 more nodes than scenario 4. There are 2 other differences between scenario 3

and scenario 4 that influence the execution time. First, each robot in scenario 3 will

receive 100 nodes from each neighbor for a total of 300 at each node sharing step.

In scenario 4 each robot receives a total of 200 nodes from the neighboring robots.

The second difference is in the number of times nodes are shared between robots. In

scenario 3 the robots will reach the maximum node limit after 4 iterations of lines

4-13 of Algorithm 9. Scenario 4 will reach the maximum node limit after 5 iterations.

Since scenario 3 has a longer execution time, the additional time must be coming from

the additional 100 nodes received by each robot during each node sharing step.

4 Robot Execution Times
4 Robot Scenario Average Time (10 Simulations)

4 Individual RRT* search trees 1663.8 sec
Multi-robot Scenario 3 1597.9 sec
Multi-robot Scenario 4 1312.3 sec

Table 5.4: Execution Times of 4 robot scenarios
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis presented three topics: First, a comparison the RRT and RRT* algo-

rithms. Second, a method of dynamic replanning using RRT* to avoid unknown and

unpredictable moving obstacles. Finally, a method of multi-robot path planning by

sharing nodes between robots. The experiments in the first topic confirm the RRT

algorithm will not converge to an asymptotically sub-optimal solution regardless of

the number of nodes in the search tree. The RRT* static environment experiments

also confirm the RRT* algorithm will converge to an asymptotically sub-optimal so-

lution. There is a trade off when using RRT* in the execution time of the algorithm.

As more nodes are added to the tree the quality of the path will improve, but the

execution time increases exponentially.

The second topic presented is a method of dynamic replanning using RRT* to

avoid unknown and unpredictable moving obstacles. The replanning method leverages

the Rewire() function of RRT* in order to modify and expand the existing search
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tree to avoid a random obstacle when it is detected. This replanning method is a

good first step toward more research in replanning using RRT*.

The last topic presented is a multi-robot path planning method using RRT*. The

method presented is broken into three steps. First, each robot will add nodes to it’s

own search tree. Upon reaching a predetermined number of nodes, each robot will

share the newly discovered nodes with each neighboring robot. Finally, each robot

will add the nodes received from neighbors to the search tree using RRT*. The results

presented indicate that the multi-robot path planning method produces equivalent

quality paths in a shorter execution time than building multiple individual search

trees using RRT*.

6.2 Future Work

There are several options for future research on the topic of dynamic replanning using

RRT*. Future work will research a floating replan goal location to minimize the total

remaining cost to the query goal. Minimizing the modifications to the original search

tree is another area of improvement. This method has only been implemented in a

2-Dimensional configuration space. The algorithm must be expanded and modified

to operate in higher dimension configuration spaces. The simulations up to this point

have been with small numbers of moving obstacles, further research is needed to

determine how the algorithm performs when there are many random moving obstacles.

Multi-robot path planning also requires additional research. Future work will

research increasing the number of robots in the multi-robot team. Additional research

is needed to maximize the number of shared nodes while minimizing execution time

to add the shared nodes to the tree. Another area of future work is comparing multi-

robot results to single robot results when a larger search tree is used by the single
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robot. Finally, more research is needed using sensors to detect the environment and

dynamic communication. Sensors will limit how much of the environment the robot

is able to explore and share with neighboring robots. Dynamic communication will

represent a realistic communication scheme where robots will move in and out of

communication range.
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