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ABSTRACT

iii

Geostatistical reserve estimation techniques are 
divided between those which assume an underlying 
distribution function for the data and those that do 
not. This thesis applies a parametric technique, 
Lognormal Kriging, and a non-parametric technique, 
Probability Kriging, to the structurally controlled 
Manhattan gold deposit located in Manhattan, Nevada. 
The average grade of the deposit is suitable for bulk 
mining and heap leaching, however, substantial 
portions of the deposit are high grade mill ore. 
These high grade pods are small in size relative to 
the dimensions of the exploration drilling grid. 
Therefore, interpretation of the exploration data by 
other than a probabilistic method will give no 
indication of the presence of a high grade pod other 
than the average grade of a block. Probability 
kriging estimates a distribution function for each 
estimated block. The estimated distribution may be 
used to determine average grades and tonnages of 
blocks above specified cutoff grades.
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Chapter 1 Introduction
To properly evaluate a mineral deposit with exploration 

drilling data both the spatial distribution and the 
concentration of mineralization must be identified. Over 
estimation of recoverable reserves may result in the loss of 
investment capital, while underestimation of reserves may 
result in a lost opportunity for investment. The correct 
application of geostatistical theory will result in improved 
reserve estimates, and reduce the risk of error in investment 
decisions.

Development drilling projects have as their objective to 
establish a mineral inventory and a deposit block model. The 
mineral inventory may be best represented graphically in the 
form of a grade-tonnage curve. Such a diagram facilitates the 
selection of cutoff grades for design purposes and economic 
evaluation. The block model is the basis for production 
scheduling and the final mine design. The integration of 
reserve estimation and cost estimation algorithms results in 
blocks being assigned net dollar values. For the purpose of 
long-term mine planning the exact location of each selective 
mining unit (smu) size block with a positive net value that 
lies within a large panel is unimportant. It is adequate at 
the long-term planning stage to have an estimate of the 
distribution of grades within the large panel. From such a 
distribution the tonnage, mean grade, and quantity of metal 
above a given cutoff grade may be calculated.
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1.1 The scope of the problem
The gold-silver deposits currently being exploited in the 

Western U.S. may be generally categorized as follows: 
sedimentary rock-hosted; volcanic rock-hosted or associated 
with hot springs; and deposits associated with intrusive 
rocks. The specific attributes of a given deposit are unique 
unto itself and the reserve estimation problem will be 
similarly unique.

For an estimation technique to reliably estimate the 
reserves of a deposit the technique must not be limited in its 
ability to quantify the spatial variability within that 
deposit. Traditional estimation techniques such as inverse 
distance weighing and estimation by polygons are not intended 
to quantify 3-D spatial variability. Ordinary kriging, through 
the use of the variogram can quantify spatial variability in 
3-D; however, ordinary kriging is limited by the assumption 
that the distribution of values is multivariate normal. 
Deviations from normality by the distribution of grades of an 
exploration data set may result in ordinary kriging producing 
a less than optimal result.

A problem faced in estimating recoverable reserves based 
on samples taken from either a core drill or reverse 
circulation rotary drill is that the support size of the 
sample is much smaller than the minimum size block that can be 
distinguished as ore or waste during the mining process. 
Figure 1.1 indicates the theoretical relationship between
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exploration size blocks, smu size blocks, and samples. 
Following the premise of the permanence of shape hypothesis, 
all support sizes maintain the same mean grade. The variance 
of the exploration size block grades is the least as would be 
expected from the volume-variance relationship, and the 
variance of grades with sample size support is the greatest 
using similar logic. A mine designed on point (sample) support 
data would likely not meet either its production goals of tons 
of ore mined or ounces of gold produced as both the tonnage 
contained in the proportion of smu size blocks above the 
cutoff grade would be less and the average grade of material 
mined would be less. A mine designed on exploration block size 
support data may not be mining the deposit optimally although 
operating at capacity. The proportion of the deposit above the 
cutoff grade would have a higher average grade and more 
tonnage than estimated.

An additional problem encountered in reserve estimation 
is the relative size differential between the 
exploration/development drill grid spacing and the dimensions 
of significant geologic features. In a situation where the 
drill grid spacing is 100 feet x 100 feet and pods of high 
grade mineralization occur in dimensions on the order of 10 - 
20 feet in length, and 5 - 2 0  feet in width, interpretation of 
the exploration data by other than a probabilistic method will 
give no indication other than the average grade as to the 
presence of a high grade pod or internal waste within a given
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area.
Also, gold deposits typically have a positively skewed 

distribution of grades, with a small percentage of high grade 
data residing in the tail of the distribution. Although a 
small percentage of data, frequently these ultrahigh grades 
represent a significant portion of the total contained metal 
in the deposit. The presence of these data often results in 
erratic and essentially useless variograms of the 
untransformed values. If the spatial variability of these data 
deviates substantially from that of the mean of the deposit, 
then use of either traditional estimation techniques or 
ordinary kriging may result in the overestimation of the true 
range of influence of the high grades, and consequently, the 
overestimation of the reserves.

To summarize the problem, the mining industry requires 
that a reserve estimation technique:

1) be capable of using all representative data 
without trimming;

2) provide information as to the spatial 
distribution of intermingled ore and waste 
zones;

3) accurately estimate the grade 
distribution of smu size blocks within an 
exploration size panel.

1.2 The theory of random variables
A mineral deposit may be thought of as a sample space
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with an infinite number of potential sample points. When the 
mineral deposit is sampled a value is assigned to a particular 
location. Associating values over a set of points within a 
sample space is, in effect, defining a function over the 
points of a sample space. By definition, this real-valued 
function, defined over the sample space, is a random variable. 
In the case of a mineral deposit, where the sample space is 
infinite, the random variable is a continuous random variable. 
If establishing the quantity of gold contained per unit mass 
of rock is the desired goal, then at any location ' x' an 
assayed grade may be represented by a random variable Z(x). 
The total set of samples taken for all locations x in the 
deposit defines the distribution function for the random 
variable, Z(x). Because the distribution function takes into 
consideration the entire mineral deposit, it must account for 
both the random nature of the deposit from point to point, as 
well as the overall spatial structure.

If Z(x) is a continuous random variable, the function 
expressed:

X

F(x) =P(Z(x) <=x) = J f (t) dt (1.1)
— oo

where f(t) is the value of the probability density function 
of Z(x) at t, is called the distribution function, or the 
cumulative distribution function of Z(x).

Certain properties hold for the distribution function in 
the continuous case; that is F(- inf.) = 0, F(inf.) = 1, and
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F(a) <= F(b) where a < b.
It follows then that if f(x) and F(x) are, respectively, 

the values of the probability distribution and the 
distribution function of Z(x) at x, then:

P( a <= Z(x) <= b ) = F(b) - F(a) (1.2)
for any real constants a and b with a <= b, and

f (x) = dF(x)/dx (1.3)
where the derivative exists.

In the case of evaluating a mineral deposit we are 
interested in what the value of the random variable Z(x) will 
be at a sampling location. If Z(x) is a continuous random 
variable and f(x) is the value of its probability density at 
x, the expected value of this random variable is

E(Z(x) ) = fx*f(x) dx (1-4)
—BO

where the integral exists.
Among the mathematical expectations that are of importance 

to statistics and have relevance when establishing the 
distribution of grades in a mineral deposit are the mean of 
the distribution and the variance. The mean is defined as the 
first moment about zero of the distribution of Z(x). Moments 
of the distribution of a random variable serve to describe the 
shape of the distribution of the random variable, ie. the 
shape of the graph of its probability distribution or 
probability density. The spread or dispersion of the 
distribution of a random variable is calculated by the second
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moment about the mean. This quantity is known as the variance 
of Z(x). It was shown in Figure 1.1 that the variance is 
instrumental in determining both the tonnage above a given 
cutoff grade and the average grade above cutoff. The variance 
is denoted symbolically,

m
u2=E[(Z(x) -u)2] =J (x-u)2*f(x)dx (1*5)

when Z(x) is a continuous random variable. Similarly, the 
dispersion variance (D2(v/V)) may be denoted:

D2{v/V) =l/vfv £■[ (Zv{x) -u)2dx (1-6)

where V is the total volume of the deposit, and Zy(x) is the 
estimate of the grade at the location x.

The random function in describing the complete set of 
random variables must account for the random element of 
variance from point to point, as well as the overall spatial 
variability. In the case of a mineral deposit the grades are 
distributed partly in a random fashion, and partially 
structured. A relative degree of continuity exists dependent 
upon the mineralizing process which took place. Without this 
continuity estimation of ore reserves would not be possible as 
spatial variability would be purely random.

Given that some of the points within a mineral deposit 
are not independent of one another, then a quantification of 
the measure of the relationship between two points would be of 
value. The relationship between two random variables Z(x^ and 
Z(x2) is called the covariance. Where Z(x.,) and Z(x2) are
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continuous random variables the covariance may be represented
«  oo

ultl=E[ (Z(x1-u1(Z(x2) -u2) ] = J J ( ^ - i^ )  (x2-u2) f(xx,x2) dx1dx2

(1.7)
Note that if there is a high probability that high values of 
Z(x,) go with high values of Z(x2), or if low values of Z(x.,) 
go with low values of Z(x2), the covariance will be positive; 
if there is a high probability that high values of Z(x,) go 
with low values of Z(x2), or vice versa, then the covariance 
will be negative.

The variability of two values z(x.,) and z(x2) at two 
separate locations x1 and x2 may be evaluated on the basis of 
the vector h separating the two points. In geostatistics, the 
variogram is defined as the expectation of the difference 
between the random variables [Zfx,) - Z(x2)]2, and may be 
expressed:

2 y (x1,x2) = E [(Z(Xl) - Z(x2))2]. (1.8)
For statistical inference to be possible, several 

realizations must be available. If the variogram function is 
only dependent upon the vector distance h between x, and x2, 
then statistical inference is possible. This assumption is 
known as the assumption of stationarity, which formally has 
two parts:

1) the mathematical expectation, E(Z(x)) = u, 
exists, and is independent of the support size;

2) for each pair of random variables a 
covariance exists and is dependent upon the
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separation distance:
C(h) = E [Z(x+h) * Z(x)] - u2 (1.9) 

where h is a vector.
The act of sampling, be it by hand, with an exploration 

drill hole, or a production blast hole, fixes the value of the 
random function at a discrete set of points. To estimate any 
of the remaining unsampled locations given the sample data 
involves estimating conditional probability distributions at 
the unsampled locations. The best possible estimator of the 
realization at an unknown point is the conditional 
expectation,

EnZo = E(Z(xe) j Zn, Z2, Z3,--Zn) (1.10)
where Za, a = 1 to n, are the n available data. In a mining 
situation, this estimator is the conditional estimator of the 
true block grades given the values of the exploration drill 
hole composites in the estimation neighborhood. How each of 
the estimation techniques used in this thesis apply 
conditional expectation to estimate the grade and tonnage 
above a particular cutoff is discussed in Chapter 2.
1.3 Previous work

Since the inception of non-parametric estimation 
techniques (Journal, 1984) (Sullivan, 1985) several case 
studies have been made to compare the performance of the 
non-parametric estimators with the parametric methods of 
ordinary kriging (OK), lognormal kriging (LNK), and 
multigaussian kriging (MG).
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Verly and Sullivan (1985) estimated local recoveries with 
point support at the Jerritt Canyon mine using MG and 
probability kriging (PK). They concluded that the estimators 
performed equally well.

Kim et. al (1987a), examined indicator kriging (IK) and 
OK on a Carlin-type deposit with a positively skewed grade 
distribution. IK was used to estimate grade distributions for 
several panels, while OK estimates were limited to average 
grade. The OK blocks were accepted into or rejected from the 
mineral inventory on the basis of the estimated average grade. 
Kim concluded that IK estimates were unbiased, where as OK 
tended to underestimation.

Lindsey (1987) estimated recoverable reserves at the 
Golden Sunlight gold deposit in Montana in a case study 
comparing PK and OK. Exploration data distributions for this 
deposit were also positively skewed. Estimation of global 
recoverable reserves using PK were significantly more accurate 
than when using OK, particularly at higher cutoff grades. 
Lindsey concluded that PK out performed OK on an overall 
basis.

Van Brunt and Taylor (1989) compared PK, OK, and inverse 
distance weighting (IDW) using exploration data to the blast 
hole data refined exploration block model currently in use at 
the Manhattan Mine, which is calculated using a discriminator 
kriging approach. They concluded that PK performed admirably, 
while severe overestimation was encountered with OK and IDW.
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Kim et. al (1987b), compared the distributions of grades 
estimated for individual panels on a bench of a Carlin-type 
gold mine using IK, LNK, and PK. The PK and IK estimators 
calculate these distributions directly, whereas for LNK to 
estimate a distribution an assumption that the distribution of 
grades in each panel is lognormally distributed must be made. 
The study was confined to
comparison of results at only one cutoff grade. The 
distribution of blasthole data within each panel was used as 
the 'actual' database for comparison. Kim concluded that the 
additional variography required to perform PK versus IK was 
warranted given the superior performance. He also concluded 
that if the underlying assumption of lognormality is valid 
then LNK is a viable alternative for reserve estimation.

The calculation of local recoverable reserves requires 
the estimation of the proportion of values above a given 
cutoff grade, ie. the realization of the distribution of the 
random variable Z(x) at a series of cutoff grades. This 
proportion may be thought of as a conditional probability.

Parker and Switzer (1975) investigated the use of 
conditional probability distribution functions in ore reserve 
estimation. Given n data in a neighborhood, the number of ore 
and waste smu's in a large exploration size panel were 
estimated. Further applications included the determination of 
exploration drillhole locations, valuation of mineable blocks 
in pit design, and estimation of ultimate pit limits.
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Journal (1980) discussed the generation of lognormal 
conditional distribution functions as applied to local reserve 
estimation, and the use of cross validation to verify the 
results. In the case of the Imouraren uranium deposit the 
exploration data values were lognormally distributed, and the 
use of a lognormal transformation on the data was therefore 
suitable.

Journal (1983) developed the indicator function, which is 
binomially distributed, with expected value

E {I (x ;z)} = 1 * Prob (Z(x) <= z) + 0 * Prob (Z(x) > z)
= Prob {Z(x) <= z) = F (z), (1.11)

for all x in a stationary field. If the stationary field is 
designated 'A', then the proportion of the distribution below 
a particular cutoff grade may be defined:

e>(A;z) = 1/A f i(x;z)dx (1.12)J A

Where e(A;z) is the realized proportion of the random 
function. Kriging over a series of cutoffs would then define 
a step-wise cumulative distribution of grades. The indicator 
transform forms the basis for the development of the PK 
estimator, which also estimates conditional probability 
distributions.

1.4 Scope and organization
The objective of this thesis is two-fold:

1) To compare the distribution of grades within an 
exploration size panel, as calculated by PK and 
LNK, to the distribution of blasthole grades
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within each panel.
2) To evaluate the usefulness of mapping

conditional probabilities, as calculated from 
exploration data using PK, in identifying the 
spatial distribution of mineralization during 
the exploration/development phase of a mining 
project.

The development of the non-linear estimators used to 
calculate the distributions of grades within exploration size 
blocks is discussed in Chapter 2. A brief history of the 
district and summary of the geology as it is presently 
understood follows in Chapter 3. Chapter 4 covers the 
statistical analysis of the exploration data and the selection 
of cutoff grades. In Chapter 5, covariance as related to 
structural analysis and the estimation of variograms using 
transformed data will be discussed. Variogram models will be 
tested by cross validation. Chapter 6 summarizes the kriging 
results by comparing the distribution
s calculated from exploration data with those derived from the 
blastholes at several cutoff grades. In Chapter 7, mapping 
conditional probabilities derived from exploration data using 
PK will be compared to contoured blasthole maps. The 
application of this technique to the evaluation of mineral 
deposits is discussed.



Chapter 2 Probability Kriaing and Lognormal Kriging
The principles of random variables have been discussed in 

Chapter 1. The introduction of PK, a non-parametric estimator, 
and LNK, a parametric estimator, will be covered in this 
chapter. The end result of using each of these estimators is 
an estimate of the spatial distribution of point support 
grades within a block in the deposit (Figure 2.1). PK 
estimates this distribution directly after simple
transformations of the original data. LNK, based on the 
hypothesis of multivariate lognormality of the data, estimates 
the spatial distribution of an individual block by using the 
kriged mean grade of the block, and the logarithmic variance 
of the samples in the kriging neighborhood plus the kriging 
variance to determine the exact shape of the lognornal 
distribution of grades.
2.1 Probability kriging

PK was developed to fill the need for a simple estimator 
of local recoverable reserves in the mining industry 
(Sullivan, 1985). This estimator utilizes the estimate of the 
conditional probability distribution function to determine the 
average grade and proportion of a block or panel above a given 
cutoff grade.

The conditional distribution function of the random 
variable Z(x), at location x, given 'n' neighborhood data, 
may be denoted:

Fx (Zjn) = Prob (Z(x) <= Z|n).

15

( 2 . 1 )
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FIGURE 2.1: Graphical representation of the spatial 
distribution of point support grades 
within a block.



This relationship forms the basis for the PK estimator.
2.1.1 Indicator and uniform transforms
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The application of PK requires that the original data be 
transformed into two new variables, the indicator and the 
uniform variable. Given the random function, Z(x), defined at 
every point throughout the deposit, a realization of this 
function, z(x), exists. The indicator transform of this 
realization for a specific cutoff grade zc is:

The distribution of this random variable is a Bernoulli 
distribution, a graphical representation of which is given in 
Figure 2.2.

The uniform transform of the realization z(x) is simply

where F(z(x)) is the cumulative distribution function of the 
realizations of the random variable Z(x). The uniform random 
variable has a uniform distribution within the range [0,1]. A 
graphical representation is given in Figure 2.3.

Each of the transforms in PK has a probabilistic notion. 
At a particular location the realization of the random 
variable Z(x) may be z(xa), the indicator and uniform 
transforms of this datum are:

i (z (xa)) = Prob (z(xa) <= xc)
(2.4)

and, u (xa) = Prob (Z (x) <= z(xa)).
Furthermore, each transform varies between 0 and 1, thereby 
reducing the effects of high grade data.

(2 .2 )

u(x)=F(z (x)) , (2.3)
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FIGURE 2.2: Graphical representation of the 
indicator transform.

(Lindsey, 1987)
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2.1.2 The PK estimator and cokriging
The PK estimator, a linear combination of the indicator 

and uniform random variables, estimates the conditional 
distribution function of grades with point support within a 
panel. The equation has the form:

0* (A; ZC) = £  Xji (xy.xc) VjU (xj) (2.5)
j-i J-i

where; 0*(A;zc) is the estimate of the spatial 
distribution for a panel A, given 
the cutoff grade zc,

i (Xj; zc) is the indicator transform of 
the data value at location j , 
given the cutoff grade zc,

U(Xj-) is the uniform transform of 
the data value at location j ,
is the weight applied to the 
indicator transform of the 
data value at location j ,

vj is the weight applied to the 
uniform transform of the data 
value at location j ,

N is the number of data in the 
kriging neighborhood.

The PK estimator is a simple cokriging estimator.
Cokriging is a process in which more than one variable 

can be estimated on the basis of intervariable and spatial 
structure information (Journal and Huijbregts, 1978) ; (Myers, 
1982); (Carr et.al, 1985). The problem of undersampling one 
variable with respect to another led to the development of 
cokriging (Matheron, 1971). It is theorized that increased 
precision in reserve estimation will occur if the spatial



correlation of both variables, in a two variable process, is 
considered. In PK, the two variables are transforms of the 
original random variable, and both variables exist at all 
locations. So, for PK to improve on the estimate of OK, the 
coregionalization of the indicator and uniform variables must 
not be intrinsic, that is, the direct and cross variograms are 
not proportional to a single basic model. This point will be 
addressed in Chapter 5.
2.1.3 Non-bias conditions

For the PK function to be unbiased, two constraints must 
be met:

N

E  V 1
( 2 . 6 )

N
E  vi'°j-i

The estimation variance of the PK estimator is minimized 
subject to these constraints. The minimized PK estimation 
variance may be expressed:

2 _ N
pK (A; z c )  =Ci (A, A, z c )  (zc) Xa ( z c )  Ci (A,xa, z c )

N a=1 (2.7)
-]£ va(zc) C~(A,xa,zc)
a=1

where u1 and u2 are Lagrangian multipliers. Because the sum 
of the weights applied to the uniform transform equals zero, 
u2 does not appear in the equation. In this study, the 
conditions (2.6) were used when 8 or more data were located in 
the kriging neighborhood. When less than 8 data were located 
in the neighborhood, a less stringent constraint was applied.
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w
£  (V* )  +Vi(z))=l (2.8)j-i

It is likely that this constraint will apply greater weight 
on the uniform variable. Isaacs (1984) determined that this 
procedure will help to increase the resolution of the PK 
estimator when only a few data are present.
2.1.4 Estimation of grade and tonnage above cutoff

The estimated proportion of the unknown spatial 
distribution of the random variable Z(x) below a particular 
cutoff grade has been defined above. The tonnage recovered 
above a cutoff grade zc, based on a point support smu is:

T(A;zc) =1-0* (A; zc) (2.9)

Similarly the estimation of the grade above a cutoff grade 
also involves the proportion 0* (A;zc)(Figure 2.4). Sullivan 
(1985) has defined two methods of estimating the quantity of 
metal above a cutoff grade, the direct method, and the 
indirect method.

The direct method is expressed:

Q{zck) = [0* (A; zca+1) - 0* (A; zca) ] Ca+1 (2.10)

where, Q(zck) is the quantity of metal above the
cutoff grade zc,

nc is the number of cutoff grades,

cg+1 is a measure of the central
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FIGURE 2.4: Graphical representation of a reserve function. (Lindsey, 1987)
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cutoffs zca and zca+1.

The central values ca must be approximated from the 
declustered global exploration data since insufficient data 
exists within each panel neighborhood at the 
exploration/development stage. A certain amount of smoothing 
will be introduced by this procedure as one would expect that 
the average grade between two cutoffs would vary somewhat from 
panel to panel throughout the deposit.

The indirect method is expressed:
D C - 1

Q(zck)= (0* (A, zcatl) -0* (A, zca)
a« 1 (2. 11)

-0* (A, ZCX) C1

Sullivan (1985) states that the indirect method may be
preferred over the direct method in some cases for the
following reasons:

1) Biases in estimation resulting from high grade 
data influencing lower cutoffs using the 
direct method is avoided.

2) More information about the deposit is used 
with the indirect method.

The indirect method relies upon an estimate of the mean of the 
panel to be estimated, mA*. One solution to this problem might 
be to use the OK or the LNK estimated mean for the panel, but
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since a non-parametric solution is desired this approach will 
not be taken. Instead, as with the direct method, the global 
exploration data will be called upon for an estimate for the 
mean grade. Now, given the quantity of metal above cutoff by 
either method, the mean grade above cutoff may be estimated 
as:

m*(A,zc)=Q(zck)/l- 0 (A;zc) . (2.12)
2.2 Lognormal Kriging
2.2.1 The logarithmic transformation and kriging system

In comparison to PK, the mathematics of LNK is quite 
simple. It has been determined that the distribution of grades 
in many gold deposits is lognormal (Krige, 1966) ; (Rendu, 
197 8) . When such a distribution is present it is expected that 
superior reserve estimation occurs when the original data 
values are normalized by using a logarithmic transform, a 
variogram of the transformed data is calculated, the 
corresponding kriging weights and solution is arrived at, and 
the kriged estimate is then back transformed. The transform 
may be expressed:

Y=ln(z(x)). (2.13)
The LNK system of equations is identical to OK. The 

system is a linear arrangement of matrices:
[A][X]=[B) (2.14)

where, [A] is the data covariance matrix,
[X] is the matrix of kriging weights to be 

solved for,
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[B] is the matrix of covariances between
the data and the point or block to be
estimated.

In this thesis it will be assumed that the true mean grade of 
the deposit is unknown, and therefore OK is used rather than 
simple kriging (SK).
2.2.2 Unbiasedness

To be an unbiased estimator, the kriging weights of the 
LNK estimator must sum to unity. In the point support case, 
the OK estimator of the transformed variable Y(x) may be 
expressed:

for each kriging neighborhood.
Subject to the above unbiased condition, the estimation 

variance of the LNK estimator is minimized. The estimation 
variance is:

N
Y* o k (x) = £  Aa Y (xa) (2.15)

a-1

The unbiased condition will be met if

N
(2.16)

E[\Y(z (x)) - Y* OK(z(x)) !2] = a2 OK(z(x) )

= o2-^2 o (z(xa-z(x) ) + u
(2.17)



where,
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u is the Lagrangian multiplier,
N is the number of data in the kriging 

neighborhood,
Y(z(x)) is the transformed value of the actual 

but unknown grade,
o(x1 -x0) is the covariance associated with the

points x1 and xQ.
Additionally, a correction factor must be included to account 
for the bias associated with the back transform:

Z*(x0) = Exp (Y(Z*(x0))) . (2.18)
The unbiased back transform is:

Z*(x0) = B{Exp [Y(z*(x0) ] ) (2.19)

where B, the correction factor, is determined through cross 
validation.
2.2.3 Estimation of tonnage and mean grade above cutoff

Once it has been determined that the sample grades are 
distributed lognormally, an assumption that the true but 
unknown distribution of actual grades is multivariate 
lognormal can be made. Matheron (1971) and Krige (1951) have 
postulated the permanency of the lognormal pattern, which 
implies that once drill hole samples have been proven to be 
distributed lognormally, the distribution of grades 
in blocks of any size can also be assumed to be distributed 
lognormally. Based upon this assumption, and utilizing the 
kriged mean grade for each panel and the logarithmic variance,
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the proportion of the distribution of grades within a block 
exceeding a cutoff can be determined. With this value, the 
tonnage and mean grade above a cutoff follow directly.

Following the procedure outlined by Rendu (1981), the 
proportion of tonnage in a panel above a cutoff grade zc is: 

T+zc/T =1 " 0{l/(«TeU)Ln(zc/uB)+ aeU/2) (2.20) 
where, aeU is the sum of the kriging variance and the 

logarithmic sample variance of the data 
in the kriging neighborhood, 

ug is the mean grade of the block,
o(zc) is the proportion of the area under

the cumulative normal distribution less 
than the cutoff grade zc.

The proportion of the total quantity of metal in a block 
above a cutoff grade zc is expressed:

Q+zc/Q = 1 - (l/(aeU) Ln (zc/u) - aeU/2) (2.21)
The ratio of the average grade above a cutoff grade zc 

to the average grade of a block is:
u+2C/u = (Q+ZC/Q)/(T+ZC/T) (2.22)

where u+zc is the mean grade above the cutoff grade
zc.



29

Chapter 3 The Manhattan Gold Deposit 
Exploration and production data from the Manhattan Mine 

used in this study were generously made available by Echo Bay 
Minerals Co. The Manhattan Mine is located 50 miles north of 
Tonopah, NV, in the Big Smoky Valley, on the western flank of 
the Toquima Range (Figure 3.1).
3.1 History of the Manhattan district

The gold discovery which led to the development of the 
Manhattan Mine occurred in April, 1905, by John C. Humphrey, 
when his party had paused to rest while traveling from 
Belmont, to the Seyler Ranch near Peavine. By March, 1906, 
3000 people lived in and around Manhattan. Development of the 
district was temporarily halted by the fire in San Francisco 
later in 1906. Placer mining began in earnest in 1908 after a 
brief economic depression had stopped capital investment in 
lode mines (Ferguson, 1924). District production in both lode 
and placer mining peaked for the first time during the years 
1913-1915, and then declined as many of the rich surface 
deposits were depleted.

In 1917, the discovery of rich ore in the lower levels of 
the White Caps Mine signalled the beginning of a second albeit 
brief boom period. Ferguson (1924) reports that only one of 
the larger mines was operating and little exploration was in 
progress at the time of his visit in 1924.

The Manhattan Gold Dredge Co. operated a large dredge in 
Manhattan Gulch from 1938-1947, recovering approximately



FIGURE 3.1 Location map. 
(Haddry et.al. 1987)
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300.000 troy ounces of gold. The operation began at the west 
end of the gulch in the Big Smoky Valley, and proceeded 
eastward to a position immediately west of the town site. One 
of the richest recorded sections of the gulch is at Wolftone 
Point, a short distance downstream of the intersection of the 
gulch with the Reliance vein and the Little Grey Fault zone. 
Intermittent placering has continued in the gulch from 1947 to 
the present.

The Reliance Mine was one of the larger underground lode 
mines in the area of the present day open pit operation. 
Opened in 1932, the mine yielded in excess of $1 million from
60.000 tons of ore between 1935-1941 (Krai, 1951). The 
Reliance Mine does not lie within the limits of the Echo Bay 
claim group, and the necessary drilling information is 
therefore not available to determine if the Reliance vein is 
an extension of the Little Grey vein system. Krai (1951) , 
however, reports that the Reliance vein was discovered as a 
result of exploration for an extension of the Little Grey.

Echo Bays operations at Manhattan involve two open pits 
which incorporate several old underground mines. Within the 
limits of the East Pit are portions of the Reilly, Big Pine, 
Jumping Jack, and Big Four underground mines. The West Pit, 
the subject of this study, incorporates the Little Grey mine.
3.2 District geology

Exposed rocks in the Manhattan district include Cambrian
and Ordovician siliciclastics and carbonates, Cretaceous
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granite, and Tertiary volcanic rocks from the Manhattan 
caldera (Maddry et al, 1987). The Paleozoic rocks are present 
in thin thrust sheets that are locally intensely folded. The 
thrust sheets strike east-west or northwest in general, and 
dip to the south. The Manhattan caldera lies approximately 0.4 
miles north of the Manhattan gold deposit (Figure 3.2). 
Paleozoic rocks are truncated, overlain, or included in the 
caldera as floating fragments (Figure 3.3). The Tertiary 
volcanic and volcanoclastic rocks are described in detail by 
Shawe (1984). The age of the volcanics varies from 23 to 26 
Ma.

Gold mineralization in the vicinity of the Manhattan mine 
is found in the Gold Hill Formation (Maddry et al., 1987) . The 
Gold Hill Formation, consists of phyllite, sandy phyllite, 
quartzite, and marble. Mineralization is preferentially found 
in the sandy phyllite and the quartzite due to their brittle 
characteristics during deformation. Replacement of marble has 
resulted in some economic mineralization, but it is minor for 
the most part.
3.3 West Pit orebody

The West Pit orebody currently being mined, and the focus 
of this study, was originally mined as the Little Grey mine, 
an underground, open stope operation. The dimensions of the 
ore shoot were reported by Ferguson (1924) to be 100 feet x 
300 feet x 5-20 feet (drift length, height, and stope width, 
respectively). The orebody today is considered to be 1200' in
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strike length, 300' in dip length, and of variable width. The 
Little Grey Fault zone (Figure 3.4), which is bounded by two 
subparallel structures, the footwall structure being the 
Little Grey Fault, is approximately 200' thick. The fault zone 
strikes N 10-3 0°W and dips 45-65 degrees southwest. Above the 
breccia on the footwall, fractures extend to the bounding 
subparallel structure. Ore occurs in lenses or shoots which 
are parallel to the Little Grey Fault. The size and number of 
these shoots decreases away from the Little Grey Fault (Maddry 
et al., 1987). Some mineralization extends beyond both 
bounding structures, and this mineralization, which is 
confined to fractures, is stronger in the hanging wall than in 
the footwall zone. The rock type throughout the pit is sandy 
phyllite interbedded with quartzite, with minor marble. The 
ore mineralogy includes drusy quartz and adularia, free gold 
ranging in size from 400 mesh to 0.4 inches in diameter, 
calcite, fluorite, and some sulphides.

The West Pit orebody is currently being mined by open pit 
methods with 20 foot benches, and blasthole separation 
distances on the order of 15 feet. The stripping ratio is 4:1, 
waste to ore. The mining rate is 14,000 tons per day. Material 
grading from 0.013 to 0.018 troy ounces per ton (oz/ton) is 
hauled directly to the leach pad. Material grading 0.019 to 
0.059 oz/ton is crushed and sent to the leach pad, and 
material grading in excess of 0.060 oz/ton is crushed and sent 
to the floatation circuit in the mill. Selection of ore and



FIGURE 3 .4  West p it  orebody. (Maddry e t . a l . ,  1907)
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waste is based on OK of blasthole assays to calculate the 
average grade of a 15 foot x 15 foot x 20 foot selective 
mining unit size block. The nature of the mineralization is 
such that prediction of the location of ore and waste size 
smu's from exploration/development drilling data is not 
possible, as the drilling was completed on roughly a 70 foot 
grid spacing.

The Little Grey orebody terminates to the south where it 
separates into several smaller faults. To the north, the 
Brugher fault, an east-west structure, cuts off most 
mineralization. As mentioned earlier however, the Reliance 
Mine lies on strike with the Little Grey fault a short 
distance to the north.
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Chapter 4 Statistical Analysis of the Data 
Prior to the application of any geostatistical techniques 

a univariate statistical analysis of the data will be 
performed. The purpose of this analysis is four- fold:

1) to select indicator cut off grades with 
which the PK algorithm will estimate 
conditional probability distribution 
functions;

2) to confirm the presence of a 
lognormal distribution of exploration 
data that will justify the use of LNK;

3) to examine the population for the 
presence of bimodality and outliers;

4) to calculate frequency distributions 
of point support grades within large 
exploration size blocks using 
production data to be compared with 
results utilizing exploration
data.

A total of 1,386 exploration composites exist in the West 
Pit database. Of these, 431 are located in the hanging wall, 
790 are within the Little Grey Fault zone, and 165 are located 
in the footwall. Exploration drilling in the West Pit is 
oriented along the strike of the Little Grey fault. Drill grid 
spacing is roughly 70 feet, with some angle holes included to



39

intercept the fault zone in its true thickness. Samples are 
taken in 5 foot intervals, and assays are then composited into 
20 foot benches. The effects of spatial clustering of the data 
were negated by declustering according to the cell method 
(Journal, 1983) using a 100 x 100 x 20 foot block system.

Subdivision of the database on the basis of structural 
position and the presence of drusy quartz and adularia 
mineralization on fractures incorporates into the estimation 
process the natural physical boundaries of the deposit. Also, 
the assumptions of second order stationarity will be more 
closely adhered to. Statistics of the exhaustive data set and 
the individual zones are given in Table 1.
4.1 Selection of indicator cutoff grades

The PK algorithm as described in section 2.1 approximates 
the conditional probability distribution function given the 
'n' neighborhood data for a block or point location by 
estimating the realization of the random function at a series 
of cutoff grades. If cutoff grades are chosen so that the data 
are divided into subgroups containing equal portions of the 
data, then the unknown distribution will be approximated most 
efficiently. Plotting the data into histograms (Figures 4.1, 
4.2, 4.3, and 4.4) allows for visual inspection of the 
distribution of composite grades, and the output from such a 
program generally gives some measure of the relative frequency 
of data within each class.



TABLE 1. STATISTICS OF EXPLORATION DRILLING DATA

EXHAUSTIVE
EXPLORATIONDATA HANGING

WALL
LITTLE
GREY
FAULT FOOTVALL

Number o£ Data 1386 431 790 165
Mean (oz/ton) 0.018 0.006 0.026 0.012
Variance 0.003 0.000 0.006 0.002
Coe££icient of 
Variation

3.24 2.06 2.85 3.54
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HISTOGRAM OF VEST PIT COMPOSITES

Figure 4.1
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Figure 4.1 is a histogram of the exhaustive West Pit 
composite database. The distribution is positively skewed with 
a mean of 0.018 oz/ton, a variance of 0.004 (oz/ton)2, and a 
spike of values at zero containing 35% of the data. The 
highest value in the distribution is 1.313 oz/ton and the 
coefficient of variation is 3.24.

Figures 4.2, 4.3, and 4.4 are the histograms of the 
Hanging Wall, Little Grey Fault zone, and Footwall 
respectively. Each distribution is positively skewed, and all 
tend to lognormallity. The Hanging Wall is characterized by a 
low average grade and a relatively low coefficient of 
variation. The Little Grey Fault zone, being the principle ore 
zone, has the highest mean grade and a moderate coefficient of 
variation. The histogram (Figure 4.3) is distinct in that a 
significant portion of the data resides in the highest grade 
class. This point will be addressed in Section 4.4. The 
histogram of the Footwall data indicates an average grade 
between that of the other two zones, and the highest 
coefficient of variation. The high coefficient of variation 
may be due to the paucity of data, only 165 data, or, 
inclusion of a mineralized structure in what is otherwise a 
zone of waste.

Cutoff grades are selected by subdividing each population 
into approximately uniform classes. Because each of the three 
subdivided zones has a unique distribution of composite grades 
the cutoff grades selected for each will be different. This
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Figure 4.1 is a histogram of the exhaustive West Pit 
composite database. The distribution is positively skewed with 
a mean of 0.018 oz/ton, a variance of 0.004 (oz/ton)2, and a 
spike of values at zero containing 35% of the data. The 
highest value in the distribution is 1.313 oz/ton and the 
coefficient of variation is 3.24.

Figures 4.2, 4.3, and 4.4 are the histograms of the 
Hanging Wall, Little Grey Fault zone, and Footwall 
respectively. Each distribution is positively skewed, and all 
tend to lognormallity. The Hanging Wall is characterized by a 
low average grade and a relatively low coefficient of 
variation. The Little Grey Fault zone, being the principle ore 
zone, has the highest mean grade and a moderate coefficient of 
variation. The histogram (Figure 4.3) is distinct in that a 
significant portion of the data resides in the highest grade 
class. This point will be addressed in Section 4.4. The 
histogram of the Footwall data indicates an average grade 
between that of the other two zones, and the highest 
coefficient of variation. The high coefficient of variation 
may be due to the paucity of data, only 165 data, or, 
inclusion of a mineralized structure in what is otherwise a 
zone of waste.

Cutoff grades are selected by subdividing each population 
into approximately uniform classes. Because each of the three 
subdivided zones has a unique distribution of composite grades 
the cutoff grades selected for each will be different. This
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have a small percentage of the data residing at the end of the 
tail of the distribution. These data have refered to as 
"outliers", with the implication being that they misrepresent 
reality either by sampling or assay error. The importance of 
an unbiased sampling program to accurate reserve estimation 
can not be overemphasized. However, correct sampling is a 
matter to be considered prior to reserve estimation. 
Therefore, once one reaches the estimation stage all data 
must be considered relevent, and the integrity of which will 
go without question.

Gold mineralization at Manhattan is fracture controlled, 
and large diameter gold is not uncommomn. In the instance 
where isolated fractures may have significant quantities of 
free gold a problem may develop. The problem is that given the 
support of a 5 foot sample or a 20 foot composite the assay is 
valid. Extrapolation of this assay, or average of assays, to 
the smu support size, or exploration block support size, the 
assay is no longer valid. Conventional estimation techniques 
and OK do not weight composites according to the grade of the 
composite, only the location of the composite. Over valuation 
of the deposit is inevitable when using such procedures on a 
structurally controlled, coarse gold deposit.

One method used in industry to solve the problem of 
outliers is to delete the data value from the study, or to 
trim the data value. Journal (1988) demonstrated the 
consequences of deleting or trimming extreme data by
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calculating the quantity of metal contained in the extreme 
class of data, and then calculating the percentage of 
underestimation associated with deleting or trimming various 
percentages of the data. It was shown that, for a deposit 
where the economic cutoff grade is at or near the mean grade 
of the deposit, deleting as little as 1% of the data could 
result in under estimation by as much as the expected rate of 
return of the deposit. Journal concluded that in the case 
where two mineralization types are intermixed, ie. a high 
grade fracture controlled mineralization and a low grade 
pervasive mineralization, consideration should be given to a 
non-parametric, probabilistic approach, which calculates the 
likelihood of a type of mineralization to be present at a 
particular location, and evaluates each mineralization type 
independently.

This procedure is highly regarded by the author. It 
presupposes, however,that enough of the right kind of data has 
been collected during the exploration program to make such 
calculations, and for this study, none of the data have been 
deleted or cut back to a lower grade. The success of the PK 
estimator will depend upon its ability to model the spatial 
characteristics of the high grade mineralization. The success 
of the LNK estimator will depend upon how much the actual 
distributions of grades within each block deviate from 
lognormallity.
4.4 Determination of the frequency distributions of blasthole
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grades
In this study, the distribution of point support grades 

within exploration size blocks calculated from exploration 
data will be compared to the distribution of the grades of 
production blastholes within each block. Two benches in the 
West Pit, the 6840 and 6820 benches, have been subdivided into 
139 blocks with dimensions 100 x 100 x 20 feet3 (Figures 4.9 
and 4.10). The production blastholes which lay within each 
block are sorted, and the distribution of the grades is 
examined. The actual tonnage in a block above a cutoff grade 
is:

T+zc = (n/N) 18,000 tons (4.1)
where, n is the number of blastholes whose assayed 

grade is greater than zc, the cutoff 
grade;

N is the total number of blastholes in the 
block;

18,000 tons is the tonnage assumed to be 
contained in a 100 x 100 x 20 foot3 
block.

The actual grade of the proportion of a block above a cutoff 
grade zc, is:

m ‘zc=lY, !n (4,2)>i

where x. is the assay of a blasthole greater
than the cutoff grade zc.
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The actual quantity of metal contained in a block above a 
cutoff grade zc, is:

Q♦zc = m ♦zc (4.3)
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Chapter 5 Varioqraphv
This chapter discusses covariance as related to 

structural analysis, and the process of using the variogram to 
model regionalized and coregionalized variables. The 
variograms of transformed exploration data are presented and 
analyzed.
5.1 The variogram

In Section 1.2 covariance and the concept of the 
variogram were introduced. The variogram is the tool with 
which geostatistics models the structure of the spatial 
variability of the distribution of the random variable of 
interest. Given the assumption of second order stationarity, 
the variogram is a function only of the vector distance h that 
separates two points, x, and x+h. The manner in which the 
variogram function changes for small changes in h determines 
the spatial variability of the random variable.

At Manhattan, the deposit has strong structural control. 
The mineralizing fluids, being channelled by these structures, 
preferentially deposited gold on the surface of the fractures 
where favorable physio-chemical conditions were present. 
Fracture controlled mineralization shows better continuity in 
the direction of the fractures. Continuity in the plane of the 
fractures is a function of the direction of the transport of 
the mineralizing fluids.
A structural model of the spatial variability is therefore 
anisotropic.
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The expression of the variogram function:

2y i x 1, x 2) =E[ ( Z ( x x) - Z ( x 2) ) 2]

is a measure of the degree of correlation of the two random 
variables Z(x.,) and Z(x2). As the distance separating the two 
points increases, the correlation decreases, and the mean 
quadratic deviation between the two random variables 
increases. Thus, the variogram function increases with 
increasing h, the vector describing the separation distance.

In practice, the variogram function increases to a 
particular value h, and then stabilizes. The separation 
distance at which the function stabilizes is called the range 
of the function, and represents the distance at which no 
correlation exists between the two random variables Z(x.,) , and 
Z(x2). The variables are then independent. The value of the 
variogram function at this point is called the sill. The sill 
value is the a priori variance of the random function.

Of particular interest in the study of regionalized 
variables is the behavior of the variogram function near the 
origin. Theoretically, when h = 0, the variogram function y(h) 
= 0. However, in a structurally controlled gold deposit with 
coarse gold, this is seldom the case. Rather, a discontinuity 
exists at the origin, and as h approaches zero, y(h) does not 
equal zero. This local variability is a manifestation of the 
random component of a mineral deposit, and is termed the 
nugget effect. In addition to the small scale variability of 
the mineralization, sampling and assay errors contribute to



the nugget effect.
5.2 Lognormal transform variograms
5.2.1 LN transform variography

Having determined that the composited exploration grades 
are distributed approximately lognormally, the spatial 
variability of each mineralized zone is studied through 
variograms of the lognormally transformed data values. 
Variograms are calculated along the general trend of 
fracturing (x-direction), down dip of the trend of fracturing 
(y-direction), and perpendicular to the trend of fracturing 
(z-direction)(Figures 5.1, 5.2, and 5.3). Experimental
variograms are calculated using lag distances of 35 feet. The 
parameters of the variograms calculated in each zone are 
summarized in Table 2.
5.2.2 Interpretation of the LN transform variograms

Figure 5.1 presents the variograms calculated in the 
Hanging Wall zone. Figure 5.2 presents the variograms 
calculated in the Little Grey Fault zone, and Figure 5.3 
presents the variograms calculated in the Footwall zone.
All of the variograms are modelled with a simple spherical 
model, with the exception of the variogram calculated in the 
z-direction within the Little Grey Fault zone, which exhibits 
no structure.

The variograms are anisotropic with the principle axis 
being parallel to the strike of the Little Grey fault, and the 
second major axis being parallel to the dip direction of the

59
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Figure 5.1
E x p e r im e n ta l  V a r io g r a n  f o r  VP1EXLNGRADE
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Figure 5.2
E x p e r im e n ta l  V a r io g ra m  f o r  WP2EXLNGRADE
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Figure 5.3
Experimental Variogram f o r  WP3EXLNGRADE
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TABLE 2. LOGNORMAL TRANSFORMED VARIOGRAM PARAMETERS
SILL - NUGGET NUGGET RANGE [feet]

Hanging Wall
x - direction 0.87 0.30 150
y - direction 0.76 0.41 114
z - direction 1.17 0.00 80
LGF
x - direction 1.31 0.37 101
y - direction 1.38 0.30 71
z - direction 0.00 1.68 0
Footwall
x - direction 0.53 0.85 148
y - direction 1.00 0.38 112
z - direction 0.20 1.18 24
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structure. The z-direction in the Hanging Wall and the 
Footwall shows a slight hole effect which is to be expected 
since these variograms are calculated across the fabric of the 
fracture sets. The z-direction variograms in the Little Grey 
Fault zone and the Footwall zone have a substantial nugget 
effect for the same reason. In the x- and y-directions, the 
nugget effect averages 30% of the sill in the Hanging Wall, 
20% in the Little Grey Fault zone, and 4 5% in the Footwall 
zone. This implies that the mineralization in the Little Grey 
Fault zone is most continuous, and that the mineralization in 
the Footwall zone is the most random. In the Little Grey Fault 
zone, kriging weights will be higher for nearby samples, while 
in the Footwall zone, the increased nugget effect will result 
in higher weights being applied to samples further from the 
points or blocks to be estimated.
5.3 Indicator, uniform, and cross variograms
5.3.1 The PK system of linear equations 

Returning to the PK algorithm:

N  N

a* (A;  zc)  =52 X j i  { x j i z c )  +52 Vj Ui Xj )
>i >i

The weights applied to the indicator and uniform random 
variables in the PK algorithm are determined by minimizing the 
kriging variance using the Lagrangian multiplier technique 
(Sullivan, 1985).

The PK system of equations follows:
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N

> 1
v iY i u ^ x i ~ x j' z c )  +H1=YI ( x i - x ;  z c )

and,

E  ^ i y i u ^ i - X j ; z c )  + £  v j y u { x i - x j ) + n 2 = Y iu U i - * ;  z c )j-i

if,

N

Eh  =1J-l

and,

E =0

Where, zc
N

M1 and /i2 
Y, ( x i ~ x jf - z c )

Yui ( x j "  X j,- z c )

is the cutoff grade;
is the number of samples in the
neighborhood;
is the weight applied to the 
indicator variable;
is the weight applied to the uniform 
variable;
are Lagrangian multipliers; 
is the indicator variogram value for 
the distance vector x; - Xj at cutoff 
grade zc;
is the cross uniform - indicator 
variogram value for vector xi - Xj at
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cutoff grade zc;
Yu(xi “ xj) is the uniform variogram value for

vector Xj - Xj.
To solve this system of equations, direct variograms of the 
indicator and uniform random variables must be calculated, as 
well as a cross variogram to model the coregionalization of 
the two random variables.

The variography requirement for PK is extensive. In a 3-D 
study such as this one, indicator, uniform, and cross 
variograms must be calculated in each of the x, y, and z 
directions specified in Section 5.2. Also, the indicator and 
cross variograms are calculated for each cutoff grade 
specified in Section 4.2. A summary of the equations used to 
model these variograms is given in Tables 3, 4, and 5, and the 
complete set of variograms is in Appendix A.
5.3.2 Positive - definiteness

To eliminate the possibility of obtaining a negative 
estimation variance, the matrix of covariances used to 
establish the kriging weights must be positive-definite 
(Sullivan, 1985). This requirement is satisfied when the 

following inequalities are met:
C'j  > 0, and CUj > 0,
Ĉ . * C'j - (Ĉ 'j)2 > 0, for all j.
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TABLE 3. HANGING WALL VARIOGRAM PARAMETERS
Cutoff Grade 
oz/tonIndicator

Nugget Sill - Nugget Range

0.001 0.135 0.085 150
0.002 0.125 0.145 170
0.003 0.120 0.125 110
0.004 0.125 0.117 130
0.005 0.110 0.090 40
0.006 0.145 0.060 175
0.010 0.055 0.085 100
0.016 0.065 0.025 110
0.020Uniform 0.051 0

Cross 0.035 0.055 160
0.001 -0.040 -0.065 120
0.002 -0.060 -0.070 160
0.003 -0.060 -0.060 130
0.004 -0.060 -0.055 140
0.005 -0.055 -0.050 140
0.006 -0.070 -0.025 180
0.010 0.000 -0.068 120
0.016 0.000 -0.035 80
0.020 -0.030 0



68

TABLE 4. LITTLE GREY FAULT ZONE VARIOGRAM PARAMETERS

Indicator
Cutoff Grade 
oz/ton Nugget Sill - Nugget Range 

C feet]
0.002 0.055 0.100 125
0.004 0.075 0.125 125
0.006 0.140 0.115 211
0.010 0.175 0.060 120
0.012 0.165 0.085 200
0.016 0.081 0.135 75
0.022 0.060 0.120 60
0.030 0.035 0.115 75

Uniform 0.050 0.000 0.095 70

Cross 0.029 0.053 130
0.002 0.000 -0.072 120
0.004 -0.045 -0.060 200
0.006 -0.045 -0.072 150
0.010 -0.060 -0.065 110
0.012 -0.055 -0.065 145
0.016 -0.040 -0.075 210
0.022 -0.030 -0.065 160
0.030 0.000 -0.075 100
0.050 0.000 -0.047 100
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TABLE 5. FOOTWALL VARIOGRAM PARAMETERS

Indicator
Cutoff Grade oz/ton Nugget Sill - Nugget Range C feet]

0.002 0.090 0.150 80
0.004 0.100 0.140 '• 100
0.010 0.117 0.042 120

Uniform
0.014 0.066 0.033 140

Cross 0.050 0.033 160
0.002 -0.060 -0.060 80
0.004 -0.070 -0.068 150
0.010 -0.044 -0.036 120
0.014 -0.022 -0.021 120
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This requirement has implications upon the models of the 
variograms such that:

1) Any structure observed in the cross variogram 
must also be present in the uniform and 
indicator variograms.

2) A structure appearing in either the indicator 
or the uniform variogram will not necessarily 
appear in the cross variogram.

All variograms used in the PK portion of this study have 
covariance matrices which are positive-definite.
5.3.3 Interpretation of PK variography

In general, the variograms calculated in the PK portion 
of the study were quite well behaved. The indicator variograms 
all displayed two characteristics:

1) decreasing range with increasing cutoff grade;
2) decreasing nugget value as a percentage of the 

sill value with increasing cutoff grade.
The interpretation of decreasing range with increasing 

cutoff grade is that low grade material occurs throughout the 
deposit, and that high grade mineralization is limited to 
isolated pockets. In fact, ore and waste is mixed together 
throughout the mine.

The interpretation of decreasing nugget value as a 
percentage of the sill is that much of the error involved in 
assaying limited quantities of gold is eliminated at higher 
cutoff grades (Carr, et.al, 1985).
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The indicator variograms display the same anisotropic 
characteristics as the LN transformed variograms. Also, the 
indicator variograms in the z-direction within the Little Grey 
Fault Zone show a lack of structure.

Cross variograms between the indicator and uniform 
variables were calculated at each cutoff grade. The most 
striking feature of the cross variograms is that the gamma 
values are negative. This is a result of the negative 
corellation between indicator and uniform data.

Uniform variograms were also calculated in each of the 
three zones. The smoothness of the variograms is evidence of 
the robustness of the uniform transform to outlier data.
5.4 Cross validation

Cross validation was developed to provide a quantitative 
guide to the accuracy of variogram models. The procedure first 
calls for calculation of a variogram from the data. Then, each 
data is removed one at a time, and the experimental variogram 
is used to krig a value at the point of the removed datum 
using the remaining samples. The results may be reported in 
terms of the mean squared error, or by examining the plot of 
the actual data values versus the estimated. The underlying 
premise of cross validation is that a variogram which results 
in unbiased estimation at known data points will produce 
unbiased results at unknown locations.
5.4.1 Cross validation with LNK

Cross validation of LN transformed variograms serves two
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purposes. First, the accuracy in terms of unbiased estimation 
is evaluated following the procedure outlined above. Secondly, 
cross validation is used to calculate a correction factor to 
be used in the back transform procedure after kriging. The 
correction factor, B, introduced in Equation 2.19, is the 
ratio of the original mean of the data to the estimated mean 
of the data when initially a correction factor of 1.0 (no 
correction) is used in the cross validation process.
5.4.2 Cross validation with PK

Cross validation with the PK estimator is slightly more 
involved than the original cross validation technique. Rather 
than estimate a grade at each original datum location, the PK 
estimator is used to calculate a conditional probability 
distribution function at the missing data location. As with 
conventional cross validation, this procedure is repeated at 
all data locations. In this study, the cross validation of PK 
variography is accomplished by estimating the expected value 
of the conditional probability distribution function 
calculated at each datum location and comparing it to the 
original datum value.
5.4.3 Cross validation results

The results of the cross validation portion of the study 
are presented in a series of scatter plots of actual versus 
cross validated data (Figures 5.4 a,b, 5.5 a,b, and 5.6 a,b) 
for each zone, and in Table 6. A better correlation of cross 
validated to actual data was achieved with the indicator,
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TABLE 6. CROSS VALIDATION STATISTICS

NumberHW of Data Mean Variance Correlat 
Coef f icii

Actual 431 0.006 0 .000 1
PK 424 0.015 0 .000 0 .421

LNK 431 0.006 0.000 0.001

LGF
Actual 790 0.026 0 .006 1
PK 788 0.028 0.000 0 .2 87

LNK 790 0.026 0.000 0.059

FW
Actual 155 0.012 0 .002 1

PK 159 0.011 0.000 0 .322

LNK 165 0.012 0 .000 - 0 . 0 1
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uniform, and cross variography required for PK than with the 
LN transformed variograms used for LNK. In general, both 
techniques over estimated low grades, and under estimated high 
grades, however, the mean grade of each zone was accurately 
estimated by both techniques. Therefore, neither method is 
found to be biased, although it appears that LNK will smooth 
the distribution of grades in each zone more so than PK.
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Chapter 6 Probability and Lognormal Kriqinq Results 
This chapter presents the results of kriging exploration 

data using PK and LNK to determine the distribution of point 
support grades within exploration size blocks. The total 
tonnage and quantity of metal above a series of cutoff grades 
are the values which are examined in the comparison. The basis 
for the evaluation of these estimation techniques is the 
distribution of blasthole grades within each exploration size 
block. Although this distribution does not represent the true 
distribution of point support grades within a block, it does 
represent the ultimate sampling grid for this deposit.
6.1 Application of lognormal kriging

LNK in this paper is accomplished by OK of the LN 
transformed random variable Z(x). Panels 100 feet x 100 feet 
in size are block kriged in 2-dimensions, utilizing a 4 x 4 
discretization matrix. OK is applied to each panel to estimate 
the logarithmic mean grade and kriging variance for each 
panel. In actual reserve estimation, the logarithmic variance 
of the smu size block in the deposit is added to the kriging 
variance to estimate the total variance of the lognormal 
distribution in a block. The objective of this study is to 
evaluate the point distribution of grades within a block, 
therefore, the logarithmic sample variance of the data used to 
estimate
the mean grade of each panel is added to the kriging variance
to obtain the total variance of the lognormal distribution



8 2

assumed for each panel (Rendu, 1981) ; (Kim, 1987) . The 
proportion of a panel above a given cutoff grade is then used 
to estimate tonnage and quantity of metal above the cutoff, as 
developed in Section 2.2.3.
6.2 Application of probability kriging

PK in this paper is accomplished by OK of a linear 
combination of the uniform and indicator transforms of the 
original random variable. Blocks 100 feet x 100 feet x 20 feet 
are kriged in 3-dimensions, utilizing a 5 x 5 x 2 
discretization matrix. PK estimates directly the proportion of 
point support grades within a block above a given cutoff grade 
(Sullivan, 1985), therefore, no affine correction is 
necessary. These proportions correlate directly to the tonnage 
of a block above a cutoff grade. The quantity of metal above 
a cutoff grade is easily derived from these proportions as 
described in Section 2.1.4.

6.3 Kriging results
The results of this section of the study are presented in 

a series of scatter plots, and two tables. The respective 
correlation coefficients and the mean of each of the groups of 
data are given in Tables 7 and 8. The correlation coefficient, 
r, relates the percent variation in the dependent variable 
that is attributible to the 
independent variable.



8 3

6.3.1 Tonnage comparison
Tonnage comparisons are completed by plotting the 

proportion of a block estimated to exceed the cutoff grade in 
question, versus the proportion of blastholes within the block 
with grades exceeding the cutoff grade. The results plotted at 
each cutoff grade are displayed in Figures 6.1 - 6.5.

The correlation coefficients presented in Table 7 
indicate that a strong linear relationship exists between the 
estimated tonnages and the actual data at the lower cutoff 
grades. This relationship does not exist at the higher cutoff 
grades, indicating that bias exists either in both estimation 
techniques, and/or in the simplistic method in which the 
actual tonnage was estimated.
6.3.2 Quantity of metal comparison

The quantity of metal comparison in this study is based 
on the number of blastholes within a panel exceeding a 
specified cutoff grade, and their average grade. The equations 
defining quantity of metal for both PK and LNK are presented 
in Sections 2.1 and 2.2, respectively. The results of the 
quantity of metal comparison show a poor correlation of 
estimated to actual values at all cutoff
grades (Figures 6.6 - 6.10); (Table 8). At each cutoff grade, 
PK significantly underestimates both the actual value and the 
estimated LNK quantity of metal. The reason for this 
underestimation cannot be accounted for soley by error 
involved in the PK estimation technique. To the contrary, it
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TABLE 7. TONNAGE COMPARISON STATISTICSCutoff
Grade
oz/ton

Number of 
Data

Mean Variance 
[in percent)

Correlation
Coefficient

ActualO.010 121 29.9 459.4 1.000
PK 0.010 121 32.8 641.7 0.743
LNK 0.010 121 18.0 253.0 0.729

ActualO.016 121 20.3 271.0 1.000
PK 0.016 121 20.3 391.9 0.750
LNK 0.016 121 13.2 154.7 0.720

ActualO.022 121 14.0 154.9 1.000
PK 0.022 121 15.0 302.8 0.705
LNK 0.022 121 10.4 106.6 0.663

ActualO.030 121 10.3 104.2 1.000
PK 0.030 121 10.6 208.0 0.547
LNK 0.030 121 8.1 71.3 0.594

ActualO.050 121 6.4 49.2 1.000
PK 0.050 121 4.6 95.8 0.405
LNK 0.050 121 5.2 31.4 0.559
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TABLE
Cutoff

8. QUANTITY OF METAL COMPARISON STATISTICS
Grade Number of 
oz/tonData Mean Variance 

[ounces ]
Correlation
Coefficient

ActualO.010 112 334.4 2.2E+05 1.000
PK 0.010 110 187.6 3.2E+04 0.743
LNK 0.010 121 283.1 9.4E+04 0.729

ActualO.016 105 343.8 2.4E+05 1.000
PK 0.016 105 200.8 5.7E+04 0.750
LNK 0.016 121 271.7 9.2E+04 0.720

ActualO.022 103 321.4 2.4E+05 1.000
PK 0.022 95 203.0 5.7E+04 0.705
LNK 0.022 121 262.3 8.9E+04 0.663

ActualO.030 92 332.6 2.4E+05 1.000
PK 0.030 91 211.8 9.0E+04 0.547
LNK 0.030 121 251.6 8.5E+04 0.594

ActualO.050 82 340.3 2.6E+05 1.000
PK 0.050 75 221.7 1.2E+05 0.405
LNK 0.050 121 231.1 7.7E+04 0.559
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is evident at the Manhattan Mine that the quantity of gold 
indicated to be present by blasthole assays is not reconciled 
at the mill (Veek, 1989) . This problem has resulted in the 
practice of trimming of high blasthole grades before kriging, 
and expansion of the smu size to twice that of a 15 x 15 x 20 
foot3 block. In addition, it is of interest to note that the 
number of blocks considered to contain metal above a cutoff 
grade is constant when using LNK, compared to PK and the 
actual where the number of blocks declines at higher grades. 
This aspect could have serious implications during the 
exploration and development of any mineral prospect.
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Chapter 7 Mapping Conditional Probabilities
PK, a cokriging estimator, produces as an output a 

conditional probability distribution function at each 
estimation location. The probabilistic nature of these 
distributions provides information not only at the datum 
location but also at locations where no data exists. Mapping 
conditional probabilities during the exploration or 
development drilling phase may therefore provide useful 
information as to the spatial distribution of mineralization.

In this study, PK, with a 50 foot x 50 foot x 20 foot 
block size, is used to produce conditional probability 
distributions on a grid dense enough to capture the gross 
spatial features of the mineralization. For comparison, a 
contoured blasthole map is used (Figure 7.1). A contoured 
conditional probability map for grades in excess of the 0.016 
oz/ton cutoff grade are plotted in Figure 7.2. The probability 
contours on this map accurately depict the outline of low 
grade gold mineralization on the production blasthole map 
within the Little Grey Fault zone, and identifies a large zone 
of internal waste. Plotting contours of conditional 
probabilities of grades above the 0.050 oz/ton cutoff grade 
provides different information. High probability contours 
clearly indicate the location of breccia controlled 
mineralization along the Little Grey Fault and the bounding 
hanging wall structure. The contour
map also indicates that substatial internal waste is present
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in the fault zone.
By reproducing the general characteristics of a blasthole 

contour map with exploration data the usefulness of mapping 
conditional probability contours is evident. Two possible 
applications of this procedure in the mining industry are;

1) Developing a more detailed conceptual model 
of the spatial distribution of mineralization 
during the exploration stage of a project than 
the common practice of color coding blocks in 
plan view and or cross section based on 
average grade;

2) The contours provide a quantitative measure 
of the certainty with which the location of 
the mineralization is known. Relatively high 
probabilities imply a stronger likelihood of 
the presence of ore than low probabilities, 
which indicate subeconomic or waste zones. 
Zones of intermediate probability should be 
considered as target areas for a subsequent 
drilling phase.
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Chapter 8 Conclusions and Suggestions For Further Work
In this study, the application of PK and LNK, to a 

structurally controlled, coarse gold deposit, is developed. 
The results of the study suggest that PK is a better estimator 
of the distribution of point support grades in an exploration 
size panel than either the actual blastholes located in the 
block, or LNK, for this deposit. The study also exposes a 
problem with the LNK approach, that being overestimation of 
high grade tonnage. A likely explanation for this over 
estimation is the characteristic long tail of the lognormal 
distribution which contains some very high grade values and 
the fact that the true distribution of point support grades 
may not be lognormal in all panels. In Table 8, as the cutoff 
grade is increased, both PK and the actual algorithms find 
fewer blocks with mineralization beyond the cutoff grade. LNK, 
however, finds mineralization in excess of all cutoff grades, 
in all blocks.

The approach of using the distribution of blasthole 
grades within an exploration size panel as actual data was 
less than successful in this case study. It is evident that 
the number of samples within the panel, approximately 45, was 
insufficient to accurately identify the true distribution of 
point support grades within the panel. Further work on this 
subject might include:

1) Implementation of sampling stations at various 
locations prior to milling to better define what
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the actual data is at Manhattan;
2) Testing the use of 10 foot benches as a possible 

remedy for grade control;
3) Variography indicated that mineralization was quite 

continuous down dip in the Little Grey Fault zone; 
rotation of the coordinate system so that blocks 
are aligned with the plane of mineralization may 
yield improved results;

4) The benefits of mapping conditional probabilities 
in ore reserve estimation should be tested further, 
a variety of deposit types should be examined, 
including simulated deposits.
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